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Abstract 

With the emergence of high-performance speaker-independent sys- 
tems, a great barrier to man-machine interface has been overcome. 
This work describes our next step to improve the usability of speech 
recognizers---the use of vocabulary-independent (VI) models. If 
successful, VI models are trained once and for all. They will 
completely eliminate task-specific training, and will enable rapid 
configuration of speech recognizers for new vocabularies. Our initial 
results using generalized triphones as VIi models show that with more 
training data and more detailed modeling, the error rate of VI models 
can be reduced substantially. For example, the error rates for VI 
models with 5,000, 10,000 and 15,000 training sentences are 23.9%, 
15.2% and 13.3% respectively. Moreover, if task-specific training 
data were available, we can interpolate them with VI models. Our 
prelimenary results show that this interpolation can lead to an 18% 
error rate reduction over task-specific models. 

1. Introduction 
One of the most exciting and promising areas of speech 

research is large-vocabulary continuous speech recognition. 
A myriad of applications await a good speech recognizer. 
However, while many reasonable recognizers exist today, 
they are impractical and inflexible due to the tedious process 
of configuring a recognizer. This tedium is typically em- 
bodied in one of the following forms: 

• Speaker-specific training: each speaker must 
speak for about an hour to train the system. 

• Vocabulary-specific training: with each new 
vocabulary comes the dilemma of tedious retrain- 
ing for optimal performance, or tolerating sub- 
stantially higher error rate. 

• Tra ining time: with each new speaker or 
vocabulary, many hours are needed to process the 
speech and train the system. 

Recent work at Carnegie Mellon [1, 2] and several other 
laboratories has shown that highly accurate speaker- 
independent speech recognition is possible, thus alleviating 
the need for speaker-dependent training. However, these 
speaker-independent systems still need vocabulary-dependent 
training on a large population of speakers for each 
vocabulary, which requires a very large amount of time for 
data collection (weeks to months), dictionary generation (days 
to weeks), and processing (hours to days). 

As speech recognition flourishes and new applications 
emerge, the demand for vocabulary-specific training will be- 
come the bottleneck in building speech recognizers. In this 

paper, we will discuss our initial work to alleviate the tedious 
vocabulary-specific training process. 

Our work thus far has involved collecting and processing a 
large general English database, and evaluating the 
generalized triphone [3, 2] as a vocabulary independent unit. 
We collected and trained generalized triphone models on up 
to 15,000 training sentences, and compared our results to that 
from vocabulary-dependent models. We found that as we 
increased VI training data, VI generalized triphones improved 
from 109% more errors than vocabulary-dependent training to 
only 16% more errors. In another vocabulary-adaptation ex- 
periment, we found that interpolating vocabulary-dependent 
models with vocabulary-independent models reduces the error 
rate by 18%. 

Based on the enouraging results of this preliminary study, 
we conjecture that generalized triphones are a reasonable 
starting point in our search for a more vocabulary- 
independent subword unit. In the future, we hope to further 
increase our training database. With increased training data 
will come the ability to train more detailed subword models. 
We expect that this combination will enable us to further 
improve our results. 

In this paper, we will first discuss the issue of VI models. 
Next, we will briefly describe generalized triphones. Then, 
we will describe our databases and experimental results. 
Finally, we will close with some concluding remarks about 
this and future work. 

2. Vocabulary-Independent Subword Modeling 
Subword modeling has become an increasingly more im- 

portant issue because as the vocabulary capacity of recog- 
nizers increases, it becomes difficult, if not impossible, to 
train whole-word models. Many subword modeling tech- 
niques have been proposed (see [4] for a survey on these 
techniques). However, most subword models were evaluated 
using the same vocabulary for training and testing. An impor- 
tant question that has often been ignored is: how well will 
these subword models perform under vocabulary-independent 
conditions? In other words, if  we train on one vocabulary and 
test on another, will the performance degrade considerably? 
If  so, it will then be necessary to retrain for each new 
vocabulary, which is time-consuming, tedious, and costly. 

Why should performance degrade across vocabularies? 
There are two main causes: the lack of coverage and the 
inconsistency of  the models. The coverage problem is caused 
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by the fact that the phonetic events in the testing vocabulary 
are not covered by the training vocabulary. This lack of 
coverage makes it impossible to train the models needed for 
the testing vocabulary. Instead, we must improvise with a 
more general model. For example, if the p h o n e / t /  in the 
triphone context o f / s  t r /  occurs in testing but not in 
training, it will be necessary to use a more general model, 
such a s / t /  in the context o f / s  t / ,  o r / t  r / ,  or even a 
context-independent/t/ .  

The problem of improvising with general models is that 
they may become inconsistent. That is, the same model may 
generate many different realizations. For example, if context- 
independent phone models are used, the same model f o r / t /  
must capture various events, such as flapping, unreleased 
stop, and realizations in / t s / a n d / t  r / .  Then, i f / t  s /  
is the only context in w h i c h / t / o c c u r s  in the training, while 
/ t  r / i s  the only context in the testing, the model used will 
be highly inappropriate. 

To ensure that the models are consistent and that new 
contexts are covered, it is necessary to account for all causes 
of phonetic variability. However, the enumeration of all the 
causes* will lead to an astronomical number of models. This 
makes the models untrainable, which renders them powerless. 

In view of the above analysis, we believe that a successful 
approach to vecabulary-independent subword modeling must 
use models that are consistent, trainable, and generalizable. 
Consistency means the variabilities within a model should be 
minimized; trainability means there should be sufficient train- 
ing data for each model; and generalizability means reason- 
able models for the testing vocabulary can be used in spite of 
the lack of precise coverage in the training. 

3. Generalized Triphones 
In this section, we describe the basis of our current work 

generalized triphone models, which are based on triphone 
models [5]. Triphones account for the left and right phonetic 
contexts by creating a different model for each possible con- 
text pair. Since the left and right phonetic contexts are the 
most important factors that affect the realization of a phone, 
triphone models are a powerful technique and have led to 
good results. However, there are a very large number of 
triphones, which can only be sparsely trained. Moreover, they 
do not take into account the similarity of certain phones in 
their effect on other phones (such as / b /  and / p /  on 
vowels). 

In view of this, we introduce generalized triphone models 
[3]. Generalized triphones are created from triphone models 

using a clustering procedure that combines triphone HMMs 
according to a maximum likelihood criterion. In other words, 
we want to cluster triphones into a set of generalized 

*A paxtial list might include: ph(metic contexts, articulator position, stress, 
semantics, prosody, intonation, dialect, accent, loudness, speaking-rate, speaker 
anat(mly, ete. 

triphones that will have as high as possible a probability of 
generating the training data. This is consistent with the 
maximum-likelihood criterion used in the forward-backward 
algorithm. 

Context generalization provides the ideal means for finding 
the equilibrium between trainability and consistency. Given a 
fixed amount of training data, it is possible to find the largest 
number of trainable models that are consistent. Moreover, it 
is easy to incorporate other causes of variability such as 
stress, syllable position, and word position. 

One flaw with bottom-up clustering approaches to context 
generalization is that there is no easy way of generalizing to 
contexts that have not been observed before. Indeed, in a 
pilot experiment, we found that generalized triphones trained 
on the resource management task performed poorly on a new 
voice calculator vocabulary. We believe this was mainly due 
to the fact that 36.3% of the triphones in the testing 
vocabulary were not covered, and context-independent 
phones had to be used. 

In order to overcome these problems, we need a much 
larger database that has a better coverage of the triphones that 
are more vocabulary-independent. To that end, we are cur- 
rently collecting a general English database. Our first step is 
to use this database to train triphone and generalized triphone 
models, and then evaluate them on new vocabularies. As this 
database grows, more triphone-based models can be ade- 
quately trained. Eventually, we will be able to model other 
acoustic-phonetic detail such as stress, syllable position, 
between-word phenomena, and units larger than triphones. 

4. Databases  

Training : The General English Database 

In order to train VI models, we need a very large training 
database that covers all English phonetic variations. For- 
tunately, because our focus is speaker-independent recog- 
nition, this database can be collected incrementally without 
creating an unreasonable burden on any speaker. Initially, 
this database is a combination of four sub-databases, which 
we will describe below. Two of the databases were recorded 
at Texas Instruments in a soundproof booth, and the other two 
were collected at Carnegie Mellon in an office environment. 
The same microphone and processing were used for all four 
sub-databases. The ratio of male to female speakers is about 
two to one in all four sub-databases. 

The first database is the 991-word resource management 
database [6], which was designed for inquiry of naval 
resources. For this study, we used a total of 4690 sentences 
from the 80 training and the 40 development test speakers. 

The TIMIT database [7] consists of 630 speakers, each 
saying 10 sentences. We used a subset of this database, 
including a total of 420 speakers and 3300 sentences. There 
are total of 4900 different words. 

The Harvard database consists of 108 speakers each say- 
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ing 20 sentences for a total of 2160 sentences. There are 1900 
different words. 

The General English database consists of 250 speakers 
each saying 20 sentences for a total 5000 sentences. It covers 
about 10000 different words. 

Testing: The Voice Calculator Database 

Art independent task and vocabulary was created to test the 
VI models. This task deals with the operation of a calculator 
by voice. There are 122 words, including the alphabet and 
numbers, which are highly confusable. We used 1000 sen- 
tences from 100 speakers to train vocabulary-dependent 
models and 90 sentences from 10 speakers to test various 
systems under a word-pair grammar with perplexity 53. 

5. Experiments  and R e s u l t s  

We used a version of SPHINX for the experiments on our VI 
models. Since SPHINX is described elsewhere in these 
proceedings [8], we will not be repetitive here. We note, 
however, that between-word triphone models [9] and correc- 
tive training [10] were not used in this study. More detailed 
descriptions of SPHINX can be found in [ 1, 2]. 

We used 90 sentences from 10 speakers from the voice 
calculator task for evaluation. The following training sets 
were  used:  

VI-5000 Approximately 5000 sentences from resource 
management. The triphone coverage on the voice 
calculator task is 63.7%, and word coverage is 
44.3%. 

HARV-TIMIT 
Approximately 5000 sentences from Harvard and 
TIMIT database. Triphone coverage is 91.9% and 
word coverage is 53.3% 

GENENG Approximately 5000 sentences from general 
English database. Triphone coverage is 96.9% and 
word coverage is 65.6% 

VI-10000 Approximately 10,000 sentences from resource 
management, TIM1T, and Harvard. Triphone 
coverage is 95.3%, and word coverage is 63.9%. 

VI-15000 Approximately 15,000 sentences from resource 
management, TIM1T, Harvard, and general 
English. Triphone coverage is 99.2%, and word 
coverage is 70.5%. 

VD-1000 Approximately 1000 sentences from voice cal- 
culator training. Triphone coverage is 100%, and 
word coverage is 100%. 

Our first experiment used 48 phonetic models, trained from 
each of the above four training sets, and tested them on the 
voice calculator task. Table 1 shows the accuracy of phone 
models. Although phones are well-covered in each of the 
three VI databases, the VD results are still much better than 
the VI results. This is due to the fact that the voice calculator 
has a small vocabulary, and the VD phone models were able 
to model the few contexts in this vocabulary well. 

Training 
Set 

VI-5000 

HARV -TIM1T 

GENENG 

VI-10000 

VI-15000 

VD-1000 

Table 1: Recognition 

Recognition 
Accuracy 

31.1% 

25.4% 

22.9% 

22.8% 

21.5% 

16.4% 

results using phonetic 
(VI) and models, with vocabulary-independent 

vocabulary-dependent (VD) training. 

Next, we trained generalized triphone models on the four 
training databases. For each VI training set, we chose an 
appropriate number of generalized triphones to train from the 
training corpus. Then, for each phone in the voice calculator 
task, if the triphone context was covered, we mapped it to a 
generalized triphone. Otherwise, we used the corresponding 
context-independent phone. For vocabulary-dependent train- 
ing, we felt that sufficient training was available for all 
triphones, so no generalization was performed, and we used 
VD triphone models. In all four cases, the trained model 
parameters were interpolated with context-independent phone 
models to avoid insufficient training. The results of these 
models are shown in Table 2. Also shown in Table 2 are the 
triphone and word coverage statistics using the above four 
training databases. Note that as training data is increased, 
triphone coverage improves more rapidly than word coverage. 
With 15,000 training sentences, almost all triphones are 
covered and the result is close to that from VD training with 
1000 training sentences. Moreover, the result of GENENG 
which only conatins 5000 sentences is almost the same as that 
of VI-10000 which contains 10000 sentences, because the 
triphone coverage of GENENG is better. Therefore, to cover 
as many as triphone contexts is crucial for Vocabulary- 
Independent training. 

Training Word Trlphone Recognition 
Set Coverage Coverage Accuracy 

VI-5000 44.3% 63.7% 23.9% 

HARV-TIMIT 53.3% 91.9% 16.3% 

GENENG 65.6% 96.6% 15.1% 

VI-10000 63.9% 95.3% 15.2% 

VI-15000 70.5% 99.2% 13.3% 

VD-1000 l 100% 100% 11.4% 

Table2: Recognition results using generalized 
triphones with vocabulary-independent (VI) and 
vocabulary-dependent (VD) training. 

The final experiment involves the combination of the VI 
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and the VD models. Assuming that we have a set of VI 
models trained from a large training database, and a 
vocabulary-dependent training set, we use the following algo- 
rithm to utilize both training sets: 

1. Initialization - Use the VI models to initialize 
VD training. As before, for each phone in the 
voice calculator task, if the triphone is covered, 
then it is used to initialize that triphone. Other- 
wise, the corresponding context-independent 
phone is used. 

2. Training - Run the forward-backward algo- 
rithm on the VD sentences to train a set of VD 
models. 

3. Interpolation - Use deleted interpolation [11, 1] 
to combine the appropriate task-specific VD 
models with the robust task-independent VI 
models. 

Table 3 shows results using the above interpolation algo- 
rithm. We found that the combination of the VI models from 
15,000 sentences and the VD models from 1000 sentences can 
reduce the error rate by 18% over VD training alone. This 
algorithm can be used to improve any task-dependent recog- 
nizer given a set of VI models. Also, these results show that 
vocabulary-adaptation is promising. 

Training Set Recogni t ion  Error 
Accuracy Reduction 

VD-1000 11.4% . . . . .  

VI-5000 & VD-1000 10.3% 9.7% 

VI-10000 & VD-1000 9.5% 16.7% 

VI-15000 & VD-1000 9.3% 18.4% 

Table 3: Recognition results of vocabulary- 
dependent models interpolated with vocabulary- 
independent models. 

We have begun to experiment without grammar; however, 
at the time of this writing, the results with VI models are not 
as good relative to the VD models. 

6. Conclusion and Future Work 

This paper addressed the issue of vocabulary-independent 
subword modeling. Vocabulary independence is important 
because the overhead of vocabulary-dependent training is 
very high. Yet, vocabulary-independent subword models 
must be consistent, trainable, and generalizable. We believe 
this requires a large training database and a set of flexible 
subword units. To this end, we have collected a large multi- 
speaker database, from which we trained generalized triphone 
models. We found that with sufficient training, over 99% 
triphone coverage of the testing vocabulary can be attained. 
We report a vocabulary-dependent word accuracy of 88.6%, 
while the best vocabulary-independent models led to 86.7%. 
In another experiment, we found that it is possible to reduce 
the vocabulary-dependent error rate by 18% (to 90.7%) by 

interpolating the vocabulary-dependent models with the 
vocabulary-independent ones. 

These results are very encouraging. In the future, we hope 
to further enlarge our multi-speaker database. As this 
database grows, we hope to model other acoustic-phonetic 
detail such as stress, syllable position, between-word 
phenomena, and units larger than triphones. To reduce the 
large number of resultant models, we will first use phonetic 
knowledge to identify the relevant ones, and then apply the 
clustering technique used in generalized triphones to reduce 
these detailed phonetic units into a set of generalized 
allophones. We will also experiment with top-down cluster- 
ing of allophones. While the top-down approach may lead to 
less "optimal" clusters, it has more potential for generalization 
in spite of poor coverage. 

The choice of speaker-independence gives us the luxury of 
plentiful training. We believe that the combination of 
knowledge and subword clustering will lead to subword 
models that are consistent, trainable, and generalizable. We 
hope that plentiful training, careful selection of contexts, and 
automatic clustering can compensate for the lack of 
vocabulary-specific training. 
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