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1. INTRODUCTION 

1.1. Why study natural language processing? 
The ability to automatically analyze and understand natural language opens up a wide variety of applications. 

One of the first was machine translation; after many years of a relatively low level of effort, this area has seen a 
strong resurgence in the 1980's. Another application area is information retrieval; since much of the world's store 
of information is in written texts, systems which could understand these texts and extract information on request 
would have great value. The general area which has seen the greatest activity is man-machine interfaces, and in 
particular "question-answering systems" (natural language interfaces for data base retrieval). Current systems are 
still quite primitive, but such interfaces should make computer systems much more accessible to computer-naive 
users in the future. 

In addition, work on the processing of natural language has provided new insights into language itself. It has 
encouraged the use of explicit procedural models and a wholistic view of the language faculty, including in particu- 
lar the interaction of language and knowledge. 

When used in concert with speech recognition, natural language processing has two roles to play. First, it can 
provide a rich set of expectations to aid the recognizer in identifying words. Second, for most functions (except die- 
tation) we want a natural language system in order to do something in response to our utterance. 

1.2. Our objectives 
Our objectives in this very brief introduction are twofold. First, we want to describe how a combination of 

relatively simple mechanisms can provide us with a rudimentary natural language understanding ability. This 
should give you a good idea of how some of the systems now seeing the commercial light of day operate. Second, 
we want to point out in what respects these mechanisms only "scratch the surface" of our natural language abilities: 
how much more research needs to be done to develop a truly "natural" language facility. 

1.3. An Outline 

Our brief tour of natural language processing will be organized in three parts: syntax analysis (determining 
the structure of a sentence and the relationships between its words); semantic analysis (translating a sentence into a 
formal or readily interpretable language), and discourse analysis (identifying the relationships between sentences 
and the information implicit in a text). 

This tutorial is organized roughly along the lines of my book, Computational Linguistics: An Introduction 
(Cambridge University Press, 1986). I have necessarily hit only a few of the highlights, and have been sometimes 
forced to oversimplify some issues. The tutorial is split into short sections corresponding, for the most part, to indi- 
vidual foils of the presentation. 

2. SYNTAX ANALYSIS 

The first step in trying to figure out what a sentence means is trying to analyze the structure of the sentence: 
what the subject and object of the verb are, what words are modifying other words. 

2.1. Phrase Structure 
We want to divide the sentence up into phrases, and the phrases up into smaller consituents, until we reach 

individual words; you may have learned to "diagram" a sentence in this way. We can represent this structure by a 
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labeled bracketing of the sentence: 

[SUBJECT [NP [DET The] [~JEcnvE young] [NOUN cat]]] [VERB drinks] [oBJECT [NP [NOUN milk]]] 
or equivalently, by a tree diagram: 

SENTENCE 

SUBJECT VERB OBJECT 

I I I 

NP drinks NP 

/ , \  
DET ADJECHVE NOUN NOUN 

I I I I 

The young cat milk 

(Some of the terms will be explained below.) 

2.1.1. Formal  grammar 

We want to characterize the language by a set of rules, independent of the procedure we will use for analyz- 
ing the sentence. Such a set of rules is called a formal grammar. A formal grammar determines a set of grammati- 
cal sentences, and assigns a structure to these sentences. Our challenge is to develop a formal grammar which 
matches the intuitions of grammaticality of speakers of the language, and which assigns structures which are useful 
in determining the meaning of the sentence. 

2.1.2. Phrase structure rules 

Most computationaUy oriented grammars are based on, or are extensions of, context-free phrase structure 
rules. Each such rule describes one type of sentence constituent, specifying how it is composed from words or other 
sentence constituents. For example, 

sentence ~ subject verb object 

says that a sentence is composed of a subject followed by a verb followed by an object. Similarly, 

subject ~ *noun I *adjective *noun 

says that a subject is composed either of a noun or of an adjective followed by a noun. Alternatives are separated 
by "1". Symbols designating classes of words are prefixed by "*" 

2.1.3. A Simple Grammar 

sentence ~ subject *verb object 
subject ~ np 
np ~ [*det] [*adjective] *noun [prep-phrase] 
prep-phrase ~ *preposition np 
object ~ np I null 

The brackets in these rules indicate optional elements (that an article and adjective are optional before a noun, for 
example). The symbol "np" stands for "noun phrase", and "det" for determiner (an article, such as "a" or "the", or a 
quantifier, such as "some" or "every"). This simple grammar can generate a wide variety of sentences, such as 

Cats eat fish. 
The young cat under the car drinks milk. 
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2.1.4. A Sample Parse 
Given this grammar, the sentence "The young cat under the car drinks milk." would be assigned the structure: 

SENTENCE 

SUBIECr VERB NP 

I I I 

NP 

DET ADJECTIVE NOUN 

I I I 

The  young eat 

drinks NOUN 

PREP-PHRASE milk 

/ \ 
PREP 

, / \ 

u n d o  DET NOUN 

I I 

the car 

2.2. Parsing 

Parsing means analyzing a sentence with respect to a grammar: determining if the sentence is grammatical, 
and what the structure of the sentence is. 

2.2.1. Top-down vs. Bottom-up 

Parsers are usually classified as top-down or bottom-up. These terms refer to the direction in which the parse 
tree is built. 

A top-down parser starts with the sentence node. It thinks as follows: I 'm  trying to decide if these words are 
a sentence. A sentence is defined (in the grammar) as a subject, a verb, and an object. Let me first look for a sub- 
ject. A subject is a noun-phrase, so let me look for a noun phrase. A noun-phrase may begin with a determiner -- is 
there a determiner here as the first word? Yes, let me look next for an adjective and then a noun; if I find all three, 
I 've  succeeded in finding a noun-phrase. 

A bottom-up parser starts with the words, and builds a tree upwards. It thinks as follows: Here's an article, 
followed by an adjective, followed by a noun. Are there any constituents made up of these three word classes. Yes 
-- it 's a noun-phrase. This noun-phrase could be a subject; it could also be an object. Etc. 

2.2.2. Bottom-up Algorithm 

The basic strategy for bottom-up parsing is quite simple. Starting with the sentence words, we look for 
sequences of words or constituents which we can link together to form a larger constituent. We repeat this process 
until we cannot build any more constituents. We then look for any constituents named "sentence" which cover all 
the words of the sentence. These constituents are the parses of the sentence. 

2.2.3. An example of Bottom-up Analysis 
To show how this works, let us use an extremely simple grammar: 
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sentence 
np 

then, with the sentence 

Cats like soft beds. 
we would build the constituents 

np *verb np 
*noun I *adjective *noun 

SENTENCE (9) 

NP (6) VERB (2) NP (7) NP (S) 

i I / \ / 
NOUN (1) like ADJ. (3) NOUN (4) VERB (5) 

I I I j 

Cats soft beds 

in the order given in parentheses after the node names. In this example there are two nodes which are created but 
not used in any larger constituent: VERB (5), corresponding to the possible usage of "beds" as a verb (as in, "He 
beds down for the night."), and NP (8), corresponding to the analysis of the word "beds" as a complete noun phrase 
(without the modifier "soft"). For a larger grammar, there would be many more such "dead ends". 

2.3. Elaborating the grammar 
The grammar given above (section 2.1.3) is so restrictive that it avoids a number of basic issues. Therefore, 

before we proceed further we will indicate how the grammar can be extended a little bit. 

2.3.1. Progressive Tense 
The progressive tense uses a form of "be" plus the present participle of the verb: "The cat is sleeping.", 

"Mary is eating corn.". There are several ways of extending the grammar to handle such forms. One possibility is 
to consider "is" to be the main verb, and the present participle plus its object to be (together) the object of the sen- 
tence, so that "The cat is eating fish." would be analyzed as: 
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SENTENCE 

SUBJECT VERB OBJECT 

i i / \ 

NP is VING OBJECT 

/ \ L i 

DET NOUN eating NP 

I I I 

The eat NOUN 

I 

fish 

We can include such structures in our grammar by adding the rule 

object ~ *ring object 

where "*ving" is our name for present participles (verbs ending in "ing"). 

2.3.2. Passive 

In comparing a passive sentence 

The cake was baked by Sam. 

with the corresponding active sentence 

Sam baked the cake. 

we see that three things have happened: the object of the active sentence has moved into subject position, the sub- 
ject has moved into a "by" phrase, and the verb has changed to a form of "be" + the past participle. The net effect is 
that we still have a noun phrase in the subject, but we now have a "by" phrase where the object used to be. We can 
therefore analyze passives by treating "be" as the main verb (as we did for progressives) and adding the production 

object ~ *ven "by" np 

to our small grammar (where "*yen" is our name for past participles, which usually end in "en" or "ed"). 

2.3.3. Relative Clauses 

Consider the following relative clauses: 

The man whom I met comes from Philadelphia. 
The man who opened the door comes from Detroit. 
The man whom I sold the book to comes from Miami. 

Can we give a unified account of these different structures? In each case the phrase following "who" or "whom" is 
itself a full sentence from which a single noun phrase has been omitted. We can make this explicit by putting back 
the omitted words, enclosed in brackets: 

The man whom I met [the man] comes from Philadelphia. 
The man who [the man] opened the door comes from Detroit. 
The man whom I sold the book to [the man] comes from Miami. 

In terms of our grammar, we could modify the noun-phrase rule as follows: 
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np ~ [*det] [*adjective] *noun [noun-modifier] 
noun-modifier ---> prep-phrase I "who" sentence I "whom" sentence 

Note the recursive structure: the entire sentence may contain a smaller sentence structure within it. To handle the 
omission within the relative clause, we must allow exactly one np within the relative clause to take the value null. 
This requirement is not readily stated within our phrase-structure rules. 

2,4. Syntactic Constraints 

The rules given above can be used to generate quite a variety of sentences; unfortunately, they can also gen- 
erate quite a variety of ungrammatical sentences, such as 

The cats eats fish. 
The cat sleeps fish. 
The cat has sleeping. 
The cat which cat eats fish is sleeping. 

These sentences violate particular syntactic constraints; we shall consider some of these constraints in this section. 

2.4.1. Some Constraints 

Here are a few of the constraints not captured by our rules: 

number agreement. The subject and verb must agree in number ("Cats sleep." but not "Cats 
sleeps."). Also, the determiner and noun must agree in number ("A cat ..." but not "A cats ..."). 

count noun. A singular noun representing a countable entity must be preceded by a determiner 
("The cat is eating." but not "Cat is eating."). 

subcategorization. Only certain types of objects may appear with certain verbs ("The cat 
sleeps." but not "The cat sleeps fish."). 

omission. Exactly one np should be null within a relative clause. 

2.4.2. Why enforce the constraints? 

One's first reaction, when seeing all these constraints, is "Why bother to enforce them?". After all, we expect 
our input to be reasonably well-formed sentences, not gibberish like "My cat sleeps fish.", so it seems safe to assume 
that these constraints will be satisfied. 

However, ff we try parsing some sentences with a simple grammar which doesn't check these constraints, we 
will discover that we get quite a few parses, even for rather innocuous sentences. For example, 

The bird can fly. 

will get (in addition to the correct parse) two other parses: one parse analogous to "The workmen can tomatoes.", 
the other to "The trash can flies [through the air]". Both of these parses violate number agreement (the first violates 
the count noun constraint as well), so a grammar which checked these constraints would give us only the correct 
parse. 

In addition, for speech recognition we would like to have as many constraints as possible in order to narrow 
the range of possible words we should expect. 

2.4.3. How to enforce the constraints 

Most of the constraints we have mentioned are not easily captured by extending the phrase structure rules. To 
add subject-verb number agreement to our simple grammar, for example, we would have to double the sentence, 
subject, and np rules: 
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sentence 

singular-subject 
plural-subject 
singular-np 
plural-np 

singular-subject *singular-verb object I 
plural-subject *plural-verb object 
singular-np 

---> plural-np 
---> [*det] [*adjective] *singular-noun [*prep-phrase] 

[*det] [*adjective] *plural-noun [*prep-phrase] 

Some systems get around this problem by associating features (such as syntactic number) with the nodes of the 
parse tree, and extending the rule formalism to assign and test these features. Other systems allow the grammar 
writer to write procedures which enforce the constraints by checking the properties of the words. Such systems are 
called augmented context-free grammar systems. ATNs (augmented transition networks) are a form of augmented 
context-free grammar in which the phrase structure component is represented by networks rather than by rules as 
shown above. 

2.4.4. Expressing constraints as procedures 

An augmented context-free grammar consists of a set of context-free phrase structure rules, such as those we 
gave above, plus a set of procedures which enforce grammatical constraints. These procedures are associated with 
particular definitions in the grammar; for example, the procedure for subject-verb number agreement would be 
associated with the rule for sentence. When this rule is used to build a new node of the parse tree, the agreement 
procedure is invoked. It checks the syntactic number features of the verb and the head (main noun) of the subject; 
if they don't match, the procedure fails and the node is discarded. 

2.4.5. A grammatical restriction 

Different systems use different languages for expressing these restrictions. Most ATNs use LISP, and provide 
special predicates for testing and recording features. The systems at NYU (the Linguistic String Parser and PRO- 
TEUS Parser) use a language called Restriction Language designed for stating these restrictions. For example, in 
Restriction Language a simple number agreement restriction might be written 

WAGREE = IN SENTENCE: 
BOTH IF THE VERB IS PLURAL THEN THE CORE OF THE SUBJECT IS PLURAL 
AND IF THE VERB IS SINGULAR THEN THE CORE OF THE SUBJECT IS SINGULAR. 

(the "CORE" is the main noun of a noun phrase). 

2.4.6. Expressing constraints using features 

As we noted above, an alternative approach is to associate features with the nodes of the parse tree and extend 
the rule formalism to assign and test these features. For example, we can introduce the feature number with values 
singular and plural, and associate it with nouns, verbs, noun phrases, and subject nodes: 

sentence --> subject<number> *verb<number> object 
subject<number> ~ np<number> 
np<number> ---> [*det] [*adjective] *noun<number> [*prep-phrase] 

If the feature marker <number> appears at two places in a single production, the values of the feature at the two 
places must be equal. Thus the number feature of the np must be the same as that of the noun, the number of the 
subject the same as that of the np it dominates, and the number of the subject and verb in a sentence must be equal. 

2.5. Regularization 

2.5.1. Syntactic variety 

A basic function of syntactic analysis is to establish the relationships among the constituents in a sentence. In 
the sentence 

Sam baked a cake. 

the subject is the thing doing the baking and the object is the thing being baked. If we look at closely related syntac- 
tic forms, however, we see that this relation no longer holds. For example, in the passive 
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A cake was baked by Sam. 

the subject is now the thing that was baked, while the thing doing the baking has moved to a "by" phrase. 
progressive form, 

Sam is baking a cake. 

"is" has now become the verb constituent, and the "main verb" is within the object constituent. 

In the 

2 .5 .2 .  R e d u c i n g  t h e  v a r i e t y  

This syntactic variety obscures the common functional relationships among the act of baking, Sam (the 
baker), and the cake (the think baked) in these three sentences. We can clarify these relationships by reducing all of 
these forms to a standard form, such as the simple active sentence. This process of syntactic regularization is a part 
of most natural language systems. It simpfifies the next stage of processing -- semantic analysis -- which relies 
heavily on the functional relationships. 

In some systems, regularization is done by transformations which act on the parse tree, lransforming, for 
example, the passive sentence structure: 

SENTENCE 

/ 
DET 

I 

A 

into an active sentence structure: 

SUBJECT VERB 

I 

NP 

/ 
w a s  VEN 

\ 
NOUN baked 

cake 

SENTENCE 

OBJECT 

, \  
by NP 

I 

NOUN 

I 

Sam 

SUBJECT VERB OBJECT 

I I I 

NP baked NP 

/ \ 
NOUN DET NOUN 

I I I 

Sam a cake 

In other systems (in most ATNs, for example), the regularized structure is built up incrementally during parsing. 
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3. SEMANTIC ANALYSIS 

So far we have focussed on determining the structure of natural language sentences. This,however, is rarely 
our final objective. Rather, we are concerned with understanding what the sentences mean, or performing some 
action in response to a received sentence. We will begin by looking at the question of meaning at a slightly abstract 
level, and then in a short while will connect this up with an application using natural language input. 

3.1. Semantic Representation 
What does it mean to understand a sentence? One answer, for declarative sentences at least, is to say that we 

understand a sentence if We can determine, under any given set of circumstances, whether it is true or not. The 
usual approach to this is to select a formal language for which the rules of evaluation are simple, and translate the 
natural language sentences into this language. We shall use predicate logic with restricted quantifiers for this task, 
and shall call the representation of a sentence in predicate logic its logicalforra. 

3.1.1. Predicates 
Our world will be described in terms'of a set of objects and a set of predicates. The predicates are functions 

whose arguments are objects and whose value is true or false. For example, we could have a "microworld" inha- 
bited by Tom, Dick, Harry, and Jane. We can have predicates like "male" (which takes one argument) and "father- 
of" (which takes two arguments). The current state of the world can be described by listing, for each predicate, the 
values of the arguments for which it is true. For example, 

male(Torn) 
male(Dick) 
male(Harry) 
father-of(Tom ,Dick) 
father-of(Tom jane) 

We would then analyze a sentence such as 

Tom is the father of Jane. 

by translating it into a predicate with arguments 

father-of(Tom,Jane) 

and then seeing if the value of the predicate for those arguments is true. 

3.1.2. Quantifiers 
With predicates alone, we are very restricted in the range of sentences we are able to translate. In order to 

handle sentences such as 

Everyone is mortal. 

we need to introduce quantifiers into our formalism. We will introduce two quantifiers: existential quantifiers and 
universal quantifiers. A formula with a universal quantifier, such as 

x) P(x) 
says that P is true for every object in our world. A formula with an existential quantifier, such as 

(3 x) V(x) 

says that there is some object for which the predicate P is true. Thus in a world in which the only objects are peo- 
ple, the sentence 

Everyone is mortal 

would be translated to 

(V x) mortal(x) 

3.1.3. Restricted Quantifiers 
Of course, we don't live in a world in which the only objects are people, so we will introduce restricted 

quantifiers. 
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is true if, 

is true if, 
mmslate 

to 

(V x : Q(x)) P(x) 

for every object for which Q is true, P is true too. 

(3 x : Q(x)) P(x) 

for some object for which Q is true, P is true too. Then, in a world with people and other things, we would 

Everyone is mortal 

(V x : person(x)) mortal(x) 

3.2. Quantifier Analysis 

Having defined a semantic representation, we should now sketch a procedure for mapping our (regularized) 
syntactic structures into this representation. 

3.2.1. Simple sentences 

The simplest sentences are those involving only constants (names). For example, 

Mary loves Tom 

could be translated into 

loves(Mary,Tom) 

Thus, the verb is translated into a predicate and the subject and object are translated into arguments. 

3.2.2. Quantifiers 

When the subject or object involves an English quantifier, we have to translate the noun phrase into a 
quantifier governing one of the arguments of the predicate. For example, 

Every student loves Mary. 

could be translated to 

(V x : student(x)) loves(x,Mary) 

Note that the head of the noun phrase translates into a restriction on the quantifier. If both subject and object have 
quantifiers, we will end up with two in the logical form: 

Every student has a terminal. 

becomes 

(V x : student(x)) (3 y : terminal(y)) has(x,y) 

3.2.3. Noun phrase modifiers 

If the noun phrase has modifiers, these will translate into further restrictions on the quantifier: 

Every student has a red notebook. 

becomes 

(V x : student(x)) (3 y : notebook(y) & red (y)) has(x,y) 

3.2.4. Relative clauses 

If the noun phrase modifier is a relative clause, the approach is the same -- it translates into a restriction on the 
quantifier -- but the formulas become more complicated. For example, 

Every student who has a terminal has a modem. 

would translate into 

46  



(V x : student(x) & 
(3 t : terminal(t)) has(x,0) 

(3 m : modem(m)) has(x,m)) 

To do this translation, our procedure must operate recursively: we first translate the relative clause "who has a termi- 
nal", in much the same way as we would a simple sentence. This produces the second line of the logical form 
above. We then use this as a quantifier restriction in creating the translation of the entire sentence. This recursive 
translation procedure parallels the recursive syntactic structure we introduced for relative clauses. 

3.3. Data Base Retrieval 

The semantic representation and quantifier analysis procedures may be quite elegant, but they may also seem 
quite useless. After all, no one is likely to pay us a lot of money for a program which prints out logical forms; they 
want a natu~l language system to do something. The "best-sellers" among natural language programs these days 
are "question-answering systems": natural language interfaces for data base retrieval. We will therefore consider 
how our semantic analyzer can be readily transformed into a simple question-answering system. 

3.3.1. Predicates and Relations 

Let 's  suppose we have a relational data base. The relations in the data base can be viewed as predicates: the 
predicate P(a,b,c) is true if the relation P has a row with values <a,b,c>. Thus if we have a query such as 

Is Frank employed by NYU? 

we would generate its logical form, 

employ(NYU,Frank) 

and then, treating this as a data base query on relation "employ", see whether it is true or false and then respond 
"yes" or "no". 

3.3.2. Interpreting Quantifiers 

Quantifiers have a very direct procedural interpretation: to evaluate 

x:  R(x)) P(x) 

we iterate over all the objects in our world, and for those for which R is true, check that P is true. Similarly, for 

(3 x : R(x)) P(x) 

we iterate over all the objects in our world, and look for one for which both R and P are true. For a large data base, 
of course, this will be inefficient, but -- depending on the data base query language -- there will typically be more 
efficient approaches. The existential quantifier shown, for example, may be realized as a join of P and R. 

3.3.3. Wit Questions 

A wh-question (one beginning with "who", "what", or "which") can be interpreted as a request to determine 
the set of values for which a formula is true. For example, 

Which students own a typewriter? 

can be interpreted as 

(find the set of x : student(x)) 
(3 y : typewriter(y)) 

own(x,y) 

In data base terms, this means returning the set of values of one attribute of the relation, rather than just a "yes" or 
"no". 

3.3.4. Verbs 

In doing our semantic analysis, we have assumed that each verb corresponds to a predicate (or relation) of the 
same name. However, one of the benefits of a natural language interface lies in the ability to refer to the same rela- 
tionship in several ways, and the ability to refer succinctly to complex relationships (which may not be directly 
recorded in the data base). For example, using an employment data base, we would want the system to accept either 
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How many people work for XYZ? 

o r  

How many people are employed by XYZ? 

"Iaais indicates that, in general, several verbs may be translated into a single predicate. If the system has historical 
data on individual hirings and firings, we would probably want to allow 

How many people were rehired last year? 

and have "rehire" translate into a complicated condition involving a firing and a subsequent hiring. 

3.3.5. The structure of a question-answering system 

Putting all the pieces together, even a simple question-answering system will have the following stages: 

Parsing 
Syntactic Regularization 
Translation to Logical Form 
Translation to Data Base Query 
Retrieval 

If the system does anything fancier, such as analyzing pronouns (to be discussed below), this will normally be done 
in terms of the logical form, before the translation to a data base query. 

3.3.6. What's missing 

The last few sections might suggest that we know all there is to about building good question-answering sys- 
tems. In fact, current systems are still very rudimentary -- not at all a full natural language interface. Because such 
systems rarely incorporate any deep model of what is in the data base, or what the user's interest might be in query- 
ing the data base, they are very limited in their responses. Few systems allow questions about what type of informa- 
tion is in the data base ("What do you know about company XYZ?"). Many systems interpret questions literally, 
even if that is clearly not their intent ("Do you have any record of Joe's salary?" -- "Yes."). And no system pro- 
vides helpful feedback for questions which fall outside the semantic model. 

3.4. Semantic constraints 
In our discussion of syntactic analysis we pointed out that not all the sentences generated by our phrase struc- 

ture rules were grammatical. To account for this we introduced various syntactic constraints into our grammar. 

In semantic analysis, our aim is to decide whether a sentence is true. However, some of the sentences which 
are grammatical are so nonsensical that we might be reluctant to identify them as true or false; for instance, 

The closet likes scrambled eggs. 

or 

The road is wearing a brown hat. 

If we want to build a practical natural language system, why would we be interested in identifying such nonsensical 
sentences (rather than, say, just considering them to be false)? Surely we don't expect them to appear as input. Our 
answer is much the same as it was for grammatical constraints: constraints which in one case separate sensible from 
nonsensical sentences may in other cases separate correct and incorrect readings of a sensible sentence. Consider 
for example 

I passed a man on the road wearing a brown hat. 

Syntactically, this sentence is ambiguous: is the man or the road wearing the hat? If we have a constraint that roads 
don't wear hats, we could block the incorrect syntactic analysis. 

3.4.1. Predicate domains 

How should we characterize and organize these facts about sensible and nonsensical sentences? 

First, we can observe that these facts are best stated as constraints on semantic structure, not on syntactic 
form. If 
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The road is wearing a brown hat. 

doesn't make any sense, then neither does 

A brown hat was worn by the road. 

or any other form of the sentence. So, if we translate the verb "wear" into a predicate "wear", we can state this as a 
constraint on the predicate: that 

wear(road,hat) 

is a nonsensical combination of predicate and arguments. More generally, we will want to assert that this predicate 
is meaningful only for certain values of the arguments; we call this the domain of the predicate. 

For any realistic subject area, enumerating separately the domain of each predicate would be an overwhelm- 
ing task. However, many predicates share domains; these domains correspond in many cases to generally recog- 
nized "semantic classes". For example, we might say that the domain for the first argument of wear is the set of 
animals (including people): 

The man wore a hat. 
The horse is wearing a saddle and horseshoes. 
The dog is wearing a sweater. 

This set is also the predicate domain for many predicates associated with animal functions: seeing, breathing, sleep- 
ing, eating, chewing, etc. 

Thus, we would specify these semantic constraints by defining a set of semantic classes (typically as a hierar- 
chy of broader and finer classes) and then specifying the predicate domain of each predicate in terms of these 
classes. 

3.4.2. Limitations of predicate domains 
The use of predicate domains is particularly successful in dealing with texts in clearly restricted subject areas, 

such as technical and scientific reports. It is less successful in dealing with texts which range over a broad area, 
such as fiction or newspaper stories. Such texts involve many different types of objects, making a classification 
difficult, and may include metaphorical and imaginary usages, which blur the lines of predicate domains. 

It is also important to recognize that these semantic classes provide only a relatively general constraints. In 
some cases we will need much more detailed information about what is possible or impossible in order to under- 
stand a sentence correctly. Consider for example the two sentences 

I left the toaster in the kitchen on the floor. 
I left the toaster in the kitchen on the first floor. 

"on the floor" indicates where in the kitchen you left the toaster; "on the first floor" indicates where the kitchen is. 

3.5. Anaphora 
In formal and programming languages, when we want to refer to something more than once we generally 

have to give the object a name and refer to it by name. Natural language provides a much more flexible means for 
referring to entities previously mentioned in a text. Such references are called anaphoric references. The most 
familiar form of anaphoric reference is the pronoun: 

I bought an ice cream cone. 
It was delicious. 

The previous noun phrase to which the pronoun refers is called the antecedent. Noun phrases with "the" are also 
frequently used anaphorically: 

I bought an ice cream cone and a hot dog. 
The cone was delicious. 

3.5.1. Using predicate domains 
The simplest cases of anaphora can be accounted for quite straightforwardly using the notions of predicate 

domains and semantic classes which we just introduced. We begin by translating the sentence with a pronoun into 
logical form, treating the pronoun just as we would other noun phrases. We then determine the predicate domain for 
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the argument position occupied by the pronoun, look for the most recently mentioned noun phrase belonging to that 
semantic class, and consider that the antecedent of the pronoun. A translation of the antecedent then replaces the 
pronoun in the logical form. 

For example, if we read 

Sam bought a hat from the store on Wednesday. 
Ted wore it on Thursday. 

we might translate the second sentence to 

wear(Ted,it,Thursday) 

The predicate domain for the second argument of "wear" is "clothing", so we would look for the most recently men- 
tioned noun phrase in that class. We find "hat", identify it as the antecedent, and then, roughly speaking, replace "it" 
by "the hat" in the logical form. (Strictly speaking, we will replace "it" by the logical representation of "the hat 
which Sam bought from the store on Wednesday".) 

3.5.2. When domains aren't enough 

This approach works quite well, but -- as in the case of syntactic ambiguity -- there are cases where more 
detailed information is needed. Winograd created an oft-repeated pair of sentences to illustrate this: 

The city council refused to grant the women a parade permit because they advocated violence. 

The city council refused to grant the women a parade permit because they feared violence. 

In one case "they" refers to the council, in the other case to the women; making the proper choice requires rather 
detailed reasoning about the concerns of the city council. 

3.5.3. Contextual reference 

In many cases a definite noun phrase ("the ...") refers not to something explicitly mentioned previously, but 
rather to something related to a previously mentioned object or activity. This is termed contextual reference. Thus 
in 

I bought an apartment with a small kitchen. The stove is in the middle, the dishwasher under- 
neath, and the refrigerator on the ceiling. 

we understand "stove", "dishwasher", and "refrigerator" because we expect them as part of a kitchen. We would be 
perplexed if the second sentence said "The bulldozer is in the middle, the parakeet underneath, and the bed on the 
ceiling.". Such references, therefore, rely on a quite detailed knowledge of the structure of objects and actions. 

4. DISCOURSE ANALYSIS AND KNOWLEDGE 

4.1. The importance of world knowledge 

4.1.1. Syntactic ambiguity and contextual reference 

In the last section we saw examples where substantial world knowledge was needed to correctly understand 
some natural language input. We noted that constraints based on predicate domains were not sufficient for resolving 
many syntactic ambiguities. For example, if you told a robot to 

Broil the steak on the top shelf of the refrigerator. 

it might start by building a small fire in your refrigerator. Similarly, when cooking was finished, if you told it to 

Put the chicken on the table and cut off the legs. 

you might get the response "What legs?" or, even worse, a shorter table. To determine that "legs" might refer to 
"chicken", our robot must know about the structure of things (in this case, chickens); to determine that "legs" does 
refer to "chicken", it must know about appropriate actions (in this case, in serving food). 
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4.1.2. Analyzing texts 

The need for world knowledge is particularly acute in analyzing multi-sentence texts. We have the problems 
mentioned above, such as syntactic ambiguity and contextual reference. In addition, we have the task of deciding 
how the sentences are related. For example, we wouldn't say that we had understood the following passage 

John threw a cream pie. Mary ducked, and Tom got hit smack in the face. 

unless we recognized the relation between the events involved. In any text there will be one or more relations -- 
cause, time, sequence, elaboration, etc. -- tying the sentences together. These relations will rarely be explicit, yet 
we must identify them in order to properly understand the text. We must therefore rely on extensive background 
knowledge to infer these relations from the facts explicitly presented. 

4.1.3. Organizing world knowledge 

It's all well and good to say that we need to incorporate a lot of world knowledge in our system, but this 
doesn't tell us what to do in constructing a language processing system. How should we collect this knowledge, 
how should we organize it, and how should we use it in the language analysis? The answers to these questions are 
as yet poorly understood. They have been addressed only for certain types of knowledge, relevant to the under- 
standing of certain limited classes of texts. We examine in this section two types of knowledge which have been 
applied to language analysis. 

4.2. Analyzing narrative 

The first type of text we will consider are narratives about stereotyped sequences of events. We are all fami- 
liar with such sequences. As we are growing up we learn, in some detail, what to do in certain social situations: eat- 
ing in a restaurant, buying food in a supermarket, visiting a doctor's office, taking a plane trip. 

4.2.1. Hitting the highlights 

Because we share knowledge of these sequences, we don't have to provide all the details when describing 
such an event; we just have to present the highlights or unexpected events. The listener should be able to fill in the 
gaps, and tie together the explicitly mentioned events, using the shared knowledge. For example, if you hear 

I went to Clancy's restaurant yesterday. The soup was cold and the steak was tough, so I left 
the waiter a small tip and vowed never to go back. 

you can understand phrases like "the soup", "the waiter", and "a tip", and the reason for the small tip, from your 
knowledge of restaurants. 

4.2.2. The script 

How should we record our knowledge of such stylized sequences? Schank suggested a slructure called the 
script, which is a kind of flowchart. This flowchart involves acWrs (basically, people) and props (objects); it con- 
sists of a series of primitive actions performed by the actors. For example, a restaurant script (the original example) 
would include such actors as the customer and waiter, and such props as the food, the check, and the tip. It might 
include steps such as 

customer enters restaurant 
customer goes to table 
waiter comes to table 
customer gives order to waiter 
waiter brings food to customer 
customer eats food 
waiter brings check to customer 
customer gives money to waiter 
waiter brings change to customer 
customer leaves tip 
customer leaves restaurant 

(in an actual script, these would be more detailed and in a formal representation). It could also include various con- 
ditional information, such as the relation between the food served and the tip. An actual story, such as the one 
above, can then be matched against items within the script. Once this matching is done, the script provides the 
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desired connections to tie together the sentences and resolve the contextual references. 

4.3. Analyzing text about equipment 

The second type of text we shall consider is reports about pieces of equipment -- your car, your radio, or your 
personal computer. Here too we see the effect of shared knowledge -- knowledge in this case about the structure 
and function of objects rather than actions. Suppose we hear 

The car started to overheat. We opened the hood and saw that the fan belt was broken. 

Then -- if we know something about cars -- we recognize that the broken belt probably caused the overheating, and 
that opening the hood let us see the broken belt but probably didn't cause the belt to break. 

As with other texts, making these connections is an essential part of understanding the texts. In this case the 
relevant background knowledge is a simple model of the car: what the components of the car are, what the function 
of each component is, and how these components interact in the operation of the car. In addition, we require a map- 

' ping which relates the predicates of our logical form ("break", "overheat") to states of the model. Then, once the 
individual sentences of the report have been analyzed into logical form, discourse analysis can use the model to 
identify the implicit causal relations. 

5. CONCLUSION 

To organize our quick trip through computational linguistics, we have divided the problems and techniques 
into three areas: syntactic analysis, semantic analysis, and integration with "world knowledge". Some such subdivi- 
sion of the problem is essential if we are to successfully address the myriad problems of natural language. This 
division also corresponds roughly to the stages of processing in many current natural language systems. This divi- 
sion in processing is more problematic: it reflects in part our current difficulty in developing an integrated frame- 
work and analysis procedure which will allow us to apply all these constraints -- syntax, semantics, and world 
knowledge -- in a uniform fashion. 
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SPEECH TUTORIAl, 

Edward P. Neuburg 

Speech T u t o r i a l  

~ntroduct lon 

During the course of t h i s  t u t o r i a l  I hope to  do two th ings.  The f i r s t  i s  to  
present some of our current  knowledge about the product ion,  t ransmission,  and 
percept ion of speech! and second is  to g ive you some idea of how, on the basis  
of t h i s  knowledge~ speech researchers t r y  to  e x t r a c t  in fo rmat ion  from speech 
au tomat i ca l l y .  While doing these th ings I w i l l  be i n f l i c t i n g  • good deal of  
jargon on you. Speech researchers are unable to  communicate wi th each other 
wi thout t h i s  jargon,  and you are going to have to  lea rn  some of i t  so they can 
a lso  communicate with you. 

Mechanics of speech production 

The s ignal  the speech s c i e n t i s t  has to  deal wi th  i s  •n acoust ic  w~vefprm in 
the a i r ,  a sequence of sounds we produce in the reg ion known as the vocal 
t r a c t .  An i n t e r e s t i n g  fac t  about speech product ion i s  tha t  a l l  the organs used 
f o r  speech evolved f o r  other purposes. The lungs, which produce the a i r  stream 
tha t  powers the making of sound, are a c t u a l l y  provided to  keep you a l i v e  by 
b r ing ing  oxygen to  your blood. Here i s  • p i c t u r e  of the lungs making sound. 

(S l ide 1 - -  lungs) 

The a i rs t ream passes up through the la rynx ,  which i s  a va lve you c lose when 
you eat ,  to  keep food from dropping i n t o  the lungs. I t  i s  in  the middle of 
your neck, and i s  la rger  in men than in women - -  enough l a rge r  t ha t  i t  causes 

a p ro t r us i on  in • man's neck ca l led  the Adam's apple. The la rynx  conta ins  two 
h o r i z o n t a l ,  opposed cur ta ins ,  or f o l ds  of f l e s h  supported by c a r t i l a g e .  Here 
i s  • drawing of the larynx looking down from the top.  

(S l ide  2 - -  la rynx)  

Muscles can open and close the opening between the f o l d s ;  t h i s  opening i s  
ca l l ed  the o l o t t l s .  When the f o l d s  are c losed, o r  pu l l ed  toge ther ,  you can 
s t i l l  f o r c e  a i r  up through the larynx.  When you do, the f o l d s  are forced 
apar t ;  then they are sucked together again by the a i r  stream! they slap 
toge ther ;  the a i r  stream forces them apart  again;  they c lose again; e tc .  The 
ac t ion i s  tha t  of  what i s  ca l led a r e l a x a t i o n  o s c i l l a t o r .  

This procedure i s  o f ten described as v i b r a t i o n  of  the yocal cords. The 
i m p l i c a t i o n  i s  tha t  there i s  a h a r p - l i k e  s t r u c t u r e  in  your t h r o a t .  I have done 
cons iderab le  research looking fo r  the o r i g i n  of  t h i s  misconception, and I have 
never found i t .  The e a r l i e s t  speech l i t e r a t u r e  speaks of cords, although i t  
was known anatomica l ly  that  there were none. 

(S l ide  3 - -  g l o t t a l  pulses) 

Here i s  a t y p i c a l  time waveform of a i r f l o w  through the g l o t t i s  when the 
la rynx i s  "c losed" .  I t  i s  not at a l l  s i nuso ida l ,  as would be expected from a 
v i b r a t i n g  s t r i n  9. I t  i s  made up of pu f f s  or bu rs t s  of  a i r ,  r e l a t i v e l y  shor t  
compared to  to  the cycle time. In males the mass and tens ions  are such tha t  
the p u f f s  occur between 50 and 200 times a second, depending on muscular 
e f f o r t .  In women the larynx i s  smaller and less  muscular, and the r a t e  i s  
l i k e l y  to  be between 150 and 350 times a second. I f  you could l i s t e n  to  t h i s  
s ignal  i t  would sound l i k e  a buzz, and i t  i s  o f t e n  c a l l e d  j u s t  t h a t .  
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The s l i d e  also shows the f o u r l e r  spectrum of t h l s  sequence of 
Pulses. The spectrum of • s lgnal  shows how much energy is present at  each 
frequency. The abscissa here is  frequency, and the ord inate  zs amp l l t u d e ,  
expressed In dec lbe ls ,  or db. Decibels are • logar l thmlc  scale,  used when a 
v a r i a b l e  has such a large range tha t  i t  i s  best to  express i t s  behavior by 
showing the r a t i o s ,  r a the r  than the d i f f e r e n c e s ,  between i r a  la rge and small 
va lues.  The number of db between two values i s  I0 times the logar i thm of the 
r a t i o  between those values. Numbers tha t  are the same size are 0 db apar t !  i f  
t h e i r  r a t l o  ~s 2, they are about 3 db apar t !  30 d~ means a r a t i o  of  1000! 50 db 
means a r a t i o  of 100000. The rap id  f a l l o f f  w: th increasing frequency i s  an 
impor tant  f ea tu re  of the buzz, and w i l l  be r e f e r r e d  to  o f ten .  

When speech sounds are produced l i k e  t h i s ,  w i th  the vocal f o l d s  held 
toge ther  so tha t  a buzz comes outp they are c s l l  voiced, or voca l ized.  The 
pulses are ca l l ed  Di tch pulses,  or g l o t t a l  pulses,  and the frequency of  the 
buzz i s  ca l l ed  D i tch ,  or fundamental freouencY, or the fundamental. { P u r i s t s  
reserve  the word " p i t c h "  t o  descr ibe a psycho log i ca l  phenomenonl a f e a t u r e  of  
percep t ion ,  not p roduc t i on . )  The t ime from one of these pulses t o  the next  i s  
c a l l e d  the Ditch Deriod. The " p i t c h "  pa t t e rn  of  a sound (or of  a word or a 
sentence} i s  ca l l ed  the i p t o n a t i o n .  

The term "p i t ch  per iod"  i s ,  u n f o r t u n a t e l y ,  used in two d i f f e r e n t  senses. I t  
can denote an amount of  t ime - -  the number of  m i l l i seconds  between one pulse 
and the next - -  or  i t  can mean the event t h a t  begins at  the leading edge of  a 
c e r t a i n  p i t c h  pulse and ends at  the leading edge of  the next p i t c h  pulse.  I 
t r y  t o  use "p i t ch  per iod"  f o r  a length of t ime,  and "Ditch epqch" 4or the event 
the s t a r t s  at  the onset of  one g l o t t a l  pulse and l a s t  f o r  one p i t ch  per iod .  

There is  another way of  producing sound in speech. The stream of a i r  
passing up through the vocal t r a c t  can be conf ined by a c o n s t r i c t i o n  so t h a t  i t  
breaks i n t o  t u r b u l e n t  f l o N t  producing h i ss ,  or  4 r i c e ,  ion.  Speech sounds 
produced in t h i s  way are c a l l e d  f r i c a t i v e s .  Here i s  a waveform of  a f r i c a t i v e  
l o u n d .  

(S l ide 4 - -  F r i c a t i v e )  

F r i c a t i o n  can occur in var ious  p laces in  the  vocal t r a c t ,  a l l  the way from 
the larynx to  the l i p s .  Note t ha t  f r i c a t i o n  (hiss) and vo ic ing (buzz) are not 
mutua l ly  exc lus i ve .  

The stream of a i r  can a lso be stopped, again at  any point  in the vocal 
t r a c t .  Speech sounds tha t  invo lve  a stoppage of a i r f l o w  are c a l l e d ,  
un imag ina t i ve ly ,  s t o ~ .  

Whatever the source of the sound, i t  i s  c a l l e d  the eMcltati~n~ as i t  i s  
thought of  as e x c i t i n g  the vocal t r a c t .  The many organs tha t  make up the vocal 
t r a c t  then modulate t h i s  e x c i t a t i o n .  

(S l ide  5 - -  x - s e c t i o n  of  vocal t r a c t )  

Here i s  a s ide view of  the vocal t r a c t .  The pa r t s  tha t  can be adjusted t o  
modulate the sound range from the velum (a f l a p  at  the back tha t  determines 
whether the nasal passage w i l l  be coupled i n t o  the vocal t r a c t )  t o  the t e e t h  
and l l p s .  
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The most Important modulatlng organ Is  the tonQue, o r l g l n a l l y  provlded fo r  
movlng food back In to  the esophagus. I t  can be humped high, c r e a t i n g  a narrow 
passage, or l a l d  low, maklng a large passage, and the hump can be at  the back 
of  the mouth or at the f r o n t .  Also the t i p  can be cur led back, or r e t r o f l e x e d .  
The amount of ja~ openlng also has an ef4ect  on the speech sound. Here i s  • 
waveform of a t yp ;ca l  volced sound. Note t ha t  i t  i s  much more compl icated than 
the g l o t t a l  waveform. This i s  the e f f e c t  of modulation by the vocal t r a c t .  

( S l i d e  6 - -  voiced speech) 

And here i s  speech that  is  both voiced and f r i c a t e d .  

(S l ide 7 - -  voiced f r i c a t i v e )  

Here i s  a graphic representa t ion  of  t h i s  source-modulat ion process. 

(S l ide 8 - -  buzz-output) 

The upper l l n e  shows the sequence of  pulses, and what happens when they have 
passed through the vocal t r a c t .  The lower l i n e  i s  the frequency-domain vers ion 
of  t h i s  process. A pulse t r a i n  has a spectrum cons i s t i ng  of  l i n e s  at  m u l t i p l e s  
of  the fundamental, as shown at  the l e f t .  The vocal t r a c t  passes d i f f e r e n t  
f requenc ies w i th  d i f f e r e n t  amounts of  a t t enua t i on l  the f u n c t i o n  t h a t  descr ibes 
t h i s  process i s  ca l led  the t r a n s f e r  f u n c t i o n ,  shown in  the middle. The output  
s ignal  has a spectrum tha t  i s  the product of the f i r s t  two. 

A r t i c u l a ~ o r y  Phone, Sos and the Sounds of  Speech 

Phonet ic ians are concerned wi th  descr ib ing and making taxonomies f o r  speech 
sounds. The study of how the sounds of speech are produced i s  c a l l e d  
a r t i c u l a t o r y  phonet ics.  Sounds can be div ided i n t o  crude c a t e g o r i e s ,  such as 
voiced or unvoiced, and i n t o  f i n e  ca tegor ies  such as e x a c t l y  where in  the mouth 
f r i c e t i o n  takes place. Here i s  a f a i r l y  coarse c a t e g o r i z a t i o n  o f  sounds 
according t o  how they are produced. 

(S l ide  8a - -  sound categor ies)  

These ca tegor ies  can be lumped together  in c e r t a i n  ways t o  produce c e r t a i n  
impor tant  cruder categor ies .  For example, i f  • sound i s  not stopped, i t  i s  
c a l l e d  a c~nt inuant .  A cont inuant  w i th  no f r i c a t i o n  i s  ca l l ed  a sonorant .  I f  
i t  has turbu lence,  whether or not i t  i s  voiced, i t  i s  c a l l e d  a f F i c a t i v e .  

A vow~l i s  a sonor•nt in which the re  i s  no obs t ruc t i on  in the  vocal t r a c t  
(un l i ke  / L / ,  f o r  example, in which a i r  i s  forced to  f l ow around the tongue).  
Vowels occupy a major f r a c t i o n  of  the t o t a l  t ime in  speech, and an even la rge r  
f r a c t i o n  of the t o t a l  energy; and every word has at  l eas t  one vowel in i t .  The 
tongue i s  the major determiner of  vowel q u a l i t y .  

(S l ide ? - -  vowel t rapezoid)  

This shows tongue pos i t i on  f o r  the vowels of Engl ish.  L e f t  i s  the 
f r o n t  o f  the mouthp and up means high. Vowels at  the l e f t  are produced by 
pushing the tongue hump forward, and vowels at  the r i g h t  by p u l l i n g  the tongue 
back. Vowels at  the top have a high tongue hump, and vowels a t  the  bottom have 
a f a i r l y  f l a t  tongue. 
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So fa r  we have looked at sounds only in terms of how they are produced. 
Most of the work In phonet lcs has to  do with d l v i d i n g  up sounds according to  
how they are Der~elved, and how they are used in the spoken language. There zs 
an i n f i n i t y  of produceable sounds, but we seem to  perce ive them as a small 
number of c lasses.  Phoneticzans c l a s s l f y  percesved sounds in a number of ways. 

One is  the 0honeme. A phoneme can be thought o4 as a l i n g u i s t i c  sound 
c lass .  Two sounds A and B "belong" t o  d i f f e r e n t  phonemes i f  t he re  i s  a pa i r  of  
words WI and W2, i d e n t i c a l  except in one place, such t h a t  p u t t i n g  sound A in 
t h a t  place and p u t t i n g  sound B in tha t  place make WI and W2 have d i f f e r e n t  
meanings. For example, the words " h i t "  and " h e a t " , d i f f e r  on ly  in  the sound 
between the /H/ and the / T / ,  and they have d i f f e r e n t  meanings. Therefore the 
sound you hear as / I H /  and the sound you hear as /EE/ must belong t o  d i f 4 e r e n t  
phonemic c lasses.  

Phonet ic ians d i v i d e  sounds up in  t h i s  way f o r  a l l  languages. There i s  not 
un iversa l  agreement as t o  how t o  do the d i v i d i n g .  But by any method, most 
languages have about 45 phonemes. Here i s  a l i s t  9f one vers ion  of  the 
phonemes o~ Eng l ish .  

{S l ide 10 - -  phonemes) 

The symbols in  the l e f t  column are the c l a s s i c  ones, standard among 
phonet ic ians ,  but cannot a l l  be produced on a t y p e w r i t e r .  The second and t h i r d  
columns are symbols t h a t  can be typed, and were developed dur ing the la rge 
ARPA-sponsored speech research p r o j e c t  of  the e a r l y  70"s. The two-charac te r  
set  has s tuck,  and i s  becoming the phonet ic symbol se t  o f  the computer age. 

Note tha t  phonemes are language-dependent. In Engl ish we d o n ' t  care ~hether 
a vowel i s  nasa l i zed  or not - -  you can say "ah" or you can say "anh", w i th  the 
velum up or down, and the meaning i s  not changed. In French, the s i t u a t i o n  i s  
d i f f e r e n t .  The words "a" and " i n "  in  French d i f f e r  only  in  n a s a l i z a t i o n ,  and 
have d i f f e r e n t  meanings! n a s a l i z a t i o n  i s  a phonemic f e a t u r e  o f  the  language. 
In  some languages, f o r  example Chinese, i n t o n a t i c ~  - -  the  p i t c h  p a t t e r n  of  a 
sound - -  i s  phonemic. 

Note a lso t h a t  sounds need not be produced s i m i l a r l y  in order  t o  be in the 
same phonemic c l ass .  There are two very d i f f e r e n t  ways of  producing the 
phoneme / L / .  One uses the t i p  of  the tongue, and the o the r ,  a r a r e r  Version, 
uses the back of  the tongue. Both are recognized as / L /  in a word l i k e  " l i f t " .  
Thus a phonemic c lass  can be thought of as a l i n g u i s t i c  behavior c lass .  

Sounds t h i s  d i f f e r e n t  w i t h i n  a phonemic c lass  are r a r e .  But w i t h i n  any 
phonemic c lass ,  the re  are many d i f f e r e n t  sounds. I n f i n i t e l y  many. But they 
appear to  f a l l  i n t o  subclasses in a de f i nab le  way. In Eng l ish ,  the sound /P/  
in  "p in"  has a s p i r a t i o n ,  a pu f f  of  a i r ,  a f t e r  the stop,  wh i le  the  /P /  in "sp in"  
does not have a s p i r a t i o n .  Both are assigned t o  the  phonemic c lass  / P / .  They 
are ca l l ed  a l l . , h o n e s  of the phoneme / P / .  The many - -  but not i n f i n i t e  - -  
c lasses tha t  are formed by d i v i d i n g  phonemes up i n t o  a l l . phones  are ca l l ed  
phones. Phones are the fundamental u n i t s  oh speech, as produced and as 
perceived,  the f i n e  s t r u c t u r e .  The study of what phones occur in  a language, 
and how they are produced, i s  c a l l e d  Dhonolcx;v. 

A l l  the phones of  known languages can be represented w i th  a very  la rge set  
o f  symbols known as the I n t e r n a t i o n a l  Phonetic Alphabet ,  using d i a c r i t i c a l  
marks, subsc r ip t s ,  e t c .  f o r  f i n e  shades of  d i f f e r e n c e .  
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A cur ious fac t  about phonemes: some of them represent  speech acts tha t  are 
s teady-s ta te ,  f o r  example /AA/, the vowel ~n "ma". Some represent  sounds tha t  
change s lowly,  l l k e  the g | Ide  /Y/ in "you". And some are sounds tha t  change 
suddenly, l i k e  the /P/ in "p ln" .  The u n l t s  that  have proved to  be usefu l  
l l n g u i s t i c a l l y  are not at a l l  homogeneous from the s tandpoint  of product ion.  

Acous t~  Phoqet;cs 

An automatic speech recognizer must deal w i th  the acoust ic waveform 
generated ( in the a i r )  by the t a l k e r !  t h i s  i s  the only  s ignal  a v a i l a b l e .  I t  i s  
obv ious ly  s u f f i c i e n t ,  since i t  i s  a l l  the l i s t e n e r  has, and he can understand 
the word. The study of what acoust ic f ea tu res  are present in the speech 
waveform, and how they are used by l i s t e n e r s  t o  i d e n t i f y  phones or phonemes, i s  
c a l l e d  Acoustic Phonetics. Much of the work in  machine r e c o g n i t i o n  i s  based on 
what acoust ic phonet ic ians have discovered about the so - ca l l ed  ~ fous t i c  cues, 
the f~atuFe~ tha t  humans use to  i d e n t i f y  speech sounds. 

Acoustic phonet ic ians are very i n t e r e s t e d  in  how the ear analyzes sound, as 
i t  must h&ve a bearing on how we perce ive speech. Much t h e o r i z i n g  in  speech 
percept ion i s  done in terms of cur ren t  models of what the ear i s  t e l l i n g  the 
b ra in .  Various models of the ear have been proposed as a r e s u l t  of  su rg ica l  
observat ion and psycho-physical experiments; some c h a r a c t e r i s t i c s  are common 
to  a l l  models and accepted by a l l  speech researchers .  

1) The ear does a f i n e  frequency a n a l y s i s  of  incoming s i g n a l s  
and a lso reso lves  s igna ls  in time very accu ra te l y .  (Unl ike ana lyzers  b u i l t  by 
acous t ic ians  and e l e c t r i c a l  engineers, which cannot do both s imu l taneous ly . )  

2) Low f requenc ies  are " reso lved"  b e t t e r  than high f requenc ies !  in f a c t ,  
r e s o l u t i o n  depends on the d i f f e r e n c e  of f requenc ies  up to  about 1000 hz, and on 
the r a t i o  above 1000 hz. Thus, the r e l a t i o n s h i p  of  the " n a t u r a l "  sca le  to  the  
frequency in herz i s  l i n e a r  up t o  1000 hz, and loga r i t hm ic  t h e r e a f t e r .  This 
na tura l  scale i s  ca l l ed  the ~e) scale by some and the bark sca le  by o thers .  
Here i s  a graph of the mel scale p l o t t e d  against  the frequency in herz. 

(81ide lOa - -  mel scale)  

One of the moet important concepts i n  scouet ic  phonet |cs i s  the formant. 
Formants were discovered by a 1?th century phonet i c ian  who had t ime on h i s  
hands (he was i l l )  and very acute hear ing.  He no t i ced ,  whi le  l i s t e n i n g  to  
h i s  own voiced sounds, tha t  besides hearing the buzz of the g l o t t a l  waveform he 
could hear severa l  h igh-p i tched notes. The p i t c h  of  these notes was cons i s ten t  
f o r  a given vowel, and d i f f e r e d  from vowel to  vowel. The h igh -p i t ched  s i gna l s  
came to  be known as formants - -  they seemed t o  cha rac te r i ze  the vowel. I t  i s  
as i f  the vowel were r e a l l y  a sum of h igh- f requency p e r i o d i c  s i gna l s .  

(S l ide 11 - -  narrow-band spectrum of /AA/) 

I f  we make a f o u r i e r  spectrum, a frequency ana l ys i s ,  of  a vowel, we can see 
these formants. Here i s  a spectrum of the vowel /AA/. There are l i n e s  in  
the spectrum at mu l t i p l es  of the p i t ch  f requency. Riding on top of these l i n e s  
you can see la rge  lumps in the spectrum. These are the r e s u l t  of  modulation o f  
the g l o t t a l  s igna l  by the vocal t r a c t ,  or r i n g i n g  of  the so - ca l l ed  resonances 
of the vocal t r a c t .  The vocal t r a c t  i s  a l l o y i n g  more energy to  get through at  
the f requenc ies near these lumps tha t  at o ther  f requenc ies .  I t  i s  these lumps, 
or formants tha t  you can hear as notes i f  you have very  good hear ing.  
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(S l lde  12 - -  wide band spectrum of / ~ / )  

The lumps are more apparent I f  we make a wlde-band s~pctrum. That i s ,  we 
do a frequency ana lys i s  using a f11 ter  tha t  Is  so wide tha t  i t  cannot reso lve  
the l i n e s ,  but can only  f o l l o w  the general shape of the spectrum. Here Is  the 
wide-band spectrum of the vowel /AA/. You can see tha t  i t  f o l l ows  roughly the 
tops of  the l i n e s  of  the narrow-band spectrum 

(S l ide  13 - -  spectrum of / I Y / )  

I f  we compare the spectrum of another vowel, the vowel / I Y / ,  w i th  tha t  of 
/AA/ ,  we see t h a t  they are d i f f e r e n t .  The lowest lump in / I Y /  i s  lower than 
t h a t  f o r  /AA/ ,  and the second lump i s  much h igher .  I t  turns out tha t  vowels 
can be cha rac te r i zed  by the p o s i t i o n s  of  these lumps. 

The lowes t - f requency  formant i s  t r a d i t i o n • f l y  c a l l e d  the f i r s t  fQrmant, 
abbrev ia ted E.J~- Voiced sounds usua l l y  have 4tom 3 t o  5 formants w i t h i n  the 
f i r s t  5000hz ( te lephone bandwidth). FI genera l l y  f a l l s  in  the range 250-1100 
hz, F2 in  1000-2200 hz, and F3 in  2000-3500 hz. The fundamental frequency, or 
p i t c h ,  i s  o f t e n  abbrev iated E.Q., even though i t  has nothing to  do w i th  formants. 

Phonet ic ians have learned • greet deal by studying d isp lays  such as these. 
But by f a r  the most-used d isp lay  i s  the so -ca l l ed  sonooram. (This i s  a c t u a l l y  
a p r o p r i e t a r y  name - -  the gener ic name i s  sound sDectrooram.) This i s  the 
p i c t u r e  you get i f  you do a l o t  of  spectra c l o s e l y  spaced in  t ime,  and p l o t  the 
ampl i tudes as a f u n c t i o n  of two va r i ab les ,  ;requency and t ime. The common way 
t o  d i sp lay  t h i s  f u n c t i o n  i s  w i th  t ime along the x - a x i s ,  frequency along the 
y - a x i s ,  and ampl i tude as blackness - -  the higher the amplitude at  a given 
frequency and t ime,  the b lacker the mark on the paper. 

(S l ide  15 - -  narrow-band spectrogram) 

Here i s  a sound spectrogram of speech analyzed w i th  • narrow f i l t e r !  t h i s  i s  
t r a d i t i o n • f l y  c a l l e d  • narrow-band sDectroaram. The l i n e s  t h a t  run roughly 
h o r l z o n t a l l y  are the  harmonics of  the fundamental;  they are c a l l e d  mi r th  bar~. 
Where the re  i s  no vo i c i ng  there  are,  o f  course, no p i t c h  bars. 

(S l ide  16 - -  wide-band spectrogram) 

I f  we use • broad analyzing f i l t e r ,  the p i c t u r e  looks l i k e  t h i s .  The 
v e r t i c a l  s t r i a t i o n  ~ correspond t o  i nd i v idua l  p i t c h  epochs; the spectrum l a t e  
in  the epoch i s  d i f f e r e n t  from the spectrum e a r l y  in  the epoch, which makes f o r  
a s t r i p y  look.  The p i t c h  bars are no longer resolved~ because the f i l t e r  i s  
broad, but the formants are now more obvious. For t h i s  reason, phonet ic ians 
t r a d i t i o n a l l y  use t h i s  rep resen ta t ion  t o  d isp lay  and study speech. I t  i s  s t i l l  
easy t o  t e l l  voiced speech from unvoiced - -  the unvoiced po r t i ons  have no 
s t r i a t i o n s .  

The Imoortapc~ of  Formants 

(S l i de  17 - -  Peterson-Barney) 

The connect ion between formant p o s i t i o n  and perceived sound i s  cen t ra l  t o  
acous t i c  phonet ics .  Most of the in fo rmat ion  i s  found in  the f i r s t  two formants! 
F3 and higher seem t o  be f a i r l y  constant over a l l  sounds f o r  a given t a l k e r .  
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A famous study of FI and F2 as i nd i ca to rs  of vowel i d e n t l t y  was done 
by Paterson and Barneyl i t  Is I l l u s t r a t e d  in t h l s  p i c t u r e .  From spectrograms 
they measured formant pos l t lons  fo r  ten vowels spoken by a large number o4 
people. The p i c t u r e  shows F1 and F2 4or every one of these tokens. F1 is  
p l o t t e d  in the x - d l r e c t l o n ,  and F2 In the y - d i r e c t i o n .  The I d e n t i t y  of the 
vowel i s  shown by the symbol p lo t ted .  The symbols c l u s t e r ,  and the regions 
where they f a l l  are indicated by a surrounding ba l l oon  and a phonetic symbol to  
show what vowel (mainly) 4o i l s  in that  reg ion.  There i s  no doubt that  vowel 
i d e n t i t y  and formant frequency ere re la ted .  

(S l ide 18 - -  vowel vs. FI-F2) 

The r e l a t i o n  between vowel i d e n t i t y  and frequency of  FI and F2 is  summed up 
in  t h i s  diagram, which also shows what the vocal t r a c t  i s  doing. In t h i s  
regard i t  i s  i n s t r u c t i v e  to  compare two e a r l i e r  p i c t u r e s .  I f  we superimpose 
the vowel t r apezo id ,  which shows tongue p o s i t i o n ,  on the Paterson-Barney plotp 
which shows FI-F2, we see that  they are r e l a t e d .  F2 i s  c o r r e l a t e d  with 
f ron tness ,  and F1 i s  an t i - co r re l a t ed  with tongue he igh t .  

(S l ide  LIP - -  stop and g l ide  formants) 

You shou ldn ' t  th ink  that  only vowels are cha rac te r i zed  by t h e i r  formants. 
For example, these h igh ly  s t y l i zed  spectrograms show what formants look l i k e  
f o r  stops and g l i d e s .  Al l  sounds p ic tured end wi th  the phoneme /EH/. The upper 
l e f t  i s  the nonsense word /BEH/. The lower l e f t  i s  /GEH/. The /EH/ par t  i s  
the same, but the beginning has a so-ca l led  formant t r a n s i t i o n  tha t  i s  
c h a r a c t e r i s t i c  of  the stop that precedes the vowel. The second formant in 
/BEH/ s t a r t s  low, and the second formant in  /GEH/ s t a r t s  high. The 4th from 
the l e f t  in  the top row i s  /WEH/. I t  d i f f e r s  from /BEH/ in  t ha t  the formant 
t r a n s i t i o n s  are slower. Thus stops and g l i d e s  can both be character ized by the 
behavior  of the formants of the nearby vowels. 

Spectral  Charac te r i za t i on  of So~tch Sounds 

S i n c e  t h e  1930s speech r e s e a r c h e r s  have  been t r y i n g  t o  c h a r a c t e r i z e  and 
ca tego r i ze  speech sounds automat ica l ly ,  and r e | I m b l y ,  using a small number of  
parameters. There have been two main mot i va t ions  f o r  t h i s  work: one i s  the 
need t o  t ransmi t  speech economically, which has led to  the development of 
vocoders . speech compression devices in wide use today! and the other i s  the 
des i r e  to  recognize words automat ica l ly .  These two have developed together ,  
and many researchers  have made con t r i bu t i ons  to  both.  

The f o u r i e r  spectrum9 the version with broad peaks and no p i t ch  barsm has 
played the p r i n c i p a l  par t  in both speech r e c o g n i t i o n  and speech compression. 
In Engl ish and other  non-tonal languages the p i t c h  bars ca r ry  no l i n g u i s t i c  
i n fo rmat ion ,  so the shape of the broad spectrum, e s p e c i a l l y  the pos i t i ons  of 
the main peakst i s  a good clue to  the i d e n t i t y  of  a cont lnuant  speech sound. 
And the spectrum changes f a i r l y  s lowly,  because the a r t i c u l a t o r s  in the vocal 
t r a c t  are s lugg ish ;  you don ' t  have to  der i ve  the spectrum very o f ten  to capturQ 
changes in  the speech sound - -  100 times a second i s  p len ty .  
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(You might th lnk  that  volc:ng would not be captured by the broad spectrum. 
The narrow-band spectrum does capture t h i s  in~ormatlon, s ince I t  has l i n e s ,  or 
p i t ch  bars, f o r  volced speech and none f o r  unvoiced speech. But the broad-band 
spectrum a lso contalns vo ic ing In fo rmat ion ,  in i t s  general shape. In voiced 
speech, the spectrum of the e x c l t a t i o n ,  the g l o t t a l  pulses, f a l l s  o f f  r a p i d l y  
wi th  frequency! t he re fo re  the output spectrum, which i s  the product of  the 
g l o t t a l  spectrum and the t r a n s f e r  f unc t i on  of the vocal t r a c t ,  a l so  f a l l s  o f f  
r a p i d l y .  Unvoiced speech has fo r  i t s  e x c i t a t i o n  something l i k e  whi te no ise,  
which has a f l a t  spectrum. Hence the broad spectrum of an unvoiced sound i s  
much f l a t t e r  than the spectrum of an unvoiced sound. ) 

We have a l ready seen, in the Peterson-Barney diagram, tha t  the formant 
p o s i t i o n s  f o r  a given sound can vary cons iderab ly  from person to  person; they 
are not even cons is ten t  fo r  a s i ng l e  i n d i v i d u a l  (al though much more const ra ined 
than f o r  the whole popu la t ion) .  This un fo r tuna te  v a r i a b i l l ~ v  w i l l  be dea l t  
w i th  in more d e t a i l  l a t e r .  Focusing a t t e n t i o n  f o r  the moment on a s i ng l e  
i n d i v i d u a l ,  whose formants w i l l  be t i g h t l y  l o c a l i z e d ,  i t  would seem a simple 
matter ~o f i n d  the formants and use t h e i r  p o s i t i o n  to  c h a r a c t e r i z e  the sound. 
Many a researcher  has blunted h i s  spear t r y i n g  to  do Just t h a t ;  the lumps in 
the spectrum have proved remarkably hard to  f i n d  au toma t i ca l l y .  And i f ,  f o r  
example, you miss the f i r s t  formant e n t i r e l y ,  and i d e n t i f y  the second as the 
f i r s t ,  you w i l l  almost su re l y  m i s - i d e n t i f y  the sound. An advantage of using 
the whole spectrum to  cha rac te r i ze  the sound, r a t he r  than Just the formant 
p o s i t i o n s ,  i s  tha t  i t  f a i l s  g r a c e f u l l y .  

P r a c t i c a l l y  every speech recogn i t i on  system, then, t ransforms incoming 
speech i n t o  a sequence of spectra,  and d iscards a l l  o ther  i n f o rma t l on  tha t  may 
have been present in  the speech Waveform. The vocal t r a c t  i s  regarded as a 
machine t ha t  churns out spectra,  one spectrum every 1/100 of  a second. On the 
quest ion of how a c t u a l l y  to  represent  t ha t  spectrum as a sequence of numbers, 
there  i s  no such unanimity. To begin wi th,  some systems are based on a l i n e a r  
spectrum: they d i v i de  up the spectrum i n t o  k equal i n t e r v a l s ,  f i n d  the amount 
o f  energy in  each i n t e r v a l ,  and represent  the spectrum as a sequence o f  those k 
numbers. Others are based on the oel sca le  mentioned above ( i n  desc r i b ing  the 
ac t i on  Of the ea r ) ;  the spectrum i s  d i v ided  up l i n e a r l y  in  the  range 0-I000 
hz, and l o g a r i t h m i c a l l y  from the re  on. 

(A pa ren the t i ca l  note: whi le  most r e c o g n i t i o n  systems are based on the 
spectrum, s ince i t  seems to  cha rac te r i ze  speech sounds we l l ,  some systems are 
based on more complicated func t i ons  of the incoming s i gna l ,  f u n c t i o n s  tha t  
transfom the acoust ic  s ignal  as we th ink  the ear does be fo re  sending i t  on to  
the b ra in .  The idea i s  tha t  the e a r - b r a i n  combination i s  a sp lend id  recogn izer ,  
so i f  the ear does i t ,  i t  must be a good th ing  to  do. There i s  evidence tha t  
t h i s  i s  a good d i r e c t i o n  f o r  r ecogn i t i on  research to  go in ,  but op in ion  i s  
s t i l l  d i v ided .  To keep i t  simple, I w i l l  t a l k  about systems as i f  they were a l l  
spectrum-based. In f ac t ,  except tha t  speech i s  represented d i f f e r e n t l y ,  the 
ear-model systems are j u s t  l i k e  the spectrum-based systems.) 

The time n e e d e d t o  c a l c u l a t e  the spectrum i s  of  concern to  system b u i l d e r s .  
Fo r tuna te l y ,  j u s t  when computer speech r e c o g n i t i o n  research began in  earnest~ a 
new method of  computing the f o u r i e r  spectrum was invented,  known as the Fast 
Four ie  r Transform, or FFT. The FFT i s  most e a s i l y  and r a p i d l y  computed i f  i t s  
s i ze  i s  a power of 2. I t  produces a spectrum tha t  covers the f requency range 
from 0 to  h a l f  the r a t e  at which the mpeech was sampled - -  5000 hz, i f  sampling 
i s  done 10000 t imes a second. Thus many r e c o g n i t i o n  procedures are based on a 
spectrum tha t  d i v i des  the frequency range 0-5000 i n t o  64, 128 or 256 i n t e r v a l s .  
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L inear  PFedi~t~ve Codlnq 

A development of  the ea r l y  70"s was the a p p l l c a t l o n  to  speech of Linear 
P r e d l c t i y e  Codi~Q, or LPC. Thzs process0 in use at  tha t  tlme by se ismolog is ts ,  
makes use of the no t ion  tha t  i f  we make c e r t a l n  acoust ic assumptlons about the 
machine tha t  I s  producing the speech soundam the spectrum is  very easy to  
c a l c u l a t e  - -  or more p roper l y ,  t o  approximate. LPC i s  based on the observat ion 
t h a t  the vocal t r a c t  i s  a tubep closed (most of  the time) at the g l o t t a l  end 
and open at  the l i p s  end. Such a tube can be approximated by a set of coax ia l  
cy l indermj  a l l  the same length,  but of vary ing c ross-sec t iona l  areap l l k e  t h i s .  

(S l ide  20 - -  Acoust ic  tube) 

Nobody th inks  the vocal t r a c t  a c t u a l l y  looks l i k e  t h i s ,  but acous t ic ians  
assure us tha t  the sound coming out of  a vocal t r a c t  can be dupl icated by 
i n t roduc ing  a buzz or h iss ,  as appropr ia te ,  i n t o  such a tube. For reasons not 
d e t a i l e d  here, there  should be 10 sec t ions ,  each 1.7 cm long; spec i fy ing  
the ares of  ~ach of these 10 sec t ions  complete ly  s p e c i f i e s  the q u a l i t y  of the 
output  sound - -  t h a t  i s ,  every sound i s  cha rac te r i zed  by 3ust 10 numbers. 

The LPC process can then be thought of as f o l l o w s :  Form the f o u r i e r  
spectrum of the cur ren t  centisecond of speech. Now generate a sound w i th  the 
acoust ic  tube, and form i t s  f o u r i e r  spectrum, and compare tha t  spectrum wi th  
the  spectrum of the speech sound. Do t h i s  again and again, varying the areas 
of  the tube sec t i ons ,  u n t i l  the spectrum of the o tpu t  of the tube i s  maximally 
l i k e  the spectrum of the speech sound. Charac te r i ze  the speech sound by the 10 
c r o s s - s e c t i o n a l  areas of t h i s  "best"  tube. (The LPC algor i thm i s  a c lever  
method f o r  ca r r y i ng  out in  a very short  t ime what seems l i k e  a wander through 
an i n f i n i t e  10-dimensional space.) 

The spectrum of the output of t h i s  "best"  tube i s  ca l led  the LPC spectrum. 
I t  i s  in many cases remarkably l i k e  the spectrum of the speech sound. Here i s  a 
comparison of the LPC spectrum of the sound /AA/ wi th  the f o u r i e r  spectrum of 
t h a t  sound. The LPC spectrum has captured the essen t i a l  shape, espec ia l l y  the  
fo rmants l  and remember t h a t  t h i s  spectrum i s  s p e c i f i e d  by Just 10 numbers, the  
areas of  the 10 sec t ions  Qf the tube. 

(S l ide  21 - -  LPC spectrum of /AA/) 

Here are the f o u r i e r  spectrum and LPC spectrum of the vowel /EE/. 

(S l ide  22 - -  LPC spectrum of /EE/) 

Some systems based on LPC use the 10 areas t o  charac te r i ze  the cur ren t  
speech sound, o thers  use the LPC spectrum, s t i l l  o thers  use ce r t a i n  f unc t i ons  
of  the 10 areas such as the r a t i o s  between successive areas, logar i thms of 
those r a t i o s ,  or another func t ion  ca l l ed  the F e f l e c t i o n  c o e f f i c i e n t s .  

The Cepstrum 

The spectrum i s  used because i t  seems to  r e t a i n  the l i n g u i s t i c  i n fo rmat ion  
and d iscard  the n o n - l i n g u i s t i c  i n fo rma t i on .  In many systems the recogn i t i on  
a lgo r i t hm operates not on the o r i g i n a l  spectrum (whether mel or l i n e a r ) ,  but on 
some func t ion  of  the spectrum tha t  i s  thought t o  do an even be t te r  job of  
emphasizing i n fo rma t i on  useful  in r ecogn i t i on  and d iscarding the "no ise" .  
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One such funct lon Is ca l led the ceDstrum (a coined word). The cepstrum lS 
the spectFu~ Q~ the spectrum ~actual ly  the spectrum of the logar l thm of the 
spectrum). The reasonlng behlnd the use of the cepstrum zs the f o l l o w i n g .  A 
spectrum is  • frequency analys is  - -  i~ ;s a func t lon  tha t  t e l l s  you what 
f requencles are present in • s igna l .  The spectrum of speech i s  i t s e l f  a 
s i gna l ,  a signal whose shape corresponds to  the sound, or phone, being 
produced. A frequency analysis of  that  s igna l ,  Of the spectrum, might capture 
the s a l i e n t  fea tu res  of that shape, and thus cha rac te r i ze  the phone. The more 
" ~ o e f f i ~ i ~ n t s "  one uses in forming the cepstrum, the f i n e r  the frequency 
ana lys i s  (of the speech spectrum) tha t  w i l l  r e s u l t .  Cepstrum-based r e c o g n i t i o n  
systems genera l l y  use about 15 cepst ra l  c o e f f i c i e n t s  to  represent  the speech 
spectrum. The cepstrum is  very much in vogue at present .  

Recoqnit iop AlqoFithms 

The stage i s  now set. Speech has been transformed i n t o  a sequence of 
vectors ,  One each centisecond, vectors  which are thought to  be s i m i l a r  f o r  
s i m i l a r  sounds, and d i f f e r e n t  f o r  d i f f e r e n t  sounds. For concreteness~ l e t  us 
assume that  the vectors are 15 long. A word h a l f  a second long w i l l  be 
represented by about 50 of these 15-1ong vectors .  How do we now decide what 
word i t  is? We need a recogn i t ion  a lgor i thm.  

There are two schools of thought about how a recogn i t i on  a lgo r i t hm should be 
created.  One school says, the way to  proceed from here i s  to  study the 
c h a r a c t e r i s t i c s  of these sequences of vectors ,  t o  see what common behavior  they 
have - -  what i s  Invar ian t  - -  over a l l  tokens of a p a r t i c u l a r  sound. On 
the basis of such study ru les  can then be developed, i n v o l v i n g  f e a t u r e s  (such 
as formant behavior) of the vectors in the sequence, r u l e s  t ha t  ho ld whenever 
tha t  sound i s  spoken. (This i s  very much what acoust ic  phone t i c ians  
have been t r y i n g  to do fo r  many years, l a r g e l y  through the study of sound 
spectrograms - -  the spectrogram i s ,  of  course, a v i sua l  d i s p l a y  of a sequence 
of  spect ra l  vec to rs . )  The recogn i t i on  system can then t e s t  an incoming 
u t te rance,  to  see i f  i t  i s  some p a r t i c u l a r  wordj by determ|ning (according to  
the ru les )  what the incoming sounds aree and then look ing  at  the  p ronunc ia t ion  
of  the word to see i f  the sounds are appropr ia te  t o  t ha t  word. Systems t h a t  
operate in  t h i s  way are ca l led  acous t i c -phonet lc ,  or feature-Rased systems. 

(S l ide 23 - -  schools of thought) 

The other school says no, we are not c lever  enough to  develop r u l e s  tha t  
w i l l  t e l l  us what sounds • re  being producedl we must l e t  the speech speak f o r  
i t s e l f ,  by " t r a i n i n g "  the recognizer au tomat i ca l l y .  There are t h ree  cur ren t  
methods (not e n t i r e l y  mutually exc lus ive)  f o r  doing t h i s :  

Template matching; 
S t a t i s t i c a l  modeling; 
Neural nets (which I w i l l  not d iscuss) .  

For  a long time the speech community has been s t r u g g l i n g  t o  produce a 
successful  feature-based system, and some day they w i l l .  At p resent ,  however, 
the other approaches, p a r t i c u l a r l y ,  the s t a t i s t i c a l ,  are way out in  f r o n t .  We 
are j u s t  too ignorant  to  ex t rac t  and cod i f y  the important  c lues  to  sound or 
word i d e n t i t y .  In the res t  of  t h i s  t u t o r i a l ,  then, I w i l l  not t a l k  about 
feature-based systems. 
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The templ~te-matc~anq system 

The simplest sytem Is  one in whlch there  zs a vocabulary of some number of 
words (50 i s  a common number f o r  t h l s  kind of system) and the system Is  
" t r a i n e d "  by having a t a l k e r ,  the person who w~ll  be using the system0 speak 
each of  the 50 words. The system s tores  each word as a sequence of vec tors .  
The s tored sequence is  ca l l ed  a template.  Recognl t lon i s  done by conver t lng  an 
incoming word to  a sequence of vectorsD and comparing tha t  sequence to  each of 
the templates in tu rn .  Whoever matches best against  the new sequence is  the 
winner.  

I m p l i c i t  in t h i s  desc r i p t i on  i s  the a b i l i t y  t o  ~Ind the beginnings and 
endings of incoming words. In running speech~ t h l s  i s  a very hard th ing  to  do. 
Var ious systems get around t h i s  d i f f i c u l t y  in var ious  ways - -  one way i s  t o  
have the user push a but ton before  and a f t e r  each word. Another i s  t o  have the 
user pause between words~ and use the s i l ences  t o  demarcate the words. Both 
these a l lpw the system to  be what i s  ca l l ed  an i s o l a t e d  word recogn izer  - -  the 
problem of break ing up a sentence i n t o  words does not have to  be faced. Later  
I w i l l  discuss what template-based systems do when the input  i s  so -ca l l ed  
connected speech. 

The system must have a q u a n t i t a t i v e  way of  comparing two sequences~ o f ten  
c a l l e d  a Scorinq a lqor i thm.  Let us assume t h a t  the sequences are e x a c t l y  the 
same length.  The a lgor i thm then has two pa r t s :  f i r s t ,  we must say how to  
score an element (vector )  in one sequence against  i t s  oppos i te  number in the 
other  sequence. This i s  commonly done by tak ing  the c ross-produc t  (or 
e q u i v a l e n t l y t  the sum of squared d i f f e r e n c e s ) .  Secondp given scores f o r  
i nd i v i dua l  elements of the sequence, we must compute a score f o r  the e n t i r e  
sequence; a common way i s  j u s t  t o  add the c ross -p roduc ts .  

I f  the sequences are not the same length,  we cannot compare them element by 
element. Fo r tuna te l y  there  i s  an a lgor i thm,  c a l l e d  Dynamic Time WarpinQ (DTW) 
t h a t  a l lows us to compare sequences of d i f f e r e n t  lengths .  I t  does t h i s - b y  
s t r e t c h i n g  and/or compressing the sequences so t h a t  they  are the  same lengthp 
and fur thermore the places where they are the most s i m i l a r  are l i ned  up w i th  
each o the r .  DTW has been as ton i sh i ng l y  successful  in  e l i m i n a t i n g  the t iming 
problem i n , t emp la te  matching word r e c o g n i t i o n .  

A more soph is t i ca ted  vers ion of  DTWp c a l l e d  a l ~ v e l - ~ u i l d i n q  a lgo r i thm,  a lso 
a l lows  template matching to  be used even on connected speech0 where the 
beginnings and ends of words are impossible to  f i n d .  E f f e c t i v e l y ,  DTW matches 
every sequence of words from the vocabulary w i th  the incoming u t t e rance ,  t r y i n g  
every poss ib le  t ime-warp of each word, and chooses the sequence of words tha t  
scores the best.  

This i s  a good place to  po in t  out t h a t  working speech r e c o g n i t i o n  systems do 
more than j u s t  analyze the acoust ic  s ignal  t o  determine what words have been 
spoken. Every system i s  designed t o  work in some task domain~ and every such 
domain has r e s t r i c t i o n s  tha t  l i m i t s  or a t  l eas t  change the p r o b a b i l i t y  o f ,  the 
words tha t  can appear a t  any p a r t i c u l a r  place in  a sentence. These 
r e s t r i c t i o n s  inc lude qram~r~ semantics, sub jec t  ma t te r ,  and what i s  ca l l ed  
praqmatics - -  the p a r t i c u l a r  s i t u a t i o n  or mode the t a l k e r  i s  in ~such as the 
what he said in  h i s  prev ious sentence).  A l l  these sources of  kno~ledqe are 
b u i l t  i n t o  the system to  the g rea tes t  poss ib le  degreew and have a tremendous 
e f f e c t  on the a b i l i t y  of the system to  recognize words. 
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The system as so far  described Is  s t i l l  s u l t a b l e  f o r  only one ta l l ,  er - -  I t  
was t r a i ned  by only one t a l k e r ,  and one t a l k e r ' s  templates may not be s u l t a b l e  
f o r  recogniz ing another t a l k e r ' s  words: as the Peterson-Barney diagram shows, 
the two t a l k e r s  may have t h e i r  formants in d i f f e r e n t  places even when they are 
maklng exac t l y  the same sound. Template-based systems a t tack  t h i s  problem in 
two ways: one i s  to  gather several  (4 to  b) templates of  each word from each of 
several  t a l k e r s ,  and use them a l l  dur ing r e c o g n i t i o n .  Another i s  t o  gather 
such templates,  and then make an average template,  or a few average templates l  
perhaps one fo r  men and one f o r  women. These are the cur ren t  s t a t e - o f - t h e - a r t  
methods of copihg with the spect ra l  v a r i a b l l i t y  problem in template-based 
speech recognit%on. 

Phone and Phoneme Templates 

A v a r i a n t ,  or re f inement ,  of the template-matching system i s  a system in 
which phone~ or, phonemEs , ra the r  than words, are the u n i t s  t ha t  are templated.  
An obvious a t t r a c t i o n  of t h i s  idea i s  t ha t  no matter  what the vocabulary ,  the 
phonemes are f i x e d  - -  there i s  on ly  a small f i n i t e  number of them t o  " l e a r n " .  
I f  we had a template fo r  every phoneme, and could recognize phonemes as they 
occurred,  we would be j u s t  where the acoust ic  phonet ic ians  wanted t o  be - -  we 
could search the vocabulary t o  see what word (when pronounced) best matches the 
incoming s t r i n g  of  phonemes. With a reasonable s ize of  vocabulary,  we could 
even t o l e r a t e  a f a i r  amount of ga rb l i ng ,  or at l eas t  u n c e r t a i n t y  of  
i d e n t i f i c a t i o n .  But e~en f o r  a s i ng le  speaker, t h i s  approach has not been 
f r u i t f u l .  Phones and phonemes undergo rad i ca l  changes in p ronunc ia t i on  due t o  
con tex t  ( c o a r t i c u l a t i o n  e f f e c t s ) ,  speed, loudness, and other  e f f e c t s .  Many of 
the r u l e s  governing these changes ("phonological  r u l e s " }  are known, but even 
so, u n i t s  t h i s  small are c u r r e n t l y  too hard t o  i d e n t i f y  r e l i a b l y .  

I t  has been suggested (o f ten)  t ha t  a template-matching system based on the 
s y l l a b l e  would be a proper compromise between words and phones. Againp no 
mat ter  what the vocabu~ary, the number of  s y l l a b l e s  i s  f i n i t e  - -  but  very 
l a rge  (several thousand) in  Eng l ish .  Both the d i f f i c u l t y  of  d i s t i n g u i s h i n g  
among So many i tems, and the f a c t  t h a t  a l o t  o f  memory i s  needed t o  s t o r e  so 
many templates,  have discouraged Western researchers from pursuing t h i s  
approach. I t  i s  more s u i t a b l e  t o  Japanese, however, which has about 1OO 
s y l l a b l e s  - -  and in f a c t  i s  being t r i e d  in Japan. 

S t a t i s t i c a l  Modelinq - -  Today's Leader 

The phi losophy behind the s t a t i s t i c a l  model system i s  the f o l l o w i n g .  We are 
too  ignorant  t o  spec i fy  ru les  f o r  determin ing,  from a spectrum or sequence of 
spect ra(  what sound i s  generated. Word templates are imprac t i ca l  because the 
v a r i a b i l i t y  in pronunc ia t ion i s  so great  - -  i t  would take too many of  them to  
cover a l l  the p o s s i b i l i t i e s .  Phoneme templates have not worked. But somehow 
the b ra in  learns to  i d e n t i f y  a sound a f t e r  exposure t o  many examples of  t h a t  
sound (and other sounds). Therefore the sequence of  spect ra  rep resen t ing  t h a t  
sound has s t a t i s t i c a l  p rope r t i e s  t h a t  serve t o  d i s t i n g u i s h  i t  from other  
sounds. We w i l l  t r y  t o  get at  the  s t a t i s t i c a l  p r o p e r t i e s  of  the sounds by 
imagining tha t  they were produced by a very simple machine; we w i l l  assume a 
form f o r  t ha t  machine, and then es t imate  i t s  parameters by s t a t i s t i c a l  
es t ima t i on  from a large amount of  actual  speech. 
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The c u r r e n t l y  most popular (and successful) s t a t i s t i c a l  model i s  the H1ddpn 
Markov Model, or H_.~. By way of I n t roduc t l on  to  s t a t l s t l c a l  modellng, and 
before  descr ib ing a HMM, I w i l l  descr;be a s:mpler s t a t i s t l c a l  model. To fi>: 
Ideas, l e t  us assume t h a t  Engllsh has 99 phones, labeled PI ,  P2, . . .  , PQg. 
And assume t h a t  we know how to  seqment speech i n t o  i nd i v i dua l  phones. 

Imagine tha t  the re  ; s  a large urn f u l l  o4 phones, spoken by l o t s  of people. 
D i f f e r e n t  phones are present In d l f f e r e n t  numbers - -  l o t s  of some, not so many 
of  o thers .  Our model of speech product lon w i l l  be: Speech i s  generated by 
drawing phones ( independent ly)  out of the urn and concatenat ing them. 

We want to  bu i l d  a recognizer  based on t h i s  model. We must f i r s t  f i n d  out 
what each of the phones looks l i k e  in a s t a t i s t i c a l  sense. To do t h i s ,  we 
c o l l e c t  a l o t  of speech under con t r o l l ed  circumstances; s ince we know exac t l y  
what was said,  we can d i v i de  i t  up i n to  known phones. We then b r ing  together  
a l l  examples of a given phone (reduced to  sequences of  15-long v e c t o r s ) !  i f  the 
average phone i s  10 vec to rs  long, and there are 200 samples of  a given phone, 
there  are 2000 vec to rs  a l l  belong;ng t o  t ha t  phone. We compute the mean and 
var iance of those 2000 vec tors  - -  tha t  mean and var iance w i l l  be our 
s t a t i s t i c a l  model f o r  t ha t  phone. I f  we do t h i s  f o r  a l l  99 phones, we w i l l  
have 99 means and var iances - -  a s t a t i s t i c a l  desc r i p t i on  of  the imaginary 
machine tha t  produces speech. We have t ra ined  the model. 

Now we can use t h i s  model t o  i d e n t i f y  an incoming word. We segment the word 
i n t o  phones - -  but we don ' t  yet  know what phones they are.  A t y p i c a l  phone is  
perhaps 10 vec to rs  long. There i s  a standard s t a t i s t i c a l  technique ; o r  then 
c a l c u l a t i n g  the p r o b a b i l i t y  t ha t  those 10 vec tors  a l l  belong t o  P1, t o  P2, e t c .  
That i s ,  we can a t tach  99 p r o b a b i l i t i e s  to  the incoming phone, one f o r  each 
phone in the model. Hopefu l l y ,  one of them i s  very large and the r e s t  are very 
smal l .  At any r a t e ,  our choice f o r  the incoming phone i s  the model phone wi th  
the l a rges t  p r o b a b i l i t y .  

When the word i s  a l l  i n ,  the recognizer has produced a sequence of  phone 
l abe l s  That sequence can then be compared wi th  the words i n  the vocabulary t o  
see what word the recogn izer  th inks  i s  most l i k e l y .  

Models l i k e  t h i s  have been used with some success. Such a model i s  very 
l i k e  the model where the re  i s  a template,  or several  templates,  f o r  each phone, 
but here the " templa te"  i s  s t a t i s t i c a l .  A rea l  problem wi th  such a model i s  
t ha t  we must be able t o  segment the t r a i n i n g  set i n t o  phones, in  order t o  
c o l l e c t  together  a l l  examples of each phonel and then we must be able to  
segment the unknown, incoming word I n t o  phones. The bu i l d i ng  of the t r a i n i n g  
set i s  p a i n f u l ,  and the segmentation of unknown words i s  very hard. and i s  a 
major source of  e r r o r  in  such a recogn i t i on  system. 

The Hidden Markov Model, as used ~n speech r e c o g n i t i o n ,  overcomes these 
d i f f i c u l t i e s .  We imagine qu i te  a d i f f e r e n t  machine as the speech generator .  

The machine has two pa r t s .  The f i r s t  pa r t  determines what s t a t e  the 
machine i s  in .  We are f r e e  to  imaglne how many " s t a tes "  the machine has - -  t o  
f i x  ideas, l e t  us say the re  are 5 of them, labeled $1 to  $5. This pa r t  of the 
machine has a cent lsecond c lock and a p r o b a b i l i s t i c  chanqe r u l e ;  the machine 
s t a r t s  in s t a t e  SI ,  and every centisecond i t  consu l ts  the r u l e  t o  see i f  i t  i s  
t ime f o r  a change. I f  so, i t  changes to  s t a t e  $2. I t  cont inues t h i s  process 
u n t i l  i t  has gone through $3~ $4~ and $5. When i t  leaves $5, i t  stops. 
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A common v a r l a t l o n  of t h l s  math:he a l lows the machine to  sk lp  a state~ when 
l e a v l n g  S3t f o r  example I t  may go e : t he r  t o  $4 (w~th a cer tazn  t r a n s l t : o n  
0 r o b a b l l i ~ y  P34) or to  $5 ~w~th p r o b a b i l l t y  P35). P34 and P~5 must of course 
add t o  I .  Such a machine can be d:agrammed l i k e  th is~ 

( S l i d e  24 - -  f l n i t e  s ta te  machine~ 

The c l r c l e s  are the state~.  The arrows show what change of s t a t e  can occur 
at  each t i c k  of the c lock.  The re~en t ran t  arrows show what happens when the 
change r u l e  does not ca l l  f o r  a change - -  the machine s tays  i n  the same s t a t e .  
The o the r  arrows show what happens when the s t a t e  changes - -  the machine can 
advance e i t h e r  one or two s ta tes ,  and the l a b e l s  on the advance arrows are the 
p r o b a b i l i t i e s  of  the two advances. 

So f a r  no "speech" has been generated. That happens in the second pa r t  of 
the machiner which works as fo l l ow~.  There are 5 urns of  sounds, labe led UI t o  
U5, one urn f o r  each s ta te  of the f i r s t  pa r t  o f  the  machine. (You can t h i n k  of 
the  con ten t s  of  the urns as phones, a l though they  d o n ' t  have t o  be phones.} 
Since we rep resen t  sounds as 15-dimensional v e c t o r s ,  what i s  a c t u a l l y  in  urn 
U3, f o r  example, i s  a c o l l e c t i o n  of vec to rs  w i t h  a c e r t a i n  mean M3 and var iance  
V3. To make the model mathematical ly t r a c t a b l e ,  we assume t ha t  the vec to rs  are 
Normal ly  d i s t r i b u t e d .  

The second p a r t  of the machine operates o f f  t he  same cent isecond c lock  as 
the  f i r s t  p a r t .  At each t i c k ,  i t  se lec ts  a t  random a sound (vec to r )  from the 
urn cor respond ing  to  the s ta te  of the f i r s t  p a r t  o f  t he  machine. I f  the f i r s t  
p a r t  i s  i n  s t a t e  $2, the second par t  makes a random drawing from urn U2. The 
v e c t o r  t h a t  i s  drawn is  def ined to  be the "speech" t h a t  i s  put out by the 
machine a t  the cu r ren t  clock t i c k .  A "word" then i s  a succession of vec to rs ,  
f i r s t  some from U1, then some from U2, U3, U4, and U5 (except t h a t  an urn may 
be s k i p p e d l .  

The "Hidden" in  t h i s  model refer 's  t o  the  f a c t  t h a t  the  S ta te  of the f i r s t  
p a r t  o f  t he  machine, and t he re fo re  the i d e n t i t y  o f  the  urn t ha t  i s  drawn from 
by the second p a r t ,  i s  hidden from us; we see o n l y  the vec to rs  t h a t  are drawn 
from whatever urn i t  was. The "Mar kov" i s  a mathematical term having t o  do 
w i t h  how successor s ta tes  are ( p r o b a b i l i s t i c a l l y }  chosen by the f i r s t  pa r t  of  
the  machine. 

Now what i s  the po in t  of such a model? I t  i s  t h i s .  Suppose we assign some 
p r o b a b i l i t e s  t o  the 5 t r a n s l t l o n s  of pa r t  one ( i n c l u d i n g  the p r o b a b i l i t y  of no 
t r a n s i t i o n  at  a l l ) ,  and to the 5 means and va r i ances  of  pa r t  two. And suppose 
we c o l l e c t  a l a r g e  number of tokens of some word~ which now do not  need to  be 
segmented as they  were in the phone model descr ibed  e a r l i e r .  In the jargon of  
HMM, t h i s  c o l l e c t i o n  of tokens i s  ca l l ed  the  O~seryatictJ~S. Then the re  i s  a 
s t a t i s t i c a l  techn ique fo r  c a l c u l a t i n g  the p r o b a b i l i t y ,  g iven the Observat ions,  
t h a t  t he  parameters we have assigned t o  the  machine are c o r r e c t .  Fu r the r ,  
t h e r e  i s  an a l go r i t hm  tha t  a l lows us t o  do a wonder fu l  t h i n g .  Based on the 
Observa t ions ,  and on the cur ren t  parameters o f  t he  machine, one a p p l i c a t i o n  of  
the  a l g o r i t h m  w i l l  produce a new set of parameters t h a t  i s  guaranteed t o  be 
more l i k e l y  than the set we s ta r ted  w i th .  I f  we app ly  t h i s  a l go r i t hm  
r e p e a t e d l y  we w i l l  °'climb" to  a set of parameters f o r  our machine t h a t  i s  
ma~imal ly l i k e l y  t o  be corrects g iven the Observa t ions .  This set  of parameters 
- -  t r a n s i t i o n  p r o b a b i l i t i e s  and 5 means and va r i ances  - -  i s  our s t a t i s t i c a l  
model f o r  the  word we co l l ec ted .  
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Speech Tu to r i a l  

Note tha t  no segmentation, and no I d e n t l f i c a t l o n  of phones, was necessary. 
This process i s  repeated for  each word in  the vocabulary - -  a l l  we need i s  many 
tokens of each word to p roper ly  t r a i n  the model. The set of a l l  word-models, 
one f o r  each word in the vocabulary,  i s  our s t a t i s t z c a l  model of speech. 

Recognlt ion proceeds j u s t  as zt  did f o r  the previous s t a t i s t i c a l  model. 
each word-model we c a l c u l a t e  the p r o b a b i l i t y  t ha t  the incoming word was 
produced by that  model; i f  there  are 50 words In the vocabulary, we get 50 
p r o b a b i l i t y  est imates,  one f o r  each word-model. Hopefu l ly  the one w i th  the 
h ighest  p r o b a b i l i t y  i s  the word t h a t  was a c t u a l l y  spoken. 

For  

An advantage of the HMM, as has been noted, i s  t ha t  we need not do any 
segmentation of the t r a i n i n g  c o l l e c t i o n ,  or of the incoming word. There are 
disadvantages, too.  For one t h i ng ,  we must assume tha t  every word, of  whatever 
leng th ,  has the same number of s t a t e s .  For another ,  we can never know what the 
s t a t e s  r e a l l y  mean; o f t en ,  i f  you look at  the i m p l i c i t  segmentation (change of  
s t a t e )  you w i l l  recognize l i n g u i s t i c  c lasses,  but not always. This i s  not a 
mathematical dlsadvantage, but i t  leaves the user somewhat u n s a t i s f i e d .  

The Form of a Speech Recoqnit ion System 

You w i l l  be hearing about many r e c o g n i t i o n  systems, a l l  d i f f e r e n t  but a l l  
having the same general form. You could probably draw t h i s  diagram y o u r s e l f  by 
now, but here i s  the gener ic Speech Recogni t ion System. 

(S l ide 25 - -  Speech Recognit ion System) 

Sources of V a r i a ~ i l i t ~  

You cannot be allowed to  proceed from t h i s  t u t o r i a l  t o  the r e s t  of t h i s  
meeting th ink ing  tha t  these systems have an easy t ime of i t .  I f  every phone, 
or  o ther  sound u n i t ,  gave r i s e  t o  j u s t  one spectrum, speech r e c o g n i t i o n  would 
be simple and successfu l .  U n f o r t u n a t e l y  t he re  i s  tremendous v a r i a b i l i t y  in  how 
spect ra  can I o ok f o r  a given sound, and in  how a sequence of  spect ra  can look 
f o r  a given word. Here are some of the sources Of v a r i a b i l i t y  t h a t  plague 
b u i l d e r s  of  speech recogn i t i on  systems: 

(S l ide  26 - -  Sources of v a r i a b i l i t y )  

Size, sex, and age of the t a l k e r  - -  men, women, ch i ld ren  and the aged have 
very d i f f e r e n t  spectra f o r  a given vowel, and even w i t h i n  one of these groups 
there  i s  considerable v a r l a t i o n ;  

D ia l ec t  - -  can have a gross e f f e c t  on c e r t a i n  sounds; 
Loudness, emotion, vocal e f f o r t  - -  a l l  a f f e c t  formant s ize and p o s i t i o n ;  
C o a r t i c u l a t i o n  - -  phoneme p ronunc ia t i on  depends on what i t s  neighbors ares 
Speech ra te ,  loudness, hea l th  - -  a f f e c t  p ronunc ia t ion  and sound qual i tyS 
Channel - -  the t ransmission path between t a l k e r  and l i s t e n e r  (or r e c o g n i t i o n  

device) - -  o f ten  changes the gross shape or t i l t  of  the spectrum (but usua l l y  
doesn ' t  a f f e c t  formant p o s i t i o n s  g r e a t l y )  S 

Noise - -  masks the small r i p p l e s  in the  spectrum, and even some big ones. 

Human l i s t e n e r s  do j u s t  f i n e  in  s p i t e  o f  a l l  t h i s  v a r i a b i l i t y ,  but we are a 
long way from understanding how they do i t ,  and a long way from bu i l d i ng  speech 
recogn izers  tha t  can r e a l l y  cope w i th  i t .  
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