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Abstract

Incorporating Item Response Theory (IRT)
into NLP tasks can provide valuable informa-
tion about model performance and behavior.
Traditionally, IRT models are learned using hu-
man response pattern (RP) data, presenting a
significant bottleneck for large data sets like
those required for training deep neural net-
works (DNNs). In this work we propose learn-
ing IRT models using RPs generated from arti-
ficial crowds of DNN models. We demonstrate
the effectiveness of learning IRT models using
DNN-generated data through quantitative and
qualitative analyses for two NLP tasks. Param-
eters learned from human and machine RPs
for natural language inference and sentiment
analysis exhibit medium to large positive cor-
relations. We demonstrate a use-case for la-
tent difficulty item parameters, namely train-
ing set filtering, and show that using difficulty
to sample training data outperforms baseline
methods. Finally, we highlight cases where hu-
man expectation about item difficulty does not
match difficulty as estimated from the machine
RPs.

1 Introduction

What is the most difficult example in the Stanford
Natural Language Inference (SNLI) data set (Bow-
man et al., 2015) or in the Stanford Sentiment Tree-
bank (SSTB) (Socher et al., 2013)? A priori the
answer is not clear. How does one quantify the
difficulty of an example and does it pertain to a
specific model, or more generally?

There has been much recent work trying to as-
sess the quality of data sets used for NLP tasks,
(e.g. Lalor et al., 2016; Sakaguchi and Van Durme,

∗Current affiliation: Mendoza College of Business, Uni-
versity of Notre Dame

2018; Kaushik and Lipton, 2018). In particular, a
common finding is that different examples within
the same class have very different qualities such
as difficulty, and these differences affect models’
performance. For example, one study found that
a subset of reading comprehension questions were
so difficult as to be unanswerable (Kaushik and
Lipton, 2018). In another work, the difficulty of
specific items was found to be a significant pre-
dictor of whether a model would classify the item
correctly (Lalor et al., 2018).

While a number of methods exist for estimating
difficulty, in this work we focus on Item Response
Theory (IRT) (Baker, 2001; Baker and Kim, 2004),
a widely used method in psychometrics. IRT mod-
els fit parameters of data points (called “items”)
such as difficulty based on a large number of an-
notations (“response patterns” or RPs), typically
gathered from a human population (“subjects”). It
has been shown to be an effective way to evaluate
and analyze NLP models with respect to human
populations (Lalor et al., 2016, 2018).

While IRT models are designed to be learned
with human RPs for at most 100 items, data sets
used in machine learning, particularly for training
deep neural networks (DNNs), are on the order
of tens or hundreds of thousands of examples or
more. It is not possible to ask humans to label
every example in a data set of that size. In this
work we hypothesize that IRT models can be fit
using RPs from artificial crowds of DNNs as inputs,
thereby removing the expense of gathering human
RPs. Recent work has shown that DNNs encode
linguistic knowledge (Tenney et al., 2019b,a) and
can reach or surpass human-level performance on
classification tasks (Lake et al., 2015). In addition,
generating IRT data with deep learning models
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is much cheaper compared to employing human
annotators.

We demonstrate that learned parameters from
IRT models fit with artificial crowd data are posi-
tively correlated with parameters learned with hu-
man data for small data sets. We then use varia-
tional inference (VI) methods (Jordan et al., 1999;
Hoffman et al., 2013) to fit a large-scale IRT model.
Using VI allows us to scale IRT models to deep-
learning-sized data sets. Finally, we show why
learning such models is useful by demonstrating
how learned difficulties can improve training set
subsampling.

Our contributions are as follows: (1) We show
that IRT models can be fit using machine RPs by
comparing item parameters learned from human
and from machine RPs for two NLP tasks; (2) we
show that RPs from more complex models lead
to higher correlations between parameters from
human and machine RPs; (3) we demonstrate a use-
case for latent difficulty item parameters, namely
training set filtering, and show that using difficulty
to sample training data outperforms baseline meth-
ods; (4) we provide a qualitative analysis of items
with the largest human-machine disagreement in
terms of difficulty to highlight cases where human
intuition is inconsistent with model behavior.

These results provide a direct comparison be-
tween humans and machine learning models in
terms of identifying easy and difficult items. They
also provide a foundation for large-scale IRT mod-
els to be fit by using ensembles of machine learning
models to obtain RPs instead of humans, greatly
reducing the cost of data-collection.1

2 Fitting Item Response Theory Models

2.1 Traditional Item Response Theory
Here we briefly describe IRT and the specific model
under consideration, the Rasch model (also known
as the one-parameter logistic or 1PL model) (Rasch,
1960).

We refer the reader to (Baker, 2001; Baker and
Kim, 2004) for additional details on IRT, and to
(Martınez-Plumed et al., 2016; Lalor et al., 2016,
2018) for more details on previous applications of
IRT to machine learning.

IRT models are designed to estimate latent abil-
ity parameters (θ) of subjects and latent item pa-
rameters such as difficulty of items (b). For a 1PL

1Code for IRT model fitting is available at https://
github.com/jplalor/py-irt.

model, the probability that subject j will answer
item i correctly is a function of the subject’s latent
ability θj and the item’s latent difficulty bi:

p(yij = 1|θj , bi) =
1

1 + e−(θj−bi)
(1)

The probability that subject j will answer item i
incorrectly is:

p(yij = 0|θj , bi) = 1− p(yij = 1|θj , bi) (2)

The likelihood of a data set of RPs Y from J sub-
jects to a set of I items is:

p(Y |θ, b) =

J∏
j=1

I∏
i=1

p(Yij = yij |θj , bi) (3)

For the 1PL model, the difficulty parameter rep-
resents the ability level at which the probability of
an individual answering an item correctly is 50%.
This occurs when item difficulty is equal to subject
ability (θj = bi in Eq. 1).

The item parameters are typically estimated
by marginal maximum likelihood (MML) via an
Expectation-Maximization (EM) algorithm (Bock
and Aitkin, 1981), in which subject parameters
are considered random effects θi ∼ N(0, σ2θ)
and marginalized out. Once item parameters are
learned, subjects’ θ parameters are scored typically
with maximum a posteriori (MAP) estimation. IRT
models are usually fitted to RPs of hundreds or
thousands of human subjects, who usually answer
at most 100 questions. Therefore the methods for
fitting these models have not been scaled to huge
data sets and large numbers of subjects (e.g. tens
of thousands of machine learning models).

2.2 IRT with Variational Inference
VI is a model fitting method that approximates an
intractable posterior distribution in Bayesian infer-
ence by a simpler variational distribution. Prior
work has compared VI methods with traditional
IRT methods (Natesan et al., 2016) and found it
effective, but was primarily concerned with fitting
IRT models for human-scale data.

Bayesian methods in IRT assume that the indi-
vidual θ and b parameters in Eq. (2) both follow
Gaussian prior distributions and make inference
through the resultant joint posterior distribution
π(θ, b|Y ). As this posterior is usually intractable,
VI approximates it by the variational distribution:

q(θ, b) =

J∏
j=1

πθj (θj)

I∏
i=1

πbi (bi) (4)
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Where πθj () and πbi () denotes different Gaussian
densities for different parameters whose means and
variances are determined by minimizing the KL-
Divergence between q(θ, b) and π(θ, b|Y ).

The choice of priors in Bayesian IRT can vary.
Prior work has shown that vague and hierarchical
priors are both effective (Natesan et al., 2016). We
experiment with both in this work. A vague prior
assumes θj ∼ N(0, 1) and bi ∼ N(0, 103), where
the large variance indicates a lack of information on
the difficulty parameters. A hierarchical Bayesian
model assumes

θj |mθ, uθ ∼ N(mθ, u
−1
θ )

bi |mb, ub ∼ N(mb, u
−1
b )

mθ,mb ∼ N(0, 106)

uθ, ub ∼ Γ(1, 1)

Our results for these two options were very similar,
so we only report those for hierarchical priors.

3 Data and Models

Here we describe the data sets used to conduct
our experiments, as well as the DNN model archi-
tectures for both generating response patterns and
conducting our training set filtering experiment.

SNLI The SNLI data set (Bowman et al., 2015)
is a popular data set for the natural language in-
ference task. Briefly, each example in the data set
consists of two sentences in English: the premise
and the hypothesis, and a corresponding label. The
correct label is “entailment” if the premise implies
the hypothesis, “contradiction” if the premise im-
plies that the hypothesis must be false, and “neutral”
if the premise implies neither the hypothesis nor
its negation. SNLI consists of 550k/10k/10k train-
ing/validation/testing examples examples.

SSTB The Stanford Sentiment Treebank (SSTB)
(Socher et al., 2013) is a collection of English
phrases extracted from movie reviews with fine-
grained sentiment annotations (very negative, neg-
ative, neutral, positive, very positive). In this work
we focus on binary sentiment classification, using
the SST-2 split of the data set, where neutral exam-
ples have been removed. The data set consists of
67k/873/1.8k training/validation/testing examples.

Human RP Data The human RP data sets for
SNLI and SSTB were previously collected from
Amazon Mechanical Turk (AMT) workers (Lalor

et al., 2016, 2018). For a randomly selected sample
of items from SNLI and SSTB, new labels were
gathered from 1000 AMT workers (Turkers). Each
Turker labeled each item, so that for each item there
were 1000 new labels. For each Turker, a RP was
generated by grading the provided labels against
the known gold-standard label.

Building an Artificial Crowd As mentioned ear-
lier, it is not feasible to have humans provide RPs
for data sets used to train DNN models. Can we
instead use RPs from DNNs? We trained an en-
semble of DNN models with varying amount of
training data to simulate an artificial crowd so that
enough responses were obtained to fit the IRT mod-
els. The goal here is not to build an ensemble of
DNNs to surpass current classification state of the
art results, but instead to test our hypothesis to de-
termine if machine RPs can fit IRT models that can
benefit NLP tasks.

Specifically, we trained 1000 LSTM models for
NLI classification using the SNLI data set and 1000
LSTM models for binary SA classification using
the SSTB data set (Bowman et al., 2015; Socher
et al., 2013). The SNLI model consists of two
LSTM sequence-embedding models (Hochreiter
and Schmidhuber, 1997), one to encode the premise
and another to encode the hypothesis. The two sen-
tence encodings are then concatenated and passed
through three tanh layers. Finally, the output is
passed to a softmax classifier layer to output class
probabilities. For SSTB, we used a single LSTM
model without the concatenation step. The models
were implemented in DyNet (Neubig et al., 2017).
Models were trained with SGD for 100 epochs with
a learning rate of 0.1, and validation set accuracy
was used for early stopping.

For each model mi, we randomly sampled a
subset of the task training set, xitrain. We corrupted
a random selection of training labels by replacing
the gold standard label with an incorrect label. For
each model-training set pair, we trained the model,
used the held out validation set for early stopping,
and wrote the model’s graded (correct/incorrect)
outputs to disk as that model’s RP. The set of RPs
for all models is our input data for the IRT models.

We also looked at a more complex model to
determine if the learned parameters would differ
given the different model architectures. For our
more complex model we used the Neural Semantic
Encoder model (NSE), a memory-augmented recur-
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rent neural network (Munkhdalai and Yu, 2017):

ot = fLSTMr (xt)

zt = softmax(o>t Mt−1)

mr,t = z>t Mt−1

ct = fMLP
c (ot,mr,t)

ht = fLSTMw (ct)

Mt = Mt−1(1− (zt ⊗ ek)>)

+ (ht ⊗ et)(zt ⊗ ek)>

where fLSTMr is the read function, fMLP
c is the

composition function, fLSTMw is the write function,
Mt is the external memory at time t, and el ∈ Rl
and ek ∈ Rk are vectors of ones.

The goal with the data set restriction and label
corruption was to build an ensemble of models with
widely varying performance on the SNLI test set.
Training with different training set sizes and levels
of noise corruption means that certain models will
perform very well on the test set (large training sets
and low label corruption) while others will perform
poorly (small training sets and high label corrup-
tion). This way we will get a variety of response
patterns to simulate performance on the task across
a spectrum of ability levels. While we could have
modified the networks in any number of ways (e.g.
changing layer sizes, learning rates, etc.), modify-
ing the training data is a straightforward method for
generating a variety of response patterns, and has
been shown to have an impact on performance in
terms of item difficulty (Lalor et al., 2018). Further
investigations of network modifications is left for
future work.

4 Methods

We conduct the following experiments: (i) a com-
parison of IRT parameters learned from human
and machine RP data, using existing IRT data sets
(Lalor et al., 2016, 2018) as the baseline for com-
parison, (ii) a comparison between MML and VI
parameter estimates, and (iii) a demonstration of
the effectiveness of learned IRT parameters via
training data set selection experiments.

4.1 Validating Variational Inference

Before using VI to fit IRT models for DNN data, we
must first show that VI produces estimates similar
to traditional methods. This was established in
prior work on synthetic data (Natesan et al., 2016).

Here we compare them on an existing human data
set (Lalor et al., 2016).

A traditional Rasch model was fit with both
MML and VI. MML was implemented in the R
package mirt (Chalmers et al., 2015) and VI in
Pyro (Bingham et al., 2018), a probabilistic pro-
gramming language built on PyTorch (Paszke et al.,
2017) that implements typical VI model fitting and
variance reduction (Kingma and Welling, 2014;
Ranganath et al., 2014). We calculate the root mean
squared difference (RMSD) between MML and VI
estimates for subject and item parameters. Our
expectation is that the RMSD will be sufficiently
small to confirm that the VI parameters are similar
enough to those learned by MML, since we will
not be able to use MML when we attempt to scale
up to larger data sets.

4.2 Human Machine Correlation
We further compare item difficulty parameters
learned from machine RPs to those learned from hu-
man RPs. These two sets of parameters cannot be
compared directly as they can only be interpreted
in reference to their respective subject populations.
Instead, we compute the correlation between these
two sets of parameters to see whether items that
are easy for humans are also easy for machines.
We fit two Rasch models, one with existing human
RPs (Lalor et al., 2016, 2018). and one with the
machine RPs. Both models were fit with MML
using the mirt R package (Chalmers et al., 2015).
Learned item difficulty parameters were extracted
and compared via Spearman ρ rank order correla-
tions.

4.3 Training Set Subsampling
To demonstrate the usefulness of the learned IRT
parameters, we next describe a downstream use
case: training set filtering for more efficient learn-
ing. Can we maintain model performance by re-
moving the easiest and/or hardest items from the
training set? Once difficulty parameters for each
data set were learned, we trained a new DNN model
using only a subset of the original training data. We
trained a number of models, each with a different
cutoff in terms of training data to observe how gen-
eralization was impacted in each case.

We looked at 4 filtering strategies (in each case
d is the item difficulty threshold): (i) absolute
value inner (AVI), where all training items with
|bi| < d were retained, (ii) absolute value outer
(AVO), where all training items with |bi| > d
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(a) NLI (b) SA

Figure 1: Comparison of learned item difficulty parameters for human (x-axis) and machine data (y-axis) for NLI
(Fig. 1a) and SA (Fig. 1b). Spearman ρ (NLI): 0.409 (LSTM) and 0.496 (NSE). Spearman ρ (SA): 0.332 (LSTM)
and 0.392 (NSE).

were retained, (iii) an upper bound (UB), where
items with bi < d were retained, and (iv) a lower
bound (LB), where items with bi > d were re-
tained. These methods were compared against two
baselines that consider the percentage of models
that label an item correctly (0 ≤ pc ≤ 1) as an
inexpensive proxy for difficulty: (i) percent-correct
upper bound (PCUB), where items with pci < d
were retained, and (ii) percent-correct lower bound
(PCLB), where items with pci > d were retained.
Setting an upper bound on difficulty (UB) is similar
to setting a lower bound on percent correct (PCLB)
(i.e., we are excluding the hardest items from train-
ing). Similarly, setting a lower bound on difficulty
(LB) is analogous to setting an upper bound on
percent correct (PCUB) in that they both exclude
the easiest items from training.

Each of the filtering strategies have arguments in
favor of their potential effectiveness. AVI includes
“average” items in terms of training examples, none
that are too easy or too difficulty. AVO is the oppo-
site, where only the easiest and most difficult ex-
amples are retained, so that the extremes for each
class can be learned. UB ensures that those ex-
amples that are too difficult are not included, and
LB ensures that the examples that are too easy are
not included so that the model doesn’t spend time
learning very easy examples.

5 Results

5.1 Human Machine Model Correlations

We first look at the results of our human-machine
model comparison (Figures 1a and 1b). As an
upper bound for correlations, we split the human
annotation data in half for both SNLI and SSTB,

fit two IRT Rasch models, and calculated the corre-
lation between the learned parameters. Spearman
ρ values were 0.992 and 0.987 for SNLI and SSTB
items, respectively.

For both SNLI and SSTB, we find a positive cor-
relation between the item difficulties of IRT models
fit using human and machine RPs. In addition, the
more complex NSE model has consistently a higher
correlation with the human-learned difficulty pa-
rameters than the LSTM model. This suggests that
creating more complex DNN architectures has bear-
ing on how the model identifies difficult items with
regards to human expectations.

The correlation is not perfect, and we would
argue that this is an expected and encouraging re-
sult. A close to perfect correlation would indicate
that the DNN models and the human population
agree closely on the difficulty ranking for the data
sets and would be an incredible finding and evi-
dence for the argument that DNN models encode
human knowledge well, at least with respect to
the difficulty of specific items. This of course is
not true, and the positive but not perfect correla-
tion coefficients indicate this as such. That said,
it is encouraging that the positive correlation ex-
ists. One would expect that training ensembles of
more sophisticated NLP models such as BERT (De-
vlin et al., 2018) would further increase correlation
scores.

5.2 Learning IRT Models with VI

Our next goal was to determine if VI could be
used to fit IRT models and confirm prior work to
that effect (Natesan et al., 2016). The RMSDs
between MML and VI estimates were 0.158 and
0.154, respectively, for the difficulty and ability
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Figure 2: Test set accuracy by filtering strategy for NLI (left) and SA (right) plotted against percentage of training
data retained. In both tasks filtering using the AVI strategy is most efficient in terms of high accuracy for small
training set sizes.

parameters. Learned parameters are very similar
between the two methods, which is to be expected.
This echos the results of prior work showing that VI
is a good alternative to traditional MML methods
for learning IRT models (Natesan et al., 2016). This
result holds not only with synthetic data, as was
used in the prior work, but also with human data
collected for the development of an actual IRT test
(Lalor et al., 2016).

5.3 Data Filtering

Finally we consider training new DNN models on
the filtered training data sets, restricted according to
latent difficulty and the strategies described above
(Figure 2). The horizontal dotted lines in each plot
represent the test set accuracy for a model trained
with the full training data set. For both SNLI and
SSTB, the AVI strategy of selecting “average” ex-
amples leads to very good test set accuracy scores
with less than 25% of the original training data.
This shows that the strategy of selecting training
data in terms of average difficulty, and gradually
adding easier and harder examples at the same time
provides examples that allows trained models to
generalize well. For both tasks, there is a large
number of examples that are very easy in terms
of latent difficulty (Figure 3). Sampling with AVI
avoids selecting too many examples that are too
easy and instead selects examples that are of aver-
age difficulty for the task, which may be better for
learning. In both cases LB and PCUB are the least
effective strategies, indicating that it is not enough
to only include the most difficult examples.

The plots show that PCUB and LB provide very

Figure 3: Density plot of learned difficulties for SNLI
and SSTB data sets.

similar results, as do PCLB and UB, which is to
be expected. Difficulty parameters learned from
IRT are very similar to metrics such as percent
correct, but as the plots show are not exactly the
same. Differences in RPs (i.e. which specific items
were answered correctly/incorrectly) have an effect
on item difficulty that is not captured by calculating
percent correct.

It is worth noting here that the filtering strategy
we used did not take class labels into considera-
tion.2 The only determining factor as to whether
a training item was included was the learned diffi-
culty parameter bi, which led to class imbalances
in the training set. This imbalance, however did

2This is true for only the filtering step. Class labels are
needed for learning the difficulty parameters needed for filter-
ing (§2).
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Strategy % of Training Data
0.1% 1% 10%

Random (reported) 82.1 85.2 88.4
Random (small batch) 81.79 84.90 88.32

Lower-bound 43.68 41.56 39.89
Upper-bound 81.62 80.46 79.06

AVI 82.44 85.44 86.73
AVO 43.60 42.05 40.81

Table 1: Dev accuracy results for MT-DNN model with
different training set sampling strategies.

not seem to have a significant negative effect in
terms of performance. More advanced sampling
strategies that maintain training set distribution or
sample data using a Bayesian approach are left for
future work.

As an additional experiment, we used the learned
difficulty parameters to compare data sampling
strategies for a state-of-the-art NLI model, MT-
DNN (Liu et al., 2019). We sampled training data
for SNLI at several intervals (0.1%, 1%, 10%) and
trained the MT-DNN model with the sampled data.
We trained each model, as well as the random sam-
ple baseline, using the publicly available MT-DNN
code.3 Results are reported in Table 1. Note that we
report two random baselines: (i) those reported in
the original work, which were obtained by training
the MT-DNN model with a batch size of 32. Due to
GPU resource constraints we had to train each MT-
DNN model with a batch size of 8, and therefore
report our reproduced random baseline results that
we obtained as well (“Random (small batch)”). For
very small samples of data, the AVI strategy outper-
forms random sampling and all other methods as
well. As more data is sampled, the random models
perform better. This indicates that a more advanced
sampling strategy that starts with AVI then incorpo-
rates outliers (very easy/hard examples) at certain
thresholds may improve learning as well.

6 Analysis

Qualitative Evaluation of Difficulty Table 2
shows examples of premise-hypothesis sentence
pairs from SNLI with the learned difficulty parame-
ter from the machine RP IRT model. The easy sen-
tence pairs for each class seem to be very obvious,
whereas the most difficult examples are difficult
due to ambiguity. For example, the hardest con-
tradiction example could be classified as neutral
instead of contradiction. It could be the case that

3https://github.com/namisan/mt-dnn

the man is sweeping while on vacation, though it
isn’t likely. The hypothesis doesn’t directly contra-
dict the premise like the easy example does (cats
instead of dogs, sleeping instead of playing).

Analysis of Differences An interesting question
comes up as a result of the less-than-perfect corre-
lation scores (§5.1): Where are the differences? To
examine these more closely we identified those ex-
amples from the data sets where the rank order was
most different between the human- and machine-
response pattern models (Table 3). That is, we
calculated the absolute difference in ranking be-
tween the human model and the DNN model, and
selected those where that value was highest. The
average absolute difference in ranking was around
40 for the SNLI task and around 30 for SSTB, for
both the LSTM and NSE ensembles.

We can see interesting patterns in the discrepan-
cies. For SNLI, the easiest sentence pair for the
LSTM model (which is also very easy for the NSE
model) is one of the hardest for humans (Table 3,
row 1). Upon inspection of the gathered labels, the
high difficulty comes from the fact that there were
many Turkers who labeled the data as neutral and
also many who labeled it as contradiction.

On the other hand, an example that is easy for
humans but difficult for the DNN models (Table
2, row 2) requires more abstract thinking than the
earlier example. The humans are able to infer that
because the girl is unwrapping an item, she will
discover what is under the wrapping paper when
the unwrapping is complete. The models find this
pair to be one of the most difficult in the data set.

For SSTB, we see similar patterns (Table 3, rows
3-4). For humans, one of the easiest review snip-
pets is clearly positive (row 3), mainly because we
know who Anthony Hopkins is and know how to
rate his quality as an actor. However for the DNN
models, the text itself does not have a lot of pos-
itive or negative signal and therefore the item is
considered very difficult. On the other hand, the
last example is very difficult for humans (row 4),
possibly due to the relatively neutral text. However,
for the DNN models certain terms such as “stultify-
ingly contrived” may signal a more negative review
and lead to the item being easier.

In both cases, it is not clear if there is a “gold
standard” for difficulty. Estimating difficulty using
IRT relies on responses from a group of humans or
an ensemble of models, and the resulting difficulty
estimates may be biased based on who or what
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Premise Hypothesis Label Difficulty

Two men and a woman are inspecting the front tire of a
bicycle.

There are a group of people near a
bike.

Entailment -3.7

A girl in a newspaper hat with a bow is unwrapping an
item.

The girl is going to find out what
is under the wrapping paper.

Entailment 3.1

Two dogs playing in snow. A cat sleeps on floor Contradiction -4.0
Man sweeping trash outside a large statue. A man is on vacation. Contradiction 3.8

People sitting in chairs with a row flags hanging over them. A family reunion for Fourth of July Neutral -3.6
A group of dancers are performing. The audience is silent. Neutral 3.8

Table 2: The easiest and hardest items judged by machine responses for each class in the SNLI test data set.

Task Label Item Text Difficulty ranking
Humans LSTM NSE

SNLI Contradiction P: Two dogs playing in snow.
H: A cat sleeps on floor

168 1 5

Entailment P: A girl in a newspaper hat with a bow is unwrapping an item.
H: The girl is going to find out what is under the wrapping paper.

55 172 176

SSTB Positive Only two words will tell you what you know when deciding to see
it: Anthony. Hopkins.

9 103 110

Negative ...are of course stultifyingly contrived and too stylized by half. Still,
it gets the job done–a sleepy afternoon rental.

128 46 41

Table 3: Examples from the SNLI and SSTB data sets where the ranking in terms of difficulty varies widely
between human and DNN models. In all cases difficulty is ranked from easy to hard (1=easiest).

provides the labels. Human intuitions or model
architecture decisions impact the response patterns
collected, which in turn affect the learned param-
eters. An investigation into what upstream infor-
mation drives downstream effects such as learned
difficulty is an interesting and important direction
for future work.

7 Related Work

Prior work has considered IRT in the context of
evaluating ML models using human (Lalor et al.,
2016) and machine-generated (Martınez-Plumed
et al., 2016) response patterns. Martınez-Plumed
et al. (2016) attempted to fit IRT models using ma-
chine generated response patterns on small data
sets (i.e. 200-300 items), but obtain results that are
difficult to interpret using the existing IRT assump-
tions. Lalor et al. (2016) develop new IRT test sets
for NLI using human-generated data, and present
new ways to interpret and understand model per-
formance beyond raw accuracy. Due to the need
for human annotations the resulting tests are short
(i.e. 124 examples). To the best of our knowledge
no one has attempted to fit IRT models using DNN-
generated response patterns on large data sets.

There have been a number of studies on model-
ing latent traits of data to identify a correct label,

(e.g. Bruce and Wiebe, 1999). There has also been
work in modeling individuals to identify poor an-
notators (Hovy et al., 2013), but neither jointly
model the ability of individuals and data points,
nor apply the resulting metrics to interpret DNN
models. Other work has modeled the probability
a label is correct along with the probability of an
annotator to label an item correctly according to
the (Dawid and Skene, 1979) model, but do not
consider difficulty or discriminatory ability of the
data points (Passonneau and Carpenter, 2014). In
the above models an annotator’s response depends
on an item only through its correct label. IRT as-
sumes a more sophisticated response mechanism
involving both annotator qualities and item charac-
teristics. The DARE model (Bachrach et al., 2012)
jointly estimates ability, difficulty and response us-
ing probabilistic inference. It was evaluated on an
intelligence test of 60 multiple choice questions
administered to 120 individuals.

There are several other areas of study regarding
how best to use training data that are related to
this work. Re-weighting or re-ordering training
examples is a well-studied and related area of su-
pervised learning. Often examples are re-weighted
according to some notion of difficulty, or model
uncertainty (Chang et al., 2017). In particular, the
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internal uncertainty of the model is used as the basis
for selecting how training examples are weighted.
However, model uncertainty depends upon the orig-
inal training data the model was trained on, while
here we use an external measure of uncertainty.

Curriculum learning (CL) is a training procedure
where models are trained to learn simple concepts
before more complex concepts are introduced (Ben-
gio et al., 2009). CL training for neural networks
can improve generalization and speed up conver-
gence. In curriculum learning the difficulty of items
is typically assigned based on heuristics of the data
(e.g. the number of sides of a shape). IRT models
directly estimate difficulty from the responses of
human or machine test-takers themselves instead of
relying on heuristics. Self-paced learning and the
Leitner method use model performance to estimate
difficulties, but are restricted to a single model’s
performance, not a more global notion of difficulty
(Kumar et al., 2010; Amiri et al., 2018).

8 Conclusion

In this work we have described how large-scale
IRT models can be trained with DNN response pat-
terns using VI. Learning the difficulty parameters
of items and the ability parameters of DNN models
allows for more nuanced interpretation of model
performance and enables us to filter training data so
that DNN models can be trained on less data while
maintaining generalization as measured by test set
performance. IRT models with machine RPs can
be fit not only for NLP data sets but also data sets in
other machine learning domains such as computer
vision (additional results on two computer vision
data sets are included in Appendix A).

One limitation of this work is the up-front cost of
generating RPs from the DNN ensemble. However,
the cost of running a large number of DNN models
to generate response pattern data is significantly
less than the cost of obtaining those labels from
human annotators in two ways. First, the monetary
cost of asking thousands of humans to label tens or
hundreds of thousands of images or sentence pairs
is prohibitive. Second, since the response patterns
require that a single individual provide labels for
all (or most) of the data set, each individual would
need to label a huge number of items. Each indi-
vidual would most likely get bored or burned out
and the quality of the labels would suffer.

That said, consider for example a large company
(or research lab) that runs hundreds or thousands

of experiments each day on some internal data set.
Many of the experiments would not lead to signifi-
cant improvements in model performance, and the
outputs from those experiments would be discarded.
With the methods proposed here those outputs can
be used to learn the latent parameters of the data to
focus in on what exactly is working well and what
isn’t with respect to the models being tested and
the data used to train them. Using the previously
discarded data to learn IRT models and estimate la-
tent difficulty and ability parameters can be used to
improve a variety of tasks such as model selection,
data selection, and curriculum learning strategies.

IRT models assume difficulty is a latent parame-
ter of the items and can be estimated from response
pattern data. Difficulty is directly linked to subject
ability, in contrast to heuristics such as sentence
length or word rarity. Certain items may be easy or
difficult for a variety of reasons. With the methods
presented here, an interesting direction for future
work is to further examine why certain examples
are more difficult than others.

We have shown that it is possible to fit IRT mod-
els using RPs from DNN models. Prior work relied
on human RPs to investigate the impact of difficulty
on model performance (Lalor et al., 2018), but it
is now possible to conduct similar IRT analyses
with machine RPs. This work also opens the pos-
sibility of fitting IRT models on much larger data
sets. By removing the human bottleneck, we can
use ensembles of DNN models to generate RPs for
large data sets (e.g. all of SNLI or SSTB instead of
a sample). Having difficulty and ability estimates
for machine learning data sets and models can lead
to very interesting work around such areas as active
learning, curriculum learning, and meta learning.
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