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Abstract

Social networks have transformed com-
munication dramatically in recent years
through the rise of new platforms and
the development of a new language of
communication. This landscape requires
new forms to describe and predict the be-
haviour of users in networks. This paper
presents an analysis of the frequency dis-
tribution of hashtag popularity in Twitter
conversations. Our objective is to deter-
mine if these frequency distribution fol-
low some well-known frequency distribu-
tion that many real-life sets of numeri-
cal data satisfy. In particular, we study
the similarity of frequency distribution of
hashtag popularity with respect to Zipf’s
law, an empirical law referring to the phe-
nomenon that many types of data in so-
cial sciences can be approximated with a
Zipfian distribution. Additionally, we also
analyse Benford’s law, is a special case of
Zipf’s law, a common pattern about the
frequency distribution of leading digits. In
order to compute correctly the frequency
distribution of hashtag popularity, we need
to correct many spelling errors that Twit-
ter’s users introduce. For this purpose we
introduce a new filter to correct hashtag
mistake based on string distances. The
experiments obtained employing datasets
of Twitter streams generated under con-
trolled conditions show that Benford’s law
and Zipf’s law can be used to model hash-
tag frequency distribution.

1 Introduction

Twitter is a microblogging social network
launched in 2006 with 310 million active users

per month and where 340 million tweets are
daily generated1. By sending short messages
called tweets of up to 140 characters, users can
insert text, pictures, videos and links to interact
with other users over the network. Twitter
users can interact between them by using the @
symbol followed by the username they want to
mention. They can also classify tweets in more
than one category or theme by using hashtags
(alphanumeric strings preceded by #). Hashtags
are created by users. Some of them propagate
and thrive while others are restricted to a few
mentions and die. The most popular hashtags
reach out what is called the trending topic list,
who shows the most popular hashtags used at
the moment. Popularity is considered either at
a local level or worldwide. In this sense, the
authors of (Ma et al., 2012) present a method to
predict hashtag success. Hashtags are extremely
popular in Twitter. Some studies have analysed
how to extract hashtags from a microblogging
environment (Efron, 2010). Other works apply
Diffusion of Innovation (DoI) to model hashtag
life cycle (Chang, 2010). However, to the best
of our knowledge, there are not studies about the
frequency distribution of hashtag popularity in
Twitter conversations. In this work, our goal is to
analyse Twitter datasets in order to discover if the
the frequency of hashtags popularity follow some
of the distribution laws that are very common
in many types of data presented in the social
sciences. Specifically, we study Benford’s law
and Zipf’s law.

Benford’s law (Benford, 1938), also known as
the first-digit law, characterises the distribution of
digits in large datasets. This law takes into ac-
count that in many natural occurring systems the
frequency of number’s first digits is not evenly dis-

1https://about.twitter.com/company
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Figure 1: First Significant Digit probabilities cal-
culated by Benford’s law

tributed. Benford observed that numbers with 1 as
first digit were observed far more often than those
starting with 2, 3 and so on. The probability P of
a number d having a particular non-zero first digit
is given by formula 1.

P (d) = log10

(
1 +

1
d

)
(1)

For instance: if we have the number 81291, the
First Significant Digit (FSD) is 8, the second is 1
and so on. Figure (1) shows the probabilities for
the first significant digit distribution. The prob-
ability to find a 1 in the first position is about
30%, while the probability to find a 9 is around
4.6%. Some authors have applied Benford’s law
to forensic account (Durtschi et al., 2004), where
an anomalous data distribution in the first sig-
nificant digits can lead to detect fraud. It has
been also applied to social networks by counting
friends and followers distributions in Facebook,
Twitter and many more networks (Golbeck, 2015).
Other fields where Benford’s law has been applied
are: crime statistics (Hickman and Rice, 2010),
electoral fraud (Bërdufi, 2013; Battersby, 2009),
genome data (Friar et al., 2012) and macroeco-
nomic data (Müller, 2011). For a recent account
on other computer approaches for studying social
networks, we refer the reader to (Kurka et al.,
2016).

A related empirical law is Zipf’s law. In fact,
Benford can be seen as a special case of Zipf’s
law. Zipf confirmed that given a corpus with word
frequencies of a language, the frequency of each
word is inversely proportional to its position in
the ranking of word’s frequencies, see an updated
reference in (Zipf, 1949). Both ranking and fre-
quency distributions follow an inverse relationship

who can be approximated by formula (2), where
Pn represents the frequency of a word sorted in
the n-th position with the exponent a very near to
1. Some applications of Zipf’s law can be seen
in (Powers, 1998; Popescu, 2003; Huang et al.,
2008).

Pn ∼ 1
na

(2)

In this work we have considered, as corpus sets,
hashtags appearing in some collection of tweets.
The frequency in which they appear coincides
with the number of times every tweet is men-
tioned. Therefore, in order to test Zipf’s law on
each dataset, we rank hashtags in the order from
most to least relevant. For carrying out these anal-
ysis we have considered two different datasets that
are described in Section 2. These datasets are pro-
cessed in Section 3 in order to bring together hash-
tags with certain plausible typesetting mistakes or
that were expected to refer to the same topic. Ad-
ditionally, we also have optimised the process of
joining similar hashtags in every dataset in order to
drastically reduce computing times. Once the fre-
quency of every hashtag is computed, in Section 4
we analyse the distribution of these frequencies in
order to test whether Zipf’s and Benford’s law are
satisfied. Conclusions are reported in Section 5.

2 Data Extraction

In this section, we summarise the process of col-
lecting and extracting the datasets that is going to
be employed in the experiments. Tweets of the
datasets have been downloaded by means of the
twitter API service 2. This API provides program-
matic access to Twitter data. Tweets are extracted
in JSON format, and in every tweet we can find
26 different features 3. In this work we only em-
ploy the field [”entities”][”hashtags”] that con-
tains the list of hashtags mentioned on the tweet
and help us to count the total number of mentions
of hashtags in a dataset.

The code for the use of Twitter API functions
as well as for the data management has been de-
veloped in Python. This programming language
provides a huge set of libraries for API connection
and data management.

After we get the complete list of hashtags in-
cluded in the dataset, we need to standardise and

2https://dev.twitter.com/overview/api
3https://dev.twitter.com/overview/api/

tweets
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Users Tweets With # Unique #
Argentina 650 635765 89643 44235

Chile 650 625739 63387 60262
Colombia 650 616046 144352 52248

Spain 650 623670 176167 76762
Mexico 650 624161 138631 66955

Peru 650 621325 144561 65156
Venezuela 650 610692 173906 59839

Total 4550 4357398 930647 425457

Table 1: Information about dataset Hispatweets.
Number of users, number of tweets, number of
tweets that contain hashtags and number of dis-
tinct hashtags.

normalise it in order to analyse correctly the hash-
tag distribution. The first step of this process con-
sists in converting all the text in lower case charac-
ters. Given that the analysed tweets are in Spanish,
we need to avoid the confusion that accents and
some of the letters of the Spanish alphabet could
produce4. Concretely, we remove accents and di-
aeresis from vowels, and the character ñ is con-
verted into n.

In this work, we use two different datasets:
Hispatweets and Elecciones. In the following
points we summarise the information about these
datasets.

2.1 Dataset Hispatweets

The dataset Hispatweets contains tweets from
seven countries where different types of Spanish
is spoken: Argentina, Chile, Colombia, Spain,
Mexico, Peru and Venezuela. This dataset was
generated in order to study the different features
of the Spanish that is used in Twitter in each one
of these countries. For that goal, 650 users of
each country were selected and a set of tweets
generated by these users were downloaded.
Information about the creation of this dataset can
be found in (Fabra-Boluda, 2016). The dataset
is available in the following url: https://
s3.amazonaws.com/cosmos.datasets/
hispatweets-populated.zip.

In Table 1 we include some information about
this dataset. In total, there are 4357398 tweets dis-
tributed almost uniformly among the seven coun-
tries. The presence of hashtags in the tweets is
not uniform. Spain is the country where tweets
contain more hashtags, since 21.36% of the tweets
have at least one hashtag. The last column con-

4Some users tend to avoid the use of accents in Twitter
hashtags.

Hashtag Users
#PartidoPopular Mariano Rajoy - @marianorajoy

Soraya Saenz - @Sorayapp
#Ciudadanos Albert Rivera - @Albert Rivera
#PSOE Pedro Sánchez - @sanchezcastejon
#Podemos Pablo Iglesias - @Pablo Iglesias
#IzquierdaUnida Alberto Garzón - @agarzon

Table 2: Hashtags and users employed in the
dataset Elecciones.

tains the number of different hashtags after the
standardisation process.

2.2 Dataset Elecciones
The dataset Elecciones is formed by tweets col-
lected during the 2015 Spanish General Election
campaign on December 2015. Specifically, the
tweets were stored during the period of the elec-
tion campaign that started on 1/12/2015 and fin-
ished on 22/12/2015. For every day in this period,
a Python script was executed every eight hours to
download tweets referring some hashtags related
to the main parties and tweets mentioning politi-
cal leaders that were involved in the electoral pro-
cess. Table 2 shows the exact terms that were ex-
plored for extracting the tweets. Summing up, this
dataset is formed by 256293 tweets that contain
171650 hashtags (7950 distinct hashtags are dis-
tinguished).

3 Hashtag identification

After removing special characters from the hash-
tags, we observed that most of them had a low
number of mentions, in many cases due to spelling
errors on them. For instance: the hashtag #7delde-
batedecisivo used for one of the debates for the
2015 Spanish General Election had a high number
of mentions. Around them we find with hashtags
like #7ddebatedeviscisivo or #7deldevate who had
few mentions (both containing spelling errors).

For studying distributions of hashtags mentions
in Twitter conversations, it is important if we are
able to detect and correct in some way this kind of
problems in hashtag identification. One possibil-
ity could be the use of automatic spell checkers
in order to detect and correct spelling mistakes.
Nevertheless, this solution is not feasible in this
context for some reasons. Mainly because hash-
tags usually concatenate words, and strings with-
out separators between the words are ambiguous
and cannot be parsed correctly in many cases. This
problem has been defined in NLP as compound
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splitting (Srinivasan et al., ; Koehn and Knight,
2003). Additionally, in many cases hashtags con-
tain acronyms, slang words or proper nouns, and
these are not easily identified by compound split-
ting techniques and spell checkers.

Given these limitations, we have adopted a dif-
ferent approach based on the similarity of hash-
tags. We assume that in many cases if two hash-
tags are very similar (i.e, the similarity between
the two terms is above a certain threshold α),
they can be joined to be accounted as the same
term. Therefore we need to measure similarities
between terms. There is a plethora of different
metrics that allow to estimate the distance between
strings (Cohen et al., 2003). We have applied
three string distances, Levenshtein distance, Jaro
distance and Jaro-Winkler distance. These mea-
sures are implemented in the python-Levenshtein5

library, written in Python. For a detailed descrip-
tion of these string distance metrics we refer to
(Naumann and Herschel, 2010). A comparison
between the differences in their application can be
found in (Cohen et al., 2003). In this work we have
used four levels for α: 0.95, 0.90, 0.85 and 0.80.
Using smaller values can lead to group hashtags
that are not very similar among them.

Table 3 shows an example of the measures
of the string distances applied to some hashtags.
Note that a measure of 1 indicates closeness simi-
larity and 0 means no similarity at all.

Hashtag 1 Hashtag 2 Levenshtein Jaro Jaro-Winkler
#20delecciones #20democracia 0.3846 0.6773 0.8064
#20delecciones #20dediciembre 0.3846 0.7019 0.8211
#7deldebatedecisivo #7deldebateadecisivo 0.9473 0.9824 1.0000
#7deldebatedecisivo #7deldebatedecsivo 0.9445 0.9618 1.0000
#canarias #valencia 0.2500 0.5834 0.5834
#marianorajoy #pedrosanchez 0.0834 0.3889 0.3889

Table 3: String metrics between hashtags for dif-
ferent examples of dataset Elecciones

In order to unify similar hashtags the first ap-
proach could be to calculate distances between
all hashtags of a dataset. However this process
implies a quadratic complexity on the number
of hashtags. Concretely, if we have n hashtags,
we need to compute n(n−1)

2 pairwise distances.
For instance, given the Elecciones dataset, with
7950 unique hashtags, we would need to compute
31597275 string distances. Due to its large com-
plexity, this complete method is not feasible for
medium size datasets. As a result, we propose in

5https://pypi.python.org/pypi/python-Levenshtein/0.12.0

this paper a filter to group similar hashtags based
on the alphabetical order:

1. We sort the n hashtags list in alphabetical or-
der

2. We calculate the distance between one hash-
tag and the nearest k neighbours in the list.

3. Given a level of similarity α, starting from
the beginning and in alphabetical order, we
group hashtags with a similarity more or
equal than α.

Note that using alphabetical order and comput-
ing distances between neighbours we only need
n pairwise distance computations. This approxi-
mation has important limitations. For instance, if
the spelling error is located in the first characters,
the algorithm will not group properly this hashtag.
We can also improve the performance of the filter
using more than one neighbour (factor k) in the
step 2 and 3, but this also could increase the time
complexity of the filter. This k factor could be es-
tablished depending on the size of the dataset. In
this work we only consider the nearest neighbour,
k = 1.

4 Experiments

After the correct identification of hashtags, in this
section we study the distribution of hashtags for
both datasets. In particular we analyse if the fre-
quency distribution of hashtags follow Benford’s
and Zipf’s law.

4.1 Zipf’s law
First, we compare the frequency distribution of
hashtags with respect to Zipf’s law.

4.1.1 Dataset Hispatweets
If we analyse separately the frequency distribution
of hashtags for each one of the countries of the
dataset Hispatweets, we observe that all of them
present a close distribution with respect to Zipf’s
law. Table 4 includes the regression line (consider-
ing a log-log scale) induced for the frequency dis-
tribution and the coefficient of determination R2

computed with respect to Zipf’s law distribution.
Since all values are close to -1, we can see that the
frequency distribution of hashtags follow approx-
imately Zipf’s law. Figure 2 shows an example of
the line induced by regression with respect to the
ideal Zipf’s law.
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Country Regression line R2

Argentina −1.1011x+ 4.4794 -0.9549
Chile −0.9538x+ 4.4206 -0.9617
Colombia −0.9550x+ 4.3778 -0.9641
Spain −0.9496x+ 4.5036 -0.9628
Mexico −0.8612x+ 4.0208 -0.9527
Peru −0.8953x+ 4.1562 -0.9549
Venezuela −1.0394x+ 4.8159 -0.9617

Table 4: Regression lines induced from frequency
of hashtags for each country of Hispatweets
dataset. Coefficient of determination R2 com-
puted with respect to Zipf’s law distribution

Figure 2: Regression lines induced from fre-
quency of hashtags for Spain with respect to Zipf’s
law distribution (considering a log-log scale).

Figure 3: Regression lines induced from fre-
quency of hashtags for dataset Elecciones with re-
spect to Zipf’s law distribution (considering a log-
log scale).

4.1.2 Dataset Elecciones
For this dataset the distribution of the frequency
of hashtags is again very close to Zipf’s law dis-
tribution. Using a log-log scale, the distribution is
approached by linear regression to a the following
line: −1.4909x+5.7644. Here, the Coefficient of
determination R2 = −0.9879 is extremely close
to −1. Figure 3 includes the line induced by re-
gression for this dataset with respect to the ideal
Zipf’s law.

4.2 Benford’s law

After analysing the Zipf’s law on the two datasets
with succesful results, here we study if the distri-
butions of the frequency of hashtags follow Ben-
ford’s law.

4.2.1 Dataset Hispatweets
Table 5 shows the percentage of each FSD (First
Significant Digit) for the seven countries of the
dataset. We also include in the first row the the-
oretical percentage for each FSD according to the
Benford’s law. We can observe that, for all cases,
there are important differences between the com-
puted FSD values and the theoretical values ex-
pected by Benford’s law. The disparity is spe-
cially great for the case FSD = 1, mainly be-
cause we have detected a gross number of hash-
tags that only appear once. In part, this is caused
because sometimes Twitter users introduce unin-
tended mistakes when writing hashtags, and then,
they are accounted as different. In order to cor-
rect these wrong hashtags we try to unify some
of them according to the procedure explained in
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Section 3. We have tested three edition distances:
Levenshtein, Jaro and Jaro-Winkler. In short, Lev-
enshtein distance counts the number of editions
(insertions, deletions, or substitutions) needed to
convert one string into the other. Jaro gives a mea-
sure of characters in common, being no more than
half the length of the longer string in distance, with
consideration for transpositions. The modification
included in Jaro-Winkler takes the idea that differ-
ences near the start of the string are more signif-
icant than differences near the end of the string,
see for instance (Naumann and Herschel, 2010).
All of them range from 0 to 1, with 1 representing
the case of coincidence.

According to our results, this last distance is the
most valid to unify similar hashtags. In Table 6 we
include the values of the FSD for the case of Spain
and different values of α. According to these re-
sults, α = 0.8 is the value that obtains better re-
sults when we compare the distribution of FSD
with respect to the FSD according of the Benford’s
law. Similar results have been obtained for the rest
of countries.

4.2.2 Dataset Elecciones
We also have a similar result in the case of dataset
Elecciones. Table 7 includes the computed distri-
bution of FSD without filtering hashtags, and ap-
plying the filter based on Jaro-Winkler distance for
different values of α. Again, we find a situation
with a high number of hashtags with just one ap-
pearance. After applying the filter, we reduce this
situation by joining hashtags that probably were
different because of type-writing errors. As in the
previous dataset, α = 0.8 is the value that obtains
more similar results to the theoretical estimates of
FSD according to Benford’s law.

4.3 Analysis of results

According to the results presented in the analysed
datasets, we can observe that when we study a sig-
nificant number of tweets, the distribution of the
FSD approaches to Benford’s law, specially if we
apply a filter step that joins similar hashtags. In or-
der to assess this conclusion, we introduce in this
part some experiments where we measure the sim-
ilarity between the computed distribution of FSDs
with respect to the theoretical expected FSD dis-
tribution defined by Benford’s law.

In Table 9 we include some measures for evalu-
ating the similarity between the computed and the-
oretical distribution of FSDs. These are:

• Pearson Correlation: a measure for estimat-
ing the linear dependence between two vari-
ables. The estimated value is between +1
(total positive linear correlation) and -1 (to-
tal negative linear correlation). Correlation 0
indicates no linear correlation.

• χ2: This metric is defined as the difference of
the computed distribution with respect to the
theoretical distribution:

χ2 =
9∑

d=m

(Pobs(d)− Pt(d))2

Pt(d)
(3)

where:

– Pt(d) is the theoretical frequency and
Pobs(d) is the observed frequency

– m refers to the analysed digit. Here we
study the first digit, thus m = 1.

Since χ2 estimates the difference between
distributions, lower values of the metric in-
dicates distributions closer to Benford’s law.
According to (Nigrini, 2012), we can assume
that a distribution does not follow Benford’s
law for the first digit (FSD) if χ2 > 15.507
(confidence 95%), and if χ2 > 20.090 (con-
fidence 99%).

• Mean absolute deviation (MAD) : The aver-
age absolute deviation (or mean absolute de-
viation) is a summary statistic of dispersion.
MAD estimates the average of the absolute
deviations from a theoretical distribution. For
Benford’s law, it is computed in the following
way:

MAD =
1
9

9∑
d=1

|Pobs(d)− Pt(d)| (4)

For making a hypothesis contrat, we consider
as null hypothesis that a distribution follows
Benford’s law. Since χ2 estimates the dif-
ference between distributions, lower values
of the metric indicates distributions closer to
Benford’s law. According to (Nigrini, 2012),
we use this metric to estimate different values
of conformity of a distribution with respect to
Benford’s law. These ranges are presented in
Table 8.
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1 2 3 4 5 6 7 8 9 Total
FSD Benford 30.01% 17.60% 12.40% 9.69% 7.91% 6.69% 5.79% 5.11% 4.57% 100%
FSD Argentina 62.54% 13.37% 6.69% 4.14% 2.41% 1.80% 1.18% 1.03% 0.83% 100%
FSD Chile 60.88% 19.19% 6.95% 4.51% 2.86% 2.11% 1.47% 1.16% 0.87% 100%
FSD Colombia 59.45% 19.41% 7.36% 4.71% 3.05% 2.30% 1.49% 1.28% 0.95% 100%
FSD Spain 60.17% 19.89% 7.00% 4.56% 2.74% 2.03% 1.52% 1.16% 0.92% 100%
FSD Mexico 63.53% 18.61% 6.41% 3.98% 2.52% 1.84% 1.33% 0.96% 0.82% 100%
FSD Peru 62.60% 19.15% 6.78% 4.08% 2.47% 1.84% 1.23% 1.05% 0.79% 100%
FSD Venezuela 58.71% 19.55% 7.48% 4.89% 3.01% 2.01% 1.61% 1.32% 1.12% 100%

Table 5: Percentage of each FSD First Significant Digit for the seven countries of the dataset His-
patweets. The first row contains the expected Percentage of each FSD according to Benford’s law.

Jaro-Winkler Distance
1 2 3 4 5 6 7 8 9

FSD Benford 30.01% 17.60% 12.40% 9.69% 7.91% 6.69% 5.79% 5.11% 4.57%
FSD Spain 60.17% 19.89% 7.00% 4.56% 2.74% 2.03% 1.52% 1.16% 0.92%
α = 0.95 54.57% 20.48% 8.46% 5.58% 3.60% 2.61% 1.96% 1.47% 1.27%
α = 0.90 49.78% 20.70% 9.48% 6.55% 4.40% 3.13% 2.41% 1.92% 1.62%
α = 0.85 44.74% 20.51% 10.62% 7.18% 5.25% 4.02% 2.95% 2.67% 2.06%
α = 0.80 39.89% 20.56% 11.12% 8.33% 5.92% 4.72% 3.45% 3.49% 2.55%

Table 6: Percentage of each FSD for Spain in dataset Hispatweets applying a filter based on Jaro-Winkler
distance and different values of α. The first row contains the expected percentage of each FSD according
to Benford’s law. The second row contains the percentage of each FSD without hashtag the union filter.

Jaro-Winkler Distance
1 2 3 4 5 6 7 8 9

FSD Benford 30.01% 17.60% 12.40% 9.69% 7.91% 6.69% 5.79% 5.11% 4.57%
FSD Elecc. 40.39% 25.99% 8.97% 9.23% 3.91% 4.50% 2.54% 2.69% 1.77%
α = 0.95 39.00% 24.61% 9.85% 10.07% 4.45% 4.88% 2.51% 2.79% 1.83%
α = 0.90 38.08% 23.24% 10.60% 9.79% 4.92% 5.09% 3.24% 3.07% 1.98%
α = 0.85 36.35% 21.88% 11.55% 9.80% 5.42% 5.51% 3.61% 3.49% 2.40%
α = 0.80 33.8% 20.49% 12.56% 9.70% 6.61% 5.81% 4.13% 4.27% 2.63%

Table 7: Percentage of each FSD for dataset Elecciones applying a filter based on Jaro-Winkler distance
and different values of α. The first row contains the expected percentage of each FSD according to
Benford’s law. The second row contains the percentage of each FSD without the hashtag union filter.
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Range Conformity Level
0.000 to 0.006 High
0.006 to 0.012 Good
0.012 to 0.015 Medium
0.015 or more Low

Table 8: Range of critical values and the corre-
sponding conformity level for Mean absolute de-
viation and Benford’s law on the first significant
digit.

Distribution Correlation χ2 MAD
Spain 0.9699 51.41 0.071
Spain + J-W α = 0.8 0.9966 7.48 0.028
Elecciones 0.9835 23.78 0.038
Elecc. + J-W α = 0.8 0.9979 2.72 0.014

Table 9: Pearson Correlation, χ2 statistics and
Mean absolute deviation (MAD) between ob-
served distribution of FSD and theoretical distri-
bution of FSD according to Benford’s law. We in-
clude original datasets and datasets after applying
the Jaro-Winkler Distance filter.

If we analyse the results of Table 9, we can ob-
serve that for all cases correlation obtain high val-
ues (greater than 0.92). We can see that corrected
versions for both datasets increase the correlation
with respect to Benford’s law.

A similar behaviour is observed in χ2 statis-
tics. The Jaro-Winkler Distance filter is able to
unify numerous hashtags and then the similar-
ity with respect to to Benford’s law is drastically
increased. If we consider the test proposed by
(Nigrini, 2012), and the corrected version of the
dataset, the hypothesis that distributions does not
follow Benford’s law cannot be rejected.

Finally, considering Mean absolute deviation
(MAD), we find the same pattern. Jaro-Winkler
Distance filter reduces the distance between dis-
tributions. In this case, the test proposed by (Ni-
grini, 2012) determines that Spain dataset has a
low similarity with respect to Benford’s law, and
the Elecciones dataset (corrected version) has a
medium similarity. These results are in some cases
contradictory with respect to the conclusions ob-
served with χ2 statistics, and indicate that MAD
test seems to be more strict that χ2 test.

5 Conclusions

Benford’s Law is useful to estimate the probabili-
ties of highly likely or highly unlikely frequencies
of numbers in datasets. Those who are not aware
of this experimental law and intentionally manip-
ulate numbers are susceptible to be discovered by
the comparison with respect to Benford’s Law. We
find examples of this use in electoral processes,
accounting fraud detection, scientific fraud detec-
tion...

In this paper, Benford’s and Zipf’s laws have
been testing against hashtag frequency on datasets
of tweets. A similar analysis has been recently
checked for the case of followers distributions in
Facebook, Twitter (Golbeck, 2015). We confirm
that the distribution of hashtag frequency follows
a power law, as Zipf’s law expects. That is, few
hashtags achieve a high number of mentions, and
most of them lack of impact with few repetitions .
The source of this dispersion is probably the lack
of control of Twitter on the use of hashtags. The
social network permits that hashtags can be cre-
ated without any restriction, and it also lacks of a
recommender system for the generation of hash-
tags. In fact, we detected an irregular number of
hashtags with just one mention. Many of these
hashtags are spelling mistakes of Twitter users.
In order to mitigate this dispersion, we defined a
union filter based on string distances that is able
to group filters based on their similarity. We use
alphabetical order of hashtags in order to reduce
time complexity of the cluster algorithm. The
comparison of three string distances Levenshtein,
Jaro and Jaro-Winkler indicates that the last one,
Jaro-Winkler, obtains the better performance in
correcting hashtags.

We also analyse the distribution of the first
significant digit of the hashtag frequencies with
respect to Benford’s law. Experiments on the
datasets of tweets considering three different met-
rics: Pearson Correlation, χ2 and Mean absolute
deviation, reveal that this law is approximately fol-
lowed by the distribution of the first significant
digit of the hashtag frequencies, specially when
we apply a group filter based on the Jaro-Winkler
distance in order to correct spelling errors in hash-
tags. In order to give statistical significance to
our research, we apply some of the tests provided
by (Nigrini, 2012) that allow to verify the level
of conformity of a frequency distribution with re-
spect to Benford’s law. According to the results,

91



χ2 test returns high level of conformity, while con-
sidering Mean absolute deviation (MAD), we get
medium and low level of conformity. These two
tests are in some way contradictory and show that
MAD test seems to be more strict that χ2 test.

As future work, we propose the improvement
of the hashtag unification filter by improving
the mechanism for detecting similarities between
hashtags. We will also study the applicability of
the experimental laws on bigger tweet datasets,
where, likely, the levels of conformity will be
greater.
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