
The Problem of Comput ing the Most Probable Tree in
Data-Oriented Parsing and Stochastic Tree G r a m m a r s

Rens Bod
Institute for Logic, Language and Computation

Department of Computational Linguistics
University of Amsterdam

Spuistraat 134, 1012 VB Amsterdam
The Netherlands

rens@mars.let.uva.nl

Abstract

We deal with the question as to whether there
exists a polynomial time algorithm for computing
the most probable parse tree of a sentence generated
by a data-oriented parsing (DOP) model. (Scha,
1990; Bod, 1992, 1993a). Therefore we describe
DOP as a stochastic tree-substitution grammar
(STSG). In STSG, a tree can be generated by
exponentially many derivations involving different
elementary trees. The probability of a tree is equal
to the sum of the probabil i t ies of all its
derivations.

We show that in STSG, in contrast with
stochastic context-free grammar, the Viterbi
algorithm cannot be used for computing a most
probable tree of a string. We propose a simple
modification of Viterbi which allows by means of
a " s e l e c t - r a n d o m " search to es t ima te the most
probable tree of a string in polynomial time.

Experiments with DOP on ATIS show that
only in 68% of the cases, the most probable
derivation of a string generates the most probable
tree of that string. Therefore, the parse accuracy
obtained by the most probable trees (96%) is
dramatically higher than the parse accuracy obtained
by the most probable derivations (65%).

It is still an open question whether the
mos t p robab le tree of a string can be
deterministically computed in polynomial time.

1 Data-Oriented Parsing

A Data-Oriented Parsing model (Scha, 1990; Bod,
1992, 1993a) is characterized by a corpus of analyzed
language utterances, together with a set of operations
that combine sub-analyses from the corpus into new
analyses. We will limit ourselves in this paper to
corpora with purely syntactic annotations. For the
semantic dimension of DOP, the reader is referred to
(van den Berg et al., 1994). Consider the imaginary
example corpus consisting of only two trees in figure
1. We will assume one operation for combining
subtrees. This operation is called "composition", and
is indicated by the infix operator o. The composition

of t and u, tou, yields a copy of t in which its
leftmost nonterminal leaf node has been identified

with the roof node of u (i.e., u is subs t i tu ted on the
leftmost nonterminal leaf node of t). For reasons of
simplicity we will write in the following (tou)ov as:

louov.

S S

A
NP VP
I A uP

,hov I
I ,.o w

w = . A v / : , ; A
A A i. ,Loo.oc o.oo o . o

the dress P NP

I / N on the rack

Figure 1. Example corpus of two trees.

Now the (ambiguous) sentence "She displayed the
dress on the table" can be parsed by combining
subtrees from the corpus. For instance:

S o NP o

A /<, "A
ip V ~ the dress on I the table

she VP PP

A
V NP

I
displayed

NP VP

she Via pp

/
displa~ the dress on the table

Figure 2. Derivation and parse tree for "She displayed the
dress on the table"

104

As the reader may easily ascertain, a different
derivation may yield a different parse tree. However, a
different derivation may also very well yield the same
parse tree; for instance:

S o VP o NP

NP VP the dress

displayed
she VP PP

p NP

on the table

Figure 3. Different derivation generating the same parse
tree for "She displayed the dress on the table"

Or

S o VP o NP

NP VP VP pp the dress

I / x / x ,
she V NP p I ~ P

displ!yed !n the t a b l e / N

Figure 4. Another derivation generating the same parse
tree for "She displayed the dress on the table"

Thus, a parse tree can have several derivations
involving different subtrees. Using the corpus for our
stochastic estimations, we estimate the probability of
substituting a certain subtree on a specific node as the

p r o b a b i l i t y of selecting this subtree among all
subtrees in the corpus that could be substituted on
that node. 1 The probability of a derivation can be
computed as the product of the probabilities of the
substitutions that it involves. The probability of a
parse tree is equal to the probability that any of its
derivations occurs, which is the sum of the
probabilities of all derivations of that parse tree.
Finally, the probability of a word string is equal to
the sum of the probabilities of all its parse trees.

2 D O P as a Stochast ic Tree-
Subst i tut ion G r a m m a r

In order to deal with the problem of computing the
most probable parse tree of a string, it is convenient
to describe DOP as a "Stochastic Tree-Substitution
Grammar" (STSG). STSG can be seen as a
generalization over DOP, where the elementary tree S
of STSG are the subtrees of DOP, and the
probabil i t ies of the e lementary trees are the

1Very small frequencies are smoothed by Good-Turing.

substi tution-probabili t ies of the corresponding
subtrees o fDOP (Bod, 1993c).

A Stochastic Tree-Substi tut ion G r a m m a r G is a five-
tuple < VN, VT-, S, R, P> where
Vu is a finite set of nonterminal symbols.
Vr is a finite set of terminal symbols.
S ~ VN is the distinguished symbol.
R is a finite set of elementary trees whose top nodes
and interior nodes are labeled by nonterminal symbols
and whose yield nodes are labeled by terminal or
nonterminal symbols.
P is a function which assigns to every elementary tree
t ~ R a probability p(t) . For a tree t with a root a ,
p(t) is interpreted as the probability of substituting t
on a. We require, therefore, that 0 < p(t) <- 1 and

~-~t:root(t)=Ct p(t) = 1.

If t l and t2 are trees such that the l e f t m o s t
nonterminal yield node of t l is equal to the root of t2,

then t lot 2 is the tree that results from substituting t 2

for this leftmost nonterminal yield node in t l . T he

partial function o is called le f tmost subst i tut ion. For
reasons of conciseness we will use the term
substitution for leftmost substitution.

A leftmost derivation generated by an STSG G
is a tuple of trees <t 1 tn> such that t I t n are
elements of R, the root of t I is labeled by S and the
yield of t l otn is labeled by terminal symbols. The

set of leftmost derivations generated by G is thus
given by Derivat ions(G) = { <t I tn> I t l tn ~ R

^ r o o t (t 1) = S A y i e l d (t l o . . . o t n) ~ Vr +}. For
convenience we will use the term derivation for
leftmost derivation. A derivation <tl tn> is called
a derivation of tree T, iff tlo...ot n = T. A derivation
< t l tn> is called a derivation of string s, iff
yield(t1 °tn) = s. The probability of a derivation

<t I in> is defined as p (t l) • ... • p(tn) .
A parse tree generated by an STSG G is a tree

T such that there is a derivation < t l t n>

D e r i v a t i o n s (G) for which t l tn = T. The set of
parse trees, or tree language, generated by G is given
byParses(G) = { T I 3 <t I tn> ~ Der i va t ions (G) :

t l tn = T}. For reasons of conciseness we will
often use the terms p a r s e or tree for a parse tree. A
parse whose yield is equal to string s, is called a parse
of s. The probability of a parse is defined as the sum
of the probabilities of all its derivations.

A s t r i n g generated by an STSG G is an
element of Vr + such that there is a parse generated by
G whose yield is equal to the string. The set of
strings, or string language, generated by G is given
by Str ings(G) = {sl 3 T : T ~ Par se s (G) ^ s =
yield(T)}. The probability of a string is defined as the
sum of the probabilities of all its parses. This means
that the probability of a string is also equal to the
sum of the probabilities of all its derivations.

105

3 For the input string abcd, the following derivation
forest is then obtained:

C o m p u t i n g a most probable
parse tree in S T S G

In order to deal with the problem of computing the
most probable parse tree of a sentence, we will
distinguish between parsing and disambiguation. By
parsing we mean the creation of a parse forest for an
input sentence. By disambiguation we mean the
selection of the most probable parse 2 from the forest.
The creation of a parse forest is an intermediate step
for computing the most probable parse.

3.1 Parsing

From the way STSG combines elementary trees by
means of substitution, it follows that an input
sentence can be parsed by the same algorithms as
(S)CFGs. Every elementary tree t is used as a
context-free rewrite rule root(t) --~ yield(t). Given a
chart parsing algorithm, an input sentence of length n
can be parsed in n 3 time.

In order to obtain a chart-like forest for a
sentence parsed in STSG, we need to label the well-
formed substrings in the chart not only with the
syntactic categories of that substring but with the full
elementary trees t that correspond to the use of the
derived rules root(t) ---~yield(t). Note that in a chart-
like forest generated by an STSG, different derivations
that generate a same tree do not collapse. We will
therefore talk about a derivation forest generated by an
STSG (cf. Sima'an et al., 1994).

The following formal example illustrates
what a derivation forest of a string may look like. In
the example, we leave out the probabilities, which are
needed only in the disambiguation process. The visual
representation comes from (Kay, 1980): every entry
(i,j) in the chart is indicated by an edge and spans the
words between the i-th and the j - th position of a
sentence. Every edge is labeled with the elementary
trees that denote the underlying phrase. The example-
STSG consists of the following elementary trees:

S

/Xc
AB

/Xc

S S A A

A
d c a b

B B C

A A I
a b d

Figure 5. Elementary trees of an example-STSG

2 Although theoretically there can be more than one
most probable parse for a sentence, in practice a system
that employs a non-trivial treebank tends to generate
exactly one most probable parse for a given input
sentence.

s /k

Ac.A A/k • ~ X.c C.
/ ~ . : • I

• ~ " .

tt a 1 b 2 ¢ 3 4 4

Figure 6. Derivation forest for abed

Note that different derivations in the forest generate
the same tree. By exhaustively unpacking the forest,
four different derivations generating two different trees
are obtained. We may ask whether we can pack the
fores t by co l laps ing spur ious der iva t ions .
Unfortunately, no efficient procedure is known that
accomplishes this (remember that there can be
exponentially many derivations for one tree).

3.2 Disambiguation

Cubic time parsing does not guarantee cubic time
disambiguation, as a sentence may have exponentially
many parses and any such parse may have
exponentially many derivations. Therefore, in order to
find the most probable parse of a sentence, it is not
efficient to compare the probabilities of the parses by
exhaust ively unpacking the chart. Even for
determining the probability of one parse, it is not
efficient to add the probabilities of all derivations of
that parse.

3.2.1 Viterbi optimization is not feasible
for finding the most probable parse

There exists a heuristic optimization algorithm,
known as Viterbi optimization, which selects on the
basis of an SCFG the most probable derivation of a
sentence in cubic time (Viterbi, 1967; Fujisaki et al.,
1989; Jelinek et al., 1990). In STSG, however, the
most probable derivation does not necessarily generate
the most probable parse, as the probability of a parse
is defined as the sum of the probabilities of all its
derivations. Thus, there is an important question as to
whether we can adapt the Viterbi algorithm for finding
the most probable parse.

To understand the difficulty of the problem,
we look in more detail at the Viterbi algorithm. The
basic idea of the Viterbi algorithm is the early
pruning of low probabili ty subderivations in a
bottom-up fashion. Two different subderivations of
the same part of the sentence and whose resulting

106

subparses have the same root can both be developed
(if at all) to derivations of the whole sentence in the
same ways. Therefore, if one of these two
subderivations has a lower probability, then it can be
eliminated. This is illustrated by a formal example in
figure 7. Suppose that during bottom-up parsing of
the string abcd the following two subderivations dl
and d2 have been generated for the substring abc.
(Actually represented are their resulting subparses.)

A A

A \ , a b e
Figure 7. Two subparses for the string abcd

If the probability of dl is higher than the probability
of d2, we can eliminate d2 if we are only interested in
finding the most probable derivation of abcd. But if
we are interested in finding the most probable parse of
abcd (generated by STSG), we are not allowed to
eliminate d2. This can be seen by the following.
Suppose that we have the additional elementary tree
given in figure 8.

S

a

Figure 8. Elementary tree.

This elementary tree may be developed to the same
tree that can be developed by d2, but not to the tree
that can be developed by dl. And since the probability
of a parse tree is equal to the sum of the probabilities
of all its derivations, it is still possible that d 2
contributes to the generation of the most probable
parse. Therefore we are not allowed to eliminate d2.

This counter-example does not prove that
there is no heuristic optimization that allows
polynomial time selection of the most probable parse.
But it makes clear that a "select-best" search, as
accomplished by Viterbi, is not adequate for finding
the most probable parse in STSG. So far, it is
unknown whether the problem of finding the most
probable parse in a deterministic way is inherently
exponential or not (cf. Sima'an et al., 1994). One
should of course ask how often in practice the most
probable derivation produces the most probable parse,
but this can only be answered by means of
experiments on real life corpora. Experiments on the
ATIS corpus (see session 4) show that only in 68%
of the cases the most probable derivation of a sentence
generates the most probable parse of that sentence.
Moreover, the parse accuracy obtained by the most
probable parse is dramatically higher than the parse

accuracy obtained by the parse generated by the most
probable derivation.

3.2.2 Estimating the most probable parse
by Monte Carlo search

We will leave it as an open question whether the most
probable parse can be deterministically derived in
polynomial time. Here we will ask whether there
exists a polynomial time approximation procedure
that estimates the most probable parse with an
estimation error that can be made arbitrarily small.

We have seen that a "select-best" search, as
accomplished by Viterbi, can be used for finding the
most probable derivation but not for finding the most
probable parse. If we apply instead of a select-best
search, a "select-random" search, we can generate a
random derivation. By iteratively generating a large
number of random derivations we can estimate the
most probable parse as the parse which results most
often from these random derivations (since the
probability of a parse is the probability that any of its
derivations occurs). The most probable parse can be
estimated as accurately as desired by making the
number of random samples as large as desired.
According to the Law of Large Numbers, the most
often generated parse converges to the most probable
parse. Methods that estimate the probability of an
event by taking random samples are known as Monte
Carlo methods (Hammersley & Handscomb, 1964). 3

The selection of a random derivation is
accomplished in a bottom-up fashion analogous to
Viterbi. Instead of selecting the most probable
subderivation at each node-sharing in the chart, a
random subderivation is selected (i.e. sampled) at each
node-sharing (that is, a subderivation that has n times
as large a probability as another subderivation should
also have n times as large a chance to be chosen as
this other subderivation). Once sampled at the S-node,
the random derivation of the whole sentence can be
retrieved by tracing back the choices made at each
node-sharing. Of course, we may postpone sampling
until the S-node, such that we sample directly from
the distribution of all S-derivations. But this would
take exponential time, since there may be
exponentially many derivations for the whole
sentence. By sampling bottom-up at every node where
ambiguity appears, the maximum number of different
subderivations at each node-sharing is bounded to a
constant (the total number of rules of that node), and
therefore the time complexity of generating a random
derivation of an input sentence is equal to the time
complexity of finding the most probable derivation,
O(n3). This is exemplif ied by the following
algorithm.

3 Note that Monte Carlo estimation of the most probable
parse is more reliable than the estimation of the most
probable parse by generating the n most probable
derivations by Viterbi, since it might be that the most
probable parse is exclusively generated by many low
probable derivations. The Monte Carlo method is
guaranteed to converge to the most probable parse.

107

Sampling a random 0¢riva~ion from a derivation forest
Given a derivation forest, of a sentence of n words,
consisting of labeled entries (i,j) that span the words
between the i-th and the j-th position of the sentence.
Every entry is labeled with linked elementary trees,
together with their probabilities, that constitute
subderivat ions of the underlying subsentence.
Sampling a derivation from the chart consists of
choosing at every labeled entry (bottom-up, breadth-
fu'st) a random subderivation of each root-node:

fo rk := 1 t o n d o
fo r i := 0 to n-k do

for chart-entry (i,i+k) do
for each root-node X do

select 4 a random subderivation of root X
eliminate the other subderivations

We now have an algorithm that selects a random
derivation from a derivation forest. Converting this
derivation into a parse tree gives a first estimation for
the most probable parse. Since one random sample is
not a reliable estimate, we sample a large number of
random derivations and see which parse is generated
most frequently. This is exemplified by the following
algorithm. (Note that we might also estimate the
most probable der iva t ion by random sampling,
namely by counting which derivation is sampled most
often; however, the most probable derivation can be
more effectively generated by Viterbi.)

Eslimating the most probable parse (MPP)
Given a derivation forest for an input sentence:

repeat until the MPP converges
sample a random derivation from the forest
store the parse generated by the random derivation
MPP := the most frequently occurring parse

There is an important question as to how long the
convergence of the most probable parse may take. Is
there a tractable upper bound on the number of
derivations that have to be sampled from the forest
before stability in the top of the parse distribution
occurs? The answer is yes: the worst case time
complexity of achieving a maximum estimation error
e by means of random sampling is O(e-2),
independently of the probability distribution. This is a
classical result from sampling theory (cf. Hammersley
and Handscomb, 1964), and follows directly from
Chebyshev's inequality. In practice, it means that the

4 Let { (e 1, Pl) , (e2, P2) (en, Pn) } be a probability
distribution of events el , e2, ..., en; an event e i is said to
be randomly selected iff its probability of being selected
is equal to Pi. In order to allow for "direct sampling", one
must convert the probability distribution into a
corresponding sample space for which holds that the
frequency of occurrence 3] of each event e i is a positive
integer equal to Npi, where N is the size of the sample
space.

error e is inversely proportional to the square-root of
the number of random samples N and therefore, to
reduce e by a factor of k, the number of samples N
needs to be increased k2-fold. In practical experiments
(see §4), we will limit the number of samples to a
pre-determined, sufficiently large bound N.

What is the theoretical worst case time
complexity of parsing and disambiguation together?
That is, given an STSG and an input sentence, what
is the maximal time cost of finding the most probable
parse of a sentence? I f we use a CKY-parser, the
creation of a derivation forest for a sentence of n
words takes O(n 3) time. Taking also into account the
size G of an STSG (defined as the sum of the lengths
of the yields of all its elementary trees), the time
complexi ty of creating a derivat ion forest is
proportional to Gn 3. The t ime complexi ty of
disambiguation is both proportional to the cost of
sampling a derivation, i.e. Gn 3, and to the cost of the
convergence by means of iteration, which is e -2. Tiffs
means that the time complexity of disambiguation is
given by O(Gn3e-2). The total time complexity of
parsing and disambiguation is equal to O(Gn 3) +
O(Gn3e -2) = O(Gn3e'2). Thus, there exists a tractable
procedure that estimates the most probable parse of an
input sentence.

Notice that although the Monte Carlo
disambiguat ion algori thm est imates the mos t
probable parse of a sentence in polynomial time, it is
not in the class of polynomial time decidable
algorithms. The Monte Carlo algorithm cannot decide
in polynomial time what is the most probable parse;
it can only make the error-probability of the estimated
most probable parse arbitrarily small. As such, the
Monte Carlo algorithm is a probabilistic algorithm
belonging to the class of Bounded error Probabilistic
Polynomial time (BPP) algorithms.

We hypo thes i ze that M o n t e Car lo
disambiguation is also relevant for other stochastic
grammars. It turns out that all stochastic extensions
of CFGs that are stochastically richer than SCFG
need exponential time algorithms for finding a most
probable parse tree (cf. Briscoe & Carroll, 1992;
Black et al., 1993; Magerman & Weir, 1992; Schabes
& Waters, 1993). To our knowledge, it has never
been studied whether there exist BPP-algorithms for
these models. Alhough it is beyond the scope of our
research, we conjecture that there exists a Monte
Carlo disambiguation algorithm for at least Stochastic
Tree-Adjoining Grammar (Schabes, 1992).

3.2.3 Psychological re levance of M o n t e
Carlo d i sambiguat ion

As has been noted, an important difference between
the Viterbi algorithm and the Monte Carlo algorithm
is, that with the latter we never have 100%
confidence. In our opinion, this should not be seen as
a disadvantage. In fact, absolute confidence about the
most probable parse does not have any significance,
as the probability assigned to a p ~ s e is already an
estimation of its actual probability. One may ask as
to whether Monte Carlo is appropriate for modeling

108

human sentence perception. The following lists some
properties of Monte Carlo disambiguation that may
be of psychological interest:
1. As mentioned above, Monte Carlo never provides
100% confidence about the best analysis. This
corresponds to the psychological observation that
people never have absolute confidence about their
interpretation of an ambiguous sentence.
2. Although conceptually Monte Carlo uses the total
space of possible analyses, it tends to sample only the
most likely ones. Very unlikely analyses may only be
sampled after considerable time, but it is not
guaranteed that all analyses are found in finite time.
This matches with experiments on human sentence
perception where very implausible analyses are only
perceived with great difficulty and after considerable
time.
3. Monte Carlo does not necessarily give the same
results for different sequences of samples, especially if
different analyses in the top of the distribution are
almost equally likely. In the case there is more than
one most probable analysis, Monte Carlo does not
converge to one analysis but keeps alternating,
however large the number of samples is made. In
experiments with human sentence perception, it has
often been shown that different analyses can be
perceived for one sentence. And in case these analyses
are equally plausible, people perceive so-called
fluctuation effects. This fluctuation phenomenon is
also well-known in the perception of ambiguous
visual patterns.
4. Monte Carlo can be made parallel in a very
straightforward way: N samples can be computed by
N processing units, where equal outputs are
reinforced. The more processing units are employed,
the better the estimation. However, since the number
of processing units is finite, there is never absolute
confidence. This has some similarity with the Parallel
Distributed Processing paradigm for haman (language)
processing (Rumelhart & McClelland, 1986).

4 Experiments

In this section, we report on experiments with an
implementation of DOP that parses and disambiguates
part-of-speech strings. In (Bod, 1995) it is shown how
DOP is extended to parse word strings that possibly
contain unknown words.

4.1 The test environment

For our experiments, we used a manually corrected
version of the Air Travel Information System (ATIS)
spoken language corpus (Hemphill et al., 1990)
annotated in the Pennsylvania Treebank (Marcus et
al., 1993). We employed the "blind testing" method,
dividing the corpus into a 90% training set and a 10%
test set by randomly selecting sentences. The 675
trees from the training set were converted into their
subtrees together with their relative frequencies,
yielding roughly 4"105 different subtrees. The 75
part-of-speech sequences from the test set served as

input strings that were parsed and disambiguated using
the subtrees from the training set. As motivated in
(Bed, 1993b), we use the notion of parse accuracy as
our accuracy metric, defined as the percentage of the
test strings for which the most probable parse is
identical to the parse in the test set.

4.2 Accuracy as a function of subtree-depth

It is one of the most essential features of DOP, that
arbitrarily large subtrees are taken into consideration
to estimate the probability of a parse. In order to test
the usefulness of this feature, we performed different
experiments constraining the depth of the subtrees.
The following table shows the results of seven
experiments for different maximum depths of the
training set subtrees. The accuracy refers to the parse
accuracy at 400 randomly sampled parses, and is
rounded off to the nearest integer. The CPU time
refers to the average CPU time per string employed
by a Spark II.

depth of
subtrees

1
_<2
_<3
<4
<5
<6

unbounded

parse
accuracy

52 %
87 %
92 %
93 %
93 %
95 %
96 %

CPU time
(hours)

.04 h

.21 h

.72 h
1.6 h
1.9 h
2.2 h
3.5 h

Table 1. Parse results on the ATIS corpus

The table shows a dramatic increase in parse accuracy
when enlarging the maximum depth of the subtrees
from 1 to 2. (Remember that for depth one, DOP is
equivalent to a stochastic context-free grammar.) The
accuracy keeps increasing, at a slower rate, when the
depth is enlarged further. The highest accuracy is
obtained by using all subtrees from the training set:
72 out of the 75 sentences from the test set are parsed
correctly. Thus, the accuracy increases if larger
subtrees are used, though the CPU time increases
considerably as well.

4.3 Does the most probable derivation
generate the most probable parse?

Another important feature of DOP is that the
probability of a resulting parse tree is computed as the
sum of the probabilities of all its derivations.
Although the most probable parse of a sentence is not
necessarily generated by the most probable derivation
of that sentence, there is a question as to how often
these two coincide. In order to study this, we also
calculated the derivation accuracy, defined as the
percentage of the test strings for which the parse
generated by the most probable derviation is identical
to the parse in the test set. The following table shows
the derivation accuracy against the parse accuracy for
the 75 test set strings from the ATIS corpus, using
different maximum depths for the corpus subtrees.

109

depth of
subtrees

1
-<2
-<3
-<4
-<5
-<6

unbounded

derivation
accuracy

52%
47%

49%
57%
60%
65%
65%

parse
accuracy

52%
87%

92%
93%
93%
95%
96%

Table 2. Derivation accuracy vs. parse accuracy

The table shows that the derivation accuracy is equal
to the parse accuracy if the depth of the subtrees is
constrained to 1. This is not surprising, as for depth
1, DOP is equivalent with SCFG where every parse is
generated by exactly one derivation. What is
remarkable, is, that the derivation accuracy decreases if
the depth of the subtrees is enlarged to 2. If the depth
is enlarged further, the derivation accuracy increases
again. The highest derivation accuracy is obtained by
using all subtrees from the corpus (65%), but remains
far behind the highest parse accuracy (96%). From
this table we conclude that if we.are interested in the
most probable analysis of a string we must not look
at the probability of the process of achieving that
analysis but at the probability of the result of that
process.

4.4 The significance of once-occurring
subtrees

There is an important question as to whether we can
reduce the "grammar constant" of DOP by eliminating
very infrequent subtrees, without affecting the parse
accuracy. In order to study this question, we start with
a test result. Consider the test set sentence "Arrange
the flight code of the flight from Denver

to Dallas Worth in descending order", which

has the following parse in the test set:

(s (NP *)
(VP VB/Arrange

(NP (NP DT/the NN/flight NN/code)
(PP IN/of

(NP (NP DT/the NN/flight)
(PP (PP IN/from

(NP NP/Denver))
(PP TO/to

(NP NP/Dallas
NP/Worth))))))

(PP IN/in
(NP (VP VBG/descending)

NN/order)))
.))

The corresponding p-o-s sequence of this sentence is
the test set string "vB DT NN NN IN DT NN IN NP

TO NP NP IN VBG NN". At subtree-depth < 2, the

following most probable parse was estimated for this
string (where for reasons of readability the words are
added to the p-o-s tags):

(s (NP *)
(VP VB/Arrange

(NP (Np DT/the NN/flight NN/code)
(PP IN/of

(NP (NP DT/the NN/flight)
(PP (PP IN/from

(NP NP/Denver))
(PP TO/to

(NP NP/Dallas
NP/Worth)))

(PP IN/in
(NP (VP VBG/descending)

NN/order))))))
.))

In this parse, we see that the prepositional phrase " in
descending order" is incorrectly attached to the NP
"the f l i g h t " instead of to the verb "arrange". This
wrong attachment may be explained by the high
relative frequencies of the following subtrees of depth
2 (that appear in structures of sentences like "Show me
the transportation from SFO to downtown San

Francisco in August", where the PP "in August"

is attached to the NP "the transportation", and
not to the verb "show"):

NP NP NP NP
PP PP PP
PP IN PP

NP PP IN
NP

Only if the maximum depth was enlarged to 4,
subtrees like the following were available, which led
to the estimation of the correct tree.

VP VB
NP NP

PP
PP IN

NP VP VBG
NN

It is interesting to note that this subtree occurs only
once in the training set. Nevertheless, it induces the
correct parsing of the test string. This seems to
contradict the fact that probabilities based on sparse
data are not reliable. Since many large subtrees are
once-occumng events (hapaxes), there seems to be a
preference in DOP for an occurrence-based approach if
enough context is provided: large subtrees, even if
they occur once, tend to contribute to the generation
of the correct parse, since they provide much
contextual information. Although these subtrees have
low probabilities, they tend to induce the correct parse
because fewer subtrees are needed to construct a parse.

Additional experiments seemed to confirm
this hypothesis. Throwing away all hapaxes yielded
an accuracy of 92%, which is a decrease of 4%.
Distinguishing between small and large hapaxes,
showed that the accuracy was not affected by
eliminating the hapaxes of depth 1 (however, as an
advantage, the convergence seemed to get slightly
faster). Eliminating hapaxes larger than depth 1,
decreased the accuracy. The following table shows the
parse accuracy after eliminating once-occurring
subtrees of different maximum depths.

110

depth of
hapaxes

1
<2
_<3
_<4
<_5
<_6

unbounded

parse
accuracy

96%
95%

95%
93%
92%
92%
92%

Table 3. Parse accuracy after eliminating once-occurring
subtrees

Conclusions

We have shown that in DOP and STSG the Viterbi
algorithm cannot be used for computing a most
probable tree of a string. We developed a modification
of Viterbi which allows by means of an iterative
Monte Carlo search to estimate the most probable tree
of a string in polynomial time. Experiments on ATIS
showed that only in 68% of the cases, the most
probable derivation of a string generates the most
probable tree of that string, and that the parse accuracy
is dramatically higher than the derivation accuracy.
We conjectured that the Monte Carlo algorithm can
also be applied to other stochastic grammars for
computing the most probable tree of a string. The
question as to whether the most probable tree of a
string can also be deterministically derived in
polynomial time is still unsolved.

Acknowledgments

The author is indebted to Remko Scha for valuable
comments on an earlier version of this paper, and to
Khalil Sima'an for useful discussions.

References

M. van den Berg, R. Bod & R. Scha, 1994. "A
Corpus-Based Approach to Semantic Interpretation",
Proceedings Ninth Amsterdam Colloquium,
Amsterdam.

E. Black, R. Garside and G. Leech, 1993.
Statistically-Driven Computer Grammars o/English:
The IBM/Lancaster Approach, Rodopi: Amsterdam-
Atlanta.

R. Bod, 1992. "A Computational Model of
Language Performance: Data Oriented Parsing",
Proceedings COLING'92, Nantes.

R. Bod, 1993a. "Using an Annotated Corpus as a
Stochastic Grammar", Proceedings European Chapter
fo the ACL'93, Utrecht.

R. Bod, 1993b. "Monte Carlo Parsing",
Proceedings Third International Workshop on Parsing
Technologies, Tilburg/Durbuy.

R. Bod, 1993c. "Data Oriented Parsing as a General
Framework for Stochastic Language Processing", in:
K.Sikkel & A. Nijholt (eds.), Parsing Natural
Language, TWLT6, Twente University.

R. Bod, 1995. Enriching Linguistics with
Statistics: Performance Models of Natural Language.
PhD-thesis, University of Amsterdam (forthcoming).

T. Briscoe and J. Carroll, 1993. "Generalized
Probabilistic LR Parsing of Natural Language
(Corpora) with Unification-Based Grammars",
Computational Linguistics 19(1), 25-59.

T. Fujisaki, F. Jelinek, J. Cocke, E. Black and T.
Nishino, 1989. "A Probabilistic Method for Sentence
Disambiguation", Proceedings 1st Int. Workshop on
Parsing Technologies, Pittsburgh.

J.M. Hammersley and D.C. Handscomb, 1964.
Monte Carlo Methods, Chapman and Hall, London.

C.T. Hemphill, J.J. Godfrey and G.R. Doddington,
1990. "The ATIS spoken language systems pilot
corpus". Proceedings DARPA Speech and Natural
Language Workshop, Hidden Valley, Morgan
Kaufmann.

F. Jelinek, J.D. Lafferty and R.L. Mercer, 1990.
Basic Methods of Probabilistic Context Free
Grammars, Technical Report IBM RC 16374
(#72684), Yorktown Heights.

M. Kay, 1980. Algorithmic Schemata and Data
Structures in Syntactic Processing. Report CSL-80-
12, Xerox PARC, Palo Alto, Ca.

D. Magerman and C. Weir, 1992. "Efficiency,
Robustness and Accuracy in Picky Chart Parsing",
Proceedings A CL'92, Newark, Delaware.

M. Marcus, B. Santorini and M. Marcinkiewicz,
1993. "Building a Large Annotated Corpus of
English: the Penn Treebank", Computational
Linguistics 19(2).

D. Rumelhart and J. McClelland, 1986. Parallel
Distributed Processing, The MIT Press, Cambridge,
Mass.

R. Scha, 1990. "Language Theory and Language
Technology; Competence and Performance" (in
Dutch), in Q.A.M. de Kort & G.L.J. Leerdam (eds.),
Computertoepassingen in de Neerlandistiek, Almere:
Landelijke Vereniging van Neerlandici (LVVN-
jaarboek).

Y. Schabes, 1992. "Stochastic Lexicalized Tree-
Adjoining Grammars", Proceedings COLING'92,
Nantes.

Y. Schabes and R, Waters, 1993. "Stochastic
Lexicalized Context Free Grammars", Proceedings
Third International Workshop on Parsing
Technologies, Tilburg/Durbuy.

K. Sima'an, R. Bod, S. Krauwer and R. Scha,
1994. "Efficient Disambiguation by means of
Stochastic Tree Substitution Grammars", Proceedings
International Conference on New Methods in
Language Processing, UMIST, Manchester.

A. Viterbi, 1967. "Error bounds for convolutional
codes and an asymptotically optimum decoding
algorithm", IEEE Trans. Information Theory, IT-13,
260-269.

111

