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ABSTRACT 

This paper introduces a class of statistical mechanisms, called 
hidden understanding models, for natural language processing. 
Much of the framework for hidden understanding models derives 
from statistical models used in speech recognition, especially the 
use of hidden Markov models. These techniques are applied to 
the central problem of determining meaning directly from a 
sequence of spoken or written words. We present an overall 
description of the hidden understanding methodology, and 
discuss some of the critical implementation issues. Finally, we 
report on experimental results, including results of the 
December 1993 AR.PA evaluation. 

1 I N T R O D U C T I O N  

Hidden understanding models are an innovative application of 
statistical mechanisms that, given a string of words, determines 
the most likely meaning for the string. The overall approach 
represents a substantial departure from traditional approaches by 
replacing hand-crafted grammars and rules with statistical 
models that are automatically learned from examples. 
Advantages of tiffs approach include potential improvements in 
both robustness and portability of natural language systems. 

Hidden understanding models were motivated by techniques that 
have been extremely successful in speech recognition, especially 
hidden Markov Models [Baum, 72]. Related techniques have 
previously been applied to the problem of segmenting a sentence 
into a sequence of concept relations [Pieraccini et aL, 91]. 
However, because of differences between language 
understanding and speech recognition, significant changes are 
required in the speech recognition methodology. Unlike speech, 
where each phoneme results in a local sequence of spectra, the 
relation between the meaning of a sentence and the sequence of 
words is not a simple linear sequential model. Language is 
inherently nested, with subgroups of concepts within other 
concepts. 

A statistical system for understanding language must take this 
and other differences into account in its overall design. In 
principle, we have the following requirements for a hidden 
understanding system: 

A notational system for expressing meanings. 
A statistical model that is capable of representing meanings 
and the association between meanings and words. 
An automatic training program which, given pairs of 
meanings and word sequences, can estimate the parameters 
of a statistical model. 
An understanding program that can search the statistical 
model to fred the most likely meaning given a word 
sequence. 
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Figure 1: The main components of a hidden understanding 
system. 

Below, we describe solutions for each of these requirements, and 
report on initial experiments with hidden understanding models. 

-2 EXPRESSING MEANINGS 

One of the key requirements for a hidden understanding model 
is that the meaning representation must be both expressive and 
appropriate for automatic learning techniques. Logical 
notations, such as the predicate calculus, are generally 
considered to possess sufficient expressive power. The 
difficulty lies in finding a meaning representation that can be 
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readily aligned to the words of a sentence, and for which there is 
a tractable probability model for meanings. To satisfy these 
requirements, we have developed a family of representations 
which we call tree structured meaning representations. 

2.1  T R E E  S T R U C T U R E D  M E A N I N G  

R E P R E S E N T A T I O N S  

The central characteristic of a tree structured representation is 
that individual concepts appear as nodes in a tree, with 
component concepts appearing as nodes attached directly below 
them. For example, the concept of aflight in the ATIS domain 
has component concepts including airline,flight number, origin, 
and destination. These could then form part of the 
representation for the phrase: United flight 203 from Dallas to 
Atlanta. We require that the order of the component concepts 
must match the order of the words they correspond to. Thus, the 
representation of the phrase flight 203 to Atlanta from Dallas on 
United includes the same nodes as the earlier example, but in a 
different order. For both examples, the interpretation is 
identical. More formally, the meaning of a tree structured 
representation is invariant with respect to the left-to-fight order 
of the component concept nodes. 

At the leaves of a meaning tree are the words of the sentence. 
We distinguish between nodes that appear above other nodes, 
and those that appear directly above the words. These will be 
referred to as nonterminal nodes and terminal nodes 
respectively, forming two disjoint sets. No node has both words 
and other nodes appearing directly below it. In the current 
example, aflight node represents the abstract concept of a flight, 
which is a structured entity that may contain an origin, a 
destination, and other component concepts. Appearing directly 
above the word "flight" is a terminal node, which we call a 
f ight  indicator. This name is chosen to distinguish it from the 
flight node, and also because the word "flight," in some sense, 
indicates the presence of a flight concept. Similarly, there are 
airline indicators, origin indicators, and destination indicators• 

These nodes can be thought of as elements in a specialized 
sublanguage for expressing meaning in the ATIS domain. 

3 T H E  S T A T I S T I C A L  M O D E L  

One central characteristic of  hidden understanding models is 
that they are generative. From this viewpoint, language is 
produced by a two component statistical process. The first 
component chooses the meaning to be expressed, effectively 
deciding "what to say". The second component selects word 
sequences to express that meaning, effectively deciding "how to 
say it". The first phase is referred to as the semantic language 
model, and can be thought of as a stochastic process that 
produces meaning expressions selected from a universe of 
meanings. The second phase is referred to as the lexical 
realization model, and can be thought of as a stochastic process 
that generates words once a meaning is given. 

abstract 

s~'ucau'cs sequences 

Figure 3: Language as a generative process. 

By analogy with hidden Markov models, we refer to the 
combination of these two models as a hidden understanding 
model. The word hidden refers to the fact that only words can 
be observed. The internal states of each of the two models are 
unseen and must be inferred from the words. The problem of 
language understanding, then, is to recover the most likely 
meaning structure given a sequence of words. More formally, 
understanding a word sequence W is accomplished by searching 
among all possible meanings for some meaning M such that 
P(MIW) is maximized. By Bayes Rule, P(MIW) can be 
rewritten as: 

) nonterminal 
nodes 

Figure 2: An example of a tree structure meaining representation. 
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P( MIW) = P(WIM)P( M) 
P(W) 

Now, since P(W) does not depend on M, maximizing P(MIW) 
is equivalent to maximizing the product P(W1M) P( M). 
However, P(W1M) is simply our !exical realization model, and 
P(M) is simply our semantic language model. Thus, by 
searching a combination of these models it is possible to fred the 
most likely meaning M given word sequence W. 

3.1 Semantic Language Model 

For tree structured meaning representations, individual 
nontenninal nodes determine particular abstract semantic 
concepts. In the semantic language model, each abstract concept 
corresponds to a probabilistic state transition network. All such 
networks are then combined into a single probabilistic recursive 
transition network, forming the entire semantic language model. 

The network corresponding to a particular abstract concept 
consists of  states for each of its component concepts, together 
with two extra states that define the entry and exit points. Every 
component concept is fully connected to every other component 
concept, with additional paths leading from the entry state to 
each component concept, and from each component concept to 
the exit state. Figure 4 shows a sample network corresponding 
to the flight concept. Of course, there are many more flight 
component concepts in the ATIS domain than actually appear in 
this example. 

Associated with each arc is a probability value, in a similar 
fashion to the TINA system [Seneff, 92]. These probabilities 

have the form P(State,,IStaten_l,Context), which is the 
probability of taking a transition from one state to another within 
a particular context. Thus, the arc from origin to dest has 
probability P(dest I origin,flight), meaning the probability of 
entering dest from origin within the context of the flight 
network. Presumably, this probability is relatively high, since 
people usually mention the destination of a flight directly after 
mentioning its origin. Conversely, P(origin I dest,flight) is 
probably low because people don't usually express concepts in 
that order. Thus, while all paths through the state space are 
possible, some have much higher probabilities than others. 

Within a concept network, component concept states exist for 
both nonterminal concepts, such as origin, as well as terminal 
concepts, such as flight indicator. Arrows pointing into 
nonterminal states indicate entries into other networks, while 
arrows pointing away indicate exits out of those networks. 
Terminal states correspond to networks as well, although these 
are determined by the lexical realization model and have a 
different internal structure. Thus, every meaning tree directly 
corresponds directly to some particular path through the state 
space. Figure 5 shows a meaning tree and its corresponding 
path through the state space. 

3.2 Lexical Realization Model 

Just as nonterminal tree nodes correspond to networks in the 
semantic language model, terminal nodes correspond to 
networks in the lexical realization model. The difference is that 
semantic language networks specify transition probabilities 
between states, while lexical realization networks specify 
transition probabilities between words. Lexical realization 

enter 

Figure 4: A partial network corresponding to theflight concept. 
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probabilities have the form P( word n l wordn_ l ,context ) , which 
is the probability of taking a transition from one word to another 
given a particular context. Thus, 
P(showlplease,  show-indicator ) is the probability that the 
word show follows the word please within the context of a show 
indicator phrase. In addition, there are two pseudo-words, 
*begin* and *end*, which indicate the beginning and ending of 
phrases. Thus, we have probabilities such as 
P(please[*begin*,show-indicator ), which is the probability 
that please is the first word of a show indicator phrase, and 
P(*end*lme,  show-indicator ), which is the probability of 
exiting a show indicator phrase given that the previous word 
was me. 

4 THE U N D E R S T A N D I N G  C O M P O N E N T  

As we have seen, understanding a word string W requires 
finding a meaning M such that the probability P(W]M) P ( M )  is 
maximized. Since, the semantic language model and the lexical 
realization model are both probabilistic networks, 
P(WJM) P ( M )  is the probability of a particular path through 
the combined network. Thus, the problem of understanding is to 
fred the highest probability path among all possible paths, where 
the probability of a path is the product of all the transition 
probabilities along that path. 

r r  [ P (  state.lstaten_ l ,context)  i f  t in Semantic Language Model] 

P(rat~)=,l~hLP(word, lword,_t,context) . . . .  if t in Lexieal Realization ModelJ / 

Thus far, we have discussed the need to search among all 
meanings for one with a maximal probability. In fact, if it were 
necessary to search every path through the combined network 
individually, the algorithm would require exponential time with 
respect to sentence length. Fortunately, this can be drastically 
reduced by combining the probability computation of common 

subpaths through dynamic programming. In particular, because 
our meaning representation aligns to the words, the search can 
be efficiently performed using the well-known Viterbi [Viterbi, 
67] algorithm. 

Since our underlying model is a recursive transition network, the 
states for the Viterbi search must be allocated dynamically as the 
search proceeds. In addition, it is necessary to prune very low 
probability paths in order to keep the computation tractable. We 
have developed an elegant algorithm that integrates state 
allocation, Viterbi search, and pruning all within a single 
traversal of a tree-like data structure. 

5 THE TRAINING C O M P O N E N T  

In order to train the statistical model, we must estimate 
transition probabilities for the semantic language model and 
lexical realization model. In the ease of fully specified meaning 
trees, each meaning tree can be straightforwardly converted into 
a path through state space. Then, by counting occurrence and 
transition frequencies along those paths, it is possible to fonn 
simple estimates of the transition probabilities. Let 
C(statem,contexts) denote the number of times state m has 

occurred in contexts,  and let C(statenlstatem,contexts)denote 
the number of times that this condition has led to a transition to 
state state n. Similarly, define counts C(wordm,contextt) and 

C(wordnlwordm,contextt). Then, a direct estimate of the 
probabilities is given by: 

and 

Jb (state n lstate re,context) 
C( statenlstatem ,c°ntext ) , 

C ( state m , context ) 

A C ( w o r d  w o r d  context) 
P(wordnlwordm,context )  = n m' . 

C(  word  m , context ) 

show flight " ~ . 

Show flights to Atlanta 

Figure 5: A meaning tree and its corresponding path through state space. 
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In order to obtain robust estimates, these simple estimates are 
smoothed with backed-off estimates [Good, 53], using 
techniques similar to those used in speech recognition [Katz, 87; 
Placeway et al., 93] .  Thus, P(statenlstatem,context ) is 

smoothed with 1~( statenJ,context ), and P( wordnJ word re,context ) 
is smoothed with 15(wordnlcontext). Robustness is further 
increased through word classes. For example, Boston and San 
Francisco are both members of the class of cities. 

6 E X P E R I M E N T A L  R E S U L T S  

We haw: implemented a hidden understanding system and 
performed a variety of experiments. In addition, we participated 
in the 1993 ARPA ATIS NL evaluation. 

One experiment involved a 1000 sentence ATIS corpus, 
annotated according to a simple specialized sublanguage model. 
To annotate the training data, we used a bootstrapping process in 
which only the first 100 sentences were annotated strictly by 
hand. Thereafter, we worked in cycles of: 

1. Running the training program using all available annotated 
data. 

2. Running the understanding component to annotate new 
sentences. 

3. Hand correcting the new annotations. 

Annotating in this way, we found that a single annotator could 
produce 200 sentences per day. We then extracted the first 100 
sentences as a test set, and trained the system on the remaining 
900 sentences. The results were as follows: 

• 61% matched exactly. 
• 21% had correct meanings, but did not match exactly. 
• 28% had the wrong meaning. 

Another experiment involved a 6000 sentence ATIS corpus, 
annotated according to a more sophisticated meaning model. In 
this experiment, the Delphi system automatically produced the 
annotation by printing out its own internal representation for 
each sentence, converted into a more readable form. We then 
removed 300 sentences as a test set, and trained the system on 
the remaining 5700. The results were as follows: 

• 85% matched exactly. 
• 8% had correct meanings, but did not match exactly. 
• 7% had the wrong meaning. 

For the ARPA evaluation, we coupled our hidden understanding 
system to the discourse and backend components of the Delphi 
system. Using the entire 6000 sentence corpus described above 
as training data, the system produced a score of 23% simple 
error on the ATIS NL evaluation. By examining the errors, we 
have reached the conclusion that nearly half are due to simple 
programming issues, especially in the interface between Delphi 

and the hidden understanding system. In fact, the interface was 
still incomplete at the time of the evaluation. 
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