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ABSTRACT 

We report here on our experiments with POST (Part of Speech 
Tagger) to address problems of ambiguity and of understanding 
unknown words. Part of speech tagging, per se, is a well 
understood problem. Our paper reports experiments in three 
important areas: handling unknown words, limiting the size of the 
training set, and returning a set of the most likely tags for each 
word rather than a single tag. We describe the algorithms that we 
used and the specific results of our experiments on Wall Street 
Journal articles and on MUC terrorist messages. 

1. INTRODUCTION 1 

Natural language processing, and AI in general, have 
focused mainly on building rule-based systems with 
carefully handcrafted rules and domain knowledge. Our own 
natural language database query systems, JANUS 2, 
Pa r l ance  ruz, and Delphi 4, use these techniques quite 
successfully. However, as we move from the problem of 
understanding queries in fixed domains to processing open 
text for applications such as data extraction, we have found 
rule-based techniques too brittle, and the amount of work 
necessary to build them intractable, especially when 
attempting to use the same system on multiple domains. 

We report in this paper on one application of probabilistic 
models to language processing, the assignment of part of  
speech to words in open text. The effectiveness of such 
models is well known (Church 1988) and they are currently 
in use in parsers (e.g. de Marcken 1990). Our work is an 
incremental improvement on these models in two ways: (1) 
We have run experiments regarding the amount of training 
data needed in moving to a new domain; (2) we have added 
probabilistic models of  word features to handle unknown 
words effectively. We describe POST and its algorithms and 
then we describe our extensions, showing the results of  our 
experiments. 

1 The work reported here was supported by the Advanced Research 
Projects Agency and was monitored by the Rome Air Development 
Center under Contract No. F30602-87-D-0093. The views and 
conclusions contained in this document are those of the authors and 
should not be interpreted as necessarily representing the official 
policies, whether expressed or implied, of the Defense Advanced 
Research Projects Agency or the United States Government. 
2 Weischedel, et al. 1989. 
3 Parlance is a trademark of BBN Systems and Technologies. 
4 Stallard, 1989. 

2. POST: USING PROBABILITIES TO 
TAG PART OF SPEECH 

Predicting the part  of  speech of  a word is one 
straightforward way to use probabilities. Many words are 
several ways ambiguous, such as the following: 

a round table: adjective 
a round of cheese: noun 
to round out your interests: verb 
to work the year round: adverb 

Even in context, part of speech can be ambiguous, as in the 
famous example: "Time flies." where both words are two 
ways ambiguous ,  resul t ing  in two g rammat ica l  
interpretations as sentences. 

Models predicting part of speech can serve to cut down the 
search space a parser must consider in processing known 
words and make the selection among alternatives more 
accurate. Furthermore, they can be used as one input to 
more complex strategies for inferring lexical and semantic 
information about unknown words. 

2.1 The n-gram model 
If  we want to determine the most likely syntactic part of 

speech or tag for each word in a sentence, we can formulate a 
probabilisfic tagging model. Let us assume that we want to 
know the most likely tag sequence, T, given a particular 
word sequence, W. Using Bayes' rule we can write the a 
posteriori probability of tag sequence T given word sequence 
a s  

rcrl 
3:1~.~9)'= P('13P(Wrl3 

P(W) 

where P(T) is the a priori probability of tag sequence T, 
P(WIT) is the conditional probability of word sequence W 
occurring given that a sequence of tags T occurred, and P(W) 
is the unconditioned probability of  word sequence W. Then, 
in principle, we can consider all possible tag sequences, 
evaluate the a posteriori probability of each, and choose the 
one that is highest. Since W is the same for all 
hypothesized tag sequences, we can disregard P(W). 

We can rewrite the probability of  each sequence as a 
product of the conditional probabilities of each word or tag 
given all of the previous tags. 
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P(TIW) P(W) = I /  P(t0) P(q I ti_ 1 ,t i-2,.--) 
p(w i I t i..,w i-1..) 

Now, we can make the approximation that each tag 
depends only the immediately preceding tags (say the two 
preceding tags for a tri-tag model), and that the word depends 
only on the tag. 

P(TIW) P(W) = P(t0) lII p(t i I ti_ 1,ti_2) p(w i I t i) 

That is, once we know the tag that will be used, we gain no 
further information about the likely word from knowing the 
previous tags or words. This model is called a Markov 
model, and the assumption is frequently called the Markov 
independence assumption. 

If we have sufficient training data then we can estimate the 
tag n-gram sequence probabilities and the probability of each 
word given a tag (lexical probabilities). We use robust 
estimation techniques that take care of the cases of 
unobserved events (i.e. sequences of tags that have not 
occurred in the training data). However, in real-world 
problems, we also are likely to have words that were never 
observed at all in the training data. The model given above 
can still be used, simply by defining a generic new word 
called "unknown-word". The system can then guess at the 
tag of the unknown word primarily using the tag sequence 
probabilities. We return to the problem of unknown words 
in Section 3. 

Using a tagged corpus to train the model is called 
"supervised training", since a human has prepared the correct 
training data. We conducted supervised training to derive 
both a bi-tag and a tri-tag model based on a corpus from the 
University of Pennsylvania. The UPenn corpus, which was 
created as part of the TREEBANK project (Santorini 1990) 
consists of Wall Street Journal (WSJ) articles. Each word 
or punctuation mark has been tagged with one of 47 parts of 
speech 5, as shown in the following example: 

Terms/NNS were/VBD not/RB disclosed/VBN. / .6 

A bi-tag model predicts the relative likelihood of a 
particular tag given the preceding tag, e.g. how likely is the 
tag VBD on the second word in the above example, given 
that the previous word was tagged NNS. A tri-tag model 
predicts the relative likelihood of a particular tag given the 
two preceding tags, e.g. how likely is the tag RB on the 
third word in the above example, given that the two 
previous words were tagged NNS and VBD. While the bi-tag 
model is faster at processing time, the tri-tag model has a 
lower error rate. 

5 Of the 47 parts of speech, 36 are word tags and 11 punctuation 
tags. Of the word tags, 22 are tags for open class words and 14 for 
closed class words. 
6 NNS is plural noun; VBD is past tense verb; RB is adverbial; VBN 
is past participle verb. 

The algorithm for supervised training is straightforward. 
One counts for each possible pair of tags, the number of 
times that the pair was followed by each possible third tag, 
and then derived from those counts a probabilistic tri-tag 
model. One also estimates from the training data the 
conditional probability of each particular word given a 
known tag (e.g., how likely is the word "terms" if the tag is 
NNS); this is called the "word emit" probability. The 
probabilities were padded to avoid setting the probability for 
unseen M-tags or unseen word senses to zero. 

Given these probabilities, one can then find the most 
likely tag sequence for a given word sequence. Using the 
Viterbi algorithm, we selected the path whose overall 
probability was highest, and then took the tag predictions 
from that path. We replicated the result (Church 1988) that 
this process is able to predict the parts of speech with only a 
3-4% error rate when the possible parts of speech of each the 
words in the corpus are known. This is in fact about the 
rate of discrepancies among human taggers on the 
TREEBANK project (Marcus, Santorini & Magerman 
1990). 

2.2 Quantity of training data 
While supervised training is shown here to be very 

effective, it requires a correctly ta~ed corpus. We have done 
some experiments to quantify how much tagged data is 
really necessary. 

In these experiments, we demonstrated that the training set 
can, in fact, be much smaller than might have been 
expected. One rule of thumb suggests that the training set 
needs to be large enough to contain on average 10 instances 
of each type of tag sequence in order for their probabilities to 
be estimated with reasonable accuracy. This would imply 
that a M-tag model using 47 possible parts of speech would 
need a bit more than a million words of training. However, 
we found that much less training data was necessary. 

It can be shown that a good estimate of the probability of 
a new event is the sum of the probability of all the events 
that occurred just once. However, if the average number of 
tokens of each event that as been observed is 10, then the 
lower bound on the probability of new events is 1/10. Thus 
the likelihood of a new tri-gram is fairly low. In a M-gram 
model of part of speech, an event is a particular sequence of 
tags. While theoretically the set of possible events is all 
permutations of the tags, in practice only a relatively small 
number of tag sequences actually occur. We found only 
6,170 unique triples in our training set, out of a possible 
97,000. This would suggest that only 60,000 words would 
be sufficient for training. 

In our experiments, the error rate for a supervised tri-tag 
model increased only from 3.30% to 3.87% when the size 
of the training set was reduced from 1 million words to 
64,000 words. This is probably because most of the 
possible tri-tag sequences never actually appear. All that is 
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really necessary, recalling the rule of  thumb, is enough 
training to allow for 10 of each of the tag sequences that do 
OCCUr. 

This result is applicable to new tag sets, subdomains, or 
languages. By beginning with a measure of the number of 
events that actually occur in the data, we can more precisely 
determine the amount of data needed to train the probabilistic 
models. In applications such as tagging, where a significant 
number of the theoretically possible events do not occur in 
practice, we can use supervised training of probabilistic 
models without needing prohibitively large corpora. 

3. UNKNOWN WORDS 

Sources of open-ended text, such as a newswire, present 
natural language processing technology with a major 
challenge: what to do with words the system has never seen 
before. Current technology depends on handcrafted linguistic 
and domain knowledge. For instance, the system that 
performed most successfully in the evaluation of software to 
extract data from text at the 2nd Message Understanding 
Conference held at the Naval Ocean Systems Center, June, 
1989, would simply halt processing a sentence when a new 
word was encountered. 

Determining the part of  speech of  an unknown word can 
help the system to know how the word functions in the 
sentence, for instance, that it is a verb stating an action or 
state of affairs, that it is a common noun stating a class of 
persons, places, or things, that it is a proper noun naming a 
particular person, place, or thing, etc. If it can do that well, 
then more precise classification and understanding is 
feasible. 

Using the UPenn set of parts of speech, unknown words 
can be in any of the 22 open-class parts of speech. The tri- 
tag model can be used to estimate the most probable one. 
Random choice among the 22 open classes would be 
expected to show an error rate for new words of 95%. The 
best previously reported error rate was 75% (Kuhn & de 
Moil 1990). 

In our first tests using the tri-tag model we showed an 
error rate of only 51.6%. However, this model only took 
into account the context of the word, and no information 
about the word itself. In many languages, including English, 
the word endings give strong indicators of the part of speech. 
Furthermore, capitalization information, when available, can 
help to indicate whether a word is a proper noun. 

We developed a probabilistic model that takes into account 
features of  the word in determining the likelihood of the 
word given a part of speech. This was used instead of the 
"word emit" probabilities for known words that the system 
obtained from training. To develop the model, we first 
determined the features we thought would distinguish parts 

of speech. There are four independent 7 categories of features: 
inflectional endings, denvational endings, hyphenation, and 
capitalization. Our initial test had three inflectional endings 
(-ed, -s, -ing), and 32 denvational endings, (including -ion, - 
al, -ive, -ly). Capitalization has four values, in our system 
(+ initial + capitalized, - initial + capitalized, etc.) in order 
to take into account the first word of a sentence. We can 
incorporate these features of the word into the probability 
that this particular word will occur given a particular tag 
using 

p(wj I t i = p(unknown-word I ti) * 
p(Capital - feature I t i) * 
p(endings/hyph I t i ) 

We estimate the probability of each ending for each tag 
based on the training data. While these probabilities are not 
strictly independent, the approximation is good enough to 
make a marked difference in classification of unknown 
words. As the results in Figure 1 shows, the use of the 
orthographic endings of the words reduces the error rate on 
the unknown words by a factor of 3. 

We tested capitalization separately, since some data, such 
as that in the Third Message Understanding Conference is 
upper case only. Titles and bibliographies will cause 
similar distortions in a system trained on mixed case and 
using capitalization as a feature. Interestingly, the 
capitalization feature contributed very little to the reduction 
in error rates, whereas using the word features contributed a 
great deal. 
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No Only Endings and All 
Features Features Capitalization hyphenation 

Overall Error Rate 
Error rate for Known words 
Error rate for Unknown words 

4~3 

Figure 1: Decreasing error rate with use of word features 

7 These are not necessarily independent, though we are treating 
them as such for our tests. 

333 



In sum, adding a probability model of typical endings of 
words to the tri-tag model has yielded an accuracy of 82% for 
unknown words. Adding a model of capitalization to the 
other two models further increased the accuracy to 85%. The 
total effect of BBN's model has been a reduction of a factor 
of five in the error rate of the best previously reported 
performance. 

4. K-BEST TAG SETS 

An alternative mode of running POST is to return the set 
of most likely tags for each word, rather than a single tag for 
each. 

In our first test, the system returned the sequence of most 
likely tags for the sentence. This has the advantage of 
eliminating ambiguity; however, even with a rather low 
error rate of 3.7%, there are cases in which the system 
returns the wrong tag, which can be fatal for a parsing 
system trying to deal with sentences averaging more than 20 
words in length. 

We addressed this problem by adding the ability of the 
tagger to return for each word an ordered list of tags, marked 
by their probability using the Forward Backward algorithm. 
The Forward Backward algorithm is normally used in 
unsupervised training to estimate the model that finds the 
maximum likelihood of the parameters of that model. We 
use it in determining the k-best tags for each word by 
computing for each tag the probability of the tag occurring 
at that position and dividing by the probability of the word 
sequence given this model. 

The following example shows k-best tagging output, with 
the correct tag for each word marked in bold. Note that the 
probabilities are in natural log base e. Thus for each 
difference of 1, there is a factor of 2.718 in the probability. 

Bailey Controls, based in Wickliffe Ohio, makes 
computerized industrial controls systems. 

Bailey (NP. -1.17) (RB. -1.35) (FW. -2.32) (NN. -2.93) 
(NPS. -2.95) (JJS. -3.06) (JJ. -3.31) (LS.-3.41) (JJR. 
-3.70) (NNS.-3.73) (VBG.-3.91)... 

Controls (VBZ.-0.19) (NNS. -1.93) (NPS. -3.75) (NP. - 
4.97) 

based (VBN. -0.0001) 
in (IN. -.001) (RBV. -7.07) (NP. -9.002) 
Wickliffe (NP. -0.23) (NPS. -1.54) 
Ohio (NP. -0.0001) 
makes (VBZ.-0.0001) 
computerized (VBN. -0.23) (JJ. -1.56) 
industrial (JJ.-0.19) (NP. -1.73) 
controls (NNS. -0.18) (VBZ. -1.77) 
systems (NNS.-0.43) (NPS. -1.56) (NP. -1.95) 

Figure 2: K-best Tags and Probabilities 

In two of the words ("Controls" and "computerized") the 
first tag is not the correct one. However, in all instances the 
correct tag is included in the set. Note the first word, 
"Bailey", is unknown to the system, therefore, all of the 
open class tags are possible. 

In order to reduce the ambiguity further, we tested various 
ways to limit how many tags were returned based on their 
probabilities. Often one tag is very likely and the others, 
while possible, are given a low probability, as in the word 
"in" above. Therefore, we tried removing all tags whose 
probability is more than e 2 less likely than the most likely 
tag. So only tags within the threshold 2.0 of the most 
likely would be included (i.e. if the most likely tag had a log 
probability of -0.19, only tags with a log probability greater 
than -2.19 would be included). This reduced the ambiguity 
for known words from 1.93 tags per word to 1.23, and for 
unknown words, from 15.2 to 2.0. 

However, the negative side of using cut offs is that the 
correct tag may be excluded. Note that a cut off of 2.0 
would exclude the correct tag for the word "Controls" above. 
By changing the cut off to 4.0, we are sure to include all the 
correct tags in this example, but the ambiguity for known 
words raises from 1.23 to 1.24 and for unknown words from 
2.0 to 3.7, for an ambiguity rating of 1.57 overall. 

We are continuing experiments to determine the most 
effective way of limiting the number of tags returned, and 
hence decreasing ambiguity, while ensuring that the correct 
tag is likely to be in the set. 

5. MOVING TO A NEW D O M A I N  

In all of the tests discussed so far, we both trained and 
tested on sets of articles in the same domain, the Wall Street 
Journal texts used in the Penn Treebank Project. However, 
an important measure of the usefulness of the system is how 
well it performs in other domains. While we would not 
expect high performance in radically different kinds of text, 
such as transcriptions of conversations or technical manuals, 
we would hope for similar performance on newspaper 
articles from different sources and on other topics. 

We tested this hypothesis using data from the Third 
Message Understanding Conference (MUC-3). The goal of 
MUC-3 is to extract data from texts on terrorism in Latin 
American countries. The texts are mainly newspaper 
articles, although there are some transcriptions of interviews 
and speeches. The University of Pennsylvania TREEBANK 
project tagged four hundred MUC messages (approximately 
100,000 words), which we divided into 90% training and 
10% testing. 
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For our first test, we used the original probability tables 
trained on the Wall Street Journal articles. We then retrained 
the probabilities on the MUC messages and ran a second 
test, with an average improvement of  three percentage points 
in both bi- and tri- tags. The full results are shown below: 

BITAGS: TEST 1 TEST 2 
Overall error rate: 8.5 5.6 
Number of correct tags: 10340 10667 
Number of incorrect tags: 966 639 
Error rate for known words: 6.3 4.6 
Error rate for unknown words: 25 16 

TRITAGS: 
Overall error rate: 8.3 5.7 
Number of correct tags: 10358 10651 
Number of incorrect tags: 948 655 
Error rate for known words: 5.9 4.6 
Error rate for unknown words: 26 18 

Figure 3: Comparison of original and trained probabilities 

While the results  using the new tables are an 
improvement  in these first-best tests, we saw the best 
results using K-best mode, which obtained a .7% error rate. 
We ran several tests using our K-best  algorithm with 
various thresholds. As described in Section 4, the threshold 
limits how many tags are returned based on their 
probabilities. While this reduces the ambiguity compared to 
considering all possibilities, it also increases the error rate. 
Figure 4 shows this tradeoff from effectively no threshold, 

thresholds for K- Best 

on the right hand side of  the g~aph (shown in the figure as a 
threshold of 12), which has a .7% error rate and an 
ambiguity of 3, through a cut off of  2, which has a error rate 
of 2.9, but an ambiguity of nearly zero--i.e, one tag pre 
word. (Note the far left of the graph is the error rate for a 
cut off of 0, that is, only consideering the first of the k-best 
tags, which is approximately the same as the bi-tag error 
rate shown'in Figure 3.) 

6. USING D I C T I O N A R I E S  

In all of the results reported here, we are using word/part 
of speech tables derived from training, rather than on-line 
dictionaries to determine the possible tags for a given word. 
The advantage of the tables is that the training provides the 
probability of a word given a tag, whereas the dictionary 
makes no distinctions between common and uncommon 
uses of a word. The disadvantage of this is that uses of a 
word that did not occur in the ~aining set will be unknown 
to the system. For example, in the training portion of the 
WSJ corpus, the word "put" only occurred as verb. 
However, in our test set, it occurred as a noun in the 
compound "put option". Since for efficiency reasons, we 
only consider those tags known to be possible for a word, 
this will cause an error. 

We are currently integrating on-line dictionaries into the 
system, so that alternative word senses will be considered, 
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while still not opening the set of tags considered for a 
known word to all open class tags. This will not 
completely eliminate the problem, since words are often 
used in novel ways, as in this example from a public radio 
plea for funds: "You can Mastercard your pledge.". We will 
be rerunning the experiments reported here to evaluate the 
effect of using on-line dictionaries. 

7. F U T U R E  D I R E C T I O N S  

In the work reported here, we have evaluated POST in the 
laboratory, comparing its results against the work of people 
doing the same task. However, the real test of such a 
system is how well it functions as a component in a larger 
system. Can it make a parser work faster and more 
accurately? Can it help to extract certain kinds of phrases 
from unrestricted text? We are currently running these 
experiments by making POST a part of existing systems. It 
is being run as a preprocessor to Gfishman's Proteus system 
for the MUC-3 competition (Gnshman & Sterling 1989). 
Preliminary results showed it sped up Proteus by a factor of 
two in one-best mode and by a factor of 33% with a 
threshold of T=2. It is also being integrated into a new 
message processing system at BBN. The results of these 
experiments will provide us with new directions and ideas 
both for improving POST and for other ways to integrate 
probabilistic models into natural language processing 
systems. 
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