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Abstract

Verbs can only be used with a few spe-
cific arrangements of their arguments (syn-
tactic frames). Most theorists note that
verbs can be organized into a hierarchy
of verb classes based on the frames they
admit. Here we show that such a hierar-
chy is objectively well-supported by the
patterns of verbs and frames in English,
since a systematic hierarchical clustering
algorithm converges on the same structure
as the handcrafted taxonomy of VerbNet,
a broad-coverage verb lexicon. We also
show that the hierarchies capture meaning-
ful psychological dimensions of general-
ization by predicting novel verb coercions
by human participants. We discuss limi-
tations of a simple hierarchical represen-
tation and suggest similar approaches for
identifying the representations underpin-
ning verb argument structure.

1 Introduction

Why can Sally like to read but not *appreciate to
read? Key to the grammar of sentences are verbs
and the arguments with which they appear. How
children learn the constraints that govern the ways
verbs and arguments combine is a central question
in language acquisition.

Theorists have long noted that verbs can be or-
ganized into classes based on their syntactic con-
structions and the events they express (see Levin
and Rappaport Hovav, 2005 for review). Verb
classes are included in most theories of argument
structure acquisition, whether as first class objects
(Perfors et al., 2010) or mere epiphenomena of
other claims about the structure of form-meaning
mappings (Pinker, 1989; Goldberg, 1995).

Most theories also propose further structure be-
tween classes. One common assumption is that
verb argument structure can be at least partially
described by a hierarchy: Each verb belongs to
a class, which itself may belong to a number of
broader superclasses.

While many theories predict more complex
structure (e.g. cross-cutting categories; Levin
and Rappaport Hovav, 2005), providing (psy-
cho)linguistic evidence for a simple hierarchy of
verbs is an important starting point for investi-
gating more complex theories. VerbNet (Kipper
et al., 2008), the largest English verb argument
structure resource,1 organizes verbs and classes
into a shallow hierarchy, but its structure has been
handcrafted incrementally over time (starting with
seminal work by Levin, 1993). On the other
hand, recently-developed, state-of-the-art machine
learning methods offer a unique alternative ap-
proach to constructing such a hierarchy.

In this paper, we first conduct a broad-coverage
analysis of how verbs might be hierarchically ar-
ranged by comparing VerbNet’s handcrafted hi-
erarchy to structure systematically inferred by a
Bayesian hierarchical clustering algorithm. We
find that the two arrive at similar structure, thus
substantiating both methods (i.e. intuition vs. clus-
tering) and the common hierarchy they find.

Second, we investigate the psychological valid-
ity of this representation: if classes capture mean-
ingful dimensions of generalization, one would in-
tuit that a verb in a class should behave more simi-
larly to verbs in nearby classes than distant classes
according to some measure of “distance”. Indeed,
this kind of assumption plays an important role

1VerbNet combines many important expert-crafted verb
resources into a single database, and thus is used in diverse
NLP applications including semantic parsing (Giuglea and
Moschitti, 2006), natural language inference (Palmer et al.,
2009), and information extraction (Maynard et al., 2009).
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in theoretical (Suttle and Goldberg, 2011; Pinker,
1989) and empirical (Ambridge et al., 2011) work.
We thus ask human participants to rate the compat-
ibility of a wide range of existing verbs in attested
and unattested syntactic frames. We find that such
coercions are indeed predicted by a hierarchical
taxonomy of verbs.

2 Related work

There is a substantial literature from both the
NLP and psycholinguistics communities on un-
supervised learning of verb classes from corpora
and other resources (e.g. Reichart and Korhonen,
2013; Vlachos et al., 2009; Sun et al., 2008; Joanis
and Stevenson, 2003) and computational cogni-
tive models of argument structure acquisition (e.g.
Barak et al., 2016; Ambridge and Blything, 2015;
Barak et al., 2014; Parisien and Stevenson, 2010;
Perfors et al., 2010), respectively.

Our work differs in several ways. First, we do
not consider the basic problem of learning verb
classes from semantic or syntactic primitives (cf.
Sun et al., 2008) or verb usages extracted from
corpora; instead, we examine what higher-level
structure is implied by the gold-standard catalog
of already-clustered verbs and syntactic frames in
VerbNet. Second, we do not attempt to model
incremental learning (cf. Parisien and Stevenson,
2010) or instantiate a specific theory (cf. Am-
bridge and Blything, 2015). Rather, we conduct
an at-scale investigation of verb argument struc-
ture through cluster analysis.

3 Discovering structure via clustering

VerbNet suggests a shallow and disconnected hi-
erarchy of verbs, with lower-level subclasses of
verbs that take the exact same frames, broader
standard classes, and at the top, 101 unrelated
superclasses (Figure 1a). There is a broad as-
sumption of weaker relations between members of
higher-level classes than lower-level classes.

We compared this to the hierarchy obtained
from Bayesian Hierarchical Clustering (BHC;
Heller and Ghahramani, 2005) implemented in
R by Savage et al. (2009), a state-of-the-art ag-
glomerative clustering method that can be seen
as a bottom-up approximation to a Dirichlet Pro-
cess Mixture Model. Unlike traditional hierarchi-
cal clustering algorithms, BHC uses Bayesian hy-
pothesis testing to merge subtrees: at each pro-
posed merge, BHC evaluates the probability p that

F1

F2

superclass

standard classes

subclasses

11

11.1

11.1-0

V1 V2 · · ·
1 1 · · ·
0 0 · · ·

11.1-1

V3 · · ·
1 · · ·
1 · · ·

11.2

· · ·
· · ·
· · ·

(a) VerbNet

p = 0.24

p = 0.99

V1

1
0

V2

1
0

V3

1
1

V4

1
?

(b) BHC (c)

Figure 1: (a) Simplified VerbNet hierarchy, depict-
ing a superclass, standard classes, subclasses, and
toy verbs Vi and frames Fi. (b) We train BHC on
the frame data D. Dotted lines are merges BHC
prefers not to make (p < 0.5). To obtain a flat
clustering, the tree is cut at nodes where p < 0.5
and each subtree is a cluster. (c) Using BHC to
evaluate P (V4 admits F2 | V4 admits F1,D).

the data are generated from a single probabilis-
tic model, rather than two or more different mod-
els consistent with the subtrees.2 Crucially, nodes
with probability p < 0.5 are merges that BHC
prefers not to make; the tree can be cut at these
nodes to obtain a flat clustering (Figure 1b), which
can then be compared to VerbNet.

3.1 Data

As input to BHC, we used VerbNet’s compre-
hensive set of verb-frame combinations. VerbNet
v3.23 can be represented as a 6334 verb× n frame
binary matrix, with 1s in cells with attested verb-
frame pairs (Figure 1a). Thus, each verb is repre-
sented as a binary vector of frames.

The number of frames n depends on what se-
mantic and syntactic annotations are considered to
be part of the frame. VerbNet includes 3 kinds
of annotations: selectional restrictions on argu-
ments, thematic roles, and prepositional literals
(Figure 2). For this paper, we included selectional
restrictions and thematic roles, resulting in 1613
frames. These annotations made it easiest to pro-
duce experimental stimuli in Section 4, although
our analysis produced similar results across the
other possible frame encodings (see Appendix A).

2In our case, the assumed generative model is a set of in-
dependent Beta-Bernoulli models predicting the probability
of occurrence of each frame, with the priors found by opti-
mizing the marginal likelihood of the overall model. For full
details of the algorithm, see Heller and Ghahramani (2005)
and Savage et al. (2009).

3verbs.colorado.edu/verb-index
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Figure 2: Information associated with a VerbNet
frame entry.

3.2 Evaluation

Here we evaluated the extent to which BHC con-
verged on VerbNet’s structure at low (sub and
standard classes) and high levels (superclasses).

Comparing flat clusterings with H and C
First, we obtained the flat clustering from BHC
(Figure 1b) and asked how it compared to Verb-
Net. Here, we used homogeneity (H) and com-
pleteness (C), entropy-based measures of cluster-
ing similarity analogous to precision and recall in
binary classification (Rosenberg and Hirschberg,
2007). Treating VerbNet classes as ground truth,
H = 1 indicates that every BHC cluster contains
only members of a single VerbNet class. C = 1
indicates that members of a VerbNet class are al-
ways assigned to the same BHC cluster. The worst
case for both is 0.

H and C have different meanings depend-
ing on what we consider to be VerbNet’s flat
ground truth classes. We consider ground
truth classes across the levels of VerbNet gran-
ularity: low-level subclasses (Hsub, Csub), stan-
dard classes (Hstandard, Cstandard), and superclasses
(Hsuper, Csuper) (Table 1).

Table 1: Homogeneity and completeness. Ran-
dom baselines are mean statistics across 1000
clusterings made by uniformly sampling a BHC
cluster for each verb. Csub is trivially 1, since
members of VerbNet subclasses have identical fea-
tures and were always grouped into the same class
by BHC.

Statistic Granularity BHC Random

Hsuper .88 .31
H Hstandard .88 .19

Hsub .83 .34

Csuper .72 .31
C Cstandard .99 .14

Csub 1 .37

The important comparison is with superclasses,
for which both H and C were high. This indi-
cates that BHC clusters rarely included verbs from
multiple VerbNet superclasses (Hsuper = .88) and
rarely split verbs from the same VerbNet super-
class into different BHC clusters (Csuper = .72).

Tanglegram While H and C focus on the size
and membership of two clustering solutions, tan-
glegrams (Huson and Scornavacca, 2012) allow a
more general visualization and comparison of two
hierarchies. Using the heuristic of Scornavacca
et al. (2011),4 we drew the optimal tanglegram
of VerbNet and BHC, where the two trees are
drawn such that lines connect common leaves and
the number of intersections made by these lines
is minimized. We computed the entanglement of
the tanglegram by normalizing the number of in-
tersections to the 0–1 interval by dividing by the
worst case; this is a holistic measure of the simi-
larity of the hierarchies (Galili, 2015).

The tanglegram (Figure 3) shows that qualita-
tively, much of VerbNet’s structure aligns well be-
tween the trees. We observed an entanglement of
0.20, compared to a random baseline of 0.66.

3.3 Discussion

The high H and C (Table 1) and low entanglement
(Figure 3) suggest that both VerbNet’s handcrafted
hierarchical taxonomy and the one systematically
created by BHC converge on similar results. In-
terestingly, both methods result in a fairly shallow
hierarchy with many unrelated subtrees. This sug-
gests that while small clusters of verbs are highly
related, the principles governing verb argument
structure are relatively narrow and do not gener-
alize across more than a small subset of verbs.
Alternatively, it could suggest that a hierarchical
taxonomy is too simple to fully capture argument
structure patterns.

4 Human coercion judgments

We next evaluated the hierarchies for their abil-
ity to account for human generalization. Re-
searchers often test generalization along a spe-
cific dimension through extension to novel verbs
(“wug tests”; Ambridge et al., 2013; Pinker,
1989). While this works well for studies of spe-
cific phenomena, it is difficult to deploy in a large
study like ours, where we do not have hypotheses

4dendroscope.org
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Figure 3: Tanglegram. We prune leaves (verbs)
from BHC and VerbNet so that each leaf here
represents a VerbNet subclass. Dotted lines are
merges BHC prefers not to make. Connectors are
colored by shades of red indicating worse align-
ment, as measured by vertical distance traveled.
The vast majority of lines are light-colored, indi-
cating strong alignment.

about what drives generalization language-wide.
Thus, we assessed generalization through a coer-
cion task, asking whether speakers are more likely
to extend a known verb to a unattested frame if
the frame is attested for verbs in a closely-related
class. This matches a common theoretical claim
that verbs are attracted to the frames of similar
verbs, with the notion of similarity varying by the-
ory (Ambridge et al., 2011; Suttle and Goldberg,
2011).

4.1 Predicting verb-frame coercion

VerbNet makes straightforward coarse predic-
tions. For any syntactic frame, we grouped verbs
into 3 categories: Exact, if the verb can take the
frame; Sibling, if one of the verb’s super or sub-
classes can take the frame; and None otherwise.
Conversely, as a Bayesian probabilistic model,
BHC defines a predictive distribution on new data.
We were interested in whether this precision re-
sulted in better fit, so we also tested BHC: for
any verb and frame, we can evaluate the posterior
probability that the verb admits the frame of inter-
est while conditioning on the verb’s other frames
(Figure 1c; see Appendix B for details).

Table 2: 2 sampled frames and their correspond-
ing sentence templates, each with 3 example
verbs and predicted compatibilities. To form the
stimuli, each verb is placed into the sentence
template, e.g. Beyond the place arose the thing.

Frame Sentence Verb VN1 BHC2

BEYOND Beyond the arise E 6.1
NP.LOCATION place V-ed stretch S −7.6
V NP.THEME the thing assume N −9.1

NP.THEME He V-ed hum E 6.1
V THROUGH through motor S −6.9
NP.LOCATION the place regard N −7.3

1 VerbNet. E = Exact; S = Sibling; N = None
2 log odds P (verb takes frame | verb’s other frames,D)

4.2 Materials and methods

We sampled 10 frames and 10 verbs for each
frame, resulting in 100 verb-frame pairs. To con-
trol for possible verb frequency effects (Braine and
Brooks, 1995), we ensured there was no signif-
icant correlation between the predicted compati-
bility of a verb-frame pair and the Brown corpus
(Kučera and Francis, 1967) frequency of the verb
(r = 0.13, p = 0.17). We then converted verb-
frame pairs into sentence stimuli, which required
that we choose nouns to represent NPs in frames.
We chose the most generic noun compatible with
the thematic role restriction, if present. For exam-
ple, for NP.AGENT, we used a generic name, and
for NP.LOCATION, we used place. Example stim-
uli are located in Table 2.

We recruited 50 native English speakers from
Mechanical Turk. For each sentence, participants
judged the grammaticality of the sentence on a
Likert scale, from 1 (“not at all”) to 5 (“perfect”).

4.3 Results and discussion

First, we noticed that all verbs in some frames re-
ceived consistently low coercion judgments (< 3).
For example, while the verb fly and the frame
THERE V NP.THEME FOR NP.LOCATION is at-
tested (Exact), There flew a thing for the place
received a mean judgment of 2.4. We trans-
lated judgments so that the mean judgments across
verbs for each frame was average (3), to examine
the relative effects of coercing verbs into frames.

Figure 4a shows that VerbNet’s 3 categories pre-
dict differences in the mean coercion ratings of
verb-frame pairs (F = 43.46, p < 0.001). No-
tably, there was a significant difference between
the means of the unattested categories (Sibling vs.
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Figure 4: (a) distribution of mean coercion judg-
ments for verb-frame pairs in the 3 VerbNet cat-
egories. (b) correlation between the same mean
coercion judgments and BHC posterior predictive
predictions, colored by VerbNet category. Error
bars are bootstrapped 95% confidence intervals.

None; t = 3.55, p < 0.01). While there was a
high correlation between the judgments and BHC
predictions (Figure 4b; r = 0.59), BHC’s hierar-
chy did not significantly improve fit to the data.

These results provide additional psychological
evidence for the effects associated with Verb-
Net’s coarse distinctions: for unattested verb-
frame pairs, participants tend to assign a higher
compatibility rating when the verb has sibling
VerbNet classes that can take the frame. However,
the range of compatibility judgments is highly
variable across all three categories, and BHC’s
finer-grained predictions fail to account for much
of this variability. Given the similarity of BHC to
VerbNet’s hierarchy, this result is unsurprising.

5 General discussion

We presented converging evidence that a shallow
hierarchy of verbs (1) is well supported by the
distribution of verbs and syntactic frames in lan-
guage, since VerbNet’s hand-crafted hierarchy and
a systematic unsupervised learner (BHC) reach
similar results; and (2) captures important features
of verb argument structure by predicting human
generalization intuitions in a coercion task.

Of course, it is clear from the variability of
our coercion data that a simple hierarchy is not
a sufficiently sophisticated representation of argu-
ment structure to fully explain language-wide co-
ercion. However, our novel computational frame-
work (unsupervised learning on VerbNet data)
opens up many potentially fruitful avenues for
providing language-wide evidence for argument
structure hypotheses. The lack of broad-coverage
predictions is often a limitation of work in this area

(see Section 2).
Sophisticated machine learning models that

make the assumptions proposed by richer theories
of argument structure and can operate at VerbNet
scale are only recently coming into fruition. For
example, since some theories argue for a cross-
categorization of verbs and argument structures
(Levin and Rappaport Hovav, 2005), using mod-
els that find such a (possibly hierarchical) cross-
categorization (e.g. Mansinghka et al., 2016; Li
and Shafto, 2011) is a particularly interesting av-
enue for further exploration.
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