
IJCNLP-08 Workshop

On

NLP for Less Privileged
Languages

Proceedings of the Workshop

11 January 2008
IIIT, Hyderabad, India

c©2008 Asian Federation of Natural Language Processing

ii

Introduction

Welcome to the IJCNLP Workshop on NLP for Less Privileged Languages, a meeting held in
conjunction with the Third International Joint Conference on Natural Language Processing at
Hyderabad, India. The goal of this workshop is to ascertain the progress made in providing
computational support for less computerized or ‘less privileged’ languages and in building language
resources and Natural Language Processing tools etc. for such languages. An introductory article
explains the background of and motivation for this workshop. It also presents an overview of the papers
selected for the workshop.

The workshop attracted a lot of interest from around the world. There were a relatively large number of
submissions and each paper was reviewed by three reviewers, which ensured that the quality of papers
selected was comparable to other successful workshops held previously on similar themes. The selected
papers include a variety of topics and covers a wide range of languages. Another major feature of the
workshop is that it includes three invited talks by speakers from different regions of the world and on
very different topics.

We would like to thank the program committee members for all the hard work that they did during
the reviewing process. We would also like to thank all the people involved in organizing the IJCNLP
conference. We hope that this workshop will be able to achieve its goal and will stimulate and encourage
even more interest in the theme of the workshop so that the gap between languages like English and the
less computerized ‘less privileged’ or languages can be reduced at a rapid pace.

Anil Kumar Singh (Chair)

iii

Organizer:

Anil Kumar Singh, IIIT, Hyderabad, India

Program Committee:

Steven Bird, University of Melbourne, Australia
Rajeev Sangal, IIIT, Hyderabad, India
Michael Maxwell, University of Maryland, USA
Bente Maegaard, CST, University of Copenhagen, Denmark
Lakshmi Bai, IIIT, Hyderabad, India
Emily M. Bender, University of Washington, USA
Nicoletta Calzolari, Istituto di Linguistica Computazionale del CNR - Pisa, Italy
Alexander Gelbukh, Center for Computing Research, National Polytechnic Institute, Mexico
Sarmad Hussain, CRULP, Pakistan
Greville Corbett, University of Surrey, UK
Anil Kumar Singh, IIIT, Hyderabad, India
Sobha L., AU-KBC, Chennai, India
Rachel Edita Roxas, Dela Salle University, Manila, Philippines
Sivaji Bandyopadhyay, Jadavpur University, Kolkata, India
Nicholas Thieberger, University of Melbourne, Australia
Monojit Choudhury, Indian Institute of Technology, Kharagpur, India
Xabier Arregi, University of the Basque Country, Spain
Khalid Choukri, ELRA - Paris, France
Samar Husain, IIIT, Hyderabad, India
Indra Budi, University of Indonesia, Indonesia
Rajat Mohanty, Indian Institute of Technology, Mumbai, India
Jeff Good, University at Buffalo, USA
Prasad Pingali, IIIT, Hyderabad, India
Harshit Surana, IIIT, Hyderabad, India

Special Acknowledgment:

Samar Husain, IIIT, Hyderabad, India
Harshit Surana, IIIT, Hyderabad, India

Invited Speakers:

Anne David and Michael Maxwell, CASL, University of Maryland, USA
Virach Sornlertlamvanich, TCL, NICT, Thailand
Monojit Choudhury, Microsoft Research, India

v

Table of Contents

Invited Talk: Building Language Resources: Ways to move forward
Anne David and Micheal Maxwell . 1

Invited Talk: Cross Language Resource Sharing
Virach Sornlertlamvanich . 3

Invited Talk: Breaking the Zipfian Barrier of NLP
Monojit Choudhury . 5

Natural Language Processing for Less Privileged Languages: Where do we come from? Where are we
going?

Anil Kumar Singh . 7

KUI: an ubiquitous tool for collective intelligence development
Thatsanee Charoenporn, Virach Sornlertlamvanich, Hitoshi Isahara and Kergrit Robkop 13

Prototype Machine Translation System From Text-To-Indian Sign Language
Tirthankar Dasgupta, Sandipan Dandpat and Anupam Basu . 19

Joint Grammar Development by Linguists and Computer Scientists
Michael Maxwell and Anne David . 27

Cross-Language Parser Adaptation between Related Languages
Daniel Zeman and Philip Resnik . 35

SriShell Primo: A Predictive Sinhala Text Input System
Sandeva Goonetilleke, Yoshihiko Hayashi, Yuichi Itoh and Fumio Kishino 43

A Rule-based Syllable Segmentation of Myanmar Text
Zin Maung Maung and Yoshiki Mikami. .51

Strategies for sustainable MT for Basque: incremental design, reusability, standardization and open-
source

I. Alegria, X. Arregi, X. Artola, A. Diaz de Ilarraza, G. Labaka, M. Lersundi, A. Mayor and K.
Sarasola . 59

Design of a Rule-based Stemmer for Natural Language Text in Bengali
Sandipan Sarkar and Sivaji Bandyopadhyay . 65

Finite State Solutions For Reduplication In Kinyarwanda Language
Jackson Muhirwe and Trond Trosterud. .73

An Optimal Order of Factors for the Computational Treatment of Personal Anaphoric Devices in Urdu
Discourse

Mohammad Naveed Ali, M. A. Khan and Muhammad Aamir Khan . 81

vii

Morphology Driven Manipuri POS Tagger
Thoudam Doren Singh and Sivaji Bandyopadhyay . 91

Acharya - A Text Editor and Framework for working with Indic Scripts
Krishnakumar V and Indrani Roy . 99

Implementing a Speech Recognition System Interface for Indian Languages
R.K. Aggarwal and M. Dave . 105

Indigenous Languages of Indonesia: Creating Language Resources for Language Preservation
Hammam Riza . 113

Part-Of-Speech Tagging for Gujarati Using Conditional Random Fields
Chirag Patel and Karthik Gali . 117

Speech to speech machine translation: Biblical chatter from Finnish to English
David Ellis, Mathias Creutz, Timo Honkela and Mikko Kurimo . 123

viii

Conference Program

Friday, January 11, 2008

09:00-09:10 Opening Remarks: Natural Language Processing for Less Privileged Languages:
Where do we come from? Where are we going?
Anil Kumar Singh

Session 1:

09:10-09:40 Invited Talk: Building Language Resources: Ways to move forward
Anne David and Micheal Maxwell

09:40-10:00 KUI: an ubiquitous tool for collective intelligence development
Thatsanee Charoenporn, Virach Sornlertlamvanich, Hitoshi Isahara and Kergrit
Robkop

10:00-10:20 Prototype Machine Translation System From Text-To-Indian Sign Language
Tirthankar Dasgupta, Sandipan Dandpat and Anupam Basu

10:20-11:00 Break

Session 2:

11:00-11:30 Invited Talk: Cross Language Resource Sharing
Virach Sornlertlamvanich

11:30-11:50 Joint Grammar Development by Linguists and Computer Scientists
Michael Maxwell and Anne David

11:50-12:10 Cross-Language Parser Adaptation between Related Languages
Daniel Zeman and Philip Resnik

12:10-12:30 SriShell Primo: A Predictive Sinhala Text Input System
Sandeva Goonetilleke, Yoshihiko Hayashi, Yuichi Itoh and Fumio Kishino

12:30-14:00 Lunch

Session 3:

14:00-14:30 Invited Talk: Breaking the Zipfian Barrier of NLP
Monojit Choudhury

ix

Friday, January 11, 2008 (continued)

14:30-15:30 Poster Display and Discussion

An Optimal Order of Factors for the Computational Treatment of Personal Anaphoric
Devices in Urdu Discourse
Mohammad Naveed Ali, M. A. Khan and Muhammad Aamir Khan

Morphology Driven Manipuri POS Tagger
Thoudam Doren Singh and Sivaji Bandyopadhyay

Acharya - A Text Editor and Framework for working with Indic Scripts
Krishnakumar V and Indrani Roy

Implementing a Speech Recognition System Interface for Indian Languages
R.K. Aggarwal and M. Dave

Indigenous Languages of Indonesia: Creating Language Resources for Language Preser-
vation
Hammam Riza

Part-Of-Speech Tagging for Gujarati Using Conditional Random Fields
Chirag Patel and Karthik Gali

Speech to speech machine translation: Biblical chatter from Finnish to English
David Ellis, Mathias Creutz, Timo Honkela and Mikko Kurimo

15:30-16:00 Break

Session 4:

16:00-16:20 A Rule-based Syllable Segmentation of Myanmar Text
Zin Maung Maung and Yoshiki Mikami

16:20-16:40 Strategies for sustainable MT for Basque: incremental design, reusability, standardization
and open-source
I. Alegria, X. Arregi, X. Artola, A. Diaz de Ilarraza, G. Labaka, M. Lersundi, A. Mayor
and K. Sarasola

16:40-17:00 Design of a Rule-based Stemmer for Natural Language Text in Bengali
Sandipan Sarkar and Sivaji Bandyopadhyay

17:00-17:20 Finite State Solutions For Reduplication In Kinyarwanda Language
Jackson Muhirwe and Trond Trosterud

17:20-18:00 Closing Discussion

x

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 1–2,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Building Language Resources: Ways to move forward

Anne David and Michael Maxwell
Center for Advanced Study of Language

University of Maryland, USA
aeadavid@gmail.com, maxwell@umiacs.umd.edu

Abstract

There are perhaps seven thousand languages in the world, ranging from the largest with hundreds of mil-
lions of speakers, to the smallest, with one speaker. On a different axis, languages can be ranked accord-
ing to the quantity and quality of computational resources. Not surprisingly, there are correlations be-
tween these two axes: languages like English and Mandarin have substantial resources, while many of the
smallest languages are completely undocumented. Nevertheless, the correlation is not perfect; there are
languages with a million speakers which are more or less unwritten, and there are very large languages –
some of the languages of India, for example – which are relatively resource-poor.

Unfortunately, what counts as resource-rich (or even resource-adequate) in computational linguistics is
a moving target. For languages to move in the direction of resource richness, considerable effort (people
and money) have to be provided over a prolonged period of time. One can sit back and wait for this to
happen, or give up; alternatively, one can map out a realistic way forward, building on the strengths of
each language’s situation.

Among the strengths which may prove useful to building computational resources for languages are the
following:

• Long traditions of grammatical and lexical description

• Traditions of literacy and literature

• Local expertise in linguistics and computing

• The world-wide community of linguists and computer experts

• Resource availability in related languages

At the same time, there are weaknesses and other problems – some language specific, some more gen-
eral – which need to be considered:

• Lack of consensus on ways of representing the language (scripts, character encoding)

• Complexities inherent in particular languages (complex scripts, complex morphologies, variant
orthographies, diglossia, dialectal variation)

• Economic and educational realities in the countries where the language is spoken

• Political attitudes towards some languages, particularly minority languages

• The 'not invented here' syndrome

• Software obsolescence, and the potential obsolescence of language data

This talk will look at ways in which the strengths enumerated above might be leveraged, while avoiding
the potential weaknesses.

1

2

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 3–4,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Cross Language Resource Sharing

Virach Sornlertlamvanich
Thai Computational Linguistics Lab., NICT Asia Research Center,

Pathumthani, Thailand
virach@tcllab.org

Abstract

Language resource development is crucial for language study in current approaches. Many efforts have
been made to model a language on very large scaled corpora. Statistical and probabilistic approaches are
playing a major role in taking the advantage of incorporating the context to improve their performance to
a promising result in many areas of natural language processing such as machine translation, parsing,
POS tagging, morphological analysis, etc. It is believed that if there are sufficient corpora for a language,
we can develop many efficient language processing applications within an expectable period. However,
corpus development is a labor intensive task and requires a continuous effort in maintaining the result to
such a qualified level. The problem is magnified when we need to deal with the less computerized lan-
guages. The availability of the computerized language data can be varied by the availability of the stan-
dard of language encoding, number of speakers, economic scale of the speakers, and the language sup-
porting tools. As a result, the technology gap between languages are widened as we can see in the evi-
dence of online language populations and web contents which are mainly occupied by English, and others
major languages distributed in Chinese, Spanish, Japanese, German and French. The major concern in the
less computerized languages is how to leverage the technology for those languages which will result in
scaling up the number of online language populations. Cross language resource sharing is one of the ef-
forts to increase the opportunity for the access to those languages. We are expecting that a language may
utilize the resource from other similar languages in terms of computational approaches and corpora. To
relate the language resources among the less computerized languages has brought us to the following
open questions:

1. Is there any intermediate representation that can efficiently relate among the languages? Will it be

an approach of meaning representation such as conceptual unit, WordNet, or etymological word
form representation such as Pali, Sanskrit, Chinese character?

2. Can a shallow language processing approach be used to increase the resources, namely ortho-
graphic conversion, transliteration?

3. Will English be a good intermediate language? This is because of the availability of the language
pairing resources with the English language.

As a platform for cross language resource development, we have developed KUI (Knowledge Unifying
Initiator: http://www.tcllab.org/kui) equipped with a voting function to measure for the most reliable
translation. The English language is not only a possible intermediate representation for languages. Other
appropriate approaches could be considered to maximize the resource sharing among the less computer-
ized languages if we can determine a better common feature among those languages.

3

4

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 5–6,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Breaking the Zipfian Barrier of NLP

Monojit Choudhury
Microsoft Research India,

Bangalore
monojit.choudhury@gmail.com

Abstract

We know that the distribution of most of the linguistic entities (e.g. phones, words, grammar rules) follow
a power law or the Zipf's law. This makes NLP hard. Interestingly, the distribution of speakers over the
world, content over the web and linguistic resources available across languages also follow power
law. However, the correlation between the distribution of number of speakers to that of web content and
linguistic resources is rather poor, and the latter distributions are much more skewed than the former. In
other words, there is a large volume of resources only for a very few languages and a large number of
widely spoken languages, including all the Indian languages, have little or no linguistic resource at all.
This is a serious challenge for NLP in these languages, primarily because state-of-the-art techniques and
tools in NLP are all data-driven. I refer to this situation as the "Zipfian Barrier of NLP" and offer
a mathematical analysis of the growth dynamics of the linguistic resources and NLP research worldwide,
which, afterall, is very much a socio-economic process. Based on the analysis and otherwise, I propose
certain technical (e.g. unsupervised learning, wiki based approaches to gather data) and community-wide
(e.g. acceptance of language specific works and resource building projects in top NLP confer-
ences/journals, Special Interest Groups) initiatives that could possibly break this Zipfian Barrier.

5

6

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 7–12,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Natural Language Processing for Less Privileged Languages: Where do we
come from? Where are we going?

Anil Kumar Singh
Language Technologies Research Centre

IIIT, Hyderabad, India
anil@research.iiit.ac.in

Abstract

In the context of the IJCNLP workshop
on Natural Language Processing (NLP) for
Less Privileged Languages, we discuss the
obstacles to research on such languages.
We also briefly discuss the ways to make
progress in removing these obstacles. We
mention some previous work and comment
on the papers selected for the workshop.

1 Introduction

While computing has become ubiquitous in the de-
veloped regions, its spread in other areas such as
Asia is more recent. However, despite the fact that
Asia is a dense area in terms of linguistic diversity
(or perhaps because of it), many Asian languages
are inadequately supported on computers. Even ba-
sic NLP tools are not available for these languages.
This also has a social cost.

NLP or Computational Linguistics (CL) based
technologies are now becoming important and fu-
ture intelligent systems will use more of these tech-
niques. Most of NLP/CL tools and technologies are
tailored for English or European languages. Re-
cently, there has been a rapid growth of IT indus-
try in many Asian countries. This is now the per-
fect time to reduce the linguistic, computational and
computational linguistics gap between the ‘more
privileged’ and ‘less privileged’ languages.

The IJCNLP workshop on NLP for Less Privi-
leged Language is aimed at bridging this gap. Only
when a basic infrastructure for supporting regional
languages becomes available can we hope for a more

equitable availability of opportunities made possi-
ble by the language technology. There have already
been attempts in this direction and this workshop
will hopefully take them further.

Figure-1 shows one possible view of the computa-
tional infrastructure needed for language processing
for a particular language, or more preferably, for a
set of related languages.

In this paper, we will first discuss various aspects
of the problem. We will then look back at the work
already done. After that, we will present some sug-
gestion for future work. But we will begin by ad-
dressing a minor issue: the terminology.

2 Terminology

There can be a debate about the correct term for the
languages on which this workshop focuses. There
are at least four candidates: less studied (LS) lan-
guages, resource scarce (RS) languages, less com-
puterized (LC) languages, and less privileged (LP)
languages. Out of these, two (LS and RS) are too
narrow for our purposes. LC is admittedly more ob-
jective, but it also is somewhat narrow in the sense
that it does not cover the lack of resources for cre-
ating resources (finance) and the lack of linguistic
study. We have used LP because it is more general
and covers all the aspects of the problem. However,
it might be preferable to use LC in many contexts.

As the common element among all these terms
is the adjective ‘less’ (‘resoure scarce’ can be
paraphrased as ‘with less resources’), perhaps we
can avoid the terminological debate by calling the
languages covered by any such terms as the L-
languages.

7

First Level Preprocessing

Second Level Preprocessing Editors and Interfaces

Models and Other
Applications

Higher Level Multilingual
NLP Applications

Text

Language-Encoding
Identification

Encoding Converters

Text Normalization

Sentence Splitting

Tokenization

Morphological Analyzer

Encoding Converter
Generator

Model of Scripts

Spell Checker

Model of Morphology

Part Of Speech Tagger

Other Specialized
Interfaces

Text Editor

Annotation Interfaces

Local Word Grouper
or Chunker

Figure 1: One view of the basic computational in-
frastructure required for Natural Language Process-
ing or Computational Linguistics. Components like
encoding converters are needed for language with
less standardization, such as the South Asian lan-
guages. Language resources like lexicon, corpora
etc. have not been shown in this figure.

3 Problems

Not surprisingly, the terms mentioned in the previ-
ous section cover different aspects of the problems
that restrict work on and for these languages. There
is a lack of something and each of those terms covers
some part of what is lacking.

3.1 Linguistic Study

The term LS languages indicates that these are not
well studied linguistically. The sheer amount of lin-
guistic analysis available for English is so huge that
the linguistic work on even a language like Hindi,
which is spoken or understood by a billion people,
is simply not comparable. For languages (or di-
alects) like Santali or Manipuri, the situation is much
worse. And there are a large number of languages

which have been studied even less than Santali or
Manipuri. There are dozens (more accurately, hun-
dreds) of such languages in South Asia alone1. It
can be said that very little is known about the ma-
jority of languages of the world, many of which are
facing extinction.

3.2 Language Resources

Even those languages which have been studied to a
good extent, e.g. Telugu, lack language resources,
e.g. a large dictionary in machine readable form,
let alone resources like WordNet or FrameNet, al-
though efforts are being made to develop resources
for some of these languages. The term RS covers
this aspect of the problem.

3.3 Computerization

Computerization, in general, might include machine
readable language resources and NLP tools etc., but
here we will restrict the meaning of this term to the
support for languages that is provided on comput-
ers, either as part of operating systems, or in the
commonly used applications such as word proces-
sors. In the narrowest sense, computerization means
language-encoding support. Even this level of sup-
port is currently not available (or is inadequate) for
a large number of languages.

3.4 Language Processing

Proper computerization (in the restricted sense) is a
prerequisite to effective language processing. But
even without adequate computerization, attempts are
being made towards making language processing
possible for the L-languages. However, language
processing for the L-languages is still far behind that
for English. For a large number of language it is,
in fact, non-existent. This is true even for a lan-
guage like Gujarati, which is the official language
of the state of Gujarat in India and is recognized as
a scheduled language by the government of India.
And it is actually used as the first language by the
people of Gujarat, which is one of the larger states
in India. While adequate computerization may be
easy to achieve in the near future, at least theoret-
ically, language processing (and building language
resources) is going to be much more difficult task.

1Ethnologue: http://www.ethnologue.com/web.asp

8

N
L
P

/
C

L

Linguistic Study

C
om

pu
te

riz
at

io
n

Less Privileged

(Finance, Human Resources,
Equipment, Socio-Political Support, etc.)

N
L

P
/

C
L

Linguistic Study

C
om

pu
te

riz
at

io
n

Other Privileges

More Privileged

Source

Destination

Figure 2: The four dimensions of the problem: TheSource is where we come from andDestination is where
we are going. The problem is to go from theSource to theDestination and the solution is non-trivial.

3.5 Other Privileges

One of the major reasons why building language re-
sources and providing language processing capabil-
ities for the L-languages is going to be a very dif-
ficult task is the fact that these languages lack the
privileges which make it possible to build language
resources and NLP/CL tools. By ‘privileges’ we
mean the availability of finance, equipment, human
resources, and even political and social support for
reducing the lack of computing and language pro-
cessing support for the L-languages. The lack of
such ‘privileges’ may be the single biggest reason
which is holding back the progress towards provid-
ing computing and language processing support for
these languages.

4 Some (Partially) Successful Efforts

The problem seems to be insurmountable, but there
has been some progress. More importantly, the ur-
gency of solving this problem (even if partially) is
being realized by more and more people. Some re-
cent events or efforts which tried to address the prob-
lem and which have had some impact in improving
the situation are:

• The LREC conferences and workshops2.

• Workshop on ”Shallow Parsing in South Asian
Languages”, IJCAI-07, India.

2www.lrec-conf.org

• EMELD and the Digital Tools Summit in Lin-
guistics, 2006, USA.

• Workshop on Language Resources for Euro-
pean Minority Languages, 1998, Spain.

• Projects supported by ELRA on the Basic Lan-
guage Resource Kit (BLARK) that targets the
specifications of a minimal kits for each lan-
guage to support NLP tools development3.

• There is also a corresponding project at LDC
(the Less Commonly Taught Languages4).

• The IJCNLP Workshop on Named Entity
Recognition for South and South Asian Lan-
guages5.

This list is, of course, not exhaustive. There are
many papers relevant to the theme of this workshop
at the IJCNLP 2008 main conference6, as at some
previous major conferences. There is also a very rel-
evant tutorial (Mihalcea, 2008) at the IJCNLP 2008
conference about building resources and tools for
languages with scarce resources.

Even the industry is realizing the importance of
providing computing support for some of the L-
languages. In the last few years there have been
many announcements about the addition of some

3http://www.elda.org/blark
4http://projects.ldc.upenn.edu/LCTL
5http://ltrc.iiit.ac.in/ner-ssea-08/
6http://ijcnlp2008.org

9

such language to a product or a service and also
of the addition of better facilities (input methods,
transliteration, search) in an existing product or ser-
vice for some L-language.

5 Towards a Solution

Since the problem is very much like the conserva-
tion of the Earth’s environment, there is no easy so-
lution. It is not even evident that a complete solution
is possible. However, we can still try for the best
possible solution. Such a solution should have some
prerequisites. As Figure-2 shows, the ‘other privi-
leges’ dimension of the problem has to be a major
element of the solution, but it is not something over
which researchers and developers have much con-
trol. This means that we will have to find ways to
work even with very little of these ‘other privileges’.
This is the key point that we want to make in this
paper because it implies that the methods that have
been used for English (a language with almost un-
limited ‘privileges’) may not be applicable for the
L-languages. Many of these methods assume the
availability of certain things which simply cannot be
assumed for the L-languages. For example, there is
no reasonable ground to assume that there will be
(in the near future) corpus even with shallow levels
of annotation for Avadhi or Dogri or Konkani, let
alone a treebank like resource. Therefore, we have
to look for methods which can work with unanno-
tated corpus. Moreover, these methods should also
not require a lot of work from trained linguists be-
cause such linguists may not be available to work on
these languages. There is one approach, however,
that can still allow us to build resources and tools
for these languages. This is the approach of adapt-
ing the resources of a linguistically close but more
privileged language. It is this area which needs to
be studied and explored more thoroughly because it
seems to be the only practical way to make the kind
of progress that is required urgently. The process
of resource adaptation will have to studied from lin-
guistic, computational, and other practical points of
view. Since ‘other privileges’ are a major factor as
discussed earlier, some ways of calculating the cost
of adaptation have also to be found.

Another very general but important point is that
we will have to build multilingual systems as far

as possible so that the cost per language is reduced.
This will require innovation in terms of modeling as
well as engineering.

6 Some Comments about the Workshop

The scope of the workshop included topics such as
the following:

• Archiving and creation of interoperable data
and metadata for less privileged languages

• Support for less privileged language on com-
puters. This includes input methods, dis-
play, fonts, encoding converters, spell check-
ers, more linguistically aware text editors etc.

• Basic NLP tools such as sentence marker, tok-
enizer, morphological analyzer, transliteration
tools, language and encoding identifiers etc.

• Advanced NLP tools such as POS taggers, local
word grouper, approximate string search, tools
for developing language resources.

There were a relatively large number of submis-
sions to the workshop and the overall quality was
at least above average. The most noteworthy fact is
that the variety of papers submitted (and selected)
was pleasantly surprising. The workshop includes
paper on topics as diverse as Machine Translation
(MT) from text to sign language (an L-language on
which very few people have worked) to MT from
speech to speech. And from segmentation and stem-
ming to parser adaptation. Also, from input meth-
ods, text editor and interfaces to part of speech
(POS) tagger. The variety is also remarkable in
terms of the languages covered and research loca-
tions.

In addition, the workshop includes three invited
talks: the first on building language resources by re-
source adaptation (David and Maxwell, 2008); the
second on cross-language resource sharing (Sorn-
lertlamvanich, 2008b); and the third on breaking the
Zipfian barrier in NLP (Choudhury, 2008). It can
be said that the workshop has been a moderate suc-
cess. We hope it will stimulate further work in this
direction.

10

7 An Overview of the Papers

We noted above that resource adaptation needs a
lot more study. In one of the papers at the work-
shop, Zeman and Resnik presented their work on
cross-language parser adaptation between related
languages, which can be highly relevant for the
L-languages in ‘linguistic areas’ (Emeneau, 1956;
Emeneau, 1980). Maxwell and David suggest a
better way to weave together a descriptive gram-
mar with a formal grammar through collaboration
between linguists and computer scientists. Alegria
et al. discuss the strategies for sustainable MT
for Basque. They suggest that the main elements
of such a strategy should be incremental design,
reusability, standardization and open source devel-
opment.

Among the papers which focus more on comput-
erization and building of tools, Sornlertlamvanich
et al. present a ubiquitous system called KUI for
collective intelligence development. Goonetilleke et
al. describe a predictive text input system called
SriShell Primo for Sinhala language. Veeraragha-
van and Roy describe a text editor and a framework
for working with Indic scripts. Aggarwal and Dave
present an implementation of a speech recognition
system interface for Indian languages.

Riza presents brief overview of the literature on
language endangerment, with focus on the Indone-
sian languages. Some other papers focused more
on linguistic study as applied for computational pur-
poses. Among them, Ali et al. investigate the opti-
mal order of factors for the computational treatment
of personal anaphoric devices in Urdu discourse.
Muhirwe and Trosterud discuss finite state solutions
for reduplication in Kinyarwanda language. Maung
Maung and Mikami describe a rule-based syllable
segmentation of Myanmar text. In another paper
on a related domain, Sarkar and Bandyopadhyay
present a design of a rule-based stemmer for natu-
ral language text in Bengali.

Among the papers focusing more on NLP, Das-
gupta et al. present a prototype machine translation
system from text to Indian Sign Language (ISL). In
another paper on MT, Ellis et al. describe an Finnish
to English speech to speech machine translation sys-
tem that they have currently tried with some success
on the Bible. Doren and Bandyopadhyay present a

morphology driven Manipuri POS tagger. Another
paper on POS tagging is by Patel and Gali. They
have tried to build a tagger for Gujarati.

8 Conclusion

We discussed the problem of the lack of linguis-
tic study, language resources, NLP tools for some
languages, which we called the L-languages since
they less of something. We argued that the ‘other
privileges’ form another dimension of the problem
and are a crucial factor in deciding what methods
we should use to solve this problem. The techni-
cal has to take into account this non-technical factor.
We suggested that resource adaptation may be one
to move forward. Finally we made some comments
about the NLPLPL-08 workshop.

9 Acknowledgment

We would specially like to thank Samar Husain and
Harshit Surana (Language Technologies Research
Centre, IIIT, Hyderabad, India) for providing vital
help in organizing this workshop.

References

Rajesh Kumar Aggarwal and Mayank Dave. 2008. Im-
plementing a speech recognition system interface for
indian languages. InProceedings of the IJCNLP
Workshop on NLP for Less Privileged Languages, Hy-
derabad, India.

I Alegria, Xabier Arregi, Xabier Artola, Arantza Diaz
de Ilarraza, Gorka Labaka, Mikel Lersundi, Aingeru
Mayor, and Kepa Sarasola. 2008. Strategies for
sustainable mt for basque: incremental design, reus-
ability, standardization and open-source. InProceed-
ings of the IJCNLP Workshop on NLP for Less Privi-
leged Languages, Hyderabad, India.

Mohammad Naveed Ali, Muhammad Abid Khan, and
Muhammad Aamir Khan. 2008. An optimal order
of factors for the computational treatment of personal
anaphoric devices in urdu discourse. InProceedings
of the IJCNLP Workshop on NLP for Less Privileged
Languages, Hyderabad, India.

Monojit Choudhury. 2008. Breaking the zipfian barrier
of nlp. Invited Talk at the IJCNLP Workshop on NLP
for Less Privileged Languages. Hyderabad, India.

Tirthankar Dasgupta, Sandipan Dandapat, and Anupam
Basu. 2008. Prototype machine translation system
from text-to-indian sign language. InProceedings

11

of the IJCNLP Workshop on NLP for Less Privileged
Languages, Hyderabad, India.

Anne David and Michael Maxwell. 2008. Building lan-
guage resources: Ways to move forward.Invited Talk
at the IJCNLP Workshop on NLP for Less Privileged
Languages, 2008. Hyderabad, India.

Timo Honkela David Ellis, Mathias Creutz and Mikko
Kurimo. 2008. Speech to speech machine translation:
Biblical chatter from finnish to english. InProceed-
ings of the IJCNLP Workshop on NLP for Less Privi-
leged Languages, Hyderabad, India.

M. B. Emeneau. 1956. India as a linguistic area.Lin-
guistics, 32:3-16.

M. B. Emeneau. 1980.Language and linguistic area. Es-
says by Murray B. Emeneau. Selected and introduced
by Anwar S. Dil. Stanford University Press.

Sandeva Goonetilleke, Yoshihiko Hayashi, Yuichi Itoh,
and Fumio Kishino. 2008. Srishell primo: A predic-
tive sinhala text input system. InProceedings of the
IJCNLP Workshop on NLP for Less Privileged Lan-
guages, Hyderabad, India.

Zin Maung Maung and Yoshiki Mikami. 2008. A rule-
based syllable segmentation of myanmar text. InPro-
ceedings of the IJCNLP Workshop on NLP for Less
Privileged Languages, Hyderabad, India.

Michael Maxwell and Anne David. 2008. Joint grammar
development by linguists and computer scientists. In
Proceedings of the IJCNLP Workshop on NLP for Less
Privileged Languages, Hyderabad, India.

Rada Mihalcea. 2008. How to add a new language on the
nlp map: Building resources and tools for languages
with scarce resources.Tutorial at the Third Interna-
tional Joint Conference on Natural Language Process-
ing (IJCNLP). Hyderabad, India.

Jackson Muhirwe and Trond Trosterud. 2008. Finite
state solutions for reduplication in kinyarwanda lan-
guage. InProceedings of the IJCNLP Workshop on
NLP for Less Privileged Languages, Hyderabad, In-
dia.

Chirag Patel and Karthik Gali. 2008. Part of speech tag-
ger for gujarati using conditional random fields. In
Proceedings of the IJCNLP Workshop on NLP for Less
Privileged Languages, Hyderabad, India.

Hammam Riza. 2008. Indigenous languages of indone-
sia: Creating language resources for language preser-
vation. In Proceedings of the IJCNLP Workshop on
NLP for Less Privileged Languages, Hyderabad, In-
dia.

Sandipan Sarkar and Sivaji Bandyopadhyay. 2008. De-
sign of a rule-based stemmer for natural language text
in bengali. InProceedings of the IJCNLP Workshop
on NLP for Less Privileged Languages, Hyderabad,
India.

Thoudam Doren Singh and Sivaji Bandyopadhyay. 2008.
Morphology driven manipuri pos tagger. InProceed-
ings of the IJCNLP Workshop on NLP for Less Privi-
leged Languages, Hyderabad, India.

Virach Sornlertlamvanich, Thatsanee Charoenporn,
Kergrit Robkop, and Hitoshi Isahara. 2008a. Kui:
an ubiquitous tool for collective intelligence devel-
opment. InProceedings of the IJCNLP Workshop
on NLP for Less Privileged Languages, Hyderabad,
India.

Virach Sornlertlamvanich. 2008b. Cross language re-
source sharing.Invited Talk at the IJCNLP Workshop
on NLP for Less Privileged Languages, 2008. Hyder-
abad, India.

Krishnakumar Veeraraghavan and Indrani Roy. 2008.
Acharya - a text editor and framework for working
with indic scripts. InProceedings of the IJCNLP
Workshop on NLP for Less Privileged Languages, Hy-
derabad, India.

Daniel Zeman and Philip Resnik. 2008. Cross-language
parser adaptation between related languages. InPro-
ceedings of the IJCNLP Workshop on NLP for Less
Privileged Languages, Hyderabad, India.

12

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 13–18,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

KUI: an ubiquitous tool for collective intelligence development

Thatsanee Charoenporn, Virach Sornlertlamvanich
and Kergrit Robkop

Thai Computational Linguistics Laboratory
NICT Asia Research Center, Thailand

{virach,thatsanee,kergrit}@tcllab.org

Hitoshi Isahara
National Institute for

Communications Tech-
nology (NICT), Japan

ishara@nict.go.jp

Abstract

Collective intelligence is the capability for
a group of people to collaborate in order to
achieve goals in a complex context than its
individual member. This common concept
increases topic of interest in many sciences
including computer science where com-
puters are bring about as group support
elements. This paper presents a new plat-
form, called Knowledge Unifying Initiator
(KUI) for knowledge development which
enables connection and collaboration
among individual intelligence in order to
accomplish a complex mission. KUI is a
platform to unify the various thoughts fol-
lowing the process of thinking, i.e., initiat-
ing the topic of interest, collecting the
opinions to the selected topics, localizing
the opinions through the translation or cus-
tomization and posting for public hearing
to conceptualize the knowledge. The proc-
ess of thinking is done under the selectional
preference simulated by voting mechanism
in case that many alternatives occur. By
measuring the history of participation of
each member, KUI adaptively manages the
reliability of each member’s opinion and
vote according to the estimated Ex-
pertScore.

1 Introduction

The Internet is a must for forming an online com-
munity in the present day. Many tools have been
developed to support such an online community
work. For instance, SourceForge.net (http://www.

sourceforge.net) facilitates project based Open
Source software development. Open Source soft-
ware developers deploy SourceForge.net to an-
nounce their initiation, to call for participation, to
distribute their works and to receive feedbacks.
SourceForge.net is said to be the largest Open
Source software development community.
Wiki.org (http://www.wiki.org) facilitates a data-
base for creating and editing Web page content. It
keeps the history of the online editing works which
allows multiple authoring. Wiki is especially de-
rived for several online collaborative works such
as wikipedia, wikitionary, wikibooks, etc. In addi-
tion, PhpWiki is one of the derived works of wiki
as a handy software tool for managing the organ-
izational documentation. This collaborative work-
ing environment has changed our working style to
a more efficient manner. In the same time, the
flood of information under the open collaborative
works is now challenging us for an efficient man-
agement system. The disorder of the information
causes difficulties in the requirement of the sys-
tematic maintenance for retrieval, extraction, or
even summarization from the stored information.
To understand the intention of an article (or a solu-
tion), we not only rely on the trace or the history of
editing, but we also constantly recall the back-
ground of our decision in producing the article (or
the solution).

Why don't we organize the information in the
development process beforehand rather than limit-
ing our capability in making use of the un-
structured information? Google (http://www.
google.com) successfully responds our needs in
looking for documents from the WWW. However,
the results from the search can simply over a mil-
lion sites and just some tens out of which are

13

viewed for the search. This most powerful search-
ing tool does not digest the information to meet
final our requirement. It only thoroughly shows the
results of the related document.

Back to the principle of collective intelligent
(Smith, 1994; Johnson et al., 1998; Levy, 1997) in
which “two minds are better than one”, mountains
of knowledge are contributed by this internet
community. But the most intelligence is the intelli-
gence of knowledge connections in which new
technologies can take part in helping individuals to
think and develop their concept collectively.

We proposed and developed KUI (Knowledge
Unifying Initiator) (KUI, 2006; Sornlertlamvanich,
2006) to be a Knowledge User Interface (KUI) for
online collaborative work to help community to
think and to develop things together. KUI is a plat-
form to unify the various thoughts following the
process of thinking, i.e., initiating the topic of in-
terest, collecting the opinions to the selected top-
ics, localizing the opinions through the translation
or customization and finally posting for public
hearing to conceptualize the knowledge. The proc-
ess of thinking is done under the selectional prefer-
ence simulated by voting mechanism in case that
many alternatives occur.

2 Collaborative tool for managing collec-
tive intelligence

We developed KUI (Knowledge Unifying Initia-
tor) for being a knowledge development supporting
tool of a web community. Actually, KUI is a plat-
form to unify various thoughts created by follow-
ing process of thinking, i.e., (1) new task, to allow
a participant to initiate a task, (2) opinion, to allow
a participant to post his own opinion, (3) localiza-
tion, to allow a participant to bring in a new
knowledge into the community by translation, and
(4) public-hearing, to allow a participant to post a
draft of concept for conceptualizing the knowl-
edge. The process of thinking is done under the
selectional preference simulated by voting mecha-
nism in case that many alternatives occur.

In this section, we describe the concept behind
KUI, the knowledge development process, and the
features in KUI.

2.1 What is KUI?

KUI or Knowledge Unifying Initiator is a GUI for
knowledge engineering, in other words Knowledge

User Interface (KUI). It provides a web interface
accessible for pre-registered members only for the
accountability reason. An online registration is of-
fered to manage the account by profiling the login
participant in making contribution to the commu-
nity. A contributor can comfortably move around
in the virtual space from desk to desk to participate
in a particular task. A login member will be as-
signed to a desk when a participation task is de-
fined. Members can then participate in the chat
group of the same desk. A desk functions as a
meeting place for collaborative work that needs
some discussion through the chat function, or al-
low a contributor to work individually by using the
message slot to record each own opinion. The
working space can be expanded by closing the un-
necessary frames so that the contributor can con-
centrate on a particular task. All working topics
can also be statistically viewed through the pro-
vided tabs. These tabs help contributors to under-
stand KUI in the aspects of the current status of
contribution and the available tasks. A web com-
munity can be formed to create a domain specific
knowledge efficiently through the features pro-
vided by KUI. These KUI features fulfill the proc-
ess of human thought to record the knowledge.

In addition, KUI also provides a KUI look up
function for viewing the composed knowledge. It
is equipped with a powerful search and statistical
browse in many aspects. Moreover, the chat log is
provided to learn about the intention of the knowl-
edge composers. We frequently want to know
about the background of the solution for better un-
derstanding or to remind us about the decision, but
we cannot find one. To avoid the repetition of a
mistake, we systematically provide the chat log to
keep the trace of discussion or the comments to
show the intention of knowledge composers.

2.2 Knowledge Development in KUI

Adopting the concept of Open Source software
development, we will be possibly able to develop a
framework for domain specific knowledge devel-
opment under the web community environment.
Sharing and collaboration are the considerable fea-
tures of the framework. The knowledge will be
finally shared among the communities by receiving
the consensus from the participants in each step.
To facilitate the knowledge development, the proc-
ess is deliberated into four steps (Sornlertlam-
vanich, 2006).

14

New Task
A new task (Topic of interest) can be posted to
draw intention from participants. The only selected
tasks by a major vote will then be proceed for fur-
ther discussion in the requested type of task i.e.,
Opinion Poll, Localization or Public-Hearing.

 Figure 1. Process of knowledge development

Opinion Poll
The selected task is posted to call for opinions
from the participants in this step. Opinion poll is
conducted to get the population of each opinion.
The result of the opinion poll provides the variety
of opinions that reflects the current thought of the
communities together with the consensus to the
opinions.

Localization
Translation is a straightforward implementation of
the localization. Collaborative translation helps
producing the knowledge in multiple languages in
the most efficient way. Multi-lingual texts are gen-
erated in this type of task.

Public-Hearing
The result of discussion will be revised and con-
firmed by gathering the opinions to develop the
final draft of the proposal. Suggestions for revision
are ranked according to the vote. The author may
consider the weight of suggestion to make decision
on the final revision.

The developed knowledge is started from post-
ing 'New Task', participants express their supports
by casting a vote. Upon a threshold the 'New
Task' is selected for conducting a poll on 'Opinion',
or introducing to the community by 'Localization',
or posting a draft for 'Public-Hearing' to gather
feedbacks from the community. The transition

from 'Opinion' to either 'Localization' or 'Public-
Hearing' occurs when the 'Opinion' has a concrete
view for implementation. The discussion in 'Local-
ization' and 'Public-Hearing' is however inter-
changeable due to purpose of implementation
whether to adopt the knowledge to the local com-
munity or to get feedbacks from the community.

The knowledge creating is managed in 4 differ-
ent categories corresponding to the stage of knowl-
edge. Each individual in the community casts a
vote to rank the appropriateness of solutions at
each category. The community can then form the
community knowledge under the 'Selectional Pref-
erence' background.

Topic
 of
Interest

Localization

Opinion

Public Hear-
ing

2.3 Features in KUI

These KUI features fulfill the process of hu-
man thought to record the knowledge.

Poll-based Opinion or Public-Hearing
A contributor may choose to work individually by
posting an opinion e.g. localization, suggestion
etc., or join a discussion desk to conduct 'Public-
Hearing' with others on the selected topic. The dis-
cussion can be conducted via the provided 'Chat'
frame before concluding an opinion. Any opinions
or suggestions are committed to voting. Opinions
can be different but majority votes will cast the
belief of the community. These features naturally
realize the online collaborative works to create the
knowledge.

Individual or Group Work
Thought may be formed individually or though a
concentrated discussion. KUI facilitates a window
for submitting an opinion and another window for
submitting a chat message. Each suggestion can be
cast through the 'Opinion' window marked with a
degree of its confidence. By working individually,
comments to a suggestion can be posted to mark its
background to make it more understanding. On the
other hand, when working as a group, discussions
among the group participants will be recorded. The
discussion can be resumed at any points to avoid
the iterating words.

Record of Intention
The intention of each opinion can be reminded by
the recorded comments or the trace of discussions.
Frequently, we have to discuss again and again on
the result that we have already agreed. Misinterpre-

15

tation of the previous decision is also frequently
faced when we do not record the background of
decision. Record of intention is therefore necessary
in the process of knowledge creation. The knowl-
edge interpretation also refers to the record of in-
tention to obtain a better understanding.

Selectional Preference
Opinions can be differed from person to person
depending on the aspects of the problem. It is not
always necessary to say what is right or what is
wrong. Each opinion should be treated as a result
of intelligent activity. However, the majority ac-
cepted opinions are preferred at the moment. Ex-
periences could tell the preference via vote casting.
The dynamically vote ranking will tell the selec-
tional preference of the community at each mo-
ment

3 KUI for Collective Intelligent Develop-
ment

Related to the principle of KUI and its features,
KUI provide many collaborative tools or applica-
tion as followings.

Translating
Translating is a type of text for language expert
group contribution. Since the existing knowledge
in one language is invaluable to other language
communities. Translating such knowledge will
help bridging the different language communities.
It will also bring the individual to an unlimited in-
formation space beyond the language barrier. Con-
tribution in term and phrase translation is to create
a multi-lingual terminology and an aligned multi-
lingual corpus.

KUI-Translating Room facilitates an individual
to view either the current translation tasks in the
task list or the discussion forum of each translating
task. Online lookup is also provided to consult a
term translation.

Individual participated in KUI-Translating can
cast a vote for a new task, a vote for multiple tasks
is allowed, select a topic to participate in the dis-
cussion forum, translate the existing terms into
your own language, chat with your friends to find
the best translation, cast a vote to your favorite
translation, invite assistants to your own initiated
private task, and propose a new task for commu-
nity voting as well.

Polling
Opinion Poll is conducted for getting the popula-
tion of each opinion. The result of the opinion poll
shows the variety of opinions that reflects the cur-
rent thought of the communities together with the
consensus to the opinions.

Similar to KUI-Translating, an individual can
view the current polling task in the task list as well
as the discussion forum of each polling task via
KUI-Polling. And current result of polling can be
view via online lookup function.

Public-Hearing
Public Hearing is a way to make a complete docu-
ment from the draft. The result from discussion
will be received and confirmed by gathering the
opinions to reflect in the final document. Voting of
the opinion will help the author to select the ap-
propriate opinion of the community.

An individual can view the current public hear-
ing tasks in the task list as well as the discussion
forum of each public hearing task via KUI-Polling.
And current result of polling can be view via
online lookup function.

Figure 2. KUI-Translating page

Writing
Writing your document online will keep your
document in access anywhere and anytime. Indi-
vidual does not have to carry all the documents
with him/her. Only online, one can work on it.
Sharing the editing online will also support the
collaborative work.

16

With KUI-Writing, individual can create or im-
port a new document, edit the existing document,
chat with friends about the document, and save or
export the document.

Correspondent to other collaborative tools, all of

KUI-application provides function to cast a vote
for either a new task or multiple tasks. Individual
can select a topic to participate or post new topic,
chat with others, invite assistants to his/her own
initiated task, and so on.

The majority vote will select the best solution

for the collaborative task.

4 ExpertScore

KUI heavily depends on members’ voting score to
produce a reliable result. Therefore, we introduce
an adjustable voting score to realize a self-
organizing system. Each member is initially pro-
vided a default value of voting score equals to one.
The voting score is increased according to Ex-
pertScore which is estimated by the value of Ex-
pertise, Contribution, and Continuity of the par-
ticipation history of each member. Expertise is a
composite score of the accuracy of opinion and
vote, as shown in Equation 1. Contribution is a
composite score of the ratio of opinion and vote
posting comparing to the total, as shown in Equa-
tion 2. Continuity is a regressive function based on
the assumption that the absence of participation of
a member will gradually decrease its ExpertScore
to one after a year (365 days) of the absence, as
shown in Equation 3.

)3(
365

1

)2(
)(

)(
)(

)(

)1(
)(

)(
)(

)(

4

⋅⎟
⎠
⎞

⎜
⎝
⎛−=

+=

+=

ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ

Λ

ΛΛ

DContinuity

TotalVotecount
Votecount

onTotalOpinicount
OpinioncountonContributi

Votecount
BestVotecount

Opinioncount
nBestOpiniocountExpertise

ργ

βα

Where,

1=+++ ργβα
D is number of recent absent date

As a result, the ExpertScore can be estimated by
Equation 4.

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

++

+
×

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

)(
)(

)(
)(

)(
)(

)(
)(

365
1

4

TotalVotecount
Votecount

onTotalOpinicount
Opinioncount

Votecount
BestVotecount

Opinioncount
nBestOpiniocount

DeExpertScor

ργ

βα

………(4)

The value of ExperScore is ranged between 1 to
365 according to the accuracy and the rate of con-
tribution of each member. This means that reliable
members are rewarded better score for each vote.
However, the expertise of the member is decreased
according to the continuity of the participation. By
means of the ExpertScore, we can rank the opin-
ions precisely and yield reliable results, especially
for the results produced by an online community.

Figure 3. KUI-Polling page

5 Application Show Case

KUI for Collaborative Translation Task
In this collaborative text translation, individual
participants of different mother language work
online as a virtual group by using KUI. There are
several translation task required the collaborative
translation such as Asian WordNet (originally from
WordNet (Miller, 1995; http://wordnet. prince-
ton.edu/), Medical Translation, OSS Glossary and
so on. And some are ready for individual use for
example NICT’s Japanese – English News Articles
Alignment, Open Office Glossary, Swadesh List,
Technical Term Dictionary.

The volunteer participants are to translate the
English text into their native languages, by using
KUI. They act as a virtual group and participate in
the translation via this web interface. With differ-
ent backgrounds and degrees of translation abili-
ties, they, therefore, can discuss or exchange their
opinion while translating each utterance. The

17

communication is not only for getting to know
each other, but also for better understanding of the
utterance before translation. Figure 4 shows the
participation work flow.

 Figure 4. Participant work flow

Figure 5. Lookup page of Asian WordNet

6 Conclusion

We proposed an efficient online collaborative
framework in producing and maintaining knowl-
edge according to the principle of collective intel-
ligent. KUI was designed to support an open web
community by introducing a voting system and a
mechanism to realize the function of selectional
preference. It was efficiently introduced to encour-

age the communication among individuals from
different background. KUI was also proved to sup-
port the collaborative work in producing many
kinds of tasks. The translated text, an example, will
be voluntarily maintained by the online partici-
pants under the selectional preference based on the
voting function. Correspondent to collective intel-
ligent collaborative tool, KUI enables to connect
and collaborate among individual intelligence in
order to accomplish a complex mission. Of course,
“two minds are better than one”.

Acknowledgment

Thanks to KUI community for the invaluable con-
tribution to this project.

References
http://www.google.com
http://www.sourceforge.net
http://www.wiki.org

N. Johnson, S. Rasmussen, C. Joslyn, L. Rocha, S.

Smith and M. Kantor. Symbiotic Intelligence:
Self-organizing Knowledge on Distributed Net-
works Driven by Human Interaction, Int. Con-
ference on Artificial Life, Boston. 1998.

KUI. http://www.tcllab.org/kui/ (2006)

Levy. Collective Intelligence: Mankind’s Emerg-

ing World in Cyberspace, New York, 1997.

G. A. Miller. WordNet: A Lexical Databases for

English. Communications of the ACM, 39-41,
November, 1995

J.B. Smith. Collective Intelligence in Computer-

Based Collaboration. Erlbaum, New York,
1994.

V. Sornlertlamvanich. KUI: The OSS-Styled
Knowledge Development System. Handbook of
The 7th AOSS Symposium, Kuala Lumpur, Ma-
laysia, 2006.

WordNet. http://wordnet.princeton.edu/

18

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 19–26,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Prototype Machine Translation System From Text-To-Indian Sign
Language

Tirthankar Dasgupta
IIT, Kharagpur
tirtha@

cse.iitkgp.ernet.in

Sandipan Dandpat
IIT, Kharagpur
sandipan@

cse.iitkgp.ernet.in

Anupam Basu
IIT, Kharagpur
anupambas@
gmail.com

Abstract

This paper presents a prototype Text-To-
Indian Sign Language (ISL) translation
system. The system will help dissemination
of information to the deaf people in India.
The current system takes English sentence
as input, performs syntactic analysis, and
generates the corresponding ISL structure.
Since ISL does not have any written form,
the output is represented in terms of pre-
recorded video streams. The system uses
Lexical Functional Grammar (LFG) for-
malism for representing ISL syntax.

1 Introduction

The All India Federation of the deaf estimates
around 4 million deaf people and more than 10
million hard of hearing people in India (Zeshan et
al, 2004). Studies revealed that, one out of every
five deaf people in the world is from India. More
than 1 million deaf adults and around 0.5 million
deaf children in India uses Indian Sign Language
(henceforth called ISL) as a mode of communica-
tion (Zeshan et al, 2004). ISL is not only used by
the deaf people but also by the hearing parents of
the deaf children, the hearing children of deaf
adults and hearing deaf educators (Zeshan et al,
2004).

Due to their inability in accessing information
through common broadcast modes like television,
radio etc., and communication for the deaf com-
munity in common places like railway, bank, and
hospitals is difficult.

Efforts to extend the existing means of commu-
nication for the hearing impaired include close cir-
cuit captioning in television and communication
through interpreter. The first approach assumes a

good knowledge in written languages like English,
Hindi, or Bengali. The second approach is not al-
ways practically feasible.

A large section of the hearing impaired in India
uses ISL as their mode of communication. How-
ever, due to the inherent difficulty in their written
texts, an automatic Text-to-ISL translation system
could help to make more information and services
accessible to the hearing impaired. Moreover, the
system will not only improve information access,
but it can also be used as an educational tool to
learn ISL.

Though some work has been done on machine
translation (MT) from English to American or Brit-
ish Sign Language (SL) (Huenerfauth, 2003), but
for ISL, MT systems are still in its infancy. The
underlying architecture for most of the systems are
based on:

I. Direct translation: This requires knowledge

of both the source and the target language.
Moreover, word order of the output may not
be the desired one.

II. Statistical MT: It requires large parallel cor-
pora which is very difficult to collect.

III. Transfer based architecture. As ISL does not
relate to other SLs of either Asia or Europe
(Zeshan, 2003), the existing systems transfer
grammar rules cannot be applied to translate
English to ISL.

Further, some of the systems are domain specific

in nature, and cannot be used to generic systems.
Hence, most of the above systems remain unusable
for the deaf community of India. This is the prime
motivation behind building a generic English Text-
to-ISL translation system.

The objective of this paper is to present a proto-
type English-to-ISL generic machine translation

19

system. Currently the system takes simple English
sentences as input and generates ISL-gloss which
may then be converted into the Hamburg Notation
System (HamNoSys)1 (Prillwitz et. al, 1989). The
HamNoSys representation will provide signing
instructions to the sign synthesis module, to gener-
ate an animated representation of ISL to the user.
Lexical Functional grammar (LFG) f-structure is
used to represent ISL syntax.

The paper is organized as follows: Section 2
presents linguistic issues related to ISL. Section 3
presents a brief summery of the related works. Sec-
tion 4 presents the overall system architecture. Sec-
tion 5 presents system evaluation and results. Sec-
tion 6 presents the sign synthesis via HamNoSys,
and Section 7 presents conclusion and future work.

2 ISL Linguistic Issues

Indian Sign Language (ISL) is a visual-spatial lan-
guage which provides linguistic information using
hands, arms, face, and head/body postures. A sign
is a sequential or parallel construction of its man-
ual and non-manual components. A manual com-
ponent can be defined by several parameters like
hand shape, orientation, position, and movements
where as non-manual components are defined by
facial expressions, eye gaze, and head/body pos-
ture (Zeshan, 2003). However, there exist some
signs which may contain only manual or non-
manual components. For example the sign “Yes” is
signed by vertical head nod and it has no manual
component.

ISL lexicon is categorized according to the spa-
tial behavior of the signs (Zeshan, 2003). There are
three open lexical classes: i) Signs whose place of
articulation are fixed, like, “hand”, “teeth”, “eye”,
“me”, and “you” as shown in Fig. 1. ii) Signs
whose place of articulation can change, like,
“good,” “friend,” and “marry” as shown in Fig. 2.
iii) Directional signs are those where there is a
movement between two points in space. For exam-
ple, in the sentence “I help him” the head word is
“help” and direction of the sign is from subject “I”
to the object “him” (Fig. 3). Directional signs gen-
erally show verbal property (Zeshan, 2003). Apart
from the directional signs, ISL morphology is
mostly derivational in nature and there are no af-
fixes in signs. The closed lexical class contains

1 www.sign-lang.uni-hamburg.de/Projekte/HamNoSys

classifier hand shapes, discourse markers, and non-
manual signs (Zeshan, 2003). A classifier hand
shape contains specification related to hand con-
figuration that represents the characteristics of a
referent. For example, consider the sentence “Put
the cup on the table”. Here the hand configuration
will contain shape of a “cup” added with a move-
ment to express the event “put”.

ISL discourse structure is classified into manual
and non-manual markers. Manual discourse mark-
ers can occur either in clause final position (as in,
“it’s over, what else we can do?”) or in clause ini-
tial position (like, “well, I have nothing to say”).
The non-manual marker like “head nodding” oc-
curs only in clause final position after the last
manual sign of the clause.

Me Eye

Fig.1: Signs whose place of articulation is fixed

(Vasistha et. al 1998)

Friend

Fig. 2: Signs whose place of ar-
ticulation can change (Vasistha
et. al 1998)

Fig. 3: Directional Sign, “I help you”. Taken
from AYJNIHH workbook video CD.

3 The State-of-Art for Text-to-Sign Lan-
guage

In spite of the advancements in modern computer
science technology, there is a paucity of research
in developing machine translation (MT) system on
sign language particularly in India (Zeshan et al.
2004). Some of the MT systems for other sign lan-

20

guage are briefly described below. The underlying
MT architecture can be classified into i) Direct
translation system, ii) Transfer based architecture
and iii) Statistical MT.

The direct translation approach generates the SL
by direct replacement of the words of input English
sentence. Generally the word order of the SL re-
mains the same as that of the English text. How-
ever, as in the case of English to ISL, the target SL
may not allow the same word order. Also, the sys-
tem assumes a strong knowledge of both the Eng-
lish as well as the target SL.

Some of the direct translation systems include:

• TESSA: A Speech-To-British Sign Language
(BSL) translation system that aims to provide a
communication aid between a deaf person and a
Post Office clerk. The system uses formulaic
grammar approach where a set of pre-defined
phrases are stored and translation is done by us-
ing a phrase lookup table. However, the use of
small set of sentences as templates makes
TESSA a very domain specific system. It as-
sumes a very restricted discourse between the
participants (Cox, 2002).

• The SignSynth project (Grieve- smith 1998;
Grieve-smith, 1999) uses ASCII-Stokoe model
for the representation of Signs. The animated
output is generated by converting ASCII-Stokoe
into VRML (Virtual Reality Modeling Lan-
guage). In his another project Grieve-Smith pro-
posed a Text to American Sign Language (ASL)
machine translation system. The system has been
evaluated in the weather information domain.

In a transfer architecture system, the source lan-

guage representation is transformed into a suitable
syntactically/semantically correct target language
form by applying proper transfer grammar rules.
These rules are dependent upon both the source
and the target language. However, as the
source/target language changes new rules are need
to be added. The transfer grammar approach is not
only used in text to SL MT systems but also in
text-to-text MT systems, like the Shakti MT sys-
tem which is used to translate English text to Hindi
(Bharati et. al., 2001; Bharati et. al., 2003). The
transfer architecture systems include:

• The ViSiCAST translator, which is a English to
British Sign Language (BSL) translation tool

(Marshall & Sáfár, 2001; Bangham et al., 2000).
The system uses HPSG (Pollard and Sag, 1994)
formalism to represent source text into BSL and
the grammar is implemented using a Prolog based
system ALE. The system handles discourse phe-
nomena by using Discourse Representation Struc-
ture (DRS) (Bos et. al, 1994) and the phonology is
represented in HamNoSys. This is one of the most
successful system developed so far (Huenerfauth,
2003).
• The ASL workbench (Speers, 2001) is a Text-
To-ASL MT system which uses Lexical Functional
Grammar (LFG) (Kaplan, 1989) formalism to rep-
resent English f-structure into ASL. The system
uses a very sophisticated phonological model
which is based on Movement-Hold principle of
ASL phonology (Lidell & Johnson 1989).
• The TEAM project is a Text-To-ASL translation
system where, the STAG (Synchronous Tree Ad-
joining Grammar) formalism is used to represent
source text into ASL syntactic structure (Zhao et
al, 2000). The system maintains a bilingual lexicon
to identify the valid word-sign pair. The output of
the linguistic module was a written ASL gloss no-
tation. The manual and non-manual information,
including the morphological variation, are embed-
ded with in the ASL gloss notation. The output of
the synthesis module uses animated human models
(Avatar).

In addition, An Example based MT system for

English-Dutch sign language was proposed by
(Morrissey and Way, 2005). Stein et.al. (2006) has
proposed a statistical MT system which uses Hid-
den Markov Model and IBM models for training
the data. However, due to paucity of well anno-
tated corpora, the system has been evaluated using
a very small set of data.

3.1 Indian Scenario

INGIT is a Hindi-To-Indian Sign Language (ISL)
Machine Translation system has been built for the
railway reservation domain (Kar et. al, 2006). The
system takes input from the reservation clerk and
translates into ISL. The output of the system is an
animated representation of the ISL-gloss strings
via HamNoSys. INGIT is based on Hybrid-
formulaic grammar approach unlike TESSA which
uses purely formulaic approach. Here, Fluid Con-
struction Grammar (FCG) (Steels and Beule, 2006)

21

is used to implement the Formulaic grammar. This
is the only Hindi text-to-ISL machine translation
tool encountered by us so far. However, the system
is domain specific in nature and cannot be used for
generic purpose. Further, the system does not have
to handle any structural divergence between the
source and the target language, as in most of the
cases both Hindi and ISL show the same word or-
der.

4 ISL MT Architecture

In order to overcome the above mentioned prob-
lem, we initially developed a direct translation sys-
tem, however due to its inherent drawbacks, as
mentioned in section 3, we need some other ap-
proach. One of the most popular techniques is to
use statistical or case based MT system. However
ISL does not have any written form, so it is very
difficult to find any natural source of parallel cor-
pora. Niedle et al. (2000) have proposed an ap-
proach to collect corpus for statistical MT research,
in his approach first, annotation standard for the
various hand shape movements was developed,
then the Sign Language performances were re-
corded, and finally the recorded videos were
manually transcribed. This is a very slow and ex-
pensive process. Due to the difficulty in obtaining
parallel corpora of ISL, the statistical MT ap-
proaches may not be a feasible solution to our
problem. Hence we decided to build a rule based
transfer grammar MT system discussed in this sec-
tion.

The system architecture of the proposed English
Text-To-ISL MT system is composed of the fol-
lowing four essential modules (see Fig. 4):

1. Input text preprocessor and parser
2. LFG f-structure representation
3. Transfer Grammar Rules
4. ISL Sentence Generation
5. ISL synthesis

4.1 Text Analysis & Syntactic Parsing

The current Text-To-ISL translator takes simple
English sentence as an input to the parser. We de-
fine simple sentence as, a sentence containing only
one main verb. The input sentence is then parsed
using the Minipar parser (Lin, 1998) and a depend-
ency structure is constructed from the parse tree.
However, before parsing, the input text is passed to

the preprocessing unit, where we try to identify the
frozen phrases2 and temporal expressions3 which
the syntactic parser is unable to identify. We pre-
pare a phrase lookup table consisting of 350 frozen
phrases and temporal expressions which are identi-
fied before the input text is parsed. The parsing
stage also includes classification of plural nouns.
The plurality is identified using an English mor-
phological analyzer.

 Fig. 4: Architecture of the Text-to-ISL MT system

4.2 LFG Representation

The Minipar generated dependency structure is
more akin towards the LFG functional structure (f-
structure). The f-structure encodes grammatical
relation (like subject, object, and tense) of the input
sentence. It represents the internal structure of a
sentence. This includes the representation of the
higher syntactic and functional information of a
sentence. This higher syntactic and functional in-
formation of a sentence is represented as a set of
attribute-value pairs. In an attribute-value pair, the
attribute corresponds to the name of a grammatical
symbol (e.g. NUM, TENSE) or a syntactic function
(e.g. SUBJ, OBJ) and the value is the corresponding
feature possessed by the concerning constituent.
For example, Fig. 5 shows the attribute-value pair
for the sentence “John Played Cricket”. The main
advantage of f-structure is in its abstract represen-
tation of syntactic and grammatical information of
a sentence.

2 Phrases that are composed of Idioms, and Metaphor
3 Temporal Expressions contains Time, Day and Date.

22

 F

4.3 ISL Generation

In the generation stage, English f-structure is con-
verted to ISL f-structure by applying proper trans-
fer grammar rules. Two main operations are per-
formed during the generation phase: a) Lexical
selection and b) Word order correspondence.
Lexical selection is done using an English-ISL bi-
lingual lexicon. For example word like “Dinner” in
English is replaced by “NIGHT FOOD” in ISL and
“Mumbai” is replaced by the sign of “BOMBAY”.

(1) English: “I had dinner with Sita”
 ISL: “I SITA WITH NIGHT FOOD FINISH”

ISL has essentially a Subject-Object-Verb word
order (unlike English which is Subject-Verb-
Object). For Example, (2) shows the change in
word order from English to ISL.

(2) English: “I have a computer”
 ISL: “I COMPUTER HAVE”.

However, in some cases the sign sentence de-

pends upon the directionality of the verb as in (3).

(3) English: “I help you”
 ISL: “HELP + < hand movement from I-
 to-YOU>”.

For sentences having only a subject and a verb,

the subject always precedes the verb. Like:

(4) English: “The woman is deaf”
 ISL: “WOMAN DEAF”.

However, if the sentence contains a dummy sub-

ject (5), then the subject is removed from the out-
put.

 (5) English: “It is raining outside”
 ISL: “OUTSIDE RAINING”

For negative sentences, a negation mark is used
after the verb (6). The second bracket indicates a
parallel non-manual component is attached with
the sign “LATE”.

 (6) English: “I am not late”
 ISL: “I {LATE + NOT}”.

 ig. 5: Attribute-Value pair for the sentence ISL has separate rules to handle adjectives oc-
curring before a noun. In most of the cases an ad-
jective must occur after the noun. However, if the
adjective specifies a color then it should precede
the noun (see (7) & (8)).

“John Played Cricket”

(7) English: “The beautiful girl is playing”
 ISL: “GIRL BEAUTIFUL PLAY”

(8) English: “I see a black cat”
 ISL: “I BLACK CAT SEE”.

WH-Interrogative markers (like who, what,

when, and why) always occur at the end of the sen-
tence.

 (9) English: “When is your birthday?”
 ISL: “YOUR BIRTHDAY TIME+
 QUESTION”.

In case of yes/no type of questions, the sentence

is followed by a non-manual yes-no marker
(Zeshan, 2004).

(10) English: “Is the man deaf?”
 ISL: “MAN {DEAF} yes-no”

Since ISL does not have any articles or conjunc-
tions, they are removed from the generated output
as shown in example (2)-(10).

5 System Evaluation

Evaluating a Text-to-ISL MT system is difficult
due to the absence of ISL written orthography.
Hence, standard techniques for evaluating Text-
Text MT systems are not applicable for Text-to-
ISL systems. However, we have evaluated the sys-
tem based on the feedbacks of the ISL experts. The
generated outputs of the system are shown to the
ISL experts and are classified as either valid or
invalid according to their understandability and
quality. The system was evaluated on a set of 208

23

sentences4. Table 1.1 summarizes the performance
of the system. The overall system performance is
around 90%. Most of the errors are due to com-
pound sentences and directional verbs5. To under-
stand the relative performance of the system on the
simple sentences, we conducted two experiments
removing compound construction and directional
verbs. From the current experimental set up, 7%
errors are propagated due to directional verbs and
around 4% errors are due to compound construc-
tions.

 No. of
Sentences

Accuracy
(%)

Overall Corpus size 208 89.4
Sentences without di-
rectional verbs 193 96.37

Sentences without
compound construc-
tions

201 92.53

6 ISL Synthesis

The ISL sentences thus generated are displayed via
a stream of pre recorded videos or icons. However,
it has been observed that the current approach of
ISL synthesis is highly criticized (Grieve-Smith,
1999). As, representing ISL signs by pre-recorded
video will result in loss of information related to
discourse, classifier predicate, and directionality of
sign. Also, storing sign video takes a lot of mem-
ory overhead. To overcome this crisis further de-
velopments are in progress. We represent ISL signs
by HamNoSys and the generated HamNoSys string
will be passed to the signing avatar.

6.1 HamNoSys

Sign language does not have any written form. In
order to define a sign we need a notation system.
The Hamburg sign language Notation system
(HamNoSys) is a phonetic transcription system
used to transcribe signing gestures. It is a syntactic
representation of a sign to facilitate computer
processing. HamNoSys is composed of several
parameters by which a signing gesture can be de-
fined like:

4 Corpus collected from “‘A’ level Introductory course in
Indian Sign Language” Work Book AYJNIHH.
5 Verbs corresponding to directional signs.

• Dominant hand’s shape.
• Hand location with respect to the body.
• Extended finger orientation.
• Palm orientation
• Movements (straight, circular or curved)
• Non-manual signs.

Fig. 9 shows an example where HamNoSys

representation of the word “WOMAN” is ex-
plained.

In this example, the parameters like movement
and non-manual signs are not present, as the sign
“WOMAN” in ISL does not have these expres-
sions. Fig. 10 shows the ISL representation of
“WOMAN”.

7 Conclusion and Future works

The paper presents a prototype text to ISL transla-
tion system. Our approach uses LFG f-structure to
represent ISL syntax. As ISL does not have any
written form, there is no standard source of ISL
corpus. Hence, statistical MT methods are not fea-
sible under such a condition. Our system is still
under development stage. The sign synthesis mod-
ule using an animated avatar has not been devel-
oped yet. We generate ISL output using pre-
recorded ISL videos. Further morphological func-
tionalities like, discourse, directionality, and classi-
fier predicates are handled minimally

Table1.1: Evaluation Results

Fig. 9: HamNoSys representation of “WOMAN”

Fig. 10: Sign of “WOMAN”
(Vashista et.al, 1998)

Extended Finger orientation

Handshape
Location

Palm

•• \ •••

24

In the next stage of our work, we will try to
handle directional sign, discourse, and classifiers.
The sign representation should be done using an
animated avatar via HamNoSys notation. We will
also develop the sign annotation tool and finally, a
larger corpus will be built for a better evaluation
and results.

References
N. Badler, R. Bindiganavale, J. Allbeck, W. Schuler, L.

Zhao, S. Lee, H. Shin, and M. Palmer 2000. Param-
eterized Action Representation and Natural Language
Instructions for Dynamic Behavior Modification of
Embodied Agents. AAAI Spring Symposium.

J. A. Bangham, S. J. Cox, R. Elliot, J. R. W. Glauert, I.
Marshall, S. Rankov, and M. Wells. 2000. Virtual
signing: Capture, animation, storage and transmission
– An overview of the ViSiCAST project. IEEE Semi-
nar on Speech and language processing for disabled
and elderly people.

A. Bharati, D. M. Sharma, R. Sangal. 2001. AnnCorra :
An Introduction, Technical Report no: TR-LTRC-
014, LTRC, IIIT Hyderabad, Mar 2001,
http://www.iiit.net/ltrc/ Publications/Techreports/TR-
LTRC-14

A. Bharati, R. Moona, P. Reddy, B. Sankar, D.M.
Sharma, R. Sangal, Machine Translation: The Shakti
Approach, Pre-Conference Tutorial at ICON-2003.

J. Bos, E. Mastenbroek, S. McGlashan, S. Millies, M.
Pinkal. 1994. A Compositional DRS-based Formal-
ism for NLP Applications. Report 59. Universitaet
des Saarlandes.

S. Cox, M. Lincoln, J. Tryggvason, M. Nakisa, M .
Wells, M. Tutt, S. Abbott. 2002. Tessa, a system to
aid communication with deaf people. Fifth interna-
tional ACM conference on Assistive technologies.

M. Huenerfauth. 2003. A Survey and Critique of
American Sign Language Natural Language Genera-
tion and Machine Translation Systems. Technical Re-
port MS-CIS-03-32, Computer and Information Sci-
ence, University of Pennsylvania.

A. Joshi, L. Levy and M. Takahashi. 1975. Tree Ad-
junct Grammar. Journal of computer and system sci-
ences.

P. Kar, M. Reddy, A. Mukherjee, A. M. Raina. 2007.
INGIT: Limited Domain Formulaic Translation from
Hindi Strings to Indian Sign Language. ICON.

Ronald M. Kaplan. 1989. The formal architecture of
lexical-functional grammar. Journal of Information-
Science and Engineering 5: 305-322.

Scott Liddell and R. E. Johnson. 1989. American Sign
Language: The phonological base. Sign Language
Studies 64: 195-277.

D. Lin. 1998. Dependency-based evaluation of MINI-
PAR. In Workshop on the Evaluation of Parsing Sys-
tems, Granada, Spain,

I. Marshall and É. Sáfár. 2001. Extraction of semantic
representations from syntactic SMU link grammar
linkages.. In G. Angelova, editor, Proceedings of Re-
cent Advances in Natural Lanugage Processing, pp:
154-159, Tzigov Chark, Bulgaria, September.

S. Morrissey and A. Way. 2005. An Example-Based
Approach to Translating Sign Language. In Proceed-
ings of Workshop Example-Based Machine Transla-
tion (MT X -05), Phuket, Thailand.

C. Neidle, J. Kegl, D. MacLaughlin, B. Bahan, and R.
G. Lee. 2000. The Syntax of American Sign Lan-
guage: Functional Categories and Hierarchical
Structure. Cambridge, MA: The MIT Press.

C. J. Pollard, and I. A. Sag. 1994. Head-driven Phrase
Structure Grammar. University of Chicago Press,
Chicago, IL.

S. Prillwitz, R. Leven, H. Zienert, T. Hamke, and J.
Henning. 1989. HamNoSys Version 2.0: Hamburg
Notation System for Sign Languages: An Introduc-
tory Guide, volume 5 of International Studies on Sign
Language and Communication of the Deaf. Signum
Press, Hamburg, Germany,

É. Sáfár and I. Marshall. 2001. .The architecture of an
English-text-to-Sign-Languages translation system..
In G. Angelova, editor, Recent Advances in Natural
Language Processing (RANLP), pp: 223-228. Tzigov
Chark, Bulgaria.

G. Angus Smith. 1998. Sign synthesis and sign phonol-
ogy. Proceedings of the First High Desert Student
Conference in Linguistics.

G. Angus Smith. 1999. English to American Sign Lan-
guage machine translation of weather reports. Pro-
ceedings of the Second High Desert Student Confer-
ence in Linguistics.

A. Speers. 1995. SL-Corpus: A computer tool for sign
language corpora. Georgetown University.

A. Speers. 2001. Representation of American Sign Lan-
guage for Machine Translation. PhD Dissertation,
Department of Linguistics, Georgetown University.

L. Steels and J. Beule. 2006, Unify and Merge in Fluid
Construction Grammar, In: Lyon C., Nehaniv, L. &
A. Cangelosi, Emergence and Evolution of Linguistic
Communication, Lecture Notes in Computer Science.
Springe-Verlag: Berlin,.

25

D. Stein, J. Bungeroth and H. Ney. 2006. Morpho-
Syntax Based Statistical Methods for Sign Language
Translation. In Proceedings of the 11th Annual
conference of the European Association for Machine
Translation. Oslo, Norway.

M. Vasishta, J. Woodward and S. DeSantis. 1998. An
Introduction to Indian Sign Language. All India Fed-
eration of the Deaf (Third Edition).

Elizabeth Winston. 1993. Spatial mapping in compara-
tive discourse frames in an American Sign Language
lecture. Doctor of Philosophy in Linguistics diss.,
Georgetown University.

L. Zhao, K. Kipper, W. Schuler, C. Vogler, N. Badler,
and M. Palmer. 2000. A Machine Translation System
from English to American Sign Language. Associa-
tion for Machine Translation in the Americas.

U. Zeshan. 2003. Indo-Pakistani Sign Language Gram-
mar: A Typological Outline. Sign Language Studies -
Volume 3, Number 2 , pp. 157-212.

U. Zeshan. 2004. Interrogative Constructions in Signed
Languages. Crosslinguistic Perspectives Language -
Volume 80, Number 1, pp. 7-39.

U. Zeshan, M. Vasishta, M. Sethna. 2004. Implementa-
tion of Indian sign language in educational settings-
Volume 15, Number 2, Asia Pacific Disability Reha-
bilitation Journal, pp. 15-35

26

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 27–34,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Joint Grammar Development by Linguists and Computer
Scientists

Michael Maxwell
Center for Advanced Study of Language/

University of Maryland
College Park, Maryland, USA
mmaxwell@casl.umd.edu

Anne David
Center for Advanced Study of Language/

University of Maryland
College Park, Maryland, USA
adavid@casl.umd.edu

Abstract

For languages with inflectional morpho-
logy, development of a morphological
parser can be a bottleneck to further
development. We focus on two difficulties:
first, finding people with expertise in both
computer programming and the linguistics
of a particular language, and second, the
short lifetime of software such as parsers.
We describe a methodology to split parser
building into two tasks: descriptive
grammar development, and formal
grammar development. The two grammars
are combined into a single document using
Literate Programming. The formal
grammar is designed to be independent of a
particular parsing engine’s programming
language, so that it can be readily ported to
a new parsing engine, thus helping solve
the software lifetime problem.

1 Problems for Grammar Development

After several decades of widespread effort in
computational linguistics, the vast majority of the
world’s languages lack significant computational
resources. For many languages, this is attributable
to the lack of even more basic resources, such as
standardized writing systems or dictionaries. But
even for many languages that have been written for
centuries, computational resources are scarce.

One resource that is needed for languages with
significant inflectional morphology is a morpho-
logical parser.1 To the degree that a language has
complex morphology, parsers are difficult to build.

1 In fact, it is more common to create a morphological
transducer, that is, a program which functions to both parse
and generate inflected words. However, because it is more
familiar, in this paper we will frequently use the term ‘parser.’

While there has been considerable research into
automatically deriving a morphological parser
from a corpus (see for example Creutz and Lagus,
2007; Goldsmith, 2001; Goldsmith and Hu, 2004;
and the papers in Maxwell, 2002), the results are
still far from producing reliable, wide-coverage
parsers. Hence most morphological parsers are still
built by hand. This paper focuses on practical
aspects of how such parsers can best be built, and
presents a model for collaborative development.

Hand-built parsers suffer from at least two
drawbacks, which we will call the ‘Expertise
Problem’ and the ‘Half-Life Problem.’ The
Expertise Problem concerns a difficulty for
building a parser in the first place: it is hard to find
one person with the necessary knowledge of both
the linguistics of the target language and the
computational technology for building parsers.

The Half-Life Problem concerns the fact that
once a parser has been built, its life is limited by
the life of the software it has been implemented in,
and this lifetime is often short.

The following subsections further describe these
two problems, while the remainder of the paper
focuses largely on the Expertise Problem. We
focus specifically on the development of
morphological grammars. The techniques
described here may be usable with syntactic
grammars as well, but we have not investigated
that problem. We also focus in this paper on the
development issue; testing and debugging
grammars is not discussed in this paper.

1.1 The Expertise Problem

Writing software requires two kinds of expertise:
knowledge of the problem to be solved, and
knowledge of how to program software. For
parsers, the problem-specific knowledge requires
understanding the grammar of the target language.
Since everyone speaks at least one language, it

27

might seem that finding someone who understands
the grammar of any particular language should be
easy. Unfortunately, as generations of field
linguists have discovered, this is not true. A native
speaker’s knowledge of a language is notoriously
implicit; converting that knowledge into explicit
rules is no simple task. Furthermore, finding a
speaker of the language who combines explicit
understanding of the grammar with software
engineering skills is even more difficult. The
difficulty is compounded when the number of
speakers of the language is small. We therefore
believe that for many languages of the world, for
the near future, the way to develop computational
tools in general, and morphological parsers in
particular, lies in teamwork.

An example of the team approach was the
BOAS project (Oflazer et al., 2001). A BOAS
team consisted of two people—a ‘language
informant’ and a programmer—plus a computer
program which interviewed the informant and
created the grammar rules. The computer program
is described as a ‘linguist in a box’ (Oflazer et al.,
61). The method we describe uses computational
tools, but purely human teamwork.

A potential problem with the team approach lies
in facilitating communication between team
members. While electronic communication makes
distributed teams possible, there is still a question
of how best to enable people with disparate skills
to actually understand each other. We return to this
below, when we discuss our collaborative method.

1.2 The Half-Life Problem

Another problem with computational tools is their
lack of longevity. While it would be difficult to
formally investigate, we estimate the average
lifetime for computational linguistic tools to be
five or ten years. In part, this is due to the (lack of)
longevity of the underlying software.2 Of course,
some vendors provide backwards compatibility,
and not all software becomes extinct that
quickly—but that is the meaning of ‘half-life.’

Software obsolescence can be postponed by the
judicious choice of programming languages,

 2 One of us (Maxwell) was involved in a project in which two

of the programming languages became defunct before the
program was complete. In both cases, the cost of porting to
alternative dialects of the programming language was deemed
prohibitive.

avoiding platform- or OS-specific commands, the
use of open source methods, etc. However, this can
only prolong the life of a program, not extend it
indefinitely.3 There are few if any programs that
were written in 1980 that still run on any but
computers outside of a museum—and 1980 was
only twenty-seven years ago.

In contrast, natural languages change slowly,
apart from the infusion of new vocabulary. The
grammar of a language spoken today is unlikely to
be significantly different from the grammar of that
same language fifty or a hundred years ago; and
barring catastrophe, any changes which do happen
are likely to be incremental.

One might argue that the short half-life of
software is unimportant, since twenty years from
now it may be possible to generate a
morphological parser automatically from a corpus
and a dictionary. Perhaps, but this remains to be
seen. In the meanwhile, the time and effort that go
into writing such tools mandates that the tools be
usable for long after the project is completed.

Another motivation for wanting to build parsing
tools with a longer half-life is that they constitute a
description of (part of) the grammar of a language,
in two senses: first, the grammar that the parser
uses is in effect a formal description of the
language’s morphology (or syntax). This formal
description has the advantage over traditional
grammar descriptions of being unambiguous.

A second way in which a parser constitutes
documentation of a language is that it can be used
to analyze language texts, and—if it supports a
generation mode—to produce paradigms. That is, a
parser is an active description, not a static one.

However, linguists have drawn attention to the
issue of longevity for computer-based language
documentation and description. In their seminal
paper, Bird and Simons (2003) point out that the
use of digital technologies brings the potential that
archive language data can become unusable much
more quickly than printed grammatical
descriptions. Indeed, scholars of today can
understand grammars of South Asian languages
penned thousands of years ago.

3 Old software can of course be kept on “life support” by
running it on old machines running old operating systems. But
that is a solution for museums, not for software that is
intended to be actively used.

28

Since a parser embodies a description of the
grammar of a language, it should be written to
provide an explicit, computationally
implementable description of the language,
portable to future parsing engines even after the
language is extinct. As we show below, this is not
an impossible goal.

2 A method for Grammar Development

We have embarked on a project to build
morphological parsers of languages in a way that
overcomes the Expertise and Half-Life problems
described in the previous section. The first parser
was for the Bengali, or Bangla, language. Our
choice of Bangla was driven by a number of
considerations, many of which are not relevant
here. Most any language with a significant amount
of inflectional morphology would have worked.
However, in retrospect the choice was a good one,
as it forced us to deal with a number of both
computational and linguistic issues that a more
highly resourced language such as Spanish would
not have presented. At the same time, Bangla is
sufficiently documented by traditional grammars
that the task was achievable, although not as easy
as we had anticipated.

We are writing two kinds of grammars
simultaneously: the first is a traditional descriptive
or reference grammar, written in English prose by
a linguist (Anne David), intended to be read by
linguists. The other is a formal grammar, written in
a formal specification language, by a
computational linguist (Mike Maxwell) and
intended for conversion into the programming
language of a parsing engine. (Neither of us is a
speaker of the Bangla language.) The two
grammars are intertwined, as described below, so
that each supports the other in such a way that we
can combine our differing expertise while also
avoiding the lack of longevity that plagues
traditional parser development.

The following subsections describe the
methodology we are using, and its advantages.

2.1 Descriptive Grammar

The descriptive grammar we have written is not, of
itself, ground-breaking. Like most reference
grammars of the morphology of a language, it has
a chapter on the phonology and writing system of
Bangla, and chapters for the various parts of

speech. The latter chapters describe the inflectional
(and some derivational) affixes each part of speech
takes, and how the resulting inflected forms define
the paradigms. The usage of these forms is also
described, with examples sufficient to illustrate the
usage; it is not, however, a pedagogical grammar.

We were surprised to discover that no thorough
and reliable English-language descriptive grammar
of modern colloquial Bangla exists, despite its
having well over 200 million native speakers.
Instead, we had to glean our description of Bangla
morphology from half a dozen or so grammars of
varying quality (some of them pedagogical4),
several journal articles, and a couple of
dissertations. Doing so meant comparing and
reconciling sometimes widely differing
descriptions and analyses; three major problems
we encountered were contradictory accounts, lack
of clarity, and gaps in coverage. Writing a formal
grammar forced us to both resolve these issues and
clarify our descriptive grammar.

For example, we knew from our sources that the
locative/ instrumental case in Bangla has several
allomorphs; however, the descriptions of their
distribution differed, and one of our chief sources
was, in fact, quite vague on the conditioning
environments. Moreover, one particular vowel
alternation that takes place in certain verb forms
goes unmentioned in nearly all of our sources and
is inaccurately described in one of the two that do
mention it. In this instance, a native speaker
confirmed the correct forms for us. Opinions
among the written sources on how to classify
Bangla verbs differed widely as well, with
anywhere from two to seven classes proposed. We
ended up choosing the system that defined seven
stem classes, since it is the only one that enables
the generation of any verb form, given a stem.

Resolving such problems was made easier by
the help of a consultant in the Bangla language.
Professor Clint Seely, Emeritus of the University
of Chicago. He corrected our many mistakes and
helped clear up ambiguities in our sources.

The difficulties we encountered in
understanding grammatical descriptions, recon-
ciling different grammatical accounts, and filling
in gaps in coverage underline the fact that we
could not have simply picked up a grammar and

4 In fact, the clearest and most reliable sources of information
were pedagogical grammars.

29

written a formal grammar from it. For languages
which have any degree of inflectional
complexity—and Bengali does, although there are
languages with still more complicated mor-
phologies—the problems are too great for such a
simple approach. One might ask why it is so
difficult to convert a published grammar into a
morphological parser. One answer is that
languages are inherently complex. It is common
for published descriptions to overlook complexity,
either in the interest of presenting a simple and
general description, or perhaps because the author
is unaware of some of the issues.

Also, as any reader or writer of technical papers
knows, it is all too easy to talk about complex
topics unclearly. In our case, writing the formal
grammar at the same time as the descriptive
grammar forced a clarity and breadth of coverage
in our descriptive grammar which we would not
otherwise have attained. Moreover, by
incorporating a formal grammar into the
descriptive grammar, we have gone beyond
previous work on Bangla, or most other languages.
The following section describes this.

2.2 Formal Grammar

For the formal grammar of Bangla morphology, we
need a description which is unambiguous and
capable of being used to build a morphological
parser. As discussed above, ambiguity is a fact
about natural language, and one which has long
plagued software specification efforts (Berry and
Kamsties, 2003). Building a parser from a
descriptive grammar is analogous to building
traditional software from a software specification.

Since our descriptive grammar is a natural
language specification, it is not what an
implementer would want to rely on. We therefore
needed a formal language for grammar writing.

One approach would be to use the programming
language of an existing parsing tool. Amith and
Maxwell (2005a) propose using the xfst language
(the language of one of the Xerox finite state tools,
see Beesley and Karttunen, 2003). While this
would meet the need for an unambiguous
representation, it would fail to meet our goal of
longevity: the Xerox tools will likely not be used
in ten years, and there is no reason to think that
whatever morphological parsing engines are
available then will use the same programming

language—nor that grammar engineers will
understand the xfst programming language.

Our formal grammar needs to be unambiguous,
iconic, and self-documenting. We have therefore
chosen to represent our formal grammar in XML,
and have developed an XML schema for encoding
linguistic structures, based on a UML model
developed by SIL researchers.5 The design goals
of our XML schema are described in more detail in
Maxwell and David (forthcoming).

2.3 Combining Descriptive and Formal
Grammars

However, as we have argued elsewhere (Amith and
Maxwell, 2005a; 2005b), neither a descriptive nor
a formal grammar is adequate to our purposes by
itself. Descriptive grammars are inherently
ambiguous and sometimes vague, while formal
grammars are hard to understand. If a formal
grammar could be combined with the descriptive
grammar, we would have an antidote to these
problems: the combination could be neither
ambiguous nor vague.

The question is then whether there is a way to
combine the two sorts of grammars. Such a method
would need to support the following:
(1) Developing the grammars in parallel.
(2) Combining the grammars so that the

description of each aspect of the grammar is
presented to the human reader along with the
corresponding aspect of the formal grammar.

(3) Extracting the formal grammar for use by the
parsing engine.

In fact, there already is a method that accomplishes
(2) and (3): Literate Programming, developed by
Donald Knuth (1984, 1992) as a way of document-
ing computer programs. We use an XML/
DocBook implementation of Literate Programming
(Walsh and Muellner, 1999; Walsh, 2002), since
XML provides numerous advantages for long-term
archiving (cf. Bird and Simons, 2002).

There remains the need for a methodology for
developing the descriptive and formal grammars in
parallel, point (1) in the above list. We turn to this
question in the next section.

5 The SIL model can be downloaded from
http://fieldworks.sil.org/.

30

2.4 Collaborative Grammar Development

We are writing our descriptive grammar of Bangla
in a commercial program, XMLmind (http://
www.xmlmind.com/xmleditor/). The formal
grammar is being written in a programmer’s editor,
although with suitable style sheets, it could be
written in XMLmind. The formal grammar
consists of a number of ‘fragments,’ each paired
with a section in the descriptive grammar, so that
the descriptive and formal grammatical
descriptions are mutually supportive (see the
appendix for a short excerpt).

Our working arrangement is one of iterative
development, with descriptive grammar writing
leading formal grammar writing. Crucially, this
iterative development allows frequent exchanges
for clarification. A typical interchange (one which
actually took place) is the following. The language
expert writes a section of the descriptive grammar
on Bengali noun qualifiers. The computational
grammar writer reads the description and tries to
implement it, but a question arises: is the
diminutive qualifier used in all the environments
that the three allomorphs of the non-diminutive
qualifier are used, or only one of those
environments? The language expert finds examples
showing the diminutive in all environments,
enabling the computational grammar writer to
proceed. Crucially, the descriptive grammar was
then modified to clarify this issue, and to include
the new examples.

Although we are writing our grammars a short
hallway apart, this interchange was accomplished
largely by email; we could as well have been a
continent apart.

In summary, our division of labor, together with
the fact that we are simultaneously developing the
two kinds of grammar using our computational
tools and incorporating immediate feedback, has
made possible a much better result than if one of us
wrote the descriptive grammar, and the other later
wrote the formal grammar.

2.5 Conversion to publishable grammar

As evident from the small portion of our grammar
in the appendix, the formal grammar is
understandable in its XML form, but it is not
“pretty”; nor does it bear any obvious resemblance

to modern linguistic formalisms.6 At the same
time, the use of XML means that a variety of tools
are available for editing the grammar, checking its
validity against the schema, and converting it into
the programming language of a parsing engine.

Fortunately, the flexibility of XML makes it
possible to display (and eventually publish) the
formal grammar using linguistic formalisms, such
as the following:

__V# /
k
t
p

k
t
p

h
h

h

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

→
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

The ability to create such display forms of the
underlying XML data—referred to by Knuth as
“weaving”–is important as we look to publishing
the combined descriptive and formal grammar. The
creation of the style sheets necessary for this is
planned for next year.

2.6 Conversion to parser

To build a parser from our grammar, we first
extract the formal grammar as an XML document
from the combined descriptive and formal
grammar. This is a standard process in Literate
Programming, called ‘tangling’; we use a simple
XSLT (Extensible Stylesheet Language
Transformation), developed by Norman Walsh
(http://docbook.sourceforge.net/release/litprog/
current/fo/ldocbook.xsl).

Second, the extracted XML formal grammar is
read by a small Python program, then converted
into the programming language of the target
morphological parsing engine.

A computer-readable lexicon must also be
converted into the programming language of the
parsing engine, a comparatively simple task.

Finally, the converted grammar and lexicon are
read by the parsing engine to produce the parser.
Currently, the target parsing engine is the Stuttgart
Finite State Transducer Tools (http://www.ims.uni-

6 We have resisted the temptation to make our linguistics too
modern, since linguistic theories also have a short half-life.
We model an eclectic but largely 1950s era version of
linguistics. For example, phonological natural classes are
defined by listing the phonemes of which they are composed,
rather than using distinctive features; we use ordered
phonological rules, rather than Optimality Theory-style
constraints rankings. While these may be outmoded, they are
quite understandable.

31

stuttgart.de/projekte/gramotron/SOFTWARE/
SFST.html). We fully expect that any choice of
parsing engine we make today will be superseded
in the future by better and more capable parsing
engines. Targeting a different parsing engine will
require rewriting only that part of the conversion
program that re-writes the program-internal
representation into the target programming
language (plus a converter for the lexicon).

Verifying that the conversion process works
correctly with a new parsing engine will require
standard test data. Much of this test data can be
automatically extracted from the paradigm tables
and example sentences of the descriptive grammar.

3 Previous work

Collaborative work on natural language processing
programs is not of itself a new idea. It is quite
common to split up the task of developing a
grammar among people with skills in linguistics,
lexicography, and software development. In that
sense, our work is very traditional.

Ours is not even the first effort at developing a
framework for collaborative development of
computational linguistic tools. Butt et al. (1999)
describe the development of grammars in several
languages, including English, French and German
(with other languages added later). However, their
focus was on enabling collaboration among
grammar writers working in different languages;
each author was assumed to be more or less skilled
in one target language and in computational
linguistics. Their focus thus differs from ours in its
scope and in the nature of the collaboration.

Copestake and Flickinger (2000) devote a
section to “Collaborative grammar coding,” but
conclude that in order to work on a (syntactic)
parser, a developer needs to combine skills in the
linguistic theory being implemented, grammar
debugging, and the grammar of the target
language. In our work, we are attempting to make
it possible to split this expertise between different
people, and to provide them with a collaborative
tool.

Significant effort has been directed at enabling
collaborative annotation of corpora, e.g.
Cunningham et al. 2002, and Ma et al. 2002. This
is similar to our approach in allowing collaboration
between annotators and experts (annotation

supervisors); but unlike our project, collaborative
annotation does not address grammar development.

Finally, there are linguistic development
environments such as SIL’s FLEx
(www.sil.org/computing/fieldworks/flex/), and the
planned Montage project (Bender et al., 2004),
which are intended to help linguists write
computational grammars, incorporating or
generating descriptive grammars. While these are
useful tools—we are in fact looking into using
FLEx to produce interlinear sentences for our
grammars—they are not intended for the same
kind of collaborative effort that we describe here.

4 Conclusion

What is new about the project we describe is
therefore the development of a computational
framework within which computationally
implemented grammar development can be split
into distinct tasks: one task for a person (or a team)
with knowledge of a particular language, and
another task for a person (or team) with skills in
computer science. (Lexicography may constitute a
third task, depending on whether suitable machine-
readable dictionaries are already available.)

If this division of labor we describe here were
applicable only to the working relationship
between the authors, it would be of little general
interest. However, we believe a similar division of
skills between language expert and computational
expert to be quite commonplace, making the same
division of labor workable in a variety of
scenarios. This has implications for the develop-
ment of linguistic software in low density
languages: finding someone who is expert in both a
language and its grammar, and in computational
techniques, is likely to be particularly difficult in
the case of languages which have not been well-
documented, or minority languages, or languages
spoken in countries where there is not a history of
work in natural language processing.

It is easy to imagine other scenarios where this
division of labor would work. For example, the
linguistic team might be part of the language or
linguistics department of a university, while the
computational team might be part of a computer
science department. Grammar development could
easily be an open source project, with the
developers never meeting face-to-face.

32

A question which occurred to us many times
during this project is, who can best build a
grammar or parser for a language: people like us,
who are linguists but do not know the language, or
native speakers of the language? The answer is not
at all obvious. We suggest that the answer is
neither one—alone. None of the language speakers
or researchers we talked with in the course of this
project had the expertise to build and test formal
grammars or morphological parsers. At the same
time, when the grammars we consulted were not
clear, or contradicted each other, we needed to
consult with native speakers or researchers to
determine the correct answers.

Hence, we feel strongly that parsers and
grammars should be built by teams including
people with a variety of skills. Given modern
technology, it seems clear that the division of labor
which our method allows means that there is no
reason the people involved in the project need even
be in the same country, or all speak the target
language.

In sum, we are developing a methodology to
build certain kinds of NLP resources in lower
density languages, and we have demonstrated this
technology for morphological parsing.

References
Amith, Jonathan D., and Maxwell, Michael. 2005a.

Language Documentation: The Nahuatl Grammar. In
Alexander Gelbuck (ed.) Computational Linguistics
and Intelligent Text Processing. Lecture Notes in
Computer Science. 474-485. Berlin: Springer.

Amith, Jonathan D., and Maxwell, Michael. 2005b.
“Language Documentation: Archiving Grammars.”
Chicago Linguistic Society 41.

Beesley, Kenneth R., and Karttunen, Lauri. 2003. Finite
State Morphology: CSLI Studies in Computational
Linguistics. Chicago: University of Chicago Press.

Bender, Emily M.; Dan Flickinger; Jeff Good; and Ivan
A. Sag. 2004. “Montage: Leveraging Advances in
Grammar Engineering, Linguistic Ontologies, and
Mark-up for the Documentation of Underdescribed
Languages.” Proceedings of the Workshop on First
Steps for Language Documentation of Minority
Languages: Computational Linguistic Tools for
Morphology, Lexicon and Corpus Compilation,
LREC 2004.

Berry, Daniel M., and Kamsties, Erik. 2003. Ambiguity
in Requirements Specification. In Julio Cesar

Sampaio do Prado Leite and Jorge Horacio Doorn
(eds.) Perspectives on Software Requirements. The
Springer International Series in Engineering and
Computer Science. Vol. 753. Berlin: Springer.

Bird, Steven, and Simons, Gary. 2002. Seven
Dimensions of Portability for Language
Documentation and Description. In Proceedings of
the Workshop on Portability Issues in Human
Language Technologies, Third International
Conference on Language Resources and Evaluation.
Paris: European Language Resources Association.

Bird, Steven, and Simons, Gary. 2003. Seven
dimensions of portability for language documentation
and description. Language 79:557-582.

Butt, Myriam, King, Tracy Holloway, Niño, María-
Eugenia, and Segond, Frédérique. 1999. A Grammar
Writer's Cookbook: CSLI Lecture Notes, 95.
Stanford, CA: CSLI Publications.

Copestake, Ann, and Flickinger, Dan. 2000. An open
source grammar development environment and
broad-coverage English grammar using HPSG. In
Proceedings of the Second conference on Language
Resources and Evaluation (LREC-2000). Athens,
Greece.

Creutz, Mathias, and Lagus, Krista. 2007. Unsupervised
models for morpheme segmentation and morphology
learning. ACM Transactions on Speech and
Language Processing 4.

Cunningham, H., Tablan, V., Bontcheva, K., and
Dimitrov, M. 2002. Language engineering tools for
collaborative corpus annotation.
http://citeseer.ist.psu.edu/734322.html.

Goldsmith, John. 2001. Unsupervised Learning of the
Morphology of a Natural Language. Computational
Linguistics 27:153-198.

Goldsmith, John , and Hu, Yu. 2004. From Signatures to
Finite State Automata. Midwest Computational
Linguistics Colloquium, Bloomington IN.

Knuth, Donald E. 1984. Literate programming. The
Computer Journal 27:97-111.

Knuth, Donald E. 1992. Literate Programming: CSLI
Lecture Notes. Stanford: Center for the Study of
Language and Information.

Ma, Xiaoyi, Lee, Haejoong, Bird, Steven, and Maeda,
Kazuaki. 2002. Models and Tools for Collaborative
Annotation. In Proceedings of the Third
International Conference on Language Resources
and Evaluation. Paris: European Language
Resources Association.

33

Maxwell, Michael B. 2002. Proceedings of the
Workshop on Morphological and Phonological
Learning. New Brunswick, NJ: ACL.

Maxwell, Michael B., and Anne David. Forthcoming.
“Interoperable Grammars.” Paper to be presented at
The First International Conference on Global
Interoperability for Language Resources (ICGL
2008), Hong Kong.

Nirenburg, Sergei, Biatov, Konstantin, Farwell, David,
Helmreich, Stephen, McShane, Marjorie, Ponsford,
Dan, Raskin, Victor, and Sheremetyeva, Svetlana.
1999. Toward Descriptive Computational
Linguistics.

http://crl.nmsu.edu/expedition/publications/boas-
acl99.pdf.

Oflazer, Kemal, Nirenburg, Sergei, and McShane,
Marjorie. 2001. Bootstrapping Morphological
Analyzers by Combining Human Elicitation and
Machine Learning. Computational Linguistics 27:59-
85.

Walsh, Norman, and Muellner, Leonard. 1999.
DocBook: The Definitive Guide. Sebastopol,
California: O'Reilly & Associates, Inc.

Walsh, Norman. 2002. Literate Programming in XML.
XML 2002, Baltimore, MD.

Appendix: Sample Grammar Excerpt

3.2. Future Tense
The future tense is used to express:

 a future state or action
 propriety or ability [etc.]

…

Person Suffix (C)VC- (C)aC- (C)V- (C)a- (C)V(i)- Causative 3-������
 ����

/�on-a/
to hear

����
/thak-a/
to stay

����
/h�-oya/
to become

�����
/kha-oya/
to eat

�����
/ca-oya/
to want

������
/�ekha-no/
to teach

����
�����
/kam�a-no/
to bite

1st -��
/-bo/

����
��
/� n bo/

����
��
/thak bo/

��
/h�-bo/

���
/kha-bo/

����
/cai-bo/

�����
/�ekha-bo/

����
����
/kam�a bo/

Table 6.2: FutureTense Verb Forms
[Additional rows omitted to save space]
The formal grammar's listing of future tense suffixes appears below.

<Mo:InflectionalAffix gloss="-1Fut" id="af1Fut">
 <!--The two "allomorphs" are really allographs-->
 <Mo:Allomorph form="��">
 <!--Spelled 'bo'; usually (not always) after a C-stem -->
 </Mo:Allomorph>
 <Mo:Allomorph form="�">
 <!--Spelled 'b'; usually (not always) after a vowel stem -->
 </Mo:Allomorph>
 <Mo:inflectionFeatures>
 <Fs:f name="Tense"><Fs:symbol value="Future"/></Fs:f>
 <Fs:f name="Mood"><Fs:symbol value="Indicative"/></Fs:f>
 <Fs:f name="Person"><Fs:symbol value="1"/></Fs:f>
 </Mo:inflectionFeatures>
/Mo:InflectionalAffix>

<!-- Etc. for the remaining future tense suffixes -->

34

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 35–42,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Cross-Language Parser Adaptation between Related Languages

Daniel Zeman
Univerzita Karlova

Ústav formální a aplikované lingvistiky
Malostranské náměstí 25

CZ-11800 Praha
zeman@ufal.mff.cuni.cz

Philip Resnik
University of Maryland

Department of Linguistics and
Institute for Advanced Computer Studies

College Park, MD 20742, USA
resnik@umd.edu

Abstract

The present paper describes an approach to
adapting a parser to a new language.
Presumably the target language is much
poorer in linguistic resources than the source
language. The technique has been tested on
two European languages due to test data
availability; however, it is easily applicable
to any pair of sufficiently related languages,
including some of the Indic language group.
Our adaptation technique using existing
annotations in the source language achieves
performance equivalent to that obtained by
training on 1546 trees in the target language.

1 Introduction

Natural language parsing is one of the key areas of
natural language processing, and its output is used
in numerous end-user applications, e.g. machine
translation or question answering. Unfortunately, it
is not easy to build a parser for a resource-poor
language. Either a reasonably-sized syntactically
annotated corpus (treebank) or a human-designed
formal grammar is typically needed. These types of
resources are costly to build, both in terms of time
and of the expenses on qualified manpower. Both
also require, in addition to the actual annotation
process, a substantial effort on treebank/grammar
design, format specifications, tailoring of annota-
tion guidelines etc; the latter costs are rather con-
stant no matter how small the resulting corpus is.

In this context, there is the intriguing question
whether we can actually build a parser without a
treebank (or a broad-coverage formal grammar) of
the particular language. There is some related
work that addresses the issue by a variety of means.

Klein and Manning (2004) use a hybrid unsuper-
vised approach, which combines a constituency
and a dependency model, and achieve an unlabeled
F-score of 77.6% on Penn Treebank Wall Street
Journal data (English), 63.9% on Negra Corpus
(German), and 46.7% on the Penn Chinese Tree-
bank.1 Bod (2006) uses unsupervised data-oriented
parsing; the input of his parser contains manually
assigned gold-standard tags. He reports 64.2%
unlabeled F-score on WSJ sentences up to 40
words long.2

Hwa et al. (2004) explore a different approach to
attacking a new language. They train Collins’s
(1997) Model 2 parser on the Penn Treebank WSJ
data and use it to parse the English side of a paral-
lel corpus. The resulting parses are converted to
dependencies, the dependencies are projected to a
second language using automatically obtained
word alignments as a bridge, and the resulting de-
pendency trees cleaned up using a limited set of
language-specific post-projection transformation
rules. Finally a dependency parser for the target
language is trained on this projected dependency
treebank, and the accuracy of the parser is meas-
ured against a gold standard. Hwa et al. report de-
pendency accuracy of 72.1 for Spanish, compara-
ble to a rule-based commercial parser; accuracy on
Chinese is 53.9%, the equivalent of a parser trained
on roughly 2000 sentences of the Penn Chinese
Treebank (sentences ≤40 words, average length
20.6).

1 Note that in all these experiments they restrict themselves to
sentences of 10 words or less.
2 On sentences of ≤10 words, Bod achieves 78.5% for English
(WSJ), 65.4% for German (Negra) and 46.7% for Chinese
(CTB).

35

Our own approach is motivated by McClosky et
al.’s (2006) reranking-and-self-training algorithm,
used successfully in adapting a parser to a new
domain. One can easily imagine viewing two dia-
lects of a language or even two related languages
as two domains of one “super-language” while the
vocabulary will certainly differ (due to independ-
ently designed orthographies for the two lan-
guages), many morphological and syntactic proper-
ties may be shared. We trained Charniak and John-
son’s (2005) reranking parser on one language and
applied it to another closely related language. In
addition, we investigated the utility of large but
unlabeled data in the target language, and of a
large parallel corpus of the two languages.3

2 Corpora and Other Resources

The selection of our source and target languages
was driven by the need for two closely related lan-
guages with associated treebanks. (In a real-world
application we would not assume the existence of a
target-language treebank, but one is needed here
for evaluation.) Danish served as the source lan-
guage and Swedish as target, since these languages
are closely related and there are freely available
treebanks for both.4

The Danish Dependency Treebank (Kromann et
al. 2004) contains 5,190 sentences (94,386 tokens).
The texts come from the Danish Parole Corpus
(1998–2002, mixed domain). We split the data into
4,900 training and 290 test sentences, keeping the
276 not exceeding 40 words.

The Swedish treebank Talbanken05 (Nivre et al.
2006) contains 11,042 sentences (191,467 tokens).
It was converted at Växjö from the much older
Talbanken76 treebank, created at the Lund Univer-
sity. Again, the texts belong to mixed domains. We
split the data to 10,700 training and 342 test sen-
tences, out of which 317 do not exceed 40 words.

Both treebanks are dependency treebanks, while
the Charniak-Johnson reranking parser works with
phrase structures. For our experiments, we con-

3 There are other approaches to domain adaptation as
well. For instance, Steedman et al. (2003) address do-
main adaptation using a weakly supervised method
called co-training. Two parsers, each applying a differ-
ent strategy, mutually prepare new training examples for
each other. We have not tested co-training for cross-
language adaptation.
4 We used the CoNLL 2006 versions of these treebanks.

verted the treebanks from dependencies to phrases,
using the “flattest-possible” algorithm (Collins et
al. 1999; algorithm 2 of Xia and Palmer 2001). The
morphological annotation of the treebanks helped
us to label the non-terminals. Although the
Charniak’s parser can be taught a new inventory of
labels, we found it easier to map head morpho-tags
directly to Penn-Treebank-style non-terminals.
Hence the parser can think it’s processing Penn
Treebank data. The morphological annotation of
the treebanks is further discussed in Section 4.

We also experimented with a large body of un-
annotated Swedish texts. Such data could theoreti-
cally be acquired by crawling the Web; here, how-
ever, we used the freely available JRC-Acquis cor-
pus of EU legislation (Steinberger et al. 2006).5
The Acquis corpus is segmented at the paragraph
level. We ran a simple procedure to split the para-
graphs into sentences and pruned sentences with
suspicious length, contents (sequence of dashes,
for instance) or both. We ended up with 430,808
Swedish sentences and 6,154,663 tokens.

Since the Acquis texts are available in 21 lan-
guages, we can also exploit the Danish Acquis and
its alignment with the Swedish one. We use it to
study the similarity of the two languages, and for
the “gloss” experiment in Section 5.1. Paragraph-
level alignment is provided as part of Acquis and
contains 283,509 aligned segments. Word-level
alignment, needed for our experiment, was ob-
tained using GIZA++ (Och and Ney 2000).

The treebanks are manually tagged with parts of
speech and morphological information. For some
of our experiments, we needed to automatically re-
tag the target (Swedish) treebank, and to tag the
Swedish Acquis. For that purpose we used the
Swedish tagger of Jan Hajič, a variant of Hajič’s
Czech tagger (Hajič 2004) retrained on Swedish
data.

3 Treebank Normalization

The two treebanks were developed by different
teams, using different annotation styles and guide-
lines. They would be systematically different even
if their texts were in the same language, but it is

5 Legislative texts are a specialized domain that cannot
be expected to match the domain of our treebanks, how-
ever vaguely defined it is. But presumably the domain
matching would be even less trustworthy if we acquired
the unlabeled data from the web.

36

the impact of the language difference, not annota-
tion style differences, that we want to measure;
therefore we normalize the treebanks so that they
are as similar as possible.

While this may sound suspicious at first glance
(“wow, are they refining their test data?!”), it is
important to understand why it does not
unacceptably bias the results. If our method were
applied to a new language, where no treebank
exists, trees conforming to the annotation scenario
of a treebank of related language would be
perfectly satisfying. In addition, note that we apply
only systematic changes, mostly reversible.
Moreover, the transformations can be done on the
training data side, instead of test data.

Following are examples of the style differences
that underwent normalization:

DET-ADJ-NOUN. Da: de norske piger. Sv:6 en
gammal institution (“an old institution”) In DDT,
the determiner governs the adjective and the noun.
The approach of Talbanken (and of a number of
other dependency treebanks) is that both deter-
miner and adjective depend on the noun.

NUM-NOUN. Da: 100 procent (“100 percent”)
Sv: två eventuellt tre år (“two, possibly three
years”) In DDT, the number governs the noun. In
Talbanken, the number depends on the noun.

GENITIVE-NOMINATIVE. Da: Ruslands vej
(“Russia’s way”) Sv: års inkomster (“year’s
income”). In DDT, the nominative noun (the
owned) governs the noun in genitive (the owner).
Talbanken goes the opposite way.

COORDINATION. Da: Færøerne og
Grønland (“Faroe Islands and Greenland”) Sv:
socialgrupper, nationer och raser (“social groups,
nations and races”) In DDT, the last coordination
member depends on the conjunction, the
conjunction and everything else (punctuation, inner
members) depend on the first member, which is the
head of the coordination. In Talbanken, every
member depends on the previous member, commas
and conjunctions depend on the member following
them.

4 Mapping Tag Sets

The nodes (words) of the Danish Dependency
Treebank are tagged with the Parole morphological

6 These are separate examples from the two treebanks.
They are not translations of each other!

tags. Talbanken is tagged using the much coarser
Mamba tag set (part of speech, no morphology).
The tag inventory of Hajič’s tagger is quite similar
to the Danish Parole tags, but not identical. We
need to be able to map tags from one set to the
other. In addition, we also convert pre-terminal
tags to the Penn Treebank tag set when converting
dependencies to constituents.

Mapping tag sets to each other is obviously an
information-lossy process, unless both tag sets
cover identical feature-value spaces. Apart from
that, there are numerous considerations that make
any such conversion difficult, especially when the
target tags have been designed for a different
language.

We take an Interlingua-like (or Inter-tag-set)
approach. Every tag set has a driver that
implements decoding of the tags into a nearly
universal feature space that we have defined, and
encoding of the feature values by the tags. The
encoding is (or aims at being) independent of
where the feature values come from, and the
decoding does not make any assumptions about the
subsequent encoding. Hence the effort put in
implementing the drivers is reusable for other
tagset pairs.

The key function, responsible for the
universality of the method, is encode().
Consider the following example. There are two
features set, POS = “noun” and GENDER =
“masc”. The target set is not capable of encoding
masculine nouns. However, it allows for “noun” +
“com” | “neut”, or “pronoun” + “masc” | “fem” |
“com” | “neut”. An internal rule of encode()
indicates that the POS feature has higher priority
than the GENDER feature. Therefore the algorithm
will narrow the tag selection to noun tags. Then the
gender will be forced to common (i.e. “com”).

Even the precise feature mapping does not
guarantee that the distribution of the tags in two
corpora will be reasonably close. All converted
source tags will now fit in the target tag set.
However, some tags of the target tag set may not
be used, although they are quite frequent in the
corpus where the target tags are native. Some
examples:

• Unlike in Talbanken, there are no deter-
miners in DDT. That does not mean there
are no determiners in Danish – but DDT
tags them as pronouns.

37

• Swedish tags encode a special feature of
personal pronouns, “subject” vs. “object”
form (the distinction between English he
and him). DDT calls the same paradigm
“nominative” vs. “unmarked” case.

• Most noun phrases in both languages
distinguish just the common and neuter
genders. However, some pronouns could be
classified as masculine or feminine.
Swedish tags use the masculine gender,
Danish do not.

• DDT does not use special part of speech for
numbers — they are tagged as adjectives.

All of the above discrepancies are caused by
differing designs, not by differences in language.
The only linguistically grounded difference we
were able to identify is the supine verb form in
Swedish, missing from Danish.

When not just the tag inventories, but also the
tag distributions have to be made compatible
(which is the case of our delexicalization
experiments later in this paper), we can create a
new hybrid tag set, omitting any information
specific for one or the other side. Tags of both
languages can then be converted to this new set,
using the universal approach described above.

5 Using Related Languages

The Figure 1 gives an example of matching Danish
and Swedish sentences. This is a real example
from the Acquis corpus. Even a non-speaker of
these languages can detect the evident correspon-
dence of at least 13 words, out of the total of 16
(ignoring final punctuation). However, due to dif-
ferent spelling rules, only 5 word pairs are string-
wise identical. From a parser’s perspective, the rest
is unknown words, as it cannot be matched against
the vocabulary learned from training data.

We explore two techniques of making unknown
words known. We call them glosses and delexicali-
zation, respectively.

5.1 Glosses

This approach needs a Danish-Swedish (da-sv)
bitext. As shown by Resnik and Smith (2003),
parallel texts can be acquired from the Web, which
makes this type of resource more easily available
than a treebank. We benefited from the Acquis da-
sv alignments.

Similarly to phrase-based translation systems,
we used GIZA++ (Och and Ney 2000) to obtain
one-to-many word alignments in both directions,
then combined them into a single set of refined
alignments using the “final-and” method of Koehn
et al. (2003). The refined alignments provided us
with two-way tables of a source word and all its
possible translations, with weights. Using these
tables, we glossed each Swedish word by its
Danish, using the translation with the highest
weight.

The glosses are used to replace Swedish words
in test data by Danish, making it more likely that
the parser knows them. After a parse has been
obtained, the trees are “restuffed” with the original
Swedish words, and evaluated.

5.2 Delexicalization

A second approach relies on the hypothesis that the
interaction between morphology and syntax in the
two languages will be very similar. The basic idea
is as follows: Replace Danish words in training
data with their morphological (POS) tags. Simi-
larly, replace the Swedish words in test data with
tags. This replacement is called delexicalization.
Note that there are now two levels of tags in the
trees: the Danish/Swedish tags in terminal nodes,
and the Penn-style tags as pre-terminals. The ter-
minal tags are more descriptive because both Nor-

Bestemmelserne i denne aftale kan ændres og revideres helt eller delvis efter fælles
Bestämmelserna i detta avtal får ändras eller revideras helt eller delvis efter gemensam
overenskomst mellem parterne.
överenskommelse mellan parterna.

Figure 1. Comparison of matching Danish (upper) and Swedish (lower) sentences from Acquis. De-
spite the one-to-one word mapping, only the 5 bold words have identical spelling.

38

dic languages have a slightly richer morphology
than English, and the conversion to the Penn tag
set loses information.

The crucial point is that both Danish and
Swedish use the same tag set, which helps to deal
with the discrepancy between the training and the
test terminals.

Otherwise, the algorithm is similar to that of
glosses: train the parser on delexicalized Danish,
run it over delexicalized Swedish, restuff the
resulting trees with the original Swedish words
(“re-lexicalize”) and evaluate them.

6 Experiments: Part One

We ran most experiments twice: once with
Charniak’s parser alone (“C”) and once with the
reranking parser of Charniak and Johnson, which
we label simply Brown parser (“B”).

We use the standard evalb program by Sekine
and Collins to evaluate the parse trees. Keeping
with tradition, we report the F-score of the labeled
precision and recall on the sentences of up to 40
words.7

Language Parser P R F

C 77.84 78.48 78.16 da B 78.28 78.20 78.24
C 79.50 79.73 79.62 da-hybrid B 80.60 79.80 80.20
C 77.61 78.00 77.81 sv B 79.16 78.33 78.74
C 77.54 78.93 78.23 sv-mamba B 79.67 79.26 79.46
C 76.10 76.04 76.07 sv-hybrid B 78.12 75.93 77.01

Table 1. Monolingual parsing accuracy.

To put the experiments in the right context, we

first ran two monolingual tracks and evaluated
Danish-trained parsers on Danish, and Swedish-
trained parsers on Swedish test data. Both
treebanks have also been parsed after
delexicalization into various tag sets: Danish gold
standard converted to the hybrid sv/da tag set,
Swedish Mamba gold standard, and Swedish
automatically tagged with hybrid tags.

The reranker did not prove useful for lexicalized
Swedish, although it helped with Danish. (We cur-

7 F = 2×P×R / (P+R)

rently have no explanation of this.) On the other
hand, delexicalized reranking parsers outperformed
lexicalized parsers for both languages. This holds
for delexicalization using the gold standard tags
(even though the Mamba tag set encodes much less
information than the hybrid tags). Automatically
assigned tags perform significantly worse.

Our baseline condition is simply to train the
parsers on Danish treebank and run them over
Swedish test data. Then we evaluate the two
algorithms described in the previous section:
glosses and delexicalization (hybrid tags).

Approach Parser P R F

C 44.59 42.04 43.28 baseline B 42.94 40.80 41.84
C 61.85 65.03 63.40 glosses B 60.22 62.85 61.50
C 63.47 67.67 65.50 delex B 64.74 68.15 66.40

Table 2. Cross-language parsing accuracy.

7 Self-Training

Finally, we explored the self-training based
domain-adaptation technique of McClosky et al.
(2006) in this setting. McClosky et al. trained the
Brown parser on one domain of English (WSJ),
parsed a large corpus of a second domain
(NANTC), trained a new Charniak (non-reranking)
parser on WSJ plus the parsed NANTC, and tested
the new parser on data from a third domain (Brown
Corpus). They observed improvement over
baseline in spite of the fact that the large corpus
was not in the third domain.

Our setting is similar. We train the Brown parser

on Danish treebank and apply it to Swedish Acquis.
Then we train new Charniak parser on Danish
treebank and the parsed Swedish Acquis, and test
the parser on the Swedish test data. The hope is
that the parser will get lexical context for the
structures from the parsed Swedish Acquis.

We did not retrain the reranker on the parsed

Acquis, as we found it prohibitively expensive in
both time and space. Instead, we created a new
Brown parser by combining the new Charniak
parser, and the old reranker trained only on Danish.

39

A different scenario is used with the gloss and
delex techniques. In this case, we only use delexi-
calization/glosses to parse the Acquis corpus. The
new Charniak model is always trained directly on
lexicalized Swedish, i.e. the parsed Acquis is re-
stuffed before being handed over to the trainer.
Table-3 shows the corresponding application chart.

8 Experiments: Part Two

The following table shows the results of the self-
training experiments. All F-scores outperform the
corresponding results obtained without self-
training.

Approach Parser P R F

C 45.14 43.96 44.54 Plain B 43.12 42.23 42.67
C 62.87 66.17 64.48 Glosses B 61.94 64.77 63.32
C 55.87 63.86 59.60 Delex B 53.87 61.45 57.41

Table 3. Self-training adaptation results.

Not surprisingly, the Danish-trained reranker

does not help here. However, even the first-stage
parser failed to outperform the Part One results.
Therefore the 66.40% labeled F-score of the del-
exicalized Brown parser is our best result. It im-

proves the baseline by 23% absolute, or 41% error
reduction.

9 Discussion

As one way of assessing the usefulness of the
result, we compared it to the learning curve on the
Swedish treebank. This corresponds to the question
“How big a treebank would we have to build, so
that the parser trained on the treebank achieves the
same F-score?” We measured the F-scores for
Swedish-trained parsers on gradually increasing
amounts of training data (50, 100, 250, 500, 1000,
2500, 5000 and 10700 sentences).

The learning curve is shown in Figure 3. Using
interpolation, we see that more than 1500 Swedish
parse trees would be required for training, in order
to achieve the performance we obtained by adapt-
ing an existing Danish treebank. This result is
similar in spirit to the results Hwa et al. (2004) re-
port when training a Chinese parser using depend-
ency trees projected from English. As they observe,
creating a treebank of even a few thousand trees is
a daunting undertaking – consistent annotation
typically requires careful design of guidelines for
the annotators, testing of the guidelines on data,
refinement of those guidelines, ramp-up of annota-
tors, double-annotation for quality control, and so
forth. As a case in point, the Prague Dependency
Treebank (Böhmová et al, 2003) project began in

Danish treebank

PARSER 0 RERANKER

Swedish
Acquis 1

PARSER 1

Swedish test

DELEX

GLOSSES

Swedish
Acquis RESTUFF

Parsed Swedish
Acquis

Figure 2. Scheme of the self-training system.

40

1996, and required almost a year for its first 1000
sentences to appear (although things sped up
quickly, and over 20000 sentences were available
by fall 1998). In contrast, if the source and target
language are sufficiently related – consider Danish
and Swedish, as we have done, or Hindi and
Urdu – our approach should in principle permit a
parser to be constructed in a matter of days.).

9.1 Ways to Improve: Future Work

The 77.01% F-score of a parser trained on
delexicalized automatically assigned hybrid
Swedish tags is an upper bound. Some obvious
ways of getting closer to it include better treebank
and tag-set mapping and better tagging. In addition,
we are interested in seeing to what extent
performance can be further improved by better
iterative self-training.

We also want to explore classifier combination
techniques on glosses, delexicalization, and the N-
best outputs of the Charniak parser. One could also
go further, and explore a combination of tech-
niques, e.g. taking advantage of the ideas proposed
here in tandem with unsupervised parsing (as in
Bod 2006) or projection of annotations across a
parallel corpus (as in Hwa et al. 2004).

Acknowledgements
The authors thank Eugene Charniak and Mark
Johnson for making their reranking parser
available, as well as the creators of the corpora
used in this research. We also thank the
anonymous reviewers for useful remarks on where
to focus our workshop presentation.

The research reported on in this paper has been
supported by the Fulbright-Masaryk Fellowship
(first author), and by Grant No. N00014-01-1-0685
ONR. Ongoing research (first author) is supported
by the Ministry of Education of the Czech
Republic, project MSM0021620838, and Czech
Academy of Sciences, project No. 1ET101470416.

References
Rens Bod. 2006a. Unsupervised Parsing with U-DOP.

In: Proceedings of the Conference on Natural
Language Learning (CoNLL-2006). New York, New
York, USA.

Rens Bod. 2006b. An All-Subtrees Approach to Unsu-
pervised Parsing. In: Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
the 44th Annual Meeting of the ACL (COLING-
ACL-2006). Sydney, Australia.

0
10
20
30
40
50
60
70
80

50 100 250 500 1000 2500 5000 10700

Training sentences

F

66.40
(delex)
~ 1546

sentences

Figure 3. The learning curve on the Swedish training data.

41

Alena Böhmová, Jan Hajič, Eva Hajičová, Barbora
Hladká. 2003. The Prague Dependency Treebank: A
Three-Level Annotation Scenario. In: Anne Abeillé
(ed.): Treebanks: Building and Using Syntactically
Annotated Corpora. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Eugene Charniak, Mark Johnson. 2005. Coarse-to-Fine
N-Best Parsing and MaxEnt Discriminative
Reranking. In: Proceedings of the 43rd Annual
Meeting of the ACL (ACL-2005), pp. 173–180. Ann
Arbor, Michigan, USA.

Michael Collins. 1997. Three Generative, Lexicalized
Models for Statistical Parsing. In: Proceedings of the
35th Annual Meeting of the ACL, pp. 16–23. Madrid,
Spain.

Michael Collins, Jan Hajič, Lance Ramshaw, Christoph
Tillmann. 1999. A Statistical Parser for Czech. In:
Proceedings of the 37th Annual Meeting of the ACL
(ACL-1999), pp. 505–512. College Park, Maryland,
USA.

Jan Hajič. 2004. Disambiguation of Rich Inflection
(Computational Morphology of Czech). Karolinum,
Charles University Press, Praha, Czechia.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, Okan Kolak. 2004. Bootstrapping Parsers
via Syntactic Projection across Parallel Texts. In:
Natural Language Engineering 1 (1): 1–15.
Cambridge University Press, Cambridge, England.

Dan Klein, Christopher D. Manning. 2004. Corpus-
Based Induction of Syntactic Structure: Models of
Dependency and Constituency. In: Proceedings of the
42nd Annual Meeting of the ACL (ACL-2004).
Barcelona, Spain.

Philipp Koehn, Franz Josef Och, Daniel Marcu. 2003.
Statistical Phrase-Based Translation. In: Proceedings
of HLT-NAACL 2003, pp. 127–133. Edmonton,
Canada.

Matthias T. Kromann, Line Mikkelsen, Stine Kern
Lynge. 2004. Danish Dependency Treebank. At:
http://www.id.cbs.dk/~mtk/treebank/. København,
Denmark.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann Mar-
cinkiewicz. 1993. Building a Large Annotated Cor-
pus of English: the Penn Treebank. In: Computa-
tional Linguistics, vol. 19, pp. 313–330.

David McClosky, Eugene Charniak, Mark Johnson.
2006. Reranking and Self-Training for Parser Adap-
tation. In: Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th
Annual Meeting of the ACL (COLING-ACL-2006).
Sydney, Australia.

Joakim Nivre, Jens Nilsson, Johan Hall. 2006.
Talbanken05: A Swedish Treebank with Phrase
Structure and Dependency Annotation. In:
Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC-2006).
May 24-26. Genova, Italy.

Franz Josef Och, Hermann Ney. 2000. Improved
Statistical Alignment Models. In: Proceedings of the
38th Annual Meeting of the ACL (ACL-2000), pp.
440–447. Hong Kong, China.

Philip Resnik, Noah A. Smith. 2003. The Web as a
Parallel Corpus. In: Computational Linguistics,
29(3), pp. 349–380.

Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen
Clark, Rebecca Hwa, Julia Hockenmaier, Paul
Ruhlen, Steven Baker, Jeremiah Crim. 2003.
Bootstrapping Statistical Parsers from Small
Datasets. In: Proceedings of the 11th Conference of
the European Chapter of the ACL (EACL-2003).
Budapest, Hungary.

Ralf Steinberger, Bruno Pouliquen, Anna Widiger,
Camelia Ignat, Tomaž Erjavec, Dan Tufiş, Dániel
Varga. 2006. The JRC-Acquis: A Multilingual
Aligned Parallel Corpus with 20+ Languages. In:
Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC-2006).
May 24-26. Genova, Italy.

Fei Xia, Martha Palmer. 2001. Converting Dependency
Structures to Phrase Structures. In: Proceedings of
the 1st Human Language Technology Conference
(HLT-2001). San Diego, California, USA.

42

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 43–50,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

SriShell Primo: A Predictive Sinhala Text Input System

Sandeva Goonetilleke† Yoshihiko Hayashi ‡ Yuichi Itoh † Fumio Kishino ‡
sandeva.goonetilleke hayashi@lang. itoh@ist. kishino@ist.

@ist.osaka-u.ac.jp osaka-u.ac.jp osaka-u.ac.jp osaka-u.ac.jp
†Graduate School of Information Science and Technology, Osaka University

‡Graduate School of Language and Culture, Osaka University
Yamada oka, Suita, Osaka, Japan.

Abstract

Sinhala, spoken in Sri Lanka as an official
language, is one of the less privileged lan-
guages; still there are no established text in-
put methods. As with many of the Asian lan-
guages, Sinhala also has a large set of char-
acters, forcing us to develop an input method
that involves a conversion process from a
key sequence to a character/word. This
paper proposes a novel word-based predic-
tive text input system namedSriShell Primo.
This system allows the user to input a Sin-
hala word with a key sequence that highly
matches his/her intuition from its pronuncia-
tion. A key to this scenario is a pre-compiled
table that lists conceivable roman character
sequences utilized by a wide range of users
for representing a consonant, a consonant
sign, and a vowel. By referring to this ta-
ble, as the user enters a key, the system gen-
erates possible character strings as candidate
Sinhala words. Thanks to a TRIE structured
word dictionary and a fast search algorithm,
the system successively and efficiently nar-
rows down the candidates to possible Sin-
hala words. The experimental results show
that the system greatly improves the user-
friendliness compared to former character-
based input systems while maintaining high
efficiency.

1 Introduction

The mother tongue of 14.6 million (74% of the total
Sri Lankan population of 19.7 million) Sri Lankans

is Sinhala (U S Department Of State, 2007). While
computing has become almost ubiquitous in the US
and Europe, Sinhala is inadequately supported on
computers. Sinhala is a less privileged language
that does not have even an efficient and highly user-
friendly text input system. This is a major bottleneck
in handling Sinhala text on computers in order to de-
velop any natural language processing tools. Even
though various kinds of Sinhala fonts and input ap-
plications have been proposed, the language is still
not well supported by computer systems. Hundreds
of Sinhala fonts have been developed, but most of
them have their own weaknesses. For example some
rare Sinhala characters (such as� ,��) are miss-
ing in most of the fonts. Furthermore, the major
problems of the current input systems are the lack
of user-friendliness and efficiency.

The objective of this research is to propose an effi-
cient and highly user-friendly predictive Sinhala in-
put method, and to evaluate the efficiency and the
user-friendliness compared with other input meth-
ods. Here, efficiency is quantified by the aver-
age typing cost per Sinhala character, and user-
friendliness is quantified by ease of remembering.
The average edit distance between a user-intuitive
character sequence and the input sequences of each
input method is taken as a measurement of the dif-
ficulty of remembering. Our results have proved
that SriShell Primohas maximum user-friendliness
while maintaining high efficiency.

The rest of the paper is organized as follows. In
Section 2 we discuss various Sinhala input methods
proposed up to now, and their main features. The
main features of the proposed input methodSriShell

43

Primo are explained in Section 3. The evaluations
are reported in Section 4. Section 5 concludes and
outlines future work.

2 Character-based Input Systems

This section reviews the representative Sinhala input
systems proposed so far.

These input methods are character-based, forcing
the users to memorize key assignments for each and
every Sinhala character. This is not an easy task be-
cause Sinhala has hundreds of combined characters.

2.1 Direct Input Method

Sinhala fonts assign vowel characters, consonant
characters and vowel signs to the ASCII character
code. For example, Sinhala� (=a) was assigned to
0x61 (=ASCII ‘a’) in most of the fonts. In the di-
rect input method, users have to input the character
codes as assigned in a specific Sinhala font. A typ-
ical example of this kind of font is the “kaputadot-
com” font.1 Most of the online Sinhala sites includ-
ing news sites use these kinds of fonts.

Sinhala Unicode characters can also be input di-
rectly by entering the hexadecimal code. The arrow
(a) in Figure 1 shows an example of this method of
input.

2.2 Conversion Systems

The direct input method assigns a key for each Sin-
hala character or a part of a character that may or
may not be phonetically associated. For this reason,
the key assignments are far from intuitive.

Natural SinGlish
To resolve this problem theNatural SinGlish

(Natural Singlish, 2004) typing application was in-
troduced by A. D. R. Sasanka. This application
converts the input sequence that is more natural for
users into character codes as shown in (b) of Fig-
ure 1. English spellings and the English pronuncia-
tions are the basis of this system. For exampleshree
la\nkaa→ 27 �H�(=Sri Lanka). However, Sinhala
has many more characters than English. To avoid
ambiguity, this system has introduced several tech-
niques, such as:

1http://www.info.lk/slword/news.htm

Input
Sequences

0DC1 0DCA 200D 0DBB
0DD3 0020 0DBD 0D82
0D9A 0DCF

shree la\nkaa
shri) la\nka)

sxrii la/nkaa

sri lanka
sre lank
shree lankaa
sxrii la/nkaa

(a) Direct Input-

(b) Natural
SinGlish -

(c) Sri
Shell -

(d) SriShell
Primo

-

} Text file @

?

0DC1 0DCA 200D

0DBB 0DD3 0020

0DBD 0D82 0D9A

0DCF

27 �H�

Visual Output

� -Sinhala font

Figure 1: Sinhala character input systems (taking27
 �H� (śr̄i lam. kā : Sri Lanka) as an example)

• Capitals
a → �(=a) ta → �(=t.a)
A → ��(=æ) Ta → �(=t.ha)

• Key combinations
ea → �(=ē) KNa → �(=ña)
oe → �(=ō) Sha → 8(=s.a)

• Dead keys: “\” is used as a dead key
\n → �(=N)
\h →
(=h)

This system is simply based on English spellings,
making the system quite complex. The characters
that have phonetic similarities cannot be typed in a
similar manner.
ka → H(=ka) and kha → P(=kha)
ta → �(=t.a) but tha 6→ �(=t.ha)

da → (=da) and nnda → h(=ňd.a)
ba → è(=ba) but nnba 6→ p(=m̌ba)
This system is not very efficient in some cases be-

cause it uses a lot of upper case letters in the middle
of the words, where the user needs to press and re-
lease the shift-key frequently.

44

Sri Shell
Goonetilleke et al. have proposed a Sinhala typ-

ing system calledSri Shell (Goonetilleke et al.,
2007). Sri Shellassigns a key combination to each
Sinhala character ((c) of Figure 1). The basis of this
system is the phonetic notation of Sinhala charac-
ters.

Unlike the Natural SinGlish, Sri Shellhas been
implemented as an independent module, which al-
lows the input of Sinhala text into any application
program. Principles of theSri Shellsystem are as
follows.

• It is based on phonetic notation of the charac-
ters:

– All aspirated consonants can be produced
by adding an “h” to the unaspirated con-
sonants.

– Nasals can be produced by voiceless
vowel preceded by “/”.

– Nasal+voiced can be produced by voiced
vowel preceded by “/”.

• It is consistent:

– All long-vowels can be produced by dou-
bling the last character of a short-vowel.

– If two Sinhala characters map to the same
roman character, then these Sinhala char-
acters are differentiated by adding an “x.”
The “x” is added to the one that has a
lower occurrence rate.

• It is complete:
Most of the Sinhala input systems introduced
up to now have several missing characters. Es-
pecially rare characters such as�� ,�� ,�
,�� are missing in most systems.Sri Shell
supports all the characters even though some
of them cannot be displayed with most of the
fonts.

2.3 Problems on Input Systems

Goonetilleke et al. have introducedaverage edit dis-
tance(per Sinhala character) as a measurement of
user-friendliness. Even though they have succeeded
in limiting the average edit distance to 0.35 keys per
sinhala character, still theSri Shellinput sequence is
quite far from users’ natural intuition.

da

de

dha

�(=da)

��(=dæ)

�	(=dǣ)

 (=d.a)

È(=dha)

È�(=dhā)

-XXXXXXXXz
HHHHHHHHj

Z
Z

Z
Z

Z
Z

Z
Z~

@
@

@
@

@
@

@
@R

-

»»»»»»»»:

-

-XXXXXXXXz

Figure 2: Some many-to-many relationships in test
subjects’ proposals

Our experiments have proven that users expect to
get different Sinhala characters by typing the same
key sequence. A few examples of these kinds of sit-
uations are shown in Figure 2.

Unfortunately, all the Sinhala input methods pro-
posed up to now have a one-to-one (or many-to-one)
relationship between the input sequence and output
characters. For this reason users have to memorize
how to type each Sinhala character.

To overcome this problem a many-to-many pre-
dictive character conversion algorithm is required.

3 Proposal: Word-based Input System

Here we propose a Sinhala input system calledSr-
iShell Primo. SriShell Primois a word-based predic-
tive converter. A number of predictive input meth-
ods have been proposed so far especially for hand-
held devices and mobile phones (MacKenzie et al.,
2007). Among them, eZiText(R)2 supports some In-
dic scripts such as Hindi, Tamil, Malayalam etc. The
SriShell Primousers can input a Sinhala word by
typing it in the roman character sequence they think
is most appropriate. Even though the roman charac-
ter sequence for a specific Sinhala word may differ
from person to person, theSriShell Primosystem is
still capable of guessing the Sinhala word intended
by the users. The user can select the intended word
from the candidate list. A screen shot of the system
is shown in Figure 3.

3.1 Main Features

SriShell Primohas three main features.

2http://www.zicorp.com/eZiText.htm

45

Figure 3: Screen Shot ofSriShell Primo

1. Covers all possible input sequences
The roman character sequence used to represent

each Sinhala word depends on the user. For exam-
ple:

− desei, dase, dese, daasee, desee, dasee, daesei,
dasay, deesee, desee, dhasay, dhese→ �	�E
(=dǣs̄e:in eyes)

On the other hand the input sequences can be am-
biguous. For example:

− bata→ ð�(=bhata:soldier),è��(bæta:hurt),
è�(=bata:bamboo or pipe),
è���(=bāt̄a:a trade name)

TheSriShell Primois capable of converting all these
possible sequences into the user-intended word.

2. Predicts possible words
SriShell Primonot only gives the Sinhala words

that could be completely represented by the input
roman character sequence, but the predicted Sinhala
words are also added into the menu dynamically.

3. Allows word combinations
Normally Sinhala words are separated by a space,

but we have found out in our preliminary experi-
ments that sometimes some users omit the space, es-
pecially in the case of frequently co-occurring word
pairs. SriShell Primoallows up to one space omis-
sion. ThusSriShell Primogives word pairs also at

the end of the menu, if the number of word candi-
dates from the above methods is very small.

(a) (b)

(c) (d)

Figure 4: Text Entering Example
����è�(Õ(āyub̄ovan:Welcome)

Figure 4 demonstrates how the menu changes
dynamically as user enters the keys, taking
����è�(Õ (āyub̄ovan:Welcome) as an example.
When the user starts typing with “a”SriShell Primo
gives a list of candidates in the menu that starts
with �,��,��,�	 etc. as shown in Figure 4(a).
When the user types up to “ayub” the intended
word ����è�(Õ appears for the first time in the
menu as the second choice (Figure 4(b)). Then
����è�(Õ rises to the first choice of the menu
when the user types up to “ayubov” (Figure 4(c)). A
user can select the menu at this point by pressing the
next required punctuation such as space, comma, pe-
riod etc. or he/she can type up to “ayubovan” (Fig-
ure 4(d)).

46

3.2 The Algorithm

Input Sequences
Goonetilleke et al. have carried out an experiment

to find out how the most frequent Sinhala characters
are romanized by Sinhala speakers. We have fur-
ther divided the roman character sequence for each
Sinhala character into the consonant part, consonant
sign part and vowel part. Thus we got a table that
shows how each consonant, consonant sign or vowel
is romanized by various users, as shown in Table 1.

Table 1: Input variation table

�	 (=ǣ) ← aee,a,e,aa,ae,ee
� (=ī) ← ii,i,ee,e,ie,y
» (=ňd) ← /dx,nd,ndx,/d,d
� (=v) ← v,w,vu,wu,u
� (=ē) ← ee,e,ei,ay
5 (=ś) ← sx,z,sh,s
u (=b̌) ← /b,b,mb
m (=ňd.) ← /d,nd,d
] (=ňg) ← /g,ng,g
�� (=æ) ← ae,a,e
. . .

Dictionary (TRIE structure)
We have used the Divaina online Sinhala news-

paper3 from January 2005 to May 2006 (about 50
MB of kaputadotcom font text) to create the dictio-
nary. This dictionary contains about 240,000 words
with their occurrence frequencies. To improve the
search speed, the words are stored in a TRIE struc-
ture, where each branch of the TRIE structure repre-
sents a consonant part, vowel part or consonant sign
part of a Sinhala character. Thus any single Sin-
hala character can be retrieved up to three hops. To
reduce the amount of memory required, at the be-
ginning this data structure is stored in the disk, and
when the user starts to type words, the required part
of the data structure is copied into the memory.

Procedure
When the user enters the text,SriShell Primocre-

ates a list of all possible Sinhala character sequences
that can be represented by the user’s character se-
quence using the Input variation table.SriShell

3http://www.divaina.com/

Primo travels along the TRIE structure in order to
find out whether the Sinhala character sequences in
the list are real words or not. As a result a candi-
date list is created and sorted in descending occur-
rence frequency order. For example in Figure 4(a)
the candidates from 1 to 5 are created at this point.

Then SriShell Primosearches the Sinhala char-
acter sequence list to find out whether there is any
sequence that matches the beginning of a Sinhala
word. Those predicted words are also added at the
end of the candidate list. The candidates from 6 on-
ward in Figure 4(a) are added at this point.

If SriShell Primowas unable to find any candi-
dates up to this point, it searches for word pairs that
can be matched with the input character sequence,
assuming that the user could have omitted a space in
between.

Finally the SriShell (Goonetilleke et al., 2007)
conversion of the character sequence is also added
at the end of the candidate list, in order to allow
typing a new word that is not included in the dic-
tionary. The candidate number 0 in Figure 4(a) is
added at this point. This candidate list is displayed
as a menu, where the user can select the word that
he/she intended by using a mouse or up/down arrow
keys.

This process is repeated on each keystroke of the
user. The user can enter the selected item to his/her
document by striking the space key or any punctua-
tion key.

4 Evaluation

This section describes the evaluation of the pro-
posed input method. Following (Goonetilleke et al.,
2007), we have also evaluated the proposed method
in terms of efficiency and user friendliness.

4.1 Experiment

We have carried out an experiment to calculate
the efficiency and user-friendliness of the proposed
method. First, we allowed several minutes for the
test subjects to practiceSriShell Primo. Then they
were asked to type a few paragraphs that contained
385 to 504 Sinhala characters from a general Sin-
hala newspaper. We informed them that they could
type any Sinhala word by inputting any roman char-
acter sequence that they think best to represent the

47

specific Sinhala word.SriShell Primokeeps a log
of typed keys, menu items selected, and time lapses
in between. This experiment was carried out on a
group of 6 subjects (2 female and 4 male, age 20-29
years).

4.2 Efficiency

The most general way to calculate efficiency is to ex-
perimentally compute the maximum typing speeds
for each input method. Masui (Masui, 1998) has
also used this measure to evaluate his character in-
put method. However, the input sequences of the ex-
isting input methods are quite far from the average
Sinhala computer users’ intuition, and it is not easy
to train people for typing Sinhala using those input
methods, in order to carry out an experiment to mea-
sure their efficiencies. Hence, instead of the actual
typing speed, Goonetilleke et al. have introducedav-
erage typing cost per Sinhala character, which rep-
resents the normalized typing speed, as a measure
for efficiency. They have defined the average typing
cost by Equation 1. There the weight of a normal key
is set to 1, andwshift andwrepeat are determined by
applying the least square method as shown in Equa-
tions 4 and 5.

typing cost =
1

Sinhala characters

× (normal keys

+ wshift × shifts

+ wrepeat × repeats) (1)

wshift =
txY + tXy

txy
− 2 (2)

wrepeat =
txx

txy
(3)

where,

txy = average time lapse
between two alpha key strokes

txx = average time lapse
to repeat an alpha key stroke

txY = average time lapse
between an alpha key and a shifted alpha key

tXy= average time lapse
between a shifted alpha key and an alpha key

wrepeat = 0.87− 0.73txy(|r| = 85%) (4)

wshift = 2.50− 2.92txy(|r| = 69%) (5)

Accordingly we define average typing cost per
Sinhala character forSriShell Primoby adding the
menu selecting time factor as shown in Equation 6.

typing cost =
1

Sinhala characters

× (normal keys

+ wshift × shifts

+ wrepeat × repeats

+ wselect × selections) (6)

wselect =
tsel
txy

(7)

where,

tsel = average time taken to select
an item from the menu

Results
We have calculated the typing cost per Sinhala

character from our experiment. The results are
shown in Figure 5. The X-axis showstxy, the aver-
age time lapse between two alpha key strokes, while
the Y-axis shows the average typing cost per Sinhala
character. For comparison purposes we have plot-
ted the best result obtained by Goonetilleke et al. as
shown in Table 2.

Table 2: Average typing cost by Goonetilleke et al.
txy best results Input Method
200 2.18 Sri Shell
400 2.16 Sri Shell
600 1.99 kaputadotcom

When comparing existing input methodsSriShell
Primo has a very high degree of freedom in its in-
put character sequences.SriShell Primohas a pre-
dicting function embedded where the users can re-
duce keystrokes per Sinhala character. This means
the keystrokes per Sinhala character can be highly
variable from person to person inSriShell Primo.
Thus, unlike Goonetilleke’s experiment results, we
did not observe any correlation between the typing
speed and the typing cost per Sinhala character. This
implies that the efficiency ofSriShell Primois inde-
pendent of users’ typing speeds. However, we can

48

2.4

2

1.6
600400200

av
er

ag
e

ty
pi

ng
co

st

average typing speed of subjects [milliseconds]

SriShell Primo

+

+

+
+

+

+

+
best results upto now

Figure 5: Average typing cost

say that the efficiency ofSriShell Primois not worse
than Sri Shelland kaputadotcombecause 4 out of
6 subjects who participated in our experiment were
able to type Sinhala text more efficiently compared
to the best efficiencies obtained by Goonetilleke’s
experiments.

4.3 User-friendliness

User-friendliness is strongly associated with how
easy it is to remember the predefined input sequence
for each Sinhala character. Goonetilleke et al. have
taken the difference between the input character se-
quences of each input method and user intuitive
character sequence as a measure of how difficult it
is to remember the input sequence for each Sinhala
character. They have measured the difference be-
tween the input key sequence of each input method
and the proposed romanized sequence by several
Sinhala speakers on several words by the edit dis-
tance between the two strings as shown in Equation
8.

avg edit dist = (8)
1

Sinhala Chars
× edit dist(

user intuitive character sequence,

input sequence of specific input method)

Table 3: Average edit distances
Input Method Average edit distance
kaputadotcom 1.42
Sri Shell 0.44
Natural SinGlish 0.35
SriShell Primo ≤ 0.04

Edit Distance
The Levenshtein distanceor edit distance be-

tween two strings is given by the minimum number
of operations needed to transform one string into the
other, where an operation is an insertion, deletion,
or substitution of a single character (Wagner et al.,
1974).

The user-friendliness ofSriShell Primois com-
pletely dependent on the input variation table (Ta-
ble 1). By adjusting this table it is possible to make
SriShell Primoaccept all user intuitive input se-
quences. As we have included all the conversions
derived from Goonetilleke’s experiment, we can ex-
pect a very high level of user-friendliness.

However, if there is any lack of user-friendliness
in SriShell Primo, when the user tries to input a Sin-
hala word by entering the character sequence that
he/she thinks most appropriate to represent a specific
Sinhala word, he/she will not get that Sinhala word
as a candidate in theSriShell Primomenu. At that
point the user will have to correct the input character
sequence in order to get the correct Sinhala word. As
there may be other reasons for not having the user-
intended Sinhala word in the menu due to mistyp-
ings etc., we can say the edit distance between the
user intuitive input sequence and the input sequence
of SriShell Primois absolutely less than or equal to
the editdist between input sequence with errors and
input sequence without errors as shown in Equation
9.

edit dist(user intuitive input sequence,

input sequence of SriShell Primo)
≤ edit dist(input sequence with errors,

input sequence without errors) (9)

49

Results
As a measure of the user-friendliness, we have

calculated the average edit distance per Sinhala char-
acter, which should be less than or equal to typing
errors per Sinhala character. The results are shown
in Table 3 with Goonetilleke’s experiment results for
comparison.

The results show that there is a big difference be-
tween the user intuitive character sequence and the
input sequence proposed bykaputadotcom. Even
thoughNatural SinGlishandSri Shellwere able to
reduce this significantly, they were not good enough
for a novice user because they require the user to
memorize how to enter each Sinhala character. We
can say thatSriShell Primowas able to remove this
barrier completely because anybody can enter Sin-
hala text correctly without acquiring any additional
knowledge. Our experiment shows that the users av-
erage error rate is 4%, which means that the users
were able to correctly type 96% of the Sinhala char-
acters in the text, given the current input variation
table.

At the same timeSriShell Primowas able to keep
the efficiency to an average of 2.1 key strokes per
Sinhala character, and some users were able to re-
duce it to as few as 1.8 key strokes per Sinhala char-
acter. This reduction was achieved by the system’s
capability for predicting possible words while allow-
ing shorter key sequences.

5 Conclusions and Future Work

This paper experimentally proved that the proposed
predictive Sinhala input method has maximum user-
friendliness, while maintaining high efficiency. This
method can also be well applied to other languages
with many characters but that lack well known 1-
to-1 correspondences between the written characters
and roman key sequences; these include Indic lan-
guages such as Sanskrit and Hindi.

Our future work has two main thrusts: to broaden
the applicability and to improve the prediction.

We need to have a dictionary with better cov-
erage to ensure better applicability. To do this,
we will develop a systematic and automatic way to
generate morpho-syntactically related derivational
word forms, and store them efficiently in the dictio-
nary. For example, our dictionary currently includes

{X@(=gasa : tree),XE(=gas : trees),X@�(=gasat.a
: to tree),X�E(=gas̄e : in tree),X@½(=gasat : tree
also), XC½(=gasut : trees also),X�@Õ(=gasen
: from tree), . . .} etc. However, we would like
to generate these derivational forms from the root
X@(=gasa : tree).

On the other hand, to improve the accuracy of
prediction, we will explore two dimensions: adapta-
tion to an individual user and evaluation of linguistic
contexts (Hasselgren et al., 2003). We see that the
first dimension would enable a prompt improvement
and will seek a means to adjust the candidate order-
ing in the input variation table by looking at a user’s
natural preferences in the inputs.

Acknowledgement

This research was supported in part by “Global COE
(Centers of Excellence) Program” of the Ministry
of Education, Culture, Sports, Science and Technol-
ogy, Japan.

References
A. D. R. Sasanka 2004.Natural Singlish, http://

www.geocities.com/naturalsinglish/ .

Robert A. Wagner and Michael J. Fischer 1974. The
String-to-String Correction Problem.Journal of the
ACM, Volume 21(1), 168–173.

Toshiyuki Masui 1998. An efficient text input method
for pen-based computers.Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
328 – 335.

U S Department Of State 2007. Background Note: Sri
Lanka. http://www.state.gov/r/pa/ei/
bgn/5249.htm .

Sandeva Goonetilleke, Yoshihiko Hayashi, Yuichi Itoh,
Fumio Kishino 2007. An Efficient and User-friendly
Sinhala Input Method Based on Phonetic Transcrip-
tion. Journal of Natural Language Processing, Vol-
ume 14, Number 5, 147 – 166.

I. Scott MacKenzie, Kumiko Tanaka-Ishii 2007.Text
Entry Systems: Mobility, Accessibility, Universality.
Morgan Kauffman, 344 pages.

Jon Hasselgren, Erik Montnemery, Pierre Nugues,
Markus Svensson 2003. HMS: A Predictive Text En-
try Method Using Bigrams.Proceedings of the Work-
shop on Language Modeling for Text Entry Methods,
10th Conference of the European Chapter of the Asso-
ciation of Computational Linguistics43 – 49.

50

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 51–58,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

A Rule-based Syllable Segmentation of Myanmar Text

Zin Maung MaungZin Maung MaungZin Maung MaungZin Maung Maung

Management Information Systems

Engineering Department

Nagaoka University of Technology

1603-1 Kamitomioka, Nagaoka, Japan

s065400@ics.nagaokaut.ac.jp

Yoshiki MikamiYoshiki MikamiYoshiki MikamiYoshiki Mikami

Management Information Systems

Engineering Department

Nagaoka University of Technology

1603-1 Kamitomioka, Nagaoka, Japan

mikami@kjs.nagaokaut.ac.jp

Abstract

Myanmar script uses no space between

words and syllable segmentation represents

a significant process in many NLP tasks

such as word segmentation, sorting, line

breaking and so on. In this study, a rule-

based approach of syllable segmentation

algorithm for Myanmar text is proposed.

Segmentation rules were created based on

the syllable structure of Myanmar script

and a syllable segmentation algorithm was

designed based on the created rules. A

segmentation program was developed to

evaluate the algorithm. A training corpus

containing 32,283 Myanmar syllables was

tested in the program and the experimental

results show an accuracy rate of 99.96%

for segmentation.

1 Introduction

Myanmar language, also known as Burmese, is the

official language of the Union of Myanmar. It is

spoken by 32 million as a first language, and as a

second language by ethnic minorities in Myanmar

(Ethnologue, 2005). Burmese is a member of the

Tibeto-Burman languages, which is a subfamily of

the Sino-Tibetan family of languages. Burmese is a

tonal and analytic language using the Burmese

script. This is a phonologically based script,

adapted from Mon, and ultimately based on an In-

dian (Brahmi) prototype (Daniels and Bright,

1996). Burmese characters are rounded in shape

and the script is written from left to right. No space

is used between words but spaces are usually used

to separate phrases.

The Myanmar language still remains as one of

the less privileged Asian languages in cyberspace.

Many people have put considerable effort into the

computerization of the Myanmar script. However,

Myanmar still lacks support on computers and not

many NLP tools and applications are available for

this language. A standard encoding is needed for

the language processing of Myanmar script; how-

ever, there is not yet any official national standard

encoding for Myanmar script.

This study focuses on the syllable segmentation

of Myanmar text based on the UTN11-2
1
 encoding

model for Myanmar script. Myanmar script has

been granted space in Unicode (U+1000-U+109F)

since version 3.0. In Unicode version 4.0, the Uni-

code consortium defined standards for encoding

Myanmar script and canonical order. The current

version of Unicode is 5.0. However, there are only

a few Unicode-compliant Myanmar fonts that fully

follow the Unicode encoding standard. Local font

developers and implementers have produced fonts

that follow only part of the Unicode standards and

many of these partially-compliant fonts are widely

used in cyberspace. In 2006, Myanmar proposed

additional characters
2
 to be added to the Unicode

version 5.0. The proposed characters for the Bur-

mese script are as follows:

• 102B MYANMAR VOWEL SIGN TALL

AA

• 1039 MYANMAR SIGN VIRAMA

[Glyph change and note change]

1 Unicode Technical Note 11-2, Martin Hosken & Maung

Tuntun Lwin, Representing Myanmar in Unicode: Details and

Examples, http://www.unicode.org/notes/tn11/
2 Proposal to Encode Seven Additional Myanmar Characters

in the UCS, Myanmar Computer Federation, Myanmar Lan-

guage Commission

51

• 103A MYANMAR SIGN ASAT

• 103B MYANMAR CONSONANT SIGN

MEDIAL YA

• 103C MYANMAR CONSONANT SIGN

MEDIAL RA

• 103D MYANMAR CONSONANT SIGN

MEDIAL WA

• 103E MYANMAR CONSONANT SIGN

MEDIAL HA

• 103F MYANMAR LETTER GREAT SA

• 104E MYANMAR SYMBOL AFORE-

MENTIONED [Glyph change]

The Unicode technical committee has accepted

these proposed characters for inclusion in future

versions of the Unicode standard.
3
 If the proposal

is adopted, this will become the standard encoding

for Myanmar script. Therefore, this paper employs

the proposed encoding model for the syllable seg-

mentation of Myanmar text.

2 Related Work

The lack of official standard encoding hinders lo-

calization of Myanmar language and no previous

work on the syllable segmentation of Myanmar

script was found. Although character codes for

Myanmar languages have been allocated in

UCS/Unicode (U+1000–U+109F), lack of imple-

mentation makes them unavailable to local end

users (Ko Ko and Mikami, 2005). We can learn,

however, from related works done for other lan-

guages which have similarities to Myanmar. Many

attempts have been made in Thai language proc-

essing for syllable and word segmentation.

Poowarawan (1986) proposed a dictionary-based

approach to Thai syllable separation. Thai syllable

segmentation was considered as the first step to-

wards word segmentation and many of word seg-

mentation ambiguities were resolved at the level of

syllable segmentation (Aroonmanakun, 2002).

Thai syllable segmentation can be viewed as the

problem of inserting spaces between pairs of char-

acters in the text and the character-level ambiguity

of word segmentation can be reduced by extracting

syllables whose structures are more well-defined

(Sornil and Chaiwanarom, 2004). Most approaches

3 http://www.unicode.org/alloc/Pipeline.html

to Thai word segmentation use a dictionary as their

basis. However, the segmentation accuracy de-

pends on the quality of the dictionary used for

analysis and unknown words can reduce the per-

formance. Theeramunkong and Usanavasin (2001)

proposed a non dictionary-based approach to Thai

word segmentation. A method based on decision

tree models was proposed and their approach

claimed to outperform some well-known diction-

ary-dependent techniques of word segmentation

such as the maximum and the longest matching

methods.

3 Myanmar Alphabets

In order to clarify the syllable structure, characters

of the Myanmar script are classified into twelve

categories. Each category is given a name and the

glyphs and Unicode code points of characters be-

longing to each category are shown in Table 1.

The Myanmar script consists of a total of 75 char-

acters. There are 34 consonant letters in Conso-

nants group, four medials in the Medials group and

eight vowels in the Dependent Vowels group.

Myanmar Sign Virama is used for stacking conso-

nant letters and it does not have a glyph, while

Myanmar Sign Asat is used in devowelising proc-

ess (e.g. ဆင်). There are three dependent various
signs in Group F. The Group I consists of three
independent vowels (ဤ, ဧ, ဪ) and three inde-

pendent various signs (၌, ၍, ၏). The characters

in Group I can act as stand-alone syllables. Group

E consists of four independent vowels (ဣ, ဥ, ဦ,
ဩ) and Myanmar Symbol Aforementioned (၎).
Each of the independent vowels in group E has its

own syllable but they can also combine with other

signs to form a syllable (e.g. ဥက% ာ). Myanmar

Symbol Aforementioned in Group E can never

stand alone and it is always written as ၄င်း as a
short form of လည်းေကာင်း. Myanmar Letter Great

Sa is always preceded by a consonant and is never

written alone (e.g. မနုဿ). There are ten Myanmar

digits in the Digits group. The group P consists of

two Myanmar punctuation marks. Myanmar script

uses white space between phrases, which is taken

into account in this study. Non-Myanmar charac-

ters are not included in this study.

52

Category

Name
Name Glyph Unicode Code Point

C Consonants
ကခဂဃငစဆဇဈဉညဋဌဍဎဏတ
ထဒဓနပဖဗဘမယရလဝသဟဠအ

U+1000…U+1021

M Medials ျ ြ ွ ှ U+103B…U+103E

V Dependent Vowel Signs ါ ာ ိ ီ ု ူ ေ ဲ U+102B…U+1032

S Myanmar Sign Virama ◌ U+1039

A Myanmar Sign Asat ် U+103A

F Dependent Various Signs ံ ့ း U+1036…U+1038

I
Independent Vowels,

Independent Various Signs

ဤ ဧ ဪ
၌ ၍ ၏

U+1024; U+1027

U+102A; U+104C;

U+104D; U+104F;

E

Independent Vowels,

Myanmar Symbol

Aforementioned

ဣ ဥ ဦ ဩ
၎

U+1023; U+1025;

U+1026; U+1029;

U+104E;

G Myanmar Letter Great Sa ဿ U+103F

D Myanmar Digits ၀ ၁ ၂ ၃ ၄ ၅ ၆ ၇ ၈ ၉ U+1040…U+1049

P Punctuation Marks ၊ ။ U+104A…U+104B

W White space U+0020

Table 1. Classification of Myanmar Script

4 Syllable Structure

A Myanmar syllable consists of one initial

consonant, zero or more medials, zero or more

vowels and optional dependent various signs.

Independent vowels, independent various signs and

digits can act as stand-alone syllables. According

to the Unicode standard, vowels are stored after the

consonant. Therefore, Myanmar vowel sign E

(U+1031) is stored after the consonant although it

is placed before the consonant in rendering (e.g.

ေန). Medials may appear at most three times in a

syllable (e.g. ြမiာ). Vowels may appear twice in a
syllable (e.g. ေစာ). In a syllable, a second

consonant may come together with an Asat for

devowelising (e.g. ဇင်). Each of the independent
vowels in group E has its own syllable but they can

also combine with other signs (consonants,

dependent vowels, dependent various signs) to

form a syllable (e.g. ဣေjနk, ဥက% ာ, ဦး, ေlသာင်း). The
syllable structure of Myanmar script can be written

in BNF (Backus-Naur Form) as follows:

Syllable ::= C{M}{V}{F} | C{M}V
+
A |

C{M}{V}CA[F] | E[CA][F] | I | D

Figure 1. FSA for Syllable Structure

A finite state machine or finite state automaton

(FSA) can be employed to demonstrate the syllable

structure of Myanmar script. A finite state machine

is a model of behavior composed of a finite num-

ber of states, transitions between those states, and

actions. The starting state is shown by a bold circle

and double circles indicate final or accepting

states. The above figure shows a finite state

automaton that can realize a Myanmar syllable.

Examples of Myanmar syllables and their equiva-

lent Unicode code points are shown in Table 2.

53

Syllable Example Unicode Point

C က U+1000
CF ကံ U+1000 U+1036

CCA ကင်
U+1000 U+1004
U+103A

CCAF ကင်း
U+1000 U+1004
U+103A U+1038

CV ကာ U+1000 U+102C

CVF ကား
U+1000 U+102C
U+1038

CVVA ေကာ်
U+1000 U+1031
U+102C U+103A

CVVCA ေကာင်
U+1000 U+1031
U+102C U+1004
U+103A

CVVCAF ေကာင်း
U+1000 U+1031
U+102C U+1004
U+103A U+1038

CM ကျ U+1000 U+103B

CMF ကျံ
U+1000 U+103B
U+1036

CMCA ကျင်
U+1000 U+103B
U+1004 103A

CMCAF ကျင်း
U+1000 U+103B
U+1004 103A
U+1038

CMV ကျာ
U+1000 U+103B
U+102C

CMVF ကျား
U+1000 U+103B
U+102C U+1038

CMVVA ေကျာ်
U+1000 U+103B
U+1031 U+102C
U+103A

CMVVCA ေlကာင်
U+1000 U+103C
U+1031 U+102C
U+1004 U+103A

CMVVCAF ေကျာင်း

U+1000 U+103B
U+1031 U+102C
U+1004 U+103A
U+1038

I ဪ U+102A
E ဣ U+1023

Table 2. Syllable Structure with Examples

5 Syllable Segmentation Rules

Typically, a syllable boundary can be determined

by comparing pairs of characters to find whether a

break is possible or not between them. However, in

some cases it is not sufficient to determine a sylla-

ble boundary by just comparing two characters.

The following sections explain these cases and

give examples.

5.1 Devowelising

In one syllable, a consonant may appear twice but

the second consonant is used for the devowelising

process in conjunction with an Asat (U+103A

MYANMAR SIGN ASAT). Therefore the charac-

ter after the second consonant should be further

checked for an Asat. If the character after the sec-

ond consonant is an Asat, there should be no sylla-

ble break before the second consonant.

 No break

ဆင် ဆ င ် (elephant)
C C A

 No break

5.2 Syllable Chaining

Subjoined characters are shown by using an invisi-

ble Virama sign (U+1039 MYANMAR SIGN VI-

RAMA) to indicate that the following character is

subjoined and should take a subjoined form. In this

case, if the character after the second consonant is

an invisible Virama sign, there should be no sylla-

ble break before the second and third consonant.

Although there are two syllables in a subjoined

form, it is not possible to separate them in written

form and they are therefore treated as one syllable.

 No break

ဝတ� ု ဝ တ ◌ ထ ု (novel)
 C C S C V

No break

54

5.3 Kinzi

Kinzi is a special form of devowelised Nga

(U+1004 MYANMAR LETTER NGA) with the

following letter underneath, i.e., subjoined. In this

case, if the character after the second consonant is

an Asat and the next character after Asat is an in-

visible Virama sign (U+1039 MYANMAR SIGN

VIRAMA) then there should be no syllable break

before the second and third consonant. Kinzi also

consists of two syllables but it is treated as one

syllable in written form.

 No break

မဂ�လာ မ င ် ◌ ဂ - လ ာ (blessing)

 C C A S C - C V

No break

5.4 Loan Words

Usage of loan words can be found in Myanmar

text. Although loan words do not follow the

Myanmar syllable structure, their usage is common

and the segmentation rules for these words are

considered in this study.

 No break

မားစ်�ဂိုဟ် မ ာ း စ ် - ဂ ြ ိ ု ဟ ် (Mars)
 C V F C A - C M V V C A

 No break

5.5 Great Sa

There should be no syllable break before great Sa

(U+103F MYANMAR LETTER GREAT SA) as

great Sa acts like a stacked သ� and devowelises the
preceding consonant.

 No break

မနုဿ မ - န ု ဿ (human)
 C - C V G

 No break

5.6 Contractions

There are usages of double-acting consonants in

Myanmar text. The double-acting consonant acts

as both the final consonant of one syllable and the

initial consonant of the following syllable. There

are two syllables in a contracted form but they can-

not be segmented in written form and there should

be no syllable break between them.

 No break

ေယာက်ျား ယ ေ ာ က ် ျ ာ း (man)
 C V V C A M V F

No break

6 Implementation

Syllable segmentation rules are presented in the

form of letter sequence tables (Tables 4-6). The

tables were created by comparing each pair of

character categories. However, it is not sufficient

to determine all syllable breaks by comparing only

two characters. In some cases, a maximum of four

consecutive characters need to be considered to

determine a possible syllable boundary. Two addi-

tional letter sequence tables were created for this

purpose (Tables 5 and 6).

Table 4 defines the break status for each pair of

two consecutive characters. Table 5 and 6 define

the break status for each pair of three and four con-

secutive characters, respectively. The symbol U in

the Table 4 and 5 stands for undefined cases. Cases

undefined in Table 4 are defined in the Table 5,

and those undefined in Table 5 are then defined in

Table 6.

The syllable segmentation program obtains the

break status for each pair of characters by compar-

ing the input character sequence with the letter se-

quence tables. The syllable break status and defini-

tions are shown in Table 3. The break status -1 in-

dicates a breach of canonical spelling order and a

question mark is appended after the ambiguous

character pair. The status 0 means there should be

no syllable break after the first character. For break

cases, a syllable breaking symbol (i.e. B in the

flowchart) is inserted at each syllable boundary of

the input string. The syllable segmentation process

is shown in the flowchart in Figure 2.

55

L = NULL;

R = X1X2X3...Xn;

Break = 0 ?

READ String

X1X2X3…Xn

Compare R with letter

sequence tables

L = L + X1;

R = X2X3...Xn;

Break = 1 ?

Break = 2 ?

Break = 3 ?

L = L + X1B;

R = X2X3...Xn;

L = L + X1X2B;

R = X3X4...Xn;

L = L + X1X2X3B;

R = X4X5...Xn;

L = L + X1X2X3X4B;

R = X5X6...Xn;

Start

R = NULL ?

End

Yes

Break = -1 ?
L = L + X1X2?;

R = X3X4...Xn;

PRINT L

R = Xn ?
L = L + XnB;

R = NULL;

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Figure 2. Syllable Segmentation Flowchart

Break Status Definition

-1 Illegal spelling order

0 No break after 1
st
 character

1 Break after 1
st
 character

2 Break after 2
nd
 character

3 Break after 3
rd
 character

4 Break after 4
th
 character

Table 3. Syllable Break Status and Definition

7 Method and Results

A syllable segmentation program was developed to

evaluate the algorithm and segmentation rules.

The program accepts the Myanmar text string and

shows the output string in a segmented form. The

program converts the input text string into equiva-

lent sequence of category form (e.g. CMCACV for

ြမန်မာ) and compares the converted character se-
quence with the letter sequence tables to determine

syllable boundaries. A syllable segmented Myan-

mar text string is shown as the output of the pro-

gram. The symbol "|" is used to represent the syl-

lable breaking point. In order to evaluate the accu-

racy of the algorithm, a training corpus was devel-

oped by extracting 11,732 headwords from Myan-

mar Orthography (Myanmar Language Commis-

sion, 2003). The corpus contains a total of 32,238

Myanmar syllables. These syllables were tested in

the program and the segmented results were manu-

ally checked. The results showed 12 errors of in-

correctly segmented syllables, thus achieving accu-

racy of 99.96% for segmentation. The few errors

occur with the Myanmar Letter Great Sa ‘ဿ’ and
the Independent Vowel ‘ဥ’. The errors can be fixed
by updating the segmentation rules of these two

characters in letter sequence tables. Some exam-

ples of input text strings and their segmented re-

sults are shown in Table 7.

8 Conclusion

Syllables are building blocks of words and syllable

segmentation is essential for the language process-

ing of Myanmar script. In this study, a rule-based

approach of syllable segmentation algorithm for

Myanmar script is presented. The segmentation

rules were created based on the characteristics of

Myanmar syllable structure. A segmentation pro-

gram was developed to evaluate the algorithm. A

test corpus containing 32,238 Myanmar syllables

was tested in the program and 99.96% accuracy

was achieved. From this study, we can conclude

that syllable segmentation of Myanmar text can be

implemented by a rule-based approach. While

characters of non-Myanmar script are not consid-

ered in this study, the segmentation rules can be

further extended to cover these characters. A com-

plete syllable segmentation algorithm for Myanmar

script can be further implemented by applying this

algorithm.

56

 2
nd
 Character

 A C D E F G I M P S V W

A -1 U 1 1 0 -1 1 0 1 0 0 1

C 0 U 1 1 0 0 1 0 1 0 0 1

D -1 1 0 1 -1 -1 1 -1 1 -1 -1 1

E -1 U 1 1 2 0 1 -1 1 -1 0 1

F -1 U 1 1 2 -1 1 -1 1 -1 -1 1

G -1 1 1 1 0 -1 1 -1 1 -1 0 1

I -1 1 1 1 -1 -1 1 -1 1 -1 -1 1

M 2 U 1 1 0 0 1 0 1 -1 0 1

P -1 1 1 1 -1 -1 1 -1 1 -1 -1 1

S -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

V 2 U 1 1 0 0 1 -1 1 -1 0 1

1
st
 C
h
a
ra
ct
er

W -1 1 1 1 -1 -1 1 -1 1 -1 -1 0

Table 4. Letter Sequence Table 1

 3
rd
 Character

 A C D E F G I M P S V W

AC 3 1 1 1 1 1 1 U 1 1 1 1

CC 0 1 1 1 1 1 1 1 1 0 1 1

EC 0 1 1 1 1 1 1 1 1 0 1 1

FC 3 1 1 1 1 1 1 U 1 1 1 1

MC 0 1 1 1 1 1 1 1 1 0 1 1 F
ir
st
 2
 C
h
a
ra
c-

te
rs

VC 0 1 1 1 1 1 1 U 1 0 1 1

Table 5. Letter Sequence Table 2

 4
th
 Character

 A C D E F G I M P S V W

ACM 4 1 1 1 1 1 1 1 1 1 1 1

FCM 4 1 1 1 1 1 1 1 1 1 1 1 F
ir
st
 3

C
h
a
ra
c-

te
rs

VCM 4 1 1 1 1 1 1 1 1 1 1 1

Table 6. Letter Sequence Table 3

57

Myanmar Text Letter Sequence Segmented Letter Sequence Segmented Result

အဗ� န�ရသရက် CCSCCSCCCCCA |CCSCCSC|C|C|CCA| |အဗ� န�|ရ|သ|ရက်|

ဥတ� ရယဉစွ်န်းတန်း ECSCCCCACMCAFCCAF |ECSC|C|CCA|CMCAF|CCAF| |ဥတ� |ရ|ယဉ်|စန်ွး|တန်း|

ဣစ�ာသယ ECSCVCC |ECSCV|C|C| |ဣစ�ာ|သ|ယ|

ဧကရာဇ် ICCVCA |I|C|CVCA| |ဧ|က|ရာဇ်|

ဝက�န�ဉာဏ် CCASCCSCCVCA |CCASCCSC|CVCA| |ဝက�န�|ဉာဏ်|

မားစ်�ဂိုဟ် CVFCACMVVCA |CVFCA|CMVVCA| |မားစ်|�ဂို ဟ်|

မနုဿဟီ CCVGVC |C|CVGV|C| |မ|နဿီု|ဟ|

တာဝတ�သာ CVCCVFCV |CV|C|CVF|CV| |တာ|ဝ|တ�|သာ|

က�န်ုပ်၏ကား CMMCAVCAICAF |CMMCAVCA|I|CAF| |က�န်ုပ်|၏|ကား|

ကက်ရ်ှမီးယား CCACMACVFCVF |CCACMA|CVF|CVF| |ကက်ရ်ှ|မီး|ယား|

လ� က်ရည်ဆိုင် CSCCACCACVVCA |CSCCA|CCA|CVVCA| |လ� က်|ရည်|ဆိုင်|

Table 7. Syllable Segmentation Examples and Results

Acknowledgement

The study was made possible by the sponsorship of

the Japanese Ministry of Education, Culture,

Sports, Science and Technology (MEXT). The au-

thors wish to express special thanks to Myanmar

Unicode and NLP Research Center and its mem-

bers for their help during this research.

References

Ethnologue. 2005. Languages of the World, Fifteenth

edition. Online version: http://www.ethnologue.com/,

Edited by Raymond G. Gordon, Jr. Dallas, Tex.: SIL

International.

Martin Hosken and Maung Tuntunlwin. 2007. Repre-

senting Myanmar in Unicode: Details and Examples.

http://www.unicode.org/notes/tn11/

Myanmar Computer Federation, Myanmar Language

Commission. 2006. Proposal to Encode Seven Addi-

tional Myanmar Characters in the UCS.

http://www.myanmarnlp.net.mm/doc/updateOnDec/2

0060228_ProposaltoEncodeSevenAdditionalMyanm

arCharsinUCS.pdf

Myanmar Language Commission. 2003. Myanmar Or-

thography, 2nd Edition. University Press, Yangon,

Myanmar.

Ohm Sornil and Paweena Chaiwanarom. 2004. Combin-

ing Prediction by Partial Matching and Logistic Re-

gression for Thai Word Segmentation. Proceedings of

the 20th International Conference on Computational

Linguistics.

Peter T. Daniels and William Bright. 1996. The World's

Writing Systems. Oxford University Press.

Thanaruk Theeramunkong and Sasiporn Usanavasin.

2001. Non-Dictionary-Based Thai Word Segmenta-

tion Using Decision Trees. Proceedings of the First

International Conference on Human Language Tech-

nology Research.

The Unicode Consortium. 2003. The Unicode Standard

Version 4.0. Addison-Wesley.

The Unicode Consortium. 2006. The Unicode Standard

Version 5.0. Addison-Wesley.

Wirote Aroonmanakun. 2002. Collocation and Thai

Word Segmentation. Proceedings of SNLP-Oriental

COCOSDA.

Wunna Ko Ko and Yoshiki Mikami. 2005. Languages

of Myanmar in Cyberspace. Nagaoka University of

Technology, Bulletin on Language Science and Hu-

manity, Vol. 19.pp.249-264.

Yuen Poowarawan. 1986. Dictionary-based Thai Sylla-

ble Separation. Proceedings of the Ninth Electronics

Engineering Conference.

58

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 59–64,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Strategies for sustainable MT for Basque:
incremental design, reusability, standardization and open-source

 I. Alegria, X. Arregi, X. Artola, A. Diaz de Ilarraza, G. Labaka,
M. Lersundi, A. Mayor, K. Sarasola

Ixa taldea.
University of the Basque Country.

i.alegria@ehu.es

Abstract

We present some Language Technology
applications that have proven to be effec-
tive tools to promote the use of Basque, a
European less privileged language. We also
present the strategy we have followed for
almost twenty years to develop those appli-
cations as the top of an integrated environ-
ment of language resources, language
foundations, language tools and other ap-
plications. When we have faced a difficult
task such as Machine Translation to
Basque, our strategy has worked well. We
have had good results in a short time just
reusing previous works for Basque, reusing
other open-source tools, and developing
just a few new modules in collaboration
with other groups. In addition, new reus-
able tools and formats have been produced.

1 Introduction and Basque Language

Basque is a highly inflected minority language
with free order of sentence constituents. Machine
Translation for Basque is thus both, a real need and
a test bed for our strategy to develop NLP tools for
Basque.

Basque is an isolate language, and little is
known of its origins. It is likely that an early form
of the Basque language was already present in
Western Europe before the arrival of the Indo-
European languages.

Basque is an agglutinative language, with a rich
flexional morphology. In fact for nouns, for
example, at least 360 word forms are possible for

each lemma. Each of the declension cases such as
absolutive, dative, associative… has four different
suffixes to be added to the last word of the noun
phrase. These four suffix variants correspond to
undetermined, determined singular, determined
plural and “close” determined plural.

Basque is also an ergative-absolutive language.
The subject of an intransitive verb is in the
absolutive case (which is unmarked), and the same
case is used for the direct object of a transitive
verb. The subject of the transitive verb (that is, the
agent) is marked differently, with the ergative case
(shown by the suffix -k). This also triggers main
and auxiliary verbal agreement.

The auxiliary verb, which accompanies most
main verbs, agrees not only with the subject, but
with the direct object and the indirect object, if
present. Among European languages, this
polypersonal system (multiple verb agreement) is
only found in Basque, some Caucasian languages,
and Hungarian. The ergative-absolutive alignment
is rare among European languages, but not
worldwide.

Although in last centuries Basque suffered
continuous regression it still remains alive. The
region in which Basque is spoken is smaller than
what is known as the Basque Country, and the
distribution of Basque speakers is not
homogeneous there. The main reasons of this
regression (Amorrortu, 2002) are that Basque was
not an official language, and that it was out of
educational system, out of media and out of
industrial environments. Besides, the fact of being
six different dialects made the wide development
of written Basque difficult.

However, after 1980, some of those features
changed and many citizens and some local

59

governments promote recovering of Basque
Language.

Today, Basque holds co-official language status
in the Basque regions of Spain: the whole
autonomous community of the Basque Country
and some parts of Navarre. Basque has no official
standing in the Northern Basque Country.

In the past, Basque was associated with lack of
education, stigmatized as uneducated, rural, or
holding low economic and power resources. There
is not such an association today; Basque speakers
do not differ from Spanish or French monolinguals
in any of these characteristics.

Standard Basque, called Batua (unified) in
Basque, was defined by the Academy of Basque
Language (Euskaltzaindia) in 1968. At present, its
morphology is completely standardized, but the
lexical standardization process is still underway.
Now this is the language model taught in most
schools and used on some media and official
papers published in Basque.

Basque speakers are about 700,000, about 25%
of the total population of the Basque Country, but
they are not evenly distributed. Still the use of
Basque in industry and specially in Information
and Communication Technology is not
widespread. A language that seeks to survive in the
modern information society has to be present also
in such field and this requires language technology
products. Basque, as other minority languages, has
to make a great effort to face this challenge (Petek,
2000; Williams et al., 2001).

2 Strategy to develop Human Language
Technology (HLT) in Basque

IXA group is a research Group created in 1986 by
5 university lecturers in the computer science fac-
ulty of the University of the Basque Country with
the aim of laying foundations for research and de-
velopment of NLP software mainly for Basque.
We wanted to face the challenge of adapting
Basque to language technology.

Twenty one years later, now IXA is a group
composed of 28 computer scientists, 13 linguists
and 2 research assistants. It works in cooperation
with more than 7 companies from Basque Country
and 5 from abroad; it has been involved in the birth
of two new spin-off companies; and it has devel-
oped more than seven language technology prod-
ucts.

In recent years, several private companies and
technology centers in the Basque Country have
begun to get interested and to invest in this area. At
the same time, more agents have come to be aware
of the fact that collaboration is essential to the de-
velopment of language technologies for minority
languages. One of the fruits of this collaboration
are HIZKING21 (2002-2005) and ANHITZ (2006-
2008) projects. Both projects were accepted by the
Government of the Basque Country in a new
strategical research line called ‘Language Infoen-
gineering’.

At the very beginning, twenty years ago, our
first goal was just to create a Spanish-Basque
translation system, but after some preliminary
work we realized that instead of wasting our time
in creating an ad hoc MT system with small accu-
racy, we had to invest our effort in creating basic
tools such as a morphological analyzer/generator
for Basque, that could later be used to build not
only a more robust MT system but also other ap-
plications.

This thought was the seed to design our strategy
to make progress in the adaptation of Basque to
Language Technology. Basque language had to
face up scarcity of resources and tools that could
make possible its development in Language Tech-
nology at a reasonable and competitive rate.

We presented an open proposal for making pro-
gress in Human Language Technology (Aduriz et
al., 1998). Anyway, the steps proposed did not cor-
respond exactly with those observed in the history
of the processing of English, because the high ca-
pacity and computational power of new computers
allowed facing problems in a different way.

Our strategy may be described in two points:
1) The need for standardization of resources to

be useful in different researches, tools and applica-
tions

2) The need for incremental design and devel-
opment of language foundations, tools, and appli-
cations in a parallel and coordinated way in order
to get the best benefit from them. Language foun-
dations and research are essential to create any tool
or application; but in the same way tools and ap-
plications will be very helpful in the research and
improvement of language foundations.

Following this strategy, our steps on standardi-
zation of resources led us to adopt TEI and XML
standards and also to define a methodology for

60

stand-off corpus tagging based on TEI, feature
structures and XML (Artola et al., 2005).

In the same way, taking as reference our experi-
ence in incremental design and development we
proposed four phases as a general strategy for lan-
guage processing. These are the phases defined
with the products to be developed in each of them.
1. Initial phase: Foundations. Corpus I (collection

of raw text with no tagging mark). Lexical da-
tabase I (the first version could be a list of
lemmas and affixes). Machine-readable dic-
tionaries. Morphological description.

2. Second phase: Basic tools and applications.
Statistical tools for the treatment of corpora.
Morphological analyzer/generator. Lemma-
tizer/tagger. Spelling checker and corrector (al-
though in morphologically simple languages a
word list could be enough). Speech processing
at word level. Corpus II (word-forms are
tagged with their part of speech and lemma).
Lexical database II (lexical support for the con-
struction of general applications, including part
of speech and morphological information).

3. Third phase: Advanced tools and applications.
An environment for tool integration. Web
search engine. A traditional search machine
that integrates lemmatization and language
identification. Surface syntax. Corpus III (syn-
tactically tagged text). Grammar and style
checkers. Structured versions of dictionaries
(they allow enhanced functionality not avail-
able for printed or raw electronic versions).
Lexical database III (the previous version is en-
riched with multiword lexical units. Integration
of dictionaries in text editors). Lexical-
semantic knowledge base. Creation of a con-
cept taxonomy (e.g.: Wordnet). Word-sense
disambiguation. Speech processing at sentence
level. Basic Computer Aided Language Learn-
ing (CALL) systems

4. Fourth phase: Multilingualism and general
applications. Information extraction. Transla-
tion aids (integrated use of multiple on-line
dictionaries, translation of noun phrases and
simple sentences). Corpus IV (semantically
tagged text after word-sense disambiguation).
Dialog systems. Knowledge base on multilin-
gual lexico-semantic relations and its applica-
tions.

We will complete this strategy with some sug-
gestions about what shouldn’t be done when work-
ing on the treatment of minority languages. a) Do
not start developing applications if linguistic foun-
dations are not defined previously; we recommend
following the above given sequence: foundations,
tools and applications. b) When a new system has
to be planned, do not create ad hoc lexical or syn-
tactic resources; you should design those resources
in a way that they could be easily extended to full
coverage and reusable by any other tool or applica-
tion. c) If you complete a new resource or tool, do
not keep it to yourself; there are many researchers
working on English, but only a few on each minor-
ity language; thus, the few results should be public
and shared for research purposes, for it is desirable
to avoid needless and costly repetition of work.

3 Machine Translation for Basque

After years working on basic resources and tools
we decided it was time to face the MT task (Hut-
chins and Somers, 1992). Our general strategy was
more specifically for Machine Translation defined
bearing in mind the following concepts:

• reusability of previous resources, specially
lexical resources and morphology of Basque

• standardization and collaboration: using a
more general framework in collaboration
with other groups working in NLP

• open-source: this means that anyone having
the necessary computational and linguistic
skills will be able to adapt or enhance it to
produce a new MT system,

Due to the real necessity for translation in our
environment the involved languages would be
Basque, Spanish and English.

From the beginning we wanted to combine the
two basic approaches for MT (rule-based and cor-
pus-based) in order to build a hybrid system, be-
cause it is generally agreed that there are not
enough corpora for a good corpus-based system in
minority languages like Basque.

Data-driven Machine Translation (example-
based or statistical) is nowadays the most prevalent
trend in Machine Translation research. Translation
results obtained with this approach have already
reached a high level of accuracy, especially when
the target language is English. But these Data-
driven MT systems base their knowledge on
aligned bilingual corpora, and the accuracy of their

61

output depends heavily on the quality and the size
of these corpora. Large and reliable bilingual cor-
pora are unavailable for many language pairs.

3.1 The rule-based approach

First, we present the main architecture and the pro-
posed standards of an open source MT engine, the
first implementation of which translates from
Spanish into Basque using the traditional transfer
model and based on shallow and dependency pars-
ing.

The design and the programs are independent
from the languages, so the software can be used for
other projects in MT. Depending on the languages
included in the adaptation, it will be necessary to
add, reorder and change some modules, but this
will not be difficult because a unique XML format
is used for the communication among all the mod-
ules.

The project has been integrated in the OpenTrad
initiative (www.opentrad.com), a government-
funded project shared among different universities
and small companies, which also include MT en-
gines for translation among the main languages in
Spain. The main objective of this initiative is the
construction of an open, reusable and interoperable
framework.

In the OpenTrad project, two different but coor-
dinated designs have been carried out:

• A shallow-transfer machine translation en-
gine for similar languages (Spanish, Catalan
and Galician by the the time being). The
MT architecture uses finite-state transducers
for lexical processing, hidden Markov mod-
els for part-of-speech tagging, and chunking
based on finite-state for structural transfer.
It is named Apertium and it can be
downloaded from apertium.sourceforge.net.
(Armentano-Oller et al., 2004)

• A deeper-transfer engine for the Spanish-
Basque pair. It is named Matxin (Alegria et
al., 2007) and it is stored in
matxin.sourceforge.net. It is an extension of
previous work in our group. In order to re-
use resources in this Spanish-Basque system
the analysis module for similar languages
was not included in Matxin; another open
source engine, FreeLing (Carreras et al.,
2004), was used here, of course, and its out-
put had to be converted to the proposed in-
terchange format.

Some of the components (modules, data formats
and compilers) from the first architecture in Open-
Trad were used in the second one. Indeed, an im-
portant additional goal of this work was testing
which modules from the first architecture could be
integrated in deeper-transfer architectures for more
difficult language pairs.

The transfer module is also based on three main
objects in the translation process: words or nodes,
chunks or phrases, and sentences.

• First, lexical transfer is carried out using a
bilingual dictionary compiled into a finite-
state transducer. We use the XML specifica-
tion of Apertium engine.

• Then, structural transfer at the sentence
level is applied, and some information is
transferred from some chunks to others, and
some chunks may disappear. Grammars
based on regular expressions are used to
specify these changes. For example, in the
Spanish-Basque transfer, the person and
number information of the object and the
type of subordination are imported from
other chunks to the chunk corresponding to
the verb chain.

• Finally the structural transfer at the chunk
level is carried out. This process can be
quite simple (e.g. noun chains between
Spanish and Basque) or more complex (e.g.
verb chains between these same languages).

The XML file coming from the transfer module
is passed on the generation module.

• In the first step, syntactic generation is per-
formed in order to decide the order of
chunks in the sentence and the order of
words in the chunks. Several grammars are
used for this purpose.

• Morphological generation is carried out in
the last step. In the generation of Basque,
the main inflection is added to the last word
in the phrase (in Basque: the declension
case, the article and other features are added
to the whole noun phrase at the end of the
last word), but in verb chains other words
need morphological generation. A previous
morphological analyzer/generator for
Basque (Alegria et al., 1996) has been
adapted and transformed to the format used
in Apertium.

The results for the Spanish/Basque system using
FreeLing and Matxin are promising. The quantita-

62

tive evaluation uses the open source evaluation
tool IQMT and figures are given using Bleu and
NIST measures (Giménez et al., 2005). An user
based evaluation has been carried out too.

3.2 The corpus-based approach

The corpus-based approach has been carried out in
collaboration with the National Center for Lan-
guage Technology in Dublin.

The system exploits both EBMT and SMT tech-
niques to extract a dataset of aligned chunks. We
conducted Basque to English and Spanish to
Basque translation experiments, evaluated on a
large corpus (270, 000 sentence pairs).

Some tools have been reused for this purpose:
• GIZA++: for word/morpheme alignment we

used the GIZA++ statistical word alignment
toolkit, and following the “refined” method
of (Och and Ney, 2003), extracted a set of
high-quality word/ morpheme alignments
from the original unidirectional alignment
sets. These along with the extracted chunk
alignments were passed to the translation
decoder.

• Pharaoh/Moses decoder: the decoder is also
a hybrid system which integrates EBMT
and SMT. It is capable of retrieving already
translated sentences and also provides a
wrapper around the PHARAOH SMT de-
coder (Koehn, 2004).

• MaTrEx: the MATREX (Machine Transla-
tion using Examples) system used in our
experiments is a data-driven MT engine,
built following an extremely modular de-
sign. It consists of a number of extensible
and re-implementable modules (Way and
Gough, 2005).

 For this engine, we reuse a toolkit to chunk the
Basque sentences. After this processing stage, a
sentence is treated as a sequence of morphemes, in
which chunk boundaries are clearly visible. Mor-
phemes denoting morphosyntactic features are re-
placed by conventional symbolic strings. After
some adaptation, the chunks obtained in this man-
ner are actually very comparable to the English
chunks obtained with the marker-based chunker.

The experimental results have shown that our
system significantly outperforms state-of-the-art
approaches according to several common auto-
matic evaluation metrics: WER, Bleu and PER
(Stroppa et al., 2006; Labaka et al., 2007).

4 Conclusions

A language that seeks to survive in the modern
information society requires language technology
products. "Minority" languages have to do a great
effort to face this challenge. The Ixa group has
been working since 1986 on adapting Basque to
language technology, having developed several
applications that are effective tools to promote the
use of Basque. Now we are planning to define the
BLARK for Basque (Krauwer, 2003).

From our experience, we defend that research
and development for a minority language should to
be faced following these points: high standardiza-
tion, reusing language foundations, tools, and ap-
plications, and their incremental design and devel-
opment. We know that any HLT project related to
a less privileged language should follow those
guidelines, but from our experience we know that
in most cases they do not. We think that if Basque
is now in an good position in HLT is because those
guidelines have been applied even when it was
easier to define "toy" resources and tools useful to
get good short term academic results, but not reus-
able in future developments.

This strategy has been completely useful when
we have created MT systems for Basque. Reusing
previous works for Basque (that were defined fol-
lowing XML and TEI standards) and reusing other
open-source tools have been the key to get satisfac-
tory results in a short time.

Two results produced in the MT track are pub-
licly available:

• matxin.sourceforge.net for the free code for
the Spanish-Basque RBMT system

• www.opentrad.org for the on-line demo

Acknowledgments
This work has been partially funded by the Spanish
Ministry of Education and Science (OpenMT:
Open Source Machine Translation using hybrid
methods,TIN2006-15307-C03-01) and the Local
Government of the Basque Country (AnHITZ
2006: Language Technologies for Multingual In-
teraction in Intelligent Environments., IE06-185).
Andy Way, Declan Groves and Nicolas Stroppa
from National Centre for Language Technology in
Dublin are kindly acknowledged for providing
their expertise on the Matrex system and the
evaluation of the output.

63

References
I. Aduriz, E. Agirre, I. Aldezabal, I. Alegria, O. Ansa,

X. Arregi, J. Arriola, X. Artola, A. Díaz de Ilarraza,
N. Ezeiza, K.Gojenola, M. Maritxalar, M. Oronoz, K.
Sarasola, A. Soroa, R. Urizar. 1998. A framework for
the automatic processing of Basque. Proceedings of
Workshop on Lexical Resources for Minority Lan-
guages.

I. Alegria, X. Artola, K. Sarasola. 1996.Automatic mor-
phological analysis of Basque. Literary & Linguistic
Computing Vol. 11, No. 4, 193-203. Oxford Univer-
sity Press. Oxford. 1996.

I. Alegria, A. Díaz de Ilarraza, G. Labaka, M Lersundi,
A. Mayor, K. Sarasola. 2007. Transfer-based MT
from Spanish into Basque: reusability, standardiza-
tion and open source. LNCS 4394. 374-384. Cicling
2007.

E. Amorrortu. 2002. Bilingual Education in the Basque
Country: Achievements and Challenges after Four
Decades of Acquisition Planning. Journal of Iberian
and Latin American Literary and Cultural Stud-
ies.Volume 2 Number 2 (2002)

C. Armentano-Oller, A. Corbí-Bellot, M. L. Forcada,
M. Ginestí-Rosell, B. Bonev, S. Ortiz-Rojas, J. A.
Pérez-Ortiz, G. Ramírez-Sánchez, F. Sánchez-
Martínez, 2005. An open-source shallow-transfer
machine translation toolbox: consequences of its re-
lease and availability. Proceedings of OSMaTran:
Open-Source Machine Translation workshop, MT
Summit X.

X. Artola, A. Díaz de Ilarraza, N. Ezeiza, K. Gojenola,
G. Labaka, A. Sologaistoa, A. Soroa. 2005. A
framework for representing and managing linguistic
annotations based on typed feature structures. Proc.
of RANLP 2005.

X. Carreras,, I. Chao, L. Padró and M. Padró. 2004.
FreeLing: An open source Suite of Language Ana-
lyzers, in Proceedings of the 4th International Con-
ference on Language Resources and Evaluation
(LREC'04).

J. Giménez, E. Amigó, C. Hori. 2005. Machine
Translation Evaluation Inside QARLA. In Proceed-
ings of the International Workshop on Spoken Lan-
guage Technology (IWSLT'05)

W. Hutchins and H. Somers. 1992. An Introduction to
Machine Translation. Academic Press.

P. Koehn. 2004. Pharaoh: A Beam Search Decoder for
Phrase-Based Statistical Machine Translation Mod-
els. In Proceedings of AMTA-04, pages 115–124,
Washington, District of Columbia.

S. Krauwer. 2003. The Basic Language Resource Kit
(BLARK) as the First Milestone for the Language
Resources Roadmap. Proc. of the International
Workshop Speech and Computer. Moscow, Russia.

G. Labaka, N. Stroppa, A. Way, K. Sarasola 2007
Comparing Rule-Based and Data-Driven Approaches
to Spanish-to-Basque Machine Translation Proc. of
MT-Summit XI, Copenhagen

F. Och and H. Ney. 2003. A Systematic Comparison of
Various Statistical Alignment Models. Computa-
tional Linguistics, 29(1): 19–51.

B. Petek. 2000. Funding for research into human lan-
guage technologies for less prevalent languages, Sec-
ond International Conference on Language Re-
sources and Evaluation (LREC 2000). Athens,
Greece.

N. Stroppa, D. Groves, A. Way, K. Sarasola K. 2006.
Example-Based Machine Translation of the Basque
Language. AMTA. 7th conference of the Association
for Machine Translation in the Americas..

A. Way and N. Gough. 2005. Comparing Example-
Based and Statistical Machine Translation. Natural
Language Engineering, 11(3):295–309.

B. Williams, K. Sarasola, D. Ó´Cróinin, B. Petek. 2001.
Speech and Language Technology for Minority Lan-
guages. Proceedings of Eurospeech 2001

64

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 65–72,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Design of a Rule-based Stemmer for Natural Language Text in Bengali

Sandipan Sarkar
IBM India

sandipan.sarkar@in.ibm.com,
sandipansarkar@gmail.com

Sivaji Bandyopadhyay
Computer Science and Engineering Department

Jadavpur University, Kolkata
sbandyopadhyay@cse.jdvu.ac.in

Abstract

This paper presents a rule-based approach
for finding out the stems from text in Ben-
gali, a resource-poor language. It starts by
introducing the concept of orthographic
syllable, the basic orthographic unit of
Bengali. Then it discusses the morphologi-
cal structure of the tokens for different
parts of speech, formalizes the inflection
rule constructs and formulates a quantita-
tive ranking measure for potential candi-
date stems of a token. These concepts are
applied in the design and implementation
of an extensible architecture of a stemmer
system for Bengali text. The accuracy of
the system is calculated to be ~89% and
above.

1 Introduction

While stemming systems and algorithms are being
studied for European, Middle Eastern and Far
Eastern languages for sometime, such studies in
Indic scripts are quite limited. Ramanathan and
Rao (2003) reported a lightweight rule-based
stemmer in Hindi. Garain et. al. (2005) proposed a
clustering-based approach to identify stem from
Bengali image documents. Majumdar et. al. (2006)
accepted the absence of rule-based stemmer in
Bengali and proposed a statistical clustering-based
approach to discover equivalence classes of root
words from electronic texts in different languages
including Bengali. We could not find any publica-
tion on Bengali stemmer following rule-based ap-
proach.

Our approach in this work is to identify and
formalize rules in Bengali to build a stemming sys-
tem with acceptable accuracy. This paper deals
with design of such a system to stem Bengali

words tokens tagged with their respective parts of
speech (POS).

2 Orthographic Syllable

Unlike English or other Western-European lan-
guages, where the basic orthographic unit is a
character, Bengali uses syllable. A syllable is typi-
cally a vowel core, which is preceded by zero or
more consonants and followed by an optional dia-
critic mark.

However, the syllable we discuss here is ortho-
graphic and not phonological, which can be differ-
ent. As for example, the phonological syllables of
word কতর্ া [kartaa] are কr [kar_] and তা [taa].
Whereas, the orthographic syllables will be ক [ka]
and তর্ া [rtaa] respectively. Since the term 'syllable'
is more used in phonological context, we use 'o-
syllable' to refer orthographic syllables, which will
be a useful tool in this discussion.

Formally, using regular expression syntax, an o-
syllable can be represented as where C
is a consonant, V is a vowel and D is a diacritic
mark or halant. If one or more consonants are pre-
sent, the vowel becomes a dependent vowel sign
[maatraa].

* ? ?C V D

We represent the o-syllables as a triple (C, V, D)
where C is a string of consonant characters, V is a
vowel character and D is a diacritic mark. All of
these elements are optional and their absence will
be denoted by Ø. V will be always represented in
independent form.

We define o-syllabic length |τ| of token (τ) as
the number of o-syllables in τ.

Few examples are provided below:

Token (τ) O-syllable Form |τ|
মা [maa] (ম,আ,Ø) 1
চঁাদ [chaa`nd] (চ,আ,◌ঁ)(দ,a,Ø) 2
aগs্য [agastya] (Ø,a,Ø)(গ,a,Ø)(সতয,a,Ø) 3

65

Token (τ) O-syllable Form |τ|
আট্কা [aaT_kaa] (Ø,আ,Ø) (ট,Ø,◌্) (ক,আ,Ø) 3

Table 1: O-syllable Form Examples

3 Morphological Impact of Inflections

Like English, the inflections in Bengali work as a
suffix to the stem. It typically takes the following
form:
<token> ::= <stem><inflections>
<inflections> ::= <inflection> |

<inflection><inflections>
Typically Bengali word token are formed with

zero or single inflection. Example: মােয়র [maayer]
< মা [maa] (stem) + েয়র [yer] (inflection)

However, examples are not rare where the token
is formed by appending multiple inflections to the
stem: করেলo [karaleo] < কr [kar_] (stem) + েল [le]
(inflection) + o [o] (inflection), ভাiেদরেকi [bhaaid-
erakei] < ভাi [bhaai] (stem) + েদর [der] (inflec-
tion) + েক [ke] (inflection) + i [i] (inflection).

3.1 Verb

Verb is the most complex POS in terms of in-
flected word formation. It involves most number of
inflections and complex formation rules.

Like most other languages, verbs can be finite
and non-finite in Bengali. While inflections for
non-finite verbs are not dependent on tense or per-
son; finite verbs are inflected based on person (first,
second and third), tense (past, present and future),
aspect (simple, perfect, habitual and progressive),
honour (intimate, familiar and formal), style (tradi-
tional [saadhu], standard colloquial [chalit] etc.)
mood (imperative etc.) and emphasis. Bengali verb
stems can yield more than 100 different inflected
tokens.

Some examples are: করািতস [karaatis] < করা
[karaa] (stem) + িতস [tis] (inflection representing
second person, past tense, habitual aspect, intimate
honour and colloquial style), খাiব [khaaiba] < খা
[khaa] (stem) +iব [iba] (inflection representing
first person, future tense, simple aspect and tradi-
tional style) etc.

A verb token does not contain more than two in-
flections at a time. Second inflection represents
either emphasis or negation.

Example: আসবi [aasabai] < আs [aas_] (stem) + ব
[ba] (inflection representing first person, future

tense, simple aspect and colloquial style) + i [i]
(inflection representing emphasis).

While appended, the inflections may affect the
verb stem in four different ways:

1. Inflections can act as simple suffix and do not
make any change in the verb stem. Examples: করা
(stem) + িc [chchhi] (inflection) > করািc [karaach-
chhi], খা (stem) + ব (inflection) > খাব [khaaba] etc.

2. Inflections can change the vowel of the first
o-syllable of the stem. Example (the affected vow-
els are in bold and underlined style): শধু্ রা
[shudh_raa] (stem) + স [sa] (inflection) > (শ,u,Ø)
(ধ,Ø,◌্) (র,আ,Ø) + স > (শ,o,Ø) (ধ,Ø,◌্) (র,আ,Ø) + স >
েশাধ্ রা [shodh_raa] + স > েশাধ্ রাস [shodh_raasa].

3. Inflections can change the vowel of the last o-
syllable of the stem. Example: আট্ কা [aaT_kaa]
(stem) + িছ [chhi] (inflection) > (Ø,আ,Ø) (ট,Ø,◌্)
(ক,আ,Ø) + িছ > (Ø,আ,Ø) (ট,Ø,◌্) (ক,e,Ø) + িছ > আট্
েক [aaT_ke] + িছ > আট্েকিছ [aaT_kechhi].

4. Inflections can change the vowel of both first
and last o-syllable of the stem. Example: েঠাk রা
[Thok_raa] (stem) + o [o] (inflection) > (ঠ,o,Ø)
(ক,Ø,◌্) (র,আ,Ø) + o > (ঠ,u,Ø) (ক,Ø,◌্) (র,i,Ø)
+ o > ঠুkির [Thuk_ri] + o > ঠুkিরo [Thuk_rio].

3.2 Noun

Noun is simpler in terms of inflected token forma-
tion. Zero or more inflections are applied to noun
stem to form the token. Nouns are inflected based
on number (singular, plural), article and case [kā-
raka] (nominative, accusative, instrumental, dative,
ablative, genitive, locative and vocative). Unlike
verbs, stems are not affected when inflections are
applied. The inflections applicable to noun is a dif-
ferent set than verb and the number of such inflec-
tions also less in count than that of verb.

Example: বািড়টারi [baarhiTaarai] < বািড় [baarhi]
(stem) + টা [Taa] (inflection representing article) +
র [ra] (inflection representing genitive case) + i [i]
(inflection representing emphasis), মানষুগেুলােক
[maanushhaguloke] < মানষু [maanushha] (stem) +
গেুলা [gulo] (inflection representing plural number) +
েক [ke] (inflection representing accusative case) etc.

3.3 Pronoun

Pronoun is almost similar to noun. However, there
are some pronoun specific inflections, which are
not applicable to noun. These inflections represent
location, time, amount, similarity etc.

66

Example: েসথা [sethaa] < েস [se] (stem) + থা [thaa]
(inflection representing location). This inflection is
not applicable to nouns.

Moreover, unlike noun, a pronoun stem may
have one or more post-inflection forms.

Example: stem আিম [aami] becomes আমা [aamaa]
(আমােক < আমা + েক) or েমা [mo] (েমােদর < েমা + েদর) once
inflected.

3.4 Other Parts of Speeches

Other POSs in Bengali behave like noun in their
inflected forms albeit the number of applicable
inflections is much less comparing to that of noun.

Example: ে তম [shreshhThatama] < ে
[shreshhTha] (adjective stem) + তম [tama] (inflec-
tion representing superlative degree), মেধয্ [madhye]
< মধয্ [madhya] (post-position stem) + ে◌ [e]
(inflection) etc.

4 Design

4.1 Context

As we identified in the previous section, the impact
of inflections on stem are different for different
POSs. Also the applicable list of inflections varies
a lot among the POSs. Hence, if the system is POS
aware, it will be able to generate more accurate
result. This can be achieved by sending POS
tagged text to the stemmer system, which will ap-
ply POS specific rules to discover stems. This
proposition is quite viable as statistical POS tag-
gers like TnT (Brants, 2000) are available.

The context of the proposed system is provided
below:

Figure 1: Context of Proposed Stemmer

4.2 Inflection Rule Observations

To discover the rules, we took the help of the
seminal work by Chatterji (1939). For this work
we limited our study within traditional and stan-
dard colloquial styles (dialects) of Bengali. For
each of the POSs, we prepared the list of applica-
ble inflections considering these dialects only. We

studied these inflections and inflected tokens and
framed the rules inspired by the work of Porter
(1981). We had following observations:

1. To find out the stem, we need to replace the
inflection with empty string in the word token.
Hence all rules will take the following form:
 <inflection> → ""

2. For rules related to verbs, the conditionals are
present but they are dependent on the o-syllables
instead of 'm' measure, as defined and described in
Porter (1981).

3. For pronouns the inflection may change the
form of the stems. The change does not follow any
rule. However, the number of such changes is
small enough to handle on individual basis instead
of formalizing it through rules.

4. A set of verb stems, which are called incom-
plete verbs, take a completely different form than
the stem. Such verbs are very limited in number.
Examples: যা [Jaa] (েগলাম [gelaam] etc. are valid
tokens for this verb), আs (eলাম [elaam] etc. are
valid tokens), আছ্ [aachh_] (থাকলাম [thaakalaam],
িছল [chhila] etc. are valid tokens)

5. For non-verb POSs, there is no conditional.
6. Multiple inflections can be applied to a token.
7. The inflections may suggest mutually contra-

dictory results. As for example token েখিল [kheli]
can be derived by applying two legitimate inflec-
tions িল [li] and ি◌ [i] on two different stems খা
[khaa] and েখl [khel_] respectively. Finding out the
correct stem can be tricky.

8. Because of contradictory rules and morpho-
logical similarities in different stems there will be
ambiguities.

Tagged
Text

Plain Text Stemmed Text

POS Tagger Stemmer

4.3 Analysis and Design Decisions

Based on the observations above we further ana-
lyzed and crafted a few design decisions, which are
documented below:

POS Group Specific Inflection Sets: It is ob-
served that multiple POSs behave similarly while
forming inflected word tokens. We decided to
group them together and keep a set of inflections
for each such group. By separating out inflection
sets, we are minimizing the ambiguity.

We identified following inflection sets based on
the tagset developed by IIIT Hyderabad for Indic
languages. The tags not mentioned in the table be-
low do not have any inflected forms. Size indicates
the number of inflections found for that set.

67

Set Comment Size
IN The inflection set for noun group. It

covers NN, NNP, NVB, NNC and
NNPC tags.

40

IP The inflection set for pronoun group.
It covers PRP and QW tags. This is a
superset of IN.

54

IV The inflection set for verb group. It
covers VFM, VAUX, VJJ, VRB and
VNN tags.

184

IJ The inflection set for adjective
group. It covers JJ, JVB, QF and
QFNUM tags.

14

IR The inflection set for adverb, post-
position, conjunction and noun-
location POSs. It covers RB, RBVB,
PREP, NLOC and CC tags.

6

Table 2: POS Groups

Pronoun – Post-inflection vs. Actual Stem
Map: For pronoun we decided to keep a map of
post-inflection stems and actual stems. After in-
flection stripping, this map will be consulted to
discover the stem. Since number of pronouns in
Bengali is limited in number, this approach will
provide the most effective and performance
friendly mechanism.

Verb – Morphological Rules: Based on obser-
vation 2, we further studied the verb POS and iden-
tified four classes of stems that exhibits own char-
acteristics of morphological changes when inflec-
tions are applied. These classes can be identified
for a stem σ based on the following two meas-
ures:

n = |σ| and
2

n

j
j

cλ
=

= ∑

where cj is the number of consonants in j-th o-
syllable of the stem.

Class Identification Characteristics
I If n = 1. Example: খা [khaa], েদ [de] etc.
II If n > 1 and the n-th o-syllable has halant

as diacritic mark. Only this class of verb
stems can have halant at the last o-
syllable. Example: কr, িশখ্ [shikh_] etc.

III If n > 1, λ = 1 and vowel of the n-th o-
syllable is 'আ'. Example: করা, িশখা [shik-
haa], েদৗড়া [dourhaa] etc.

IV If n > 1, λ > 1 and vowel of the n-th o-

Class Identification Characteristics
syllable is 'আ'. Example: আট্কা, ধmকা
[dham_kaa] etc.

Table 3: Verb Stem Classes

Since the verb inflections may affect the stems
by changing the vowels of first and last o-syllable,
a rule related to verb inflection is presented as a 5-
tuple:

(L1, R1, Ln, Rn, i)
where

• L1 is the vowel of the first o-syllable of post-
inflection stem

• R1 is the vowel of the first o-syllable of ac-
tual stem

• Ln is the vowel of the last (n-th) o-syllable of
post-inflection stem

• Rn is the vowel of the last (n-th) o-syllable of
actual stem

• i is the inflection
The vowels are always presented in their inde-

pendent form instead of maatraa. This is because,
we are going to apply these rules in the context of
o-syllables, which can deterministically identify,
which form a vowel should take. However, for in-
flection, we decided to differentiate between de-
pendent and independent forms of vowel to mini-
mize the ambiguity.

As for example, for the token ঠুk িরo, inflection is
o, post-inflection stem is ঠুk ির, and the actual stem
is েঠাk রা. Hence the rule for this class IV verb will
be (u, o, i, আ, o).

Absence of an element of the 5-tuple rule is rep-
resented by 'Ø'. Example: for token েখেয় [kheye],
which is derived from stem খা, a class I verb stem;
the rule will be (e, আ, Ø, Ø, েয়).

After completion of analysis, we captured 731
such rules. The distribution was 261, 103, 345 and
22 for class I, II, III & IV combined and IV respec-
tively.

Map for Incomplete Verbs: For incomplete
verbs, we decided to maintain a map. This data
structure will relate the tokens to an imaginary to-
ken, which can be generated from the stem using a
5-tuple rule. Taking the example of token েগলাম,
which is an inflected form of stem যা, will be
mapped to েযলাম [Jelaam], which can be generated
by applying rule (e, আ, Ø, Ø, লাম). The system
will consult this map for each input verb token. If

68

it is found, it will imply that the token is an incom-
plete verb. The corresponding imaginary token will
be retrieved to be processed by rules.

Recursive Stem Discovery Process: Since mul-
tiple inflections can be applied to a token, we de-
cided to use a stack and a recursive process to dis-
cover the inflections and the possible stems for a
token. However, we do special processing for verb
tokens, which cannot have more than two inflec-
tions attached at a time and require extra morpho-
logical rule processing.

Ranking: Since there will be ambiguity, we de-
cided to capture all candidate stems discovered and
rank them. The client of the system will be ex-
pected to pick up the highest ranked stem.

Our observation was – stems discovered by
stripping a lengthier inflection are more likely to
be correct. We decided to include the o-syllabic
length of the inflection as a contributing factor in
rank calculation.

Additionally, for verb stems, the nature of the 5-
tuple rule will play a role. There is a degree of
strictness associated with these rules. The strict-
ness is defined by the number of non-Ø elements
in the 5-tuple. The stricter the rule, chances are
more that the derived stem is accurate.

Taking an example – token েখেয় [kheye] can be
derived from two rules: খা [khaa] + েয় [ye] is de-
rived from (e, আ, Ø, Ø, েয়) and খা [khaay_]+ ে◌ [e]
is derived from (Ø, Ø, Ø, Ø, ে◌). Since rule (e, আ,
Ø, Ø, েয়) is stricter, খা should be the correct stem,
and that matches with our knowledge also.

Let τ be a token and σ is one of the candidate
stem derived from inflection ω.

For non-verb cases the rank of σ will be:
Rσ ω=

For verb, the strictness of the rule that generated
σ has to be considered. Let that rule be

1 1(, , , ,)n nL R L R iρ =
The strictness can be measured as the number of

non-Ø elements in the 5-tuple. Element i always
demands an exact match. Moreover, (L1, R1) and
(Ln, Rn) always come in pair. Hence the strictness
Sρ of rule ρ can be calculated as

1 n

1 n

1 n

1 n

1, if L L
2, if L L
2, if L = L
3, if L L

and
S

and
and

ρ

φ

Hence for verb stems the rank of σ will be:
R Sσ ρω= +

Overchanged Verb Stems and Compensation:
Because of the rule strictness ranking some verb
stems might be overchanged. As for example, to-
ken েভজালাম [bhejaalaam] is an inflected form of
stem েভজা [bhejaa]. This is a class III stem. There
are two relevant rules ρ1 = (Ø, Ø, Ø, Ø, লাম) and ρ2
= (e, i, Ø, Ø, লাম) which identifies the candidate
stems েভজা and িভজা [bhijaa] respectively. Since the
ρ2 has higher strictness, িভজা will rank better, which
is wrong.

This type of situation only happens if the ap-
plied rule satisfies following condition:

(L1, R1) χ ((i, e), (e, i), (u, o), (o, u)).
This effect comes because the verbs with first
vowel of these pairs at first o-syllable exhibits
morphologically similar behaviour with such verbs
for the last vowel of the pair once inflected.

িশখা and েভজা are example of such behaviour.
With inflection লাম, both of them produce similar
morphological structure (েশখালাম [shekhaalaam] and
েভজালাম) even though their morphology is different
at their actual stem.

To compensate that, we decided to include a
stem to the result set without changing the first o-
syllable, with same calculated rank, once such rule
is encountered. Going back to example of েভজালাম,
even though we identified িভজা as the stem with
highest rank, since ρ2 satisfies the above condition,
েভজা will be included with same rank as compensa-
tion.

Dictionary: To reduce ambiguity further, we
decided to introduce a stem dictionary, which will
be compared with potential stems. If a match
found, the rank of that stem will be increased with
a higher degree, so that they can take precedence.

Bengali word can have more than one correct
spelling. As for example, জnম [jan_ma] and জn
[janma] are both correct. Similarly, গজর্ া [garjaa]
and গr জা [gar_jaa], বrষা [bar_shhaa] and বষর্া [bar-
shhaa] etc.

To take care of the above problem, instead of
exact match in the dictionary, we decided to intro-
duce a quantitative match measure, so that some
tolerance threshold can be adopted during the
search in the dictionary.

φ φ
φ φ
φ φ

= =⎧
⎪ ≠ =⎪= ⎨ ≠⎪
⎪ ≠ ≠⎩

Edit-distance measure (Levenshtein, 1966) was
a natural choice for this. However direct usage of

69

this algorithm may not be useful because of the
following. For any edit operation the cost is always
calculated 1 in edit-distance algorithm. This may
mislead while calculating the edit-distance of a
pair of Bengali tokens. As for example: The edit-
distance for (বষর্া, বr ষা) and (বষর্া, বশর্া [barshaa])
pairs are same, which is 1. However, intuitively we
know that বr ষা should be closer to বষর্া than বশর্া.

To address the above problem we propose that
the edit cost for diacritic marks, halant and de-
pendent vowel marks should be less than that of
consonants or independent vowels. Similarly, edit
cost for diacritic marks and halant should be less
than that of dependent vowel marks.

Formally, let VO, CO, VS and DC be the set of
vowels, consonants, dependent vowel signs and
diacritic marks (including halant) in Bengali al-
phabet.

We define the insertion cost Ci and deletion cost
Cd of character γ as:

1, if () or ()
0.5, if ()

() ()
0.25, if ()
0, otherwise

i d

CO VO
VS

C C
DC

γ γ
γ

γ γ
γ

∈ ∈⎧
⎪ ∈⎪= = ⎨ ∈⎪
⎪⎩

We also define the substitution cost Cs of char-
acter γ1 by character γ2 as:

1 2
1 2

1 2

0, if ()
(,)

((), ()), otherwises
i i

C
Min C C

γ γ
γ γ

γ γ
=⎧

= ⎨
⎩

We refer this modified distance measure as
weighted edit-distance (WED) hereafter.

Going back to the previous example, the WED
between বষর্া and বশর্া is 1 and between বষর্া and বr ষা
is 0.25. This result matches our expectation.

We proposed that the discovered stems will be
compared against the dictionary items. If the WED
is below the threshold value θ, we enhance the
previous rank value of that stem.

Let D = (w1, w2, ... wM) be the dictionary of size
M. Let us define ση for stem σ as below:

1
(, ((,)))

M

kk
Min Min WED wση θ σ

=
=

The modified rank of σ is:
100() , if is verb

100() , otherwise

S
R

σ
ρ

σ
σ

θ ηω
θ

θ ηω
θ

−⎧ + +⎪⎪= ⎨ −⎪ +
⎪⎩

The match score is raised by a factor of 100 to
emphasise the dictionary match and dampen the
previous contributing ranking factors, which are
typically in the range between 0 - 20.

5 System Architecture

The proposed system structure is provided below
using Architecture Description Standard notation
(Youngs et. al., 1999):

«system»
POS Tagger

StemmingEngine

OrthosyllableHandler

«stack»
InflectionTracker

«set»
InflectionSets

«map»
PostinflectionPronouns

«map»
IncompleteVerbs

«set»
Lexicon

Stemmer system boundary

«table»
VerbRules

Figure 2: Stemmer Architecture
The components of the system are briefly de-

scribed below:
StemmingEngine: It receives a tagged token

and produces a set of candidate stems with their
assigned ranks and associated inflection.

OrthosyllableHandler: This component is re-
sponsible for converting a token into o-syllables
and vice-versa. It also allows calculating the WED
between two Bengali tokens.

InflectionTracker: While discovering the in-
flections recursively, this stack will help the
Stemming Engine to keep track of the inflections
discovered till now.

InflectionSets: Contains the POS group specific
inflection sets (IN, IP, IV, IJ and IR).

PostinflectionPronouns: A map of post-
inflection pronoun stems against their correspond-
ing actual stem form.

VerbRules: A table of 5-tuple verb rules along
with their verb stem class association.

σ

IncompleteVerbs: A map of incomplete verb
tokens against their formal imaginary forms.

Lexicon: The dictionary where a discovered
stem will be searched for rank enhancement.

As presented, the above design is heavily de-
pendent on persisted rules, rather than hard-coded

70

logic. This will bring in configurability and
adaptability to the system for easily accommodat-
ing other dialects to be considered in future.

The high level algorithm to be used by the Stem-
mingEngine is provided below:

global stems;

Stem(token, pos) {

Search(token, pos);
return stems;

}

Search(token, pos) {
if (pos is verb and token χ IncompleteVerbs)
 token ← IncompleteVerbs[token];

for (i = 1; i < token.length; i++) {
 candidate ← first i characters of token;
 inflection ← remaining characters of token;

 if (inflection ϖ InflectionSets)
 continue;

 if (pos is verb) {
 if (inflection is representing emphasis or negation) {
 InflectionTracker.push(inflection);
 Search(candidate, pos);
 InflectionTracker.pop(inflection);
 }

 class ← verb stem class of candidate;

 for each matching rule R in VerbRules for
 candidate and class {
 modify candidate by applying R;
 a ← inflection + inflections in InflectionTracker;
 r ← rank of the candidate based on |inflection|,
 strictness of R and match in Lexicon;
 Add candidate, a and r to stems;

 if (R is an overchanging rule)
 Modify candidate by compensation logic;
 Add candidate, a and r to stems;
 } // for each
 } // if pos is verb
 else {
 a ← inflection + inflections in InflectionTracker;

 if (pos is pronoun and
 candidate χ Postinflection Pronouns) {
 candidate ← PostinflectionPronouns[candidate];
 }

 r ← rank of the candidate based on |inflection|
 and match in Lexicon;
 Add candidate, a and r to stems;

 if (inflection != "") {
 InflectionTracker.push(inflection);

 Search(candidate, pos);
 InflectionTracker.pop(inflection);
 }
 } // else
} // for

}

6 Evaluation

Based on the above mentioned approach and de-
sign, we developed a system using C#, XML
and .NET Framework 2.0. We conducted the fol-
lowing experiment on it.

The goal of our experiment was to calculate the
level of accuracy the proposed stemmer system can
achieve. Since the system can suggest more than
one stems, we sorted the suggested stems based on
ranking in descending order and picked up the first
(s'i) and the next (s''i) stems. We compared these
stems against truthed data and calculated the accu-
racy measures A' and A'' as below:

Let T = (t1, t2, ... tN) be the set of tokens in a cor-
pus of size N, S = (σ1, σ2, ... σN) be the set of
truthed stems for those tokens. Let s'i and s''i be the
best and second-best stems suggested by the pro-
posed stemmer system for token ti. Then we define

1
'()

'

N

i
f i

A
N

==
∑

, where i i1, if = s'
'()

0, otherwise
f i

σ⎧
= ⎨

⎩
and

1
''()

''

N

i
f i

A
N

==
∑

, where i i1, if (s' , s'')
''()

0, otherwise
f i

σ ∈⎧
=⎨

⎩
i

A' and A'' will be closer to 1 as the system accu-
racy increases.

Initially we ran it for three classic short stories
by Rabindranath Tagore1. Since the proposed sys-
tem accuracy will also depend upon the accuracy
of the POS tagger and the dictionary coverage, to
rule these factors out we manually identified the
POS of the test corpus to emulate a 100% accurate
POS tagger and used an empty dictionary. Apart
from calculating the individual accuracies, we also
calculated overall accuracy by considering the
three stories as a single corpus:

1 iঁদেুরর েভাজ [i`ndurer bhoj], েদনাপাoনা [denaapaaonaa],
and রামকানাiেয়র িনবুর্িdতা [raamakaanaaiyer nirbuddhitaa]
respectively

71

Corpus N A' A''
RT1 519 0.888 0.988
RT2 1865 0.904 0.987
RT3 1416 0.903 0.999
Overall 3800 0.902 0.992

Table 4: Accuracies for Short Stories by Tagore

As shown above, while A'' is very good, A' is
also quite satisfactory. We could not compare this
result with other similar Bengali stemmer systems
due to unavailability. The closest stemmer system
we found is the Hindi stemmer by Ramanathan et.
al. (2003). It did not use a POS tagger and was run
on a different corpus. The recorded accuracy of
that stemmer was 0.815.

To check whether we can further improve on A',
we introduced lexicon of 352 verb stems, ran it on
the above three pieces with θ = 0.6 to tolerate
only the changes in maatraa and diacritic mark.
We calculated A' for verbs tokens only with and
without lexicon scenarios. We received the follow-
ing result:

0.969

0.997

0.955

0.973

0.957

0.907

0.9900.991

0.860

0.880

0.900

0.920

0.940

0.960

0.980

1.000

RT1 (Verb) RT2 (Verb) RT3 (Verb) Overall

A
c
c
u

ra
c
y

A' (w/o Lexicon) A' (w/ Lexicon)

Figure 3: Comparison of Accuracies with and

without Verb Lexicon

Above graph suggests that a lexicon can im-
prove the accuracy significantly.

7 Conclusion

This paper proposed a system and algorithm for
stripping inflection suffixes from Bengali word
tokens based on a rule-based approach. The con-
ducted experiments produced encouraging results.

Currently, our work is limited to the traditional
and standard colloquial dialects of Bengali. Future
works can be carried out to include other dialects
by including more inflections in the respective data
structure of this system.

The system suggests a set of ranked stems for a
word token. The client of this system is expected to

choose the highest ranked stem. This can be mis-
leading for some of the cases where tokens derived
from different stems share low or zero edit-
distance among each other. As for example, when
the verb token েখিল can be derived from both খা and
েখl, the system will suggest খা over েখl.

This problem can be addressed by taking hints
from word sense disambiguation (WSD) compo-
nent as an input. Further studies can be devoted
towards this idea. Moreover, a blend of rule-based
and statistical approaches may be explored in fu-
ture to improve the resultant accuracy of the stem-
mer.

While input from POS tagger helped to achieve
a good performance of this system, it is yet to be
studied how the system will perform without a
POS tagger.

References
S. Chatterji. 1939. Bhasha-prakash Bangla Vyakaran.

Rupa & Co. New Delhi, India

M. F. Porter. 1980. An algorithm for suffix stripping.
Program 14(3):130-137.

U. Garain and A. K. Datta. 2005. An Approach for
Stemming in Symbolically Compressed Indian Lan-
guage Imaged Documents. Proceedings of the 2005
Eight International Conference on Document Analy-
sis and Recognition (ICDAR’05). IEEE Computer
Society

P. Majumder, M. Mitra, S. Parui, G. Kole, P. Mitra, and
K. Datta. 2006. YASS: Yet Another Suffix Stripper.
ACM Transactions on Information Systems.

T. Brants . 2000. TnT: a statistical part-of-speech tag-
ger. Proceedings of the sixth conference on Applied
natural language processing: 224-231. Morgan Kauf-
mann Publishers Inc. San Francisco, CA, USA

V. I. Levenshtein. 1966. Binary codes capable of cor-
recting deletion, insertions and reversals. Cybernet-
ics and Control Theory, 10:707-710.

R. Youngs, D. Redmond-Pyle, P. Spaas, and E. Kahan.
1999. A standard for architecture description. IBM
System Journal 38(1).

A. Ramanathan and D. D. Rao. 2003. A lightweight
stemmer for hindi. In Proc. Workshop of Computa-
tional Linguistics for South Asian Languages -
Expanding Synergies with Europe, EACL-2003: 42–
48. Budapest, Hungary.

72

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 73–80,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Finite State Solutions For Reduplication In Kinyarwanda Language

Jackson Muhirwe
Makerere University

Ugandaj muhirwe@cit.mak.ac.ug

Trond Trosterud
University of Troms

t rond.trosterud@hum.uit.no

Abstract

Reduplication, the remaining problem in
computational morphology is a morpholog-
ical process that involves copying the base
form wholly or partially. Reduplication can
also be classified as either bounded or un-
bounded reduplication. Some solutions have
been proposed for bounded reduplication.
Some of the proposed solutions use ordered
replace rules while others use simultaneous
two-level rules. In our attempt to solve both
bounded and unbounded reduplication we
used a combination of two-level rules and
replace rules. All our experiments were
are carried out on Kinyarwanda an under-
resourced language with complex agglutina-
tive morphology.

1 Introduction

Reduplication is known to many computational mor-
phologists as the remaining problem. Unlike con-
catenative morphology, which involves concatena-
tion of different components to create a word, redu-
plication involves copying. Reduplication is there-
fore non-concatenative, and involves copying of ei-
ther the whole word or part of the word. The redupli-
cated part of the word could be a prefix or part of the
stem or even a suffix. This copying is what makes
reduplication an outstanding problem. Depending
on the language, reduplication may be used to show
plurality, iterativity, intensification or completeness
(Kimenyi, 2004). Some of the notable examples
of reduplication in computational morphology that

have been reported include Kinande, Latin, Bam-
bara (Roark and Sproat, 2007); Tagalog and Malay
(Beesley and Karttunen, 2003; Antworth, 1990). In
these cases, one language may be exhibiting full
stem reduplication while another may be exhibiting
partial stem reduplication (Syllable).

Reduplication may generally be divided into two:
bounded and unbounded. Bounded reduplication is
the kind that involves just repeating a given part
of the word. Unbounded reduplication differs from
bounded reduplication in that bounded reduplication
involves copying of a fixed number of morphemes.
Unbounded reduplication is considerably more chal-
lenging to deal with compared with bounded redu-
plication. Unbounded reduplication has received lit-
tle attention from researchers no wonder it is yet
to be fully solved (Roark and Sproat, 2007). In
principle, finite state methods are capable of han-
dling bounded reduplication, and here some solu-
tions have been proposed. In this paper we present
our attempt to solve both bounded and unbounded
reduplication in Kinyarwanda a typical Bantu lan-
guage. Kinyarwanda is the national and official lan-
guage of Rwanda. It is closely related to Kirundi
the national language of Burundi. It is the mother
tongue of about 20 million people living in the
great lakes region of East and Central Africa. Kin-
yarwanda is a less privileged language characterised
by lack of electronic resources and insignificant
presence on the Internet. The language has an offi-
cial orthography where tones, long vowels and con-
sonants are not marked. Kinyarwanda is agglutina-
tive in nature, with complex, mainly prefixing mor-
phology. Verb forms may have slots of up to 20 af-

73

fixes to be attached to the root on both sides: left
and right. Reduplication is a common feature and
generally all verbs undergo some form of redupli-
cation. Adjectives and adverbs tend to undergo full
word reduplication, as we shall see in section 2.

2 Kinyarwanda Reduplication

Kinyarwanda exhibits full word reduplication, full
stem reduplication and partial stem reduplication or
syllable reduplication. Full word reduplication in-
volves copying of the whole word, this phenomenon
has been observed mainly in adjectives and adverbs.
Full stem reduplication involves copying a full stem
of either a verb or a noun. Part of a stem is copied
in partial stem reduplication. To a large extent this
copying is uniform (the large number of example
given below show that) but there are also cases of
un uniformity. There are cases when a nasal (n or m)
and an associative morpheme is inserted between the
copied morpheme and its base form. Kinyarwanda
language exhibits also cases of suffix reduplication
attested mainly in verb extensions which are not
considered in this paper.

For our discussion in this section we shall look at
full word reduplication full stem reduplication and
partial stem reduplication will be considered last.

For readers with an orientation towards theo-
retical linguistics we shall categorise our exam-
ples according to whether they are lexical or gram-
matical, but for implementation purposes this will
not be considered. Lexical reduplication is con-
cerned with words that may appear in the dictio-
nary. Reduplicated words may appear in a dictio-
nary as distinct words from the original word which
underwent reduplication. Grammatical reduplica-
tion is concerned with words or sentences that are
reduplicated based on grammatical rules. For in-
stance, only monosyllabic verbs are reduplicated, bi-
syllabic and polysyllabic are never reduplicated (Ki-
menyi, 2004).

2.1 Full Word Reduplication

All adjectives, adverbs and numerals may undergo
full word reduplication. In this case, the complete
word is copied to form a new word.

Adjectives
munini”big” > muninimunini ”big”

muto”small” > mutomuto ””small /young”
mashya”new” > mashyamashya ”very new”

Adverbs
vuba”fast” > vubavuba ”very fast”
buhoro”slowly” > buhorobuhoro ”very slowly”
buke”little” > bukebuke ”very little”

Numerals
rimwe ‘’one’ rimwerimwe ’one by one or once in a
while’
kabiri ’two’ kabirikabiri ’two by two’
gatatu’three’ gatatugatatu ’three by three’

2.2 Full Stem Reduplication

This involves reduplication of the whole stem result-
ing in a new word with a different meaning from
its parent. This kind of reduplication has been ob-
served in both verbs and nouns and can be both at
lexical and grammatical level. Formally, it differs
from word reduplication in that the verb and noun
class prefix does not participate in the reduplication,
whereas word reduplication reduplicates the class
prefix as well, cf.ka-birika-biri vs. gu-taga=taga.

Verbs differ from nouns in that all verbs may be
reduplicated. In many cases, the resulting redupli-
cated verb keeps the same basic meaning, but adds
iterativity , continuity, etc. In other cases, the re-
sult is a change in meaning. For nouns, the situation
is different. Here, reduplication is semantically re-
stricted to meaning ”kind of”, ”associated to”, and
only a subset of the nouns undergo reduplication.

In our transducer, we open for reduplication for
all verbs, whereas reduplicating nouns are singled
out as a separate group in the lexicon.

In all the verb cases we see iterativity, continu-
ity of events or an activity done many times. In the
noun examples it may be noticed that reduplication
refers to the description of an object, to what an ob-
ject does, or to an association based upon the origi-
nal meaning.

2.2.1 Grammatical Reduplication

The examples given below mainly concern lexical
reduplication. Grammatical reduplication involves
reduplication of existing word forms, thereby form-
ing new words with different meanings. Grammat-
ical reduplication may be realized at word level or

74

at sentence level. Here we shall consider redupli-
cation at word level only; sentence level processes
are outside the scope of a morphological transducer.
The reader is advised to consult Kimenyi (1986) for
sentence level reduplication.

Also in this category it is the whole stem that is
reduplicated. Most of the examples belonging to this
category are of verb reduplication.

Examples include the following:
kugenda ”to walk” > kugendagenda ”to walk
around”
kubunda ”to bend” > kubundabunda ”to walk
bending”
kubumba”to mould” > kubumbabumba ”to con-
tinue moulding”
guhonda”to knock” > guhondahonda ”to knock
repeatedly”

Notice from the examples above that this type of
reduplication is limited to two-syllable stems, and
most of these verbs end with a nasal clusterNC.
Two syllable verbs referring to continuous events
are never grammatically reduplicated, e.g gukunda
”to love”, kwanga ”to hate” guhinga ”to cultivate”.
They may undergo lexical reduplication, though. So,
in an analysis invoking semantic disambiguation, tri-
syllabic reduplicated verbs will be discarded as can-
didates for grammatical reduplications.

2.3 Partial Stem Reduplication

In this case the initial reduplicated syllable has the
form CV , V C or CV N .

Verbs
kujejeta ”to drop /leak”
gusesera ”to go through a fence with a bent back”
kubabara ”to fill pain”
kunyunyuza ”to suck”

Nouns
iseseme”nausea”
ingegera ”crook”
umururumba”greed”
ibijojoba ”rain drops”

2.4 Unbounded Reduplication

This is still a challenge, and it involves two cases
in Kinyarwanda, nasal insertion and the insertion of

the associative between the reduplicates.

2.4.1 Nasal Insertion

These cases may be few but they do exist. The
majority of the cases are verbs. Few nouns exhibit
this kind of behaviour.

Verbs
gutontoma”to make pig’s noise”
kuvumvura ”to talk (insulting)”
gutantamura”to tear up”

Nouns
igipampara ”a useless thing”

2.4.2 Associative insertion

Associative insertion has mainly been observed in
demonstratives when they reduplicate. An associa-
tive infix such asna ”and” andnga”such and such”
is inserted between the reduplicates.

Demonstratives
uyunguyu ”this one”, abangaba ”these ones”
ahangaha”Here”, ahanaha ”such and such a place”
ikiniki ”this and this one”.

3 The proposed approach

In order to handle the different issues presented
above we used a hybrid approach. The hybrid ap-
proach is a combination of two-level rules and re-
place rules. These two formalisms represent the
state of the art and practice in computational mor-
phology. The two formalisms are powerful, well de-
signed and well understood.

3.1 Two-level Formalism

The two-level formalism has been the dominant
formalism in Computational Morphology since its
invention by Koskenniemi in 1983 (Koskenniemi,
1983). Since then the approach has been used to
develop morphological analysers for very many lan-
guages around the world, including the Bantu lan-
guage Swahili (Hurskainen, 1992). This formalism
has been the major motivation force behind renewed
interests in computational morphology since 1983.
The two-level formalism is based on two-level rules
which are applied to a lexicon to facilitate lexical
to surface level mappings. The two-level rules are
compiled either by hand (Antworth, 1990) or by ma-
chine (Karttunen, 1992) into finite state networks.

75

The rule network may now be applied to a lexi-
con that has been compiled into a finite state net-
work. A two-level based morphological analyser
is developed by composing the two-level rule net-
work with the lower side of the finite state lexicon
network. The two-level rules are symbol to symbol
rules which apply to the lexicon in parallel. The de-
veloper does not have to worry about the order of
the rules. The only problem is that rules tend to con-
flict. With computerised compilers, such conflicts
are no longer a problem. The compiler shows which
rules are conflicting, so that the developer can re-
solve them. The output from a two-level morpho-
logical analyser is never affected by the order of the
rules.

Two-level rules are generally of the form
CP OP LC RC
whereCP = Correspondence Part;OP = Operator;
LC = Left Context;RC = Right Context

There are four different kinds of rules that may be
used to describe morphological alternations of any
language.

1. a:b => LC RC. This rule states that lexical
//a// can be realized as surface b ONLY in the
given context. This rule is a context restriction
rule

2. a:b<= LC RC This rule states that lexical //a//
has to be realized as surface b ALWAYS in the
given context. This rule is a surface coercion
rule.

3. a:b <=> LC RC this is a composite rule
which states that lexical //a// is realized as sur-
face be ALWAYS and ONLY in the given con-
text.

4. a:b /<= LC RC This is an exclusion rule that
states that lexical //a// is never realized as sur-
face //b// in the given context.

These rules may be compiled into finite state ac-
ceptors either by hand or automatically using one of
the available Two-level rule compilers. For the pur-
pose of this research we used the Xerox Finite State
Tools.

3.2 Replace Rules

On the other hand the replace rules were introduced
by Karttunen in 1995 motivated by the rewrite rules
model developed by Kay and Kaplan (1994). Re-
place rules were easily accepted by computational
linguistics because that is how linguistics has been
done every where. It was so natural for linguistics to
take up this formalism.

The replace rules are regular expressions that
make it possible to map the lexical level strings to
surface level strings. Replace rules have been very
popular in Computational Morphology and have
been used to develop many morphological analysers.

Replace rules are compiled into a finite state net-
work and this network is applied to the lower side
of the lexicon network to map the lower level strings
to the surface level strings. It is worthy noting that
replace rules are feeding rules and therefore apply
in a cascade. Each rule uses the result of the pre-
ceding rule. Because of this, a linguist writing lan-
guage grammar using replace rules notation must
order rules in a proper way, otherwise the results
may not be right. For implementation purposes, re-
place rules have one clear advantage over two-level
rules. They can map symbols to symbols; symbols
to strings; strings to symbols; and strings to strings.
Replace rules are very handy when it comes to writ-
ing string to string mappings. In this case you write
only one rule instead of the many rules you would
otherwise have to write while using two-level rules.
Replace rules take the following four forms:

Unconditional replacement

A -> B

Unconditional parallel replacement (Several rules
with no contexts)

A1 -> B1, A2 -> B2, An -> Bn

Conditional replacement. (One rule with contexts)

UPPER -> LOWER || LEFT _ RIGHT

Conditional parallel replacement.

UPPER1 -> LOWER1 ||
LEFT1 _ RIGHT1 ,, UPPER2 -> LOWER2 ||
LEFT2 _ RIGHT2,,..,,UPPERn -> LOWERn ||
LEFTn _ RIGHTn

76

3.3 Comparison of the two Formalisms

• Replace rules are organised vertically in a cas-
cade and feed each other. Two-level rules, on
the other hand side, are organised horizontally
and apply in parallel.

• Because replace rules are feeding rules, they
must be properly ordered. Order is not impor-
tant in two-level rules and would not affect the
output.

• Replace rules conceptually produce many in-
termediate levels when mapping from lexical to
surface level.

• Since two-level rules apply simultaneously,
there is no ordering problem. The only prob-
lem that arises are conflicts that the linguist
must deal with. But as we said earlier, this
is no longer a problem since current two-level
compilers can detect the rule conflicts and then
the grammar writer can deal with them accord-
ingly.

3.4 Towards a Hybrid Approach

As much as we have seen that these two formalisms
have differences, they all work very well and are
efficient at doing what they were designed to do.
Networks compiled from these two networks have
the same mathematical properties (Karttunen and
Beesley, 2005), and none of the formalisms can be
claimed to be superior over the other, per se. It is fur-
ther claimed that choosing between two-level rules
and replace rules is just a matter of personal choice.
This is true as far the general areas of application
of each of these rules are concerned. Our experi-
ence has shown that two-level rules are much easier
to learn and conceive how they work. This experi-
ence is also shared by Trosterud and Uibo who also
while working on Sami found it much easier to learn
two-level rules but again proposed that it would be
possible to combine both formalisms (Trosterud and
Uibo, 2005). Independently, Muhirwe and Barya
(2007) also found it easier to learn two-level rules
and they used them to develop their Kinyarwanda
Noun morphological analyser. Beesley and Kart-
tunen also realised that each one of these rules has
strong points and weak points. There are inci-
dences where it is much easier to use two-level rules

and there are other incidences where it is easier to
use replace rules over two-level rules (Beesley and
Karttunen, 2003). Let us look at an example to
strengthen our argument. In solving limited partial
stem reduplication in Tagalog, Antworth used two
level rules to model the solution. This same exam-
ple was repeated by Beesley and Karttunen (2003).
Efforts to rewrite the solution using replace rules re-
sulted in many rules. We used this approach to solve
the problem of partial reduplication in Kinyarwanda.

Alphabet %+:0 b c d f g h j k l m n
p q r s t v x y z a e i o u;
Sets
C = b c d f g h j k l m n p q r s t

v x y z;
V = a i e o u ;

Rules
"R for realisation as Consonant"
R:CC <=> _ E: %+: CC;
where CC in C;

"E realisation as vowel"
E:VV <=> _ %+: (C:) VV;
where VV in V;

Replace rules have an edge over two-level rules
when it comes to string to string mapping. When
the strings are of unknown length, two-level rules
cannot be applied, and we will have to use special
compilation routines from the xfst toolbox. In other
words, replace rules are more appropriate if the map-
ping requires replacement of a string, whereas two-
level rules are more appropriate when only symbols
are involved, and especially when sets of symbols
are involved. Based on this we decided to combine
the two approaches to take advantage of each for-
malism’s strength.

4 Implementation

At the onset, we wanted to solve three problems:
Full wordform reduplication (we will follow estab-
lished practice and refer to it as word reduplication),
stem reduplication and first syllable or partial stem
reduplication. Our hybrid approach was used as fol-
lows. We used the two-level rules to solve the prob-
lem they are best at solving: partial stem reduplica-
tions. Beesley and Karttunen’s compile-replace al-

77

gorithm was then used to handle full word and full
stem reduplication.

4.1 Full word and full stem Reduplication

The full word and full stem reduplication was han-
dled by use of the replace rules and the compile-
replace algorithm. The compile-replace algorithm
is based on the insight that any stringS can be
reduplicated using regular expressions of the form
{S}ˆ2. The central idea behind the application of
the compile-replace algorithm therefore is looking
for a way to enclose the stem with the delimiters{
and}ˆ2. This was done by enclosing the whole stem
with ˆ[{S}ˆ2ˆ] in the lexicon, and given a redupli-
cation context, the compile-replace algorithm is ap-
plied to the lower side of the lexicon network, dou-
bling the stem. When the reduplication context is
not present, the delimiters were simply deleted. As
an example, take a look at part of thelexc lexicon
below:

LEXICON Root
0:ˆ[{ AdjRoots;
0:ˆ[{ AdvRoots;

This continues to the adverb and adjective or to
any other sublexicon

LEXICON AdjRoots
kinini AdjSuff;
kito AdjSuff;
muto AdjSuff;

Lastly we can add the suffix

LEXICON AdjSuff
+Adjective:0 Redupli;

LEXICON Redupli
+Reduplic:}ˆ2ˆ] #;
%+unmarked:0 #;

After compiling the lexicon and applying the
compile-replace algorithm to the lower side, the al-
ternation rules can then be applied to constrain the
surface realisation of the reduplicated words. In this
case most of the surface alternation rules were writ-
ten using replace rules formalism.

4.2 Partial stem reduplication

The solution provided by Antworth in PC Kimmo
is a good solution to handling limited length redu-

plication. We therefore adapted this solution to pro-
vide a solution to first syllable reduplication in Kin-
yarwanda. The rules we used were presented in the
previous section. We used the two-level rules be-
cause of their convenience, but, as noted, one will
get the same result by using replace rules. These
two-level rules were compiled into a finite state net-
work and then intersected using the two-level com-
piler twolc. The rule network was then applied to
the lower side of the lexicon network to produce the
required output on the surface. In the lexicon we had
to include a feature that would interact with the rules
to cause reduplication:

Lexicon PSPrefix
[Redupli]:RE+ PVRoot;
Lexicon PVRoot
jeta VFinal;

In Kinyarwanda, the partial stem reduplication is
of three types,CV , V C and CV N reduplication.
We thus made three different templates, all modeled
upon the rule shown here.

4.3 Emerging Problems in Kinyarwanda
reduplication

The solution provided above for partial reduplica-
tion seemed to work very well until we tested the
results, and then we found that there were some in-
teresting challenges.

1. some stems reduplicate and cause insertion of a
nasal. For example /gu + kama/> /gukankama/
/gu + toma/> / gutontoma/

2. there were cases of complex consonants which
when present makes the reduplication problem
harder. Evan Antworth’s solution was for fixed
length CV reduplicates and it is in this case ren-
dered inefficient (Antworth, 1990). Examples
/gucyocyora/
/kunyunyuza/
/gushwashwanya/

3. when demonstratives reduplication, a presenta-
tive affix /nga/ is inserted in the middle of the
reduplicates

In order to solve the first challenge, we carried out
more negative tests and looked for cases of words
that were not recognized. Of these we identified

78

reduplicates where a nasal is inserted and we found
that such cases are not very frequent. The majority
of verbs and nouns undergo full stem reduplication,
for which the provided solution was adequate. The
remaining few undergo partial stem or first syllable
reduplication. There are also cases of stems that un-
dergo both full stem and partial stem reduplication,
but these were not a challenge at all. So our solution
to the nasal insertion challenge was to write a rule
that would insert a nasal between the reduplicating
prefix and the base stem.

[] -> n || _ [[t o m a] |
[k a m a] || [v u r a]]

The second problem involving complex conso-
nants was solved by representing each complex by
a multicharacter symbol that is not used in the lex-
icon. For example, in /kunyunyuza/ there is a com-
plex consonantny which is part of the reduplicate.
We represent all occurrences ofny with N and the
following rule will be applied lastly to effect the sur-
face realisation.

N -> ny

The third problem was solved by using replace rules.
The problem of reduplication of demonstratives was
partly solved by application of the compile-replace
algorithm and replace rules. We used a replace rule
to insert /nga/ in all the reduplicated demonstratives.

[] -> [n g a] || _ demo .#.

4.4 Evaluation and tests

The partial, full stem and full word reduplication
lexica were compiled and composed together in a fi-
nite state network. We applied the network of all the
rules described above for all the different issues to
the lower side of the lexicon network. We then car-
ried out tests for both analysis and generation. We
did both negative testing and positive testing. Pos-
itive involved testing the system on the words that
were part of the lexicon. These we found were all
correctly analysed. Below are some of the results:

apply up> ikigorigori
iki[CL7-SG]gori[stem_redupli][noun]
apply up> kugendagenda
ku[Inf]genda[stem_redupli][verb]
Demonstratives with nga insertion
aka[DEM-12][dem_redupli][Demonst]

akongako
ako[DEM-12][dem_redupli][Demonst]
Nasal insertion
gutontoma
ku[Inf][Redupli]toma[verb]
Complex consonants
kunyunyuza
ku[Inf][Redupli]Nuza[verb]
Full stem reduplication
gusomasoma
ku[Inf]soma[stem_redupli][verb]
Full word reduplication
muninimunini
munini+Adjective+Reduplic

Negative testing involved selecting words from
our untagged corpus of Kinyarwanda. Since these
words were not part of the lexicon, they were not
recognized and were then duly added to the lexicon.
Adding a new word to the lexicon is very easy since
it only involves identifying the reduplicating part of
the word and it is then added to the appropriate sub-
lexicon. This testing will be continued as we dis-
cover new reduplicated words.

The tests indicated above were manual tests. We
created another test set to be carried out automat-
ically. In this case we created a test file with about
100 known reduplicated forms of different word cat-
egories in Kinyarwanda. The results indicated that
the earlier problems due to unbounded reduplica-
tion: complex consonants, insertion of nasals and
the prefix /nga/ have now been fully solved.

5 Conclusion

The solutions provided in this paper have demon-
strated that existing extended finite state methods are
sufficient to handle all forms of reduplication in Kin-
yarwanda. The hybrid approach proposed in this pa-
per makes it easy to handle all forms of reduplication
problems attested in Kinyarwanda language. This
approach could also be used with other problems in
morphological analysis. The finite state developer
can solve morphological problems using the most
appropriate approach depending on whether what is
being replaced is a symbol or a string.

79

References

Antworth, E.,L. 1990.PC-KIMMO: a Two-level Proces-
sor for Morphological Analysis. No. 16 in Occasional
Publications in academic computing. Dallas: Summer
Institute of Linguistics.

Beesley, K. AND Karttunen L. 2003.Finite State Mor-
phology: CSLI Studies in Computational Linguistics.
Stanford University, CA: CSLI Publications.

Guthrie, M. 1971.Comparative Bantu. Vol. I-IV. Farn-
borough: Gregg International.

Hurskainen, A. 1992.A two-level computer formalism for
the analysis of Bantu Morphology an application to
SwahiliNordic journal of African studies 1(1): 87-119
(1992)

Karttunen, L., Kaplan, R., and Zaenen, A., (1992).Two-
level morphology with composition.Xerox Palo Alto
Research Center - Center for the Study of Language
and Information. Stanford University.

Karttunen, L. 1995.The replace Operator. Proceedings
of ACL-95, pp 16-23, Boston Massachusetts.

Karttunen, L., Beesley, K. R. 2005.Twenty-five years
of finite-state morphology. In Inquiries Into Words, a
Festschrift for Kimmo Koskenniemi on his 60th Birth-
day, CSLI Studies in Computational Linguistics. Stan-
ford CA: CSLI; 2005; 71-83.

Kay, M., Kaplan, R. 1994. Regular Models of Phonolog-
ical rule systems Computational Linguistics, Special
issue on Computational phonology, pg 331-378

Kimenyi, A. 1986.Syntax and semantics of reduplica-
tion: A semiotic account La LinguistiqueVol 22 Fasc
2/1986

Kimenyi, A. 2004.Kinyarwanda morphologyIn the In-
ternational Handbook for inflection and word forma-
tion vol2.

Koskenniemi, K. 1983.Two-level morphology: a gen-
eral computational model for word-form recognition
and production. Publication No. 11. University of
Helsinki: Department of General Linguistics.

Muhirwe, J. and V. Baryamureeba 2007. Towards Com-
putational Morphological Analysis for Kinyarwanda.
Proceedings of the 1st International conference on
Computer science and informatics,Feb 2007, Nairobi,
Kenya.

Roark, B and Sproat, R. 2007.Computational Ap-
proaches to Morphology and Syntax.Oxford Univer-
sity Press, in press.

Trosterud, T and Uibo, H. 2005.Consonant gradation
in Estonian and Smi: two-level solutionIn: Inquiries
into Words, Constraints and Contexts. Festschrift in
the Honour of Kimmo Koskenniemi 60th anniversary.
CSLI Publications 2005.

80

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 81–90,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Moham
Dep

Science, University of
Pe
Naveed_asadecp@yahoo.com

M. A.
Depa

Science, University of
shaw
m.abid6@gmail.com

Muhammad Aamir Khan
Depart

Science, University of
Peshawar, NWFP, Pakistan

bitvox@yahoo.com

An Optimal Order of Factors for the Computational Treatment of
Personal Anaphoric Devices in Urdu Discourse

mad Naveed Ali

artment of Computer

shawar, NWFP, Pakistan Pe

 Khan
rtment of Computer

ar, NWFP, Pakistan

ment of Computer

Abstract

Handling of human language by computer is a very
intricate and complex task. In natural languages,
sentences are usually part of discourse units just as
words are part of sentences. Anaphora resolution
plays a significant role in discourse analysis for
chopping larger discourse units into smaller ones.
This process is done for the purpose of better
understanding and making easier the further
processing of text by computer.

This paper is focused on the discussion of
various factors and their optimal order that play an
important role in personal anaphora resolution in
Urdu. Algorithms are developed that resolves
pronominal anaphoric devices with 77-80%
success rate.

1 Introduction

In written text, cohesion occurs when some
elements in a discourse are dependent on others
and that refer to items backward in the text, both in
the spoken or written text (Halliday and Hassan,
1976). Consider the following example

(1.1) Shah Rukh Khan is off to one of his
favorite cities- London, with his family. Now
he is looking for another destination, not so
much for holidaying though.

(The News Islamabad: June 2006)

(1.2) Bollywood actress Bipasha Basu has
been signed for her new film Corporate. She
is a single working woman, wants to get
somewhere in life, on her own terms.

(The News Islamabad: June 2006)

Cohesion in examples 1.1 and 1.2 is introduced
due to the terms he, his, her, she and interpretation
of these references depends upon some preceding
terms. These referring terms are called anaphors or
anaphoric devices (ADs). Halliday and Hassan
described anaphora as ‘cohesion which points back
to some previous items’ (Halliday and Hassan,
1976). The ‘pointing back’ words or phrases are
called the anaphors (Halliday and Hassan, 1976)
and the entities to which these point are called
antecedents and the procedure of determining the
antecedents of anaphors and subsequent
replacement in some particular discourse is called
anaphora resolution. According to Halliday and
Hassan when anaphors are replaced by their
corresponding antecedents, cohesion no more
exists. Personal anaphoric devices (ADs) are the
most widely used variety of ADs in Urdu text.
These are further classified as first person, second
person and third person anaphoric devices.
Examples of first person ADs are ،ميری، ميرا، ميں
 همارے هميں،،مجهے، مجهکو، هم، همارا، هماری، همکو
([mæIri], [mæIra], [mæñ], [mʊʤheI],
[mʊʤhkəƱ], [hΛm], [hΛmɒrɒ], [hΛmɒri],

[hΛmkəƱ], [hΛmeIñ], [hΛmɒreI]). Examples of
second person ADs are،تمهارا، تمهاری، تمکو تم،
 ,[tʊm]) آپ، آپکا، آپکی، آپکورے،تمهيں،تمها
[tʊmhɒrɒ], [tʊmhɒri], [tʊmkƏƱ], [tʊmheIñ],
[tʊmhɒreI], [a:p] [a:pkɒ], [a:pki],

[a:pkƏƱ]). Examples of third person ADs are ،وہ
 انکا، انکے، انکی، ان، اسکو، اسکے، اسکی، اسکا، اسے،
 ,[ʊski] ,[ʊskɒ] ,[ʊseI] ,[vәƱh]) انهيں
[ʊskeI], [ʊskƏƱ], [ʊn], [ʊnki], [ʊnkeI],
[ʊnkɒ], [ʊnheIñ]).

A lot of work has been done in English for the

purpose of anaphora resolution and various

81

algorithms have been devised for this
purpose (Aone and Bennette, 1996; Brenan ,
Friedman and Pollard, 1987; Ge, Hale and
Charniak, 1998; Grosz, Aravind and Weinstein,
1995; McCarthy and Lehnert, 1995; Lappins and
Leass, 1994; Mitkov, 1998; Soon, Ng and Lim,
1999). Work has also been done in South Asian
Languages such as Hindi and Malayalam for the
purpose of anaphora resolution (Prasad and Strube,
2000; Sobha, 1998). Prasad and Strube (2000)
worked on anaphora resolution in Hindi. Their
approach relies on the discourse salience factors
and is primarily inspired by the central idea of
Centering theory (Grosz, Aravind and Weinstein,
1995). Centering theory has also guided the
development of pronoun resolution algorithms,
such as the BFP algorithm (Brenan, Friedman and
Pollard, 1987) and the S-list algorithm developed
by Strube (Strube, 1998). Prasad and Strube (2000)
applied these algorithms to the resolution of
pronouns in Hindi texts. They showed that the BFP
algorithm cannot be successfully implemented for
pronoun resolution in Hindi. They argued that
better results can be obtained with an algorithm
that does not use the Centering notions of the
backward-looking center and the centering
transitions for the computation of pronominal
antecedents, such as the S-list algorithm (Prasad
and Strube, 2000). Prasad and Strube used well
established approaches for Hindi anaphora
resolution. Sobha (1998) used knowledge poor rule
based approach for reference resolution in Hindi
and Malayalam languages that stands on very
limited syntactic information. In Urdu language
very little work has been done on discourse level
especially in the field of anaphora resolution.
Although, most of the anaphoric devices in Urdu
and Hindi are same but the style and organization
of discourses are bit different that causes the
difference in anaphora resolution. Kulsoom et al
worked on Urdu anaphora resolution but it appears
to be the tip of an iceberg (Kalsoom and Rashida,
1993). Kulsoom et al (1993) only considered the
morphological and lexical filters for the resolution
of anaphora in Urdu discourses. However, these
filters are not sufficient for Urdu anaphora
resolution.

The rest of the paper is organized as follows:
Section-2 describes the factors that play a vital role
in Urdu anaphora resolution. Section-3 presents
algorithms, implementation and evaluation for the

resolution of personal anaphora; this is followed by
the conclusion.

2 Factors that play vital role in Urdu
anaphora resolution

Factors that can play a very important role in Urdu
anaphora resolution beside morphological and
lexical filters are topicalized structures, subject
preferences, object preferences, repetitions, section
heading and distance. How these factors are
helpful in anaphora resolution in English language
was worked out by Mitkov (Mitkov, 1998), but
their role in Urdu discourse for the resolution of
personal pronouns is more cherished. How these
factors are helpful in the resolution of anaphoric
devices in Urdu is done by Khan et al (Khan, Ali
and Aamir, 2006). Ali et al also worked on these
factors for the resolution of demonstrative ADs in
Urdu discourse (Ali, Khan and Aamir, 2007).

2.1 Morphological and lexical filters
Consider an example in which anaphora is
resolved on the basis of morphological filters.

 نے فضل دين، ی بڑا سا گهتا اٹهايا اور آگے چل داچارے ک نےیملکه
 کا بازو پکڑنا چاہا تها ليکن نہ جانے کيوں وہ اندریبڑه کر ملکه آگے

)2۔0(سکڑ کر رہ گيا تها)) سائرہ ہاشمي-سناٹے کي گونج
[mɒlΛkhi] [neI] [ʧɒreI] [kɒ] [bǝ(r)ɒ] [sɒ]
[ghΛthɒ] [Ʊ:thɒyɒ] [ɒǝƱr] [a:geI] [ʧΛl] [di].
[fΛzl] [dIn] [neI] [a:geI] [bhǝ(r)] [kǝ(r)
[mɒlΛkhi] [kɒ] [bɒzƱ] [pɒkǝ(r)nɒ] [ʧɒhɒ] [thɒ]
[leIkIn] [nɒ] [ʤɒneI] [kIyƱñ] [vǝƱh] [Λndǝ(r)]
[sƱkǝ(r)] [kǝ(r)] [rǝh] [gIyɒ] [thɒ].
Mlukhi took the bundle of grass and moved ahead. Fazal Din had
come forward to catch the arm of Mlukhi, but he did not have the
courage to do so.

 In Urdu, the word وہ ([vǝƱh])refers to both
masculine and feminine antecedents. Also, it is
used for translation of ‘that’. Here the
morphological filters are used for anaphoric
disambiguation. In the above discourse, terminal of
sentence is تها ([thɒ]) that indicates the third
person AD وہ refers to singular and masculine NP
i.e. فضل دين ([fΛzl][dIn]). In this way, ملکهي
([mɒlΛkhi]) will be ruled out to become the
antecedent. Similarly, consider the example

 کچهہ عرصے اسکا -انيلہ خط پڑه کے اپنے هوش وحواس کهو بيٹهی
)ہ بانو قدسي-امربيل()2۔1 (-علاج هوتا رها پهر وہ بہتر هو گئ

[ə|nIlɒ] [xΛt] [pə(r)h] [keI] [ə|pneI] [hәʊ∫] o
[hɒvɒs] [khәʊ] [beIthi] [kʊʧ] [ΛrseI] [ʊskɒ]

82

[ælɒʤ] [hәʊta] [rɒhɒ] [phIr] [vәʊh]
[bəhtə(r)] [hәʊ] [gɒi].
After reading the letter Aneela lost her senses. She was treated for
sometime and then she got better.

Since the terminal of sentence is گئ
([gɒi]), so it means وہ ([vəʊh]) refers to
some feminine antecedent that is انيلہ ([ə|nIlɒ])
in the above text. The lexical filters are used to
resolve anaphora on the basis of number and
gender information. For example

همارے امتحانات جلدی " لڑکوںنے پرنسپل صاحب کو درخواست کی

کرنےکيلۓ همارے پاس زيادہ کروا ديے جائيں تاکہ بعد ميں پراجيکٹ
)2۔2"(-سے زيادہ وقت هو

[lә(r)kәʊ] [neI] [prInsIpΛl] [sɒhIb] [kәʊ]
[də(r)khәʊɒst] [kI] [hɒmɒreI] [Imti:hɒnɒt]
[ʤΛldi] [kərvɒ] [dIyeI] [ʤɒa:eIñ] [tɒkeI]
[bɒd] [meIñ] [prɒjǝct] [kǝ(r)neI] [KeIlIyeI]
[hɒmɒreI] [pɒs] [zIyɒdɒ] [seI] [zIyɒda] [vΛkt]
[hәʊ].
Students submitted application to the Principal “our exams should be
arranged earlier so that we will have maximum time for our project”

In 2.2, following the number information, the
antecedent for همارے ([hɒmɒreI]) will be لڑکوں
([lә(r)kәʊ]). So, the remaining candidate پرنسپل
 is ruled out on ([sɒhIb] [prInsIpΛl]) صاحب
the basis of number mismatch.

Here is another example in which antecedents
for third person anaphoric devices are found on the
basis of morphological and lexical filters. In the
following discourse, antecedent for third person
AD وہ ([vǝƱh]) is singular, feminine noun
phrase بی فضل بی [fΛzǝl] [bIbI]) since the
terminal of sentence is چاہتی هے ([ʧɒhti]
[hæ]).

 کر ليا تو اس نے خاندان کے دوسرے بی بی نے جب يہ فيصلہفضل

ؤں يوں تو سارے گا-افراد کو بهی بتايا کہ وہ بهی پڑهنا چاہتی هے
کی معاملے ميں اسکو اسکی بہت عزت کرتے تهے ليکن اسوالے اس

)2۔3(-بچيوں کے حوالے سے سمجهانے کی کوشش کی گئ
) نعمان اخلاق-خميازہ(

[fΛzǝl] [bIbI] [neI] [ʤΛb] [yǝh] [fæslɒ]
[kǝ(r)] [lIyɒ] [tǝƱ] [Ʊs] [neI] [xɒndɒn] [keI]
[dǝƱsɒreI] [Λfrɒd] [kǝƱ] [bhi] [bɒtɒyɒ] [kǝh]
[vǝƱh] [pǝ(r)hnɒ] [ʧɒhti] [hæ]. [yƱñ] [tǝƱ]
[sɒreI] [gɒƱñ] [vɒleI] [Ʊski] [bɒhƱt] [Izǝt]
[kǝ(r)teI] [theI] [lækIn] [Is] [mƱɒmɒleI]
[meIñ] [ƱskǝƱ] [Ʊski] [bΛʧIyƱñ] [keI] [hɒvɒleI]
[seI] [sΛmʤɒneI] [ki] [kǝƱ∫I∫] [ki] [gɒi].
When Fazal Bibi decided she informed other family members that she
also wants to study. Although, she was respectable for the whole
village but in this matter she was advised keeping in view her
daughters.

2.2 Topicalized structures

In Urdu, topicalized structures are more frequently
used. Consider the example

صاح کهر مائ فيوڈل لارڈ جب منظر عام ! ب آئ تو آپ کا رد عمل پر

-کيا تها)2۔4 (
[khә(r)] [sɒhIb]! [mɒi] [fʊdәl] [lɒrd] [ʤΛb]
[mΛnzǝ(r)] [ɒm] [pǝ(r)] [a:i] [tәʊ] [a:p] [kɒ]
[rΛdeI] [Λml] [kIyɒ] [thɒ].
Mr. Kher! When the book “My Feudal” Lord came into the market,
what was your reaction.

تمهاری يادوں کا کيا کروں؟ گهونسلے بوٹ اڑ کر کہيں نہ کہيں ! فاطمہ
ليکن تمهارے عطا کردہ بوٹ تو صبح و شام خون -چلے جاتے هيں

)ہ بانو قدسي-امربيل()2۔5(-گا مانگتے هيںجگر کا چو
[fɒtImɒ]! [tʊmhɒri] [yɒdǝƱñ] [kɒ] [kIyɒ]
[kə(r)ʊñ]? [ghǝƱsəleI] [bʊt] [ʊr] [kə(r)]
[kɒhi:ñ] [nɒ] [kɒhi:ñ] [ʧɒleI] [ʤɒteI] [hæñ]
[leIki:n] [tʊmhɒreI] [a:tɒ] [kə(r)dɒ] [bʊt]
[tәʊ] [sʊbh] o [∫ɒm] [xƱneI] [ʤIgə(r)] [kɒ]
[ʧәʊgɒ] [mɒñgteI] [hæñ]
Fatima! What should I do with your memories? Every thing vanishes
with the passage of time but your memories are like unripe grain
which needs my blood to flourish.

In 2.4, the word آپ ([a:p]) refers to
topicalized structure بصاح کهر ([khə(r)]
[sɒhIb]). Similarly, in discourse 2.5 ADs
 ([tʊmhɒreI]) تمهارےand([tʊmhɒri]) تمهاری
refer to فاطمہ ([fɒtImɒ]). It must be noted that
whenever topicalized structures appear in the Urdu
discourses these become preferred antecedents for
second person anaphoric devices.

2.3 Count of occurrences

It can be the case that in a particular discourse if a
certain NP appears more frequently then it will be
the potential antecedent for pronouns appearing in
that text. For example, consider the following
discourse

منٹو ايک غير جانبدار -منٹو سے اخفا برتا گيا ، اسکی کئ وجوحات ہيں
-اديب تها منٹو کے معاصر اديب اس کے رويے اور تيز کلامی سے

-کی وجہ سےوہ ناپسنديدہ تها کهلم کهلا شراب نوشی نالاں تهے۔ منٹو
ہ ثق اسے پرپےدر پے فحاشی کے مقدمات نے نظر ميں کی لوگوں

يا تهابنا د ملعون)2۔6(-
) انيس ناگی-سعادت حسن منٹو کی کہانی(

[mΛntƱ] [seI] [Λxfɒ] [bə(r)tɒ] [gIyɒ]. [Iski]
[kɒi] [vɒʤʊhɒt] [hæñ]. [mΛntu:] [ǝk] [gheIr]
[ʤɒnIbdɒr] [ә|di:b] [thɒ] [mΛntƱ] [keI]
[mɒa:sIr] [ә|di:b] [ʊskeI] [rɒvIyeI] [ɒәʊr]
[teIz] [kɒlɒmi] [seI] [nɒlɒñ] [theI]. [khʊlΛm]
[khʊlɒ] [∫ɒrɒb] [nәʊ∫i] [ki] [vΛʤhɒ] [seI]
[vәʊh] [nɒpɒsΛndIdɒ] [thɒ]. [mΛntƱ] [pə(r)]
[pæ] [də(r)] [pæ] [fɒhɒ∫i] [keI] [mu:kΛdmɒt]

83

[neI] [ʊseI] [sΛkɒ] [lәʊgәʊn] [ki] [nΛzə(r)]
[meIñ] [mΛlƱ:n] [bɒnɒ] [dIyɒ] [thɒ].
Anger was shown to Muntoo. It has several reasons. Muntoo was an
un-biased writer. Due to his aggressive attitude, his fellows were
always angry with him. He was not liked because he used to drink
openly. Due to continuous court cases regarding obscenity, he was not
liked by gentlemen community.

Here the proper noun منٹو ([mΛntƱ])
appears repeatedly. So, on the basis of repetition, it
will be the potential antecedent for most of
personal pronouns e.g. وہ ([vәʊh]),اسے
([ʊseI])and اسکے ([ʊskeI]) appearing in the
above text.

2.4 Section headings

Section headings get high preference to become
antecedents for most of personal pronouns in Urdu
discourses. Consider the following example

 شعيب اختر
کها لاڈلا بن چکے ہيں جو گيند وشعيب اختر کرکٹ بورڈ کيلۓ وہ ان

 وہ واحد باؤلر هيں -چاند کی تمنا کرتےهيںيلنے کی بجاۓ هبيٹ سے ک
وہ -ہوں نے اتنی کرکٹ نہيں کهيلی جتنا ان فٹ هو کرآرام کيا هےجن

 شہرت اور مقبوليت کے لحا ظ سےنہايت خوش قسمت کهلاڑی هيں،
 جسکے -جسکی واحد خوبی يہ هے کہ وہ دنيا کے تيز ترين باؤلر هيں

فيملی (")2۔7(-نخرے عمران سےبهی زيادہ اٹهاۓ جاتے هيں
)2006 جون -"ميگزين

[∫Ʊæb] [Λxtə(r)]
[∫Ʊæb] [Λxtə(r)] [krIkIt] [bƏƱrd] [keIlIyeI]
[vəƱh] [anƏƱkhɒ][lɒdlɒ] [bΛn] [ʧƱkeI] [hæñ] [ʤƏƱ]
[geInd] [bæt] [seI] [kheIlneI] [ki] [bɒʤæI]
[ʧɒnd] [ki] [tɒmΛnnɒ] [kə(r)teI] [hæñ]. [vəƱh]
[vɒhid] [bƏƱlə(r)] [hæñ] [ʤInhƏƱñ] [neI] [Itni]
[kIrkət] [nɒhIñ] [kheIli] [ʤitna:] [ΛnfIt]
[hƏƱ] [keI] [a:rɒm] [kIyɒ] [hæ]. [vəƱh]
[∫ƏƱhrΛt] [ɒƏƱr] [mΛkbʊlIət] [keI] [lIhɒz] [seI]
[nIhɒyΛt] [xƱ∫] [kIsmΛt] [khIlɒri] [hæñ]
[ʤIski] [vɒhId] [khʊbi] [yəh] [hæ] [kəh]
[vәƱh] [dʊnyɒ] [keI] [teIz] [tɒri:n] [bƏƱlə(r)]
[hæñ]. [ʤIskeI] [nΛkhreI] [Imrɒn] [seI] [bhi]
[zIyɒdɒ] [ƱthɒeI] [jɒteI] [hæñ].

Shoaib Akhter
Shoaib Akhter has become a burden over the cricket board. He is the
only bowler in Pakistani cricket team who has not played much
cricket rather always took rest because of being unfit. He is lucky to
become popular only because he is the fastest bowler in the world. He
is given more importance even compared to Imran.

In the above discourse, شعيب اختر ([∫Ʊæb]
[Λxtə(r)])is section heading, so it will be the
preferred antecedent for most of anaphoric devices
appearing in the discourse and all other NPs will
be ruled out to become the potential antecedents.

2.5 Distance

 Distance plays an important role in finding the
antecedents. For each anaphoric device such as

اسک اسے، اسکو، ، اس ا ا ،ان اسکی،، اکن ,[Ʊs]) انکی ،
[ƱseI], [ƱskǝƱ] [Ʊskɒ] [Ʊski] [Ʊn],
[ʊnkɒ], [Ʊnki]), preference is given to the
nearest object present in the same or immediate
previous sentence. Consider following discourse

 تهوڑی دير بعد ايک جهيل کے قريب پہنچ کر انور طلوع آفتاب سے
علی نے اپنے ساتهيوں کو رکنے کا حکم ديا اور اس نے ليگرانڈ کو

 سے ں بعض سپاهيوں نے تهيلو-گهوڑے سے اتار کرزمين پر لٹا ديا
وں ميں تقسيم کيں اور وہ جهيل کے ي نکاليں اور ساتهںباسی روٹيا
ساتهی جراحی کا تجربہ رکهتا انور علی کا ايک - گۓہکنارے بيٹه

 اس نے پٹی کهول کر ليگرانڈ کے زخم کا معائينہ کرنے کے بعد -تها
اگر آپ اجازت ديں تو ميں گولی نکال کے زخم " انور علی سے کہا

اگر " - ليگرانڈ کی نبض پرکهنے کے بعد کہا اس نے "-داغ ديتا هوں
اور تلوار ٹوٹ ()2۔8 ("-تاانکا بخار اتنا تيز نہ هوتاتو ميرا کام آسان هو

) نسيم حجازی-گئ
[tɒlƱeI] [ә|ftɒb] [seI] [thәʊri] [deIr] [bɒd]
[ɒeIk] [ʤhi:l] [keI] [kɒrIb] [pәʊñʧ] [kə(r)]
[Λnvə(r)] [Λli] [neI] [ɒpneI] [sɒthIyәʊñ] [kәʊ]
[rʊkneI] [kɒ] [hʊkum] [dIyɒ] [ɒәʊr] [ʊsneI]
[ləgrɒñd] [kәʊ] [gәʊreI] [seI] [ʊtɒr] [kə(r)]
[zɒmIñ] [pə(r)] [lItɒ] [dIyɒ]. [bɒz] [sIpɒyәʊñ]
[neI] [theIlәʊñ] [seI] [bɒsi] [rәʊtiyɒñ]
[nIkɒli:ñ] [ɒәʊr] [sɒthIәʊñ] [meIñ] [tΛksIm]
[ki:ñ] [ɒәʊr] [vәʊh] [ʤhi:l] [keI] [kɒrIb]
[bæIth] [gɒyeI] [ә|nvə(r)] [ɒli] [kɒ] [әk]
[sɒthi] [ʤɒrɒhi] [kɒ] [tɒʤʊrbɒ] [rΛrktɒ] [thɒ]
[ʊsneI] [pΛti] [khәʊl] [kə(r)] [lәgrɒñd] [keI]
[zΛxΛm] [kɒ] [mƱ:ænɒ] [kə(r)neI] [keI] [bɒd]
[Λnvə(r)] [Λli] [seI] [kɒhɒ] “[agə(r)] [a:p]
[IʤɒzΛt] [deIñ] [tәʊ] [mæñ] [gәʊli] [nIkɒl]
[kə(r)] [zɒxΛm] [dɒg] [deItɒ] [hʊñ]. [ʊsneI]
[lәgrɒñd] [ki] [nΛbz] [pɒrΛkhneI] [keI] [bɒd]
[kɒhɒ] “[agə(r)] [Inka] [bʊ:xɒr] [Itnɒ] [teIz]
[nɒ] [hәʊtɒ] [tәʊ] [meIrɒ] [kɒm] [a:sɒn]
[hәʊtɒ]”
A little after the sun rise, when they reached the lake Anwer Ali
ordered his colleagues to stop and laid Legrand on the ground taking
him from horseback. Some soldiers took the dried bread from bags
and distributed them among other soldiers and sat on the bank of the
lake. One friend of Anwer Ali had the experience of surgery. He asked
Anwer Ali after inspecting the wounds of Legrand, “ if you permit me
, I can do the surgery after taking out the bullet from his body”. The
friend further added, “Had his fever not this much the job would have
been easier”.

In discourse 2.8, the preferred antecedents for
 are lying in the same or in the ([ʊsneI]) اس نے
immediate previous sentence. Similarly, in (2.3),
the antecedents for third person ADs

نے، اسے، اسکو، اسکیاس ([ʊsneI], [ʊseI],
[ʊskǝʊ], [ʊski]) are resolved on the basis of
distance.

84

2.6 Subject and object preference

In Urdu, especially for the resolution of personal
ADs (first person, second person and third person),
subject and object preference plays a very
important role. Consider the example

شرع کيا۔ مراد علی نےلکها تها انور علی نےخط کا مضمون پڑهنا
بهائ جان اسلام عليکم۔ ميں سرحد کی دفاعی چوکيوں کے معائنے "۔

کيليے گيا هوا تها، اسليےآپ اور بهابی جان کے خطوط کا جواب نہ
دے سکا۔ مجهے ايک مہينے کی چهٹی مل گئ هے ليکن ميں گهر آنے

ر تلوار ٹوٹ او()2۔9(ا اکبر خان کے پاس جانا چاهتاهوںچسے پہلے چ
) نسيم حجازی-گئ

[Λnwә(r)] [Λli] [neI] [xΛt] [kɒ] [mΛzmƱn]
[pә(r)nɒ] [∫Ʊrʊ] [kIyɒ]. [mʊrɒd] [Λli] [neI]
[lIkhɒ] [thɒ] “[bhɒi] [ʤɒn]! [ə|sɒleImuleIkʊm]
[mæñ] [sǝ(r)həd] [ki] [dIfɒyi] [ʧәʊkIyʊñ]
[keI] [mƱæneI] [keIlIyeI] [gIyɒ] [hʊvɒ] [thɒ]
[IslIyeI] [a:p] [ɒәʊr] [bhɒbi] [ʤɒn] [keI]
[xɒtƱt] [kɒ] [ʤɒvɒb] [nɒh] [deI] [sΛkɒ].
[mu:ʤheI] [æk] [mɒhIneI] [ki] [ʧƱti] [mIl]
[gɒi] [hæ] [lækIn] [mæñ] [ghə(r)] [a:neI] [seI]
[peIhleI] [ʧΛʧa:] [ə|kə(r)] [xɒn] [keI] [pɒs]
[jɒnɒ] [ʧɒhtɒ] [hʊñ]
Anwer Ali started reading the letter. Murad Ali had written “my
brother! Regards, I have gone for the inspection of defense posts.
Therefore, I was unable to send reply to yours and your Mrs. letters. I
have got leave for one month. However, before coming home I want to
visit uncle Akber Khan”

Discourse 2.9, consists of frequent use of first
person anaphoric devices مجهے، ميں ([mu:ʤheI],
[mæñ]). Discourse 2.9 is in the form of direct
speech. In such type of discourse, for resolution of
first person anaphoric devices highest, preference
will be given to subject of the main clause i.e. the
clause just before the reported speech starts. مراد
 is the subject of the main ([Λli] [mƱrɒd]) علی
clause so all first person anaphoric devices will
refer to مراد علی ([mƱrɒd] [Λli]). Similarly, in
case of second person anaphoric devices, object
preference will be the highest.

 ہے ساتهرميں تمها -تم کيو ںرو رهے هو" –ريا نے راج سے کہا پ

)2۔10("- نبهاؤں گیہ هميشہ تمهارا ساته-هوں
[prIya] [neI] [rɒʤ] [seI] [kɒhɒ] “[tʊm]
[kIyʊñ] [rәʊ] [rɒheI] [hәʊ] [mæñ] [tʊmhɒreI]
[sɒth] [hʊñ] [hɒmeI∫ɒ] [tʊmhɒrɒ] [sɒth] [nIbhɒʊñ]
[gi]”.
Priya said to Raj,“Why are you weeping, I am with you and will
always be with you”

تمکو نجاشی کا تيل /عورت کو کہنا تمہيں "-عمرو نے عمارہ کو کہا
)2۔11`() رسول نمبر-نقوش("-جو دوسرا کوئ بهی نہيں لگا سکتا-لگاۓ

[ʊmru:] [neI] [Λmɒrɒ] [kәʊ] [kɒhɒ]
“[a:әʊrΛt] [kәʊ] [kәhnɒ] [tʊmhæñ]/ tʊumkәʊ]
[nɒʤɒ∫i] [kɒ] [teIl] [lɒgɒeI] [ʤәʊ]
[dʊ:sɒrɒ] [kәʊi] [nɒhIñ] [lɒgɒ][sΛktɒ]”
Umroo asked Ammara “Ask the woman to massage you with the oil of
Najashi that is not possible by any other”.

" م کيا هےتم نے بہت صفائ اور هوشياری سے جر"-جج ملزم سے
شکريہ جناب آپ پہلےآدمی هيںجنهوں نے " -ملزم جوابا جج سے

)2۔12("-ميرے فن کی تعريف کی
[ʤΛʤ] [mʊlzIm] [seI] “[tʊm] [neI] [bɒhʊt]
[sɒfɒyi] [ɒəʊr] [həʊ∫Iɒri] [seI] [ʤʊrm] [kIyɒ]
[hæ]. [mʊlzIm] [ʤavabΛn] [ʤΛʤ] [seI]
“[∫ʊkrIɒ] [ʤɒnɒb] [a:p] [pəhleI] [a:dmi] [hæñ]
[ʤInhәʊñ] [neIn] [mæreI] [fΛn] [ki] [tɒrIf]
[ki]”
Judge said to the accused, “you did the crime very professionally and
cleverly”. Accused replied “thanks sir, you are the first person who
praised my expertise”.

Again, 2.10, 2.11 and 2.12 are in the form of
direct speech. In all above discourses, second
person ADs تم، تو، تمکو، تمهيں، تمهارا، تمهاری آپ
([tʊm], [tʊ], [tʊmkəʊ], [tʊmhæñ],
[tʊmhɒrɒ], [tƱmhɒri],[a:p]) have direct
objects such as ،جج ،ملزم عمارہ ([Λmɒrɒ]
[mʊlzIm], [ʤΛʤ])of the main clause as their
potential antecedents.

Here is an example in which for the resolution
of third person anaphoric device وہ ([vǝƱh]),
potential antecedents are found using subject
preference filter.

ريوں کا لارڈ کارنوالس کو فيصلہ کن جنگ کيلۓ ٹيپو سلطان کی تيا

ا تها کہ موجودہ حالات ميں جنگ کا طول دينا ت وہ يه جان-علم تها
 وہ جنگ کے آنے والے حالات کےبارے -نقصان دہ هو سکتا هے

) نسيم حجازی-اور تلوار ٹوٹ گئ()2۔13(-تو پريشان هونے لگتا سوچتا
[lɒrd] [kɒrnIvɒlIs] [kəʊ] [fæslɒ] [kʊn] [ʤΛg]
[keIlIyeI] [ti:pƱ] [sʊltɒn] [ki] [tIyɒrIyʊ:ñ]
[kɒ] [Ilm] [thɒ]. [vəʊh] [yəh] [ʤɒntɒ] [thɒ]
[kəh] [məʊʤʊdɒ] [hɒlɒt] [meIñ] [ʤΛg][kɒ]
[tƱ:l] [deInɒ] [nʊksɒn] [dəh] [həʊ] [sΛktɒ]
[hæ]. [vəʊh] [ʤΛñg] [keI] [a:neI] [vɒleI]
[hɒlɒt] [keI] [bɒreI] [səʊʧtɒ] [təʊ] [prI∫ɒn]
[həʊneI] [lΛgtɒ].
Lord Kernevalis was aware of the preparations of Tipu Sultan about
the final war. He knew that it will be quite dangerous to lengthen the
war and he was worried to think about the results of the war.

 Here, terminals of the sentence are ،تها لگتا
([lΛgtɒ], [thɒ]) that are used for personal
singular and masculine NP, but the problem is that

 ,[kɒrnIvɒlIs] [lɒrd]) ٹيپو ، لارڈ کارنوالس
([tIpʊ]) both are personal, singular and
masculine NPs. So the question arises that وہ
([vəʊh]) refers to which NP in the preceding

85

sentence. Here, the subject preference will be high.
So, وہ ([vəʊh]) refers to لارڈ کارنوالس.

2.7 NP followed by certain words

Certain NPs in Urdu discourse are followed by
words کےمتعلق، کےبارے، کی طرف
([keI][mʊtalək]], [keI][bareI], [kI]
[tǝ(r)f]). In such circumstances, these NPs will
be given highest priority to become the
antecedents. For example,

اسکو سياست کا /کہ اسے-جہانگيربدرنے اپنی بيٹی کے بارے بتايا
اس نے ماسٹرز -کوئ شو ق نہيں ،ہاں اسے اعلی تعيم کا شوق هے

)2۔14(-ررکها هےکرنے کا ارادہ ک
(Interview with Jehangir Badar)

[ʤɒhɒñgi:r] [bΛdə(r)] [neI] [Λppni] [beIti]
[keI] [bɒreI] [btɒyɒ]] [kәh] [ʊseI/ʊskәʊ]
[sIyɒs∧t] [kɒ] [kəƱei] [ʃəƱk] [nɒhIñ]
[hɒñ] [ʊseI] [a:lɒ] [ta:lIm] [kɒ] [∫əƱq] [hæ].
[ʊsneI] [ma:stə(r)z] [kә(r)neI] [ka:] [æra:dha:]
[kə(r)] [rΛkhɒ] [hæ].

Jihangir Badder told about his daughter that she has no interest in politics,
However, she is interested in higher education. She has the intention to do her
masters degree.

نکہ وہ کيو هو رہی تهی کے قربان ہه ديکہهماں سلمی کی طرف ديک
/بہت بهلی)2۔15(- رہی تهیہدکه

[ma:ñ] [sΛlmɒ] [ki] [tǝ(r)f] [deIkh] [deIkh]
[keI] [kƱrbɒn] [hǝƱ] [rahi] [thi] [kIyƱkǝh]
[vǝƱh] [bɒhƱt] [bhΛli] [dhIkh] [rɒhi] [thi].
The Mother was looking towards Salma very lovingly since she
seemed very beautiful.

 It is the سلمی who is looking beautiful not the
 is followed ([sΛlmɒ]) سلمی since ,([ma:ñ]) ماں
by certain class of words.

3 Implementations and evaluations
An informal algorithm for the resolution of first
person anaphoric devices is as follows:

1. Examine the next clause in the discourse. If no
clause exists then finish.

2. If the current clause consists of first person
anaphoric devices then go to step-3 else go to
step-1.

3. Access the previous clause.
4. If the current clause consists of section

headings, noun phrase followed by certain
words then assign weight to these filters else
assign priority to noun or noun phrase
appearing as a subject of the clause.

5. If no subject exists then go to step-3.

Similarly, an informal algorithm for the
resolution of second person ADs is as follows:

1. Examine the next clause in the discourse. If no

clause exists then finish.
2. If the current clause consists of second person

anaphoric devices then go to step-3 else go to
step-1.

3. Access the previous clause.
4. If the current clause consists of topicalized

structures then assign weight to these filters
else assign priority to noun or noun phrase
appearing as an object of the clause.

5. If no object exists then go to step-3.

In the same way an informal algorithm for the
resolution of third person ADs is as follows:

1. Examine the next clause in the discourse and if

no clause exists then go to step-9.
2. If the current clause consists of third person

anaphoric devices then go to step-3 else go to
step 1.

3. Access the previous clause.
4. Apply the lexical and morphological filters to

assign the weight to nouns or noun phrases that
follow the morphological and lexical filters.

5. If current clause consists of section headings or
topicalized structures or noun phrase
preceded / followed by certain class of words
then assign the weight of these filters.

6. If current clause consists of noun or noun
phrase as subject and objects (direct, indirect)
then assign the weight value for these filters.

7. If the current clause does not consists noun or
noun phrase as subject, object or contains no
section headings, topicalized structures and
noun phrase preceded by certain words then go
to step- 3.

8. Find the repetitions of all noun or noun phrases
and increment their corresponding weights for
each repetition.

9. Record the results and Finish

Algorithms are implemented in Visual C++.
Implemented algorithm gets the input that is
constructed manually. For this purpose each
discourse is divided into clauses and is stored as
Unicode text file for input to anaphora resolution

86

program. For better understanding, consider the
example of discourse 2.8 and its division into
clauses.

clause(sub(یانور عل ,sng,msc),dob(وںيساته ,plu,msc),vb(sng,msc)).
clause(sub(اس),dob(گرانڈيل ,sng,msc),vb(sng,msc)).
clause(sub(وںيهسپا ,plu,msc),dob(اںيروٹ ,fem,plu),vb(plu,msc)).
clause(sub(nill),dob(وںيساته ,plu,msc),vb(plu,msc)).
clause(sub(وہ),dob(ليجه ,sng,fem), vb(plu,msc)).
clause(sub((یساته ,sng,msc),dob(جراحی,sng,msc),vb(sng,msc)).
clause(sub(اس),dob(گرانڈيل ,sng,msc),vb(sng,msc)).
clause(sub(یساته ,sng,msc),dob(یانور عل ,msc,sng),vb(sgn,msc)).
clause(sub(آپ),dob(nill),vb(plu,msc)).
clause(sub(ںيم),dob(زخم,msc,sng),vb(sng,msc)).
clause(sub(اس),dob(گرانڈيل ,sng,msc),vb(sng,msc)).
clause(sub(انکا),dob(بخار,msc,sng),vb(sng,msc)).
clause(sub(nill),dob(رايم),vb(sng,msc)).

Fig 1

Table-1, Table-2 and Table-3 show the order
of weights assigned to various filters for the
resolution of first person, second person and third
person anaphoric devices. The implemented
algorithm aims to determine the efficiency in terms
of accuracy and reliability of the proposed order of
factors. For this purpose various experiments were
conducted over various text genres. To evaluate the
success rate of every experiment, precision is
calculated as defined below. The average length of
each discourse in sentences was 4-6.

Precision = Number of correctly resolved anaphors / Number of anaphors
 attempted to be resolved

The results of the three experiments are as
follows

Experiment# Precision

1 78%
2 80%
3 80%

Table-1 shows that in case of first person

anaphoric devices the priority has been assigned on
the basis of section heading, noun phrase followed
by certain words and then subject. It means that if
no section heading or noun phrase followed by
certain words are present then the subject in the
main or previous clause will be the potential
antecedent for first person anaphoric devices.
Similarly, Table-2 for second person anaphoric
devices, exhibits that weights will be assigned in
descending order (left – right). It means that the
leftmost filter that is topicalized structure will get

the highest weight for second person ADs.
Consider the following output (Fig-2) produced by
anaphora resolution program, for the resolution of
second person anaphoric device آپکا in the
discourse 2.4, topicalized structure کهر صاحب gets
high priority to become the antecedent.

Clause 1, SUB (آپکا) RESTO (2 کهر صاحب (

Fig 2

Again, in case of third person anaphoric
devices weights as shown in Table-3 have been
assigned in descending order (top - bottom). It
means the weight of section heading filter will be
larger in value than that of subject filter. Consider
a noun or noun phrase which is section heading as
well as a repeated noun and also lexical filter
applies on it. For this noun or noun phrase all the
weights will be summed up. A noun with highest
weight will be given preference to become the
antecedent for third person anaphoric device. This
is demonstrated by the following output generated
for discourse (2.8) by our anaphora resolution
system. This discourse contains total 13 clauses
from 0 – 12. Clause 1 contains third person
anaphoric device اس ([ʊs]) that is resolved to

 which is assigned weight 12 on the basis یانور عل
of lexical filter and distance preference, so, وںيساته
is ruled out to become the antecedent since its
weight is 1. Similarly for the third person
anaphoric device وہ, that appears in clause 4,
antecedent with highest weight 50 is وںيساته . By the
same token, for the resolution of the first person
anaphoric device رايم , preference has been given to
the noun یساته (Fig-2) that is the subject in the
previous clause.

clause 1 , SUB (اس) RESTO (1 وںيساته)(12 یانور عل)
clause 4 , SUB (وہ) RESTO (11 اںيروٹ)(11 گرانڈيل)(12 وںيسپاه)(12 یانور عل)(50 وںيساته)
clause 6 , SUB (اس) RESTO (یانور عل)(12 وںيتهسا)(7 گرانڈيل)(7 ليجه)(7 یساته(
clause 8 , SUB (آپ) RESTO (5 یانور عل)(3 وںيساته)(3 گرانڈيل)(3 یساته)(1 اںيروٹ)(1 وںيسپاه(
clause 9 , SUB (ںيم) RESTO (0 وںيساته)(0 اںيروٹ)(1 وںيسپاه)(2 ليجه)(14 یساته()6 گرانڈيل)
clause 10 , SUB (اس) RESTO (2 وںيرسپاه)(7 ليجه)(11زخم)(12 وںيساته)(30 گرانڈيل)(31 یساته)
clause 11 , SUB (انکا) RESTO ()49 گرانڈيل)(30 وںيساته)(13 یساته)(8 وںيسپاه)(7 اںيروٹ
clause 12 , DOB (رايم) RESTO (14یساته)(10 گرانڈيل)(7 یانور عل)(2 ليجه)(2زخم)(2بخار (

Fig 3

Algorithms fail to correctly resolve the

anaphora for discourses as follows

پرويز مشرف نے نواز حکومت برخواست کی تو انہوں نے ان
)3۔15(-ج شيٹ جاری کیکے خلاف چار

87

[pǝ(r)veIz] [mƱ∫Λrf] [neI] [nɒvɒz] [hɒkƱmǝt]
[bǝ(r)kxƱɒst] [ki] [tǝƱ] [ƱnhǝƱñ] [neI] [ƱnkeI]
[xIlɒf] [ʧɒrʤ] [∫i:t] [ʤɒri] [ki].
Pervaiz Musharaf when expelled Nawaz Government. He issued the
charge sheet against him.

In the above discourse, the anaphoric device

 is resolved correctly to have ([ƱnhǝƱñ]) انہوں
antecedent پرويز مشرف ([pǝ(r)veIz]
[mƱ∫Λrf]) on the basis of distance and subject
preference filter but ان (ʊn]) is not resolved
correctly to have antecedent نواز ([nɒvɒz]).

Table 1: Priority Order for First Person ADs

Table 2: Priority Order for Second Person ADs

Table 3: Priority Order for Third Person ADs

4 Conclusion

One central question addressed in this paper is
to determine the optimal order of the factors to find
the preferred antecedents for the personal ADs in
Urdu text. Rule based algorithms for the resolution
of personal anaphoric devices are presented which
are capable of resolving these anaphoric devices
with 78-80% success rate in all kind of text genres.
This success rate can be increased with
improvement in certain rules especially for third
person anaphoric devices.

References

M.N. Ali, M.A. Khan, and M. Aamir. 2007.
Computational Treatment of Demonstrative
Pronouns in Urdu. In Proceedings of International
Conference on Language and Technology CLT07,
25-31. Bara Gali Summer Campus, Pakistan.

C. Aone , S. Bennett. 1996. Applying Machine Learning

to Anaphora Resolution. In Wermter, S., Riloff, E.,
Scheler, G. (Eds) Connectionist, Statistical and
Symbolic approaches to learning for NLP, 302-314.
Springer, Berlin.

S. Brenan, M. Friedman and C. Pollard. 1987. A 25th

Annual Meeting of the ACL, 155-162. Stanford,
Ca, USA,.

Third Person
ADs وہ [vəʊh] ،اس، اسکا، اسکی

 اسکے،اسکو،اسے
[ʊs], [ʊskɒ], [ʊski],
[ʊskeI], [ʊskǝʊ],
[ʊseI]

ان، انکا،
 انکی،

انکے،انکو،
 انہيں

[ʊn], [ʊnkɒ],
[ʊnki], ʊnkeI],
[ʊnkǝʊ],[ʊnhæñ]

Lexical
Information

(AD refers to)
3rd Person,
Singular,
Plural,

Masculine,
Feminine

3rd Person, Singular,
Masculine, Feminine 3rd Person, Plural,

Masculine,
Feminine

Lexical
Filter

Lexical Filter Lexical Filter

Section
Heading

Section Heading Section
Heading

Topicalized
Structure

Topicalized
Structure

Topicalized
Structure

Noun Phrase
followed by

certain
words

Noun Phrase
followed by

certain words

Noun Phrase
followed by

certain words

Subject Distanc e Distanc e
Object Subject Subject

Object Object

Priority Order
Weights

assigned from
top to bottom
(Descending

Order)

Repetition
Repetition Repetition

Second Person
Anaphoric

Devices

Priority Order (Left to Right)

تو،تم
[tʊ], [tʊm]

Topicalized Structure Object

تمہيں، تمکو
[tʊmhæñ],
[tʊmkǝʊ]

Topicalized Structure Object

یتمہار
[tʊmhɒri]

Topicalized Structure Object

اتمہار
[tʊmhɒrɒ]

Topicalized Structure Object

تمہارے
[tʊmhɒreI]

Topicalized Structure Object

آپ [a:p] Topicalized Structure Object
وآپک [a:pkǝʊ] Topicalized Structure Object
یآپک [a:pki] Topicalized Structure Object

آپکا [a:pkɒ] Topicalized Structure Object
ےآپک [a:pkeI] Topicalized Structure Object

Priority (Left – Right) First Person
Anaphoric

 [mæñ] Section
heading

Noun Phrase Followed by
Certain words

Subject ںيم

مجهے
[mʊʤæ]

Section
heading

Noun Phrase Followed by
Certain words

Subject

مجهکو
[mʊʤkəʊ]

Section
heading

Noun Phrase Followed by
Certain words

Subject

 [mærɒ] Section
heading

Noun Phrase Followed by
Certain words

Subject رايم

یريم
[mæri]

Section
heading

Noun Phrase Followed by
Certain words

Subject

رےيم
[mæreI]

Section
heading

Noun Phrase Followed by
Certain words

Subject

 [hΛm] Section
heading

Noun Phrase Followed by
Certain words

Subject ہم

ںيہم
[hΛmæñ]

Section
heading

Noun Phrase Followed by
Certain words

Subject

ہمکو
[hΛmkəʊ]

Section
heading

Noun Phrase Followed by
Certain words

Subject

ہمارا
[hɒmɒrɒ]

Section
heading

Noun Phrase Followed by
Certain words

Subject

یہمار
[hɒmɒri]

Section
heading

Noun Phrase Followed by
Certain words

Subject

ہمارے
[hɒmɒreI]

Section
heading

Noun Phrase Followed by
Certain words

Subject

88

N. Ge, J. Hale and E. Chaniak. 1998. A Statistical

Approach to Anaphora Resolution. Proceeding of
the workshop on very large Corpora, 161-171.
Montreal, Canada.

B. Grosz, J. Aravind and S. Weinstein. 1995. Centering

a framework for modelling local coherence of
discourse. Computational Linguistics, 21 (2), 203-
225.

M. Halliday, R. Hassan. 1976. Cohesion in English.

Longman, London.

B. Kalsoom, B. Rashida. 1993. Urdu Anaphora

Resolution in Monologue. M.Sc. Computer Sc.
Thesis, Department of Computer Science
University of Peshawar, NWFP, Pakistan.

M.A. Khan , M.N. Ali and M. Aamir. 2006. Treatment

of Pronominal Anaphora in Urdu Discourse. In
Proceedings, IEEE, ICET Conference on Emerging
Technologies, 543-548. Peshawar, Pakistan.

S. Lappins, H. Leass. 1994. An algorithm for

pronominal anaphora resolution. Computational
Linguistics, 20(4), 535-561.

J. MaCarthy, W. Lehnert. 1995. Using decision trees for

coreferences resolution. Proceedings of the 14th
International Conference on AI, 1050-1055.
Montreal, Canada.

R. Mitkov. 1998. Robust Pronoun Resolution with

Limited Knowledge. Proceedings of 17th
International conference on Computational
Linguistics, 869-875. Montreal, Canada..

R. Prasad, M. Strube. 2000. Discourse Salience and

Pronoun Resolution in Hindi. Penn Working Papers
in Linguistics, Vol. 6.3, 189-208.

L. Sobha. 1998. Anaphora Resolution in Malayalam and

Hindi. Doctorial dissertation submitted to
Mahatma Gandhi University, Kottayam, Kerala.

W.M. Soon, H.T. Ng, and C.Y. Lim. 1999. Corpus

based learning for noun phrase coreference
resolution. Proceedings of the 1999 Joint SIGDAT
Conference on Empirical Methods in NLP and in
very large Corpora, 285-291. University of
Maryland, USA.

M. Strube. 1998. Never look back: An alternative to

Centering. In Proceedings of the 17th Int.
Conference on Computational Linguistics and 36th
Annual Meeting of the Association for

Computational Linguistics, 1251–1257. Montreal,
Quebec, Canada.

89

90

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 91–98,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Morphology Driven Manipuri POS Tagger

Thoudam Doren Singh Sivaji Bandyopadhyay
 Computer Science Department Computer Science & Engineering Department

 St. Anthony’s College Jadavpur University
 Shillong-793001, Meghalaya, India Kolkata – 700 032, India
 thoudam_doren@rediffmail.com sivaji_cse_ju@yahoo.com

Abstract

A good POS tagger is a critical component
of a machine translation system and other
related NLP applications where an
appropriate POS tag will be assigned to
individual words in a collection of texts.
There is not enough POS tagged corpus
available in Manipuri language ruling out
machine learning approaches for a POS
tagger in the language. A morphology
driven Manipuri POS tagger that uses three
dictionaries containing root words, prefixes
and suffixes has been designed and
implemented using the affix information
irrespective of the context of the words. We
have tested the current POS tagger on 3784
sentences containing 10917 unique words.
The POS tagger demonstrated an accuracy
of 69%. Among the incorrectly tagged 31%
words, 23% were unknown words (includes
9% named entities) and 8% known words
were wrongly tagged.

1 Introduction

Manipuri (Meiteilon or Meiteiron) belongs to the
Tibeto-Burman language family and is highly
agglutinative in behavior, monosyllabic, influenced
and enriched by the Indo-Aryan languages of
Sanskrit origin and English. The affixes play the
most important role in the structure of the language.
A clear -cut demarcation between morphology and
syntax is not possible. In Manipuri, words are formed
in three processes called affixation, derivation and
compounding (Thoudam, 2006). The majority of the
roots found in the language are bound and the affixes
are the determining factor of the class of the words in
the language. Classification of words using the role

of affix helps to implement the tagger for a resource
poor language like Manipuri with high performance.

There are many POS taggers developed using
different techniques for many major languages such
as transformation-based error-driven learning (Brill,
1995), decision trees (Black et al., 1992), Markov
model (Cutting et al., 1992), maximum entropy
methods (Ratnaparkhi, 1996) etc for English.
Decision trees are used to estimate marginal
probabilities in a maximum entropy model for
predicting the parts-of-speech of a word given the
context in which it appears (Black et al., 1992). The
rules in a rule-based system are usually difficult to
construct and typically are not very robust (Brill,
1992). Large tables of statistics are not needed for the
rule-based tagger. In a stochastic tagger, tens of
thousands of lines of statistical information are
needed to capture the contextual information (Brill,
1992). For a tagger to function as a practical
component in a language processing system, a tagger
must be robust, efficient, accurate, tunable and
reusable (Cutting, 1992).

2 Previous work on Manipuri POS tagger

Morphology based POS tagging of some languages
like Turkish (Oflazer and Kuruoz, 1994), Czech
(Hajic, et al., 2001) has been tried out using a
combination of hand-crafted rules and statistical
learning. A Marathi rule based POS tagger used a
technique called SRR (suffix replacement rule)
(Burange et al., 2006) with considerable accuracy. A
POS tagger for Hindi overcomes the handicap of
annotated corpora scarcity by exploiting the rich
morphology of the language (Singh et al., 2006). To
the best of our knowledge, there is no record
available of work done on a Manipuri POS tagger. A
related work of word class and sentence type
identification in a Manipuri Morphological Analyzer

91

is found in (Thoudam and Bandyopadhyay, 2006)
where the classification of few word categories and
sentence type identification are discussed based on
affix rules.

3 Manipuri Morphemes

There are free and bound roots in Manipuri. All the
verb roots are bound roots. There are also a few
bound noun roots, the interrogative and
demonstrative pronoun roots. They cannot occur
without some particle prefixed or suffixed to it. The
bound root may form a compound by the addition of
another root. The free roots are pure nouns,
pronouns, time adverbials and some numerals. The
bound roots are mostly verb roots although there are
a few noun and other roots. The suffixes, which are
attached to the nouns, derived nouns, to the
adjectives in noun phrases including numerals, the
case markers and the bound coordinators are the
nominal suffixes. In Manipuri, the nominal suffixes
are always attached to the numeral in a noun phrase
and the noun cannot take the suffixes. Since
numerals are considered as adjectives, the position
occupied by the numerals in Manipuri may be
regarded adjective position (Thoudam, 2006). There
are a few prefixes in Manipuri. These prefixes are
mostly attached to the verb roots. They can also be
attached to the derived nouns and bound noun roots.
There are also a few prefixes derived from the
personal pronouns.

In this agglutinative language the numbers of
verbal suffixes are more than that of the nominal
suffixes (Singh, 2000). New words are easily formed
in Manipuri using morphological rules. Inflectional
morphology is more productive than derivative
morphology (Chelliah, 1997). There are 8
inflectional (INFL) suffixes and 23 enclitics (ENC).
There are 5 derivational prefixes out of which 2 are
category changing and 3 are non-category changing.
There are 31 non-category changing derivational
suffixes and 2 category changing suffixes. The non-
category changing derivational suffixes may be
divided into first level derivatives (1st LD) of 8
suffixes, second level derivatives (2nd LD) of 16
suffixes and third level derivatives (3rd LD) of 7
suffixes. Enclitics in Manipuri fall in six categories:
determiners, case markers, the copula, mood
markers, inclusive/exclusive and pragmatic peak
markers and attitude markers. The categories are

determined on the basis of position in the word
(category 1 occurs before category 2, category 2
occurs before category 3 and so on).

4 Dictionaries

Three different dictionaries namely prefix which
contains prefix information, suffix which contains
suffix information and root containing 2051 entries
are used for the system. The format of root is
<root><category>.

A bilingual dictionary consisting of Manipuri
word and its corresponding pronunciation, POS, 1st
English (Eng1) word meaning, 2nd English (Eng2)
word meaning (if any), 3rd English (Eng3) word
meaning (if any), a Manipuri sentence or phrase
using the word and corresponding English meaning
has been developed based on the work of Manipuri to
English Dictionary (Imoba, 2004). The bilingual
parallel dictionary is used for testing POS tagger and
later on will be used for EBMT system. The
Manipuri sentences/phrases using a particular word
are used as the input to the POS tagger thus enabling
to sort out words with multiple meaning.

5 Morphological analysis of Major Lexical
categories

The lexical categories in Manipuri can be of two
types – major and minor (Chelliah, 1997). Major
lexical categories can be of two types, namely
“actual” and “potential”. The lexicon of actual lexical
categories i.e., actual lexicon consists of an
unordered list of roots and affixes and lexicalized
forms. Each lexical entry in the actual lexicon
consists of what lexical category it belongs to and
what its meaning is. On the other hand, the output of
the potential lexicon consists of words created
through productive morphological processes. In the
actual lexicon, roots may be bound or free. Nouns
and verbs from the actual lexicon can be
distinguished on formal grounds in that bound roots
are verbs and free roots are nouns. In the potential
lexicon, adjectives, adverbs and nominal forms can
be derived from verb roots and stative verbs can be
derived from noun roots. There are several instances
where the words belonging to some class or category
plays the role of some other category sometimes
based on its position in the sentences (P.C. Thoudam,

92

2006) Some of the generalized handcrafted rules to
identify the lexical are given as below.

5.1 Nouns

Nouns can be distinguished from other lexical
categories on morphological grounds. Unlike verbs,
nouns can be suffixed by gender, number or case
markers. Proper nouns and common nouns are free
standing forms.

The following is the list of word structure rules
for nouns (Chelliah, 1997)
N Root INFL (ENC)
Root Root (2nd LD)
Root Root (1st LD)
Root (prefix) root (root)

Figure 1 shows the general form of noun
morphology in Manipuri. Examples of some
singular/plural noun forms are listed in Table 1.

Prono
minal
prefix

Root gende
r

number Quant
ifier

Cas
e

Figure 1. General form of Noun Morphology

Singular Form Plural Form
=ä»JôEõ -Uchek (bird) =ä»JôEõ×`e -Ucheksing(birds)
] -Ma (He/She)]ãFçÌ^ -Makhoy (they)
]Ý -Mi (man)]ÝÌ^ç] -Mi-yaam (men)

Table 1: Singular/Plural forms

Although case markers are functionally
inflectional, they exhibit the clitic like characteristic
of docking at the edge of a phrase. The word
structure of rules of verbs and nouns are identical
except for the category of the word level node, the
possible terminal elements of the derivational and
inflectional categories and the lack of the third level
nominal derivation. Two examples to demonstrate
the noun morphology are given below:-
]JôçXÇYÝ×`eXç (mə-ca-nu-pi-siŋ-nə) ’by his/her
daughters’
]JôçXÇYç×`eXç (mə-ca-nu-pa-siŋ- nə) ’by his/her sons’

The] -mə ‘his/her’ is the pronominal suffix and Jôç -ca
‘child’ is the noun root. The XÇ -nu ‘human’ is suffixed
by YÝ -pi to indicate a female human and Yç–pa to
indicate a male human. ×`e –siŋ or åFç+ -khoy or Ì^ç]–
yaam can be used to indicate plurality. -siŋ cannot be

used with pronouns or proper nouns and -khoy
cannot be used with nonhuman nouns. Xç -nə meaning
‘by the’ is the instrumental case marker.

5.2 Pronouns

The singular personal pronouns are B -əy ‘I’, Xe -nəŋ
‘you’ and]ç -ma ‘he/she’. Possessive pronouns are
formed through the suffixation of ×Eõ -ki ‘genitive’ on
these personal pronouns. Indefinite pronouns are
also lexicalized forms that consists of a question
word which may be followed by aÇ -su ‘also’ or the
sequence EÇõ¶‘ö -kumbə composed of EÇõ] –kum, ‘like’,
‘kind of’ and [ý –bə ‘nominalizer’. The strategy for
creating relative clause in Manipuri is to place the
relativized noun directly after a normalized clause;
there is no relative pronoun to mark the relative
clause. The determiner may occur either as an
independent pronoun or encliticized on the noun
phrase with no difference in meaning. The
determiners ×a –si ‘proximate’ and TÇ –tu ‘distal’ are
stems that function as enclitics. ×a –si indicated that
the object or person being spoken of is near or
currently seen or known to be near., even if not
viewable by the speaker, or is currently the topic of
conversation; TÇ ö-tu signifies something or someone
not present at the time of speech or newly introduced
in the conversation. Possessive pronominal prefix
may be affixed to the root `ç sa ‘body’ to form
pronouns emphasizing that the subject of the verb is
a particular person or thing and no one or nothing
else: +`çXç isanə ‘by myself’ X`çXç nəsanə ‘by
yourself’ and]`çXç məsanə ‘by him/her/itself/. The
set of Manipuri Pronominal prefixes differ for
different persons (+ {I} for 1st person, X {Na} for 2nd
person and] {Ma} for 3rd person) while the set of
pronominal suffixes differ only on gender (Yç –pa for
masculine gender, YÝ -Pi for feminine gender).

5.3 Verbs

Verbs roots are in the actual lexicon and are bound
forms. A verb may be free standing word if it is
minimally suffixed by an inflectional marker. The
verb root may also be followed by one of the
enclitics. Three derivational categories may
optionally precede the final inflectional suffix. The
1st LD suffixes signal adverbial meanings, the 2nd LD
suffixes indicate evidentiality, the deitic reference of

93

a verb, or the number of persons performing the
action and the 3rd LD suffixes signal aspect and
mood. Verb roots may also be used to form verbal
nouns, adjectives and adverbs. Verbal nouns are
formed through the suffixation of the nominalizer Yç
–pə to the verb root.

The following is the list of word structure rules
for verbs (Chelliah, 1997)

a. Verb Root INFL
b. Root Root (3rd LD)
c. Root Root (2nd LD)
d. Root Root (1st LD)
e. Root root (root)
f. 3rd LD (mood1)(mood2)(aspect)
g. 2nd LD (2nd LD1),(2nd LD2),(2nd LD3)..
h. 1st LD 1st LD

Derivat
ional
Prefixa
tion

Ro
ot

1st
Level
derivati
on

2nd

level
derivati
on

3rd
level
deriv
ation

Infle
ction

Figure 2. General form of Verb Morphology

There are 3 categories (mood1, mood2, and
aspect) belonging to the third level derivational (3rd
LD) markers. The general form of verb morphology
is shown in figure 2.

The sub-categorization frames of affixes will
restrict that only nominal affixes occur with a noun
and verbal affixes occur with a verb root. The
derivational suffix order of the word æ»JôEõFç+Ì[ýhõ×X is
given below:-

æ»JôEõ Fç+Ì Ì[ýEõ E ×X
cek –khay -rək -kə -ni
crack -totally affect -distal -potential –copula
 (1st LD) (2nd LD) (3rd LD)
The Ì[ýEõ -rək has allomorph _Eõ-lək. Ì[ýEõ -rək occurs
after vowels while _Eõ-lək occurs after consonants.
Such allomorph is an example of orthographic
change and it is taken care by the system by making
individual entries into the dictionary.

»JôçÌ[ýEõA –ca-rək-y (ate there and came here)
»Jôç¶ÚöEõA – cam-lək-y (washed there and came here)

The formation of verb can be of the form

Verb stem + aspect/mood verb
UEõ -thək (drink) + ã_ -le- UEõã_ thəkle (has drunk)

The verbal noun is formed with the rule as given as

Verb Stem + Nominalizer Verbal noun
åUçe -thong (cook)+ [ýç -ba åUçe[ýçý thongba (to cook)

5.4 Adjectives

An adjective is derived through the affixation of the
attributive, derivational prefix % ə- to a verbal noun.
e.g.
% -ə + Verbal noun Adjective
% -ə + ×a -si (die) + [ýç -ba–>%×a[ýç əsiba (something
dead)

Adjectives may appear before or after the nouns
they modify. Possessive adjectives are formed
through the suffixation of the genitive marker ×Eõ –ki
to the possessor of a noun.

5.5 Adverbs

Manner adverbs are formed through suffixation of Xç
–nə ‘adverbial’ to a verb root. e.g. å_çÌ^Xç loynə
‘completely, all’ from loy ‘complete,finish’. e.g.,

Stem + Xç - na Adverb
EõY -Kəp (cry)+ Xç - na –> EõYXç -kəp-na (cryingly)

Locative adverbs are derived through the
prefixation of] mə ‘noun marker’ to a noun or verb
roots. e.g.]Fç məkha ‘below, underneath’ from Fç
kha ‘south’

6 Morphological analyses of some minor
lexical categories

The three minor lexical categories of Manipuri are
quantifiers, numerals and interjections. These are
considered minor categories because these lexical
items are closed sets which express meanings most
often encoded by affixal morphology. The lexical
items in interjection is defined on the semantic
similarity of its members, all express strong emotion.

94

6.1 Quantifiers

Most quantifiers in Manipuri are lexicalized forms
consisting of the unproductive prefix khV- (where the
vowel can be a, i, u). These are FÌ[ýç -khəra ‘some’
which indicates an indeterminate amount; ×FTe -
khitəŋ ‘ever so little, a particle’ of some tangible
material. These quantifiers can be combined as in

<×`e FÌ[ýç ×FTöe YÇÌ[ýEõ=.
Ishiŋ khəra khitəŋ purək-u
 ‘Bring me just a little bit of water’.

6.2 Numerals

The numerals are nouns. Ordinal numerals are
adjectives, derived through the affixation of the
attributive prefix % –ə and the nominalizer [ýç –bə to
any numeral with £ –su ‘also’: thus %×X£[ýç ənisubə
‘second one’.

6.3 Interjections

The lexical items of this category which is defined on
the semantic similarity of its members, all express
strong emotion. Some of these are composite forms
where one syllable is identifiable as the exasperative
enclitic åc÷ –he and the second syllable is not
identifiable as a productive affix or stem.

7 Manipuri Tagset

The basic Manipuri POS tag set used in the POS
tagger is listed below. EÇõyÇÔ EÇõyÇÔ kukru kukru (a
pigeon’s cry) is ideophone. TÇö tu ‘that’ is a
determiner. c÷çÌ^[ý×` haybasi is a determiner
complementizer.

Sl. No. Category

name
Tag

1 adjective ADJ
2 adverb ADV
3 conjunction CONJ
4 complementizer CMP
5 determiner DET
6 ideophone IDEO
7 interjection INTJ
8 noun N
9 pronoun PN

10 quantifier QU
11 verb VB
12 Verbal noun VN
13 Unknown UNK

Table 2. Manipuri POS tagset

8 Design of Manipuri POS tagger

In Manipuri, the basic POS tags are assigned to the
words on the basis of morphological rules. Figure 3
shows the system diagram of Manipuri POS tagger.

 Input sentence

Lexical
Rules

 Tagged Output Sentence

Figure 3. System Diagram

The different parts involved in the system are:-

a. Tokenizer: Words are separated based on
the space given between consecutive words.

b. Stemmer: It separates the prefixes and
suffixes from the words.

c. Engine: Different analysis and treatment of
different words are performed based on the
category.

d. Tag Generator: Tags are assigned to the
words in the sentence input based on the
tagset and morphology rules.

e. Dictionaries: Prefix, suffix and word
dictionary along with sentences using the
words are maintained.

Tokenizer Stemmer

Engine
Major

Lexical
Category
Module

Minor
Lexical

Category
module

Dictionaries

 Tag Generator

95

8.1 Algorithm of POS tagging

Algorithm used for tagging is as follows:-

1. Input the Manipuri input texts to the
Tokenizer.

2. Repeat steps 3 to 6 until the end of the texts
for each token.

3. Feed the tokens to the stemmer.
4. Check the patterns and order of the different

morphemes by looking at the stem category.
5. Apply the handcrafted morphological rules

for identifying the category using the engine.
6. Generate the POS tags using Tag generator.
7. End.
The Visual C++, MsAccess and GIST SDK are

used to develop the system. The Manipuri words are
entered into the dictionary using Bengali script (BN1
TTBidisha font).

9 Evaluation

In Manipuri, word category is not so distinct except
Noun. The verbs are also under bound category.
Another problem is to classify basic root forms
according to word class although the distinction
between the noun class and verb classes is relatively
clear, the distinction between nouns and adjectives is
often vague. Distinction between a noun and an
adverb becomes unclear because structurally a word
may be a noun but contextually it is adverb. Thus,
the assumption made for word categories are
depending upon the root category and affix
information available from the dictionaries. At the
moment, we use a sequential search of a stem from
the root dictionary in alphabetical order. It is found
to be suitable for small size dictionary. Further a part
of root may also be a prefix which leads to wrong
tagging. The verb morphology is more complex than
that of noun. A comparative study on the number of
words tagged by the system and manually tagged had
been carried out. The inputs of 3784 Manipuri
sentences of 10917 unique words as input to the
tagger engine. Sometimes two words get fused to
form a complete word. Handling such collocations is
difficult. Conjuncts require a separate dealing using a
table. Verbs, nouns and noun phrases, subordinate
sentences, and root sentences can be affixed by
enclitics. Table 4 shows the percentage statistics of
tagging output based on the actual and correctly

tagged words. The accuracy of tagging can be further
improved by populating more root morphemes to the
root dictionary.

 No. of single correct tags
Accuracy percentage= X 100

 Total no. of tokens

Group Types Percentage
Single tagged correct words 65%
Multiple tagged correct words 4%
Unknown words 23% (9%

Named Entities)
Wrong tagged words 8%

Table 4. Tagger output statistics

The unknown words are the words which could not
be tagged based on the linguistic rules and
unavailability of entries mainly in root dictionary. In
the process of word formation, only affixation:
prefixing, suffixing or compounding takes the role of
formation of new words in this language. Due to the
fact that new words are easily formed in Manipuri,
thus the number of unknown words (out of
vocabulary) is relatively large (Sirajul et al., 2004).

10 Challenges for future work

The noun group words handling are not incorporated.
For example %FçEõ %Ì[ýçC (pronounced as əkhak əraw)
meaning thunderbolt, %Iø] %Ì[ýç+ FIøV[ýç (pronounced as
əŋam əray khəŋdəba) meaning wanton are noun
group words and are not tagged by the POS tagger
correctly. The Noun-Adjective ambiguity
disambiguation scheme is required as a separate
module and implementations are to be included in the
future work. The Manipuri tagging is very much
dependent on the morphological analysis and lexical
rules of each category. There is a cleaning process of
all word and morphemes specially the spelling to
ensure that the lexical rules are implemented. This
has not yet been implemented. Collocations handling
and more disambiguation rules will be developed in
further phases of the work. The output of the POS
tagger will be used in a Manipuri-English machine
translation system.

References

E. Black, F. Jelinek, J. Lafferty, R. Mercer and S. Roukos.

1992. Decision tree models applied to labeling of texts

96

with parts of speech. In DARPA Workshop on Speech
and Natural Language. San Mateo, CA, 1992, Morgan
Kaufman.

Eric Brill. 1992. A simple rule-based part of speech

tagger. In Proceedings Third Conference on Applied
Natural Language Processing, ACL, Trento, Italy.

Eric Brill. 1995. Transformation-Based Error Driven

Learning and Natural Language Processing: A case
study in Parts-Of-Speech tagging. Computational
Linguistics 21(94): pp 543-566.

Sachin Burange, Sushant Devlakar, Pushpak

Bhattacharyya. 2006. Rule Governed Marathi POS
Tagging. In Proceeding of MSPIL, IIT Bombay, pp 69-
78.

Shobhana L. Chelliah. 1997. A Grammar of Meithei.

Mouton de Gruyter, Berlin, pp 77-92.

Sirajul Islam Choudhury, Leihaorambam Sarbajit Singh,

Samir Borgohain, P.K. Das. 2004. Morphological
Analyzer for Manipuri: Design and Implementation. In
Proceedings of AACC, Kathmandu, Nepal, pp 123-129.

D. Cutting. 1992. A practical part-of-speech tagger. In

Proceeding of third conference on Applied Natural
Language Processing. ACL, 1992. pp 133-140.

J. Hajic, P. Krbec, P. Kveton, K. Oliva, V.Petkevic, 2001.

A Case Study in Czech Tagging. In proceedings of the
39th Annual Meeting of the ACL.

S. Imoba. 2004. Manipuri to English Dictionary. S.

Ibetombi Devi, Imphal.

K. Oflazer, I Kuruoz. 1994. Tagging and morphological

disambiguation of Turkish text. In Proceedings of 4th
ACL conference on Applied Natural Language
Processing Conference.

A. Ratnaparakhi. 1996. A maximum entropy Parts-Of-

Speech Tagger. In Proceedings EMNLP-ACL. pp 133-
142.

Smriti Singh, Kuhoo Gupta, Manish Shrivastava, Pushpak

Bhattacharya. 2006. Morphological Richness offsets
Resource Demand – Experiences in constructing a POS
tagger for Hindi. In Proceedings of COLING-ACL,
Sydney, Australia.

Ch. Yashawanta Singh. 2000. Manipuri Grammar. Rajesh

Publications, New Delhi.

P.C. Thoudam. 2006. Problems in the Analysis of
Manipuri Language. www.ciil-ebooks.net, CIIL,
Mysore.

D. S. Thoudam and S. Bandyopadhyay. 2006. Word Class

and Sentence Type Identification in Manipuri
Morphological Analyzer. In Proceedings of MSPIL,
IIT Bombay, pp 11-17.

97

98

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 99–104,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Acharya - A Text Editor and Framework for working with Indic Scripts

Krishnakumar V
Software Developer,

A-10/11 DMC New Colony,
Salem-636012

v.krishnakumar@gmail.com

Indrani Roy
Fellow,

Central Institute of Indian Languages,
Manasagangotri, Mysore-570006
indraniroy@gmail.com

Abstract

This paper discusses an open source project1

which provides a framework for working
with Indian language scripts using a uniform
syllable based text encoding scheme. It also
discusses the design and implementation of
a multi-platform text editor for 9 Indian lan-
guages which was built based on this encod-
ing scheme.

Keywords: Syllabic Encoding, Text Editor
implementation, Transliteration

1 Introduction

1.1 Background
Back in 2004, ETV (Eenadu Television), Hyder-
abad, felt a need for a text editor to prepare news
scripts for its regional news channels. A news pro-
duction environment has its unique set of require-
ments including speed, efficiency, robustness etc.
The software that was in use had various technical
limitations including high CPU usage, lack of porta-
bility across the diverse set of platforms that were in
use in ETV. Using UNICODE editors were unsuitable
as the correctness of the output largely depended on
the quality of the shaping engine in use and back
then it produced inconsistent results. Apart from that
ETV’s real-time graphics engines had trouble shap-
ing UNICODE text in Indic scripts.

A multilingual editor for Indic scripts had been
developed at IIT Madras2. The team at IIT Madras
favoured further development under an open source
project. As a result an Open Source Project was

1http://imli.sourceforge.net
2http://acharya.iitm.ac.in

started. The immediate aim of the project was to
rewrite the editor, remove its limitations and re-
design it for use in a News Production environment
using modern design and development tools.

1.2 Acharya Text Editor

Acharya is a multi-platform text editor that supports
Asamiya, Bangla, Devanagari, Gujarati, Kannada,
Malayalam, Oriya, Punjabi, Tamil and Telugu. In
addition to these scripts, it can also display text in
Braille and RomanTrans using transliteration. It
achieves this functionality by storing Indic text in
syllabic units instead of characters as most other ed-
itors do. Although it uses a custom encoding, the
editor supports conversion of text to standard encod-
ings like ISCII (ISCII, 1993) and UNICODE (UTF-8).
It can export documents as RTF and PDF files. In
the case of PDF documents the fonts are embedded
within so that they can be exchanged freely with-
out the need for local language fonts to be available
on the viewing system. The editor supports editing
multiple documents through a tabbed interface. It in-
cludes standard features like clipboard support, find-
ing strings and interfacing with the platform’s print-
ing system. To assist text entry, it has a word com-
pletion mechanism based on a dynamic dictionary.
Currently, it runs on all major platforms including
Windows, Mac OS X and various Linux distribu-
tions.

The editor consists of a small but extensible li-
brary for processing syllables, a text editing com-
ponent and the rest of the user interface. Section 2
of this paper describes the library. The syllabic en-
coding along with its features is described in section
2.1. Section 3 describes the text editing component.
Conclusion is offered in section 4 along with some

99

information on related work-in-progress.

2 Syllable Library

The syllable library provides an implementation of
the syllabic encoding (described in the Section 2.1)
which allows text to be represented directly as syl-
lables instead of as characters. The library imple-
ments the rules of syllable composition, provides in-
put methods, and routines for conversion of syllables
to/from other encodings like ISCII and UNICODE.
All of this functionality is exposed through opaque
data types and a small API operating on them.

2.1 Encoding

As mentioned above, text is encoded directly as syl-
lables. The encoding used is a modified version
of the syllabic encoding scheme (Kalyanakrishnan,
1994) developed by Prof. R. Kalyana Krishnan at
the Systems Development Lab, IIT Madras. This
encoding tries to capture the syllabic nature of In-
dic scripts. In this encoding, each syllable can be
specified as

Cm=0..4Vn=0..1

Where C is the consonant and V is the vowel. This
means that each syllable can be one of V, C, CV,
CCV, CCCV and CCCCV combinations. The ini-
tial C is the base consonant and the subsequent Cs
represent conjunct combinations. The memory rep-
resentation of each syllable is a 16-bit value with the
following bit distribution3:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v cnj c

Figure 1: syllabic encoding

With this arrangement, it is possible to have upto
64 consonants with 16 vowels each. The bits 4-9 in-
dicated by the cnj field hold the index into the base
consonant’s conjunct table. This table holds the val-
ues of the constituent consonants OR’ed into a 32-
bit integer. For example:

The syllable ndrA is stored in the following way.

3shown in little-endian byte order

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 25 20

Figure 2: ndrA syllable

Comparing with figure 1, the vowel code is 1
which stands for the vowel aa. Similarly, the base
consonant code is 20 and represents the consonant
na. The conjunct code 25 is an index into the con-
junct table of the consonant na. The value that will
be stored at index 25 is shown in figure 3:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

18 30 0 0

Figure 3: value at index 25 of the conjunct table of
na

Bits 0-7 contain the consonant code of the first
level conjunct, bits 8-15 of the second level conjunct
and bits 16-23 of the third level. Bits 23-31 are re-
served for future expansion. In this case, there are
2 consonants in addition to the base consonant na.
The values 18 and 30 represent the consonants da
and ra respectively.

These codes are specified in the files
generic.vow4, generic.con, generic.spl for vowels,
consonants and special characters respectively.
The conjunct combinations are specified in the file
generic.cnj in this fashion:
ra: ta (ta (ya))
Here ra is the base consonant and the line defines

three conjuncts namely rt(ra + ta), rtt(ra + ta + ta)
and rtty(ra + ta + ta + ya). The last conjunct is an
example of a conjunct where all the four levels are
used ra + ta + ta + ya. It occurs for example in the
Oriya word marttya. Each pair of parenthesis stands
for a level of conjunct. More complex conjuncts
can be added by nesting them within parentheses.
However, the current implementation supports only
up to three levels of nesting. The generic.cnj file
as it stands now defines 1240 conjuncts. When the
16 vowels are taken into account, we get a total of
19840 syllables. An additional set of 32 syllables for

4These files are named generic because the values they de-
fine are common to all scripts supported by the framework

100

local language numbers, punctuation and other spe-
cial characters increases the total number of valid
syllables to 19872.

This scheme also accommodates English text in
the ASCII encoding by using a consonant code of 62
and the lower eight bits representing the ASCII code.
It also has a few special syllable codes for switch-
ing scripts to be embedded within the data stream
although they are not used within the editor.

2.1.1 Compactness
The 16-bit syllable value stands on its own and

does not correspond to UNICODE or ISCII or any
other encoding for that matter. One particular fea-
ture of this scheme is the compactness and the in-
herent compression. For example,
मर्त्त्य
the above word – marttya (m + r + halant + t

+ halant + t + halant + y), in UNICODE UTF-16
encoding will be encoded as 8 16-bit values. UTF-8
requires 26 bytes to encode the word. In ISCII, it can
be encoded in 8 bytes whereas in this encoding, the
above word requires just 2 syllables of 16 bits each.

2.1.2 Rendering
One other aspect of this encoding is that there

is a separation of content and its visual representa-
tion. On one hand, this means that text processing
applications need not worry about dealing with dis-
play related issues like glyph reordering and proper
placement of glyphs using the various zero width
space characters as is the case with character based
encoding schemes including UNICODE. On the other
hand, this separation means that to display a syllable
some kind of map is required between the syllable
and its visual representation (glyphs). This mapping
is font dependent when non standard fonts using the
ISO8859-1 encoding are used but UNICODE fonts
can also be used. Currently static tables are used
to provide a one to one mapping between the sylla-
bles and its corresponding glyphs. This is a trade-off
where memory is traded for quick display of glyphs.
There is no need for cluster identification as the in-
formation is already there in the form of syllables.
This lookup is O(1) whereas in shaping engines like
Pango, this operation is O(n). These static tables
can also be useful in environments where shaping
engines like Uniscribe and Pango are not available

or cannot be used.

2.2 Input Methods

The library provides routines for input methods
which can be used in conjunction with the platform
specific keyboard processing functions to support di-
rect key-in of syllables. Currently, it includes in-
put methods for INSCRIPT (ISCII, 1993) and Pho-
netic keyboards. However, the mechanism is general
enough to add additional keyboard layouts includ-
ing ones that work only with specific scripts. In the
current implementation, the input methods load their
respective data and delegate the bulk of the work to
the syllable processing routine.

2.3 Unicode Conversion

UNICODE is the de-facto standard for storing and
rendering text so conversion to/from UNICODE is es-
sential for integration with other tools. UNICODE in-
tegration can be achieved either by having a static
syllable-to-glyphs map with UNICODE fonts or a
separate text codec to do the syllable to UNICODE

conversion. In the current implementation, the text
codec strategy is used to convert the syllables to its
corresponding UTF-8

3 Editor Implementation

3.1 Text Storage

The most important data structure in a text editor is
the one that stores text sequences. A poor choice
will directly affect the performance of the editor as
almost all editing operations work on these text se-
quences. A survey of popular data structures for text
sequences is presented in (Crowley, 1998). The two
most popular choices are gap buffer and piece ta-
ble. A gap buffer is basically an array that has a
gap which is moved to the point of edit so that the
text that is entered is copied to the gap without fur-
ther allocation of storage. The gap shrinks and ex-
pands on insertion and deletion of text respectively.
Gap buffers have the advantages of being simple to
implement and offer direct access to the text. The
downside is they incur a copying overhead when the
gap is not at the point of editing operations as text
needs to be copied to either side of the gap. Also gap
buffers are not suitable if the text has attributes and
runs (run is a chunk of text that belongs to the same

101

script) of text need to be stored. A multilingual text
editor has both these requirements. To implement
this in a gap buffer would require a parallel style or
script buffer (Gillam, 2002) to track and demarcate
the runs and its corresponding font changes. When-
ever the gap is moved and text added or deleted, the
style buffer would need to be updated as well. This
can quickly get cumbersome when multiple scripts
are used in the same document.

A piece table is an alternative to the gap buffer
that does not suffer from these problems. In a piece
table, the text is immutable and is always appended
to the sequence. However, the logical order that is
shown in the view is maintained by a separate list of
piece descriptors. A piece includes information such
as the script, the start and end positions within the
sequence etc. So, when the user copies/deletes the
text, it is the piece descriptors that are moved around
and not the actual text. By introducing this level
of indirection, the piece table solves the problem of
copying overhead when text is moved around. How-
ever, the drawback is that the text is no longer ac-
cessible directly. To locate a position in the text se-
quence the editor has to traverse the piece table and
locate the piece which contains the position. Despite
this drawback, the piece table data structure offers a
number of advantages – it is a persistent data struc-
ture and because the original text is never destroyed
operations like undo and redo lend to a straightfor-
ward implementation by restoring the links between
the removed pieces from the undo and redo stacks
respectively. The other advantage of piece tables
is that there is a direct mapping from script runs to
pieces.

The piece table in this editor is implemented as a
piece chain (Brown, 2006) – a circular linked list
with a sentinel node. Since the piece chain is a
linked list, the problem of linear addressing is pro-
nounced (O(n)). To deal with this problem, the
piece chain caches the last accessed (piece, position)
pair to utilize the locality of reference (Wirth and
Gutknecht, 1992). This small optimization has so
far worked out well in practice as there is a strong
locality of reference in text editing. To store the syl-
lables itself, the deque class from the standard C++ li-
brary is used. It is a scalable data structure that guar-
antees efficient insertion of large amounts of text at
the tail position. Another important issue is that of

cursor movement. In the editor, syllables are dis-
played using a variable number of glyphs. Allowing
the cursor to be positioned in the middle of a syllable
would make it possible to delete that particular syl-
lable partially which would make the data inconsis-
tent. Therefore all cursor related operations includ-
ing selection should be limited to syllable bound-
aries. This is achieved by using a separate deque
object for storing the width of each syllable where
width is the number of glyphs that the syllable is
represented by visually. This additional information
is used when mapping the syllable position in the
text storage to its corresponding glyph position in
the view and vice-versa.

3.2 File Format
As mentioned in section 2, the editor works in terms
of syllables and not characters. While syllables can
be stored to disk files directly, to retain compatibil-
ity with other Indian language applications, the edi-
tor stores the text to files in the 7-bit ISCII encoding.
7-bit ISCII is a simple and efficient format where En-
glish text in ASCII is stored as is and the text in Indic
scripts are stored using code points from the upper
half of the character set (128-255). Like the syllabic
encoding and unlike UNICODE, ISCII uses a uniform
representation for all the Indic scripts. Each script
run starts off with a code that identifies the language
of the run. This makes run detection very simple
to implement. When the editor saves a document,
all the syllables are broken down to their constituent
ISCII characters and written to disk. Similarly, when
a file is opened, the ISCII data is converted to the syl-
labic representation using the ISCII codec routines
from the syllable library and from then on only the
syllables are used.

3.3 Utilities
3.3.1 Transliteration

Because of the uniformity of the encoding all the
supported scripts have a means of displaying the
same set of syllables hence transliteration in this en-
coding is basically changing the script code for the
user-selected piece of text and notifying the view
that is displaying the text to re-render the selected
text using the font of the target script. What this
means is that transliteration as supported by this en-
coding will survive a round-trip conversion without

102

any loss of data. An example to illustrate the last
point:

Supposing in a multilingual document, the user
selects the character ग (ga in Hindi) and translit-
erates to RomanTrans, the editor will display ga.
Internally, the ga syllable is stored in the following
way:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 3

Figure 4: ga syllable

The text storage tracks the script code for every
syllable. When the above syllable is converted to
RomanTrans, the text storage object does not modify
the syllable but changes only the script code to Ro-
manTrans and notifies the view displaying the text.
The view upon receiving the notification from the
storage object then re-renders the ga syllable using
RomanTrans’s font map. Similarly, when the user
once again changes to Tamil, the editor correctly dis-
plays க (ka in Tamil) this time using Tamil’s font
map which specifies that ga should be mapped to the
same glyph as ka. If the user once again changes the
script back to Hindi, the letter ग (ga in Hindi) is
displayed correctly.

The above scheme is possible because the text
content is kept separate from the actual display of
text and more importantly the text content itself is
stored as syllables which are the fundamental units
of transliteration.

3.3.2 Word Completion
Word completion, also known as auto-completion

under certain applications, is a handy feature to have
specially for typing lengthy and frequently used
words fast. In its current implementation, this ed-
itor does not automatically complete words. The
user needs to trigger it explicitly. This is mainly to
keep the editor less disruptive (in terms of the typing
flow) and also to keep the implementation simple.
When typing long words, the user after typing the
first few characters can trigger the pop-up with pos-
sible completions by means of the designated key-
board shortcut. The list of words that appear in the
completion box is obtained by doing a prefix search

(of what the user had typed so far) on a dynamic
dictionary. This dictionary is implemented using
ternary search trees (Bentley and Sedgewick, 1998).
A ternary search tree (henceforth TST) is a versatile
data structure that combines the time efficiency of
tries and the space efficiency of binary search trees.
TSTs are generally faster than hashtables and offer
much more functionality than simple key look-ups
because they maintain the ordering of the data stored
within. When augmented with additional informa-
tion, TSTs can also be used for implementing spell
checking and by using a fixed edit distance, alter-
native word suggestions as well. A full description
is beyond the scope of this short paper. However,
(Bentley and Sedgewick, 1997) provide all the de-
tails.

4 Conclusion & Future Work

Inside ETV, this editor has been in production use
since 2005. It serves as the primary tool for docu-
ment preparation in Indian languages. The fact that
it is being used in a news production environment is
a testament to its stability and the overall soundness
of the syllabic encoding scheme.

At the time of writing, support for speech out-
put of text is being worked on. Since the text is
stored in terms of syllables, speech output is ob-
tained by breaking the syllables into phonemes and
sending them to a concatenative speech synthesis en-
gine (currently we are using Mbrola). The editor
already has support for Braille output using translit-
eration and this output can be fed to a braille printer
after minor post processing the tools for which are
being worked on. Work is on for incorporating tools
like morphological analyzers into this framework for
building advanced linguistic applications.

This is an ongoing effort in the form of an open
source project. The full source code for the entire
system is provided on the website and help is avail-
able on the mailing list.

Acknowledgements

We are grateful to Prof. R.Kalyana Krishnan, Sys-
tems Development Lab, IIT Madras for guidance
throughout this project, Mr. B.Ganesh ex-CTO of
Technical Services Department of ETV for initiat-
ing this project and contributing to it, Mr. Anir-

103

ban Sam of ETV for coordinating the testing of
this software and providing detailed bug reports, Mr.
G.Venugopal, Systems Manager, ETV for the ad-
ministrative support that facilitated distributed de-
velopment. Finally, ETV deserves a special mention
for supporting the development of this open source
project.

References
Charles Crowley. 1998. Data Structures for

Text Sequences. http://www.cs.unm.edu/
∼crowley/papers/sds.pdf

1993. Indian Script Code for Information Interchange.
In Bureau of Indian Standards.

James Brown. 2006. Editing Text with Piece Chains.
http://catch22.net/tuts/editor17.asp

James Brown. 2006. Unicode Text Editing. http://
catch22.net/tuts/editor18.asp

Jon Bentley and Robert Sedgewick. 1998. Ternary
Search Trees In Dr. Dobbs Journal. http://www.
ddj.com/windows/184410528

Jon Bentley and Robert Sedgewick. 1997. Fast Algo-
rithms for Sorting and Searching Strings. In Proceed-
ings of the Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, New Orleans, USA.

Niclaus Wirth and Jurg Gutknecht. 1992. Project
Oberon - The Design of an Operating System and
Compiler. ACM Press/Addison-Wesley Publishing
Co. New York, USA.

R.Kalyanakrishnan. 1994. Syllable level coding for
Indian languages. http://acharya.iitm.ac.
in/software/docs/scheme.php.

Richard Gillam. 2002. Unicode Demystified - A
Practical Programmer’s Guide to the Encoding Stan-
dard. Addison-Wesley Longman Publishing Co., Inc.,
Boston, USA.

104

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 105–112,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Abstract

 Human computer interaction through Natural
Language Conversational Interfaces plays a
very important role in improving the usage of
computers for the common man. It is the
need of time to bring human computer
interaction as close to human-human
interaction as possible. There are two main
challenges that are to be faced in
implementing such an interface that enables
interaction in a way similar to human-human
interaction. These are Speech to Text
conversion i.e. Speech Recognition & Text
To Speech (TTS) conversion. In this paper
the implementation of one issue Speech
Recognition for Indian Languages is
presented.

1 Introduction

In India if it could be possible to provide human
like interaction with the machine, the common man
will be able to get the benefits of information and
communication technologies. In this scenario the
acceptance and usability of the information
technology by the masses will be tremendously
increased. Moreover 70% of the Indian population
lives in rural areas so it becomes even more
important for them to have speech enabled
computer application built in their native language.
 Here we must mention that in the past time
decades, the research has been done on continuous,
large vocabulary speech processing systems for
English and other European languages; Indian
languages as Hindi and others were not being
emphasized. For example for English language,

Implementing a Speech Recognition System Interface for Indian
Languages

the commercial speech recognition systems
available in the market are IBM Via Voice and
Scansoft Dragon system. These have mature ASR
engines with high accuracy. No such system with
this accuracy is available for Hindi (Kumar et al.,
2004). India is passing through the phase of
computer revolution. Therefore it is need of time
that speech processing technology must be
developed for Indian languages.
 Fortunately people have realized the great need
of human machine interaction based on Indian
languages. Researchers are striving hard currently
to improve the accuracy of the speech processing
techniques in these languages (Samudravijaya,
2000). Speech technology has made great progress
with the development of better acoustic models,
new feature extraction algorithms, better Natural
Language Processing (NLP) and Digital Signal
Processing (DSP) tools and significantly better
hardware and software resources.
 Through this paper, we describe the
development of ASR system for Indian languages.
The challenges involved in the development are
met by preparing various algorithms and executing
these algorithms using a high level language
VC++. Currently a Speech-In, Text-Out interface
is implemented.
 The paper is organized as follows: section 2
presents the architecture and functioning of ASR.
Section 3 describes the modeling and design used
for speech recognition system. Section 4 describes
the experiments & results. Section 5 describes the
conclusion and future work.

2 Architecture of ASR

 The basic structure of a speech recognition system

R. K. Aggarwal Mayank Dave
Deptt. Of Computer Engg. Deptt. Of Computer Engg.

N.I.T. Kurukshetra N.I.T. Kurukshetra
r_k_a@rediffmail.com mdave67@rediffmail.com

105

is shown in figure 1.

2.1 Preprocessing

It covers mainly these tasks- A/D conversion,
Background noise filtering, Pre emphasis,
Blocking and Windowing.
 In first task analog electrical signals are
digitized, i.e. these are converted into a discrete-
time, discrete-valued signal. This process of analog
to digital conversion has two steps: sampling and
quantization. A signal is sampled by measuring its
amplitude at a particular time; the sampling rate is
the number of samples taken per second. In
general, a sampling rate between 8 and 20 kHz is
used for speech recognition application (James
Allen, 2005). As a point of reference, perceptual
studies generally indicate that frequencies up to
about 10 kHz (10,000 cycles per second) occur in
speech, but speech remains intelligible within a
considerably narrower range.
 The second important factor is the quantization
factor, which determines what scale is used to
represent the signal intensity. Generally, it appears
that 11-bit numbers capture sufficient information,
although by using a log scale, we can get by with
8-bit numbers. In fact, most current speech
recognition systems end up classifying each
segment of signal into only one of 256 distinct
categories.

Acoustic
Models

So a typical representation of a speech
signal is a stream of 8-bit numbers at the rate of
10,000 numbers per second clearly a large amount
of data. The challenge for speech recognition
system is to reduce this data to some manageable
representation.

 Once signal conversion is complete,
background noise is filtered to keep SNR high.
While speech capturing, background noise and
silence (absence of speech) will also be quantized
with speech data. An important problem in speech
processing is to detect the presence of speech in a
background of noise and silence from our
recording speech. This problem is often referred to
as the endpoint detection problem (Rabiner and
Bishnu, 1976). By accurately detecting the
beginning and end of an utterance the amount of
processing can be kept at minimum. According to
literature (Reddy, 1976), accurate determination of
end points is not very difficult if the signal-to-noise
ratio is high, say greater than 60 dB.

The next step is the pre-emphasis. The
motivation behind it is to emphasize the important
frequency components in the signal (i.e. amplify
important areas of the spectrum) by spectrally
flatten the signal. For example hearing is more
sensitive in the 1 KHz-5 KHz region of the
spectrum. It amplifies this area of spectrum,
assisting the spectral analysis algorithm in
modeling the most perceptually important aspects
of the speech spectrum.

Input Recognized

Utterance

Preprocessing
S X

Feature
Extraction

Pattern
Classifier Signal

space Power
Signal Feature

Space

Front –End-Processing
Language
Models

Back-End-Processing

Figure 1. Architecture of ASR

106

2.2 Feature Extraction/Parametric Transform

The goal of feature extraction is to find a set of
properties of an utterance that have acoustic
correlations in the speech signal, that is parameters
that can some how be computed or estimated
through processing of the signal waveform. Such
parameters are termed as features. Feature
extraction is the parameterization of the speech
signal. It includes the process of measuring some
important characteristic of the signal such as
energy or frequency response (i.e. signal
measurement), augmenting these measurements
with some perceptually meaningful derived
measurements (i.e. signal parameterization), and
statically conditioning these numbers to form
observation vectors.
 There are several ways to extract features from
speech signal as given below:

• Linear Predictive Cepstral Coefficients
(LPCC)

• Mel Frequency Cepstral Coefficients
(MFCC) (Skowronski et al., 2002)

• Wavelet as feature extractor (Biem, 2001)
• Missing feature approach (Raj et al., 2005)

2.3 Acoustic Modeling

In this subsystem, the connection between the
acoustic information and phonetics is established.
Speech unit is mapped to its acoustic counterpart
using temporal models as speech is a temporal
signal. There are many models for this purpose
like,

• Hidden Markov Model (HMM)
• Artificial Neural Network (Rao et

al.,2004)
• Dynamic Bayesian Network (DBN) (Huo

et al., 1997)

 ANN is a general pattern recognition model
which found its use in ASR in the early years.
Rabiner (1991), first suggested the HMM approach
leading to substantial performance improvement.
Current major ASR systems use HMM for acoustic
modeling. Since then researchers have tried to
optimize this model for memory and computation
requirements. In the current state, it seems that

HMM has given the best it could and now we need
to find other models to go ahead in this domain.
This leads to consideration of other models in
which Dynamic Bayesian Network seems a
promising direction
 Still our experiments and verification has been
done on a HMM based system.

2.4 Language Modeling

The goal of language modeling is to produce
accurate value of probability of a word W, Pr(w).
A language model contains the structural
constraints available in the language to generate
the probabilities. Intuitively speaking, it
determines the probability of a word occurring
after a word sequence. It is easy to see that each
language has its own constraints for validity. The
method and complexity of modeling language
would vary with the speech application. This leads
to mainly two approaches for language modeling.
Generally, small vocabulary constrained tasks like
phone dialing can be modeled by grammar based
approach where as large applications like broadcast
news transcription require stochastic approach.

 3 Modeling and Design for Implementation

 3.1 Signal Modeling and Front End Design

Speech signal is an analog signal at the recording
time, which varies with time. To process the signal
by digital means, it is necessary to sample the
continuous-time signal into a discrete-time signal,
and then convert the discrete-time continuous-
valued signal into a discrete-time, discrete-valued
(digital) signal. The properties of a signal change
relatively slowly with time, so that we can divide
the speech into a sequence of uncorrelated
segments, or frames, and process the sequence as if
each frame has fix properties. Under this
assumption, we can extract the features of each
frame based on the samples inside the frame only.
And usually, the feature vector will replace the
original signal in the further processing, which
means the speech signal is converted from a time
varying analog signal into a sequence of feature
vectors. The process of converting sequences of
speech samples to feature vectors representing

107

events in the probability space is called Signal
Modeling (Picone, 1993; Karanjanadecha and
Zoharian, 1999).
 Signal Modeling can be divided into two basic
steps: Preprocessing and Feature Extraction.
Preprocessing is to pre-process the digital samples
to make available them for feature extraction and
recognition purpose. The steps followed during
signal modeling are as following:

• Background Noise and Silence Removing

• Pre emphasis
• Blocking into Frames

• Windowing

• Autocorrelation Analysis

• LPC Analysis

• LPC Parameter Conversion to Cepstral
Coefficients

3.2 Back End Processing

 The last section showed how the speech input
can be passed through signal processing
transformations and turned into a series of vectors
of features, each vector representing one time slice
of the input signal. How are these feature vectors
turned into probabilities?

3.2.1 Computing Acoustic Probabilities

There are two popular versions of continuous
approach. The more widespread of the two is the
use of Gaussian pdfs, in the simplest version of

Word Model

Observation Sequence … …
(Special feature vectors)

which each state has a single Gaussian function
which maps the observation vector Ot to a
probability. An alternative approach is the use of
neural networks or multilayer preceptons which
can also be trained to assign a probability to a real
valued feature vector. HMMs with Gaussian
observation-probability-estimators are trained by a
simple extension to the forward-backward
algorithm. HMMs with neural-net observation-
probability-estimators are trained by a completely
different algorithm known as error back-
propagation.

3.2.2 HMM and its Significance to Speech
Recognition:

Among the various acoustic models, HMM is so
far the most widely used and most effective
approach. Its popularity is due to an efficient
algorithm for training and recognition and its
performance superiority over the other modeling
structures.
 An HMM is a statistical model for an ordered
sequence of symbols, acting as a stochastic finite
state machine which is assumed to be build up
from a finite set of possible states, each of those
states being associated with a specific probability
distribution or probability density function. Each
state of machine represents a phonetic event and a
symbol is generated each time a transition is made
from one state to the next.

 a24 a11 a22

 ……………

O3 O4

b1(o2)

Start a2 m3 end

a33

 b1(o1)

 r1

b2(o3) b

a a12 a23 01

2(o5) b3(o6)

O6 O1 O2 O5

Figure 2. An HMM Pronunciation Network for the Word “Ram”

108

There are three basic problems related to HMM:
the evolution problem, the decoding problem and
the learning problem. These problems are
addressed by Forward Algorithm, Viterbi
Algorithm and Baum-Welch Algorithm
respectively. A detailed discussion of the same is
available here (Rabiner, 1989).

HMM-based recognition algorithms are
classified into two acoustic models, i.e., phoneme-
level model and word-level model. The phoneme-
level HMM has been widely used in current speech
recognition systems which permit large sized
vocabularies. Whereas the word-level HMM has
excellent performance at isolated word tasks and is
capable of representing speech transitions between
phonemes. However its application has remained a
research-level and been constrained to small sized
vocabularies because of extremely high
computation cost which is proportional to the
number of HMM models. Recognition
performance in the word HMM is determined by
the number of HMM states and dimensions of
feature vectors. Although high numbers of the
states and the dimensions are effective in
improving recognition accuracy, the computation
cost is proportional to these parameters
(Yoshizawa et al., 2004). As conventional methods
in high-speed computation of the output
probability, Gaussian selection (Knill et al., 1996)
and tree structured probability density function
(Watanabe et al., 1994) are proposed in the
phoneme-level HMM. These methods use the
approximation to the output probability if exact
probability values are not required. However in the
word HMM, output probability values directly
effects recognition accuracy and a straight forward
calculation produces the most successful
recognition results (Yoshizawa et al., 2004).
 To see how it can be applied to ASR, we are
using a whole-word isolated word recognizer. In
our system there is a HMM Mi for each word I the
dictionary D. HMM Mi is trained with the speech
samples of word Wi using the Baum-Welch
Algorithm. This completes the training part of the
ASR. At the time of testing the unknown
observation sequence O is scored against each of
the models using the forward algorithm and the
word corresponding to the highest scoring model is
given as a recognized word.

 For example HMM pronunciation network
for the word “Ram”, given in figure 2 shows the
transition probabilities A, a sample observation
sequence O and output probabilities B. HMMs
used in speech recognition usually use self loops
on the states to model variable phone durations;
longer phones require more loops through the
HMM.

3.2.3 Language Modeling

In speech recognition the Language Model is used
for speech segmentation. The task of finding word
boundaries is called segmentation (Martin and
Jurafsky, 2000). For example decode the following
sentence.
[ay hh er d s sh m th ih ng ax b aw m wh
v ih ng r ih s en l ih]
I heard something about moving recently.
[aa n iy dh ax] I need the.

4. Experiment & Results

The experiment consist of an evaluation of the
system using the room condition, and the standard
speech capturing hardware such as sound blaster
card and a headset microphone. Sampling
frequency of the signal is 16000 Hz with the
sample size of 8 bits. Threshold energy 10.1917 dB
is used in the word detection. In the experiment
Hidden Markov Model is used for the recognition
of isolated Hindi words. At the time of speech
recognition, various words are hypothesized
against the speech signal. To compute the
likelihood (probabilistic) of a given word, the word
is broken into its constituent phones, and the
likelihood of the phones is computed from the
HMMs. The combined likelihood of all of the
phones represents the likelihood of the word in the
acoustic model. To implement it successfully,
transcript preparation and dictionary preparation
are the most important steps. During transcript
preparation, a text file is prepared in which the
complete vocabulary of the designed ASR system
is written in Unicode. The dictionary provides
pronunciation for the words used in language
model. The pronunciation of a word breaks it into a
sequence of sub word units that are used in the
acoustic model. The dictionary interface also

109

supports more than one pronunciation for a single
word. There are various implementations of a
dictionary; some load the entire dictionary on
initialization whereas other implementations obtain
pronunciation on demand. Thus dictionary is a file
which provides a mapping from grapheme to
phoneme for a given word. An example is shown
in Table 1.

Table 1. An Example Dictionary

 For recording, training and testing purpose we
have designed a common interface as given in
Figure 3.

Snapshot

Figure 3: Interface for ASR Functioning

 First we decide the words on which experiment
is to be performed and then write these words into
the dictionary. After completing the transcript
preparation and dictionary making step we are
ready for the recording of our transcript. To record
speech samples we click the record button of the

interface. Each word is recorded by specifying a
different name. After recording all words the train
button is pressed which does the statistical
modeling. After this, to recognize the word, we
press the speak button and say the word whichever
we want to recognize. Note that the word to be
recognized must be available in the dictionary.
 When a word is recorded it tells us the number
of frames (starting frame index, end frame index,
number of frames used) by which word length has
been covered.

After training, testing is performed. During
testing it will count the right word match and
display the accuracy after each word match.

We have tested the system for various
parameters and get the following results.

4.1 Experiments with Different Number of
Trainings

Two hundred isolated words of Hindi language are
recorded and trained various numbers of times.
Testing of randomly chosen fifty words is made
and the results are as given in figure 4.

Figure 4: Accuracy vs. No. of Training

4.2 Experiment with Different Vocabulary
Sizes

In this experiment, accuracy of the system was
observed by varying the size of vocabulary (50
words, 70 words, 100 words, 120 words). Smaller
the size of vocabulary, lesser the chances of
confusion and hence better should be the accuracy.

110

This fact is supported by results as shown in the
graph of figure 5. System is trained five times and
testing of randomly chosen twenty five words is
made.

Figure 5. Accuracy vs. Words

4.3 Experiments with Different Noise
Environments

 Experiment is performed in various noise
environments: in closed room environment where
noise energy is up to 7dB, in less noisy
environment where noise energy vary 7dB to
12dB, in noisy environment where noise energy is
above 12dB.

 Figure 6. Accuracy vs. Environment

4.4 Experiments with Different Windows

To evaluate the effect of different windows such as
Rectangular window, Hamming window, Hanning

 Used Accuracy
 Hamming window 76 %

ur

plement an
SR for Indian language using LPCC for feature

as from limited

uous Speech

bruary 2001. Discriminative feature

xtraction applied to speech recognition In IEEE

window used in recognition of isolated Hindi
words, a system of hundred isolated word is made.
System is trained five times for each window.
Twenty five results are made for each window
using Hidden Markov Model for recognition.
Dictionary size is of 100 words. Results obtained
are given as

 Window

 Hanning window 69 %
 Rectangular window 55 %

5. Conclusion and Fut e Work

We have proposed an approach to im
A
extraction and HMM to generate speech acoustic
model. Using our approach we have made a
prototype of the recognizer for isolated word,
speaker dependent ASR system for Hindi. The
design of our system is such that it can be used to
generate acoustic model for any Indian language
and in a very easy way. The use of such an ASR
solves the problem of technology acceptance in
India by bringing human-human interaction closer
to human-human interaction.
 Scope for future work would concentrate on
incorporating the features
vocabulary to large, from isolated word to
connected words or continuous speech, from
speaker dependent to speaker independent. We
have tested our system for Hindi, it can be tested
for other similar Indian languages like Sanskrit,
Punjabi etc. with few modifications.
 Even in European languages state of the art
LVCSR (Large Vocabulary Contin
Recognition) systems are very far from the 100%
accuracy. So people are trying new approaches
apart from regular LPCC or MFCC at the front end
and HMM as acoustic model at the back end.
Wavelet and Dynamic Bayesian Network are two
promising approaches that can be used for LVCSR
systems in Indian languages.

 References

A.E. Biem. Fe
e

111

. Missing-Feature
pproaches in Speech recognition. Signal

dy. 1976. Speech Recognition by
achine: A Review, IEEE 64(4): 502-531.

atural
anguage Understanding, Pearson Education.

h &
anguage Processing, Pearson Education.

odeling
echniques in Speech Recognition. IEEE Proc..

of
aussian selection in large vocabulary continuous

. Computer Recognition of
poken Hindi. Proceeding of International

004.
odelling Syllable Duration in Indian Languages

 on Hidden
arkov Models and Selected Applications in

Review of Neural
etworks for Speech Recognition, Massachusetts

 and J.G.Harris. 2002.
reased MFCC Filter Bandwidth For Noise-

. Kumar, A. Verma & N.Rajput. 2004. A Large

. Karanjanadecha and Stephan A. Zahorian.

. Huo, H. Jiang, & C.H. Lee. 1997. A Bayesian

awrence R. Rabiner and S. Atal Bishnu. 1976. A

wa, N. Wada, N. Hayasaka, and Y.

. Watanabe, K. Shinoda, K. Takagi, and E.

Transactions on Acoustics, Speech, and Signal
Processing, vol. 9, pp. 96-108.

B. Raj and Stern. 2005
a
Processing magazine, IEEE Volume 22, Issue 5,
pp. 101-116.

D. Raj Red
M

James Allen. Third Edition 2005. N
L

J. H. Martin and Daniel Jurafsky. 2000. Speec
L

Joseph W. Picone. Sep. 1993. Signal M
T

K.M.Knill, M.J.Gales and J. Young, 1996. Use
G
speech recognition using HMMs, Proc. IEEE
ICSLP96, pp 470-473,

K. Samudravijaya. 2000
S
Conference of Speech, Music and Allied Signal
Processing, Triruvananthapuram, pages 8-13.

K.S. Rao, B. Yegnanarayana. May 2
M
Using Neural Networks. In proceeding of ICASSP
Montreal, Qubic, Canada, pp 313-316.

Lawrence R. Rabiner. 1989. A Tutorial
M
Speech recognition, IEEE.

Lippman and P. Richard,
N
Institutes of Technology (MIT) Lincoln
Laboratory, U.S.A.

M. D. Skowronski
Inc
Robust Phoneme Recognition. IEEE.

M
vocabulary Continuous Speech Recognition
System for Hindi. In IBM Research Lab, vol.48
pp.703- 715 .

M
1999. Signal Modeling for Isolated Word
Recognition, ICAS SP Vol 1, , p 293-296.

Q
predictive classification approach to robust speech
recognition, in proc. IEEE ICASSP, pp.1547-1550.

L
Pattern Recognition Approach to Voice-Unvoiced-
Silence Classification with Applications to Speech
Recognition”, IEEE Transaction ASSP-24(3).

 S. Yoshiza
Miyanaga. 2004.Scalable Architecture for Word
HMM-based Speech Recognition, Proc. IEEE
ISCAS .

T
Yamada, 1994. Speech recognition using tree-
structured probability density function, Proc. IEEE
ICSLP, pp 223-226.

112

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 113–116,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Indigenous Languages of Indonesia: Creating Language Resources
for Language Preservation

Hammam Riza
IPTEKNET

Agency for the Assessment and
Application of Technology (BPPT)

Jakarta, Indonesia
hammam@iptek.net.id

Abstract

In this paper, we report a survey of lan-
guage resources in Indonesia, primarily of
indigenous languages. We look at the offi-
cial Indonesian language (Bahasa Indone-
sia) and 726 regional languages of Indone-
sia (Bahasa Nusantara) and list all the
available lexical resources (LRs) that we
can gathered. This paper suggests that the
smaller regional languages may remain
relatively unstudied, and unknown, but
they are still worthy of our attention. Vari-
ous LRs of these endangered languages are
being built and collected by regional lan-
guage centers for study and its preserva-
tion. We will also briefly report its pres-
ence on the Internet.

1 Introduction

It is not hard to get a picture of just how linguisti-
cally diverse Indonesia is. There are 726 languages
in the country; making it the world’s second most
diverse, after Papua New Guinea which has 823
local languages (Martí et al., 2005:48). Indonesia
also has a high ratio of languages to speakers in
each major region in Indonesia (see Figure 1). Di-
versity is the outcome of processes of language
change (Schendl, 2001). The loss of language is
itself a process that will logically result in mono-
lingualism.

It is not uncommon to find the attitude among
the general public and even among some Indone-
sian linguists that the process of language endan-
germent or language extinction is not something

that needs worried about, that it is part of a natural
process that should be left to take its course. This
paper suggests otherwise. The smaller regional
languages may remain relatively unstudied, and
unknown, but they are still worthy of our attention
(Lauder, 2007). This paper puts forward a number
of claims that have been made in favour of linguis-
tic diversity and how we can preserve this diver-
sity.

Figure 1. Ratio of Population to Languages
 across Indonesia

The languages of Indonesia are part of a com-

plex linguistic situation that is generally seen as
comprised of three categories: Indonesian lan-
guage, the regional indigenous languages, and for-
eign languages (Alwi and Sugono, 2000). Most of
these regional languages have not received atten-
tion for computerization; they are less privilege
languages that need to be brought into digitaliza-
tion.

113

If we were to create NLP system for these lan-
guages, we will face one of the major obstacles,
i.e. the amount of linguistic knowledge. Language
analysis and generation require a complete set of
lexical, grammatical, semantic and world knowl-
edge to carry out accurate function. On the other
hand, these types of knowledge bases are hard to
acquire and considerable attention has to be paid to
the role that corpus and lexical resources can play.

2 The Indigenous Languages and Its En-
dangerment

The indigenous languages of Indonesia - also re-
ferred to as vernaculars or provincial languages,
collectively called as Bahasa Nusantara - exhibits
great variation in numbers of speakers. Thirteen of
them have a million or more speakers, accounting
for 69.91% of the total population. These lan-
guages are Javanese (75,200,000 speakers), Sun-
danese (27,000,000), Malay (20,000,000),
Madurese (13,694,000), Minangkabau (6,500,000),
Batak (5,150,000), Bugisnese (4,000,000), Bali-
nese (3,800,000), Acehnese (3,000,000), Sasak
(2,100,000), Makasarese (1,600,000), Lampungese
(1,500,000), and Rejang (1,000,000) (Lauder,
2004).

Figure 2. Major Indigenous Languages

The remaining 713 languages have a total popu-

lation of only 41.4 million speakers, and the major-
ity of these have very small numbers of speakers.
For example, 386 languages are spoken by 5,000
or less; 233 have 1,000 speakers or less; 169 lan-
guages have 500 speakers or less; and 52 have 100
or less (Gordon, 2005). These languages are facing
various degrees of language endangerment (Crys-
tal, 2000).

There is evidence from census data over three
decades that the growth in the numbers of speakers
of Indonesian is reducing the numbers of speakers
of the indigenous languages (Lauder, 2005). Con-
cerns that this kind of growth would give Indone-
sian the potential to replace the regional languages
were aired as early as the 1980s. (Poedjosoedarmo,
1981; Alisjahbana, 1984).

These languages tend to be spoken in the eastern
or more remote parts of the country. Their small
populations of speakers make them vulnerable to
processes of unhealthy language change and lan-
guage endangerment. Greatest language diversity
is found in eastern part of Indonesia (Papua)

A language that does not have official status, but
which has a large enough number of speakers and
which are being safely transmitted to new genera-
tions can usually be classified as either NOT EN-
DANGERED (SAFE or VIABLE), or POTEN-
TIALLY ENDANGERED. This would include the
13 largest local languages and perhaps a few doz-
ens of others.

However, this does not apply to the majority of
the remaining 700 or so languages. Among them,
there should also be many which could be classi-
fied as VIABLE BUT SMALL or ENDANGERED
because they have small numbers of speakers, are
socially or economically disadvantaged and they
are not being transmitted to younger generations of
speakers. There will also be many of these regional
languages which can be classified as SERIOUSLY
ENDANGERED or MORIBUND (NEARLY EX-
TINCT) because the speaker populations are very
small and these few remaining speakers are mostly
old.

When trying to estimate the degree of endan-
germent of the regional languages in Indonesia, it
becomes apparent that there is a singular lack of
focused and comprehensive research. However, in
spite of this, based on a consideration of the vari-
ous possible causes, there are good reasons to sus-
pect that many of the smaller languages in Indone-
sia are indeed endangered.

3 Preserving Endangered Languages

Within Indonesia, and globally, we are currently
experiencing a massive and rapid loss of language
and culture. In particular, the languages and cul-
tures of communities with very few speakers have
practically no chance of survival beyond the end of

114

this century and many will disappear much sooner,
perhaps within the next 10 to 20 years.

The loss of these languages is largely because of
linguistic and cultural assimilation with the major-
ity group, with migration to the cities and lack of
support for these languages in state education be-
ing important factors. This is particularly true in
Indonesia, where Bahasa Indonesia is being taught
in school and the indigenous languages are loosing
their ground in the daily life.

Each language is part of patterns of diversity
that have evolved over millennia. There are a
number of reasons why diversity is beneficial. For
example, by learning from the original languages
we increase our stock of human wisdom. Diversity
breeds diversity; the seeding of insights in the
fields of science, art and literature.

Meanwhile, the problem is urgent. A language is
being lost on average every two weeks worldwide.
When an oral language is lost, it takes with it all
the knowledge that the people possessed. When the
last speaker dies, there is likely to be no trace at all
of their existence. There will be no artifacts or
physical record to reconstruct the language or the
knowledge it encoded. As each language dies, we
lose data for philosophers, anthropologists, folklor-
ists, historians, psychologists, linguists, and writ-
ers. The loss of one is a tragedy; what do we call
the loss of a large proportion of the 6,000 existing
languages? (Crystal, 2000: 53). The loss of diver-
sity is something that we need to do something
about.

Two kinds of action can be taken, depending on
the status of the language. But to know what the
status of languages is, a survey needs to be made to
gather information for all the regional languages
concerning the factors that are usually the causes
of language loss or language maintenance, such as
numbers of speakers, language attitudes, and so on.
As a result, estimates can be made about which are
likely to survive and which not. From this, an ac-
tion plan can be set up based on priorities.

Of the 13 major indigenous languages, there
only are 7 languages presence on the Internet under
the ccTLD .id (Riza 2006). We need to explore
furthermore to map the remaining regional lan-
guages that probably exist on the Internet. The is-
sue of ‘digital language divide’ has shown that
many of the indigenous language do not have ac-
cess to Information and Communication Technol-
ogy (ICT) in general; hence they are lacking the

process of digitalization. The relationship between
languages on the Internet and diversity of language
within a country indicates that even with a global-
ize network, nation states have a role to play in
encouraging language diversity in cyberspace.
Language diversity can be viewed as much within
a country as within the Internet as a whole.

For languages which are not seriously endan-
gered or moribund, language maintenance and lan-
guage revitalization programs should be put in
place. These programs include creating LRs that
would involve the people themselves to provide
them with NLP toolkit and language computeriza-
tion to help keep the language alive. For seriously
endangered languages, those that cannot possibly
be saved, LRs creation should be set up. These
programs would involve study, documentation and
the assembly of a rich archive of materials that will
help to preserve as much as possible of the lan-
guage and way of life in digital and other formats.

We have identified three important tasks in lan-
guage preservation. The first is the exploitation of
current techniques from computational linguistics
to permit a multidimensional view of the LRs. The
second is the increasing orientation of the regional
research centers towards the creation and use of
resources of various sorts, either to extract useful
information or directly as components in systems.
The third, related, trend is towards statistical or
empirical models of language especially if the lan-
guage is near extinction and found only as spoken
language.

In cases where the indigenous languages exist
only in the form of spoken language, there should
be a collection efforts similar to the work carried
out by ELRA on the Basic Language Resource Kit
(ELDA, 2007) and LDC on Less Commonly
Taught Languages (LCTL, 2007). Both initiatives
focus on the minimal sets of LRs required develop-
ing basic research for a given language. It is crucial
to connect the preservation work to this language
kit in order to be shared with the language research
community.

In Indonesia, over the last few years, there has
been an increasing awareness of the importance of
corpus resources in language preservation. As re-
gional leaders begin to consider the implications of
loosing their indigenous assets, considerable atten-
tion is being aid to the role that corpus and lexical
resources can play.

115

Masyarakat Linguistik Indonesia (MLI) is a
group of institutions, organizations and corpora-
tion, working together on mutually defined goals
and projects that seek to provide a specification of
LRs of all languages of Indonesia. It is currently in
the process of mapping indigenous written lan-
guages of Indonesia (540 of languages).

MLI also help members to use the specification
for NLP tools and applications; find the best means
to disseminate the specifications, tools and applica-
tions and encourage an open standard-based ap-
proach to the creation and interchange of LRs. It
also demonstrate how MLI can be applied through
making the results of collaborative endeavors
available to wider associations; provide training,
awareness and educational events and share with
each other their work on related issues.

4 Conclusion

A perspective on preservation of the languages of
Indonesia is given together with a brief overview
of some of the indigenous languages, which are
being actively researched today by national lan-
guage centers throughout Indonesia.

Culture and language are fundamental human
rights; it is our right and duty to preserve and de-
velop them. This is an ethical choice, not simply a
scientific one or one based on political or eco-
nomic expediency. Total lack of concern and inac-
tion may seem to some to be a rational choice but
it represents an ethical failure. In addition, research
which merely documents an endangered language
but does nothing to help the community of the in-
formants is like the photographer who takes a pic-
ture of someone in difficulty but do nothing to help
them. Any delay now will mean that many of the
languages which are still around now won’t be
there for them to do something about. Diversity
will have been lost.

We have identified three important tasks in lan-
guage preservation, which is the exploitation of
computational linguistics, increasing orientation of
the regional research centers towards the creation
and use of resources and using towards statistical
or empirical models of language.

The current effort of documenting the indige-
nous languages will be shared with the rest of the
world, to close ‘digital language divide’.

References
Alisjahbana, S. T. 1984. The problem of minority lan-

fguages in the overall linguistic problems of our time.
In Linguistic Minorities and Literacy: Language Pol-
icy Issues in Developing Countries, ed. F. Coulmas.
Berlin: Mouton.

Alwi, Hasan, and Sugono, Dendy. 2000. From National
Language Politics to National Language Policy. Pro-
cedings of the Seminar on Language Politics, Jakarta

ELDA. 2007. Basic Language Resource Kit (Blark).
ELRA Project, http://www.elda.org/blark/index.php

Crystal, David. 2000. Language Death. Cambridge:
Cambridge University Press.

Gordon, Raymond G., Jr. ed. 2005. Ethnologue: Lan-
guages of the World, Fifteenth edition. Dallas, Tex.:
SIL International.

Lauder, Multamia RMT. 2005. Language Treasures in
Indonesia. In Words and Worlds : World Languages
Review, eds. Fèlix Martí et al., 95-97. Clevedon
[England] ; Buffalo [N.Y.]: Multilingual Matters.

Lauder, Allan F. 2007. Indigenous Languages in Indo-
nesia: Diversity and Endangerment. In Proceedings
of Kongres Linguistik Nasional XII, Surakarta, 3-6
September.

LCTL, 2007. Less Commonly Taught Language Pro-
ject. http://projects.ldc.upenn.edu/LCTL/index.html

Martí, Fèlix, et.al. eds. 2005. Words and Worlds : World
Languages Review. vol. 52. Bilingual Education and
Bilingualism. Clevedon. England.

Mikami, Y., Zavarsky, et.al. 2005. The Language Ob-
servatory Project (LOP), www2005, Proceedings,
Chiba, Japan, 990-991.

Poedjosoedarmo, S. 1981. Problems of Indonesian. In
Language and Nation Building, ed. Amran Halim.
Jakarta: Center for Language Development.

Riza, H, et. al. 2006. Indonesian Languages Diversity
on the Internet, Internet Governance Forum (IGF),
Athens.

Schendl, Herbert. 2001. Historical linguistics. Oxford
Introductions to Language Study. Oxford: Oxford
University Press.

Wurm, S. A. 1998. Methods of language maintenance
and revival, with selected cases of language endan-
germent in the world. The International Symposium
on Endangered Languages, Tokyo, 18-20 November
1995), ed. Kazuto Matsumura, 191-211. Tokyo: Hi-
tuzi Syobo.

116

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 117–122,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Part-Of-Speech Tagging for Gujarati Using Conditional Random
Fields

Chirag Patel and Karthik Gali
Language Technologies Research Centre

International Institute of Information Technology
Hyderabad, India

chirag_p,karthikg@students.iiit.ac.in

Abstract

This paper describes a machine learning
algorithm for Gujarati Part of Speech Tag-
ging. The machine learning part is per-
formed using a CRF model. The features
given to CRF are properly chosen keeping
the linguistic aspect of Gujarati in mind. As
Gujarati is currently a less privileged lan-
guage in the sense of being resource poor,
manually tagged data is only around 600
sentences. The tagset contains 26 different
tags which is the standard Indian Language
(IL) tagset. Both tagged (600 sentences)
and untagged (5000 sentences) are used for
learning. The algorithm has achieved an
accuracy of 92% for Gujarati texts where
the training corpus is of 10,000 words and
the test corpus is of 5,000 words.

1 Introduction

Parts of Speech tagging is the process of tagging
the words of a running text with their categories
that best suits the definition of the word as well as
the context of the sentence in which it is used. This
process is often the first step for many NLP appli-
cations. Work in this field is usually either statisti-
cal or machine learning based, or rule based. Some
of the models that use the first approach are Hid-
den Markov Models (HMMs), Conditional Ran-
dom Fields (CRFs), Maximum Entropy Markov
Models (MEMMs), etc.

The other method is the rule based approach
where by we formulate rules based on the study of
the linguistic aspect of the language. These rules

are directly applied on the test corpus. The statisti-
cal learning based tools attack the problem mostly
as a classification problem. They are not language
specific and hence they fail when semantic knowl-
edge is needed while tagging a word with more
than one sense. Even for unknown words, i.e.,
those words which have not appeared in the train-
ing corpus, these tools go by the probabilities but
are not guaranteed to give the correct tag as they
lack the semantic knowledge of the language.
Also, they need a large annotated corpus. But the
bright side of these tools is they can tag any word
(known or unknown) with a high accuracy based
on the probabilities of similar tags occurring in a
particular context and some features provided for
learning from the training data.

On the other hand, purely rule based systems fail
when the word is unknown or does not satisfy any
of the rules. These systems just crash if the word is
unknown. They cannot predict the plausible or
likely tag. Hence an exhaustive set of rules are
needed to achieve a high accuracy using this ap-
proach.

There is another class of tools which are the hy-
brid ones. These may perform better than plain
statistical or rule based approaches. The hybrid
tools first use the probabilistic features of the sta-
tistical tools and then apply the language specific
rules on the results as post processing. The best
approach which seems intuitive is to generalize the
language specific rules and convert them into fea-
tures. Then incorporate these features into the sta-
tistical tools. The problem here is the lack of con-
trol and flexibility on the statistical tools. So the
perfect selection of features is what actually mat-
ters with respect to the accuracy. The more lan-

117

guage specific features that can be designed the
higher accuracy can be achieved.

2 Previous Work

Different approaches have been used for part-of-
speech tagging previously. Some have focused on
rule based linguistically motivated part-of-speech
tagging such as by Brill (Brill, 1992 and Brill,
1994). On the machine learning side, most of the
previous work uses two main machine learning
approaches for sequence labeling. The first ap-
proach relies on k-order generative probabilistic
models of paired input sequences, for instance
HMM (Frieda and McCallum, 2000) or multilevel
Markov Models (Bikel et al. 1999).

CRFs bring together the best of generative and
classification models. Like classification models,
they can accommodate many statistically corre-
lated features of the input, and they are trained dis-
criminatively. And like generative models they can
also tradeoff decisions at different sequence posi-
tions to obtain a globally optimal labeling. Condi-
tional Random Fields were first used for the task of
shallow parsing by Lafferty et al. (Lafferty et al.,
2000), where CRFs were applied for NP chunking
for English on WSJ corpus and reported a per-
formance of 94.38%. For Hindi, CRFs were first
applied to shallow parsing by Ravindran et al.
(Ravindran et. al., 2006) and Himanshu et al. (Hi-
manshu et. al., 2006) for POS tagging and chunk-
ing, where they reported a performance of 89.69%
and 90.89% respectively. Lafferty also showed that
CRFs beat related classification models as well as
HMMs on synthetic data and on POS-tagging task.

Several POS taggers using supervised learning,
both over word instances and tagging rules, report
precision greater than 96% for English. For Hindi
and other South Asian languages, the tagged cor-
pora is limited and together with higher morpho-
logical complexity of these languages it poses a
difficulty in achieving results as good as those
achieved for English in the past.

3 Conditional Random Fields

Charles Sutton et al. (Sutton et al., 2005) formu-
lated CRFs as follows. Let G be a factor graph
over Y. Then p(y|x) is a conditional random field if
for any fixed x, the distribution p(y|x) factorizes
according to G. Thus, every conditional distribu-
tion p(y|x) is a CRF for some, perhaps trivial, fac-

tor graph. If F = {A} is the set of factors in G, and
each factor takes the exponential family form, then
the conditional distribution can be written as

X here is a random variable over data sequences

to be labeled, and Y is a random variable over cor-
responding label sequences. All components Yi of
Y are assumed to range over a finite label alphabet
Y. For example, X might range over natural lan-
guage sentences and Y range over part-of-speech
tagging of those sentences, with Y the set of possi-
ble part-of-speech tags. The random variables X
and Y are jointly distributed, but in a discrimina-
tive framework we construct a conditional model
p(Y|X) from paired observation and label se-
quences, and do not explicitly model the marginal
p(X).

CRFs define conditional probability distribu-
tions P(Y|X) of label sequences given input se-
quences. Lafferty et al. defines the probability of a
particular label sequence Y given observation se-
quence X to be a normalized product of potential
functions each of the form:

exp(Σλjtj(Yi-1,Yi,X,i)+Σμksk (Yi,X,i))

where tj(Yi-1,Yi,X,i) is a transition feature func-

tion of the entire observation sequence and the la-
bels at positions i and i-1 in the label sequence; sk
(Yi,X,i) is a state feature function of the label at
position I and the observation sequence; and λj and
μk are parameters to be estimated from training
data.

Fj(Y,X)= Σ fj (Yi-1,Yi,X,i)

where each fj (Yi-1,Yi,X,i) is either a state func-

tion s(Yi-1,Yi,X,i) or a transition function t(Yi-
1,Yi,X,i). This allows the probability of a label
sequence Y given an observation sequence X to be
written as:

P(Y|X, λ) = (1/Z(X)) exp(Σλj Fj(Y,X))

where Z(X) is a normalization factor.

4 IL Tagset

The currently used tagset for this project and which
is a standard for Indian Languages is the IL (Indian

118

Languages) tagset. The tagset consists of 26 tags.
These have been specially designed for Indian
Languages. The tagset contains the minimum tags
necessary at the Parts of Speech tagging level. It
copes with the phenomena of fineness versus
coarseness. The tags are broadly categorized into 5
main groups, with the nouns consisting of the gen-
eral nouns, space or time related nouns or proper
nouns, and the verbs consisting of the main and the
auxiliary verbs. Another category is of the noun
and verb modifiers like adjectives, quantifiers and
adverbs. Finally, there are numbers, cardinals etc.

5 Approach

Approach presented in this paper is a machine
learning model. It uses supervised as well as unsu-
pervised techniques. It uses a CRF to statistically
tag the test corpus. The CRF is trained using fea-
tures over a tagged and untagged data. A CRF
when provided with good features gives accuracy
much better than other models. The intuition here
is that if we convert the linguistic rules specific to
Gujarati in to features provided to CRF, then we
make use of advantages of both statistical and rule
based approach. But due to lack of control and
flexibility not all features can be incorporated in
the CRF. So after the CRF is done we do the error
analysis. From the errors we formulate rules,
which are general and language specific, and then
convert them to new features and apply them back
to CRF. This increases the accuracy.

Gujarati when viewed linguistically is a free
word order language. It is partially agglutinative,
in the sense maximum 4 suffixes can attach to the
main root. Words in Gujarati can have more than
one sense where the tags are different in different
senses. For e.g. “paNa” can be a particle meaning –
“also”, and also can be a connective meaning –
“but”. “pUrI” can be a noun meaning – “an eat-
able”, can be an adjective meaning – “finished”,
and can also be a verb meaning – “to fill”.

Also, in Gujarati, postpositions can be or can not
be attached to the head word. For e.g. One may
write “rAme” or “rAma e” literally meaning
“rAma (ergative)”.

Most of all, this language can drop words from
the sentences. For example:

Sent: baXA loko GaramAM gayA.
Literal: all people house + in went.

Tags: QF NN NN VM

Here, we can drop the noun (NN) “loko” and in

which case the quantifier (QF) “baXA” now be-
comes the noun (NN).

Features used in CRF are suffixes, prefixes,
numbers etc. For e.g. Words having suffix “ne”,
like “grAhakone” are tagged as NN. CRF learns
from the tags given to words with same suffixes in
the training data. This suffix window is 4. This
way the vibhakti information is explored. Similarly
if words like “KAine” and “KAwo” come in the
training corpus the CRF learns the preffix and tags
other words with that prefix. This way the stem
information is explored. Also if the token is a
number then it must be QC, and if it has a number
in it then it must be a NNP.

6 Experiments

Initially we just ran a rule based tagging code on
the test data. This code used both machine learning
and rule based features for tagging. It gave an ac-
curacy of 86.43%. The error analysis revealed that,
as the training corpus being less, the unknown
words are many and also well distributed over the
tags. Hence the heuristics were not effective.

Then we ran a CRF tool on the test data. We
found it giving an accuracy of 89.90%. Then dur-
ing the error analysis we observed that the features
were not up to the mark. Then we selected particu-
lar features which were generalization of rule
based, used in the previous code, and more specific
to Gujarati. This increased the accuracy to 91.74%.
Then after adding more heuristics the accuracy was
in fact reducing. Heuristics like converting all
NNPs to NNs, removing some tags as options
while tagging the unknown words like
CC,QW,PRP etc. as these in a language are very
limited and are expected that they must have came
once in the training corpus. We also tried tagging
the word on the basis of possible tags between the
two surrounding words. But that too reduced the
accuracy. Also heuristics like previous and current
word vibhakti combination failed.

Training data Test data Results (%)
11185 5895 91.74

Table-1. POS Tagging Results and Data Size

119

7 Error Analysis

Here the above table confirms that the errors
have occurred across all the tags. This is mainly
due to lack of training data. The numbers of un-
known words in the corpus were around 40%. The
CRF while using the features and the probabilities
to tag a particular unknown word made mistakes
due to the flexible nature of the language. For e.g.
the maximum errors occurred because of tagging
an adjective by a noun. An example:

motA`QFC BAganA`QF viSeRa`NN SEk-
SaNika`JJ jaruriyAwo`NN GarAvawA`VM
bAlYako`NN sAmAnya`JJ skUlamAM`NN
jaSe`VM .`SYM

Actual Tag Assigned Tag Counts
JJ NN 58

NNP NN 35
NN JJ 26
NN VM 22

NNC NN 21
PSP NN 19
VM VAUX 19

NNPC NN 18
NNC JJ 17
NST NN 14
VM NN 13
Table-2. Errors Made by the Tagger.

In the above example the word “viSeRa`NN” is

wrongly tagged. This being an adjective is tagged
as NN, firstly because it is an unknown word. Also
in this language adjectives may or may not occur
before the nouns. Hence the probability of this un-
known word to be a NN or a JJ is equal or will de-
pend on the number of instances of both in the
training corpus. Further more there is more prob-
ability of it being tagged as a noun as the next
word is an adjective. There are very less instances
where two adjectives come together in the training
corpus. Again the chances of it being a noun in-
crease as the QF mostly precede nouns instead of
adjectives. Here we also have a QF before the un-
known word. The same reason also is responsible
for the third class of errors – NN being wrongly
tagged as JJ. These errors can only be corrected if
the word is some how known. Again the next class
of errors is the Named Entity Recognition problem
which is an open problem in itself.

8 Conclusion

We have trained a CRF on Gujarati which gives an
accuracy of around 92%. From the experiments we
observed that if the language specific rules can be
formulated in to features for CRF then the accu-
racy can be reached to very high extents. The CRF
learns from both tagged that is 600 sentences and
also untagged data, which is 5,000 sentences.

From the errors we conclude that as the training
data increases, the less number of unknown words
will be encountered in the test corpus, which will
increase the accuracy. We can also use some ma-
chine readable resources like dictionaries, morphs
etc. when ever they are built.

9 Intuition

We noticed that on a less amount of training data
also we have a good accuracy. The reason we felt
intuitive was Gujarati uses the best part of the vib-
hakti feature linguistically. It, being more aggluti-
native than Hindi has more word forms, hence
more word coverage, and being some less aggluti-
native than Telugu, has less ambiguity and also is
practical to hard code the vibhaktis, uses the best
part of advantages of the vibhakti feature in POS
tagging. Based only on the hard coded vibhakti
information we could tag around 1500 unknown
words out of 5000.

10 Future work

We are looking forward to manually tag more
training data in the future. We will also be trying to
build language resources for Gujarati that will help
in the Tagger. By increasing the amount of training
data we expect an appreciable increase in the accu-
racy.

References
Himanshu Agarwal and Anirudh Mani. 2006. Part of

Speech Tagging and Chunk-ing with Conditional
Random Fields. In the Proceedings of NWAI work-
shop.

Pranjal Awasthi, Delip Rao, Balaraman Ravindran.
2006. Part Of Speech Tagging and Chunking with
HMM and CRF. Proceedings of the NLPAI contest
workshop during NWAI ‘06, SIGAI Mumbai.

Karthik Kumar G, Sudheer K, Avinesh PVS. 2006.
Comparative study of various Machine Learning
methods For Telugu Part of Speech tagging. Pro-

120

ceedings of the NLPAI contest workshop during
NWAI ‘06, SIGAI Mumbai.

John Lafferty, Andrew McCallum and Fernando
Pereira. 2001. Conditional Random Fields: Probabil-
istic Models for Segment-ing and Labeling Sequence
Data. In proceedings of ICML’01.

Avinesh PVS and Karthik G. 2007. Part-Of-Speech
Tagging and Chunking Using Conditional Random
Fields and Transformation Based Learning. Proceed-
ings of the SPSAL workshop during IJCAI’07.

Fei Sha and Fernando Pereira. 2003. Shallow Parsing
with Conditional Random Fields. In the Proceedings
of HLT-NAACL.

Charles Sutton. 2007. An Introduction to Conditional
Random Fields for Relational Learning. In proceed-
ings of ICML’07.

CRF++: Yet Another Toolkit.

http://chasen.org/~taku/software/CRF++

121

122

Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages, pages 123–130,
Hyderabad, India, January 2008. c©2008 Asian Federation of Natural Language Processing

Speech to speech machine translation:
Biblical chatter from Finnish to English

David Ellis
Brown University

Providence, RI 02912

Mathias Creutz Timo Honkela
Helsinki University of Technology

FIN-02015 TKK, Finland

Mikko Kurimo

Abstract

Speech-to-speech machine translation is in
some ways the peak of natural language pro-
cessing, in that it deals directly with our
original, oral mode of communication (as
opposed to derived written language). As
such, it presents challenges that are not to be
taken lightly. Although existing technology
covers each of the steps in the process, from
speech recognition to synthesis, deriving a
model of translation that is effective in the
domain of spoken language is an interesting
and challenging task. If we could teach our
algorithms to learn as children acquire lan-
guage, the result would be useful both for
language technology and cognitive science.

We propose several potential approaches, an
implementation of a multi-path model that
translates recognized morphemes alongside
words, and a web-interface to test our speech
translation tool as trained for Finnish to En-
glish. We also discuss current approaches to
machine translation and the problems they
face in adapting simultaneously to morpho-
logically rich languages and to the spoken
modality.

1 Introduction

Effective and fluent machine translation poses many
challenges, and often requires a variety of resources.
Some are language-specific, some domain-specific,
and others manage to be relatively independent (one
might even say context-free), and thus generally ap-

plicable in a wide variety of circumstances. There
are still untapped resources, however, that might
benefit machine translation systems. Most statistical
approaches do not take into account any similarities
in word forms, so words that share a common root,
(like “blanche” and “bianca”, meaning “white” in
French and Italian respectively) are no more likely to
be aligned than others (like “vache” and “guardare”,
meaning “cow” and “to watch” respectively). Such
a root is sometimes subject to vowel shift and conso-
nant gradation, and may not be reflected in orthog-
raphy, since it is often purely phonetic.

This means we are not taking advantage of every-
thing that normally benefits human speakers, hear-
ers and translators. It may be that a more natural
approach to translation would first involve under-
standing of the input, stored in some mental rep-
resentation (an interlingua), and then generation of
an equivalent phrase in the target language, directly
from the knowledge sources.

In order to allow for more dramatic differences
in grammar like agglutinativity, it seems that the
statistical machine translation (SMT) system must
be more aware of sub-word units (morphemes) and
features (phonetic similarity). This general sort of
morphological approach could potentially benefit
any language pair, but might be crucial for a sys-
tem that handles Finnish, Turkish, Hungarian, Es-
tonian or any other highly inflectional language. In
the following section we discuss the confounds pre-
sented by agglutinative languages, and how aware-
ness of morphemes might improve the situation.
This is followed by a brief foray into semantics
and natural language generation as a component of

123

SMT. Capturing phonetic features is most applicable
to speech-to-speech translation, which will be dis-
cussed in the penultimate section. A description of
the Bible conversation experiment and some of its
results can be found in the final section.

2 Agglutinative Confounds

Traditional n-gram language models and phrase-
based translation models do not work terribly well
for Finnish because each lexical item can appear in
dozens of inflected or declined forms. If an SMT
system is presented with ”taloosi” (to your house), it
will not know if that is another form of a word it saw
in training (like ”taloissaan”, in their houses). Align-
ment data are thus unnaturally sparse and test sen-
tences often contain several unknown items, which
share their stems with trained words. It has been
assumed that morphological analysis would be es-
sential for handling agglutinative languages. How-
ever, although several effective segmenters and an-
alyzers for specific languages exist, and even unsu-
pervised language-neutral versions such as Morfes-
sor (Creutz and Lagus, 2007), only recently have
similar approaches been successfully used in the
context of machine translation to improve the BLEU
score (Oflazer and El-Kahlout, 2007), and none yet
in Finnish.

In our experience, building a translation model
through stemmed (truncated) word-alignment out-
performs full-form alignment, or any morph-
segmented alignment. But once one has generated
such a translation model, including phrase tables
where stemmed forms (keys in source language)
are associated with full forms (values in target lan-
guage), is there anything to be gained from induction
of morphology? Our research in this area has yet to
reveal any positive results, but we are still working
on it. It is also worth considering the effectiveness of
the evaluation metrics. Does BLEU accurately cap-
ture the accuracy of a translation, particularly in an
agglutinative language? Unfortunately not.

We think the word segmentation in the BLEU
metric is biased against progress in morpheme-level
translation. Some other metrics have been set forth,
but none is widely accepted, in part due to inertia,
but also because translation cannot be objectively
evaluated, unless both the communicative intent and

its effectiveness can be quantified. The same prob-
lem occurs for teachers grading essays — what was
the student intending to convey, was the phrasing
correct, the argument sound, and where does all this
diverge from the underlying power of words, written
or well said, to transmit information? Translation is
an art, and maybe in addition to human evaluation
by linguists and native speakers of the language, we
should consider the equivalent of an art or literary
critic. On the other hand, that might only be worth-
while for poetry, wherein automated translation is
perhaps not the best approach.

One might think that the stemmed model de-
scribed above would lose track of closed-class func-
tion items (like prepositions), particularly when they
are represented as inflectional morphemes in one
language but as separate words in the other. How-
ever, it seems that the language model for the target
takes care of that quite well in most cases. There
are some languages (like Japanese) with underspec-
ified noun phrases, in which efforts to preserve def-
initeness (i.e., the book, kirjan; a book, kirjaa) seem
futile, but given the abundance of monolingual data
to train LM’s on, these are contextually inferred and
corrected at the tail end of the production line. Ag-
glutinative confounds are thus very closely related to
other issues found throughout machine translation,
and perhaps an integrated solution (including a new
evaluation metric) is necessary.

3 Knowledge-Based Approaches

Incorporating statistical natural language generation
into a machine translation system involves some
modifications to the above. First, the source lan-
guage is translated or parsed into ontological rep-
resentations. This is similar to sentence parsing
techniques that can be used to induce a context-free
grammar for a language (Charniak, 1997), and could
in fact be considered one of their more useful appli-
cations. The parsing generally depends on a proba-
bilistic model trained on sentences aligned with their
syntactic and semantic representations, often in a
tree that could be generated by a context-free gram-
mar. The resulting semantic representation can then
be used as the source of a target-language generation
process.

The algorithm that generates such a representa-
124

tion from raw input could be trained on a tree-
bank, and an annotated form of the same corpus
(where the derivations in the generation space are
associated with counts for each decision made) can
be used to train the output component to generate
language. (Belz, 2005) To incorporate the statisti-
cal component, which allows for robust generaliza-
tion, per (Knight and Hatzivassiloglou, 1995), the
NLG on the target side is filtered through a language
model (described above). This helps address many
of the knowledge gap problems introduced by lin-
guistic differences or in a component of the system
- the analyzer or generator.

This approach does have significant advantages,
particularly in that it is more focused on semantics
(as opposed to statistical cooccurrence), so it may
be less likely to distort meaning. On the other hand,
it could misinterpret or miscommunicate (or both),
just like a human translator. Perhaps the crucial dif-
ference is that, while machine learning often has lit-
tle to do with our understanding of cognitive pro-
cesses, this sort of machine translation has greater
potential for illuminating mysterious areas of the hu-
man process. It is not an ersatz brain, nor neural
network, but in many ways it has more in common
with those technologies (particularly in that they
model cognition) than many natural language pro-
cessing algorithms. That is because, if we can get
a semantically-aware machine translation system to
work, it may more closely mirror human cognition.
Humans certainly do not ignore meaning when they
translate, but today’s statistical machine translation
has no awareness of it at all.

Potential disadvantages of the system include its
dependence on more resources. However, this is
less of a problem with WordNet(Miller, 1995) and
other such semantic webs. It is also worth men-
tioning again that humans always have an incred-
ible amount of information at their disposal when
translating. Not only all of their past experience and
word-knowledge, but their interlocutor’s demeanor,
manner, intonation, facial expressions, gestures, and
so on. There are often things that would be obvi-
ous in the context of a conversation, but are missing
from the transcribed text. For instance, the referent
of many pronouns is ambiguous, but usually there is
a unique individual or item picked out by the speak-
ers’ shared information. This is true for simple sen-

tences like ”He hit him,” which are normally dis-
ambiguated by conversational context, but a purely
statistical, pseudo-syntactic interpretation would get
little of the meaning a human would glean from that
utterance.

4 Spoken Features

Speech-to-speech machine translation is in some
ways the peak of natural language processing, in that
it deals directly with our (humans’) original, oral
mode of communication (as opposed to derived writ-
ten language). As such, it presents challenges that
are not to be taken lightly. Much of the pipeline in-
volved is at least relatively straightforward: acoustic
modeling and language modeling on the input side
can take advantage of the latest advances without
extensive adaptation; similarly, speech synthesis on
the output can be directly connected with the system
(i.e., not work with text output, but a richer repre-
sentation).

Although such a system might seem quite com-
plicated, it could better take advantage of all the
available data. Natural language understanding and
generation could even be incorporated to an extent,
perhaps to add further confidence measures based
on semantic equivalence. Designing it in this way
also allows for a variety of methods to be tried with
ease, in a modular fashion. It may be that yet an-
other source of information can be found to improve
the translation by adding features to the translation
model — perhaps leveraging multilingual corpora in
other languages, segmenting into morphemes earlier
in the process, or even incorporating intonation in
some fashion. Weights for all such features could
be learned during training, such that no language-
specific tuning would be necessary. This framework
would certainly not make speech-to-speech transla-
tion simple, but its flexibility might make research
and improvement in this area more tractable.

Efficiency is crucial in online translation of con-
versation, so a word alignment model with collapsed
Gibbs sampling, rather than EM, at its core is worth
experimenting with. We have written up a bare-
bones IBM Model 1 in both C++ and Python, us-
ing the standard EM approach and a Gibbs sampling
one. The latter allows for optimizations using lin-
ear algebra, and although it does not quite match the

125

perplexity or log-likelihood achieved by EM, it is
significantly faster, particularly on longer sentences.
Since morpheme segmentation is at least somewhat
helpful in speech recognition (Creutz, 2006; Creutz
et al., 2007), it should still be considered a potential
component in speech-to-speech translation. In terms
of incorporating the knowledge-based approach into
such a system, we think it may yet be too early,
but if existing understanding-and-generation frame-
works for machine translation could be adapted to
this use, it could be very fruitful, in particular since
spoken language generation might be more effective
from a knowledge base, since it would know what
it was trying to say, instead of relying on statistics
alone, hoping the phonemes end up in a meaningful
order.

The critical step of SST is, of course, transla-
tion. In an integrated system, as described above,
the translation model could be trained on a parallel
spoken corpus (perhaps tokenized into phonemes, or
segmented into morphemes), since there might be
advantages to limiting the intermediate steps in the
process. The Bible is a massively multilingual publi-
cation, and as it happens, its text is available aligned
between Finnish and English, and it is possible to
find corresponding recordings in both languages.
So, this corpus would enable a direct approach
to speech-to-speech translation. Alternatively, one
could treat the speech recognition and synthesis as
distinct from the translation, in which case text cor-
pora corresponding to the style and genre of speech
would be necessary. This would be particularly fea-
sible when, for instance, translating UN parliamen-
tary proceedings from a recording, for which trans-
lated transcripts are readily available. For a more
general and robust solution, we might advocate a
combined approach, in the hope that some potential
weaknesses of one might be avoided or compensated
for by using whatever limited resources are available
to add features from the other. Thus, a direct trans-
lation from speech to speech could be informed, in a
sense, by a derived translation from the recognized
text.

5 Biblical Chatter

Here, we present a system for translating Finnish to
English speech, in a restricted and ancient domain:

the Bible.

5.1 Introduction

Speech to speech translation attacks a variety of
problems at once, from speech recognition to syn-
thesis, and can similarly be used for several pur-
poses. If a system is efficient enough to be used
without introducing significant delay, it can trans-
late conversational speech online, acting as an in-
terpreter in place of (or in cooperation with) a hu-
man professional. On the other hand, a slow speech
translation system is still useful because it can make
news broadcasts (radio or television) accessible to
wider audiences through offline multilingual dub-
bing, allowing international viewers to enjoy a de-
layed broadcast.

5.2 System Description

The domain selected for our experiments was heav-
ily influenced by the available data. We needed a
bilingual (Finnish and English) and bimodal (text
and speech) corpus, and unfortunately none is read-
ily available, but we put one together using the
Bible. Both Old and New Testaments were used,
with one book from each left out for testing pur-
poses. We used multiple editions of the Bible to
train the translation model: the American Standard
Version (first published in 1901, updated 1997),
and Finnish translations (from 1992 and 1933,38).
The spoken recordings used were the World English
Bible (1997) and Finnish Bible (Raamattu) readings
(recorded at TKK 2004).

Our approach was to use existing components,
and try weaving them together in an optimal way.
First, there is the open vocabulary automatic speech
recognition (ASR) task, where the goal is to de-
tect phonemes in an acoustic signal and map them
to words. Here, we use an “unlimited vocabu-
lary” continuous speech recognizer (Hirsimäki et al.,
2006), trained on a multi-speaker Finnish acoustic
model with a varigram (Siivola et al., 2007) lan-
guage model that includes Bible n-grams. Then,
for translation, Moses (Koehn et al., 2007) is trained
on words and morphemes (derived from Morfessor
Baseline (Creutz and Lagus, 2005)). For speech syn-
thesis, we used Festival (Taylor, 1999), including the
built-in English voice and a Finnish voice developed
at Helsinki University.

126

5.3 Results

The following is an example fragment, taken from
the test corpus.

Niin Daavid meni David slept with his
lepoon isiensä luo, fathers, and was
ja hänethaudattiin buried in the
Daavidin kaupunkiin. city of David. The days
Neljäkymmentä vuotta that David reigned
hän oli ollut over Israel were
Israelin kuninkaana. forty years; seven
Hebronissa hän years reigned he
hallitsi seitsemän in Hebron, and
vuotta, Jerusalemissa thirty-three years
kolmenkymmenenkolmen reigned he
vuoden ajan. in Jerusalem.
Salomo nousi Solomon sat on
isänsä Daavidin the throne of David
valtaistuimelle,ja his father; and
hänen kuninkuutensa his kingdom was
vahvistui lujaksi. established greatly.

A translation of the reference text skips recogni-
tion, and runs the system from translation to synthe-
sis. The following shows how the sample text was
translated by our system (BLEU = 0.735):

Niin Daavid meni so david slept with his
lepoon isiensä luo, fathers and was
ja hänet haudattiin buried in the
Daavidin kaupunkiin. city of david
Neljäkymmentä vuotta forty years he
hän oli ollut was king over
Israelin kuninkaana. israel and in
Hebronissa hän hebron he reigned
hallitsi seitsemän seven years
vuotta, Jerusalemissa in jerusalem
kolmenkymmenenkolmen thirty and three
vuoden ajan. years solomon
Salomo nousi went up to
isänsä Daavidin the throne of
valtaistuimelle, ja david his father
hänen kuninkuutensa and his kingdom
vahvistui lujaksi. was strong for luja

The following recognized translation (BLEU =
0.541) represents a complete run of the system. The
recognition (on the left) had a LER of 12.9% and a
WER of 56.8%.

niintaa meni niintaa went
lepoon isiensälla isiensälla rest and was
ja hänet haudattiin buried in the
daavidin kaupunkiin city of david the king
neljäkymmentä of israel was
vuotta hän oli ollut forty years he was
israelin kuninkaan in hebron he
hebronissa hän reigned seven years
hallitsi seitsemän in jerusalem
vuotta jerusalemissa kymmenenkolmen
kolmen kymmenenkolmen three years
vuoden ajan after the new
salomon uusi on the throne of david
isänsä daavidin and solomon
valtaistuimelle ja his father
hänenkuninkuutensa hänenkuninkuutensa
valmistulujaksi valmistulujaksi

Here we have an alternative path through the sys-
tem, which uses Morfessor on the recognized text,
and then translates using a model trained on the
morpheme-segmented corpus. This results in a re-
duced score (BLEU = 0.456), but fewer unknown
words.

n iin taa# meni# iin behind went to
lepo on# isi ensä lla# the sabbath that
ja# hän et# hauda ttiin# is with ensä and he
daavid in# kaupunki in# shall not at the grave of abner
neljäkymmentä# vuotta# was forty years of the
hän# oli# ollut# city of david and
israeli n kuninkaan# he was israeli to
hebron issa# hän# the king of hebron
hallitsi# seitsemän# and he reigned
vuotta# jerusalem seven years in
issa# kolmen# jerusalem three tenth
kymmenen kolmen# three years of
vuoden# ajan# the new solomon his
salomo n# uusi# isä istuim to david
nsä# daavid in# my father of the
valta istuim elle# kingdoms of
ja# hän en kun ink ink and he
uutensa# valmistu luja ksi# uutensa valmistu to luja

The morphemes might have been more effective
in translation if they had been derived through rule-
based morphological analysis. Or, they could still be
statistical, but optimized for the translation phase by
minimizing perplexity during word alignment.

A significant barrier to thorough and concrete
evaluation of our system involves segmentation of
the speech stream into sentences (or verses) to match
the text. In the above examples, we manually
clipped the audio files. Evaluating performance on
the entire test set reduced the BLEU score if the
data were streamed through each component unseg-
mented. When the recognizer was set to insert a pe-
riod for detected pauses of a certain length, or at sen-
tence boundaries identified by its language model,

127

input to the translation phase became considerably
more problematic. In particular, the lattice input
ought to be split into sentences, but there would usu-
ally be a period in every time slice (but with low
probability).

5.4 Discussion

There were significant difficulties in the process,
particularly in the English to Finnish direction.
Whereas Finnish speech recognition is relatively
straightforward, since its orthography is consistent,
English speech recognition is more dependent on
a pronunciation dictionary. Although many such
dictionaries are available, and the pronunciation of
novel words can be estimated, neither of these re-
sources is terribly effective within the Bible domain,
where there are many archaic words and names. In
the second step, translation into Finnish is demon-
strably difficult from any source language, and re-
sults in consistently lower BLEU scores (Virpioja
et al., 2007). And although using morphemes can
reduce the frequency of unknown words, it also re-
duces the BLEU score.

It might improve translation quality if we use the
recognizer lattice as translator input, since acous-
tically improbable segments may lead to the most
fluent translation. Having access to many possibili-
ties might help the translation model, but then again,
second-guessing the recognizer might not be help-
ful. There were some difficulties with the Moses in-
tegration, in part because the word-sausage format
varies from SRILM’s. Also, the recognizer output
indicates word boundaries as <w>, not string-final
hash-marks (#). This is problematic since the for-
mer are separate symbols, occupying a node in the
lattice, whereas the latter are appended to another
symbol (e.g., “<w> morph eme </w>”, 4 nodes,
versus “morph eme#”, 2 nodes). Using the lattice,
final output from Moses tends to be more fluent,
but less on-topic, and often truncated. Although we
have no improvements thus far, it is likely that with
further parameter tuning, we could achieve better re-
sults. On the other hand, we seek a general, robust,
domain-independent solution, so focusing on Bible
translation may not be worthwhile.

Our speech-to-speech translation system is
accessible through a web interface.
http://www.cis.hut.fi/projects/speech/

translate/

It accepts a sound file, with recorded Finnish
bible-style chatter, an optional reference text and
translation, and within a half hour (usually much
less) sends a detailed report, including a sound file
with the synthesized English.

Ideas for future research include online speech-
to-speech translation, which must be efficient, light-
weight and robust. A potential barrier to this and
other applications is the lack of spoken language
training texts. It might be possible to adaptively train
to new speakers and contexts, perhaps taking advan-
tage of an efficient alternative to EM in word align-
ment (see discussion of Gibbs sampling). As men-
tioned elsewhere, it might be worth using prosodic
features captured during recognition as factors in
translation. Adapting existing resources to new lan-
guage pairs is particularly essential in an area where
so much is necessary, and so little available.

6 Conclusion

We cannot yet say for sure whether linguistic or
statistically optimized morphemes derived from text
corpora could be useful somehow in machine trans-
lation, but it has been demonstrated helpful in
speech recognition. Awareness of sub-word units
could benefit a speech-to-speech translation system,
and it may in fact help to maintain information
from the speech recognizer about morpheme seg-
mentation throughout the translation process, even
in speech generation. Incorporating natural lan-
guage understanding may also be fruitful, but for
compact, efficient systems (like a handheld transla-
tor) might not have access to the necessary resources
or computational power to support that. On the other
hand, it is our duty as researchers to stay ahead of the
technology and push its limits.

We are by no means the first to imagine this, but
perhaps we will soon be speaking into wrist watches
that understand our query, seemingly instantly shift
through more information than Google has currently
indexed, and reply in fluent English, Finnish, or Pun-
jabi with as much detail as could be hoped for after
hours of painstaking research with current technol-
ogy. In this case (and computational linguists must
always be optimistic), knowledge-based natural lan-
guage processing certainly has a crucial place.

128

Morphemes and agglutinative languages do pose
unique problems for computational linguists, but
many of the general techniques developed for lan-
guages like Arabic and Chinese, which are equally
far from English in grammar (and even orthogra-
phy), might surmount those problems without any
manual adaptation. Discriminative training of fea-
tures used in the translation model allows for such
solutions to be molded automatically to whatever
language pair (and set of corpora) they are being
used for. There is, as always, much more to be done
in this area, and we hope our research into efficient,
online Bible-conversational translation — a modern
Babelfish in an ancient genre — is fruitful, and helps
to shed light on lemmatization.

Acknowledgments

Many thanks to Teemu Hirsimäki, Antti Puurula,
Sami-Virpioja and Jaakko J. Väyrynen for their
help with components of the system and for their
thoughts and comments at various stages of the
project.

References
Anja Belz. 2005. Statistical generation: Three methods

compared and evaluated. In Proceedings of the 10th
European Workshop on Natural Language Generation
(ENLG05), pages 15–23.

Eugene Charniak. 1997. Statistical parsing with
a context-free grammar and word statistics. In
AAAI/IAAI, pages 598–603.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
morpheme segmentation and morphology induction
from text corpora using Morfessor 1.0. Technical Re-
port A81, Publications in Computer and Information
Science, Helsinki University of Technology.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphology
learning. ACM Transactions on Speech and Language
Processing, 4(1), January.

Mathias Creutz, Teemu HirsimŁki, Mikko Kurimo, Antti
Puurula, Janne Pylkknen, Vesa Siivola, Matti Var-
jokallio, Ebru Arisoy, Murat Saraclar, and Andreas
Stolcke. 2007. Analysis of morph-based speech
recognition and the modeling of out-of-vocabulary
words across languages. In Proceedings of Hu-
man Language Technologies / The Annual Conference
of the North American Chapter of the Association

for Computational Linguistics (HLT-NAACL 2007),
Rochester, NY, USA.

Mathias Creutz. 2006. Morfessor in the morpho chal-
lenge. In Mikko Kurimo, Mathias Creutz, and Krista
Lagus, editors, Proceedings of the PASCAL Challenge
Workshop on Unsupervised Segmentation of Words
into Morphemes, Venice, Italy.

T. Hirsimäki, M. Creutz, V. Siivola, M. Kurimo, S. Vir-
pioja, and J. Pylkkönen. 2006. Unlimited vocabu-
lary speech recognition with morph language models
applied to Finnish. Computer Speech and Language,
20(4):515–541.

Kevin Knight and Vasileios Hatzivassiloglou. 1995.
Two-level, many-paths generation. In Proceedings of
the 33rd annual meeting on Association for Compu-
tational Linguistics, pages 252–260, Morristown, NJ,
USA. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Ondrej Bojar, Alexandra Constantin, and Evan
Herb. 2007. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the ACL 2007
Demo and Poster Sessions, pages 177–180.

George A. Miller. 1995. Wordnet: a lexical database for
English. Commun. ACM, 38(11):39–41.

Kemal Oflazer and Ilknur Durgar El-Kahlout. 2007. Ex-
ploring different representational units in English-to-
Turkish statistical machine translation. In Proceedings
of the ACL 2007 Demo and Poster Sessions, pages 25–
32.

Vesa Siivola, Teemu Hirsimäki, and Sami Virpioja. 2007.
On growing and pruning Kneser-Ney smoothed n-
gram models. IEEE Transactions on Audio, Speech
and Language Processing, 15(5):1617–1624.

Paul Taylor. 1999. The Festival Speech Architecture.
Web page.

Sami Virpioja, Jaakko J. Väyrynen, Mathias Creutz, and
Markus Sadeniemi. 2007. Morphology–aware statis-
tical machine translation based on morphs induced in
an unsupervised manner. In Proceedings of the Ma-
chine Translation Summit XI, Copenhagen, Denmark.
To appear.

129

130

Author Index

Aggarwal, R.K., 105
Alegria, I., 59
Ali, Mohammad Naveed, 81
Arregi, X., 59
Artola, X., 59

Bandyopadhyay, Sivaji, 65, 91
Basu, Anupam, 19

Charoenporn, Thatsanee, 13
Choudhury, Monojit, 5
Creutz, Mathias, 123

Dandpat, Sandipan, 19
Dasgupta, Tirthankar, 19
Dave, M., 105
David, Anne, 1, 27

Ellis, David, 123

Gali, Karthik, 117
Goonetilleke, Sandeva, 43

Hayashi, Yoshihiko, 43
Honkela, Timo, 123

Ilarraza, A. Diaz de , 59
Isahara, Hitoshi, 13
Itoh, Yuichi, 43

Khan, M. A., 81
Khan, Muhammad Aamir, 81
Kishino, Fumio, 43
Kurimo, Mikko, 123

Labaka, G., 59
Lersundi, M., 59

Maung, Zin Maung, 51
Maxwell, Michael, 27
Maxwell, Micheal, 1

Mayor, A., 59
Mikami, Yoshiki, 51
Muhirwe, Jackson, 73

Patel, Chirag, 117

Resnik, Philip, 35
Riza, Hammam, 113
Robkop, Kergrit, 13
Roy, Indrani, 99

Sarasola, K., 59
Sarkar, Sandipan, 65
Singh, Anil Kumar, 7
Singh, Thoudam Doren, 91
Sornlertlamvanich, Virach, 3, 13

Trosterud, Trond, 73

V, Krishnakumar, 99

Zeman, Daniel, 35

131

	Program
	Invited Talk: Building Language Resources: Ways to move forward
	Invited Talk: Cross Language Resource Sharing
	Invited Talk: Breaking the Zipfian Barrier of NLP
	Natural Language Processing for Less Privileged Languages: Where do we come from? Where are we going?
	KUI: an ubiquitous tool for collective intelligence development
	Prototype Machine Translation System From Text-To-Indian Sign Language
	Joint Grammar Development by Linguists and Computer Scientists
	Cross-Language Parser Adaptation between Related Languages
	SriShell Primo: A Predictive Sinhala Text Input System
	A Rule-based Syllable Segmentation of Myanmar Text
	Strategies for sustainable MT for Basque: incremental design, reusability, standardization and open-source
	Design of a Rule-based Stemmer for Natural Language Text in Bengali
	Finite State Solutions For Reduplication In Kinyarwanda Language
	An Optimal Order of Factors for the Computational Treatment of Personal Anaphoric Devices in Urdu Discourse
	Morphology Driven Manipuri POS Tagger
	Acharya - A Text Editor and Framework for working with Indic Scripts
	Implementing a Speech Recognition System Interface for Indian Languages
	Indigenous Languages of Indonesia: Creating Language Resources for Language Preservation
	Part-Of-Speech Tagging for Gujarati Using Conditional Random Fields
	Speech to speech machine translation: Biblical chatter from Finnish to English

