
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 134–139,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Natural Language Informs the Interpretation of Iconic Gestures:
A Computational Approach

Ting Han and Julian Hough and David Schlangen
Dialogue Systems Group // CITEC // Faculty of Linguistics and Literary Studies

Bielefeld University
firstname.lastname@uni-bielefeld.de

Abstract

When giving descriptions, speakers often
signify object shape or size with hand ges-
tures. Such so-called ‘iconic’ gestures rep-
resent their meaning through their rele-
vance to referents in the verbal content,
rather than having a conventional form.
The gesture form on its own is often am-
biguous, and the aspect of the referent that
it highlights is constrained by what the lan-
guage makes salient. We show how the
verbal content guides gesture interpreta-
tion through a computational model that
frames the task as a multi-label classifi-
cation task that maps multimodal utter-
ances to semantic categories, using anno-
tated human-human data.

1 Introduction

Besides natural language, human communication
often involves other modalities such as hand ges-
tures. As shown in Figure 1, when describing
two lanterns, one can describe “two lanterns” ver-
bally, while showing the relative position with
two hands facing each other. Interestingly, when
the same gesture is accompanied by the utterance
“a ball”, the same gesture may indicate shape.
These gestures (referred to as ‘iconic gestures’ in
gesture studies (McNeill, 1992)) are characterised
as conveying meanings through similarity to ref-
erents in verbal content, rather than conventional
forms of shape/trajectory. Hence, the interpreta-
tion of iconic gestures largely depends on verbal
content.

Although this theory has been proposed and
confirmed in various gesture studies (Feyereisen
and De Lannoy, 1991; McNeill, 1992; Kita and
Özyürek, 2003; Kita et al., 2007; Özyürek et al.,
2008; Bergmann et al., 2014, 2013b), it has not

Figure 1: Speech / gesture description of a vir-
tual scene: “. . . sind halt zwei Laternen” (“[there]
are two lanterns”). Gestures indicate the amount
(two) and relative placement of the two lanterns,
while speech indicates the entity name and
amount. From (Lücking et al., 2010).

attracted much attention from works on human-
computer interfaces (HCIs), which usually assume
that gestures have predefined meanings either
through conventional agreements (e.g., “thumb
up” for “great”), or defined by the system (e.g.,
“circling” for “circle”) (Stiefelhagen et al., 2004;
Burger et al., 2012; Lucignano et al., 2013;
Rodomagoulakis et al., 2016). Hence, the systems
can only interpret a limited number of gestures by
classifying gestures based on the shape/trajectory
of hands, then combining the information with
language. We propose that, in order to incor-
porate iconic gestures in HCIs, natural language
should be taken as an important resource to inter-
pret iconic gestures.

The relation between speech and iconic gestures
has certainly been investigated in previous work.
Empirical studies such as (Kita and Özyürek,
2003; Kita et al., 2007) analysed speech and ges-
ture semantics with statistical methods and show
that the semantics of speech and gestures coor-
dinate with each other. However, it remains un-
clear how to computationally derive the semantics
of iconic gestures and build corresponding mul-
timodal semantics together with the accompany-
ing verbal content. In this paper, we address this
“how” question and present a computational ap-
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Verbal utterance U “two, lanterns”
Gesture G two hands facing each other

Speech semantics [entity, amount]

Gesture semantics [relative position, amount]

Multi-modal
semantics

[entity, relative position,
amount]

Figure 2: Example of a multimodal utterance, and
semantic categories.

proach that predicts speech and gesture seman-
tic categories using speech and gesture input as
features. Speech and gesture information within
the same semantic category can then be fused
to form a complete multimodal meaning, where
previous methods on representing multimodal se-
mantic (Bergmann and Kopp, 2008; Bergmann
et al., 2013a; Lascarides and Stone, 2009; Gior-
golo, 2010) can be applied. Consequently, this
enables HCIs to construct and represent multi-
modal semantics of natural communications in-
volving iconic gestures.

We investigated whether language informs the
interpretation of iconic gestures with the data from
the SAGA corpus (Lücking et al., 2010). From
the SAGA corpus, we take gesture-speech ensem-
bles as well as semantic category annotations of
speech and gestures according to the information
they convey. Using words and annotations of ges-
tures to represent verbal content and gesture in-
formation, we conducted experiments to map lan-
guage and gesture inputs to semantic categories.
The results show that language is more informa-
tive than gestures in terms of predicting iconic ges-
ture semantics and multimodal semantics.

2 Task formulation

We now describe the task formally. Suppose a ver-
bal utterance U is accompanied by a gesture G
(as shown in Figure 2), we represent the speech-
gesture ensemble as (U, G). The ultimate goal is
to map the input information of (U, G) to a set of
semantic categories according to the information
they convey (as shown in Figure 3), then compose
the multi-modal semantics of the ensemble with
information in the same category across speech
and gestures.

We define a mapping function f that takes a
speech-gesture ensemble (U, G) as input, and out-
puts semantic categories ci, computed by the set
of features of U and G. Additionally, we as-

f(U, G)

entity

amount

relative 
position

lantern

2

obj1:(x1, y1) 
 obj2:(x2, y2)

Figure 3: Mapping a speech-gesture ensemble to
semantic categories in blue rectangles (U and G in-
dicate speech and gesture). Dashed rectangles in-
dicate the value of each semantic category, which
are not included in our current work.

sume each modality has its own meaning function
fu(U) and fg(G). In this paper, we make the as-
sumption that multi-modal meaning outputted by
f(U, G) is in fact the union of fu(U) and fg(G):

fu(U) = {c1, c2}
fg(G) = {c2, c3}

f(U,G) = {c1, c2, c3}
(1)

Figure 3 shows an example of mapping the ver-
bal utterance “two lanterns” to semantic categories
{amount, entity}, while mapping the gesture to
categories: {amount, relative position}. The se-
mantics of the ensemble (U, G) is composed of the
semantic categories and their values (in the dashed
boxes). In this work we focus on predicting the se-
mantic category rather than their value, which we
leave for future work.

We derive input features for the mapping task
from speech and gestures respectively:

a) Language features: The word tokens of each
verbal utterance are taken as a bag-of-words to
represent linguistic information. b) Gesture fea-
tures: Hand movements and forms, including hand
shape, palm direction, path of palm direction,
palm movement direction, wrist distance, wrist
position, path of wrist, wrist movement direction,
back of hand direction and back of hand direc-
tion movement, are derived as gesture features (as
there was no hand motion data, these features were
manually annotated, see below for details).

Modelling the learning task We frame the ver-
bal utterance/gesture multimodal semantic cate-
gory mapping problem as a multi-label classifi-
cation task (Tsoumakas and Katakis, 2006) where
several labels are predicted for an input.

Given an input feature vector X , we predict a
set of semantic category labels {c1, · · · , ci}, of
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which the length is variable. The prediction task
can be further framed as multiple binary classifica-
tion tasks. Technically, we trained a linear support
vector classifier (SVC)1 for each semantic label ci

(6 label classifiers in total). Given an input feature
X , we apply all semantic label classifiers to the
feature vector. If a semantic label classifier gives
positive prediction for input X , we assign the se-
mantic label to the input. For example, given fea-
ture vector of the input utterance “two lanterns”,
only the amount and entiry label classifiers give
positive predictions, thus we assign amount and
entity to the input utterance.

The word/gesture utterances are encoded as
several-hot feature vectors as input of the classi-
fiers, which will be explained now.

3 The SAGA corpus

We conducted the experiments with the SAGA
corpus (Lücking et al., 2010), which provides fine-
grained annotations for speech and gestures.
The data The corpus consists of 25 dialogues
of route and sight descriptions of a virtual town.
In each dialogue, a route giver gave descriptions
(e.g., route directions, shape, size and location of
buildings) of the virtual town to a naive route fol-
lower with speech (in German) and gestures. The
dialogues were recorded with three synchronised
cameras from different perspectives.

In total, 280 minutes of video and audio data
were recorded. The audio was manually tran-
scribed and aligned with videos; the gestures were
manually annotated and segmented according to
video and audio recordings. We selected 939
speech-gesture ensembles out of 973 annotations
(Bergmann et al., 2011), omitting 34 without full
annotations of speech/gesture semantic categories
and gesture features. The semantic categories
were annotated according to the semantic infor-
mation that speech and gestures contained. In our
data set, each item is a tuple of 4 elements: (words,
gesture features, speech semantic categories, ges-
ture semantic categories).

There are 5 gesture semantic category labels:
shape, size, direction, relative position, amount;
the speech semantic labels consist of these and an
extra label of entity (6 labels in total). Since there
was only one gesture labeled as direction, we treat

1penalty: `2, penalty parameter C=1.0, maxi-
mum iteration 1000, using an implementation in
http://scikit-learn.org.
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Figure 4: (a) Histogram of semantic labels per ut-
terance/gesture. (b) Histogram of semantic labels.
(Rel Pos indicates relative position.)

it as a rare instance, and removed it from the eval-
uation experiments. From these the multi-modal
category labels are derived as the union of those
two sets for each ensemble.

Data statistics Bergmann et al. (2011) provides
detailed data statistics regarding the relation of
speech and gestures of the corpus. As we focus on
speech and gesture semantics only here, we report
statistics only for the 939 speech-gesture ensem-
bles. On average, each verbal utterance is com-
posed of 3.15 words. 386 gestures (41%) provide
a semantic category on top of the verbal utterance
(e.g., speech: {amount, shape}, gesture: {relative
position}), 312 (33%) gestures convey the same
amount of semantic information as the verbal ut-
terance (e.g., speech: {amount, shape}, gesture:
{amount, shape}), and 241 (26%) conveys part of
the semantics of the verbal utterance (e.g., speech:
{amount, shape}, gesture: {amount}).

As shown in Table 4 (a), 56% of verbal utter-
ances and 80% of gestures are annotated with only
a single label. On average, each gesture was an-
notated with 1.23 semantic labels and each utter-
ance with 1.51 semantic labels. As shown in Fig-
ure 4 (b), there are many more utterances labeled
with shape, relative position and entity than the
other labels, making the data unbalanced. More-
over, there are considerably more gestures anno-
tated with labels of shape and relative position.

Gesture features Since there is no tracked hand
motion data, we used the manual annotations to
represent gestures. For instance, the gesture in
Figure 1 is annotated as: Left hand: [5 bent,
PAB/PTR, BAB/BUP, C-LW, D-CE]; right hand:
[C small, PTL, BAB/BUP, LINE, MD, SMALL,
C-LW, D-CE] in the order of hand shape, hand
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palm direction, back of hand direction, wrist po-
sition. (See (Lücking et al., 2010) for the details
of the annotation scheme). Other features such as
path of palm direction which are not related to this
static gesture were set as 0.

We treated these annotated tokens as “words”
that describe gestures. Annotations with more
than 1 token were split into a sequence of tokens
(e.g., BAB/BUP to BAB, BUP). Therefore, ges-
ture feature sequences have variable lengths, in the
same sense as utterances have variable amount of
word tokens.

4 Experiments

We randomly selected 70% of the gesture-speech
ensembles as a training set, using the rest as a
test set. We designed 3 experiments to investi-
gate whether and to what degree language and ges-
tures inform mono-modal and multimodal seman-
tics. Each experiment was conducted under 3 dif-
ferent setups, namely, using: a) only gesture fea-
tures; b) only language features; c) gesture fea-
tures and language features, as shown in Table 1.

Metrics We calculated F1-score, precision and
recall for each label, and find their average,
weighted by the number of true instances for each
label, so that imbalanced labels are taken into ac-
count.

4.1 Results
Language semantics As shown in Table 1, the
most informative features of language semantic
categories are words on their own. It achieves
an F1-score of 0.79 for each label, well above
a chance level baseline accuracy 0.17. While
as expected, gesture features are not very infor-
mative for language semantics, the gesture-only
still classifier outperforms the chance level base-
line with 0.38. The combination of features in
the joint classifier results in slightly worse perfor-
mance than language features alone, suggesting
some of the gestural semantics may be comple-
mentary to, rather than identical to, the language
semantics.

Gesture semantics While language features
help predict the semantics of their own modal-
ity, the same is not true of gesture features. The
language-only classifier achieves an F1-score of
0.78 when predicting gesture semantics, while the
gesture features-only setting only achieves 0.61.

Semantics Features Precision Recall F1-
score

Language

L 0.85 0.75 0.79
G 0.47 0.37 0.38
L+G 0.86 0.69 0.75

Gesture

L 0.80 0.78 0.78
G 0.59 0.63 0.61
L+G 0.82 0.77 0.78

Multimodal

L 0.82 0.80 0.81
G 0.62 0.60 0.58
L+G 0.83 0.80 0.80

Table 1: Evaluation results. (L and G indicates
language and gesture.)

Combining language and gesture features does
not improve performance, but results in a slightly
higher precision score (+0.02). This is consistent
with previous observations in gesture studies (Fey-
ereisen and De Lannoy, 1991) that iconic gestures
are difficult to interpret without speech. Even hu-
mans perform poorly on such a task without verbal
content.

In our setup, the abstract gesture features might
be one of the reasons for poor performance. Only
10 manually annotated categories were used to
represent gestures, so these features might not be
optimal for a computational model. It is possible
that with more accurate gesture features (e.g. mo-
tion features), gestures can be better represented
and more informative for interpreting gesture se-
mantics.

Multimodal semantics As gestures can add
meaningful semantic information not present in
concurrent speech, we trained and evaluated clas-
sifiers on multimodal semantic categories. We as-
sume these are the union of the gesture and lan-
guage semantics for a given ensemble (as in func-
tion f in (1) above). As per the data statistics,
there are the same possible 6 atomic categories
as the language semantics (though they can come
from the gesture as well as from the speech). As
shown in Table 1, the language-only classifier per-
forms best on this set with an F1-score of 0.81,
marginally outperforming the combined language
and gesture features system’s 0.80. Both signifi-
cantly outperform the gesture-only classifier. As
with the results on gesture semantics, this sug-
gests that multimodal meaning and meaning of
iconic gesture relies heavily on speech, in accor-
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Figure 5: Featuring ranking according to coefficient values (weights assigned to the features, see
(Lücking et al., 2010) for the details of the annotation scheme).

dance with the finding that the majority of gestures
are inherently underspecified semantically by their
physical form alone (Rieser, 2015).

Regarding individual semantic categories, we
find gesture features are more informative for
shape and relative positions; language is more in-
formative for size, direction and amount in our
dataset. Figure 5 shows the gesture and lan-
guage feature ranking results for classifiers of en-
tity and relative position accordingly. For rel-
ative position label prediction, the most infor-
mative language features are the words “rechts”
(right) and “links” (left), while hand shape, such
as b bent loose spread (an open palm, thumb ap-
plied sideways, but not clearly folded and with a
weak hand tension) and 5 loose (an open palm
with a weak hand tension) are the two most in-
formative gesture features. For size label predic-
tion, the most informative language features are
words that specify size such as “klein” (small) and
“groß” (big); the most informative gesture feature
is back of hand palm direction (btb, back of hand
palm facing towards body).

5 Conclusion

Language and co-verbal gestures are widely ac-
cepted as an integral process of natural commu-
nication. In this paper, we have shown that natural
language is informative for the interpretation of a
particular kind of gesture, iconic gestures. With
the task of mapping speech and gesture informa-
tion to semantic categories, we show that language

is more informative than gesture for interpreting
not only gesture meaning, but also the overall mul-
timodal meaning of speech and gesture. This work
is a step towards HCIs which take language as an
important resource for interpreting iconic gestures
in more natural multimodal communication. In fu-
ture work, we will predict speech/gesture seman-
tics using raw hand motion features and investi-
gate prediction performance in an online, contin-
uous fashion. This forms part of our ongoing in-
vestigation into the interplay of speech and gesture
semantics.
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