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Abstract 

This paper addresses the problem of 
automatically retrieving answers for 

how-to questions, focusing on those that 

inquire about the procedure for 
achieving a specific goal. For such 

questions, typical information retrieval 

methods, based on key word matching, 

are better suited to detecting the content 
of the goal (e.g., ‘installing a Windows 

XP server’) than the general nature of the 

desired information (i.e., procedural, a 
series of steps for achieving this goal). 

We suggest dividing the process of 

retrieving answers for such questions 

into two stages, with each stage focusing 
on modeling one aspect of a how-to 

question. We compare the two-stage 

approach with two alternative 
approaches: a baseline approach that 

only uses the content of the goal to 

retrieve relevant documents and another 
approach that explores the potential of 

automatic query expansion. The result of 

the experiment shows that the two-stage 

approach significantly outperforms the 
baseline but achieves similar result with 

the systems using automatic query 

expansion techniques. We analyze the 
reason and also present some future work. 

1 Introduction 

How-To questions constitute a large proportion 

of questions on the Web. Many how-to questions 
inquire about the procedure for achieving a 

specific goal. For such questions, typical 

information retrieval (IR) methods, based on key 
word matching, are better suited to detecting the 

content of the goal (e.g., installing a Windows 

XP server) than the general nature of the desired 

information (i.e., procedural, a series of steps for 

achieving this goal).  The reasons are given as 
below. 

First, documents that describe a procedure 

often do not contain the word ‘procedure’ itself, 
but we are able to abstract the concept 

‘procedure’ from cues such as ‘first’, ‘next’ and 

‘then’, all of which indicate sequential 

relationships between actions. Secondly, We 
expect that the word ‘procedure’ or the phrase 

‘how to’ will occur in a much broader context 

than the words in the goal. In other words, a 
document that contains the words in the goal is 

more likely to be relevant than a document that 

contains the word ‘procedure’ or the phrase ‘how 
to’. Without noticing this difference, treating the 

two parts equally in the retrieving process will 

get many noisy documents. 

Many information requests seem to show such 
a structure, with one part identifying a specific 

topic and another part constraining the kind of 

information required about this topic (Yin and 
Power, 2005). The second part is often omitted 

when selecting retrieval terms from the request to 

construct an effective query for an IR system, 
such as in Picard (1999). 

The first point given above suggests that using 

cues such as ‘first’ and ‘next’ to expand the 

initial query may help in retrieving more relevant 
documents. Expansion terms can be generated 

automatically by query expansion techniques. 

The typical process is: (1) use the initial query to 
retrieve documents (referred to as the first round 

of retrieval); (2) consider a few top ranked 

documents as relevant and the rest irrelevant; (3) 

compare the relevant set with the irrelevant set to 
extract a list of most distinctive terms; (4) use the 

extracted terms to retrieve documents (referred to 

as the second round of retrieval). 
However, query expansion may not constitute 

a good solution, because its effectiveness largely 
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depends on the quality of the few top ranked 

documents retrieved in the first round when the 

aforementioned two problems are not yet 

tackled.  
Our solution is to divide the process of 

retrieving answers for such questions into two 

stages: (1) use typical IR approaches for 
retrieving documents that are relevant to the 

specific goal; (2) use a text categorization 

approach to re-rank the retrieved documents 
according to the proportion of procedural text 

they contain. By ‘procedural text’ we refer to 

ordered lists of steps, which are very common in 

some instructional genres such as online manuals.  
In this report, we will briefly introduce the 

text categorization approach (details are 

presented in (Yin and Power, 2006) ) and will 
explain in more concrete terms how it is 

integrated into the two-stage architecture 

proposed above. We will compare the 
performance of our two-stage architecture with a 

baseline system that uses only the content of the 

goal to retrieve relevant documents (equivalent 

to the first stage in the two-stage architecture). 
We will also compare the two-stage approach 

with systems that applies automatic query 

expansion techniques. 
This paper is organized as follows. Section 2 

introduces some relevant work in IR and 

question answering (QA). Section 3 talks about 

the text categorization approach for ranking 
procedural documents, covering issues such as 

the features used, the training corpus, the design 

of a classification model as well as some 
experiments for evaluation. Section 4 talks about 

integrating the text categorizer into the two-stage 

architecture and presents some experiments on 
retrieving relevant documents for how-to 

questions. Section 5 provides a short summary 

and presents some future work.  

2 Related Work 

The idea of applying text categorization 

technology to help information retrieval is not 
new. In particular, text categorization techniques 

are widely adopted to filter a document source 

according to specific information needs. For 

example, Stricker et al. (2000) experiment on 
several news resources to find news addressing 

specific topics. They present a method for 

automatically generating “discriminant terms” 
(Stricker et al., 2000) for each topic that are then 

used as features to train a neural network 

classifier. Compared to these approaches, the 

novelty of our study lies in the idea that an 

information request consists of two different 

parts that should be retrieved in different ways 

and the whole retrieval process should adopt a 
two-stage architecture.  

A research area that is closely related to IR is 

question answering (QA), the differences being 
a) the input of a QA system is a question rather 

than a few key words; b) a QA system aims to 

extract answers to a question rather than 
retrieving relevant documents only. Most QA 

systems do adopt a two-stage architecture (if not 

consider the initial question analysis stage), i.e., 

perform IR with a few content words extracted 
from the query to locate documents likely to 

contain an answer and then use information 

extraction (IE) to find the text snippets that 
match the question type (Hovy et al., 2001; 

Elworthy, 2000). However, most question 

answering systems target factoid questions – the 
research of non-factoid questions started only a 

few years ago but limited to several kinds, such 

as definitional questions (Xu et al., 2003) and 

questions asking for biographies (Tsur et al., 
2004).  

Only a few studies have addressed procedural 

questions. Murdok and Croft (2002) distinguish 
between “task-oriented questions” (i.e., ask about 

a process) and “fact-oriented questions” (i.e., ask 

about a fact) and present a method to 

automatically classify questions into these two 
categories. Following this work, Kelly et al. 

(2002) explore the difference between documents 

that contain relevant information to the two 
different types of questions. They conclude, 

“lists and FAQs occur in more documents judged 

relevant to task-oriented questions than those 
judged relevant to fact-oriented questions” (Kelly 

et al., 2002: 645) and suggest, “retrieval 

techniques specific to each type of question 

should be considered” (Kelly et al., 2002: 647). 
Schwitter et al. (2004) present a method to 

extract answers from technical documentations 

for How-questions.  To identify answers, they 
match the logical form of a sentence against that 

of the question and also explore the 

typographical conventions in technical domains. 
The work that most resembles ours is Takechi et 

al. (2003), which uses word n-grams to classify 

(as procedural or non-procedural) list passages 

extracted using HTML tags. Our approach, 
however, applies to whole documents, the aim 

being to measure the degree of procedurality — 

i.e., the proportion of procedural text they 
contain.  

64



3 Ranking Procedural Texts 

Three essential elements of a text categorization 

approach are the features used to represent the 

document, the training corpus and the machine 
learning method, which will be described in 

section 3.1, 3.2 and 3.3 respectively. Section 3.4 

presents experiments on applying the learned 
model to rank documents in a small test set. 

3.1 Feature Selection and Document 

Representation 

Linguistic Features and Cue Phrases 

We targeted six procedural elements: actions, 

times, sequence, conditionals, preconditions, and 
purposes. These elements can be recognized 

using linguistic features or cue phrases. For 

example, an action is often conveyed by an 
imperative; a precondition can be expressed by 

the cue phrase ‘only if’. We used all the 

syntactic and morphological tags defined in 

Connexor’s syntax analyzer
1
. There are some 

redundant tags in this set. For example, both the 

syntactic tag ‘@INFMARK>’ and the 

morphological tag ‘INFMARK>’ refer to the 
infinitive marker ‘to’ and therefore always occur 

together at the same time. We calculated the 

Pearson’s product-moment correlation 

coefficient (r) (Weisstein, 1999) between any 
two tags based on their occurrences in sentences 

of the whole training set. We removed one in 

each pair of strongly correlated tags and finally 
got 34 syntactic tags and 34 morphological tags. 

We also handcrafted a list of relevant cue 

phrases (44), which were extracted from 
documents by using the Flex tool

2
 for pattern 

matching. Some sample cue phrases and the 

matching patterns are shown in table 1. 
Procedural 
Element 

Cue Phrase Pattern 

Precondition ‘only if’  [Oo]nly[[:space:]]if[[:space:]] 

Purpose ‘so that’  [sS]o[[:space:]]that[[:space:]] 

Condition ‘as long as’  ([Aa]s) [[:space:]]long[[:space:]]as[[:space:]] 

Sequence ‘first’  [fF]irst [[:space:][:punct:]] 

Time ‘now’  [nN]ow[[:space:][:punct:]] 

Table 1. Sample cue phrases and matching 

patterns. 

Modeling Inter-Sentential Feature Co-

occurrence 

Some cue phrases are ambiguous and therefore 

cannot reliably suggest a procedural element. 

For example, the cue phrase ‘first’ can be used to 

                                                       
1 Refer to http://www.connexor.com/ 
2

Refer to http://www.gnu.org/software/flex/flex.html

represent a ranking order or a spatial relationship 

as well as a sequential order. However, it is more 

likely to represent a sequential order between 

actions if there is also an imperative in the same 
sentence. Indeed, sentences that contain both an 

ordinal number and an imperative are very 

frequent in procedural texts. We compared 
between the procedural training set and the non-

procedural training set to extract distinctive 

feature co-occurrence patterns, each of which has 
only 2 features. The formulae used to rank 

patterns with regard to their distinctiveness can 

be found in (Yin and Power, 2006). 

Document Representation 

Each document was represented as a vector 

{ }
Njjjj xxxd ,...,,

21
= , where 

ij
x  represents the 

number of sentences in the document that 
contains a particular feature normalized by the 

document length. We compare the effectiveness 

of using individual features (
ij

x  refers to either a 

single linguistic feature or a cue phrases) and of 

using feature co-occurrence patterns (
ij

x refers to 

a feature co-occurrence pattern). 

3.2 Corpus Preparation 

Pagewise
3

 provides a list of subject-matter 
domains, ranging from household issues to arts 

and entertainment. We downloaded 1536 

documents from this website (referred to 

hereafter as the Pagewise collection). We then 
used some simple heuristics to select documents 

from this set to build the initial training corpus. 

Specifically, to build the procedural set we chose 
documents with titles containing key phrases 

‘how to’ and ‘how can I’ (209 web documents); 

to build the non-procedural set, we chose 

documents which did not include these phrases 
in their titles, and which also had no phrases like 

‘procedure’ and ‘recipe’ within the body of the 

text (208 web documents). 
Samples drawn randomly from the procedural 

set (25) and non-procedural set (28) were 

submitted to two human judges, who assigned 
procedurality scores from 1 (meaning no 

procedural text at all) to 5 (meaning over 90% 

procedural text). The Kendall tau-b agreement  

(Kendall, 1979) between the two rankings was 
0.821. Overall, the average scores for the 

procedural and non-procedural samples were 

3.15 and 1.38. We used these 53 sample 
documents as part of the test set and the 

                                                       
3 Refer to http://www.essortment.com 
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remaining documents as the initial training set 

(184 procedural and 180 non-procedural).  

This initial training corpus is far from ideal: 

first, it is small in size; a more serious problem is 
that many positive training examples do not 

contain a major proportion of procedural text. In 

our experiments, we used this initial training set 
to bootstrap a larger training set. 

3.3 Learning Method 

Although shown to be not so effective in some 

previous studies (Yang, 1999; Yang and Liu, 
1999), Naive Bayes classifier is one of the most 

commonly-used classifiers for text 

categorization. Here we introduce a model 

adapted from the Naive Bayes classifier from the 
weka-3-4 package (Witten and Frank, 2000). 

The Naive Bayes classifier scores a document 

jd  according to whether it is a typical member 

of its set — i.e., the probability of randomly 
picking up a document like it from the 

procedural class ( ( )proceduralCdp j =| ). This 

probability is estimated from the training corpus. 

As mentioned before, the average procedural 

score of the procedural training set is low. 
Therefore, there is obviously a danger that a true 

procedural document will be ranked lower than a 

document that contains less procedural texts 
when using this training set to train a Naive 

Bayes classifier. Although our procedural 

training set is not representative of the 
procedural class, by comparing it with the non-

procedural training set, we are able to tell the 

difference between procedural documents and 

non-procedural documents. We adapted the 
Naive Bayes classifier to focus on modeling the 

difference between the two classes. For example, 

if the procedural training set has a higher 
average value on feature Xi than the non-

procedural training set, we inferred that a 

document with a higher feature value on Xi 
should be scored higher. To reflect this rule, we 

scored a document jd  by the probability of 

picking a document with a lower feature value 

from the procedural class (i.e., 

)|( proceduralCxXp
iji

=< ). Again this 

probability is estimated from the training set. 

The new model will be referred to hereafter as 
the Adapted Naive Bayes classifier. The details 

of this new model can be found in (Yin and 
Power, 2006).

3.4 Experiments on Ranking Procedural 

Texts 

There are two sources from which we compiled 

the training and testing corpora: the Pagewise 
collection and the SPIRIT collection. The 

SPIRIT collection contains a terabyte of HTML 

that are crawled from the web starting from an 
initial seed set of a few thousands universities 

and other educational organizations (Clarke et 

al., 1998). 
Our test set contained 103 documents, 

including the 53 documents that were sampled 

previously and then separated from the initial 

training corpus, another 30 documents randomly 
chosen from the Pagewise collection and 20 

documents chosen from the SPIRIT collection. 

We asked two human subjects to score the 
procedurality for these documents, following the 

same instruction described in section 3.2. The 

correlation coefficient (Kendall tau-b) between 
the two rankings was 0.725, which is the upper 

bound of the performance of the classifiers. 

We first used the initial training corpus to 

bootstrap a larger training set (378 procedural 
documents and 608 non-procedural documents), 

which was then used to select distinctive feature 

co-occurrence patterns and to train different 
classifiers. We compared the Adapted Naive 

Bayes classifier with the Naive Bayes classifier 

and three other classifiers, including Maximum 

Entropy (ME)
4

, Alternating Decision Tree 
(ADTree) (Freund and Mason, 1999) and Linear 

Regression (Witten and Frank, 2000).  

Figure 1. Ranking results using individual 
features: 1 refers to Adapted Naive Bayes, 2 

refers to Naive Bayes, 3 refers to ME, 4 refers to 

ADTree and 5 refers to Linear Regression. 

Ranking Method Agreement 

with Subject 1 

Agreement 

with Subject 2 

Average 

Adapted Naive Bayes 0.270841 0.367515 0.319178 

Naive Bayes 0.381921 0.464577 0.423249 

ME 0.446283 0.510926 0.478605 

                                                       
4 Refer to 
http://homepages.inf.ed.ac.uk/s0450736/maxent.html 

66



ADTree 0.371988 0.463966 0.417977 

Linear Regression 0.497395 0.551597 0.524496 

Table 2. Ranking results using individual 
features. 

Figure 2. Ranking results using feature co-

occurrence patterns: 1 refers to Adapted Naive 
Bayes, 2 refers to Naive Bayes, 3 refers to ME, 4 

refers to ADTree and 5 refers to Linear 

Regression.  

Ranking Method Agreement 

with Subject 1 
Agreement 

with Subject 2 

Average 

Adapted Naive Bayes 0.420423 0.513336 0.466880 

Naive Bayes 0.420866 0.475514 0.44819 

ME 0.414184 0.455482 0.434833 

ADTree 0.358095 0.422987 0.390541 

Linear Regression 0.190609 0.279472 0.235041 

Table 3. Ranking results using feature co-

occurrence patterns. 

Figure 1 and table 2 show the Kendall tau-b 

coefficient between human subjects’ ranking 
results and the trained classifiers’ ranking results 

of the test set when using individual features 

(112); Figure 2 and table 3 show the Kendall 

tau-b coefficient when using feature co-
occurrence patterns (813). 

As we can see from the above figures, when 
using individual features, Linear Regression 

achieved the best result, Adapted Naive Bayes 

performed the worst, Naive Bayes, ME and 
ADTree were in the middle; however, when 

using feature co-occurrence patterns, the order 

almost reversed, i.e., Adapted Naive Bayes 
performed the best and Linear Regression the 

worst. Detailed analysis of the result is beyond 

the scope of this paper. The best model gained 

by using feature co-ocurrence patterns (i.e., 
Adapted Naive Bayes classifier) and by using 
individual features (i.e., Linear Regression 
classification model) will be used for further 
experiments on the two-stage architecture. 

4 Retrieving Relevant Documents for 

How-To Questions 

In this section we will describe the experiments 
on retrieving relevant documents for how-to 

questions by applying different approaches 

mentioned in the introduction section. 

4.1 Experiment Setup 

We randomly chose 60 how-to questions from 
the query logs of the FA Q finder system (Burke 

et al., 1997). Three judges went through these 

questions and agreed on 10 procedural 
questions5

.

We searched Google and downloaded 40 top 

ranked documents for each question, which were 

then mixed with 1000 web documents from the 
SPIRIT collection to compile a test set. The two-

stage architecture is as shown in figure 3. In the 

first stage, we sent only the content of the goal to 
a state-of-the-art IR model to retrieve 30 

documents from the test set, which were 

reranked in the second stage according to the 
degree of procedurality by a trained document 

classifier. 

Figure 3. A two-stage architecture. 

We also tried to test how well query expansion 

could help in retrieving procedural documents, 

following a process as shown in figure 4. First, 

key words in the content of goal were used to 
query an IR model to retrieve an initial set of 

relevant documents, those of which that do not 

contain the phrase ‘how to’ were then removed. 
The remaining top ten documents were used to 

generate 40 searching terms, which were applied 

in the second round to retrieve documents. 
Finally the 30 top ranked documents were 

returned as relevant documents.

                                                       
5 We distinguish questions asking for a series of steps 

(i.e., procedural questions) from those of which the 

answer could be a list of useful hints, e.g., ‘how to 

make money’.  

Stage One 

Stage Two
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Figure 4. An alternative architecture using query 

expansion. 

4.2 IR Model 

For the above-mentioned IR model, we used the 
BM25 and PL2 algorithms from the Terrier IR 

platform
6
.

The BM25 algorithm is one variety of the 

probabilistic schema presented in (Robertson et 
al. 1993). It has gained much success in TREC 

competitions and has been adopted by many 

other TREC participants.  
The PL2 algorithm, as most other IR models 

implemented in the Terrier IR platform, is based 

on the Divergence From Randomness (DFR) 
framework. Amati and Rijsbergen (2004) 

provide a detailed explanation of this framework 

and a set of term-weighting formulae derived by 

applying different models of randomness and 
different ways to normalize the weight of a term 

according to the document length and according 

to a notion called information gain. They test 
these different formulae in the experiments on 

retrieving relevant documents for various sets of 

TREC topics and show that they achieve 

comparable result with the BM25 algorithm.  
We also used the Bo1 algorithm from the 

same package to select terms for query 

expansion. Refer to (Plachouras et al., 2004) for 
details about this algorithm. 

4.3 Result 

We tested eight systems, which could be 

organized into two sets. The first set uses BM25 
algorithm as the basic IR model and the second 

set uses PL2 as the basic IR model. Each set 

includes four systems: a baseline system that 

returns the result of the first stage in the two-
stage architecture, one system that uses query 

expansion technique following the architecture 

in figure 4 and two systems that apply the two-

                                                       
6 http://ir.dcs.gla.ac.uk/terrier/index.html 

stage architecture (one uses the Adapted Naive 

Bayes classifier and another one uses the Linear 

Regression classification model).   

The mean average precision (MAP)
7

 of 
different retrieval systems is shown in table 4 

and figure 5.  

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

1 2

Basel i ne

Quer y Expansi on

Adapt ed Nai ve Bayes

Li near  Regr essi on

Figure 5. MAPs of different systems: 1 refers to 

using BM25 as the IR model, 2 refers to using 
PL2 as the IR model. 

 Model MAP 

 BM25 (Baseline) 0.33692 

Set1 BM25 + Query Expansion 0.50162 

 BM25 + Adapted Naive Bayes 0.45605 

 BM25 + Linear Regression 0.41597 

   

 PL2  (Baseline) 0.33265 

Set2 PL2 + Query Expansion 0.45821 

 PL2 + Adapted Naive Bayes 0.44263 

 PL2 + Linear Regression 0.40218 

Table 4. Results of different systems. 

We can see that in both sets: (1) systems that 

adopts the two-stage architecture performed 
better than the baseline system but worse than 

the system that applies query expansion 

technique; (2) the system that uses Adapted 
Naive Bayes classifier in the second stage gained 

better result than the one that uses Linear 

Regression classification model. We performed a 

pairwise t-test to test the significance of the 
difference between the results of the two systems 

with an integrated Adapted Naive Bayes 

classifier and of the two baseline systems. Each 
data set contained 20 figures, with each figure 

representing the average precision of the 

retrieving result for one question. The difference 
is significant (p=0.02). We also performed a 

pairwise t-test to test the significance of the 

difference between the two systems with an 

integrated Adapted Naive Bayes classifier and of 

                                                       
7 The average precision of a single question is the 

mean of the precision scores after each relevant 

document is retrieved. The mean average precision is 

the mean of the average precisions of a collection of 

questions. 

Round One 

Round Two
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the two systems using query expansion 

techniques. The difference is not significant 

(p=0.66).  

4.4 Discussion 

Contrary to our expectation, the result of the 
experiments showed that the two-stage approach 

did not perform better than simply applying a 

query expansion technique to generate an 
expanded list of querying terms. An explanation 

can be sought from the following two aspects   

(each of which corresponds to one of the two 
problems mentioned in the first section).  

First, we expected that many documents that 

contain procedures do not contain the word 

‘procedure’ or the phrase ‘how to’. Therefore, a 
system based on key word matching would not 

be able to identify such documents. However, 

we found that such words or phrases, although 
not included in the body of the text, often occur 

in the title of the document. 

Another problem we pointed out before is that 

the phrase ‘how to’ occurs in a much broader 
context than keywords in the content of the goal, 

therefore, it would bring a lot of irrelevant 

documents when used together with the content 
of goal for document retrieval. However, in our 

experiment, we used the content of the goal to 

retrieve document first and then removed those 
containing no phrase ‘how to’ (refer to figure 4).

This is actually also a two-stage approach in 

itself.  

Despite the experiment result, a well-known 
defect of query expansion is that it is only 

effective if relevant documents are similar to 

each other while the two-stage approach does 
not have this limitation. For example, for 

retrieving documents about ‘how to cook 

herring’, query expansion is only able to retrieve 
typical recipes while our two-stage approach is 

able to detect an exotic method as long as it is 

described as a sequence of steps. 

5 Summary and Future Work 

In this paper, we suggested that a how-to 

question could be seen as consisting of two 

parts: the specific goal and the general nature of 
the desired information (i.e., procedural). We 

proposed a two-stage architecture to retrieve 

documents that meet the requirement of both 
parts. We compared the two-stage architecture 

with other approaches: one only uses the content 

of the goal to retrieve documents (baseline 
system) and another one uses an expanded set of 

query terms obtained by automatic query 

expansion techniques. The result has shown that 

the two-stage architecture performed better than 

the base line system but did not show superiority 
over query expansion techniques. We provide an 

explanation in section 4.4.  

As suggested in section 1, many information 
requests are formulated as consisting of two 

parts. As a future work, we will test the two-

stage architecture for retrieving answers for other 
kind of questions. 
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