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Abstract

Translating characters instead of words or
word-fragments has the potential to simplify
the processing pipeline for neural machine
translation (NMT), and improve results by
eliminating hyper-parameters and manual fea-
ture engineering. However, it results in longer
sequences in which each symbol contains less
information, creating both modeling and com-
putational challenges. In this paper, we show
that the modeling problem can be solved by
standard sequence-to-sequence architectures
of sufficient depth, and that deep models op-
erating at the character level outperform iden-
tical models operating over word fragments.
This result implies that alternative architec-
tures for handling character input are bet-
ter viewed as methods for reducing compu-
tation time than as improved ways of model-
ing longer sequences. From this perspective,
we evaluate several techniques for character-
level NMT, verify that they do not match the
performance of our deep character baseline
model, and evaluate the performance versus
computation time tradeoffs they offer. Within
this framework, we also perform the first eval-
uation for NMT of conditional computation
over time, in which the model learns which
timesteps can be skipped, rather than having
them be dictated by a fixed schedule specified
before training begins.

1 Introduction

Neural Machine Translation (NMT) has largely re-
placed the complex pipeline of Phrase-Based MT
with a single model that is trained end-to-end.
However, NMT systems still typically rely on pre-
and post-processing operations such as tokeniza-
tion and word fragmentation through byte-pair en-
coding (BPE; Sennrich et al., 2016). Although
these are effective, they involve hyperparameters
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that should ideally be tuned for each language pair
and corpus, an expensive step that is frequently
omitted. Even when properly tuned, the repre-
sentation of the corpus generated by pipelined
external processing is likely to be sub-optimal.
For instance, it is easy to find examples of word
fragmentations, such as fling → fl + ing, that
are linguistically implausible. NMT systems are
generally robust to such infelicities—and can be
made more robust through subword regularization
(Kudo, 2018)—but their effect on performance has
not been carefully studied. The problem of find-
ing optimal segmentations becomes more complex
when an NMT system must handle multiple source
and target languages, as in multilingual translation
or zero-shot approaches (Johnson et al., 2017).

Translating characters instead of word frag-
ments avoids these problems, and gives the system
access to all available information about source
and target sequences. However, it presents sig-
nificant modeling and computational challenges.
Longer sequences incur linear per-layer cost and
quadratic attention cost, and require information
to be retained over longer temporal spans. Finer
temporal granularity also creates the potential for
attention jitter (Gulcehre et al., 2017). Perhaps
most significantly, since the meaning of a word
is not a compositional function of its characters,
the system must learn to memorize many character
sequences, a different task from the (mostly) com-
positional operations it performs at higher levels
of linguistic abstraction.

In this paper, we show that a standard LSTM
sequence-to-sequence model works very well for
characters, and given sufficient depth, consistently
outperforms identical models operating over word
fragments. This result suggests that a produc-
tive line of research on character-level models is
to seek architectures that approximate standard
sequence-to-sequence models while being compu-
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tationally cheaper. One approach to this problem
is temporal compression: reducing the number of
state vectors required to represent input or output
sequences. We evaluate various approaches for
performing temporal compression, both accord-
ing to a fixed schedule; and, more ambitiously,
learning compression decisions with a Hierarchi-
cal Multiscale architecture (Chung et al., 2017).
Following recent work by Lee et al. (2017), we fo-
cus on compressing the encoder.

Our contributions are as follows:

• The first large-scale empirical investigation
of the translation quality of standard LSTM
sequence-to-sequence architectures operat-
ing at the character level, demonstrating im-
provements in translation quality over word
fragments, and quantifying the effect of cor-
pus size and model capacity.
• A comparison of techniques to compress

character sequences, assessing their ability to
trade translation quality for increased speed.
• A first attempt to learn how to compress the

source sequence during NMT training by us-
ing the Hierarchical Multiscale LSTM to dy-
namically shorten the source sequence as it
passes through the encoder.

2 Related Work

Early work on modeling characters in NMT fo-
cused on solving the out-of-vocabulary and soft-
max bottleneck problems associated with word-
level models (Ling et al., 2015; Costa-jussà and
Fonollosa, 2016; Luong and Manning, 2016).
These took the form of word-boundary-aware hi-
erarchical models, with word-level models dele-
gating to character-level models to generate repre-
sentations in the encoder and words in the decoder.
Our work will not assume fixed word boundaries
are given in advance.

With the advent of word-fragment approaches,
interest in character-level processing fell off, but
has recently been reignited with the work of
Lee et al. (2017). They propose a specialized
character-level encoder, connected to an unmod-
ified character-level RNN decoder. They address
the modeling and efficiency challenges of long
character sequences using a convolutional layer,
max-pooling over time, and highway layers. We
agree with their conclusion that character-level
translation is effective, but revisit the question

of whether their specific encoder produces a de-
sirable speed-quality tradeoff in the context of a
much stronger baseline translation system. We
draw inspiration from their pooling solution for re-
ducing sequence length, along with similar ideas
from the speech community (Chan et al., 2016),
when devising fixed-schedule reduction strategies
in Section 3.3.

One of our primary contributions is an ex-
tensive invesigation of the efficacy of a typical
LSTM-based NMT system when operating at the
character-level. The vast majority of existing stud-
ies compare a specialized character-level architec-
ture to a distinct word-level one. To the best of
our knowledge, only a small number of papers
have explored running NMT unmodified on char-
acter sequences; these include: Luong and Man-
ning (2016) on WMT’15 English-Czech, Wu et al.
(2016) on WMT’14 English-German, and Brad-
bury et al. (2016) on IWSLT German-English. All
report scores that either trail behind or reach par-
ity with word-level models. Only Wu et al. (2016)
compare to word fragment models, which they
show to outperform characters by a sizeable mar-
gin. We revisit the question of character- versus
fragment-level NMT here, and reach quite differ-
ent conclusions.

3 Methods

3.1 Baseline Sequence-to-Sequence Model

We adopt a simplified version of the LSTM archi-
tecture of Chen et al. (2018) that achieves state-of-
the-art performance on the competitive WMT14
English-French and English-German benchmarks.
This incorporates bidirectional LSTM (BiLSTM)
layers in the encoder, concatenating the output
from forward and backward directions before
feeding the next layer. Output from the top en-
coder layer is projected down to the decoder di-
mension and used in an additive attention mech-
anism computed over the bottom decoder layer.
The decoder consists of unidirectional layers, all
of which use the encoder context vectors com-
puted from attention weights over the bottom
layer. For both encoder and decoder we use layer
normalization (Ba et al., 2016) and residual con-
nections beginning at the third layer. We do not
apply a non-linearity to LSTM output. We regu-
larize with dropout applied to embeddings and to
the output of each LSTM layer.

In the interests of simplicity and reproducibil-
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ity, we depart from Chen et al. (2018) in several
ways: we do not use multi-headed attention, feed
encoder context vectors to the softmax, regularize
with label smoothing or weight decay, nor apply
dropout to the attention mechanism.

Our baseline character models and BPE mod-
els both use this architecture, differing only in
whether the source and target languages are tok-
enized into sequences of characters or BPE word
fragments. We describe BPE briefly below.

3.2 Byte-Pair Encoding

Byte-Pair Encoding (BPE) offers a simple inter-
polation between word- and character-level rep-
resentations (Sennrich et al., 2016). It creates a
vocabulary of frequent words and word fragments
in an iterative greedy merging process that begins
with characters and ends when a desired vocab-
ulary size is reached. The source and target lan-
guage are typically processed together in order
to exploit lexical similarities. Given a vocabu-
lary, BPE re-tokenizes the corpus into word frag-
ments in a greedy left-to-right fashion, selecting
the longest possible vocabulary match, and back-
ing off to characters when necessary.

Since each BPE token consists of one or
more characters, BPE-tokenized sequences will be
shorter than character sequences. Viewed as a
mechanism to reduce sequence length, BPE differs
from the solutions we will discuss subsequently
in that it increases the vocabulary size, delegat-
ing the task of creating representations for word
fragments to the embedding table. Also, despite
being data-driven, its segmentation decisions are
fixed before NMT training begins.

3.3 Fixed stride Temporal Pooling

We explore using fixed stride temporal pooling
within the encoder to compress the source char-
acter sequence. These solutions are characterized
by pooling the contents of two or more contigu-
ous timesteps to create a single vector that sum-
marizes them, and will replace them to shorten
the sequence in the next layer. These approaches
can learn to interpret the raw character sequence in
service to their translation objective, but any such
interepretation must fit into the pooling schedule
that was specified during network construction.
We evaluate two methods in this family: a re-
implementation of Lee et al. (2017), and a version
of our baseline with interspersed pooling layers.

As mentioned earlier, Lee et al. (2017) pro-
pose a specialized character encoder that com-
bines convolutional layers to accumulate local
context, max-pooling layers to reduce sequence
lengths, highway layers to increase network ca-
pacity, followed by bidirectional GRU layers to
generate globally aware contextual source repre-
sentations. This strategy is particularly efficient
because all reductions happen before the first re-
current layer. We re-implement their approach
faithfully, with the exceptions of using LSTMs in
place of GRUs,1 and modifying the batch sizes to
accomodate our multi-GPU training scheme.

While pooling based approaches are typically
employed in association with convolutional lay-
ers, we can also intersperse pooling layers into our
high capacity baseline encoder. This means that
after each BiLSTM layer, we have the option to in-
clude a fixed-stride pooling layer to compress the
sequence before it is processed by the next BiL-
STM layer. This is similar to the pyramidal LSTM
encoders used for neural speech recognition (Chan
et al., 2016). This general strategy affords consid-
erable flexibility to the network designer, leaving
the type of pooling (concatenation, max, mean),
and the strides with which to pool as design deci-
sions that can be tuned to fit the task.

3.4 Learned Temporal Compression
It is unsatisfying to compress a sequence on a fixed
schedule; after all, the characters in a sentence do
not each carry an identical amount of information.
The goal of this section is to explore data-driven
reduction methods that are optimized to the NMT
system’s objective, and which learn to compress
as a part of training.

Any strategy for performing temporal com-
pression will necessarily make discrete decisions,
since sentence length is discrete. Examples of
such strategies include sparse attention (Raffel
et al., 2017) and discrete auto-encoders (Kaiser
et al., 2018). For our initial exploration, we chose
the hierarchical multiscale (HM) architecture of
Chung et al. (2017), which we briefly describe.

3.4.1 Hierarchical Multiscale LSTM
The HM is a bottom-up temporal subsampling ap-
proach, with each layer selecting the timesteps that
will survive to the layer above. At a given timestep
t and layer `, the network makes a binary decision,

1 Development experiments indicated that using LSTMs
over GRUs resulted in a slight improvement.
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z`t , to determine whether or not it should send its
output up to layer `+ 1. The preactivation for this
decision, z̃`t , is a function of the current node’s
inputs from below and from the previous hidden
state, similar to an LSTM gate. However, z`t ’s ac-
tivation is a binary step function in the forward
pass, to enable discrete decisions, and a hard sig-
moid in the backward pass, to allow gradients to
flow through the decision point.2 The z`t decision
affects both the layer above, and the next timestep
of the current layer:

• z`t = 1, flow up: the node above (t, `+1) per-
forms a normal LSTM update; the node to
the right (t+1, `) performs a modified update
called a flush, which ignores the LSTM inter-
nal cell at (t, `), and redirects the incoming
LSTM hidden state from (t, `) to (t, `+ 1).

• z`t = 0, flow right: the node above (t, `+1)
simply copies the cell and hidden state values
from (t−1, `+1); the node to the right (t+1, `)
performs a normal LSTM update.

Conceptually, when z`t = 0, the node above it be-
comes a placeholder and is effectively removed
from the sequence for that layer. Shorter upper
layers save computation and facilitate the left-to-
right flow of information for the surviving nodes.

Typically, one uses the top hidden state hLt from
a stack of L RNNs to provide the representation
for a timestep t. But for the HM, the top layer
may be updated much less frequently than the lay-
ers below it. To enable tasks that need a distinct
representation for each timestep, such as language
modeling, the HM employs a gated output module
to mix hidden states across layers. This learned
module combines the states h1t , h2t , . . ., hLt using
scaling and projection operators to produce a sin-
gle output ht.

3.4.2 Modifying the HM for NMT
We would like sequences to become progressively
shorter as we move upward through the layers. As
originally specified, the HM calculates z`t indepen-
dently for every t and `, including copied nodes,
meaning that a “removed” timestep could reappear
in a higher layer when a copied node (t, `) sets
z`t = 1. This is easily addressed by locking z`t = 0
for copied nodes, creating a hierarchical structure

2This disconnect between forward and backward activa-
tions is known as a straight-through estimator (Bengio et al.,
2013).

in which upper layers never increase the amount
of computation.

We also found that the flush component of the
original architecture, which modifies the LSTM
update at (t+1, `) to discard the LSTM’s inter-
nal cell, provided too much incentive to leave z`t
at 0, resulting in degenerate configurations which
collapsed to having very few tokens in their up-
per layers. We addressed this by removing the no-
tion of a flush from our architecture. The node to
the right (t+1, `) always performs a normal LSTM
update, regardless of z`t . This modification is sim-
ilar to one proposed independently by Kádár et al.
(2018), who simplified the flush operation by re-
moving the connection to (t, `+ 1).

We found it useful to change the initial value of
the bias term used in the calculation of z̃`t , which
we refer to as the z-bias. Setting z-bias to 1, which
is the saturation point for the hard sigmoid with
slope 1, improves training stability by encourag-
ing the encoder to explore configurations where
most timesteps survive through all layers, before
starting to discard them.

Even with these modifications, we observed de-
generate behavior in some settings. To discour-
age this, we added a compression loss component
similar to that of Ke et al. (2018) to penalize z
activation rates outside a specified range α1, α2:
Lc =

∑
l max(0, Z l − α1T, α2T − Z l), where

T is source sequence length and Z l =
∑T

t=1 z
l
t.

To incorporate the HM into our NMT encoder,
we replace the lowest BiLSTM layer with unidi-
rectional HM layers.3 We adapt any remaining
BiLSTM layers to copy or update according to the
z-values calculated by the top HM layer.

4 Experimental Design

4.1 Corpora

We adopt the corpora used by Lee et al (2017),
with the exception of WMT15 Russian-English.4

To measure performance on an “easy” language
pair, and to calibrate our results against recent
benchmarks, we also included WMT14 English-
French. Table 1 gives details of the corpora used.
All corpora are preprocessed using Moses tools.5

3The flush operation makes the original HM inherently
left-to-right. Since we have dropped flushes from our current
version, it should be straightforward to devise a bidirectional
variant, which we leave to future work.

4Due to licence restrictions.
5 Scripts and arguments:

remove-non-printing-char.perl
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corpus train dev test
WMT15 Finnish-En 2.1M 1500 1370
WMT15 German-En 4.5M 3003 2169
WMT15 Czech-En 14.8M 3003 2056
WMT14 En-French 39.9M 3000 3003

Table 1: Corpora, with linecounts. Test sets are
WMT14-15 newstest. Dev sets are newsdev 2015 (Fi)
and newstest 2013 (De, Fr), and 2014 (Cs).

Dev and test corpora are tokenized, but not filtered
or cleaned. Our character models use only the
most frequent 496 characters across both source
and target languages; similarly, BPE is run across
both languages, with a vocabulary size of 32k.

4.2 Model sizes, training, and inference

Except where noted below, we used 6 bidirectional
layers in the encoder, and 8 unidirectional layers in
the decoder. All vector dimensions were 512.

Models were trained using sentence-level cross-
entropy loss. Batch sizes are capped at 16,384 to-
kens, and each batch is divided among 16 NVIDIA
P100s running synchronously.

Parameters were initialized with a uniform
(0.04) distribution. We use the Adam optimizer,
with β1 = 0.9, β2 = 0.999, and ε = 10−6 (Kingma
and Ba, 2014). Gradient norm is clipped to 5.0.
The initial learning rate is 0.0004, and we halve
it whenever dev set perplexity has not decreased
for 2k batches, with at least 2k batches between
successive halvings. Training stops when dev set
perplexity has not decreased for 8k batches.

Inference uses beam search with 8 hypothe-
ses, coverage penalty of 0.2 (Tu et al., 2016), and
length normalization of 0.2 (Wu et al., 2016).

4.3 Tuning and Evalution

When comparing character-level and BPE models,
we tuned dropout independently for each setting,
greedily exploring increments of 0.1 in the range
0.1–0.5, and selecting based on dev-set BLEU.
This expensive strategy is crucial to obtaining
valid conclusions, since optimal dropout values
tend to be lower for character models.

Our main evaluation metric is Moses-tokenized
case-sensitive BLEU score. We report test-set
scores on the checkpoints having highest dev-set
BLEU. To facilitate comparison with future work

tokenize.perl
clean-corpus-n.perl -ratio 9 1 100

Tokenized BLEU SacreBLEU
Language BPE Char Delta Char
EnFr 38.8 39.2 0.4 38.1
CsEn 24.8 25.9 1.1 25.6
DeEn 29.7 31.6 1.9 31.6
FiEn 17.5 19.3 1.8 19.5

Table 2: Character versus BPE translation.

Comparison Point Ref Ours
Chen et al. (2018) BPE EnFr 41.0

38.8
Wu et al. (2016) BPE EnFr 39.0
Lee et al. (2017) Char CsEn 22.5 25.9

DeEn 25.8 31.6
FiEn 13.1 19.3

Table 3: Comparisons with some recent points in the
literature. Scores are tokenized BLEU.

we also report SacreBLEU scores (Post, 2018) for
key results, using the Moses detokenizer.

5 Results

5.1 Character-level translation

We begin with experiments to compare the stan-
dard RNN architecture from Section 3.1 at the
character and BPE levels, using our full-scale
model with 6 bidirectional encoder layers and 8
decoder layers. The primary results of our experi-
ments are presented in Table 2, while Table 3 posi-
tions the same results with respect to recent points
from the literature.

There are a number of observations we can draw
from this data. First, from the EnFr results in Ta-
ble 3, we are in line with GNMT (Wu et al., 2016),
and within 2 BLEU points of the RNN and Trans-
former models investigated by Chen et al. (2018).
So, while we are not working at the exact state-of-
the-art, we are definitely in a range that should be
relevant to most practitioners.

Also from Table 3, we compare quite favorably
with Lee et al. (2017), exceeding their reported
scores by 3-6 points, which we attribute to hav-
ing employed much higher model capacity, as they
use a single bidirectional layer in the encoder and
a two-layer decoder. We investigate the impact of
model capacity in Section 5.1.1.

Finally, Table 2 clearly shows the character-
level systems outperforming BPE for all language
pairs. The dominance of character-level methods
in Table 2 indicates that RNN-based NMT archi-
tectures are not only capable of translating charac-
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ter sequences, but actually benefit from them. This
is in direct contradiction to the few previously re-
ported results on this matter, which can in most
cases be explained by our increased model capac-
ity. The exception is GNMT (Wu et al., 2016),
which had similar depth. In this case, possible
explanations for the discrepancy include our use
of a fully bidirectional encoder, our translating
into English instead of German, and our model-
specific tuning of dropout.

5.1.1 Effect of model capacity
Character-level NMT systems have a more diffi-
cult sequence-modeling task, as they need to infer
the meaning of words from their constituent char-
acters, where models with larger tokens instead
delegate this task to the embedding table. There-
fore, we hypothesize that increasing the model’s
capacity by adding layers will have a greater im-
pact on character-level models. Figure 1 tests
this hypothesis by measuring the impact of three
model sizes on test BLEU score. For each of
our four language pairs, the word-fragment model
starts out ahead, and quickly loses ground as
architecture size increases. For the languages
with greater morphological complexity—German,
Czech and Finnish—the slope of the character
model’s curve is notably steeper than that of the
BPE system, indicating that these systems could
benefit from yet more modeling capacity.

5.1.2 Effect of corpus size
One of the most compelling arguments for work-
ing with characters (and to a lesser extent, word-
fragments) is improved generalization. Through
morphological generalizations, the system can
better handle low-frequency and previously un-
seen words. It stands to reason that as the train-
ing corpus increases in size, the importance of
these generalization capabilities will decrease. We
test this hypothesis by holding the language pair
constant, and varying the training corpus size by
downsampling the full training corpus. We choose
EnFr because it has by far the most available data.
We compare four sizes: 2M, 4M, 14M and 40M.

The results are shown in Figure 2. As expected,
the gap between character and word-fragment
modeling decreases as corpus size increases. From
the slopes of the curves, we can infer that the ad-
vantage of character-level modeling will disappear
completely as we reach 60-70M sentence pairs.
However, there is reason to expect this break-even

point to be much higher for more morphologically
complex languages. It is also important to re-
call that relatively few language-pairs can assem-
ble parallel corpora of this size.

5.1.3 Speed
The performance advantage of working with char-
acters comes at a significant computational cost.
With our full-sized architecture, character models
trained roughly 8x more slowly than BPE mod-
els.6 Figure 3 shows that training time grows lin-
early with number of layers in the model, and that
character models have a much higher per-layer
cost: roughly 0.38 msec/sentence versus 0.04 for
BPE. We did not directly measure the difference
in attention cost, but it cannot be greater than the
difference in total cost for the smallest number
of layers. Therefore, we can infer from Figure 3
that processing 5 layers in a character model in-
curs roughly the same time cost as attention. This
is surprising given the quadratic cost of attention,
and indicates that efforts to speed up character
models cannot focus exclusively on attention.

5.1.4 Qualitative comparison
To make a qualitative comparison between word
fragments (BPE) and characters for NMT, we ex-
amined 100 randomly selected sentence pairs from
the DeEn test set. One author examined the sen-
tences, using a display that showed the source7 and
the reference, along with the output of BPE and
character models. Any differences between the
two outputs were highlighted. They then assigned
tags to both system outputs indicating broad er-
ror categories, such as lexical choice, word order
and German compound handling.8 Tags were re-
stricted to cases where one system made a mistake
that the other did not.

Of the 100 sentences, 47 were annotated as be-
ing identical or of roughly the same quality. The
remaining 53 exhibited a large variety of differ-
ences. Table 4 summarizes the errors that were
most easily characterized. BPE and character sys-

6Recall that we use batches containing 16,384 tokens—
corresponding to a fixed memory budget—for both character
and BPE models. Thus character models are slowed not only
by having longer sentences, but also by parallelizing across
fewer sentences in each batch.

7The annotating author does not speak German.
8Our annotator also looked specifically for agreement and

negation errors, as studied by Sennrich (2017) for English-to-
German character-level NMT. However, neither system ex-
hibited these error types with sufficient frequency to draw
meaningful conclusions.
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Figure 1: Test BLEU for character and BPE translation as architectures scale from 1 BiLSTM encoder layer and 2
LSTM decoder layers (1×2+2) to our standard 6×2+8. The y-axis spans 6 BLEU points for each language pair.

Figure 2: BLEU versus training corpus size in millions
of sentence pairs, for the EnFr language-pair.

Figure 3: Training time per sentence versus total num-
ber of layers (encoder plus decoder) in the model.

tems differ most in the number of lexical choice
errors, and in the extent to which they drop con-
tent. The latter is surprising, and appears to be a
side-effect of a general tendency of the character
models to be more faithful to the source, verging
on being overly literal. An example of dropped
content is shown in Table 5 (top).

Regarding lexical choice, the two systems dif-
fer not only in the number of errors, but in the
nature of those errors. In particular, the BPE
model had more trouble handling German com-
pound nouns. Table 5 (bottom) shows an exam-
ple which exhibits two compound errors, includ-

Error Type BPE Char
Lexical Choice 19 8

Compounds 13 1
Proper Names 2 1
Morphological 2 2
Other lexical 2 4

Dropped Content 7 0

Table 4: Error counts out of 100 randomly sampled ex-
amples from the DeEn test set.

ing one where the character system is a strict im-
provement, translating Bunsenbrenner into bunsen
burner instead of bullets. The second error follows
another common pattern, where both systems mis-
handle the German compound (Chemiestunden /
chemistry lessons), but the character system fails
in a more useful way.

We also found that both systems occasionally
mistranslate proper names. Both fail by attempt-
ing to translate when they should copy over, but
the BPE system’s errors are harder to understand
as they involve semantic translation, rendering
Britta Hermann as Sir Leon, and Esme Nussbaum
as smiling walnut.9 The character system’s one
observed error in this category was phonetic rather
than semantic, rendering Schotten as Scottland.

Interestingly, we also observed several in-
stances where the model correctly translates the
German 24-hour clock into the English 12-hour
clock; for example, 19.30 becomes 7:30 p.m..
This deterministic transformation is potentially in
reach for both models, but we observed it only for
the character system in this sample.

9 The BPE segmentations for these names were: _Britt
a _Herr mann and _Es me _N uss baum
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Src Für diejenigen, die in ländlichen und abgelegenen Regionen des Staates lebten, . . .
Ref Those living in regional and remote areas of the state . . .
BPE For those who lived in rural and remote regions, . . .
Char For those who lived in rural and remote regions of the state, . . .
Src Überall im Land, in Tausenden von Chemiestunden, haben Schüler ihre Bunsenbrenner

auf Asbestmatten abgestellt.
Ref Up and down the country, in myriad chemistry lessons, pupils have perched their Bunsen

burners on asbestos mats.
BPE Across the country, thousands of chemists have turned their bullets on asbestos mats.
Char Everywhere in the country, in thousands of chemical hours, students have parked their

bunsen burners on asbestos mats.

Table 5: Examples of BPE and character outputs for two sentences from the DeEn test set, demonstrating dropped
content (top) and errors with German compounds (bottom).

5.2 Compressing the Source Sequence

At this point we have established that character-
level NMT benefits translation quality, but incurs a
large computational cost. In this section, we eval-
uate the speed-quality tradeoffs of various tech-
niques for reducing the number of state vectors re-
quired to represent the source sentence. All exper-
iments are conducted on our DeEn language pair,
chosen for having a good balance of morphologi-
cal complexity and training corpus size.

5.2.1 Optimizing the BPE vocabulary

Recall that BPE interpolates between word- and
character-level processing by tokenizing consecu-
tive characters into word fragments; larger BPE
vocabulary sizes result in larger fragments and
shorter sequences. If character-level models out-
perform BPE with a vocabulary size of 32k, then is
there a smaller BPE vocabulary size that reaps the
benefits of character-level processing, while still
substantially reducing the sequence length?

To answer this question, we test a number of
BPE vocabularies, as shown in Table 6. For
each vocabulary, we measure BLEU and sequence
compression rate, defined as the average size of
the source sequence in characters divided by its
size in word fragments (the ratio for the target se-
quence was similar). Unfortunately, even at just 1k
vocabulary items, BPE has already lost a BLEU
point with respect to the character model. When
comparing these results to the other methods in
this section, it is important to recall that BPE is
compressing both the source and target sequence
(by approximately the same amount), doubling its
effective compression rate.

Encoder BPE Size BLEU Comp.
BiLSTM Char 31.6 1.00
BiLSTM 1k 30.5 0.44
BiLSTM 2k 30.4 0.35
BiLSTM 4k 30.0 0.29
BiLSTM 8k 29.6 0.25
BiLSTM 16k 30.0 0.22
BiLSTM 32k 29.7 0.20
Lee et. al. reimpl Char 28.0 0.20
BiLSTM + pooling Char 30.0 0.47
HM, 3-layer Char 31.2 0.77
HM, 2-layer Char 30.9 0.89

Table 6: Compression results on WMT15 DeEn. The
Comp. column shows the ratio of total computations
carried out in the encoder.

5.2.2 Fixed Stride Compression
The goal of these experiments is to determine
whether using fixed schedule compression is a
feasible alternative to BPE. We evaluate our re-
implementation of the pooling model of Lee et al.
(2017) and our pooled BiLSTM encoder, both de-
scribed in Section 3.3. For the pooled BiLSTM
encoder, development experiments led us to intro-
duce two mean-pooling layers, a stride 3 layer af-
ter the second BiLSTM, and a stride 2 layer after
the third. Therefore, the final output of the encoder
is compressed by a factor of 6.

The results are also shown in Table 6. Note that
for the pooled BiLSTM, different encoder layers
have different lengths: 2 full length layers, fol-
lowed by 1 at 1

3 length and 3 at 1
6 length. There-

fore, we report the average compression across
layers here and for the HM in Section 5.2.3.

Our implementation of Lee et al. (2017) outper-
forms the original results by more than 2 BLEU
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Model BLEU Comp.
LSTM 28.9 1.00
HM, no-fl 27.3 0.63
HM, no-fl, hier 28.5 0.65
HM, no-fl, hier, zb1, anneal 28.8 0.65

Table 7: HM small-scale results on WMT15 DeEn.
The Comp. column is the proportion of layer-wise
computation relative to the full LSTM.

points. We suspect most of these gains result from
better optimization of the model with large batch
training. However, our attempts to scale this en-
coder to larger depths, and therfore to the level of
performance exhibited by our other systems, did
not result in any significant improvements. This
is possibly due to difficulties with optimizing a
deeper stack of diverse layers.

Comparing the performance of our Pooled BiL-
STM model against BPE, we notice that for a com-
parable level of compression (BPE size of 1k),
BPE out-performs the pooled model by around 0.5
BLEU points. At a similar level of performance
(BPE size of 4k), BPE has significantly shorter se-
quences. Although fixed-stride pooling does not
yet match the performance of BPE, we remain op-
timistic about its potential. The appeal of these
models derives from their simplicity; they are easy
to optimize, perform reasonably well, and remove
the complication of BPE preprocessing.

5.2.3 Hierarchical Multiscale Compression

We experimented with using the Hierarchical Mul-
tiscale (HM; Section 3.4.1) architecture to learn
compression decisions for the encoder.

For initial exploration, we used a scaled-down
architecture consisting of 3 unidirectional HM en-
coder layers and 2 LSTM decoder layers, attend-
ing over the HM’s gated output module. Com-
parisons to an equivalent LSTM are shown in ta-
ble 7. The first two HM lines justify the no-flush
and hierarchical modifications described in Sec-
tion 3.4.1, yielding incremental gains of 27.3 (the
flush variant failed to converge), and 1.2 respec-
tively. Initializing z-bias to 1 and annealing the
slope of the hard binarizer from 1.0 to 5.0 over 80k
minibatches gave further small gains, bringing the
HM to parity with the LSTM while saving approx-
imately 35% of layer-wise computations. Interest-
ingly, we found that, over a wide range of training
conditions, each layer tended to reduce computa-

tion by roughly 60% relative to the layer below.10

For full-scale experiments, we stacked 5 BiL-
STM layers on top of 2 or 3 HM layers, as de-
scribed in section 3.4.1, using only the top HM
layer (rather than the gated output module) as in-
put to the lowest BiLSTM layer. To stabilize the 3-
HM configuration we used a compression penalty
with a weight of 2, and α1 and α2 of 0.1 and 0.9.
Given the tendency of HM layers to reduce com-
putation by a roughly constant proportion, we ex-
pect fewer z-gates to be open in the 3-HM con-
figuration, but this is achieved at the cost of one
extra layer relative to our standard 12-layer en-
coder. As shown in table 6, the 3-HM configura-
tion achieves much better compression even when
this is accounted for, and also gives slightly better
performance than 2-HM. In general, HM gating
results in less compression but better performance
than the fixed-stride techniques.

Although these preliminary results are promis-
ing, it should be emphasized that the speed gains
they demonstrate are conceptual, and that realizing
them in practice comes with significant engineer-
ing challenges.

6 Conclusion

We have demonstrated the translation quality
of standard NMT architectures operating at the
character-level. Our experiments show the sur-
prising result that character NMT can substan-
tially out-perform BPE tokenization for all but the
largest training corpora sizes, and the less surpris-
ing result that doing so incurs a large computa-
tional cost. To address this cost, we have ex-
plored a number of methods for source-sequence
compression, including the first application of the
Hierarchical Multiscale LSTM to NMT, which
allows us to learn to dynamically compress the
source sequence.

We intend this paper as a call to action.
Character-level translation is well worth doing, but
we do not yet have the necessary techniques to
benefit from this quality boost without suffering a
disproportionate reduction in speed. We hope that
these results will spur others to revisit the question
of character-level translation as an interesting test-
bed for methods that can learn to process, summa-
rize or compress long sequences.

10For instance, the 2nd and 3rd layer of the best configu-
ration shown had on average 60% and 36% of z gates open,
yielding the computation ratio of (1+0.6+0.36)/3 = 0.65.



4304

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Yoshua Bengio, Nicholas Léonard, and Aaron
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