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1. A B S T R A C T  

Speech recognition systems tend to be sensitive to unimportant 
steady-state variation in speech spectra (i.e. those caused by vary- 
ing the microphone or channel characteristics). There have been 
many attempts to solve this problem; however, these techniques 
are often computationally burdensome, especially for real-time 
implementation. Recently, Hermansy et el. [1] and Hirsch et el. [2] 
have suggested a simple technique that removes slow-moving lin- 
ear channel variation with little adverse effect on speech recogni- 
tion performance. In this paper we examine this technique, known 
as RASTA filtering, and evaluate its performance when applied to 
SRI's DECIPHER TM speech recognition system [3l. We show that 
RASTA filtering succeeds in reducing DECIPHERTM's depen- 
dence on the channel. 

2. I N T R O D U C T I O N  

A number of techniques have been developed to compen- 
sate for the effects that varying microphone and channels 
have on the acoustic signal. Erell and Weintraub [4, 5] have 
used additive corrections in the filter-bank log energy or 
cepstral domains based on equalizing the long-tenn average 
of the observed filter-bank log energy or cepstral vector to 
that of the training data. The techniques developed by Rose 
and Paul [6] and Acero [7] used an iterative technique for 
estimating the cepstral bias vector that will maximize the 
likelihood of the input utterance. Nadas et el. [8] used an 
adaptive linear transformation applied to the input repre- 
sentation, where the adaptation uses the VQ distortion vec- 
tor with respect to a predefined codebook. VanCompemolle 
[10] scaled the filter-bank log energies to a specified range 
using running histograms, and Rohlicek [9] experimented 
with a number of histogram-based compensation metrics 
based on equalizing different aspects of the probability dis- 
tribution. 

One important limitation of the above approaches is that 
they rely on a speech/nonspeech detector. Each of the 
above approaches computes spectral properties of the input 
speech sentence and subsequently compensates for the sta- 
tistical differences with certain properties of the training 

data. If the input acoustical signal is not segmented by sen- 
tence (e.g. open microphone with no push-to-talk button) 
and there are long periods of silence, the above approaches 
would not be able to operate without some type of reliable 
automatic speech-input/sentence-detection mechanism. An 
automatic sentence-detection mechanism would have con- 
siderable difficulty in reliably computing the average 
speech spectrum if  there were many other nonspeech 
sounds m the environment. 

A second class of techniques developed around auditory 
models (Lyon [11]; Cohen [12]; Seneff [13]; Ghitza [14]). 
These techniques use various automatic gain control and 
other auditory-type modeling techniques to output a spec- 
tral vector that has been adapted based on the acoustic his- 
tory. A potential limitation of this approach is that many of 
these techniques are very computationally intensive. 

3. THE RASTA FILTER 

RASTA filtering is a high-pass filter applied to a log-spec- 
tral representation of speech. It removes slow-moving vari- 
ations from the log spectrum. The filtering is done on the 
log-spectral representation so that multiplicative distortions 
(such as a linear filter) become additive and may be 
removed with the RASTA filter. A simple RASTA filter 
may be implemented as follows: 

y( t )  -~ x( t )  - - x ( t - - 1 )  .-I- (C"  y ( t -  1) ) 

where x(t), as implemented in DECIPHERa~, is a log band- 
pass energy which is normally used in DECIPHER TM to 
compute the Mel-cepstral feature vector. Instead, x(t) is 
replaced by y(t), the high-pass version of x(t), when per- 
forming the cepstral transform. 

] 'he constant, C, in the above equation defines the time 
constant of the RASTA filter. It is desirable that C be such 
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that short-term variations in the log spectra (presumably 
important parts of the speech signal) are passed by the filter, 
but slower variations are blocked. We set C = 0.97 so that 
signals that vary faster than about 1 Hz are passed and those 
that vary less than once per second tend to be blocked. Fig- 
ure 1 below plots the characteristic of this filter. 
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Figure 1: Characteristics of the C = 0.97 RASTA filter 

When used in conjunction with SRI's spectral estimation 
algorithms [4, 5], the high-pass filter is applied to the filter- 
bank log energies after the spectral estimation operation. 
The estimates of clean filter-bank energies are highpass fil- 
tered and then transformed to obtain the cepstral vector. 
The cepstral vector is then differenced twice to obtain the 
delta-cepstral vector and the delta-delta-cepstral vector. 

3.1. Removal of an Ideal Linear Filter 

We first evaluated RASTA filtering by applying a bandpass 
filter (Figure 2 below) to a speech recognition task--contin- 
uous digit recognition performance over telephone lines. 
The filter was applied to the test set only (no filtering was 
applied to the training data). We compared the resulting 
performance with the performance of an unfiltered test set 
for both standard and RASTA filtering. As Table 1 shows, 
the RASTA filtering was successful in removing the effects 
of the bandpass filter, whereas the standard system suffered 
a significant performance degradation due to the bandpass 
filter. Compared with our standard signal processing, the 
RASTA filtering was able to give a slight improvement on 
the female digit error rate, with no significant change in the 
male digit error rate. The dramatic decrease in performance 
that occurs when the telephone speech is bandpass filtered 
is removed by the RASTA filtering, and the results are com- 
parable to the original speech signal. 
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Figure 2: The distorting bandpass filter characteristic. 

Original Bandpass 
Speech Speech 

male female male female 

I 
Standard 3.2 3.1 13.9 11.6 

RASTA 3.4 2.1 3.0 1.9 

Table 1: Word error rates for standard signal process- 
ing techniques and RASTA filtering techniques using clean 
and bandpass-filtered telephone speech. 

4. REDUCED MICROPHONE 
DEPENDENCE 

After the encouraging initial study, we tested RASTA filter- 
ing in a more realistic manner--measuring the performance 
improvement, due to RASTA filtering, when dissimilar 
microphones are used in the test and training data. 

To do this, we recorded 50 sentences (352 words) from one 
talker simultaneously using two different microphones, a 
Sennheiser flat-response close-talking microphone that was 
used to train the system, and an Electrovoice 625 handset 
with a very different frequency characteristic. The user 
spoke queries for DARPA's ATIS air-travel planning task. 
Table 2 shows that for this speaker, the error rate was less 
sensitive to the difference in microphone when RASTA ill- 
tering was applied than when it wasn't. Further, there is no 
evidence from this and the previous study to indicate that 
RASTA filtering degrades performance when the micro- 
phone remains constant. 
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Sennheiser Electro Voice 

Standard 13 (3.7%) 31 (8.8%) 

RASTA 12 (3.4%) 17 (4.8%) 

Table 2: Number and percentage of word errors for a 
single speaker when test microphone and signal processing 
were varied. 

5. DESKTOP MICROPHONES 

RASTA filtering is most effective when differences 
between training and testing conditions can be modeled as 
linear filters. However, many distortions do not fit this 

model. One example is testing with a desktop microphone 
with models trained with a close-talking microphone. In this 
scenario, although the microphones characteristics may be 
approximately related with a linear filter, additive noise 
picked up by the desktop microphone violates the linear-fil- 
ter assumption. 

To see how important these effects are, we performed rec- 
ognition experiment on systems trained with sennheiser 
microphones and tested with a Crown desktop microphone. 
These test recordings were made at Carnegie Mellon Uni- 
versity (CMU) and at the Massachusetts Institute of Tech- 
nology (MIT). They simultaneously recorded a speaker 
using both Sennheiser and Crown microphones interacting 
with an ATIS (air travel planning) system. 

The performance of DECIPHER TM on the ATIS recordings 
is shown in Tables 3 and 4. Table 3 shows the system per- 
formance results on MIT's recordings, while Table 4 con- 
tains the system performance results on CMU's recordings. 

Speaker Sennheiser Crown Crown Crown Crown 

Standard Standard RASTA NRFE NRFE+RASTA 

4V 13.0 13.8 22.8 18.7 16.3 

4W 1.7 5.1 1.7 4.3 3.4 

5E 17.8 26.6 27.8 18.1 14.7 

55 18.5 26.6 25.3 23.2 17.6 

59 13.7 40.2 41.0 26.6 23.6 

Average 12.9 22.5 23.7 18.2 15.1 

Table 3: Word error rate for MIT recordings varying microphone and signal processing 

Speaker Sennheiser Crown Crown Crown Crown 

Standard Standard RASTA NRFE NRFE+RASTA 

IF 20.7 91.8 46.9 46.9 36.7 

IH 20.5 93.2 75.7 71.0 35.8 

IK 26.2 87.1 62.3 60.3 35.8 

Average 22.5 90.7 61.6 59.4 36.1 

Table 4: Word error rate for CMU recordings varying microphone and signal processing 
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For the MIT recordings, note that the best performing sys- 
tem on the Crown microphone data was very close with the 
performance on the Sennheiser recordings (12.9% vs. 
15.1%). The addition of RASTA processing did not help the 
standard processing on the Crown data (the error rate went 
up slightly from 22.5% to 23.7%) but it did help the noise- 
robust estimation processing (18.2% to 15.1%). 

The performance on CMU's Crown recordings were much 
lower. CMU's audio recordings for were noticeably noisier; 
the speaker sounded as if he was much farther from the 
microphone, and there were other nonstationary sounds in 
the background. Note that the error rate with the standard 
signal processing is extremely high (90.7% word error). For 
the CMU Crown microphone recordings, the addition of 
RASTA processing helped reduce the error rate for both the 
standard and noise-robust estimation processing conditions. 
The NRFE + RASTA processing was able to reduce the 
error rate by 60% over the no-processing condition on the 
CMU Crown microphone recordings (90.7% to 36.1%). 

SRI's noise-robust spectral estimation algorithms are 
designed to estimate the filter-bank log energies of the clean 
speech signal when there is additive colored noise. The esti- 
mation algorithms were designed to work independently 
from any spectral shape introduced by the microphone and 
channel variations. Therefore, some type of additional spec- 
tral normalization is required to compensate for these 
effects: the combined "NRFE + RASTA" system serves 
that purpose. The RASTA system (without estimation) can 
help compensate for the linear microphone effects, but it 
can help only to a limited degree with the nonlinearities 
introduced by other sounds. 

6. ROBUSTNESS OF REPRESENTATION 
TO MICROPHONE VARIATION 

To understand the benefit that we have obtained using the 
different processing techniques, we developed a metric for 
the robustness of the representation that is separate from 
speech-recognition performance. The DARPA CSR corpus 
(Doddington [15]) was used for this evaluation since it is 
contains stereo recordings. By using stereo recordings, we 
can compare the robustness in the representation that occurs 
when the microphone is changed. In this CSR corpus, the 
first channel of these stereo recordings is always a Sen- 
nheiser close-talking microphone. The second recording 
channel uses one of 15 different secondary microphones. 

Using this stereo database, we can compute the cepstral fea- 
ture vector on each microphone channel, and compare the 
two representations to determine the level of invariance 
provided by the signal-processing/representation. The met- 
ric that we used for determining the robustness of the repre- 
sentation is called relative-distortion and is computed in the 
following equation. 

Relative Distortion (Ci)  
( Ci (Micl) -- Ci (Mic2) ) 2 

(N " ( r  
Ci (Micl) Ci (Mic2) 

The relative distortion for cepstral coefficient C i is com- 
puted by comparing the cepstral value of the first micro- 
phone with the same cepstral value computed on the 
secondary microphone. This average squared difference is 
then normalized by the variance of this cepstral feature on 
the two microphones. This metric gives an indication of 
how much variance there is due to the microphone differ- 
ences relative to the overall variance of the feature due to 
phonetic variation. This metric is plotted as a function of the 
cepstral coefficient for different signal processing algo- 
rithms in figure 3. 

Figure 3 shows that the RASTA processing helps reduce the 
distortion in the lower order cepstral coefficients. When 
combined with SRI's noise-robust spectral estimation algo- 
rithms, the distortion decreases even further for the lower 
order cepstral coefficients. Neither of the algorithms help 
reduce the distortion for the higher cepstral coefficients. 
This metric indicates that even though the robust signal pro- 
cessing has reduced the recognition error rate due to micro- 
phone differences, there is still considerable variation in the 
cepstral representation when the microphone is changed. 

7. SUMMARY 

We have shown that high-pass filtering of the filter-bank log 
energies can be an effective means of reducing the effects of 
some microphone and channel variations. We have shown 
that such filtering can be used in conjunction with our previ- 
ous estimation techniques to deal with both noise and 
microphone effects. The high-pass filtering operation is a 
simple technique that is computationally efficient and has 
been incorporated into our real-time demonstration system. 
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