TOWARDS A NEW TYPE CF MORDHENIC ANALYSIS

Eva Koktová

9. Května 1576

39001 Tábor, Czechoslovakia

AESTEACT

The present paver provides a report on a new sijstem of an automated morphemic analysis of technical texts in Czech as a hionly inflectional language, which is beine mrepared by the linguistic team of the Eaculty of Mathematics and Fhysics in Pregue, within the project of man-machine comunication without a pre-arranged data base (TIBAQ). The kind of morphemic Enalysis presented here is based on z retrograde (rieht-to-left) analysis of words by means of morphemically unambiguous or irresolvably ambiguous word-ends, which do not coincide with the etymologicel word-endinzs but correspond to the stricture of the accidental cases of mor:hemic ambiguity in an inflectional laneuage (word-endines being accountable for in a certain way by word-ends). The al Eorithm of analisis can thus dispense with any dictionary (of morphemic irregularities and exceptions), economically accounting especially for productive word-endings. The word-ends of the analysis are assigned several kinds of morthenic information, concemine morinemic catecories and lemmatization. The snelysis is based on the aksolute frequency of word-ends in technical texts med is wble to interact with the semantic

1. INTTCDUCMION

The iresent sajer srovides a report on E new suston of an automated moryhemic ancluis of technical texts in Gzech, olich is veine repared by the lineuictic tesan of the Eiculty of Tathematies and Thuice in Prague. The morthemic analysis of ceech, which is e hiehly inflectionel lancusia, constitutes the starting roint ro. inlo kind of uutoint rad rocessing of lancuezs, raneine frow autonatic infomation retrieval to natural leneuace hudenstandin.

There is s mevious project of morrhe\#ic analysis of Czech described in (:uisheitelová, Králíková and SEall, 1982), which is based on an Enalisis of ctymological word-stems and word-endings (suffixes). The present system, on the other hand, is based on a retrosrade
(right-to-left) analysis of words, which makes it possible to disrense bot'A with the dictionary of stems and the dictionery of endings; it was partly ins inired E_{y} the sustem imCSAIC (Kirschner, 1982)
(intended first of all for automatic indexing of technical texts), which is also based on a kind of retrograde analysis: namely, on singling out the four rightmost symbols of the word-forms of autosemantic words, which are then matched against a list of word-endines. This kind of analisis, however, cannot avoid the danger of ambieuity, which is prevented by a number of ad-hoc restrictions, for example reducinc the universe of discourse.

The present system of morinemic analysis differs from the grevious ones in several essential respects:
(i) The alsorithm of the resent type of morphemic analysis can be viewed as a structured list of morrhemically unambiguous or irresolvably anbiguous word-ends of Czech words (which may be accidentally identical with full wordforms) including information concerning their morrhemic categories and learatization. Ne believe that this rrincirle can be considered as adequate for the morrhemic analysis of any iaflectionsl language.
(ii) In the present sustem, it is also easier to carry out lemmatization: there are only several tens of simple and highly general lemmatization rules appended to the morphemic information accompanying every word-end in the algorithm.
(iii) In the present system, the burden of the analisis lies entirel $\ddot{0}$ on the aleorithm. There is no need of any dictionary in which etvologieal irrenilarities would be listed.
(iv) The algorithm is based on the absolute frequency of word-ends in technical texts. It consists of two parts; the Eirst of them involves about two hundred word-ends k_{y} means of which it is possible to resolve akout fift: percent of a technical text.
(v) Ey means of the algorithm it is possible to analyze an unlimited number

- of new (newly coined) words with productive etymological word-endings. Thus, both the user and the linguist are relieved of the work which must be usually done when a new lexical item is being incorporated into a system of morphemic analysis of an inflectional language.
(vi) The algorithm is going to be implemented in PI/ 1 within a system of natural language understanding, namely the project of man-machine communication called TIBAQ (Text-and-Inference Based Answering of questions, cf. (Hajičová and SEall, 1981)) with no pre-arranged data base and with the capacity of self--enrichine by information drawn from the text; the project is based on the linguistic theory of the Functional Generative Description.
(vii) Underlying the algorithm is a large aroount of empirical work; it analyzes several tens of thousands of (autosemantic and synsemantic) words (drawn from a retrograde dictionary of Ċzech, cf. (Slavícková, 1975)), including the word-forms of inflected words. The choice of the autosemantic lexical units to be analyzed was carried out with respect to technical texts concerning microelectronics.

2. TIE PHILCSOPHY OF THE SYSTM

The major novelty of the present approach consists in the conception of (morphemically unambiguous or irresolvably smbiguous) word-ends, which do not correspond to the (etymological) word--inflection and word-formation endings but to the cases of accidental morphemic anbiguity in an inflectional language, every word-ending being accountable for by at least one word-end (piece of output information). On the other hand, every word-end corresponds to (stands for) at least one lexical word, and due to the cases of mornhenic anbiguity, it represents it leist one word-form. A word-end is usually equivalent to a part of a word-form, but accidentally it may be equivalent to a full word-form.

The algorithrn of analysis, embodying a concention of procedural morphemics, can be viewed as a structured list of word-ends arranged in a branching structure consisting of yes-no answers to gueries, with corresponding sequences (strings) of symbols of increasing length, which is due to the retrograde edding of symbols (we use 40 letters of the czech alphabet, including the ones with diacritics), until morphemically unambiguous or irresolvably ambiguous word-ends are found (morphemic ambiguity counting as a valid result of the analysis, since it can be resolved, in most cases, by means of the syntactic analysis). The word-ends are assigned
the kinds of information as described in section 3 .

In the present system of morphemic analysis, there is no place for the notion of (etymological) irregularity, all word-ends being equally "regular"; the differences between them can be accounted for e.g. in terms of their length or of their positions on the scale of absolute frequency (cf. section 5). It may even be the case that an etymologically highly irregular word-form can be analyzed by a relatively small number of symbols (of its word-end), and the other way round.

In the horizontal progress of the algorithm (which corresponds to the answer yes - a new symbol is added) the output information concerns a single word-end, while in the vertical progress (corresponding to the answer no - different symbols than the one(s) in question are added) it usually concerns more than one word-end. These word-ends can be labelled as complementary word-ends with respect to the horizontal word-end(s) in question; they consist of the same sequence of symbols as the correlated horizontal word--ends with the exception of their respective leftmost symbols, which belong to the complementary set of symbols of the alphabet with respect to the leftmost symbol(s) of the horizontal word-end(s), according to the combinatorics of letters in existing Czech words (for example, the complementary word-ends to the horizontal word--ends / mĕr, úmĕr, ýměr are only four: ámer, ímér, omer, ựer (the symbol stands for the end of the word, i.e. indicates a word-end in the form of a full word-form)). Throughout the algorithm, the notation concerning the complementary word-ends is abbreviated in that in their place only their common output information is written (cf. the three occurrences of A in Figure 1 below).

The conception just discussed can be illustrated by a chunk of the algorithm accounting for the frequent word--inflection ending \dot{y} (which is an adjectival word-ending, ambiguous among nominative and accusative singular masculine--inanimate, and nominative singular masculine-animate, thus representing the adjectival "normal form"), which clasies only with $\angle \mathrm{pry}$ (adverb), being accounted for by the three occurrences of the output information A (standing for the morphemic information in question) in Figurel.

Figure 1. A chunk of the algorithra.

The three occurrences of A in Figure 1 can be indicated, for the sake of clarity, as A_{1}, A_{2} and $A_{3}: A_{1}$ (corresponding to the
horizontal string rý) accounting for those Czech adjectives (in the given form) whose penultimate symbol is different from r (such as velky (big)), A_{2} (corresponding to the horizontal string prý) accounting for those Czech adjectives (in the given form) whose second symbol from the right is r and whose third symbol from the right is different from p (such as dobry (good)), and A_{3} (corresponding to the horizontal word-end /orý) accounting for those Czech adjectives (in the given form) whose third and second symbols from the right are pr, respectively, and whose fourth symbol from the right is different from $/$, i.e. which are longer than three syrnkols (in czech, there is only one such adiective, namely kyprý (loose, plump)). Cn the whole, A_{1}, \bar{A}_{2} and A_{3} account for all Czech adjectives (in the given form).

3. KINDS OF INFCRHATION

The word-ends (i.e. the horizontal word-ends and the complementary word-ends with respect to the given horizontal word-ends) are assigned the following kinds of information.
A. Horphemic information.
(i) The information concerning part-of--speech categories includes the distinction between Nouns, Verbs (these kinds of information are further subcategorized), Adjectives (A), Adverbs (B), Prepositions (C), Conjunctions (D) and Pronouns (Zj) (there are distinguished three kinds of pronouns, namely those which function as nouns, those which function as adjectives, and those which function both ways).
(ii) The information concerning grammatical categories includes the following distinctions (with respect to the part--of-speech categories).
(a) Declension.
(aa) Case (six cases, indicated as 1 , $2,3,4,6$ and 7) is distinguished not only with nouns, but due to grammatical agreement, also with adjectives and pronouns.
(bb) Number (singular and plural, indicated as SE_{E} and pl , respectively) is distinguished with nouns, and due to grammatical agreement, also with adjectives, pronouns and verbs.
(cc) Gender (combined with animateness) is distinguished with nouns, and due to grammatical agreement, partiy also with adjectives, pronouns and verbs (with verbs, for example, in the past and passive participles plural). With nouns, four genders are distinguished: masculine--inanimate (iV), masculine-animate (Z), feminine (F), and neuter (S). The category of animateness is involved rather
with masculine than with feminine and neuter nouns because with plural masculine nouns the difference in animateness is present, due to grammatical agreement, also with verbs and adjectives in the above mentioned way, and because in technical texts substantially more masculine--animate than feminine-animate nouns are found.
(b) Conjugation.

With verbs, there is distinguished person (three persons, with the exception stated in section 4), number (cf. (bb) above), tense (present, past and future), mood (indicative and imperative), and voice (active and passive). As concerns notation, usually several kinds of information are collapsed in a single abbreviation, $c f . K$ standing for the third person singular active indicative present.

There is no need of information concerning the inflectional types of nouns, adjectives and verbs; for example the word-ends corresponding to the class of nouns represented by the word-forms katodami (by cathodes) and vlastnostmi (by properties) (both 7 pl) are assigned the same morphemic information, though the word-forms in question belong to etymologically quite different types of inflection of (feminine) nouns (cf. the difference between the word-inflection endings, ami and mi, respectively).
B. Lemmatization information.

Lemmatization, i.e. convering an inflected word-form into the normal form (i.e. I sg with nouns, 1 sg masculine with adjectives and pronouns, and the infinitive form with verbs) has a specific purpose, being connected with those applications of morphemic analysis which concern the terminological elements of technical texts (such as automatic indexing).

In the present system, lemmatization is carried out by a retrograde erasine of a certain number of symbols (possibly zero) and by adding a number of specific symbols (possibly zero) to what has been left after the erasing; in lemmatization (unlike in the rest of the algorithm) we work with diacritic marks as specific symbols. In this way, lemmatization can be accounted for by means of several tens of simple and highly general rules, cutting across the inflectional endings and also across the inflectional types of different part-of-speech categories. It should be pointed out that lemmatization concerns rather the concrete words (word-forms) found in a text than the word-ends themselves: though the majority of the lemmatization rules operate on word-ends (concerning usually only a part of a word-end, which is close to a word-
－ending，cf．the symbol y in the word－end tody，correspondine to the word－form Etodi：in exceptional cases，for example where the stem of a word is affected by an aiternation，the erasing may reach to the left of the concrete word，i．e．behind the word－end；cf．the word－end ste（consistine of three symbols），which，with some simplifications，unambieuously indicates 3 verb（K），buit which is not sufficient for the lematization of such verb－forms as roste（Erows）to their infinitives （roist（to Erow）），where four rightmost smbols of the concrete word should be considered．

The rules of lematization have general－ Iy the fora［ Z ；abc．．．］，where Z stands sor the number of the symbols to be arミsed，and abc．．．，for the specific symbols to be added．In the alcorithm，the rules are usually referred to by numbers， and listed in an appendix．Thus，for excimple，fule $2([1 ; a])$ converts leatody （cathodes； $\bar{F} 25 \pi ; 1 ; 4 \mathrm{nl}$ ）into katoda （cathode； \bar{f} I sé）by erasine one symbol （manely \dot{y} ）and b_{j} adding one symbol （namely a）．（S stands for the relation of anibicuity）．

Zver．lematization rule has at least one anslication to various types of ：ur hemic categories concerning not only different aistinctions within a single furt－of－speech category（typically， ciiferent genders with nouns）but also different part－oi－speech categories （Eor examie，a single lemmetization rule con ce applied to nouns，adjectives，and verisj：tais means that a lenmatizstion rule usy coacern，in any of the pert－of－ spejch ciategories in quastion，more than
 －icu mib：cuous tetween varicus cuse－and－nunker －

 Buitui，úa mothing）cuts across nouns， Lujectives，and verbs，converting e． 5. E－0，je（comuniceticns）to spoj（commini－
 $\ldots{ }^{i}$ to facio（joung），and voisáty（suckec

 hat＝－Enications（to all genders of nouns and to iajectives）and corresionds， on the whole，to 16 word－endines，out of mich two aro two－ways ankicuous as conc三ris cese end number．The 16 word－ －endincs are inlustrated b_{j} the word－ －Iorns in Figure 2 （where obvod＝cir－ cuit，odbornik $=$ expert，katode $=$ cathod $\frac{1}{\text { e，vastnost }}=$ rroperty，relace $=$ relation，staveni $=$ buildine，mlacy $=$ volins，and $\frac{\text { puvodni }}{}=$ original）．

Figure 2．Iemmatization．
iv：obvode（ 6 s obvodu（2 pl）
关：odbomikem（7 s5）；odbomikui（2pl）
F：katodám，Vlastnostem（3 gl）； ratodami，vlestnostmi，relacemi （7pl）
S：stavenich（6 pl）；stavenimi（7＝1）

In the above survey，the words which are assigned comion informetion（ $\mathrm{e} . \mathrm{g}$ ． katodami，vlastnostmi ，releceni）selonz to etymolo gically aifferent troes of in－ flection，which，however，need nct be distinguished here：though the lemmatiza－ tion rules can be arranced in 2 scale according to their complexite or rance of application，the present method of lematization covers both simale（recular） and complicated（irregular）tyres of word－inflection and word－formetion in an equally economic manner．

C．Semantic information．
The sementic analysis by means of the retrograde morphomic analysis is E yet unfinished，but presumatly smoothl： feasible task，which will be besad on the account of productive word－endings $b v$ means of word－ends．

The considerations concerning the semantic analysis should start from establishine a set of semantic cetegories （classes）of nouns and possibly also adjectives which are considered to be relevant for the anal：isis of technicel texts．In addition to the crnsideretion of rroductive word－endin－s，there can be also introduced into the slgoritim such： word－ends which account for semanticall：̈ relevant but onl：restrictedl：procuctive
 （meter）），if such word－ends heve beer ＂hidden＂in the complementary ：ord－ends of the algorithm（for example，it may happen that a productive word－endina coinciding with a sinele word－end（such as tko，of．below）is＂hidden＂in this way）．

In establishine the set of sementic catagories，we can draw from（Euránová， 1980）and（Kirschiler，1983），provosine that there should be introcuced for example the catecory of Instmonent（Tool） （as expressed by the mroductive word－
 and by the restrictediy broductive word－endin＝s motr，wraf，fon，and sizol）， Action（Frocess）（ace，kce，aní，áni，
 and ance ，otc．

The information concerning sementic

Enalysis can be rendered by indicating certain pieces of output information \Leftrightarrow semantically relevant (with respect to the classification of semantic categories), but presunably it will be even possible to state this kind of information essentially only in an appendix to the algoritho. Such an appendix should consist of the specification that every word-end (this concerns also comelementary word-ends) whose richtmost symbols coincide with the word-ending in question (because a word-end is usually loncer than, or identical to, the wordending which is accounted for by it) and which is assigned certain morphemic information (concerning usually gender) corresponds to the semantic category in question; of. all word-ends whose three riehtmost sjmbols are aci and which are assiened the output information $77 \mathrm{~s} \delta$. 2 jl (such as laci, which is "hidden" in the complementary word-ends) correspond to the semantic category of nouns of action (in this case, ací is correlated to the normal form with ace, which is the Czech equivelent of the English ation). Eossible exceptions to the semantic infori.ation concernine the word-ends which Eccount for the word-endings in question siould be indicated directly in the algorithin (e.E. by superscripts in the output inforiation) ; for example, the above--fentioned nominal wordi-endinE aci (which ぶstematically clashes with the adjectival

 $1,4 \mathrm{Fl}$, and thus is accounted for by sbout 30 pieces of output information) has gout five semantic excentions to it (sucin as nadaci (nadace $=$ grant, support - neither action nor result of action)), For winch there should be established s. ciel word-ends in the alcorithm, with the indication, in the outrut information, of thoir semantic excentionality (with rouject to the other word-ends whose incimost svabols are cí and which are risienes the out out information in question), i.e. of their non-membershis in the clews of nouns of action.

4. A"BIGUITY

This section brings information concerming (i) cases of mornhemic distinctions not included in the algorithr: (ii) cemuine irresolvable cases, and (iii) coses of morrhemically irresolvable abiouity.
(i) Cases of morphemic distinctions not included in the algorithm. We prefer not to include in the algorithm of analysis (with rossible exceptions) morphemic distinctions concernine those word--inflection endines which occur in technical toxts onl:̈ rarel:̈ on not at all, Carticularly the followine distinctions:
(a) Verbs: 1 sg indicative present (such as ríedrokládám (I supsose)); 2 ss indicative present (such as credrokládás (you suppose)); 2 sE imperative (such as Vyber (choose)); transgressive forms (such as předpokládaje, přeapokládajíc, přednokládaijce (supposine)), and 1 and 2 pl imperative are assigned only the morphemic but not the lemmatization information because these forms are supposed not to be semantically relevant.
(b) Nouns: 5 sg and pl (such as odborniku! (expert!)).
(c) Adjectives: masculine-animate pl (such as vysocí (tall)).
(ii) Genuine irresolvable cases. By the present kind of analysis, there rractically cannot be resolved, in spite of their regular inflection, ceocrarhical and personal proper names, their multitude preventin . the lincuist from empirically establishing their (unambiguous or ambiguous) word-ends. This cen be partly overcome by introducing into the analysis the recoenition of capital letters and/or by establishing a "right set" of proper names to be analyzed (which seems to be an easier task with Eeographical names, cf. Evrova (Iurove), Fraha (Prague), etc.). On this solution, for example, the accusative form of prata (F), namely Erahu, would yield a case of morphemically irresolvable ambiguity with the locative form of práh (in; threshold), namely prahu. Also certain frequent personal names can be treated in this was (cf. Schottkyho dioda (the diode of Schottky)).
(iii) Cases of aor hemicallu irresolvable ambicuity. The cases of thic kind of ambiguity concern all of the nornhemic categories as well as lemmatization, occurrine singly or as contined in verious ways. In what follows, the relovent caises of anbiguitu are indicated r_{j}, , and the other cases of ambicuity are inducated by commas or semicolons.
(a) Ambiguity concernine only rert-af--speech catecory; cf. the ambieuity of the word-ends corresnonding to non--inflected words, such as the ambiguitu of the word-end $t=$ between advent and areposition (E C), try standing for several words including e.g. Vevmity (inside) or zevnitri (Erom inside).
(b) Ambiguity concermin rart-of-seesch catecory in combination with other kinds of ambicuity; cf. the ankiguity of the word-ends corresponding to inflected words, such as the ambicuito of tho wordend (rust between noun and vert (in 1,4 s_{E} (Infjnitive: growth : to Erow , or the ambicuity of the word-enc /rovne between adjective and verb (A FI se; S $1,4 \mathrm{nl} ; \mathrm{K}:$ direct j straichtens).
(c) imbiguity concerming only gender, $c f$. the ambiguity in gender concerning word-inflection endings with edjectives, such as the ambiguity of the word-ends (coincidine, with one exception, with word-inflection endings) ých ($2,6 \mathrm{pl}$) and ými (7 pl), which are ambiguous anong all

(d) Anbiguity concerning gender in coabination with other kinds of ambiguity:
(aa) Ambiguity concerning gender in combination with case and number, of. the wora-end /set, which is ambiguous between masculine-inamimate and neuter noun (N 1, 4 sE § S 2 pl: set § of hundreds).
(bl) Surface-syntax ambiguity concerming eender in combination with underlying ambiguity concerning case and number, cf. the word-end Lredky (lines), which is anbiguous between masculine-inanimate and feminine nown (N1, 4, 7 sg § $\mathrm{F} 2 \mathrm{sg} ; 1$, 4 jl). This ambiguity in gender, however, is not present on the underlying level of czech, where only a single lexical item (masculine-inanimate noun) is hypothesized to occur, as corresponding to the two surface normal forms (i.e. masculine-inanimate and feminine), the two surface genders accidentally yielding ambiguity in the word-end (word-form) Ciadicy.
(cc) Ambiguity concerning gender in combination with animateness (and case), cf. the word-end <tlen (member), which is ambiguous between masculine-inanimate and masculine-animate noun ($N 1,4 \mathrm{sg}$ § 2 I sg). (In the majority of the other cases of the inflection of masculine nouns, the ambiguity in animateness is not accompanied by the case ambiguity.)
(e) Ambiguity concerning only case (and number), not accompanied by any other kinds of ambiguity, cf. the word-end tody (I 2 sg ($1 \vdots 4 \mathrm{Fl}$).
(f) Systematic ambiguity concerning the distinction between geographical names and nossessive adjectives derived from lexically corresponding personal names, cf. the word-end \angle Benes̃ova (N 2 sg § A N 2 st; $F 1 \mathrm{sg}$; $\mathrm{S} 1,4 \mathrm{pl}$: of Benešov - of Benešs).
(E) Ambiguity concerning lemmatization, cf. the word-end yvází (K), correspondine to a single word-form vyvází, between lemmatization rules [1; t] and [2; et], corresponding to the infinitives vyvážit (to balance) and vyvážet (to exnort), respectively. Cf also the surface-syntax ambiguity in lemmatization with the word-end LÉadky (cf. (bb) above), which is surface-syntax ambiguous in gender (M: řádek §F: řádka).

The present treatment of ambiguity is characteristic of the procedural
conception of morphemics in that the method of accounting for every etymological word-ending by means of at least one wordmend (piece of output information) removes from the analysis the systematic ambiguity as well as morphemic irregularities (exceptions) concerning etymological word-inflection and word-formation endings, which have been usually treated by means of various restrictions and other ad-hoc means. Jvery case of the systematic etymological ambiguity is accountable for by several tens or even hundreds of pieces of output information (cf. the systematic ambiguity of the word-formation ending aci as mentioned in section 3, or that of the word-inflection ending y among masculine-inanimate, masculine-animate and feminine nouns with additional morphemically irresolvable ambiguity concerning case and number: N 1, 47 pl \& \% 4, $7 \mathrm{pl} \S \mathrm{F} 2 \mathrm{sg} ; 1,4$ pl); on the other hand, exceptions to word-endings (in the form of word-ends with different output information) are accountable for by several pieces of output information (cf. the word-inflection ending $\underset{y}{c}$ as mentioned in section 2 , which is accountable for by three pieces of output information, representing one exception, or the word-formation ending enf as mentioned in section 5 , which is accountable for by five pieces of output information, representing six exceptions).

After resolving the cases of the systematic etymological ambiguity and of irrecularity, it is possible to list the remainine (about one hundred) cases of morphemically irresolvable ambiguity (with the exception of the case-number ambiguity accompanying gender ambiguity); such a list can be compared to the list by (Panevová, 1981) involviñ, Enlíguous wond-forms in Czech. Panevová's list, not beine lexically restricted with respect to specific applications, includes also proper names, words not occurring in technical texts and forms not analyzed by the present algorithm (such as singular imperative with verbs), but on the other hand, it consists only of full word-forms, thus intersecting with the present list, where first of all ambiguous word-ends in the form of parts of words are involved.

5. QUANTITATIVE ASPECTS

The present conception of the algorithm of morphemic analysis is based on the absolute frequency of word-ends in technical texts. In the ideal case, the word--ends should be arranged with respect to the frequency of their last (rightmost), last-but-one, etc., symbols - a task which itself would require the aid of a computer; for the time being, we must
work with an approximation，which makes it necessary to divide the algorithm into two parts according to the assumption that the first two hundred word－ends on the scale of absolute frequency，arraneed according to a statistical examination concerning the whole word－ends，could resolve about fifty percent of the words of a technical text，while the other mord－ends of the algorithm（nieces of output information），arranced accoraing to the frequency of their last symbols， should resolve the remaining portion of a technical text．Fe assume that out of the about twenty thousand pieces of output information of the broadly concei－ ved preliminary version of the al corithm， only several thousands will be sufficient to cover the words which may occur in a standard technical text（this will lead to a substantial reduction of the preli－ minary version of the algorithrn）．

The worcis included into the analusis feill into four major sementic hyper－ －catecories（not used in the semantic Bnalysic）：（i）words with the most ceneral semantics（including the forms of cetecorial verbs，such as být（to be）， Mepositions，such as v（in），etc．）； （ii）zeneral terns typical of technical texts（such as metoda（method），systém （sister），etc．）；（iii）words specific to the iiven technical domain，e．E． wicroelectronics（such as katode （cathode），obvod（circuit），etc．），and （iv）words tynical of other（possibly affiliated）domains（such as cihle （bickj，stiecha（rocf），etc．）．

Tho conception of the most frequent ton huincued word－ends（which are aricin an in a secial algorithm）can be Illuctictec by a list involvine ten most Frequent word－ends；in Czech technical texto，thoy belone to the first hyer－ catosoi $\%$ ．These word－ends are of three ininuis：（i）：＂ord－ends in the form of verts of morci－forms（which maj accidentell coincide with etymological word－cndines， sucin as ych or ého）；（ii）word－ends in the form of full word－forms（such as Ese or（ie），and（iii）word－ends in the Corri of parts of word－forms resolvable ：inor excentiono（such as（D）or eni ；；such word－ends are indicated hy encircline．In adaition to this，there can be distinauished morphemicall：̈ uncabieuous wora－ends（of，／na，Lo，$\frac{v}{v}$ ， uite）vs．norrinemicelly，ambiguous oord－ （enus（ c ）．in the list in fien ent éno， anbieuity（includine the ambiguity in case and muater）are indicated by $:$ ； with Lie，for the sake of clarity，the womenic information is siven directl： b_{y} ．iscne of Inclish equivelents．
Fisure 3. Frequent word-ends.

6. CONCLUSICN
：＂e lave descriked a not yet imulementec but rromisine susten of a richt－toー？oft moritheric analyis intencied for techacol texts in Czech and based on a cnacention of morphemicall：゙ unambiguous or inwoscl－ vably embicuous wo rd－ends es anboayinc the cases of morphemic anbicuity in an inflectional lanelace．The oresent sustew seems to be more economic than the urevious systems（which ere fully or partly based on the concertion of etymo－ logical word－endings（and word－stems）or on the conception of word－ends as consisting of a fixed，arriori establisined number of symbols）in that it can dispense with any dictionary as well as with the notion of morphemic irrecularity；more－ over，it is capable of an interaction with the other levels of analysis，as well as of various adjustments．
The advantages of the present systen visma－vis the previous sistems can be summarized as follows．
（i）Due to the fact that every set of complementary word－ends（？ith respect to the fiven horizontal word－end（s））is assigned a common piece of outout infoz－ mation，ond also to the fact triat ever a single word－end often corres onds to several words（lexicel units）and／or to several word－forms，the aumber of the pieces of output information necesserg今or resolving a standard technicel tect is presumably considerebly lower then tise number of the word－forms（of both inflect－ ed and uninflected words）occurrin：in such a text．
（ii）The present susten is able to account for the word－form or now（nemi： coined）words with productive wowi－ －endines automaticelly，without conoi－ derine their steris．
（iii）The account of ：rocuctive ：ina－ －endines also enaioles to account for semantically relevant woráendine O_{0} indice．tin the senanticelly relevont pieces of output information．

REPTEENCES

1. Buránová Zva. 198C. Ob odnoj

Vozmožnosti semantičeşioj klassiSikaciji süčestvitel nych (cn one possibility of semantic classificetion of nouns). Erasue Eulletin of "athematical Lineuistics 34 , 33-44.
2. ZajiĚové Zva and Sgall Petr. 1981. Towards Automatic Understandine of mechnical Texts. Dregue Eulletin of athematical Ininsuistics 36, E-24.
3. Kinschner Zdenčk. 1982. MOSAIC A : thod of Automatic Extraction of Technical Terms in mexts. Erague Eulletin of :Gathenatical Lincuistics 37, -23.
4. --mon-m-m. 1982. On a device in dictionary operation in machine translation. CCLIMG 82- Proceeding of the Jinth International Conferance in Computational Iincuistics. Torth Hollanc - Acaderiia.
․ Konečná D. and Hronek J. 1960.
Vorfolosická analýza podie posled:inho pismene (Morehological analysis accoraing to the last letter). icta Universitatis Carolinae: Slavica Frasensia 2. Fraha.
6. Énevová Jarmila. 1381. Lexical

Inout Data for Experiments with Ceech. Explizite Beschreitune Jor Sprache und automatische moxtarkeitin VI. Praha: Paculty) : itathonstios and Fhysics.
7. --m-m-m-m and Sgall Eetr. 1979.

Gownerd an lutoratic parser for Czoch. Internationel Review of
?luvio jilu utions 4/3, 435-445.
3. So: Il Ietw. Joge. Soustava nádových
 \therefore case endinesi in Czoch). acto Universjtatis Carolinae: Slavica Prazensie 2.
2. Z1evíčisová Jva. 1975. Retrocrádní morfenaticky slovnik ceitiny
(A retroerade morphematic dictionaFy of Czech). Praha: Academia.
1C. .."cicheitelová Jani. 1981. Autonatic Anilysis of Czoch morphomics. Pracue Studies in ifthematical

and Soall Eetr. 1g82. Mornhemic Aneluain of Czech. Explizite
Easchreibune der sirache und cutonatische mextarbsitune VII. Proha: Faculty of Fathematics and Physics.

