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Preface by General and Program Chairs

It is our pleasure to welcome you to the EMNLP-CoNLL 2012 conference, a joint meeting of the
Conference on Empirical Methods in Natural Language Learning (EMNLP) and the Conference on
Computational Natural Language Learning (CoNLL). After the successful first collaboration in 2007,
EMNLP-CoNLL 2012 is being jointly organized by the SIGDAT and SIGNLL special interest groups
of the Association of Computational Linguistics.

This time, EMNLP-CoNLL is co-located with, and immediately after ACL’s 50th anniversary
conference. The choice of the location is an opportunity for the ACL community to return to
the beautiful Jeju Island, Korea, following a seven-year hiatus since the Second International Joint
Conference on Natural Language Processing (IJCNLP 2005) was held here.

Out of 606 submissions received by EMNLP-CoNLL this year, a total of 36 submissions were
eventually withdrawn or rejected without review. From the remaining submissions, 99 were accepted
for oral presentation and 40 for poster presentation, for a combined acceptance rate of 24.8%. As in
recent editions of EMNLP, authors were given the opportunity to provide supplementary material in
conjunction with their submissions, which the program committee could but was not required to take
into account during reviewing. Also as in recent editions, authors of accepted papers were offered
an additional page in the camera-ready version of their submissions, so that comments received from
reviewers could be more easily addressed.

The papers submitted to the conference were subject to a rigorous reviewing process, made possible
by efforts of a team of 525 primary and 66 secondary reviewers, acting under the guidance of 22
area chairs. Presence of unsupported claims, or failure to properly compare with previous work, were
likely serious obstacles, on the path from initial submission to acceptance and then publication in our
proceedings. Luckily, our preface has a guaranteed placement in the proceedings. Therefore, without
access to insider data and impressions from previous editions of the conference, we will still go on a
limb here, and make the unsupported claim that our team of area chairs has been the greatest. That their
expertise, dedication and willingness to go beyond the call of duty had a positive impact on a timely
reviewing process and a high-quality conference program, would be an understatement. It has been a
pleasure to interact and work with our area chairs.

The schedule of our conference is strengthened by two invited speakers, Eric Xing and Patrick Pantel,
who we were very happy to have accept our invitation; and by the CoNLL Shared Task, an annual
tradition for the CoNLL conferences. This year’s CoNLL Shared Task is Modeling Multilingual
Unrestricted Coreference in OntoNotes, and its proceedings and detailed schedule are available
separately.

We would like to thank all authors who submitted to our conference, for their willingness to share their
knowledge with the rest of us. It may take a few weeks or many years, for the knowledge distilled into
the present proceedings to have a measurable impact on our field and beyond. An impact that would not
be possible without countless hours spent by authors, from developing ideas to running experiments to
building usable systems - steps that often fail, and sometimes succeed.

We would also like to thank all members of the program committee, for their willingness to offer
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feedback that sometimes reaches extraordinary levels of detail and value to authors. To recognise some
of the most dedicated reviewers, we include the Best Reviewer awards a little later in these proceedings.

Naoaki Okazaki, Publications Chair, deserves our special thanks. He brought in a healthy dose of rigor
to the planning and preparation of not only this proceedings but also conference materials, matched
only by his dedication to deliver under tight scheduling constraints.

If the combination of oral presentations, posters and invited talks that make up EMNLP-CoNLL 2012 is
considered a success, it is because it benefited from the touch of many people. Francesco Figari easily
kept tabs on our salvos of large and small requests for updates to our conference website. Rich Gerber,
Paolo Gai and the larger team managing the conference submission system were quick to offer answers
to all our questions. The publication chairs and local arrangements committee of ACL 2012, including
Michael White, Maggie Li, Jong Park and especially Gary Geunbae Lee, covered significant tasks on
behalf of EMNLP-CoNLL, all with a smile. Chin-Yew Lin, Miles Osborne, Eric Fosler-Lussier, Dekang
Lin, Rada Mihalcea, Regina Barzilay, Ulrich Germann and David Yarowsky offered high-level advice or
answered detailed questions, drawing upon their experience as organizers of previous ACL-sponsored
conferences.

We are grateful to our sponsors (Baidu, Google and Microsoft), for their support of best paper awards
and support of student travel in particular, and the financial well-being of the conference in general. It
has been an honor to be of service to the conference, for which we would like to thank the community
and those who offered us this opportunity. We hope that you enjoy the conference, and have a productive
and pleasant stay in South Korea!

Jun’ichi Tsujii, General Chair
James Henderson and Marius Paşca, Program Chairs
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Adrià de Gispert, University of Cambridge
Julia Hirschberg, Columbia University
Anna Korhonen, University of Cambridge
Bing Liu, University of Illinois at Chicago
Hwee Tou Ng, National University of Singapore
Patrick Pantel, Microsoft Research
Marco Pennacchiotti, Yahoo! Labs
Slav Petrov, Google
Simone Paolo Ponzetto, Sapienza University of Rome
John Prager, IBM Research
Chris Quirk, Microsoft Research
Sebastian Riedel, University of Massachusetts at Amherst
Hiroya Takamura, Tokyo Institute of Technology
Partha Talukdar, Carnegie Mellon University
Kristina Toutanova, Microsoft Research
Reut Tsarfaty, Uppsala University
Marilyn Walker, University of California at Santa Cruz

Publication Chair:

Naoaki Okazaki, Tohoku University

v



Program Committee: Reviewers:

Ahmed Abbasi, Robert Abbott, Omri Abend, Meni Adler, Mikhail Ageev, Lars Ahrenberg, Hua
Ai, Cem Akkaya, Pranav Anand, Alina Andreevskaia, Ion Androutsopoulos, Eiji Aramaki, Yoav
Artzi, Abhishek Arun, Nicholas Asher, Giuseppe Attardi, Necip Fazil Ayan,

Anton Bakalov, Alexandra Balahur, Niranjan Balasubramanian, Timothy Baldwin, Carmen Banea,
Ritwik Banerjee, Mohit Bansal, Roy Bar-Haim, Kedar Belare, Anja Belz, Paul Bennett, Stefan
Benus, Taylor Berg-Kirkpatrick, Nicola Bertoldi, Justin Betteridge, Chandra Sekhar Bhagavat-
ula, Aditya Bhargava, Jiang Bian, Chris Biemann, Dan Bikel, Alexandra Birch, Arianna Bisazza,
Graeme Blackwood, Sasha Blair-Goldensohn, Jim Blevins, Michael Bloodgood, Phil Blunsom,
Bernd Bohnet, Ester Boldrini, Antal van den Bosch, Elizabeth Boschee, Jan Botha, Alexandre
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David Talbot, Songbo Tan, Joseph Tepperman, Joel Tetreault, Blaise Thomson, Joerg Tiedemann,

vii



Christoph Tillmann, Ivan Titov, Cigdem Toprak, Kentaro Torisawa, Roy Tromble, Oren Tsur,
Yoshimasa Tsuruoka, Peter Turney, Oscar Täckström,
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“On Learning Sparse Structured Input-Output Models”

Eric Xing, Carnegie Mellon University

In many modern problems across areas such as natural language processing, computer vision,
and social media inference, one is often interested in learning a Sparse Structured Input-Output
Model (SIOM), in which the input variables of the model such as lexicons in a document bear rich
structures due to the syntactic and semantic dependences between them in the text; and the output
variables such as the elements in a multi-way classification, a parse, or a topic representation
are also structured because of their interrelatedness. A SIOM can nicely capture rich structural
properties in the data and in the problem, but it also raises severe computational and theoretical
challenge on sparse, consistent, and tractable model identification and inference.

In this talk, I will present models, algorithms, and theories that learn Sparse SIOMs of various
kinds in very high dimensional input/output space, with fast and highly scalable optimization
procedures, and strong statistical guarantees. I will demonstrate application of our approach to
problems in large-scale text classification, topic modeling, and dependency parsing.

“The Appification of the Web and the Renaissance of Conversational User Interfaces”

Patrick Pantel, Microsoft Research

The appification of the Web is triggering a fundamental shift in how users access information. We
are moving from centralized access points, such as search engines, towards highly specialized,
and yet fragmented, functionalities in disconnected apps. This talk explores an entity-centric con-
versational interface as a mechanism to overcome this fragmentation, highlighting the numerous
associated NLP challenges and opportunities that lie ahead.

Consider mobile scenarios, where the traditional search engine paradigm is being cannibalized by
search and browse functionalities built directly into specialized apps. For example, while users
can search for restaurants and products using their mobile browser, they are increasingly turn-
ing directly to applications such as Yelp, Urbanspoon and Amazon. However, interoperability
between applications and lacking generalized interfaces to their functionalities pose serious scal-
ability challenges. In this talk, we argue for an entity-centric conversational interface in which
natural user interactions with entities are paired with actions that can be performed on the entities,
thus enabling the brokering of web pages and applications that can satisfy the intended action.
In this vision, the broker is aware of all entities and actions of interest to its users, understands
the intent of the user, and provides direct actionable results through APIs with external providers
satisfying the intent. The user saves clicks and time to accomplish her intended action and can
discover related actions. New revenue streams open up from paid action placement and lead gen-
eration opportunities. At the forefront of this direction are a number of NLP challenges in the
areas of entity recognition, entity linking, knowledge extraction, intent recognition, and dialog
modeling, to name a few.

We end by proposing one particular technique for learning and mapping user intents in a search
interface. In an annotation study conducted over a traffic sample of web usage logs, we found that
a large proportion of user queries involve actions on entities, calling for an automatic approach
to identifying relevant actions for entity-bearing queries. We pose the problem of finding actions
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that can be performed on entities as the problem of doing probabilistic inference in a graphical
model that captures how entity-bearing information requests are generated. Given a large collec-
tion of real-world queries and clicks from a commercial search engine, the models are learned
efficiently through maximum likelihood estimation using an EM algorithm. Given a new query,
inference enables the recommendation of a set of pertinent actions and providers. We propose
an evaluation methodology for measuring the relevance of our recommended actions, and show
empirical evidence of the quality and the diversity of the discovered actions.
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Aurélien Max, Houda Bouamor and Anne Vilnat

Parse, Price and Cut—Delayed Column and Row Generation for Graph Based Parsers
Sebastian Riedel, David Smith and Andrew McCallum

xxix



Thursday, July 12, 2012 (continued)

Domain Adaptation for Coreference Resolution: An Adaptive Ensemble Approach
Jian Bo Yang, Qi Mao, Qiao Liang Xiang, Ivor Wai-Hung Tsang, Kian Ming Adam Chai
and Hai Leong Chieu

Weakly Supervised Training of Semantic Parsers
Jayant Krishnamurthy and Tom Mitchell

Cross-Lingual Language Modeling with Syntactic Reordering for Low-Resource Speech
Recognition
Ping Xu and Pascale Fung

Resolving Complex Cases of Definite Pronouns: The Winograd Schema Challenge
Altaf Rahman and Vincent Ng

A Sequence Labelling Approach to Quote Attribution
Timothy O’Keefe, Silvia Pareti, James R. Curran, Irena Koprinska and Matthew Honnibal

SSHLDA: A Semi-Supervised Hierarchical Topic Model
Xian-Ling Mao, Zhao-Yan Ming, Tat-Seng Chua, Si Li, Hongfei Yan and Xiaoming Li

Improving NLP through Marginalization of Hidden Syntactic Structure
Jason Naradowsky, Sebastian Riedel and David Smith

Type-Supervised Hidden Markov Models for Part-of-Speech Tagging with Incomplete Tag
Dictionaries
Dan Garrette and Jason Baldridge

Explore Person Specific Evidence in Web Person Name Disambiguation
Liwei Chen, Yansong Feng, Lei Zou and Dongyan Zhao

xxx



Friday, July 13, 2012

Session 2-AM-1P: Plenary Session: Invited Talk
Session Chair: Marius Pasca

09:15-10:30 Invited Talk: The Appification of the Web and the Renaissance of Conversational User
Interfaces (Patrick Pantel, Microsoft Research)

10:30-11:00 Coffee Break

Session 2-AM-2A: Machine Translation: Role of Syntax
Session Chair: Qun Liu

11:00-11:30 Inducing a Discriminative Parser to Optimize Machine Translation Reordering
Graham Neubig, Taro Watanabe and Shinsuke Mori

11:30-12:00 Re-training Monolingual Parser Bilingually for Syntactic SMT
Shujie Liu, Chi-Ho Li, Mu Li and Ming Zhou

12:00-12:30 Transforming Trees to Improve Syntactic Convergence
David Burkett and Dan Klein

Session 2-AM-2B: Information Extraction: Temporally-Aware Extraction
Session Chair: Jong-Hoon Oh

11:00-11:30 Learning Constraints for Consistent Timeline Extraction
David McClosky and Christopher D. Manning

11:30-12:00 Identifying Constant and Unique Relations by using Time-Series Text
Yohei Takaku, Nobuhiro Kaji, Naoki Yoshinaga and Masashi Toyoda

12:00-12:30 No Noun Phrase Left Behind: Detecting and Typing Unlinkable Entities
Thomas Lin, Mausam and Oren Etzioni

xxxi



Friday, July 13, 2012 (continued)

Session 2-AM-2C: Discourse and Generation
Session Chair: Anette Frank

11:00-11:30 A Novel Discriminative Framework for Sentence-Level Discourse Analysis
Shafiq Joty, Giuseppe Carenini and Raymond Ng

11:30-12:00 Using Discourse Information for Paraphrase Extraction
Michaela Regneri and Rui Wang

12:00-12:30 Generating Non-Projective Word Order in Statistical Linearization
Bernd Bohnet, Anders Björkelund, Jonas Kuhn, Wolfgang Seeker and Sina Zarriess

Session 2-AM-2D: CoNLL Shared Task
Session Chair: Sameer Pradhan

11:00-12:30 CoNLL Shared Task Session

12:30-13:45 Lunch

13:45-14:30 SIGDAT and SIGNLL Business Meetings

Session 2-PM-1A: Semantics: Words and Topics
Session Chair: Roi Reichart

14:30-15:00 Learning Syntactic Categories Using Paradigmatic Representations of Word Context
Mehmet Ali Yatbaz, Enis Sert and Deniz Yuret

15:00-15:30 Exploring Topic Coherence over Many Models and Many Topics
Keith Stevens, Philip Kegelmeyer, David Andrzejewski and David Buttler

xxxii



Friday, July 13, 2012 (continued)

Session 2-PM-1B: Machine Translation: Pruning
Session Chair: Kevin Knight

14:30-15:00 Entropy-based Pruning for Phrase-based Machine Translation
Wang Ling, João Graça, Isabel Trancoso and Alan Black

15:00-15:30 A Systematic Comparison of Phrase Table Pruning Techniques
Richard Zens, Daisy Stanton and Peng Xu

Session 2-PM-1C: Evaluation
Session Chair: Billy Tak-Ming Wong

14:30-15:00 Probabilistic Finite State Machines for Regression-based MT Evaluation
Mengqiu Wang and Christopher D. Manning

15:00-15:30 An Empirical Investigation of Statistical Significance in NLP
Taylor Berg-Kirkpatrick, David Burkett and Dan Klein

Session 2-PM-1D: CoNLL Shared Task
Session Chair: Alessandro Moschitti

14:30-15:30 CoNLL Shared Task Session

15:30-16:00 Coffee Break

Session 2-PM-2A: Information Extraction: Relation and Event Extraction
Session Chair: Mausam

16:00-16:30 Employing Compositional Semantics and Discourse Consistency in Chinese Event Extrac-
tion
Peifeng Li, Guodong Zhou, Qiaoming Zhu and Libin Hou

16:30-17:00 Reading The Web with Learned Syntactic-Semantic Inference Rules
Ni Lao, Amarnag Subramanya, Fernando Pereira and William W. Cohen

17:00-17:30 Ensemble Semantics for Large-scale Unsupervised Relation Extraction
Bonan Min, Shuming Shi, Ralph Grishman and Chin-Yew Lin

xxxiii



Friday, July 13, 2012 (continued)

Session 2-PM-2B: Parsing Models and Evaluation
Session Chair: Ivan Titov

16:00-16:30 Forest Reranking through Subtree Ranking
Richard Farkas and Helmut Schmid

16:30-17:00 Parser Showdown at the Wall Street Corral: An Empirical Investigation of Error Types in
Parser Output
Jonathan K. Kummerfeld, David Hall, James R. Curran and Dan Klein

17:00-17:30 Extending Machine Translation Evaluation Metrics with Lexical Cohesion to Document
Level
Billy T. M. Wong and Chunyu Kit

Session 2-PM-2C: Large-Scale NLP Algorithms
Session Chair: Benjamin van Durme

16:00-16:30 Fast Large-Scale Approximate Graph Construction for NLP
Amit Goyal, Hal Daume III and Raul Guerra

16:30-17:00 Building a Lightweight Semantic Model for Unsupervised Information Extraction on Short
Listings
Doo Soon Kim, Kunal Verma and Peter Yeh

17:00-17:30 Sketch Algorithms for Estimating Point Queries in NLP
Amit Goyal, Hal Daume III and Graham Cormode

Session 2-PM-2D: Machine Learning: Inference
Session Chair: Jennifer Gillenwater

16:00-16:30 Monte Carlo MCMC: Efficient Inference by Approximate Sampling
Sameer Singh, Michael Wick and Andrew McCallum

16:30-17:00 On Amortizing Inference Cost for Structured Prediction
Vivek Srikumar, Gourab Kundu and Dan Roth

17:00-17:30 Exact Sampling and Decoding in High-Order Hidden Markov Models
Simon Carter, Marc Dymetman and Guillaume Bouchard

xxxiv



Saturday, July 14, 2012

Session 3-AM-1P: Plenary Session
Session Chair: Jun’ichi Tsujii

09:00-09:30 PATTY: A Taxonomy of Relational Patterns with Semantic Types
Ndapandula Nakashole, Gerhard Weikum and Fabian Suchanek

09:30-10:00 Training Factored PCFGs with Expectation Propagation
David Hall and Dan Klein

10:00-10:30 A Coherence Model Based on Syntactic Patterns
Annie Louis and Ani Nenkova

10:30-11:00 Coffee Break

Session 3-AM-2A: Machine Translation: Decoding
Session Chair: Preslav Nakov

11:00-11:30 Language Model Rest Costs and Space-Efficient Storage
Kenneth Heafield, Philipp Koehn and Alon Lavie

11:30-12:00 Document-Wide Decoding for Phrase-Based Statistical Machine Translation
Christian Hardmeier, Joakim Nivre and Jörg Tiedemann

12:00-12:30 Left-to-Right Tree-to-String Decoding with Prediction
Yang Feng, Yang Liu, Qun Liu and Trevor Cohn

xxxv



Saturday, July 14, 2012 (continued)

Session 3-AM-2B: Distributional and Compositional Semantics
Session Chair: Bo Pang

11:00-11:30 Semantic Compositionality through Recursive Matrix-Vector Spaces
Richard Socher, Brody Huval, Christopher D. Manning and Andrew Y. Ng

11:30-12:00 Polarity Inducing Latent Semantic Analysis
Wen-tau Yih, Geoffrey Zweig and John Platt

12:00-12:30 First Order vs. Higher Order Modification in Distributional Semantics
Gemma Boleda, Eva Maria Vecchi, Miquel Cornudella and Louise McNally

Session 3-AM-2C: Discourse: Coreference Resolution
Session Chair: Mihai Surdeanu

11:00-11:30 Learning-based Multi-Sieve Co-reference Resolution with Knowledge
Lev Ratinov and Dan Roth

11:30-12:00 Joint Learning for Coreference Resolution with Markov Logic
Yang Song, Jing Jiang, Wayne Xin Zhao, Sujian Li and Houfeng Wang

12:00-12:30 Resolving “This-issue” Anaphora
Varada Kolhatkar and Graeme Hirst

Session 3-AM-2D: Information Retrieval
Session Chair: Jianfeng Gao

11:00-11:30 Entity based Q&A Retrieval
Amit Singh

11:30-12:00 Constructing Task-Specific Taxonomies for Document Collection Browsing
Hui Yang

12:00-12:30 Besting the Quiz Master: Crowdsourcing Incremental Classification Games
Jordan Boyd-Graber, Brianna Satinoff, He He and Hal Daume III

12:30-14:00 Lunch

xxxvi



Saturday, July 14, 2012 (continued)

Session 3-PM-1A: Machine Learning: Transfer and Biases
Session Chair: Benjamin Snyder

14:00-14:30 Multi-Domain Learning: When Do Domains Matter?
Mahesh Joshi, Mark Dredze, William W. Cohen and Carolyn Rose

14:30-15:00 Biased Representation Learning for Domain Adaptation
Fei Huang and Alexander Yates

15:00-15:30 Unambiguity Regularization for Unsupervised Learning of Probabilistic Grammars
Kewei Tu and Vasant Honavar

Session 3-PM-1B: Opinion Mining: Discovering Opinion Expressions
Session Chair: Yejin Choi

14:00-14:30 Extracting Opinion Expressions with semi-Markov Conditional Random Fields
Bishan Yang and Claire Cardie

14:30-15:00 Opinion Target Extraction Using Word-Based Translation Model
Kang Liu, Liheng Xu and Jun Zhao

15:00-15:30 Word Salad: Relating Food Prices and Descriptions
Victor Chahuneau, Kevin Gimpel, Bryan R. Routledge, Lily Scherlis and Noah A. Smith

Session 3-PM-1C: Part of Speech Tagging
Session Chair: Slav Petrov

14:00-14:30 Learning to Map into a Universal POS Tagset
Yuan Zhang, Roi Reichart, Regina Barzilay and Amir Globerson

14:30-15:00 Part-of-Speech Tagging for Chinese-English Mixed Texts with Dynamic Features
Jiayi Zhao, Xipeng Qiu, Shu Zhang, Feng Ji and Xuanjing Huang

15:00-15:30 Wiki-ly Supervised Part-of-Speech Tagging
Shen Li, João Graça and Ben Taskar

xxxvii



Saturday, July 14, 2012 (continued)

Session 3-PM-1D: Word Sense Disambiguation
Session Chair: Marc Dymetman

14:00-14:30 Joining Forces Pays Off: Multilingual Joint Word Sense Disambiguation
Roberto Navigli and Simone Paolo Ponzetto

14:30-15:00 A New Minimally-Supervised Framework for Domain Word Sense Disambiguation
Stefano Faralli and Roberto Navigli

15:00-15:30 Grounded Models of Semantic Representation
Carina Silberer and Mirella Lapata

15:30-16:00 Coffee Break

Session 3-PM-2A: Syntax and Parsing: Joint Parsing Models
Session Chair: Jason Eisner

16:00-16:30 Improved Parsing and POS Tagging Using Inter-Sentence Consistency Constraints
Alexander Rush, Roi Reichart, Michael Collins and Amir Globerson

16:30-17:00 Unified Dependency Parsing of Chinese Morphological and Syntactic Structures
Zhongguo Li and Guodong Zhou

17:00-17:30 A Transition-Based System for Joint Part-of-Speech Tagging and Labeled Non-Projective
Dependency Parsing
Bernd Bohnet and Joakim Nivre

Session 3-PM-2B: Social Media
Session Chair: Alan Ritter

16:00-16:30 Identifying Event-related Bursts via Social Media Activities
Xin Zhao, Baihan Shu, Jing Jiang, Yang Song, Hongfei Yan and Xiaoming Li

16:30-17:00 User Demographics and Language in an Implicit Social Network
Katja Filippova

17:00-17:30 Revisiting the Predictability of Language: Response Completion in Social Media
Bo Pang and Sujith Ravi

xxxviii



Saturday, July 14, 2012 (continued)

Session 3-PM-2C: NLP Applications
Session Chair: Chikara Hashimoto

16:00-16:30 Supervised Text-based Geolocation Using Language Models on an Adaptive Grid
Stephen Roller, Michael Speriosu, Sarat Rallapalli, Benjamin Wing and Jason Baldridge

16:30-17:00 A Discriminative Model for Query Spelling Correction with Latent Structural SVM
Huizhong Duan, Yanen Li, ChengXiang Zhai and Dan Roth

17:00-17:30 Characterizing Stylistic Elements in Syntactic Structure
Song Feng, Ritwik Banerjee and Yejin Choi

Session 3-PM-3P: Closing

17:30-17:45 Closing: Closing Remarks

xxxix





Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1–11, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Syntactic Transfer Using a Bilingual Lexicon

Greg Durrett, Adam Pauls, and Dan Klein
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Abstract

We consider the problem of using a bilingual
dictionary to transfer lexico-syntactic infor-
mation from a resource-rich source language
to a resource-poor target language. In con-
trast to past work that used bitexts to trans-
fer analyses of specific sentences at the token
level, we instead use features to transfer the
behavior of words at a type level. In a dis-
criminative dependency parsing framework,
our approach produces gains across a range
of target languages, using two different low-
resource training methodologies (one weakly
supervised and one indirectly supervised) and
two different dictionary sources (one manu-
ally constructed and one automatically con-
structed).

1 Introduction

Building a high-performing parser for a language
with no existing treebank is still an open problem.
Methods that use no supervision at all (Klein and
Manning, 2004) or small amounts of manual su-
pervision (Haghighi and Klein, 2006; Cohen and
Smith, 2009; Naseem et al., 2010; Berg-Kirkpatrick
and Klein, 2010) have been extensively studied, but
still do not perform well enough to be deployed
in practice. Projection of dependency links across
aligned bitexts (Hwa et al., 2005; Ganchev et al.,
2009; Smith and Eisner, 2009) gives better perfor-
mance, but crucially depends on the existence of
large, in-domain bitexts. A more generally appli-
cable class of methods exploits the notion of univer-
sal part of speech tags (Petrov et al., 2011; Das and

...   the    senators    demand    strict   new    ethics    rules   ...
      DT      NNS          VBP          JJ       JJ       NNS     NNS   

Gewerkschaften     verlangen       Verzicht         auf       die     Reform
          NN                  VVFIN             NN          APPR    ART       NN
       Unions               demand     abandonment     on       the      reform

Figure 1: Sentences in English and German both contain-
ing words that mean “demand.” The fact that the English
demand takes nouns on its left and right indicates that the
German verlangen should do the same, correctly suggest-
ing attachments to Verzicht and Gewerkschaften.

Petrov, 2011) to train parsers that can run on any lan-
guage with no adaptation (McDonald et al., 2011)
or unsupervised adaptation (Cohen et al., 2011).
While these universal parsers currently constitute
the highest-performing methods for languages with-
out treebanks, they are inherently limited by operat-
ing at the coarse POS level, as lexical features are
vital to supervised parsing models.

In this work, we consider augmenting delexical-
ized parsers by transferring syntactic information
through a bilingual lexicon at the word type level.
These parsers are delexicalized in the sense that, al-
though they receive target language words as input,
their feature sets do not include indicators on those
words. This setting is appropriate when there is too
little target language data to learn lexical features di-
rectly. Our main approach is to add features which
are lexical in the sense that they compute a function
of specific target language words, but are still un-
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lexical in the sense that all lexical knowledge comes
from the bilingual lexicon and training data in the
source language.

Consider the example English and German sen-
tences shown in Figure 1, and suppose that we wish
to parse the German side without access to a Ger-
man treebank. A delexicalized parser operating at
the part of speech level does not have sufficient in-
formation to make the correct decision about, for ex-
ample, the choice of subcategorization frame for the
verb verlangen. However, demand, a possible En-
glish translation of verlangen, takes a noun on its
left and a noun on its right, an observation that in this
case gives us the information we need. We can fire
features in our German parser on the attachments
of Gewerkschaften and Verzicht to verlangen indi-
cating that similar-looking attachments are attested
in English for an English translation of verlangen.
This allows us to exploit fine-grained lexical cues to
make German parsing decisions even when we have
little or no supervised German data; moreover, this
syntactic transfer is possible even in spite of the fact
that demand and verlangen are not observed in par-
allel context.

Using type-level transfer through a dictionary in
this way allows us to decouple the lexico-syntactic
projection from the data conditions under which we
are learning the parser. After computing feature val-
ues using source language resources and a bilingual
lexicon, our model can be trained very simply us-
ing any appropriate training method for a supervised
parser. Furthermore, because the transfer mecha-
nism is just a set of features over word types, we are
free to derive our bilingual lexicon either from bitext
or from a manually-constructed dictionary, making
our method strictly more general than those of Mc-
Donald et al. (2011) or Täckström et al. (2012), who
rely centrally on bitext. This flexibility is potentially
useful for resource-poor languages, where a human-
curated bilingual lexicon may be broader in cover-
age or more robust to noise than a small, domain-
limited bitext. Of course, it is an empirical question
whether transferring type level information about
word behavior is effective; we show that, indeed,
this method compares favorably with other transfer
mechanisms used in past work.

The actual syntactic information that we transfer
consists of purely monolingual lexical attachment

statistics computed on an annotated source language
resource.1 While the idea of using large-scale sum-
mary statistics as parser features has been consid-
ered previously (Koo et al., 2008; Bansal and Klein,
2011; Zhou et al., 2011), doing so in a projection set-
ting is novel and forces us to design features suitable
for projection through a bilingual lexicon. Our fea-
tures must also be flexible enough to provide benefit
even in the presence of cross-lingual syntactic dif-
ferences and noise introduced by the bilingual dic-
tionary.

Under two different training conditions and with
two different varieties of bilingual lexicons, we
show that our method of lexico-syntactic projection
does indeed improve the performance of parsers that
would otherwise be agnostic to lexical information.
In all settings, we see statistically significant gains
for a range of languages, with our method providing
up to 3% absolute improvement in unlabeled attach-
ment score (UAS) and 11% relative error reduction.

2 Model

The projected lexical features that we propose in this
work are based on lexicalized versions of features
found in MSTParser (McDonald et al., 2005), an
edge-factored discriminative parser. We take MST-
Parser to be our underlying parsing model and use it
as a testbed on which to evaluate the effectiveness of
our method for various data conditions.2 By instanti-
ating the basic MSTParser features over coarse parts
of speech, we construct a state-of-the-art delexical-
ized parser in the style of McDonald et al. (2011),
where feature weights can be directly transferred
from a source language or languages to a desired
target language. When we add projected lexical fea-
tures on top of this baseline parser, we do so in a
way that does not sacrifice this generality: while
our new features take on values that are language-
specific, they interact with the model at a language-
independent level. We therefore have the best of

1Throughout this work, we will use English as the source
language, but it is possible to use any language for which the
appropriate bilingual lexicons and treebanks exist. One might
expect to find the best performance from using a source lan-
guage closely related to the target.

2We train MSTParser using the included implementation of
MIRA (Crammer and Singer, 2001) and use projective decoding
for all experiments described in this paper.
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DELEX

Feature Value

VERB→NOUN 1
VERB→NOUN, L 1

··· ···

PROJ

Query Feature (signature) Value

verlangen→NOUN [VERB]→CHILD 0.723
verlangen→NOUN, L [VERB]→CHILD, DIR 0.711
VERB→Gewerkschaften PARENT→ [NOUN] 0.822

··· ··· ···
Gewerkschaften     verlangen       Verzicht         auf       die     Reform
        NOUN               VERB           NOUN        ADP    DET     NOUN
        Unions              demand     abandonment     on       the      reform

DELEX

Feature Value

VERB→NOUN 1
VERB→NOUN, R 1

··· ···

PROJ

Query Feature (signature) Value
verlangen→NOUN [VERB]→CHILD 0.723
verlangen→NOUN, R [VERB]→CHILD, DIR 0.521
VERB→Verzicht PARENT→[NOUN] 0.623

··· ··· ···

Figure 2: Computation of features on a dependency arc. DELEX features are indicators over characteristics of depen-
dency links that do not involve the words in the sentence. PROJ features are real-valued analogues of DELEX features
that do contain words. We form a query from each stipulated set of characteristics, compute the values of these queries
heuristically, and then fire a feature based on each query’s signature. Signatures indicate which attachment properties
were considered, which part of the query was lexicalized (shown by brackets here), and the POS of the query word.
This procedure yields a small number of real-valued features that still capture rich lexico-syntactic information.

two worlds in that our features can be learned on
any treebank or treebanks that are available to us,
but still exploit highly specific lexical information
to achieve performance gains over using coarse POS
features alone.

2.1 DELEX Features

Our DELEX feature set consists of all of the unlexi-
calized features in MSTParser, only lightly modified
to improve performance for our setting. McDonald
et al. (2005) present three basic types of such fea-
tures, ATTACH, INBETWEEN, and SURROUNDING,
which we apply at the coarse POS level. The AT-
TACH features for a given dependency link consist of
indicators of the tags of the head and modifier, sep-
arately as well as together. The INBETWEEN and
SURROUNDING features are indicators on the tags
of the head and modifier in addition to each inter-
vening tag in turn (INBETWEEN) or various com-
binations of tags adjacent to the head or modifier
(SURROUNDING).3

MSTParser by default also includes a copy of
each of these indicator features conjoined with
the direction and distance of the attachment it de-
notes. These extra features are important to getting

3As in Koo et al. (2008), our feature set contains more
backed-off versions of the SURROUNDING features than are de-
scribed in McDonald et al. (2005).

good performance out of the baseline model. We
slightly modify the conjunction scheme and expand
it with additional backed-off conjunctions, since
these changes lead to features that empirically trans-
fer better than the MSTParser defaults. Specifically,
we use conjunctions with attachment direction (left
or right), coarsened distance,4 and attachment direc-
tion and coarsened distance combined.

We emphasize again that these baseline features
are entirely standard, and all the DELEX feature set
does is recreate an MSTParser-based analogue of the
direct transfer parser described by McDonald et al.
(2011).

2.2 PROJ Features

We will now describe how to compute our projected
lexical features, the PROJ feature set, which con-
stitutes the main contribution of this work. Recall
that we wish our method to be as general as possible
and work under many different training conditions;
in particular, we wish to be able to train our model
on only existing treebanks in other languages when
no target language trees are available (discussed in
Section 3.3), or on only a very small target language
treebank (Section 3.4). It would greatly increase
the power of our model if we were able to include
target-language-lexicalized versions of the ATTACH

4Our five distance buckets are {1, 2, 3−5, 6−10, 11+}.
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features, but these are not learnable without a large
target language treebank. We instead must augment
our baseline model with a relatively small number of
features that are nonetheless rich enough to transfer
the necessary lexical information.

Our overall approach is sketched in Figure 2,
where we show the features that fire on two pro-
posed edges in a German dependency parse. Fea-
tures on an edge in MSTParser incorporate a sub-
set of observable properties about that edge’s head,
modifier, and context in the sentence. For sets of
properties that do not include a lexical item, such
as VERB→NOUN, we fire an indicator feature from
the DELEX feature set. For those that do include a
lexical item, such as verlangen→NOUN, we form a
query, which resembles a lexicalized indicator fea-
ture. Rather than firing the query as an indicator
feature directly, which would result in a model pa-
rameter for each target word, we fire a broad feature
called an signature whose value reflects the specifics
of the query (computation of these values is dis-
cussed in Section 2.2.2). For example, we abstract
verlangen→NOUN to [VERB]→CHILD, with square
brackets indicating the element that was lexicalized.
Section 2.2.1 discusses this coarsening in more de-
tail. The signatures are agnostic to individual words
and even the language being parsed, so they can be
learned on small amounts of data or data from other
languages.

Our signatures allow us to instantiate features at
different levels of granularity corresponding to the
levels of granularity in the DELEX feature set. When
a small amount of target language data is present,
the variety of signatures available to us means that
we can learn language-specific transfer characteris-
tics: for example, nouns tend to follow prepositions
in both French and English, but the ordering of ad-
jectives with respect to nouns is different. We also
have the capability to train on languages other than
our target language, and while this is expected to be
less effective, it can still teach us to exploit some
syntactic properties, such as similar verb attachment
configurations if we train on a group of SVO lan-
guages distinct from a target SVO language. There-
fore, our feature set manages to provide the training
procedure with choices about how much syntactic
information to transfer at the same time as it prevents
overfitting and provides language independence.

2.2.1 Query and Signature Types
A query is a subset of the following pieces of in-

formation about an edge: parent word, parent POS,
child word, child POS, attachment direction, and
binned attachment distance. It must contain exactly
one word.5 We experimented with properties from
INBETWEEN and SURROUNDING features as well,
but found that these only helped under some circum-
stances and could lead to overfitting.6

A signature contains the following three pieces of
information:

1. The non-empty subset of attachment properties
included in the query

2. Whether we have lexicalized on the parent or
child of the attachment, indicated by brackets

3. The part of speech of the included word

Because either the parent or child POS is included
in the signature, there are three meaningful proper-
ties to potentially condition on, of which we must se-
lect a nonempty subset. Some multiplication shows
that we have 7× 2× 13 = 182 total PROJ features.

As an example, the queries

verlangen→ NOUN

verlangen→ ADP

sprechen→ NOUN

all share the signature [VERB]→CHILD, but

verlangen→ NOUN,RIGHT

Verzicht→ ADP

VERB → Verzicht

have [VERB]→CHILD,DIR, [ADP]→CHILD, and
PARENT→[NOUN] as their signatures, respectively.

The level of granularity for signatures is a param-
eter that simply must be engineered. We found some
benefit in actually instantiating two signatures for
every query, one as described above and one that

5Bilexical features are possible in our framework, but we do
not use them here, so for clarity we assume that each query has
one associated word.

6One hypothesis is that features looking at the sentence con-
text are more highly specialized to a given language, since they
examine the parent, the child, and one or more other parts of
speech or words.
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→demand, DIR PARENT→demand

demand
Word POS Dir Dist

that ADP R 3

said VERB L 7

<root> ROOT L 6

senators NOUN L 1

rules NOUN R 4

We NOUN L 1

that ADP R 1

They NOUN L 1

concessions NOUN R 1

from ADP R 2

Pa
re

nt
s

Ch
ild

re
n

DIR Value
L 0.66
R 0.33

PARENT Value
ADP 0.33

VERB 0.33
ROOT 0.33

  He   reports that   the   senators demand strict new ethics rules [...]
PRON     VERB     ADP     DET       NOUN          VERB        ADJ     ADJ      NOUN  NOUN

   “      We   demand that these hostilities cease    ,        ”      said [...]
PUNC   PRON       VERB      ADP     DET        NOUN        VERB   PUNC  PUNC   VERB

 They  demand concessions  from   the  Israeli authorities    <root>
  PRON        VERB              NOUN            ADP      DET      ADJ           NOUN               ROOT

···

Figure 3: Computation of query values. For each occurrence of a given source word, we tabulate the attachments it
takes part in (parents and children) and record their properties. We then compute relative frequency counts for each
possible query type to get source language scores, which will later be projected through the dictionary to obtain target
language feature values. Only two query types are shown here, but values are computed for many others as well.

does not condition on the part of speech of the word
in the signature. One can also imagine using more
refined signatures, but we found that this led to over-
fitting in the small training scenarios under consid-
eration.

2.2.2 Query Value Estimation
Each query is given a value according to a gener-

ative heuristic that involves the source training data
and the probabilistic bilingual lexicon.7 For a par-
ticular signature, a query can be written as a tu-
ple (x1, x2, . . . , wt) where wt is the target language
query word and the xi are the values of the included
language-independent attachment properties. The
value this feature takes is given by a simple gener-
ative model: we imagine generating the attachment
properties xi given wt by first generating a source

7Lexicons such as those produced by automatic aligners in-
clude probabilities natively, but obviously human-created lexi-
cons do not. For these dictionaries, we simply assume that each
word translates with uniform probability into each of its pos-
sible translations. Tweaking this method did not substantially
change performance.

word ws from wt based on the bilingual lexicon,
then jointly generating the xi conditioned on ws.
Treating the choice of source translation as a latent
variable to be marginalized out, we have

value = p(x1, x2, . . . |wt)

=
∑
ws

p(ws|wt)p(x1, x2, . . . |ws)

The first term of the sum comes directly from our
probabilistic lexicon, and the second we can esti-
mate using the maximum likelihood estimator over
our source language training data:

p(x1, x2, . . . |ws) =
c(x1, x2, . . . , ws)

c(ws)
(1)

where c(·) denotes the count of an event in the
source language data.

The final feature value is actually the logarithm
of this computed value, with a small constant added
before the logarithm is taken to avoid zeroes.
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3 Experiments

3.1 Data Conditions
Before we describe the details of our experiments,
we sketch the data conditions under which we eval-
uate our method. As described in Section 1, there is
a continuum of lightly supervised parsing methods
from those that make no assumptions (beyond what
is directly encoded in the model), to those that use
a small set of syntactic universals, to those that use
treebanks from resource-rich languages, and finally
to those that use both existing treebanks and bitexts.

Our focus is on parsing when one does not have
access to a full-scale target language treebank, but
one does have access to realistic auxiliary resources.
The first variable we consider is whether we have
access to a small number of target language trees or
only pre-existing treebanks in a number of other lan-
guages; while not our actual target language, these
other treebanks can still serve as a kind of proxy for
learning which features generally transfer useful in-
formation (McDonald et al., 2011). We notate these
conditions with the following shorthand:

BANKS: Large treebanks in other target languages

SEED: Small treebank in the right target language

Previous work on essentially unsupervised meth-
ods has investigated using a small number of target
language trees (Smith and Eisner, 2009), but the be-
havior of supervised models under these conditions
has not been extensively studied. We will see in
Section 3.4 that with only 100 labeled trees, even
our baseline model can achieve performance equal
to or better than that of the model of McDonald et
al. (2011). A single linguist could plausibly anno-
tate such a number of trees in a short amount of time
for a language of interest, so we believe that this is
an important setting in which to show improvement,
even for a method primarily intended to augment un-
supervised parsing.

In addition, we consider two different sources for
our bilingual lexicon:

AUTOMATIC: Extracted from bitext

MANUAL: Constructed from human annotations

Both bitexts and human-curated bilingual dictionar-
ies are more widely available than complete tree-
banks. Bitexts can provide rich information about

lexical correspondences in terms of how words are
used in practice, but for resource-poor languages,
parallel text may only be available in small quan-
tities, or be domain-limited. We show results of our
method on bilingual dictionaries derived from both
sources, in order to show that it is applicable under a
variety of data conditions and can successfully take
advantage of such resources as are available.

3.2 Datasets
We evaluate our method on a range of languages
taken from the CoNLL shared tasks on multilingual
dependency parsing (Buchholz and Marsi, 2006;
Nivre et al., 2007). We make use of dependency
treebanks for Danish, German, Greek, Spanish, Ital-
ian, Dutch, Portuguese, and Swedish, all from the
2006 shared task.

For our English resource, we use 500,000 En-
glish newswire sentences from English Gigaword
version 3 (Graff et al., 2007), parsed with the Berke-
ley Parser (Petrov et al., 2006) and converted to a
dependency treebank using the head rules of Collins
(1999).8 Our English test set (used in Section 3.4)
consists of the first 300 sentences of section 23 of the
Penn treebank (Marcus et al., 1993), preprocessed
in the same way. Our model does not use gold fine-
grained POS tags, but we do use coarse POS tags
deterministically generated from the provided gold
fine-grained tags in the style of Berg-Kirkpatrick
and Klein (2010) using the mappings of Petrov et
al. (2011).9 Following McDonald et al. (2011), we
strip punctuation from all treebanks for the results of
Section 3.3. All results are given in terms of unla-
beled attachment score (UAS), ignoring punctuation
even when it is present.

We use the Europarl parallel corpus (Koehn,
2005) as the bitext from which to extract the AUTO-
MATIC bilingual lexicons. For each target language,
we produce one-to-one alignments on the English-
target bitext by running the Berkeley Aligner (Liang
et al., 2006) with five iterations of IBM Model 1 and

8Results do not degrade much if one simply uses Sections 2-
21 of the Penn treebank instead. Coverage of rare words in the
treebank is less important when a given word must also appear
in the bilingual lexicon as the translation of an observed German
word in order to be useful.

9Note that even in the absence of gold annotation, such tags
could be produced from bitext using the method of (Das and
Petrov, 2011) or could be read off from a bilingual lexicon.
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This work Past work
MANUAL AUTOMATIC MPH11* TMU12**

DELEX DELEX+PROJ ∆ DELEX+PROJ ∆ Multi-dir Multi-proj ∆ No clusters X-lingual ∆

DA 41.3 43.0 1.67 ‡ 43.6 2.30 ‡ 48.9* 0.6* 36.7** 2.0**
DE 58.5 58.7 0.20 59.5 0.94 † 56.7* -0.1* 48.9** 1.8**
EL 57.9 59.9 1.99 ‡ 60.5 2.55 ‡ 60.1* 5.0* 59.5** 3.5**
ES 64.2 65.4 1.20 ‡ 65.7 1.52 ‡ 64.2* 0.3* 60.2** 2.7**
IT 65.9 66.5 0.58 67.4 1.54 ‡ 64.1* 0.9* 64.6** 4.2**
NL 57.0 57.5 0.52 58.8 1.88 ‡ 55.8* 9.9* 52.8** 1.5**
PT 75.4 77.2 1.83 ‡ 78.7 3.29 ‡ 74.0* 1.6* 66.8** 4.2**
SV 64.5 66.1 1.61 ‡ 66.9 2.34 ‡ 65.3* 2.7* 55.4** 1.5**

AVG 60.6 61.8 1.20 62.6 2.05 61.1* 2.7* 55.6** 2.7**

Table 1: Evaluation of features derived from AUTOMATIC and MANUAL bilingual lexicons when trained on a con-
catenation of non-target-language treebanks (the BANKS setting). Values reported are UAS for sentences of all lengths
in the standard CoNLL test sets, with punctuation removed from training and test sets. Daggers indicate statistical
significance computed using bootstrap resampling; a single dagger indicates p < 0.1 and a double dagger indicates
p < 0.05. We also include the baseline results of McDonald et al. (2011) and Täckström et al. (2012) and improve-
ments from their best methods of using bitext and lexical information. These results are not directly comparable to
ours, as indicated by * and **. However, we still see that the performance of our type-level transfer method approaches
that of bitext-based methods, which require complex bilingual training for each new language.

five iterations of the HMM aligner with agreement
training. Our lexicon is then read off based on rel-
ative frequency counts of aligned instances of each
word in the bitext.

We also use our method on bilingual dictionar-
ies constructed in a more conventional way. For
this purpose, we scrape our MANUAL bilingual lex-
icons from English Wiktionary (Wikimedia Founda-
tion, 2012). We mine entries for English words that
explicitly have foreign translations listed as well as
words in each target language that have English def-
initions. We discard all translation entries where
the English side is longer than one word, except
for constructions of the form “to VERB”, where we
manually remove the “to” and allow the word to be
defined as the English infinitive. Finally, because
our method requires a dictionary with probability
weights, we assume that each target language word
translates with uniform probability into any of the
candidates that we scrape.

3.3 BANKS

We first evaluate our model under the BANKS data
condition. Following the procedure from McDonald
et al. (2011), for each language, we train both our
DELEX and DELEX+PROJ features on a concate-
nation of 2000 sentences from each other CoNLL
training set, plus 2000 sentences from the Penn

Treebank. Again, despite the values of our PROJ

queries being sensitive to which language we are
currently parsing, the signatures are language in-
dependent, so discriminative training still makes
sense over such a combined treebank. Training our
PROJ features on the non-English treebanks in this
concatenation can be understood as trying to learn
which lexico-syntactic properties transfer “univer-
sally,” or at least transfer broadly within the families
of languages we are considering.

Table 1 shows the performance of the DELEX fea-
ture set and the DELEX+PROJ feature set using both
AUTOMATIC and MANUAL bilingual lexicons. Both
methods provide positive gains across the board that
are statistically significant in the vast majority of
cases, though MANUAL is slightly less effective;
we postpone until Section 4.1 the discussion of the
shortcomings of the MANUAL lexicon.

We include for reference the baseline results of
McDonald et al. (2011) and Täckström et al. (2012)
(multi-direct transfer and no clusters) and the im-
provements from their best methods using lexi-
cal information (multi-projected transfer and cross-
lingual clusters). We emphasize that these results
are not directly comparable to our own, as we
have different training data (and even different train-
ing languages) and use a different underlying pars-
ing model (MSTParser instead of a transition-based
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AUTOMATIC

100 train trees 200 train trees 400 train trees
DELEX DELEX+PROJ ∆ DELEX DELEX+PROJ ∆ DELEX DELEX+PROJ ∆

DA 67.2 69.5 2.32 ‡ 69.5 72.3 2.77 ‡ 71.4 74.6 3.16 ‡
DE 72.9 73.9 0.97 75.4 76.5 1.09 † 77.3 78.5 1.25 ‡
EL 70.8 72.9 2.07 ‡ 72.6 74.9 2.30 ‡ 74.3 76.7 2.41 ‡
ES 72.5 73.0 0.46 74.1 75.4 1.29 ‡ 75.3 77.2 1.81 ‡
IT 73.3 75.4 2.13 ‡ 74.7 77.3 2.54 ‡ 76.0 78.7 2.74 ‡
NL 63.0 65.8 2.82 ‡ 64.7 67.6 2.86 ‡ 66.1 69.2 3.06 ‡
PT 78.1 79.5 1.45 ‡ 79.5 81.1 1.66 ‡ 80.7 82.4 1.63 ‡
SV 76.4 78.1 1.69 ‡ 78.1 80.2 2.02 ‡ 79.6 81.7 2.07 ‡

AVG 71.8 73.5 1.74 73.6 75.7 2.07 75.1 77.4 2.27
EN 74.4 81.5 7.06 ‡ 76.6 83.0 6.35 ‡ 78.3 84.1 5.80 ‡

MANUAL

DA 67.2 68.1 0.88 69.5 70.9 1.44 ‡ 71.4 73.3 1.92 ‡
DE 72.9 73.4 0.44 75.4 76.2 0.77 77.3 78.4 1.12 ‡
EL 70.8 71.9 1.06 † 72.6 74.1 1.48 ‡ 74.3 75.8 1.56 ‡
ES 72.5 71.9 -0.64 74.1 74.3 0.23 75.3 76.4 1.04 ‡
IT 73.3 74.3 1.01 † 74.7 76.4 1.66 ‡ 76.0 78.0 2.01 ‡
NL 63.0 65.4 2.43 ‡ 64.7 67.5 2.76 ‡ 66.1 69.0 2.91 ‡
PT 78.1 78.2 0.13 79.5 80.1 0.62 80.7 81.5 0.82 ‡
SV 76.4 76.6 0.25 78.1 79.1 1.01 † 79.6 81.0 1.40 ‡

AVG 71.8 72.5 0.70 73.6 74.8 1.25 75.1 76.7 1.60
EN 74.4 81.5 7.06 ‡ 76.6 83.0 6.35 ‡ 78.3 84.1 5.80 ‡

Table 2: Evaluation of features derived from AUTOMATIC and MANUAL bilingual lexicons when trained on various
small numbers of target language trees (the SEED setting). Values reported are UAS for sentences of all lengths on
our enlarged CoNLL test sets (see text); each value is based on 50 sampled training sets of the given size. Daggers
indicate statistical significance as described in the text. Statistical significance is not reported for averages.

parser (Nivre, 2008)). However, our baseline is com-
petitive with theirs,10 demonstrating that we have
constructed a state-of-the-art delexicalized parser.
Furthermore, our method appears to approach the
performance of previous bitext-based methods, and
because of its flexibility and the freedom from com-
plex cross-lingual training for each new language, it
can be applied in the MANUAL case as well, a capa-
bility which neither of the other methods has.

3.4 SEED

We now turn our attention to the SEED scenario,
where a small number of target language trees are
available for each language we consider. While it
is imaginable to continue to exploit the other tree-
banks in the presence of target language trees, we
found that training our DELEX features on the seed
treebank alone gave higher performance than any

10The baseline of Täckström et al. (2012) is lower because it
is trained only on English rather than on many languages.

attempt to also use the concatenation of treebanks
from the previous section. This is not too surpris-
ing because, with this number of sentences, there is
already good monolingual coverage of coarse POS
features, and attempting to train features on other
languages can be expected to introduce noise into
otherwise accurate monolingual feature weights.

We train our DELEX+PROJ model with both AU-
TOMATIC and MANUAL lexicons on target language
training sets of size 100, 200, and 400, and give re-
sults for each language in Table 2. The performance
of parsers trained on small numbers of trees can
be highly variable, so we create multiple treebanks
of each size by repeatedly sampling from each lan-
guage’s train treebank, and report averaged results.
Furthermore, this evaluation is not on the standard
CoNLL test sets, but is instead on those test sets with
a few hundred unused training sentences added, the
reason being that some of the CoNLL test sets are
very small (fewer than 200 sentences) and appeared
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to give highly variable results. To compute statistical
significance, we draw a large number of bootstrap
samples for each training set used, then aggregate all
of their sufficient statistics in order to compute the fi-
nal p-value. We see that our DELEX+PROJ method
gives statistically significant gains at the 95% level
over DELEX for nearly all language and training set
size pairs, giving on average a 9% relative error re-
duction in the 400-tree case.

Because our features are relatively few in number
and capture heuristic information, one question we
might ask is how well they can perform in a non-
projection context. In the last line of the table, we
report gains that are achieved when PROJ features
computed from parsed Gigaword are used directly
on English, with no intermediate dictionary. These
are not comparable to the other values in the table
because we are using our projection strategy mono-
lingually, which removes the barriers of imperfect
lexical correspondence (from using the lexicon) and
imperfect syntactic correspondence (from project-
ing). As one might expect, the gains on English are
far higher than the gains on other languages. This
indicates that performance is chiefly limited by the
need to do cross-lingual feature adaptation, not in-
herently low feature capacity. We delay further dis-
cussion to Section 4.2.

One surprising thing to note is that the gains given
by our PROJ features are in some cases larger here
than in the BANKS setting. This result is slightly
counterintuitive, as our baseline parsers are much
better in this case and so we would expect dimin-
ished returns from our method. We conclude that ac-
curately learning which signatures transfer between
languages is important, and it is easier to learn good
feature weights when some target language data is
available. Further evidence supporting this hypothe-
sis is the fact that the gains are larger and more sig-
nificant on larger training set sizes.

4 Discussion

4.1 AUTOMATIC versus MANUAL

Overall, we see that gains from using our MANUAL

lexicons are slightly lower than those from our AU-
TOMATIC lexicons. One might expect higher per-
formance because scraped bilingual lexicons are not
prone to some of the same noise that exists in auto-

AUTOMATIC MANUAL

Voc OCC Voc OCC
DA 324K 0.91 22K 0.64
DE 320K 0.89 58K 0.55
EL 196K 0.94 23K 0.43
ES 165K 0.89 206K 0.74
IT 158K 0.91 78K 0.65
NL 251K 0.87 50K 0.72
PT 165K 0.85 46K 0.53
SV 307K 0.93 28K 0.60

Table 3: Lexicon statistics for all languages for both
sources of bilingual lexicons. “Voc” indicates vocabulary
size and “OCC” indicates open-class coverage, the frac-
tion of open-class tokens in the test treebanks with entries
in our bilingual lexicon.

matic aligners, but this is empirically not the case.
Rather, as we see in Table 3, the low recall of our
MANUAL lexicons on open-class words appears to
be a possible culprit. The coverage gap between
these and the AUTOMATIC lexicons is partially due
to the inconsistent structure of Wiktionary: inflected
German and Greek words often do not have their
own pages, so we miss even common morphologi-
cal variants of verb forms in those languages. The
inflected forms that we do scrape are also mapped
to the English base form rather than the correspond-
ing inflected form in English, which introduces fur-
ther noise. Coverage is substantially higher if we
translate using stems only, but this did not empir-
ically lead to performance improvements, possibly
due to conflating different parts of speech with the
same base form.

One might hypothesize that our uniform weight-
ing scheme in the MANUAL lexicon is another
source of problems, and that bitext-derived weights
are necessary to get high performance. This is not
the case here. Truncating the AUTOMATIC dictio-
nary to at most 20 translations per word and setting
the weights uniformly causes a slight performance
drop, but is still better than our MANUAL lexicon.
This further demonstrates that these problems are
more a limitation of our dictionary than our method.
English Wiktionary is not designed to be a bilingual
dictionary, and while it conveniently provided an
easy way for us to produce lexicons for a wide array
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Frauen    wollen    weiter     für       die     Quote  kämpfen
   NN     VMFIN    ADV    APPR   ART      NN    VVINF
Women     want     further     for       the     quota     fight

Women    want    to   continue   to    fight   for   the   quota
   NNP      VBP   TO      VB      TO    VB    IN   DT    NN

Figure 4: Example of a German tree and a parallel En-
glish sentence with high levels of syntactic divergence.
The English verb want takes fundamentally different chil-
dren than wollen does, so properties of the sort we present
in Section 2.2 will not transfer effectively.

of languages, it is not the resource that one would
choose if designing a parser for a specific target lan-
guage. Bitext is not necessary for our approach to
work, and results on the AUTOMATIC lexicon sug-
gest that our type-level transfer method can in fact
do much better given a higher quality resource.

4.2 Limitations

While our method does provide consistent gains
across a range of languages, the injection of lexical
information is clearly not sufficient to bridge the gap
between unsupervised and supervised parsers. We
argued in Section 3.4 that the cross-lingual transfer
step of our method imposes a fundamental limitation
on how useful any such approach can be, which we
now investigate further.

In particular, any syntactic divergence, especially
inconsistent divergences like head switching, will
limit the utility of transferred structure. Consider
the German example in Figure 4, with a parallel En-
glish sentence provided. The English tree suggests
that want should attach to an infinitival to, which has
no correlate in German. Even disregarding this, its
grandchild is the verb continue, which is realized in
the German sentence as the adverb weiter. While
it is still broadly true that want and wollen both
have verbal elements located to their right, it is less
clear how to design features that can still take advan-
tage of this while working around the differences we
have described. Therefore, a gap between the per-

formance of our features on English and the perfor-
mance of our projected features, as is observed in
Table 2, is to be expected in the absence of a more
complete model of syntactic divergence.

5 Conclusion

In this work, we showed that lexical attachment pref-
erences can be projected to a target language at the
type level using only a bilingual lexicon, improving
over a delexicalized baseline parser. This method
is broadly applicable in the presence or absence
of target language training trees and with bilingual
lexicons derived from either manually-annotated re-
sources or bitexts. The greatest improvements arise
when the bilingual lexicon has high coverage and a
number of target language trees are available in or-
der to learn exactly what lexico-syntactic properties
transfer from the source language.

In addition, we showed that a well-tuned discrim-
inative model with the correct features can achieve
good performance even on very small training sets.
While unsupervised and existing projection meth-
ods do feature great versatility and may yet pro-
duce state-of-the-art parsers on resource-poor lan-
guages, spending time constructing small supervised
resources appears to be the fastest method to achieve
high performance in these settings.
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Abstract

In this paper, we address the problem of build-
ing a multilingual transliteration system using
an interlingual representation. Our approach
uses international phonetic alphabet (IPA) to
learn the interlingual representation and thus
allows us to use any word and its IPA repre-
sentation as a training example. Thus, our ap-
proach requires only monolingual resources: a
phoneme dictionary that lists words and their
IPA representations.1 By adding a phoneme
dictionary of a new language, we can readily
build a transliteration system into any of the
existing previous languages, without the ex-
pense of all-pairs data or computation. We
also propose a regularization framework for
learning the interlingual representation, which
accounts for language specific phonemic vari-
ability, and thus it can find better mappings
between languages. Experimental results on
the name transliteration task in five diverse
languages show a maximum improvement of
29% accuracy and an average improvement of
17% accuracy compared to a state-of-the-art
baseline system.

1 Introduction

Because of the wide usage of English, many natu-
ral language processing (NLP) tasks have bilingual
resources from English into other languages. For ex-
ample, significantly larger parallel texts are available

1It is arguable that getting words and their IPA representa-
tion require knowledge about both words and IPA symbols, but
it still is specific to one language and, in this sense, we refer to
it as a monolingual resource.

between English and other languages. Similarly,
bilingual dictionaries and transliteration data sets are
more accessible from a language into English than
into a different language. This situation has caused
the NLP community to develop approaches which
use a resource rich language (Q say English) as pivot
to build resources/applications between a new lan-
guage pair P and R. Previous studies in machine
translation (Utiyama and Isahara, 2007; Paul and
Sumita, 2011), transliteration (Khapra et al., 2010),
and dictionary mining (Saralegi et al., 2011) show
that these bridge language approaches perform com-
petitively with approaches that use resources be-
tween P and R. In this paper, we propose a regular-
ization framework for bridge language approaches
and show its effectiveness for name transliteration
task. The key idea of our approach is that it accounts
for language specific variation in the bridge lan-
guage resources (i.e. between P ↔ Q and Q↔ R)
and aims to minimize this variation as much as pos-
sible. Though our technique is general, for clarity
we describe it in the context of named entity (NE)
transliteration.

Named entity (NE) transliteration involves
transliterating a name in one language into another
language and is shown to be crucial for machine
translation (MT) (Knight and Graehl, 1998; Al-
Onaizan and Knight, 2002; Hermjakob et al.,
2008; Li et al., 2009) and cross-lingual information
retrieval (CLIR) (AbdulJaleel and Larkey, 2003;
Mandl and Womser-Hacker, 2005; Udupa et al.,
2009). There exists a large body of literature in
transliteration, especially in the bilingual setting,
well summarized by Ravi and Knight (2009). We
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English Bulgarian
Word IPA Word IPA
bashful /ˈbæʃfəl/ шибам /ˈʃibəm/
tuesday /ˈtuːzdeɪ/ лук /luk/
craft /kɹæft/ как /kak/
book /bʊk/ музей /mʊˈzej/
head /hɛd/ спека /spɛˈkɤ/

Table 1: Example phoneme dictionaries in English and
Bulgarian. The English translations for the Bulgarian
words are switch, onion, how, museum, and spekle.

summarize the approaches that are most relevant to
us in Sec. 5. In this paper, we operate in the context
of transliteration mining (Klementiev and Roth,
2006; Sproat et al., 2006) where we assume that we
are given a source language name and a list of target
language candidate transliterations and the task is to
identify the correct transliteration.

Given a set of l languages, we address the prob-
lem of building a transliteration system between
every pair of languages. A straight forward su-
pervised learning approach would require training
data of name pairs between every pair of languages
(Knight and Graehl, 1998) or a set of common
names transliterated from every language into a
pivot language. Though it is relatively easy to ob-
tain names transliterated into a pivot language (such
as English), it is unlikely that such data sets contain
the same names. Bridge language approaches over-
come the need for common names and build translit-
eration systems for resource poor languages (Khapra
et al., 2010). However, such approaches still require
training data consisting of bilingual name translit-
erations (orthographic name-to-name mappings). In
this paper, we relax the need for name translitera-
tions by using international phonetic alphabet (IPA)
in a manner akin to a “bridge language.”

2 IPA for Transliteration

We assume that we have a list of words and their
IPA representations in each of the l languages. The
words in different languages need not have any rela-
tionship to each other. Table 1 shows few words and
their IPA representations in English and Bulgarian
languages. We refer to the set of (word, IPA) pairs
as phoneme dictionary in this paper. Notice that the
common symbols in the IPA sequences indicate a

vague phonetic correspondence between the charac-
ter sequences of English and Bulgarian. For exam-
ple, both the words ‘bashful’ and ‘шибам’ have the
symbol ‘ʃ’ in their IPA sequences which indicate a
possible mapping between the character sequences
‘sh’ and ‘ш’.

The use of IPA as the bridge language offers mul-
tiple advantages. As shown in Table 1, it allows us
to include any (word, IPA) pair in the training data
and thus it relaxes the need for name pairs as the
training data. Since we only need a phoneme dic-
tionary in each language, our approach does not re-
quire any bilingual resources to build the transliter-
ation system. Moreover, since our training data can
contain any word (not only the NEs), it is easier to
obtain such a resource, for e.g. the phoneme dic-
tionaries obtained from Wiktionary contain at least
2000 words in 21 languages and we will see in Sec. 6
that we can build a decent transliteration system with
2000 words.2 Finally, unlike other transliteration ap-
proaches, by simply adding a phoneme dictionary of
(l+1)st language we can readily get a transliteration
system into any of the existing l languages and thus
avoid the need for all-pairs data or computation.

Using IPA as the bridge language poses some
new challenges such as the language specific phone-
mic inventory. For example, Mandarin doesn’t
have /v/, so it is frequently substituted with /w/ or
/f/. Similarly, !Xóõ (Southern Khoisan, spoken in
Botswana) has 122 consonants, mostly consisting
of a large inventory of different word-initial click
sounds (Haspelmath et al., 2005), many of which
do not exist in any other documented languages.
Besides this language specific phonemic inventory,
names have different IPA representations in differ-
ent languages. For example, as shown in Table 2,
the IPA sequences for ‘China’ in English and Dutch
have common IPA symbols but the English IPA se-
quence has additional symbols. Moreover, a name
can have multiple pronunciations with in a language,
e.g. ‘France’ has two different IPA sequences in En-
glish (Table 2).

In order to handle this phonemic diversity, our
method explicitly models language-specific variabil-
ity and attempts to minimize this phonemic variabil-

2In our experiments, we consider languages with small
(2000) and big (>30K) phoneme dictionaries.
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Word IPA sequence
China /ˈtʃaɪ.nə/ (En), /ˈʃina/ (Du), /ˈçiːnaː/ (De)
America /əˈmɛrɪkə/ (En), /aˈme.ri.ka/ (Ro)
France /ˈfɹɑːns/ (En), /ˈfɹænts/ (En), /fʁɑ̃s/ (Fr)

Table 2: IPA sequences of few words in different lan-
guages indicated using language codes in the parenthesis
(‘En’ for English, ‘Du’ for Dutch, ‘De’ for German, ‘Ro’
for Romanian, and ‘Fr’ for French).

ity as much as possible. At a high level, our ap-
proach uses the phoneme dictionaries of each lan-
guage to learn mapping functions into an interlin-
gual representation (also referred as common sub-
space). Subsequently, given a pair of languages, a
query name in one of the languages and a list of
candidate transliterations in the other language, we
use the mapping functions of those two language to
identify the correct name transliteration. The map-
ping functions explicitly model the language specific
variability and thus account for fine grained differ-
ences. Our experimental results on four language
pairs from two different language families show a
maximum improvement of 29% accuracy and an av-
erage improvement of 17% accuracy compared to
a state-of-the-art baseline approach. An important
advantage of our approach is that, it extends eas-
ily to more than two languages and in fact adding
phoneme dictionary from a different, but related,
language improves the accuracies of a given lan-
guage pair. Our main contributions are: 1) build-
ing a transliteration system using (word, IPA) pairs
and hence using only monolingual resources and 2)
proposing a regularization framework which is more
general and applies to other bridge language applica-
tions such as lexicon mining (Mann and Yarowsky,
2001).

3 Low Dimensional Projections

Our approach is inspired by the Canonical Correla-
tion Analysis (CCA) (Hotelling, 1936) and its appli-
cation to transliteration mining (Udupa and Khapra,
2010).

First, we convert the phoneme dictionary of each
language into feature vectors, i.e. we convert each
word into a feature vector of n-gram character se-
quences and similarly, we also, convert the IPA
representations into feature vectors of n-gram IPA

symbol sequences. For example, if we use uni-
gram and bigram sequences as features, then the
feature vectors of ‘head’ and its IPA sequence
`hɛd' are given by {h, e, a, d, #h, he, ea, ad, d$}
and {h,ɛ, d, #h, hɛ,ɛd, d$}. For brevity, we refer
to the spaces of n-gram character and IPA symbol
sequences as character and phonemic spaces respec-
tively. The character space is specific to each lan-
guage while the phonemic space is shared across all
the languages. Since we use IPA as bridge, even
though two languages share orthography (e.g. En-
glish and French) it is irrelevant for our approach.

Then, for each language, we find mappings
(
Ai

and Ui

)
from the character and phonemic spaces

into a common k-dimensional subspace such that the
correct transliterations lie closer to each other in this
subspace. Before moving into the details of our ap-
proach, we will describe the notation and then give
an overview of the process by which our approach
finds the transliteration.

3.1 Notation
Let x(m)

i ∈ Rdi and p(m)
i ∈ Rc be the feature vec-

tors of the mth word and its IPA sequence in the
ith

(
1 · · · l

)
language, where di is the size (i.e. no. of

features) of the character space of the language and
c is the size of the common phonemic space. Let
Xi (di×ni) and Pi (c×ni) denote the ith language
data matrices with x(m)

i and p(m)
i m = 1 · · ·ni as the

columns respectively. We consistently use subscript
to indicate the language and superscript to indicate
the index of an example point.

3.2 Method Overview
During the training stage, for each language, we find
mappings (or projection directions) Ai ∈ R(di×k)

and Ui ∈ R(c×k) from the character and phonemic
spaces into a k-dimensional subspace (or an interlin-
gual representation) such that a name gets mapped
to the same k-dimensional vector irrespective of the
language. That is, given a name xi it gets mapped
to the vector AT

i xi and similarly its IPA sequence
pi gets mapped to UT

i pi. During the testing stage,
given a name xi in the source (ith) language, we find
its transliteration in the target (jth) language xj by
solving the following decoding problem:

arg min
xj

L
(
xi, xj

)
(1)

14



Figure 1: A single name (Gandhi) is shown in all the in-
put feature spaces. The alignment between the character
and phonemic space is indicated with double dimensional
arrows. Bridge-CCA uses a single mapping function U
from the phonemic space into the common subspace (the
2-dimensional green space at the top), where as our ap-
proach uses two mapping functions U1 and U2, one for
each language, to map the IPA sequences into the com-
mon subspace.

where L
(
xi, xj

)
is given by

min
p∈Rc
∥AT

i xi − UT
i p∥2 + ∥AT

j xj − UT
j p∥2 (2)

This formulation uses the source language mappings
(Ai and Ui) to find the IPA sequence p that is clos-
est to the source name and then uses it, along with
the target language mappings (Aj and Uj), to iden-
tify the correct transliteration from a list of candidate
transliterations.

At a high level, existing bridge language ap-
proaches such as Bridge-CCA (Khapra et al., 2010)
assume that Ui ≡ Uj thus ignoring the language
specific variation. To understand its implication
consider the example shown in Fig. 1. The mid-
dle portion of the Fig. shows the name Gandhi
(represented as point) in the character spaces of
English and Hindi, three-dimensional spaces, and
its IPA sequences in the phonemic space (the two-

dimensional space in the middle). Notice that, be-
cause of the phonemic variation, the same name is
represented by two distinct points in the common
phonemic space.3 Now, since Bridge-CCA uses a
single mapping function for both the IPA sequences,
it fails to map these two distinct points into a com-
mon point in the interlingual subspace.

Our new formulation, as explained above, relaxes
this hard constraint and learns different mapping
functions (Ui and Uj) and hence our approach can
potentially map both the distinct IPA sequences into
a single point. As a result our approach success-
fully handles the language specific phonemic vari-
ation. At the same time we constrain the projec-
tion directions such that they behave similarly for
the phonemic sounds that are observed in majority
of the languages. In the example shown in Fig. 1,
our model (called Regularized Projections) finds two
different mapping functions U1 and U2, one for each
language, from the phonemic space into the com-
mon two-dimensional space at the bottom.

3.3 Regularized Projections

In this section we first formulate the problem of find-
ing the mapping functions (Ai and Ui) of each lan-
guage as an optimization problem. In the following
section (Sec. 4), we develop a method for solving the
optimization problem and also derive closed form
solution for the prediction problem given in Eq. 1.
For simplicity, we describe our approach in terms of
single projection vectors, ai ∈ Rdi and ui ∈ Rc,
rather than full matrices, but the generalization is
trivial.

Inspired by the Canonical Correlation Analysis
(CCA) (Hotelling, 1936), we find projection direc-
tions in the character and phonemic spaces of each
language such that, after projection, a word is closer
to its aligned IPA sequence. To understand this, as-
sume that we have a name (say “Barack Obama”) in
all the languages4 and its feature vectors are given
by xi and pi i = 1 · · · l in the character and phone-

3In reality, as explained in the previous section, the phone-
mic variation that is commonly observed is that different fea-
tures are triggered for different languages. But for visualization
purpose, we showed the IPA sequences as if they differ in the
feature values.

4Our model does not require same names in different lan-
guages; this is used only for easier understanding.
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mic spaces respectively. Then, we might try to find
projection directions ai in each language and u in
the common phonemic space such that:

arg min
ai,u

l∑
i=1

(
⟨xi, ai⟩ − ⟨pi, u⟩

)2
(3)

where ⟨·, ·⟩ denotes the dot product between two
vectors. This model assumes that the projection di-
rection u is same for the phonemic space of all the
languages. This is a hard constraint and does not
handle the language specific variability as discussed
in the previous section. We model the language
specificity by relaxing this hard constraint.

In our model, intuitively, the parameters corre-
sponding to the phonemic sounds that occur in ma-
jority of the languages are shared across the lan-
guages while the parameters of the language spe-
cific sounds are modeled per each language. This
is achieved by modeling the projection directions of
the ith language phonemic space ui ← u + ri. The
vector u ∈ Rc is common to the phonemic spaces
of all the languages and thus handles sounds that
are observed in multiple languages while ri ∈ Rc,
the residual vector, is specific to each language and
accounts for the language specific phonemic varia-
tions. Then the new formulation is given by:

arg min
ai,u,ri

l∑
i=1

∥⟨xi, ai⟩ − ⟨pi, u + ri⟩∥2 + λ⟨pi, ri⟩2

where λ is the residual parameter. The first term of
this summation ensures that a word and its IPA se-
quence gets mapped to closer points in the subspace
while the second term forces the residual vectors to
be as small as possible. By enforcing the residual
vectors to be small, this formulation encourages the
sounds that occur in majority of the languages to be
accounted by u and the sounds that are specific to the
given language by ri. The final optimization prob-
lem is obtained by summing these terms over all the
examples and all the languages and is given by:

min
ai,u,ri

l∑
i=1

( ||XT
i ai − P T

i (u + ri)||2

ni
+ λ ∥P T

i ri∥2
)

(4)

s.t.
l∑

i=1

1

ni
∥XT

i ai∥2 = 1 and
l∑

i=1

1

ni
∥P T

i u∥2 = 1

The constraints of the above optimization problem
avoid the trivial solution of setting all the vectors to
zero and are referred to as length constraints.

4 Model Optimization

In this section, we derive the solutions for the opti-
mization problems presented in the previous section.

4.1 Training the Model

We follow the standard procedure of forming the La-
grangian and setting its derivative to zero. The La-
grangian L of the optimization problem in Eq. 4 is
given by:

L =
∑

i

1

ni
||XT

i ai−P T
i (u+ri)||2+λ

∑
i

∥P T
i ri∥2

+α
( ∑

i

1

ni
∥XT

i ai∥2−1
)
+β

(∑
i

1

ni
∥P T

i u∥2−1
)

where α and β are Lagrangian multipliers corre-
sponding to the length constraints. Differentiating L
with respect to ai, ri and u and setting the derivatives
to zero yields the following equations, respectively:

(1 + α)XiX
T
i ai −XiP

T
i ri = XiP

T
i u

−PiX
T
i ai + (1 + λni)PiP

T
i ri = −PiP

T
i u

∑
i

1

ni

(
PiX

T
i ai−PiP

T
i ri

)
= (1+β)

∑
i

1

ni
PiP

T
i u

We can rewrite these equations in matrix form, as
shown in Eqs. 5 and 6, since the solution becomes
clear in this form. For brevity, let Ei = (1 +
α)XiX

T
i , Fi = −XiP

T
i and Gi = (1 + λni)PiP

T
i .

Then, u can be solved for using the generalized
eigenvalue problem shown in Eq. 7. This step in-
volves computing an inverse of a (di +c) matrix and
an eigenvalue problem of size c which can be ex-
pensive since solving each of these problems involve
cubic time. This can be reduced further into a prob-
lem of smaller size by using inverse of a partitioned
matrix as shown in Eq. 8. This identity reduces the
matrix inverse computation from a problem of size
di + c into two smaller problems of size di and c
each. This reduces the time complexity considerably
since the inverse computation is cubic in the size of
the matrix.
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[
(1 + α)XiX

T
i −XiP

T
i

−PiX
T
i (1 + λni)PiP

T
i

] [
ai

ri

]
=

[
XiP

T
i

−PiP
T
i

]
u (5)

∑
i

1

ni

[
PiX

T
i −PiP

T
i

] [
ai

ri

]
= (1 + β)

∑
i

1

ni
PiP

T
i u (6)

∑
i

1

ni

[
−F T

i
−Gi

1+λni

] [
Ei Fi

F T
i Gi

]−1 [
−Fi
−Gi

1+λni

]
u = (1 + β)

∑
i

1

ni
PiP

T
i u (7)

If Mi =
(
Ei − FiG

−1
i F T

i

)−1
, then

[
Ei Fi

F T
i Gi

]−1

=

[
Mi −MiFiG

−1
i

−G−1
i F T

i Mi G−1
i + G−1

i F T
i MiFiG

−1
i

]
(8)

Substituting Eq. 8 into Eq. 7 and further simplify-
ing results in the following eigenvalue problem for
solving u:

∑
i

Gi + (λni)
2F T

i MiFi

ni(1 + λni)2
u = (1 + β)

∑
i

PiP
T
i

ni
u

where Mi =
(
Ei − FiG

−1
i F T

i

)−1. Notice that the
term Ei = (1+α)XiX

T
i depends on the Lagrangian

multiplier α. Because of this, we cannot solve for
both the parameters and the Lagrangian multipliers
at the same time. One possible approach is to do an
alternate optimization over the parameters and La-
grangian multipliers, but in this paper we fix α and
solve for u. The value of α denotes the correlation
and its maximum value is 1. In practice, we often
observe that the top few correlations take the value
of 1. Based on this observation we fix the value of α
to 1 (Sec. 6).

Subsequently, we use u to solve for ai and ri as
follows:

ai = −λniMiFi

1 + λni
u (9)

ri =
λniG

−1
i F T

i MiFi − I

1 + λni
u (10)

In order to increase the stability of the system we
regularize Gi and Ei by adding τI . We use the top k
eigenvectors u and their corresponding ai and ri vec-
tors as columns and form the mappings U , Ai and Ri

respectively. These mappings are used in predicting
the transliteration of a name in one language into
any other language, which will be described in the
following section.

4.2 Transliteration Mining (Prediction)
During the testing phase, given a source name and
a list of candidate transliterations, we solve the de-
coding problem shown in Eq. 1 to find the appropri-
ate target language transliteration. Formally, given
a word xi in ith language we find its transliteration
into jth language xj , by solving the optimization
problem shown in Eq. 1, where Ui = U + Ri and
Uj = U + Rj . Similar to the previous case, the
closed form solution can be found by computing the
first derivative with respect to the unknown phoneme
sequence and the target language transliteration and
setting it to zero. First, the IPA sequence p∗ that
minimizes L

(
xi, xj

)
is given by:

p∗ = C−1
ij

(
UiA

T
i xi + UjA

T
j xj

)
(11)

where Cij = UiU
T
i +UjU

T
j . We substitute this back

in Eq. 2 and then solve for xj , the best transliteration
in the jth language, as:

Aj

(
I−UT

j C−1
ij Uj

)
AT

j xj = AjU
T
j C−1

ij UiA
T
i xi (12)

Since Ui and Uj are not full rank matrices, to in-
crease the numerical stability of the prediction step,
we use Cij = UiU

T
i +UjU

T
j +0.001 I where I is an

identity matrix. Notice that this solution doesn’t de-
pend on the p∗ and hence we don’t need to compute
it explicitly.

5 Related Work

There is a large body of the literature in named entity
transliteration, so we will describe only the most rel-
evant ones to our approach. In transliteration, gener-
ative approaches aim to generate the target language
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transliteration of a given source name (Knight and
Graehl, 1998; Jung et al., 2000; Haizhou et al., 2004;
Al-Onaizan and Knight, 2002) while discriminative
approaches assume a list of target language names,
obtained from other sources, and try to identify the
correct transliteration (Klementiev and Roth, 2006;
Sproat et al., 2006). The effectiveness of the dis-
criminative approaches depend on the list of target
language candidates. Sproat et al. (2006) report an
oracle accuracy of 85%, but it depends on the source
of the candidate transliterations. Nevertheless, all
these approaches require either bilingual name pairs
or phoneme sequences to learn to transliterate be-
tween two languages. Thus, if we want to build
a transliteration system between every pair of lan-
guages in a given set of languages then these ap-
proaches need resources between every pair of lan-
guages which can be prohibitive.

Bridge language approaches propose an alterna-
tive and use a resource rich language such as English
as common language (Khapra et al., 2010) but they
still need bilingual resources. Moreover Bridge-
CCA (Khapra et al., 2010) uses a single mapping
function for the phonemic space of all the languages
and thus it can not handle language specific variabil-
ity. In the original setting, authors use English as the
pivot and since the feature space of English is fixed,
irrespective of the target language, this may not be a
serious concern but it becomes crucial when we use
IPA as the bridge language.

Approaches that map words in different languages
into the common phonemic space have also been
well studied. But most of these approaches use lan-
guage specific resources such as CMU pronuncia-
tion dictionary (Gao et al., 2004) or a carefully con-
structed cost matrices for addition, substitution, and
deletion of phonemes between a pair of languages
(Tao et al., 2006; Yoon et al., 2007). Variants of
soundex algorithm (Odel and Russel, 1918) such as
Kodex (Kang and Choi, 2000) use hand constructed
consonant to soundex code tables for name translit-
eration. Similar to our approach these variants only
require soundex mappings of a new language to
build transliteration system, but our model does not
require explicit mapping between n-gram characters
and the IPA symbols instead it learns them auto-
matically using phoneme dictionaries. Alternatively
unsupervised approaches have also been explored

(Ravi and Knight, 2009), but their accuracies are
fairly low compared to the supervised and weekly
supervised approaches.

6 Experiments

Our experiments are designed to evaluate the follow-
ing three aspects of our model, and of our approach
to transliteration in general:
IPA as bridge: Unlike other phonemic based ap-
proaches (Sec. 5), we do not explicitly model the
phoneme modifications between pairs of languages.
Moreover, the phoneme dictionary in each language
is crawled from Wiktionary (Sec. 6.1), which is
likely to be noisy. So, the first aspect we want
to evaluate is the effectiveness of using IPA as the
bridge language. Here, we also compare our method
with other bridge language approaches and establish
the importance of modeling language specific vari-
ance.
Multilinguality: In our method, simply adding a
phoneme dictionary of a new language allows us to
extend our transliteration system into any of the ex-
isting languages. We evaluate the effect of data from
a different, but related, languages on a transliteration
system between a given pair.
Complementarity: Using IPA as bridge language
allows us to build transliteration system into re-
source poor languages. But we also want to eval-
uate whether such an approach can help improving
a transliteration system trained directly on bilingual
name-pairs.

6.1 Data Sets

We use data sets from five languages in order to eval-
uate the effectiveness of our approach. The phoneme
dictionaries (list of words and their IPA represen-
tations as shown in Table 1) are obtained from
Wiktionary. The Wiktionary dump downloaded in
October 2011 has at least 2000 (word, IPA) pairs
in 21 languages which also includes some resource
poor languages (e.g. Armenian, Taiwanese, Turkish,
etc.).

In principle, our method allows us to build
transliteration system into any of these language
pairs without any additional information. But, in this
paper, we use English (En), Bulgarian (Bg), Rus-
sian (Ru), French (Fr), and Romanian (Ro) for eval-
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En. Bg. Ru. Fr. Ro.
Train 31K 36K 1141 36K 5211
Dev. – 1264 2000 2717 430
Test – 1264 2000 2717 431
# Features 5000 3998 2900 5000 3465

Table 3: Statistics of different data sets. Training
data is monolingual phoneme dictionaries while develop-
ment/test sets are bilingual name pairs between English
and the respective language.

uation purposes, as they suffice to showcase all the
three aspects mentioned in the previous section. Ta-
ble 3 shows the sizes of phoneme dictionaries used
for training the models. The phoneme dictionar-
ies of English, Bulgarian, and Russian contain more
than 30K (word,IPA) pairs while the remaining two
languages have smaller phoneme dictionaries. The
development and test sets between English and the
remaining language pairs are obtained from geon-
ames data base.5 These are geographic location
names from different countries written in multiple
languages.

6.2 Experimental Setup

We convert the phoneme dictionaries of each lan-
guage into feature vectors. We use unigram and
bigram features in the phonemic space and uni-
gram, bigram and trigram features in the character
space. An example for feature generation is shown
in Sec. 3. After converting the data into feature vec-
tors, we retain the most frequent 5000 features. We
only keep the frequent 5000 features since we ob-
served, elsewhere, that including infrequent features
leads CCA based methods to learn projection direc-
tions with perfect correlations which are not effec-
tive for downstream applications. The last row of
Table 3 shows the number of features in the char-
acter space of each of the languages. The phone-
mic space is common to all the languages and has
3777 features. Though the phonemic features are
common to all the languages, as discussed in Sec. 2,
only a subset of features will be observed in a given
language. For example, in our data sets, of the total
3777 common phonetic features only 3312, 882, and
1009 features are observed in English, Bulgarian,

5http://www.geonames.org/
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Figure 2: Performance of transliteration system with
residual parameter λ on English-Bulgarian development
data set.

and Russian languages respectively. This indicates
the diversity in the phonemic inventory of different
languages.

We compare our approach against Bridge-CCA, a
state-of-the-art bridge language transliteration sys-
tem which is known to perform competitively with
other discriminative approaches (Khapra et al.,
2010). We use the phoneme dictionaries in each lan-
guage to train our approach, as well as the baseline
system. The projection directions learnt during the
training are used to find the transliteration for a test
name as described in Sec. 4.2. We report the perfor-
mance in terms of the accuracy (exact match) of the
top ranked transliteration and the mean reciprocal
rank (MRR) of the correct transliteration. We find
transliterations in both the directions (i.e. target lan-
guage transliterations given a source name and vice
versa) and report average accuracies. The regular-
ization parameter (τ ) and the size of the interlingual
representation (k) in both our approach and Bridge-
CCA are tuned on the development set.

6.3 Description of Results

In this section we report experimental results on the
three aspects mentioned above.

6.3.1 IPA as Bridge
Fig. 2 shows the performance of our system with

the residual parameter λ (in Eq. 4) on the develop-
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En-Bg En-Ru En-Fr En-Ro
Acc. MRR Acc. MRR Acc. MRR Acc. MRR

1 Bridge-CCA 68.83 77.22 44.50 53.22 41.55 52.89 71.69 79.59
2 Ours (cosine) 67.68 76.52 45.07 53.63 42.45 53.06 74.13 81.28
3 Ours (Eq. 12) 83.70 88.32 63.47 73.01 70.68 78.13 77.38 84.22
4 Ours (cosine + Multi.) 68.91 77.44 49.15 57.20 42.55 53.02 77.49 84.04
5 Ours (Eq. 12 + Multi.) 84.45 88.43 66.70 75.85 71.09 78.43 77.49 84.04

Table 4: Results of our approach and the baseline system on the test set. The second block shows the results when our
approach is trained only on phoneme dictionaries of the language pair, the third block shows results when we include
other language data as well.

ment data set. When λ is small, the model does not
attempt to constrain the projection directions Ui’s
and hence they tend to map names to completely
unrelated vectors. As we increase the residual pa-
rameter, it forces the residual vectors (Ri) to be
smaller and thus the subspaces identified for each
language are closely tied together. Thus, it models
the commonalities across languages and also the lan-
guage specific variability. Based on the performance
curves on the development data, we fix λ = 50 in the
rest of the experiments.

Table 4 shows the results of Bridge-CCA and our
approach on the four language pairs. We report the
results of our approach with the decoding proposed
in Sec. 4.2 and a simple cosine similarity measure
in the common-subspace, i.e. cos

(
AT

i xi, A
T
j xj

)
.

Comparison of the accuracies in rows 1, 2 and 3,
shows that simply using cosine similarity performs
almost same as the Bridge-CCA approach. How-
ever, using the decoding suggested in Eq. 12 gives
significant improvements. To understand why the
cosine angle between AT

i xi and AT
j xj is not the ap-

propriate measure, assume that the vectors xi and
xj are feature vectors of same name in two lan-
guages and let p be its true IPA representation. Then,
since our model learns projection directions such
that AT

i xi ≈ UT
i p,

cos(AT
i xi, A

T
j xj) = cos

(
(U +Ri)

T p, (U +Rj)
T p

)
The additional residual matrices Ri and Rj make
the cosine measure inappropriate. At the same time,
our model forces the residual matrices to be small
and this is probably the reason why it performs
competitively with the Bridge-CCA. On the other
hand, our decoding method, as shown in Eq. 1, in-

tegrates over the best possible phoneme sequence
and thus yields significant improvements. In the rest
of the paper, we report results with the decoding
in Eq. 12 unless specified explicitly. Our approach
achieves a maximum improvement of 29.13% ac-
curacy over Bridge-CCA in English-French and on
an average it achieves 17.17% and 15.19% improve-
ment in accuracy and MRR respectively. Notice that
even though our Russian phoneme dictionary has
only 1141 (word, IPA) pairs, our approach is able
to achieve an accuracy of 63.47% and an MRR of
73% indicating that the correct name transliteration
is, on an average, at rank 1 or 2.

6.3.2 Multilinguality
The fourth and fifth rows of Table 4 also show the

multilingual results. In particular, we train our sys-
tem on data from the three languages En, Bg, and
Ru and test it on En-Bg and En-Ru test sets. Simi-
larly, we train a different system on data from En, Fr
and Ro and evaluate it on En-Fr and En-Ro test sets.
We split the languages based on the language family,
Russian and Bulgarian are Slavonic languages while
French and Romanian are Romance languages, and
expect that languages in same family have similar
pronunciations. Comparing the performance of our
system with and without the multilingual data set, it
is clear that having data from other languages helps
improve the accuracy.

6.3.3 Complementarity
In the final experiment, we want to compare

the performance of our approach, which uses only
monolingual resources, with a transliteration system
trained using bilingual name pairs. We train a CCA
based transliteration system (Udupa and Khapra,
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En-Bg En-Fr
Acc. MRR Acc. MRR

CCA 95.57 96.76 95.82 96.67
Ours+CCA 95.69 96.90 96.14 96.90

∆ Err 2.7% 4.2% 7.5% 6.8%
Ours+CCA(t) 95.80 96.95 96.34 97.04

∆ Err 5.4% 5.8% 12.3% 11.3%

Table 5: Comparison with a system trained on bilingual
name pairs. The (t) in the third row indicates parame-
ters are tuned for test set. We also show the percentage
error reduction achieved by a linear combination of our
approach and CCA.

2010) on a training data of 3792 and 8151 location
name pairs. Notice that the training and test data for
this system are from the same domain and thus it has
an additional advantage over our approach, which is
trained on whatever happens to be on Wiktionary.

The second row of Table 5 shows the results of
CCA on English-Bulgarian and English-French lan-
guage pairs. CCA achieves high accuracies even
though the training data is relatively small, most
likely because of the domain match between train-
ing and test data sets. As another baseline, we tried
using Google machine translation API to transliter-
ate the English names of the En-Bg test set. We
hoped that since these are names, the translation en-
gine would simply transliterate them and return the
result. Of the output, we observed that about 500
names are passed through the MT system unchanged
and so we ignore them. On the remaining names,
it achieved an accuracy of 76.15% and the average
string edit distance of the returned transliteration to
the true transliteration is about 3.74. These accura-
cies are not directly comparable to the results shown
in Table 5 because, presumably, it is a transliteration
generation system unlike CCA which is a transliter-
ation mining approach. For lack fair comparison, we
don’t report the accuracies of the Google transliter-
ation output in Table 5.

Table 5 also shows the results of our system when
combined with the CCA approach. For a given En-
glish word, we score the candidate transliterations
using our approach and then linearly combine their
scores with the scores assigned by CCA. We per-
form a line search between [0, 1] for the appropriate
weight combination. The third and fourth rows of

Table 5 show the results of the linear combination
when the weight is tuned for the development and
test sets respectively. The improvements, though
not significant, are encouraging and suggest that a
sophisticated way of combining these different sys-
tems may yield significant improvements. This ex-
periment shows that a transliteration system trained
on word and IPA representations can actually aug-
ment a system trained on bilingual name pairs lead-
ing to an improved performance.

7 Conclusion

In this paper we proposed a regularization technique
for the bridge language approaches and showed
its effectiveness on the name transliteration task.
Our approach learns interlingual representation us-
ing only monolingual resources and hence can be
used to build transliteration system between re-
source poor languages. We show that, by account-
ing the language specific phonemic variation, we
can get a significant improvements. Our experimen-
tal results suggest that a transliteration system built
using IPA data can also help improve the accuracy
of a transliteration system trained on bilingual name
pairs.

Thought we used IPA as a bridge language there
are other viable options. For example, as shown
in Khapra et al. (2010) we can use English as the
bridge language. Since name transliteration prob-
lem is being studied for a considerable time, many
resources already exist between English and other
languages. So, one can argue the appropriateness of
IPA as bridge language compared to, say, English.
While this is an important question, in this paper,
we are primarily interested in showing the impor-
tance of handling language specific phenomenon in
the bridge language approaches. In future, we would
like to study the appropriateness of IPA vs. English
as the bridge language and also the generalizability
of our technique to other scenarios.
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Abstract

This paper proposes a novel method for lex-
icon extraction that extracts translation pairs
from comparable corpora by using graph-
based label propagation. In previous work,
it was established that performance drasti-
cally decreases when the coverage of a seed
lexicon is small. We resolve this problem
by utilizing indirect relations with the bilin-
gual seeds together with direct relations, in
which each word is represented by a distri-
bution of translated seeds. The seed distri-
butions are propagated over a graph repre-
senting relations among words, and transla-
tion pairs are extracted by identifying word
pairs with a high similarity in the seed dis-
tributions. We propose two types of the
graphs: a co-occurrence graph, representing
co-occurrence relations between words, and
a similarity graph, representing context sim-
ilarities between words. Evaluations using
English and Japanese patent comparable cor-
pora show that our proposed graph propaga-
tion method outperforms conventional meth-
ods. Further, the similarity graph achieved im-
proved performance by clustering synonyms
into the same translation.

1 Introduction

Bilingual lexicons are important resources for bilin-
gual tasks such as machine translation (MT) and
cross-language information retrieval (CLIR). There-
fore, the automatic building of bilingual lexicons
from corpora is one of the issues that have attracted
many researchers. As a solution, a number of pre-
vious works proposed extracting bilingual lexicons

from comparable corpora, in which documents were
not direct translations but shared a topic or domain1.
The use of comparable corpora is motivated by the
fact that large parallel corpora are only available for
a few language pairs and for limited domains.

Most of the previous methods are based on as-
sumption (I), that a word and its translation tend to
appear in similar contexts across languages (Rapp,
1999). Based on this assumption, many methods
calculate word similarity using context and then ex-
tract word translation pairs with a high-context sim-
ilarity. We call these methods context-similarity-
based methods. The context similarities are usu-
ally computed using a seed bilingual lexicon (e.g.
a general bilingual dictionary) by mapping contexts
expressed in two different languages into the same
space. In the mapping, information not represented
by the seed lexicon is discarded. Therefore, the
context-similarity-based methods could not find ac-
curate translation pairs if using a small seed lexicon.

Some of the previous methods tried to alleviate
the problem of the limited seed lexicon size (Koehn
and Knight, 2002; Morin and Prochasson, 2011;
Hazem et al., 2011), while others did not require any
seed lexicon (Rapp, 1995; Fung, 1995; Haghighi et
al., 2008; Ismail and Manandhar, 2010; Daumé III
and Jagarlamudi, 2011). However, they suffer the
problems of high computational cost (Rapp, 1995),
sensitivity to parameters (Hazem et al., 2011),
low accuracy (Fung, 1995; Ismail and Manandhar,
2010), and ineffectiveness for language pairs with

1Although Vulić et al. (2011) regarded document-aligned
texts such as texts on Wikipedia as comparable corpora, we do
not limit comparable corpora to these kinds of texts.
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different types of characters (Koehn and Knight,
2002; Haghighi et al., 2008; Daumé III and Jagar-
lamudi, 2011).

In face of the above problems, we propose a novel
method that uses a graph-based label propagation
technique (Zhu and Ghahramani, 2002). The pro-
posed method is based on assumption (II), which is
derived by recursively applying assumption (I) to the
“contexts”: a word and its translation tend to have
similar co-occurrence (direct and indirect) relations
with all bilingual seeds across languages.

Based on assumption (II), we propose a three-
step approach: (1) constructing a graph for each
language with each edge indicating a direct co-
occurrence relation, (2) representing every word as a
seed translation distribution by iteratively propagat-
ing translated seeds in each graph, (3) finding two
words in different languages with a high similarity
with respect to the seed distributions. By propagat-
ing all the seeds on the graph, indirect co-occurrence
relations are also considered when computing bilin-
gual relations, which have been neglected in previ-
ous methods. In addition to the co-occurrence-based
graph construction, we propose a similarity graph,
which also takes into account context similarities be-
tween words.

The main contributions of this paper are as fol-
lows:

• We propose a bilingual lexicon extraction
method that captures co-occurrence relations
with all the seeds, including indirect rela-
tions, using graph-based label propagation.
In our experiments, we confirm that the
proposed method outperforms conventional
context-similarity-based methods (Rapp, 1999;
Andrade et al., 2010), and works well even if
the coverage of a seed lexicon is low.

• We propose a similarity graph which represents
context similarities between words. In our ex-
periments, we confirm that a similarity graph
is more effective than a co-occurrence-based
graph.

2 Context-Similarity-based Extraction
Method

The bilingual lexicon extraction from comparable
corpora was pioneered in (Rapp, 1995; Fung, 1995).

The popular similarity-based methods consist of the
following steps: modeling contexts, calculating con-
text similarities, and finding translation pairs.
Step 1. Modeling contexts: The context of each
word is generally modeled by a vector where each
dimension corresponds to a context word and each
dimension has a value indicating occurrence cor-
relation. Various definitions for the context have
been used: distance-based context (e.g. in a sen-
tence (Laroche and Langlais, 2010), in a para-
graph (Fung and McKeown, 1997), in a predefined
window (Rapp, 1999; Andrade et al., 2010)), and
syntactic-based context (e.g. predecessors and suc-
cessors in dependency trees (Garera et al., 2009),
certain dependency position (Otero and Campos,
2008)). Some treated context words equally re-
gardless of their positions (Fung and Yee, 1998),
while others treated the words separately for each
position (Rapp, 1999). Various correlation mea-
sures have been used: log-likelihood ratio (Rapp,
1999; Chiao and Zweigenbaum, 2002), tf-idf (Fung
and Yee, 1998), pointwise mutual information
(PMI) (Andrade et al., 2010), context heterogene-
ity (Fung, 1995), etc.

Shao and Ng (2004) represented contexts using
language models. Andrade et al. (2010) used a
set of words with a positive association as a con-
text. Andrade et al. (2011a) used dependency re-
lations instead of context words. Ismail and Man-
andhar (2010) used only in-domain words in con-
texts. Pekar et al. (2006) constructed smoothed con-
text vectors for rare words. Laws et al. (2010) used
graphs in which vertices correspond to words and
edges indicate three types of syntactic relations such
as adjectival modification.
Step 2. Calculating context similarities: The con-
texts which are expressed in two different languages
are mapped into the same space. Previous methods
generally use a seed bilingual lexicon for this map-
ping. After that, similarities are calculated based
on the mapped context vectors using various mea-
sures: city-block metric (Rapp, 1999), cosine sim-
ilarity (Fung and Yee, 1998), weighted jaccard in-
dex (Hazem et al., 2011), Jensen-Shannon diver-
gence (Pekar et al., 2006), the number of overlap-
ping context words (Andrade et al., 2010), Sim-
Rank (Laws et al., 2010), euclidean distance (Fung,
1995), etc.
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Figure 1: An Example of a Previous Method and our Pro-
posed Method

Andrade et al. (2011b) performed a linear trans-
formation of context vectors in accordance with the
notion that importance varies by context positions.
Gaussier et al. (2004) mapped context vectors via
latent classes to capture synonymy and polysemy in
a seed lexicon. Fišer et al. (2011) and Kaji (2005)
calculated 2-way similarities.
Step 3. Finding translation pairs: A pair of words
is treated as a translation pair when their context
similarity is high. Various clues have been con-
sidered when computing the similarities: concept
class information obtained from a multilingual the-
saurus (D́ejean et al., 2002), co-occurrence models
generated from aligned documents (Prochasson and
Fung, 2011), and transliteration information (Shao
and Ng, 2004).

2.1 Problems from Previous Works

Most of previous methods used a seed bilingual lex-
icon for mapping modeled contexts in two different
languages into the same space. The mapping heav-
ily relies on the entries in a given bilingual lexicon.
Therefore, if the coverage of the seed lexicon is low,

the context vectors become sparser and its discrim-
inative capability becomes lower, leading to extrac-
tion of incorrect translation equivalents.

Consider the example in Figure 1, where a
context-similarity-based method and our proposed
method find translation equivalents of the Japanese
word “ピラニア (piranha)”. There are three con-
text words for the query. However, the informa-
tion on co-occurrence with “淡水 (freshwater)” dis-
appears after the context vector is mapped, because
the seed lexicon does not include “淡水 (freshwa-
ter)”. The same thing happens with the English word
“piranha”. As a result, the pair of “ピラニア (pi-
ranha)” and “anaconda” could be wrongly identified
as a translation pair.

Some previous work focused on the problem
of seed lexicon limitation. Morin and Prochas-
son (2011) complemented the seed lexicon with
bilingual lexicon extracted from parallel sentences.
Koehn and Knight (2002) used identically-spelled
words in two languages as a seed lexicon. However,
the method is not applicable for language pairs with
different types of characters such as English and
Japanese. Hazem et al. (2011) exploitedk-nearest
words for a query, which is very sensitive to the pa-
rameterk.

Some previous work did not require any seed lex-
icon. Rapp (1995) proposed a computationally de-
manding matrix permutation method which maxi-
mizes a similarity between co-occurrence matrices
in two languages. Ismail and Manandhar (2010) in-
troduced a similarity measure between two words in
different languages without requiring any seed lex-
icon. Fung (1995) used context heterogeneity vec-
tors where each dimension is independent on lan-
guage types. However, their performances are worse
than those of conventional methods using a small
seed lexicon. Haghighi et al. (2008) and Daumé
III and Jagarlamudi (2011) proposed a generative
model based on probabilistic canonical correlation
analysis, where words are represented by context
features and orthographic features2. However, their
experiments showed that orthographic features to be
important for effectiveness, which means low per-

2In Haghighi et al. (2008) and Dauḿe III and Jagarla-
mudi (2011), indirect relations with seeds are considered topo-
logically, but our method utilizes degrees of indirect correla-
tions with seeds.
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formance for language pairs with different character
types.

3 Lexicon Extraction Based on Label
Propagation

As described in Section 2, the performance of previ-
ous work is significantly degraded when used with a
small seed lexicon. This problem could be resolved
by incorporating indirect relations with all the seeds
when identifying translation pairs. For example, in
Figure 1, “ピラニア (piranha)” has some degree of
association with the seed “魚 - fish” through “淡水
(freshwater)” in both the Japanese side and the En-
glish side, although “ピラニア (piranha)” and “魚
(fish)” do not co-occur in the same contexts. More-
over, “anaconda” has very little association with the
seed “魚 - fish” in the English side. Therefore,
the indirect relation with the seed “魚 - fish” helps
to discriminate from between “piranha” and “ana-
conda” and could be an important clue for identify-
ing a correct translation pair.

To utilize indirect relations, we introduce assump-
tion (II): a word and its translation tend to have simi-
lar co-occurrence (direct and indirect) relations with
all bilingual seeds across languages3. Based on as-
sumption (II), we propose to identify a word pair as
a translation pair when its co-occurrence (direct and
indirect) relations with all the seeds are similar.

To obtain co-occurrence relations with all the
seeds, including indirect relations, we focus on a
graph-based label propagation (LP) technique (Zhu
and Ghahramani, 2002). LP transfers labels from
labeled data points to unlabeled data points. In the
process, all vertices have soft labels that can be inter-
preted as label distributions. We apply LP to bilin-
gual lexicon extraction by representing each word as
a vertex in a graph with each edge encoding a direct
co-occurrence relation. Translated seeds are propa-
gated as labels, and seed distributions are obtained
for each word. From the seed distributions, we iden-
tify translation pairs.

In summary, our proposed method consists of
three steps (see Algorithm 1): (1) graph construc-

3Assumption (I) indicates direct co-occurrence relations be-
tween a word and its context words are preserved across differ-
ent languages. Therefore, assumption (II) is derived by recur-
sively applying assumption (I) to the “context words”.

Algorithm 1 Bilingual Lexicon Extraction
Require: comparable corporaDe andDf ,
a seed lexiconS consists ofSe andSf

Ensure: Output translation pairsT
1-1: Ge = {Ee, V e,W e} ← construct-graph(De)
1-2: Gf = {Ef , V f ,W f} ← construct-graph(Df )

2-1: G̃e = {Ee, V e,W e, Qe} ← propagate-seed(Ge, Se)

2-2: G̃f = {Ef , V f ,W f , Qf} ← propagate-seed(Gf , Sf )
3: T ← extract-translation(Qe, Qf , S)

tion for each language, (2) seed propagation in each
graph, (3) translation pair extraction.

3.1 Graph Construction

We construct a graph representing the association
between words for each language. Each graph is an
undirected graph because the association does not
have direction. The graphs are constructed as fol-
lows:
Step 1. Vertex assignmentextracts words from
each corpus, and assigns a vertex to each of the ex-
tracted words. LetV = {v1, · · · , vn} be a set of
vertices.
Step 2. Edge weight calculationcalculates associ-
ation strength between two words as the weights of
edges. LetE andW be a set of edges and that of
the weights respectively, andeij ∈ E links vi and
vj , andwij ∈ W is the weight ofeij . Note that
|E| = |W |.
Step 3. Edge pruning excludes edges whose
weights are lower than threshold, in order to reduce
the computational cost during seed propagations.

We propose two types of graphs that differ in the
association measure used in Step 2: a co-occurrence
graph and a similarity graph4.

3.1.1 Co-occurrence Graph

A co-occurrence graph directly encodes assump-
tion (II). Each edge in the graph indicates correlation
strength between occurrences of two linked words.
An example is shown in Figure 1.

In edge weight calculation, the co-occurrence
frequencies are first computed for each word pair in
the same context, and then the correlation strength is
estimated. There are various definitions of a context
or correlation measures that can be used (e.g. the

4We can combine the association measures used in a co-
occurrence graph and a similarity graph. We will leave this
combination approach for future work.
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approaches used for modeling contexts in context-
similarity-based methods). In this paper, we use
words in a predefined window (window size is 10
in our experiments) as the context and PMI as the
correlation measure:

wij = PMI(vi, vj) = log
p(vi, vj)

p(vi) · p(vj)
,

wherep(vi) (or p(vj)) is the probability thatvi (or
vj) occurs in a context, andp(vi, vj) is the probabil-
ity that vi andvj co-occur within the same context.
We estimatePMI(vi, vj) by the Bayesian method
proposed by Andrade et al.(2010). Then, edges
with a negative association,PMI(vi, vj) ≤ 0, are
pruned inedge pruning.

3.1.2 Similarity Graph

Co-occurrence graphs are very sensitive to ac-
cidental relation caused by lower frequent co-
occurrence. Thus, we propose a similarity graph
where context similarities are employed as weights
of edges instead of simple co-occurrence-based cor-
relations. Since the context similarities are com-
puted by the global correlation among words which
co-occur, a similarity graph is less subject to acci-
dental co-occurrence. The use of a similarity graph
is inspired by assumption (III): a word and its trans-
lation tend to have similar context similarities with
all bilingual seeds across languages5.

In edge weight calculation, we first construct a
correlation vector representing co-occurrence rela-
tions for each word. The correlation vectors are con-
structed in the same way as the context vectors used
in context-similarity-based methods (see Section 2),
where context words are words in a predefined win-
dow (window size is 4 in our experiment), the as-
sociation measure is PMI, and context words are
treated separately for each position. A correlation
vector for each position is computed separately, then
concatenated into a single vector within the window.
Secondly, we calculate similarities between correla-
tion vectors. There are various similarity measures
that can be used, and cosine similarity is used in this

5This assumption is justified because context similarities are
based on co-occurrence relations that are preserved across dif-
ferent languages.

paper:

wij = Cos(f⃗i, f⃗j) =
f⃗i · f⃗j

∥f⃗i∥∥f⃗j∥
,

where f⃗i (or f⃗j) is the correlation vector ofvi (or
vj). Then, inedge pruning, we preserve the edges
with top 100 weight for each vertex.

3.2 Seed Propagation

LP is a graph-based technique which transfers the
labels from labeled data to unlabeled data in or-
der to infer labels for unlabeled data. This is pri-
marily used when there is scarce labeled data but
abundant unlabeled data. LP has been success-
fully applied in common natural language process-
ing tasks such as word sense disambiguation (Niu
et al., 2005; Alexandrescu and Kirchhoff, 2007),
multi-class lexicon acquisition (Alexandrescu and
Kirchhoff, 2007), and part-of-speech tagging (Das
and Petrov, 2011). LP iteratively propagates la-
bel information from any vertex to nearby vertices
through weighted edges, and then a label distribu-
tion for each vertex is generated where the weights
of all labels add up to 1.

We adopt LP to obtain relations with all bilingual
seeds including indirect relations by treating each
seed as a label. First, each translated seed is assigned
to a label, and then the labels are propagated in the
graph described in Section 3.1.

The seed distribution for each word is initialized
as follows:

q0
i (z) =


1 if vi ∈ Vs and z = vi

0 if vi ∈ Vs and z ̸= vi

u(z) otherwise
,

where Vs is the set of vertices corresponding to
translated seeds,u is a uniform distribution,qk

i (i =
1 · · · |V |) is the seed distribution forvi afterk prop-
agation, andqk

i (z) is the weight of a label (i.e., a
translated seed)z in qk

i .
After initialization, we iteratively propagate the

seeds through weighted edges. In each propagation,
seeds are probabilistically propagated from linked
vertices under the condition that larger edge weights
allow seeds to travel through easier. Thus, the closer
vertices are, the more likely they have similar seed
distributions. In Figure 1, the balloons attached to

28



vertices in the graphs show examples of the seed dis-
tributions generated by propagations. For example,
the English word “piranha” has the seed distribution
where the weights of the seeds “Amazon”, “jungle”,
and “fish” are 0.5, 0.3, and 0.2, respectively. Specif-
ically, each of seed distributions is updated as fol-
lows:

qm
i (z) =


q0
i (z) if vi ∈ Vs∑

vj∈N(vi)
wij · qm−1

j (z)∑
vj∈N(vi)

wij
otherwise

,

whereN(vi) is the set of vertices linking tovi. We
ran this procedure for 10 iterations in our experi-
ments.

3.3 Translation Pair Extraction

After label propagations, we treat a pair of words in
different languages with similar seed distributions as
a translation pair. Seed distribution can be regarded
as a vector where each dimension corresponds to
each translated seed and each dimension has up-
dated weight through label propagations. A sim-
ilarity between seed distributions can therefore be
calculated in the same way as a context-similarity-
based method. In this paper, we use the cosine sim-
ilarity defined by the following:

Cos(qf
x , qe

y) =

∑
si∈S qf

x(vf
i ) · qe

y(ve
i )√∑

si∈S(qf
x(vf

i ))2
√∑

si∈S(qe
y(ve

i ))
2
,

whereqf
x (or qe

y) is the seed distribution for a wordx
(or y) in the source language (or target language),S
is the seed lexicon whosei-th entrysi is a pairing of
a translated seed in the source languagevf

i and one
in the target languageve

i .

4 Experiment

4.1 Experiment Data

We used English and Japanese patent documents
published between 1993 and 2005 by the US Patent
& Trademark Office and the Japanese Patent Of-
fice respectively, which were a part of the data used
in the NTCIR-8 patent translation task (Fujii et al.,
2010). Note that these documents are not aligned.

There are over three million English-Japanese
parallel sentences (e.g. training data, test data, and

Pair Japanese Word English Word
LexS 2,742 2,566 2,326
LexL 28,053 18,587 12,893

Table 1: Size of Seed Lexicons

development data used in the NTCIR-8 patent trans-
lation task, which is calledNTCIR parallel data
hereafter) in the patent data. However, a preliminary
examination showed that the NTCIR parallel data
covers less than 3% of all words because there are
a number of technical terms and neologisms. There-
fore, the patent translation task is a task that requires
bilingual lexicon extraction from non-parallel data.

We selected documents belonging to thephysics
domain from each monolingual corpus based on In-
ternational Patent Classification (IPC) code6, and
then used them as a comparable corpus in our ex-
periments. As a result, we used 1,479,831 Japanese
documents and 438,227 English documents. The
reason for selecting thephysicsdomain is that this
domain contains the most documents of all the do-
mains.

The Japanese texts were segmented and part-of-
speech tagged by ChaSen7, and the English texts
were tokenized and part-of-speech tagged by Tree-
Tagger (Schmid, 1994). Next, function words were
removed since function words with little seman-
tic information spuriously co-occurred with many
words. As a result, the number of distinct words
in Japanese corpus and English corpus amounted to
1,111,302 and 4,099,8258, respectively.

We employed seed lexicons from two sources:
(1) EDR bilingual dictionary (EDR, 1990), (2)
automatic word alignments generated by running
GIZA++ (Och and Ney, 2003) with the NTCIR par-
allel data consisting of 3,190,654 parallel sentences.
From each source, we extracted pairs of nouns ap-
pearing in our corpus. From (2), we excluded word
pairs where the average of 2-way translation proba-

6SECTION Gof IPC code indicates thephysicsdomain.
7http://chasen-legacy.sourceforge.jp/
8The English words contain words in tables or mathematical

formula but the Japanese words do not because the data format
differs between English and Japanese. This is why the number
of English words is larger than that of Japanese words, even
though the number of English documents is smaller than that of
Japanese documents.
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bilities was lower than 0.5. The pairs from (1) and
(2) amounted to 27,353 and 2,853 respectively, and
the two sets were not exclusive. In order to mea-
sure the impact of seed lexicon size, we prepared
two seed lexicons:LexL, a large seed lexicon that is
a union of all the extracted word pairs, andLexS , a
small seed lexicon that is a union of a random sam-
pling one-tenth of the pairs from (1) and one-tenth
of the pairs from (2). Table 1 shows the size of each
seed lexicon. Note that our seed lexicons include
one-to-many or many-to-one translation pairs.

We randomly selected 1,000 Japanese words as
our test data which were identified as either a noun
or an unknown by ChaSen and were not covered ei-
ther by the EDR bilingual dictionary or by the NT-
CIR parallel data. This is because the purpose of our
method is to complement existing bilingual dictio-
naries or parallel data. Note that the Japanese words
in our test data may not have translation equivalents
in the English side.

4.2 Competing Methods

We evaluated two types of our label propagation
based methods against two baselines.Cooc em-
ploys co-occurrence graphs andSim uses similarity
graphs when constructing graphs for label propaga-
tion as described in Section 3.

Rapp is a typical context-similarity-based
method described in Section 2 (Rapp, 1999).
Context words are words in a window (window size
is 10) and are treated separately for each position.
Associations with context words are computed
using the log-likelihood ratio (Dunning, 1993). The
similarity measure between context vectors is the
city-block metric.

Andrade is a sophisticated method in context-
similarity-based methods (Andrade et al., 2010).
Context is a set of words with a positive association
in a window (window size is 10). The association
is calculated using the PMI estimated by a Bayesian
method, and a similarity between contexts is esti-
mated based on the number of overlapping words
(see the original paper for details).

4.3 Experiment Results

Table 2 shows the performance of each method us-
ing LexS or LexL. Hereafter,Method(L) (or
Method(S)) denotes theMethod usingLexL (or

LexS LexL

Acc1 Acc20 Acc1 Acc20

Rapp 1.5% 3.8% 4.8% 17.6%
Andrade 1.9% 4.2% 5.6% 17.6%
Cooc 3.2% 8.6% 9.2% 28.3%
Sim 4.1% 11.5% 10.8% 30.6%

Table 2: Performance on Bilingual Lexicon Extraction

LexS). We measure the performance on bilingual
lexicon extraction as Top N accuracy (AccN ), which
is the number of test words whose top N translation
candidates contain a correct translation equivalent
over the total number of test words (=1,000). Table
2 shows Top 1 and Top 20 accuracy. We manually9

evaluated whether translation candidates contained a
correct translation equivalent. We did not use recall
because we do not know if the translation equiva-
lents of a test word appear in the corpus.

Table 2 shows that the proposed methods outper-
form the baselines both when usingLexS and using
LexL. The improvements are statistically significant
in the sign-test with 1% significance-level. The re-
sults show that capturing the relations with all the
seeds including indirect relations is effective.

The accuracies of the baselines in Table 2 are
worse than the previous reports: 14%Acc1 and 46%
Acc10 (Andrade et al., 2010), and 72%Acc1 (Rapp,
1999). This is because previous works evalu-
ated only the queries whose translation equivalents
existed in the experiment data, which is not al-
ways true in our experiments. Moreover, previous
works evaluated only high-frequency words: com-
mon nouns (Rapp, 1999) and words with a docu-
ment frequency of at least 50 (Andrade et al., 2010).
Our test data, on the other hand, includes many low-
frequency words. It is generally true that translation
of high-frequency words is much easier than that of
low frequency words. We discuss the impact of test
word frequencies in detail in Section 5.3.

Table 2 also shows thatSim outperformsCooc
both when usingLexS and usingLexL. The im-
provements ofAcc20 are statistically significant in
the sign-test with 5% significance-level.

9We could not evaluate using existing dictionaries because
most of the test data are technical terms and neologisms not
included in the dictionaries.
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Sim(L) (2) Cooc(L) (5) Andrade(L) (181)
1 psychosis polynephropathy disease
2 manic-depression neuroleptic bowel
3 epilepsy iridocyclitis disorder
4 insomnia Tic symptom
5 dementia manic-depression sclerosis

Sim(S) (974) Cooc(S) (1652) Andrade(S) (1747)
1 ulceration dyslinesia bulimia
2 ulcer encephalomyelopathy spasticity
3 naphthol ganglionic Parkinson
4 dementia corticobasal Asymmetric
5 gastritis praecox anorexia

Table 3: Translation Candidates for躁鬱病 (manic-
depression)

躁鬱病
Cooc(L) Andrade(L) Cooc(S) Andrade(S)

1 睡眠薬 (0.12) 睡眠薬 (7.6) 痴呆 (0.016) 後天 (5.0)
narcotic narcotic dementia posteriori

2 精神病 (0.11) 老年 (6.3) 継子 (0.014) 痴呆 (3.7)
psychosis old alien,stepchild dementia

3 神経症 (0.08) 精神病 (6.3) 後天 (0.012) 潰瘍 (3.2)
neurosis psychosis posteriori ulcer

4 ホルモン (0.05) 気管支炎 (5.6) 陽性 (0.012) ピリオド (2.9)
hormone bronchitis electropositivity period

5 不眠症 (0.04) 後天 (5.0) 潰瘍 (0.011) 重度 (2.5)
insomnia posteriori ulcer seriousness

manic-depression
Cooc(L) Andrade(L) Cooc(S) Andrade(S)

1 illness illness ganja galop
(0.15) (8.6) (0.012) (7.0)

2 neurosis psychotherapeutics carbanilide madness
(0.11) (7.0) (0.011) (5.4)

3 seizure galop paludism libido
(0.07) (7.0) (0.011) (5.2)

4 psychosis psychosis resignation vitiligo
(0.06) (6.8) (0.010) (4.6)

5 insomnia somnambulism galop dementia
(0.04) (6.7) (0.009) (4.3)

Table 4: Seeds with the Highest Weight

5 Discussion

5.1 Effect of Indirect Relations with Seeds

Table 3 shows a list of the top 5 translation can-
didates for the Japanese word “躁鬱病 (manic-
depression)” for each method, where the ranks of the
correct translations are shown in parentheses next to
method names. Table 4 shows the top 5 translated
seeds which characterize the query, where the val-
ues in parentheses indicate weight. Table 3 shows
thatCooc(L) can find the correct translation equiv-
alent butAndrade(L) cannot. Table 4 shows that
Cooc(L) can utilize more seeds closely tied to the
query (e.g. “神経症 (neurosis)”, “不眠症 (insom-
nia)”), which did not occur in the context of the
query in the experiment data. The result shows that

indirectly-related seeds are also important clues, and
our proposed method can utilize these.

5.2 Impact of Seed Lexicon Size

Table 2 shows that a reduction of seed lexicon size
degrades performance. This is natural for the base-
line methods becauseLexS cannot translate most of
context words, which are necessary for word charac-
terization. ConsiderAndrade(L) andAndrade(S)
in the example in Section 5.1. Table 4 shows that
Andrade(S) uses less relevant seeds with the query,
and has to express the query by seeds with less as-
sociation. For example, “精神病 (psychosis)” can-
not be used inAndrade(S) becauseLexS does not
have the seed. Therefore, it is more difficult for
Andrade(S) to find correct translation pairs.

The proposed methods also share the same ten-
dency, although each word is expressed by all the
seeds in the seed lexicon. ConsiderCooc(L) and
Cooc(S) in the above example. Table 4 shows that
Cooc(S) expresses the query by a smooth seed dis-
tribution, which is difficult to discriminate from oth-
ers. This is becauseLexS does not have relevant
seeds for the query. This is whyCooc(S) cannot
find the correct translation equivalent. On the other
hand,Cooc(L) characterizes “躁鬱病” and “manic-
depression” by strongly relevant seeds (e.g. “精神
病 (psychosis)”,“神経症 (neurosis)”), and then finds
the correct translation equivalent.

To examine the robustness-to-seed lexicon size,
we calculated the reduction rate ofAcc20 with the
following expression: (Acc20 with LexL − Acc20

with LexS) / Acc20 with LexL. The reduction rates
of Rapp, Andrade, Cooc, and Sim are 78.4%,
76.1%, 69.6%, and 62.4% respectively. Moreover,
the difference between degradation inCooc and that
in Andrade is statistically significant in the sign-test
with 1% significance-level. These results indicate
that the proposed methods are more robust to seed
lexicon size than the baselines. This is because the
proposed methods can utilize seeds with indirect re-
lations while the baselines utilize only seeds in the
context.

To verify our claim, we examined the number
of test words which occurred with no seeds in the
context. There were 570 such words inRapp(S),
387 in Rapp(L), 572 in Andrade(S), and 388 in
Andrade(L). The baselines cannot find their trans-
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Low Freq. High Freq.
Acc1 Acc20 Acc1 Acc20

Rapp(L) 0.5% 2.4% 7.2% 25.6%
Andrade(L) 0.3% 1.8% 8.6% 26.3%
Cooc(L) 0.8% 4.3% 13.9% 40.7%
Sim(L) 2.2% 6.7% 15.0% 42.0%

Table 5: Comparison between Performance for High and
Low Frequency Words

lation equivalents. Words such as this occur even if
usingLexL, and that number increases whenLexS

is used. On the other hand, the proposed methods
are able to utilize all the seeds in order to find equiv-
alents for words such as these. Therefore, the pro-
posed methods work well even if the coverage of a
seed lexicon is low.

5.3 Impact of Word Frequencies

Our test data includes many low-frequency words
which are not covered by the EDR bilingual dic-
tionary or the NTCIR parallel data. 624 words ap-
pear in the corpus less than 50 times. Table 5 shows
AccN usingLexL for 624 low-frequency words and
376 high-frequency words. Table 5 shows that per-
formance for low-frequency words is much worse
than that for high-frequency words. This is because
translation of high-frequency words utilizes abun-
dant and reliable context information, while the con-
text information for low-frequency words is statis-
tically unreliable. In the proposed methods, edges
linking rare words are sometimes generated based
on accidental co-occurrences, and then unrelated
seed information is transferred through the edges.
Therefore, even our label propagation based meth-
ods, especially forCooc, could not identify the cor-
rect translation equivalents for rare words.Sim al-
leviated the problem by using a similarity graph in
which edges are generated based on global correla-
tion among words, as indicated by Table 5. Table
5 also suggests that top 20 translation candidates for
high-frequency words have potential to contribute to
bilingual tasks such as MT and CLIR although the
overall performance is still low.

5.4 Effect of Similarity Graphs

We examinedAccN for synonyms of translated
seeds in Japanese. TheAcc1 andAcc20 of Sim(L)
are 15.6% and 56.3%, respectively, and those of
Cooc(L) are 9.4% and 37.5%, respectively. The
results show that similarity graphs are effective for
clustering synonyms into the same translation equiv-
alents. For example,Sim(L) extracted the correct
translation pair of the English word “iodine” and
the Japanese word “イオディン”, a synonym of the
translated seed “ヨウ素 (iodine)” in Japanese. This
is because synonyms tend to be linked in the similar-
ity graph and have similar seed distributions. On the
other hand, in the co-occurrence graph, synonyms
tend to be indirectly linked through mutual context
words, so the seed distributions of the two could be
far away from each other.

There are in particular many loanwords in patent
documents, which are spelled in different ways from
person to person. For example, the loan word for the
English word “user” is often written as “ユーザ”,
but it is sometimes written as “ユーザー”, with an
additional prolonged sound mark. Therefore,Sim
is particularly effective for the experiment data.

5.5 Error Analysis

We discuss errors of the proposed methods except
the errors for low-frequency words (see Section
5.3). Our test data includes words whose transla-
tion equivalents inherently cannot be found. The
first of these types are words whose equivalent does
not exist in the English corpus. This is an unavoid-
able problem for methods based on comparable cor-
pora. The second one are words whose English
equivalents are compound words. The Japanese
morphological analyzer tends to group a compound
word into a single word, while the English text an-
alyzer does not perform a collocation of words di-
vided by the delimiterspace. For example, the sin-
gle Japanese word “掌紋” is equivalent to “palm
pattern” or “palm print”, which is composed of
two words. This case was counted as an error
even though the proposed methods found the word
“palm” as a equivalent of “掌紋”.

A main reason of errors other than those above
is word sense ambiguity, which is different in ev-
ery language. For example, the Japanese word “右”
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means “right” and “conservatism” in English. The
proposed methods merge different senses by prop-
agating seeds through these polysemous words in
only one language side. This is why translation pairs
could have wrong seed distributions and then the
proposed methods could not identify correct trans-
lation pairs. We will leave this word sense disam-
biguation problem for future work.

6 Related Work

Besides the comparable corpora approach discussed
in Section 2, many alternatives have been proposed
for bilingual lexicon extraction. The first is a method
that finds translation pairs in parallel corpora (Wu
and Xia, 1994; Fung and Church, 1994; Och and
Ney, 2003). However, large parallel corpora are only
available for a few language pairs and for limited
domains. Moreover, even the large parallel corpora
are relatively smaller than comparable corpora.

The second is a method that exploits the Web. Lu
et al. (2004) extracted translation pairs by mining
web anchor texts and link structures. As an alter-
native, mixed-language web pages are exploited by
first retrieving texts including both source and tar-
get languages from the web by using a search en-
gine or simple rules, and then extracting transla-
tion pairs from the mixed-language texts utilizing
various clues: Zhang and Vines (2004) used co-
occurrence statistics, Cheng et al. (2004) used co-
occurrences and context similarity information, and
Huang et al. (2005) used phonetic, semantic and
frequency-distance features. Lin et al. (2008) pro-
posed a method for extracting parenthetically trans-
lated terms, where a word alignment algorithm is
used for establishing the correspondences between
in-parenthesis and pre-parenthesis words. However,
those methods cannot find translation pairs when
they are not connected with each other through link
structures, or when they do not co-occur in the same
text.

Transliteration is a completely different way for
bilingual lexicon acquisition, in which a word in
one language is converted into another language us-
ing phonetic equivalence (Knight and Graehl, 1998;
Karimi et al., 2011). Although machine transliter-
ation works particularly well for proper names and
loan words, it cannot be employed for phonetically

dissimilar translations.
All the methods mentioned above may poten-

tially extract translation pairs more precisely than
our comparable corpora approach when their under-
lying assumptions are satisfied. We might improve
the performance of our method by augmenting a
seed lexicon with translation pairs extracted using
the above methods, as experimented with in Section
4, in which additional lexical entries are included
from parallel data.

7 Conclusion

We proposed a novel bilingual lexicon extraction
method using label propagation for alleviating the
limited seed lexicon size problem. The proposed
method captures relations with all the seeds in-
cluding indirect relations by propagating seed in-
formation. Moreover, we proposed using similar-
ity graphs in propagation process in addition to co-
occurrence graphs. Our experiments showed that the
proposed method outperforms conventional context-
similarity-based methods (Rapp, 1999; Andrade et
al., 2010), and the similarity graphs improve the
performance by clustering synonyms into the same
translation.

We are planning to investigate the following open
problems in future work: word sense disambigua-
tion and translation of compound words as described
in (Daille and Morin, 2005; Morin et al., 2007).
In addition, indirect relations have also been used
in other tasks, such as paraphrase acquisition from
bilingual parallel corpora (Kok and Brockett, 2010).
We will utilize their random walk approach or other
graph-based techniques such as modified adsorp-
tion (Talukdar and Crammer, 2009) for generating
seed distributions. We are also planning an end-to-
end evaluation, for instance, by employing the ex-
tracted bilingual lexicon into an MT system.
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Abstract

We present a system for automatic
identification of schizophrenic patients
and healthy controls based on narratives
the subjects recounted about emotional
experiences in their own life. The focus of the
study is to identify the lexical features that
distinguish the two populations. We report the
results of feature selection experiments that
demonstrate that the classifier can achieve
accuracy on patient level prediction as high as
76.9% with only a small set of features. We
provide an in-depth discussion of the lexical
features that distinguish the two groups and
the unexpected relationship between emotion
types of the narratives and the accuracy of
patient status prediction.

1 Introduction

Recent studies have shown that automatic language
analysis can be successfully applied to detect
cognitive impairment and language disorders. Our
work further extends this line of investigation with
analysis of the lexical differences between patients
suffering from schizophrenia and healthy controls.

Prior work has reported on characteristic
language peculiarities exhibited by schizophrenia
patients. There are more repetitions in speech
of patients compared to controls (Manschreck et
al., 1985). Patients also tend to repeatedly refer
back to themselves (Andreasen., 1986). Deviations
from normal language use in patients on different
levels, including phonetics and syntax, have been
documented (Covington et al., 2005), however

lexical differences have not been investigated in
detail.

In this paper we introduce a dataset of
autobiographical narratives told by schizophrenic
patients and by healthy controls. The narratives
are related to emotional personal experiences of the
subjects for five basic emotions: ANGER, SAD,
HAPPY, DISGUST, FEAR. We train an SVM
classifier to predict subject status. Our good results
on the relatively small dataset indicate the potential
of the approach. An automatic system for predicting
patient status from autobiographical narratives can
aid psychiatrists in tracking patients over time and
can serve as an easy way to administer large
scale screening. The detailed feature analysis we
performed also pinpoints key differences between
the two populations.

We study a range of lexical features including
individual words, repetitions as well as classes
of words defined in specialized dictionaries
compiled by psychologists (Section 4). We use
several approaches for feature analysis to identify
statistically significant differences in the two
populations. There are 169 significant features
among all of the 6057 features we examined.
Through feature selection we are able to obtain a
small set of 25 highly predictive features which
lead to status classification accuracy significantly
better than chance (Section 6.3). We also show
that differences between patients and controls are
revealed best in stories related to SAD and ANGRY

narratives, they are decent in HAPPY stories, and
that distinctions are poor for DISGUST and FEAR

(Section 6.5).
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2 Related Work

Research in psychometrics has studied patterns
of lexical usage in a large variety of scenarios.
A popular tool used for psychometric analysis
is Linguistic Inquiry and Word Count (LIWC)
(Pennebaker et al., 2007). One of the most
interesting discoveries in that line of research is that
people with physical or emotional pain are likely to
use first-person singular pronouns more often than
the general population (Rude et al., 2004). In the
view of therapy, Pennebaker discovered that writing
emotional experiences can be helpful in therapeutic
process (Pennebaker, 1997). It has also been shown
that the usage of pronouns and function words can
be indicators of writing styles, physical health and
other distinctions (Tausczik and Pennebaker, 2010).

The combination of natural language processing
(NLP) and machine learning (ML) has been
explored in many psychology related projects,
and is gaining popularity. It has been shown
that features from language models (LMs) can
be used to detect impairment in monolingual
and bilingual children (Gabani et al., 2009).
Even better results are achieved when features
derived from LMs are combined with other surface
features to predict language impairment. Similarly,
studies on child language development and autism
have shown that n-gram cross-entropy from LMs
representative of healthy and impaired subjects is
a highly significant feature predictive of language
impairment (Prud’hommeaux et al., 2011). The
feasibility of making use of lexical features
to analyze language dominance among bilingual
children has also been confirmed (Solorio et al.,
2011).

In non-medically related research, LIWC and
lexical features have been used to recognize
different personalities such as introvert vs extrovert,
openness vs experience, conscientiousness vs
unconscientiousness, etc. (Mairesse et al., 2007).
Similar features have been applied to differentiate
author personality of e-mails (Gill et al., 2006),
blogs (Gill et al., 2009) and other documents.

Speech-related features and interactional aspects
of dialog behavior such as pauses, fillers, etc,
have also been found helpful in identifying autistic
patients (Heeman et al., 2010).

Variables Schizophrenia Control
(# Subjects) (n=23) (n=16)
Mean age (SD) 33.81 (9.65) 32.29 (6.59)
Mean number of
words per story (SD)

192.22 (122.4) 180.79 (95.87)

Table 1: Basic demographic information

Syntax features have been used in approaches
of automatic detection of neurological problems.
Parsing texts produced by subjects and using
bag of rules as features have been applied in
analyzing language dominance (Solorio et al.,
2011). Methods that quantify syntactic complexity
like Yngve score and Fraizer score have been used
to analyze autism (Prud’hommeaux et al., 2011).
Moreover, there has been research on detecting mild
cognitive impairment, which could be an earlier
state of Alzheimer’s disease: five different ways
of evaluating syntactic complexity measures were
introduced in their paper (Roark et al., 2011).

In our own work, we focus our analysis
exclusively on lexical features. Similarly to prior
work, we present the most significant features
related to differences between schizophrenic
patients and healthy controls. Unlike prior work,
instead of doing class ablation studies we perform
feature selection from the full set of available
features and identify a small set of highly predictive
features which are sufficient to achieve the top
performance we report. Such targeted analysis
is more helpful for medical professionals as they
search to develop new therapies and ways to track
patient status between visits.

3 Data

For our experiments we collected autobiographical
narratives from 39 speakers. The speakers are
asked to tell their experience involving the following
emotions: HAPPY, ANGER, SAD, FEAR and
DISGUST, which comprise the set of the five basic
emotions (Cowie, 2000). Most subjects told a single
story for each of the emotions, some told two. The
total number of stories in the dataset is 201.

The stories were narrated in the doctor’s office.
The recordings of the narratives were manually
transcribed in plain text format. We show age and
length in words of the told stories for the two groups
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in Table 1. There are 23 patients with schizophrenia
and 16 healthy controls, telling 120 and 81 stories
respectively.

4 Features

Here we introduce the large set of lexical features
that we group in three classes: a large class of
features computed for individual lexical items, basic
features, features derived on the basis of pre-existing
dictionaries and language model features. We also
detail the way we performed feature normalization
and feature selection.

4.1 Surface Features
4.1.1 Basic Features

Basic features include token to type ratio to
capture vocabulary diversity, letters per word, words
per sentence, sentences per document and words
per document. These features describe the general
properties of the language used by the subject,
without focus on specific words.

Repetitions, revisions, large amount of fillers
or disfluencies can be indicators for language
impairment. In our basic features we detect the
number of repetitions in words, punctuations and
sentences for each transcript. Then these three
measures are normalized by total number of words
or sentences.

We define repetitions as the occurrence of the
same token in a sliding window of five items
within the same sentence. We count repetitions of
words and punctuation separately. The repetition
of punctuation, mostly commas and full-stops, are
indicative of phrasing in speech which has been
indirectly captured in the transcript. Repetition of
any word is counted, regardless of which specific
word was repeated. For example, for the sentence I
am, am, afraid, that something bad would happen.
am is counted as repeated once, and comma is
counted as repeated twice. Finally, sentence
repetition captures the amount of overlapping at the
beginning of two adjacent sentences, defined as the
number of tokens from the beginning of the sentence
until the first token where the two sentences differ.

4.1.2 Lexical Features
For words in the vocabulary: we use a real

value feature equal to the word frequency for each

document. Of particular interest we track the use
of pronouns because early research has reported that
people with cognitive impairment have a tendency
to use subjective words or referring to themselves
(Rude et al., 2004).

In addition, for each word in the vocabulary,
we apply the presence of the repetition about one
particular word.

4.1.3 Perplexity from Language Models
Inspired by the predictive power of language

model reported in prior work, we also include
several language model features. We build language
models on words as well as part-of-speech (POS)
tags from Stanford POS-tagger (Toutanova et al.,
2003). We tried unigram, bigram and trigram
language models by word and POS tag. Experiments
showed that bigram performed better than random,
and the other two performed below random. Thus
in the experiments we report later we train one
model for patients and one for controls and use the
perplexity of a given text according to the bigram
language models on word and POS as features in
prediction.

4.2 Dictionaries: LIWC and Diction

Text analysis packages have been widely used in
research related to personality analysis, sentimental
analysis and psychometric studies. We use two
dictionary-based systems, LIWC (Pennebaker et al.,
2007)1 and Diction2, which both give scores to
transcripts based on broad categories.

4.2.1 Linguistic Inquiry&Word Count(LIWC)
LIWC calculates the degree to which people use

different categories of words. Several manually
compiled dictionaries are at the heart of the
application. Each word or word stem could be in
one or more word categories or sub-dictionaries.
For instance, the word “cried” is part of the
following categories: sadness, negative emotion,
overall affect, verb, and past tense verb. When
a narrative contains the word “cried”, the scale
scores corresponding to these five subcategories are
incremented. The final output for each narrative is a
real value score for each of the 69 categories.

1See http://www.liwc.net
2See http://www.dictionsoftware.com
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Because of the elaborate development of
dictionaries and categories, LIWC has been used
for predicting emotional and cognitive problems
from subject’s spoken and written samples.
Representative applications include studying
attention focus through personal pronouns, studying
honesty and deception by emotion words and
exclusive words and identifying thinking styles
(Tausczik and Pennebaker, 2010). Thus it is
reasonable to expect that LIWC derived features
would be helpful in identifying schizophrenia
patients. In Section 6.4 we discuss in more detail
the features which turned out to be significantly
different between patients and controls within
LIWC.

4.2.2 Diction
We also use Diction to analyze the lexical

characteristics of the transcripts. Similar to
LIWC, Diction scores are computed with reference
to manually compiled dictionaries. The master
variable scores in Diction include activity, certainty,
commonality, optimism and realism. These five
main scores are computed with 33 dictionaries that
define pertinent subcategories. The master variable
scores are constructed as follows: Sm =

∑n
i=1 ai −∑m

j=1 sj , where ai are additive traits, sj are
subtractive traits (giving positive/negative evidence
for the presence of the feature, respectively).
For example, Certainty and Realism scores are
calculated as follows:
Realism = [Familiarity + Spatial Awareness +
Temporal Awareness + Present Concern + Human
Interest + Concreteness] - [Past Concern +
Complexity]
Certainty = [Tenacity + Leveling + Collectives +
Insistence] - [Numerical Terms + Ambivalence +
Self Reference + Variety]

We also give definitions for some important
categories. The complete description of categories
is available in the Diction manual (Hart, 2000).
Cognition: Words referring to cerebral processes,
both functional and imaginative.
Satisfaction: Terms associated with positive
affective states.
Insistence: A measure of code-restriction and
contentedness, with the assumption that the
repetition of key terms indicates a preference for a

limited, ordered world.
Diversity: Words describing individuals or groups
of individuals differing from the norm.
Familiarity: Consisted of the most common words
in English.
Certainty: Language indicating resoluteness,
inflexibility, and completeness and a tendency to
speak ex cathedra.
Realism: Language describing tangible, immediate,
recognizable matters that affect people’s everyday
lives.

4.3 Feature normalization
We use two feature normalization approaches:
projection normalization and binary normalization.
Both of the two approaches are applied to basic
features, dictionary features and word features. As
for repetition, we don’t use normalization, because
it is in itself binary. For transcript i, we denote
the value of the jth feature as vij . We denote
minj , maxj , averagej as the minimum, maximum
and average value for each feature in the training
corpus, respectively. Thus for each feature j,
we have: averagej = 1

n

∑n
i=1 vij minj =

mini{vij},maxj = maxi{vij}.

4.3.1 Projection Normalization
Here we simply normalize all feature values to a

range of [0, 1], where 0 corresponds to the smallest
observed value and 1 to the largest observed value
across all transcripts. Then we could have pij =

vij−minj

maxj−minj
, where pij is the feature value after

normalization.

4.3.2 Binary normalization
Here all features are converted to binary values,

reflecting whether the value falls below or above the
average value for that feature observed in training.
The value pij of j-th feature for the i-th instance is
as below:

pij =

{
0 vij < 1

n

∑n
i=1 vij

1 otherwise

4.3.3 Prediction on the Test Set
All of the previous values, averagej , maxj and

minj are derived from the training set. While
doing classification, for a new testing instance, we
denote the feature vector as f = (f1, f2, . . . fn).
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fj is then compared with averagej to do binary
normalization. We also use pj =

fj−minj

maxj−minj
to do

projection normalization. If pj < 0, we change pj

into 0; if pj > 1, we change pj into 1. For the
words or features that are not seen in training, we
just ignore this dimension.

4.4 Feature selection

All lexically based analysis is plagued by data
sparsity problems. In the medical domain this
problem is even more acute because collecting
patient data is difficult. The number of features
we defined outnumbers our samples by orders
of magnitude. Therefore, in our classification
procedure, we perform feature selection by doing
two-sided T-test to compare the values of features
in the patient and control groups. The features with
p-value ≤ 0.05 are considered as indicative and are
selected for later machine learning experiments, in
which 169 out of 6057 features have been selected.
We discuss the significant features in the full set in
Section 6.4 .

Note however that we don’t use the features
selected on the full dataset for machine learning
experiments because when T-tests are applied
on the full dataset feature selection decisions
would include information about the test set as
well. Therefore, we adopt a leave-one-subject-out
(LOSO) evaluation approach instead. In each
iteration, we set aside one subject as test set. The
data from the remaining subjects form the training
set. Feature selection is done on the training set only
and a model is trained. The predictions are tested on
the held out subject. The procedure is repeated for
every subject as test set.

The choice of p-value cut-off allows us to relax
and tighten the requirement on significance of the
features and thus the size of the feature set. We
report results with different p-values in Table 3.
We also explore alternative feature ranking and
feature selection procedures in Section 6.3. In
each fold different features may be selected. For
ease of discussing feature differences we present
a discussion of the 169 significant features on the
entire dataset.

5 Our approach

The goal of our system is to classify the person who
told a story in one of two categories: Schizophrenia
group (SC) and Control group (CO). In order to
do this, we give labels to the stories told by each
subject. Therefore we could use our model to
identify the status of the person who told each
individual story, the task is to answer the question
“Was the subject who told this story a patient or
control?”. Then we combine the predictions for
stories to predict status of each subject, and the
task becomes answering the question “Is this subject
a patient or control given that they told these five
stories?”. Thus in story level prediction we use no
information about the fact that subjects told more
than one story, while in subject-level prediction we
do use this information.

First we present an experiment that relies only
on language models for the prediction. Then we
present the complete learning-based system that
uses the full set of features. Finally, we describe
the decision making approach to combine the story
level predictions to derive a subject-level prediction.

5.1 Language Model
Language models have been used previously for
language impairment on children (Gabani et al.,
2009) and language dominance prediction (Solorio
et al., 2011). Patients with speaking disorder
or cognitive impairment express themselves in
atypical ways. Language models (LMs) give a
straightforward way of estimating the probability
of the productions of a given subject. We expect
that the approach would be useful for the study of
schizophrenia as well and so start with a description
of the LM experiments.

We use LMs on words to recognize the difference
between patients and controls in vocabulary use.
We also trained a LM on POS tags because
it could reduce sparsity and focus more on
grammatical patterns. Two separate LMs are
trained on transcripts of schizophrenia and controls
respectively, using leave-one-subject-out protocol.

Story-level decisions are made by assigning the
class whose language model yields lower perplexity:

s(t) =

{
SC PERSC(t) ≤ PERCO(t)
CO otherwise
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by Story (%) SC-F CO-F Accuracy Macro-F
Random 54.4 44.6 50.0 49.5
Majority 74.8 0.0 59.7 37.4
2-gram 62.5 44.4 55.2 53.5

2-gram-Pos 62.2 53.3 58.2 57.8

by Subject (%) SC-F CO-F Accuracy Macro-F
Random 54.1 45.1 50.0 49.6
Majority 74.2 0.0 59.1 37.1
2-gram 65.2 50.0 58.9 57.6

2-gram-Pos 66.7 54.5 61.5 60.6

Table 2: Language model performance

Here t means a transcript from a subject, while
PERSC and PERCO are perplexities for patients
and controls, respectively. We experimented with
unigram, bigram and trigram LMs on words and
POS tags. Laplace smoothing is used when
generating word probabilities.

5.2 Classification Phase

Language models are convenient because they
summarize information from patterns in lexical and
POS use into a single number. However, most of the
successful applications of LMs require large amount
of training data while our dataset is relatively small.
Moreover, we would like to analyze more specific
differences between the patient and control group
and this would be more appropriately done using a
larger set of features.

We have described our features and feature
selection process in Section 4. We use SVM-light
(Joachims, 1999) for our machine learning
algorithm, as its effectiveness has been proved in
various learning-based clinical tasks compared to
other classifiers (Gabani et al., 2009) .

5.3 Status Decision

Story level predictions are made for each transcript
either based on LM perplexity or SVM prediction.
The most intuitive way to obtain a subject-level
prediction is by voting from story-level predictions
between the stories told by the particular subject.
The subject-level prediction is simply set to equal
the majority prediction from individual stories. On
the few occasions where there are equal votes for
schizophrenia and control, the system makes a
preference towards schizophrenia, because it is more

P-value cut-off by Story by Subject # Features
0.15 59.0 58.9 450
0.10 61.7 64.1 341
0.05 62.7 64.1 169
0.01 57.7 65.4 44
0.005 64.2 71.6 32
0.001 65.7 75.6 18

0.0005 61.7 66.7 14

Table 3: Performance by subject after T-test feature
selection in different confidence levels.

dangerous to omit a potential patient.

6 Experiments and Results

We perform our experiments on the 201 transcripts
of the 39 speakers. The two baselines we
compare with are doing random assignments and
majority class, which for our datasets correspond to
predicting all subjects into the Schizophrenia group.

We report precision, recall and F-measure for
both patient and control groups, as well as overall
accuracy and Macro-F value. We get predictions
in leave-one-subject-out fashion and compute the
results over the complete set of predictions.

6.1 Language Model Performance

Our first experiment relies only on the perplexity
from language models to make the prediction.
We use the 1,2,3-gram models on word and POS
sequences. From the result in Table 2 we can
see bigram LM performed better than random
baseline for both story and subject level prediction.
3-gram and 1-gram LM did not give a credible
performance, with results worse than that of the
baselines. Because of space constraints we do not
report the specific numbers.

6.2 Classification Result after Feature Selection

Next we evaluate the performance of classification
with different number of features from the classes
we define in Section 4. As discussed above, we
performed feature selection by choosing different
levels of significance for the p-value cut-off. Feature
selection is performed 39 times for each LOSO
training fold. On the standard cut-off p-value ≤
0.05, our system could achieve 62.7% accuracy on
story and 64.1% on patient level prediction. The best
performance is achieved when the cut-off p-value is
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Schizophrenia Control General
Measurement P (%) R (%) F (%) P (%) R (%) F (%) Accuracy (%) Macro-F (%)

Story Random 59.7 50.0 54.4 40.5 50.0 44.6 50.0 49.5
Majority 59.7 100.0 74.8 NA 0.0 0.0 (NA) 59.7 37.4

25-Features 68.7 75.0 71.7 57.1 49.4 52.9 64.7 62.3
Subject Random 59.0 50.0 54.1 41.0 50.0 45.0 50.0 49.6

Majority 59.0 100.0 74.2 NA 0.0 0.0 (NA) 59.0 37.1
25-Features 75.0 91.3 82.4 81.8 56.3 66.7 76.9 74.6

Table 4: Performance on best feature-set by feature ranking using signal to noise

stricter, 0.001, where an accuracy of 75.6% can be
reached. In this case only about 18 features are used
for the classification. Detailed results are shown in
Table 3.

6.3 Performance with Different Feature Size

Next we investigate the relationship between feature
set size and accuracy of prediction. We are
interested in identifying the smallest possible set
of features which gives performance close to the
one reported on the full set of significant features.
Narrowing the feature set as much as possible will
be most useful for clinicians as they understand
the differences between the groups and look for
indicators of the illness they need to track during
regular patient visits. Physicians and psychologists
are also interested to know the most significant
lexical differences revealed by the stories.

As an alternative to ranking features by p-value,
we use the Challenge Learning Object Package
(CLOP) 3 (Guyon et al., 2006) . It is a toolkit
with a combination of preprocessing and feature
selection. We experiment with signal-to-noise (s2n),
Gram-Schmidt orthogonalization and Recursive
Feature Elimination for finding a subset of indicative
features (Guyon and Elisseeff, 2003). The
signal-to-noise method gives better results than the
other two by at least 6% for the top performance
feature set. Thus we pick the best k features
according to the s2n result and use only those k
features for classification.

Figure 1 shows how prediction accuracy changes
with feature sets of different sizes. From the plot
we clearly see that our top performance is achieved
with 25 to 40 features, after which performance
drops. The peak performance is achieved when

3See http://clopinet.com/CLOP/

Figure 1: Story and Subject prediction accuracy

there are 25 features, where we could reach 75.0%
precision, 91.3% recall, 82.4% F-measure for
patient, and 76.9% accuracy for overall, as shown
in Table 4. Detailed information about the top
30 features can be found in Table 5. ‘+’ and ‘-’
means more prevalent for patient and control, while
‘prj’ and ‘01’ correspond to the two normalization
approaches in Section 4.3, projection and binary
respectively.

6.4 Analysis of Significant Features
In this section we discuss the specific features that
were revealed as most predictive by the feature
selection methods that we employed. We have seen
that it only requires about 25-40 features to obtain
peak performance.

First we briefly review the features that turned
out to be statistically significant (for 0.05 p-value
cut-off). Table 7 provides a list of the features
with higher values for Schizophrenia and Control
respectively. 4 We group the significant features
according to the feature classes we introduced in

4LM1 is defined as the ratio of CO perplexity and
SC perplexity from LMs, LM7 comes from projection
normalization of LM1. If LM perplexity for CO is smaller than
that of SC, then we set LM3 as 1; otherwise we set LM4 as 1.
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Rank Feature Category P-value
1 Prj-Self + Diction 5.33E-06
2 01-Self + Diction 7.34E-06
3 Prj-punctuation - Basic 1.33E-05
4 01-I + LIWC 2.73E-05
5 01-sorry - Lexical 0.007
6 01-money + Lexical 6.95E-05
7 01-punctuation - Basic 4.88E-05
8 prj-I + LIWC 5.12E-05
9 01-extremely + Lexical 5.10E-05
10 prj-mildly + Lexical 0.0006
11 prj-sorry - Lexical 0.011
12 prj-I + Lexical 0.0002
13 LM1 + LM 0.0002
14 LM7 + LM 0.0002
15 I + Repeat 0.0003

Rank Feature Category P-value
16 and + Repeat 0.0002
17 01-mildly + Lexical 0.0004
18 prj-adverb - LIWC 0.0006
19 01-relationship - Lexical 0.024
20 01-late - Lexical 0.024
21 prj-comma - Lexical 0.001
22 Repeat word - Basic 0.001
23 prj-late - Lexical 0.034
24 prj-very - Lexical 0.007
25 prj-extremely + Lexical 0.001
26 01-couldn’t + Lexical 0.001
27 prj-relationship - Lexical 0.037
28 very - Repeat 0.007
29 prj-? + Lexical 0.002
30 prj-moderately + Lexical 0.006

Table 5: Table of the top 30 features by signal-to-noise ranking

Section 4. Of the 169 significant features, 111 are
more prevalent in patients, 58 are more prevalent
among the controls. If a feature was significant with
both normalizations we use, we list it only once in
Table 7.

Among the words indicative of schizophrenia,
subjective words such as I and LIWC category
self are among the most significant. This finding
conforms with prior research that patients with
mental disorders refer to themselves more often than
regular people. Patients produce more questions (as
indicated by the significance of the question mark
as a feature). It is possible that this indicates a
disruption in their thought process and they forget
what they are talking about. Further work will be
needed to understand this difference better.

In terms of words, patients talked more about
money, trouble, and used adverbs like moderately
and basically. Repetition in language is also a
revealing characteristic of the patient narratives.
There is a substantial difference in the appearance
of repetitions between the two groups, as well as
repetition of specific words: I, and, and repetition
of filled pauses um. As patients focus more on their
own feelings, they talked a lot about their family,
using words such as son, grandfather and even dogs.

Diction features revealed some unexpected
differences. The schizophrenia group scores
higher in the Self, Cognition, Past, Insistence and
Satisfaction categories. This indicates that they are
more likely to talk about past experience, using
cognitive terms and having a repetition of key

terms. We were particularly curious to understand
why patients score higher on Satisfaction ratings.
On closer inspection we discovered that patients’
stories were rated higher in Satisfaction when
they were telling SAD stories. This finding has
important clinical implications because one of the
diagnostic elements for the disease is inappropriate
emotion expression. Our study is the first to apply
an automatic measure to detect such anomaly in
patients’ emotional narratives. Prompted by this
discovery, we take a closer look at the interaction
between the emotion expressed in a story and the
accuracy of status prediction in the next section.

The control group exhibited more word
complexity, sentence complexity and thoughtfulness
in their stories. They use more adverbs and exclusive
words (e.g. but, without, exclude) on general trend.
They use the word sorry significantly more often
than patients.

6.5 Status Prediction by Emotion

We also investigate if classification accuracy differs
depending on the type of conveyed emotion.
Accuracy per emotion with three feature selection
methods is shown in Table 6. When using
signal-to-noise, we can see that on SAD stories the
two groups can be distinguished better. Story-level
accuracies on HAPPY stories reach 72.5%, and
that the accuracy on HAPPY stories is the next
highest one. When applying the 0.05 p-value
cut-off to select significant features, ANGER stories
become the ones for which the status of a subject
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Accuracy (%) s2n (25) T-test (0.05) T-test (0.001)
Happy 66.7 59.0 71.8
Disgust 63.4 61.0 51.2
Anger 61.0 70.7 70.7
Fear 60.0 55.0 67.5
Sad 72.5 60.0 67.5

Story 64.7 62.9 65.7
Patient 76.9 64.1 74.4

Majority 59.0 59.0 59.0

Table 6: Accuracy per emotion by different feature-sets

can be predicted most accurately. Using the
threshold of 0.001 for selection gives the best overall
prediction. In that case, HAPPY and ANGER are
the emotions for which recognition is best. The
changes in the recognition accuracy depending on
feature selection suggests that in future studies it
may be more beneficial to perform feature selection
only on stories from a given type because obviously
indicative features exist at least for the SAD, ANGER

and HAPPY stories.
Regardless of the feature selection approach, it

is more difficult to tell the two groups apart when
they tell DISGUST and FEAR stories. These results
seem to indicate that when talking about certain
emotions patients and controls look much more alike
than when other emotions are concerned. Future
data acquisition efforts can focus only on collecting
autobiographical narratives relevant to the emotions
for which patients and controls differ most.

Figure 2: Number of significant features by P-value
selection on different thresholds (per emotion)

In future work we would like to use only stories
from a given emotion to classify between patients

Types Significant features more common in SCH
Basic repeat-word, sentence/document
LIWC I, insight, personal-pronoun
Diction self, cognition, past, insistence, satisfaction
Lexical ?, ain’t, alone, at, aw, become, before, behind

care, chance, confused, couldn’t, December, dog
dogs, extreme, extremely, feeling, forty, friends
god, got, grandfather, guess, guy, hand, hanging
hearing, hundred, increased, looking, loved
mental, met, mild, mildly, moderate, moderately
money, my, myself, outside, paper, passed, piece
remember, sister, son, stand, step, story, take
taken, throwing, took, trouble, use, wake
wanna, way

Repeat a, and, I, um, was
LM LM1, LM4, LM7

Types Significant features more common in CO
Basic length/word, words/sentence
LIWC ≥6-letters, adverb, exclusive words, inhibitive
Diction certainty, cooperation, diversity

familiarity, realism
Lexical ”,”, able, actually, are, basically, be, being, get’s

in, late, not, really, relationship, result, she’s
sleep, sorry, tell, their, there’s, very, weeks

Repeat very, ”,”
LM LM3

Table 7: Significant features (p-value ≤ 0.05)

and controls. Doing this with our current dataset
is not feasible because there are only about 40
transcripts per emotion. Therefore, we use our
data to identify significant features that distinguish
patients from controls only on narratives from a
particular emotion. For example, we compare the
differences of SAD stories told by patients and
controls. We count the number of significant
features between patients and controls with 11
different p-value cut-offs, and provide a plot that
visualizes the results in Figure 2. From the graph,
it is clear that there are many more differences
between the two groups in ANGER and SAD

narratives. HAPPY comes next, then DISGUST and
FEAR. However, at lower confidence levels, HAPPY

has equal number of significant features as ANGER

and SAD, which is in line with the result in Table 6.

The feature analysis performed by emotion
reveals more differences between patients and
controls, beyond common features such as self,
I, etc. For HAPPY stories, patients talk more
about their friends and relatives; they also have a
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higher tendency of being ambivalent. For DISGUST

stories, patients are more disgusted with dogs, and
they talk more about health. The control group
shows a higher communication score, referring to
a better social interaction. ANGER is one of the
emotions that best reveals the differences between
groups, and schizophrenia patients show more
aggression and cognition while talking, according
to features derived from Diction. The control
group sometimes talks more about praise. In FEAR

stories patients talk about money more often than
controls. Meanwhile, the control group uses more
inhibition words, for instance: block, constrain and
stop. An interesting phenomenon happens in SAD

narratives. When talking about sad experiences,
patients sometimes show satisfaction and insistence,
while the controls talked more about working
experiences.

7 Conclusion

In this paper, we analyzed the predictive power
of different kinds of features for distinguishing
schizophrenia patients from healthy controls. We
provided an in-depth analysis of features that
distinguish patients from controls and showed that
the type of emotion conveyed by the personal
narratives is important for the distinction and that
stories for different emotions give different sets
indicators for subject status. We report classification
results as high as 76.9% on the subject level,
with 75.0% precision and 91.3% on recall for
schizophrenia patients.

We consider the results presented here to be
a pilot study. We are currently collecting and
transcribing additional stories from the two groups
which we would like to use as a definitive test
set to verify the stability of our findings. We
plan to explore syntactic and coherence models to
analyze the stories, as well as emotion analysis of
the narratives.
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introduction to variable and feature selection. J. Mach.
Learn. Res., 3:1157–1182, March.

Isabelle Guyon, Jiwen Li, Theodor Mader, Patrick A.
Pletscher, Georg Schneider, and Markus Uhr. 2006.
Feature selection with the CLOP package. Technical
report, http://clopinet.com/isabelle/Projects/ETH/
TM-fextract-class.pdf.

Rodrick Hart. 2000. Diction 5.0, the text-analysis
program user’s manual, Scolari Software, Sage Press.
http://www.dictionsoftware.com/.

Peter A. Heeman, Rebecca Lunsford, Ethan Selfridge,
Lois M. Black, and Jan P. H. van Santen. 2010.
Autism and interactional aspects of dialogue. In
Proceedings of the SIGDIAL 2010 Conference, pages
249–252.

T. Joachims. 1999. Making large–scale SVM learning
practical. In B. Schölkopf, C. J. C. Burges, and
A. J. Smola, editors, Advances in Kernel Methods —
Support Vector Learning, pages 169–184, Cambridge,
MA. MIT Press.

F. Mairesse, M. A. Walker, M. R. Mehl, and R. K.
Moore. 2007. Using Linguistic Cues for the
Automatic Recognition of Personality in Conversation
and Text. Journal of Artificial Intelligence Research,
30:457–500.

Theo C. Manschreck, Brendan A. Maher, Toni M.
Hoover, and Donna Ames. 1985. Repetition in
schizophrenic speech. Language & Speech, 28(3):255
– 268.

J.W. Pennebaker, R.J. Booth, and Francis. 2007.
Linguistic inquiry and word count (LIWC

46



2007): A text analysis program. Austin, Texas.
http://www.liwc.net/.

James W. Pennebaker. 1997. Writing about Emotional
Experiences as a Therapeutic Process. Psychological
Science, 8(3):162–166.

Emily T. Prud’hommeaux, Brian Roark, Lois M. Black,
and Jan van Santen. 2011. Classification of atypical
language in autism. In Proceedings of the 2nd
Workshop on Cognitive Modeling and Computational
Linguistics, CMCL’11, pages 88–96.

Brian Roark, Margaret Mitchell, John-Paul Hosom,
Kristy Hollingshead, and Jeffrey Kaye. 2011.
Spoken language derived measures for detecting mild
cognitive impairment. IEEE Transactions on Audio,
Speech & Language Processing, 19(7):2081–2090.

Stephanie Rude, Eva-Maria Gortner, and James
Pennebaker. 2004. Language use of depressed and
depression-vulnerable college students. Cognition &
Emotion, 18(8):1121–1133.

Thamar Solorio, Melissa Sherman, Y. Liu, Lisa Bedore,
Elizabeth Peña, and A. Iglesias. 2011. Analyzing
language samples of spanish-english bilingual children
for the automated prediction of language dominance.
Natural Language Engineering, 17(3):367–395.

Yla R. Tausczik and James W. Pennebaker. 2010.
The Psychological Meaning of Words: LIWC and
Computerized Text Analysis Methods. Journal
of Language and Social Psychology, 29(1):24–54,
March.

Kristina Toutanova, Dan Klein, and Christopher D.
Manning. 2003. Feature-rich part-of-speech tagging
with a cyclic dependency network. In Proceedings of
HLT-NAACL 03.

47



Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 48–58, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Streaming Analysis of Discourse Participants

Benjamin Van Durme
Human Language Technology Center of Excellence

Johns Hopkins University

Abstract

Inferring attributes of discourse participants
has been treated as a batch-processing task:
data such as all tweets from a given author
are gathered in bulk, processed, analyzed for
a particular feature, then reported as a result
of academic interest. Given the sources and
scale of material used in these efforts, along
with potential use cases of such analytic tools,
discourse analysis should be reconsidered as
a streaming challenge. We show that un-
der certain common formulations, the batch-
processing analytic framework can be decom-
posed into a sequential series of updates, us-
ing as an example the task of gender classifi-
cation. Once in a streaming framework, and
motivated by large data sets generated by so-
cial media services, we present novel results in
approximate counting, showing its applicabil-
ity to space efficient streaming classification.

1 Introduction

The rapid growth in social media has led to an
equally rapid growth in the desire to mine it for use-
ful information: the content of public discussions,
such as found in tweets, or in posts to online forums,
can support a variety of data mining tasks. Infer-
ring the underlying properties of those that engage
with these platforms, the discourse participants, has
become an active topic of research: predicting indi-
vidual attributes such as age, gender, and political
preferences (Rao et al., 2010), or relationships be-
tween communicants, such as organizational domi-
nance (Diehl et al., 2007). This research can bene-
fit areas such as: (A) commercial applications, e.g.,

improved models for advertising placement, or de-
tecting fraudulent or otherwise unhelpful product re-
views (Jindal and Liu, 2008; Ott et al., 2011); and
(B) in enhanced models of civic discourse, e.g., in-
expensive, large-scale, passive polling of popular
opinion (O’Connor et al., 2010).

Classification with streaming data has usually
been taken in the computational linguistics commu-
nity to mean individual decisions made on items that
are presented over time. For example: assigning
a label to each newly posted product review as to
whether it contains positive or negative sentiment,
or whether the latest tweet signals a novel topic that
should be tagged for tracking (Petrovic et al., 2010).

Here we consider a distinct form of stream-based
classification: we wish to assign, then dynamically
update, labels on discourse participants based on
their associated streaming communications. For in-
stance, rather than classifying individual reviews as
to their sentiment polarity, we might wish to classify
the underlying author as to whether they are gen-
uine or paid-advertising, and then update that deci-
sion as they continue to post new reviews. As the
scale of social media continues to grow, we desire
that our model be aggressively space efficient, which
precludes a naive solution of storing the full commu-
nication history for all users.

In this paper we make two contributions: (1) we
make explicit that a standard bag-of-words classifi-
cation model for predicting latent author attributes
can be simply decomposed into a series of stream-
ing updates; then (2) show how the randomized al-
gorithm, Reservoir Counting (Van Durme and Lall,
2011), can be extended to maintain approximate av-
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erages, allowing for significant space savings in our
classification model. Our running example task is
gender prediction, based on spoken communication
and microblogs/Twitter feeds.

2 Model

Assume that each discourse participant (e.g.,
speaker, author) a has an associated stream of com-
munications (e.g., tweets, utterances, emails, etc.):
(ci) = C. Then let Ct = (c1, ..., ct) represent the
first t elements of C.

Assume access to a pretrained classifier Φ:1

Φ(a) =

{
1 if w · f(C) ≥ 0,
0 otherwise,

which we initially take to be linear: author labels are
determined by computing the sign of the dot product
between a weight vectorw, and feature vector f(C),
each of dimension d. Note that f(C) is a feature
vector over the entire set of communications from a
given author.

For example, Φ might be trained to classify author
gender:

Gender(a) =

{
Male if w · f(C) ≥ 0,
Female otherwise.

We now make explicit how under certain common
restrictions on the feature space, the classification
decision can be decomposed into a series of decision
updates over the elements of C.

Define f̂(ci) to be the vector containing the lo-
cal, count-based feature values of communication
cj .2 For convenience let us assume that f̂(ci) ∈ Nd.
Where |v|1 =

∑
i |vi| is the L1-norm of vector v, let

zt be the normalizing constant at t:

zt =

t∑
i=1

|f̂(ci)|1

Now define fj(C), the j-th entry of f(C), as:

fj(C) =

∑n
i=1 f̂j(ci)

zn

Thus f(C) represents the global relative fre-
quency of each local, count-based feature. This al-
lows us to rearrange terms:

1While here we assume binary decision tasks, dynamic clas-
sification in a multiclass, or regression, setting is an interesting
avenue of exploration, for which these definitions generalize.

2As seen later in Table 1, we have in mind features such as
the frequency of the n-gram my wife.

w · f(C) =
d∑

j=1

wj fj(C)

=
1

zn

d∑
j=1

wk(
n∑

i=1

f̂j(ci))

=
1

zn

n∑
i=1

(
d∑

j=1

wk f̂j(ci))

Let (st, zt) be the current state of the classifier:

(st, zt)
.
= (

t∑
i=1

d∑
k=1

wk f̂k(cj), zt)

which pairs the observed rolling sum, st with the
feature stream length zt.

The classifier decision after seeing everything up
to and including communication ct is thus a simple
average:

Φt(a) =

{
1 if st

zt
≥ 0,

0 otherwise.
Finally we reach the observation that:

st = st−1 + w · f̂(ct)

zt = zt−1 + |f̂(ct)|1

which means that from an engineering standpoint we
can process a stream of communication one element
at a time, without the need to preserve the history
explicitly. That is: for each author, for each attribute
being analyzed, an online system only need main-
tain a state pair (st, zt) by extracting and weighting
features locally for each new communication. Be-
yond the computational savings of not needing to
store communications nor explicit feature vectors in
memory, there are potential privacy benefits as well:
analytic systems need not have a lasting record of
discourse, they can instead glean whatever signal is
required locally in the stream, and then discard the
actual communications.

Log-linear Rather than a strictly linear Φ, such as
instantiated via perceptron or SVM with linear ker-
nel, many prefer log-linear models as their classifi-
cation framework:

Φ(a) =

{
1 if 1

1+exp(−w·f(C)) ≥ 0.5,

0 otherwise.
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Figure 1: A streaming analytic model should update its decision with each new communication, becoming more
stable in its prediction as evidence is acquired.

In either setting, the state of the classifier is suf-
ficiently captured by the pair (st, zt), under the re-
strictions on f .3

2.1 Validation

As an example of a model decomposed into a
stream, we revist the task of gender classifica-
tion based on speech transcripts, as explored by
Boulis and Ostendorf (2005) and later Garera and
Yarowsky (2009). In the original problem definition,
one would collect all transcribed utterances from a
given speaker in a corpus such as Fisher (Cieri et
al., 2004) or Switchboard (Godfrey et al., 1992),
known as a side of the conversation. Then by col-
lapsing these utterances into a single document, one
could classify it as to whether it was generated by a
male or female. Here we define the task as: starting
from scratch, report the classifier probability of the
speaker being male, as each utterance is presented.

Intuitively we would expect that as more utter-
ances are observed, the better our classification ac-
curacy. Researchers such as Burger et al. (2011)
have considered this point, but by comparing the
classification accuracy based on the volume of batch
data available per author (in that case, tweets): the
more prolific the author had been, the better able
they were to correctly classify their gender. We con-
firm here this can be reframed: as a speaker (author)
continues to emit a stream of communication, a dy-
namic model tends to improve its online prediction.

Our collection based on Switchboard consisted
of 520 unique speakers (240 female, 280 male),
with a total of roughly 400k utterances. Simi-
lar to Boulis and Ostendorf, we extracted unigram
and bigram counts as features, but without further

3Note that some non-linear kernels can be maintained online
in a similar fashion. For instance, a polynomial kernel of degree
p decomposes as: (f(Cn) · w)p = ( sn

zn
)p.
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Figure 2: Accuracy on Switchboard gender classifica-
tion, reported at every fifth utterance, using a dynamic
log-linear model with 10-fold cross validation.

TFIDF reweighting. Ngrams were required to oc-
cur at least 10 times in the training set, recom-
puted for each split of 10-fold cross validation.
Weights were computed under a log-linear model
using LibLinear (Fan et al., 2008), with 5% of
training held out for tuning an L2 regularizing term.
Feature extraction and dynamic aspects were han-
dled through additions to the Jerboa package (Van
Durme, 2012). Similar to previous work, we found
intuitive features such as my husband to be weighted
heavily (see Table 1), along with certain non-lexical
vocalizations such as transcribed laughter.

Table 1: Top ten features by gender.

Male a, wife, is, my wife, right, of, the, uh, ac-
tually, [vocalized-noise]

Female have, and, [laughter], my husband, really,
husband, children, are, would
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Figure 3: Streaming analysis of eight randomly sam-
pled speakers, four per gender (red-solid: female, blue-
dashed: male). Being a log-linear model, the decision
boundary is marked at y = 0.5.

As seen in Figure 2, accuracy indeed improves
as more content is emitted. Figure 3 highlights the
streaming perspective: individual speakers can be
viewed as distinct trajectories through [0, 1], based
on features of their utterances.

3 Randomized Model

Now situated within a streaming context we exact
space savings through approximation, extending the
approach of Van Durme and Lall (2011), there con-
cerned with online Locality Sensitive Hashing, here
initially concerned with taking averages.

When calculating the average over a sequence of
values, Xn = (x1, ..., xn), we divide the sum of
the sequence, sum(Xn) =

∑n
i=1 xi, by its length,

length(Xn) = |Xn|:

avg(Xn) = sum(Xn)

length(Xn)

Our goal in this section is to maintain a space ef-
ficient approximation of avg(Xt), as t increases, by
using a bit-saving approximation of both the sum,
and the length of the sequence.

We begin by reviewing the method of Reservoir
Counting, then extend it to a new notion we refer to
as Reservoir Averaging. This will allow in the sub-
sequent section to map our analytic model to a form

... ...c1 c2 ct�1 ct

... ...c1 c2 ct�1 ct

... ...c1 c2 ct�1 ct

...

a1

a2

am

Figure 4: Social media platforms such as Facebook or
Twitter deal with a very large number of individuals, each
with a variety of implicit attributes (such as gender). This
motivates a desire for online space efficiency.

explicitly amenable to keeping an online average.

3.1 Reservoir Counting

Reservoir Counting plays on the folklore algorithm
of reservoir sampling, first described in the literature
by Vitter (1985). As applied to a stream of arbitrary
elements, reservoir sampling maintains a list (reser-
voir) of length k, where the contents of the reser-
voir represents a uniform random sample over all el-
ements 1...t observed thus far in the stream.

When the stream is a sequence of positive
and negative integers, reservoir counting implicitly
views each value as being unrolled into a sequence
made up of either 1 or -1. For instance, the sequence:
(3, -2, 1) would be viewed as:

(1, 1, 1, -1, -1, 1)

Since there are only two distinct values in this
stream, the contents of the reservoir can be char-
acterized by knowing the fixed value k, and then
s: how many elements in the reservoir are 1.4

This led to Van Durme and Lall defining a method,
ReservoirUpdate, here abbreviated to ResUp,
that allows for maintaining an approximate sum, de-
fined as t(2s

k − 1), through updating these two pa-
rameters t and s with each newly observed element.
Expected accuracy of the approximation varies with
the size of the sample, k. Reservoir Counting ex-
ploits the fact that the reservoir need only be con-
sidered implicitly, where s represented as a b-bit un-
signed integer can be used to characterize a reser-
voir of size k = 2b − 1. This allowed those authors
to show a 50% space reduction in the task of online

4As the number of -1 values is simply: k − s.
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Locality Sensitive Hashing, at similar levels of accu-
racy, by replacing explicit 32-bit counting variables
with approximate counters of smaller size. See (Van
Durme and Lall, 2011) for further details.

3.2 Reservoir Averaging

For a given integer x, let m = |x| be the magnitude
of x, and σ = sign(x). For a given sequence, let m∗

be the largest such value of m.
Modifying the earlier implicit construction, con-

sider the sequence (3, -2, 1), with m∗ = 3, mapped
to the sequence:

(1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1)

where each value x is replaced with m∗ + m ele-
ments of σ, andm∗−m elements of−σ. This views
x as a sequence of length 2m∗, made up of 1s and
-1s, where each x in the discrete range [−m∗,m∗]
has a unique number of 1s.

Now recognize that the average over the original
sequence, here 3−2+1

3 = 2
3 , is proportional to the

average over the implicit sequence, 1+1+...−1−1
18 =

4
18 = 2

3( 1
m∗ ).

Generally for a sequence (x1, ..., xn), with m∗ as
defined, the average times 1

m∗ is equal to:

∑n
i=1 xi
n

(
1

m∗
) =

1

n2m∗

n∑
i=1

(

m∗+mi∑
l=1

σi +

m∗−mi∑
l=1

−σi)

=

∑n
i=1miσ

nm∗

where n2m∗ is the total number of 1s and -1s
observed in the implicit stream, up to and including
the mapping of element xn. If applying Reser-
voir Counting, s would then record the sampled
number of 1s, as per norm, where t maintained as
the implicit stream length can also be viewed as
storing t = n2m∗. At any point in the stream, the
average over the original value sequence can then
be approximated as: (1) the approximate sum of the
implicit stream; divided by (2) the implicit stream
length; times (3) m∗ to cancel the 1

m∗ term:

(t(
2s

k
− 1))1(

1

t
)2(m∗)3 = (

2s

k
− 1)m∗

Granularity As defined this scheme operates on
streams of integers. We extend the definition to work

with a stream of fixed precision floating point vari-
ables. Let g be a positive integer that we refer to
as the granularity. Modify the mapping of value x
from a sequence of length 2m∗, to a sequence of
length g, comprised of m∗+m

2m∗ g instances of σ, and
(1−m∗−m

2m∗ )g instances of -σ. As seen in line 4 of Al-
gorithm 1, a random coin flip determines placement
of the remainder.

For example, the value 1.3, with m∗ = 3, and
g = 10, would now be represented as a sequence
of 3+1.3

6 g = 7.16 ∈ (7, 8) instances of 1, followed
by however many instances of -1 that lead to a
sequence of length g, after probabilistic rounding.
The possible sequences are thus:

(1, 1, 1, 1, 1, 1, 1, -1, -1, -1)
(1, 1, 1, 1, 1, 1, 1, 1, -1, -1)

with the former more likely.
At this point we have described the framework

captured by Algorithm 1, where Van Durme and Lall
(2011) defined ResUp.

Algorithm 1 UPDATEAVERAGE(n, k,m,m∗, σ, g, s)
Parameters:
n : size of stream
k : size of reservoir, also maximum value of s
m : magnitude of update
m∗ : maximum magnitude of all updates
σ : sign of update
g : granularity
s : current value of reservoir

1: if m = 0 or σ = 0 then
2: Return without doing anything
3: v := m+m∗

2m∗ g
4: v := dve with probability v − bvc, bvc otherwise
5: s′ := ResUp(ng, k, v, σ, s)
6: s′ := ResUp((ng + v), k, g − v,−σ, s′)
7: Return s′

Log-scale Counting For additional space savings
we might approximate the length parameter t with
a small bit representation, using the approximate
counting scheme of Morris (1978). The method en-
ables counting in log-scale by probabilistically in-
crementing a counter, where it becomes less and
less likely to update the counter after each incre-
ment. This scheme is popularly known and used
in a variety of contexts, recently in the community
by Talbot (2009) and Van Durme and Lall (2009)
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Figure 5: Results on averaging randomly generated se-
quences, with m∗ = 100, g = 100, and using an 8 bit
Morris-style counter of base 2. Larger reservoir sizes lead
to better approximation, at higher cost in bits.

to provide a streaming extension to the Bloom-filter
based count-storage mechanism of Talbot and Os-
borne (2007a) and Talbot and Osborne (2007b). See
(Flajolet, 1985) for a detailed analysis of Morris-
style counting.

3.3 Experiment

We show through experimentation on synthetic data
that this approach gives reasonable levels of accu-
racy at space efficient sizes of the length and sum
parameter. Random sequences of 1,000 values were
generated by: (1) fix a value for m∗; (2) draw a po-
larity bias term µ uniformly from the range [0,1];
then (3) for each value, x: (a) σ was positive with
probability µ; (b) m was drawn from [0, m∗]. Fig-
ure 5 shows results for varying reservoir sizes (us-
ing 4, 8 or 12 bits) when g = 100, m∗ = 100, and
the length parameter was represented with an 8 bit
Morris-style counter of base 2.

3.4 Justification

Before we close this section, one might ask why this
extension is needed in the first place. As Reservoir
Counting already allows for keeping an online sum,
and pairs it with a length parameter, then this would
presumably be what is needed to get the average we

are focussed on. Unfortunately that is not the case:
the parameter recording the current stream length,
here called t, tracks the length of the implicit stream
of 1s and -1s, it does not track the length of the origi-
nal stream of values that gave rise to the mapped ver-
sion. As an example, consider again the sequence:
(3, -2, 1), as compared to: (2,1,-1,-1,1). Both have
the same sum, and would therefore be viewed the
same under the pre-existing Reservoir Counting al-
gorithm, giving rise to implicit streams of the same
length. But critically the sequences have different
averages: 2

3 6=
2
5 , which we cannot detect based on

the original counting algorithm.
Finally, we restate the constraint: for the sequence

to averaged, one must know m∗ ahead of time.

4 Application to Classification

Going back to our streaming analysis model, we
have a situation that can be viewed as a sequence
of values, such that we do know m∗. First reinter-
pret the fraction st

zt
equivalently as the normalized

sum of a stream of elements sampled from w:

st

zt
=

1

zt

t∑
i=1

d∑
j=1

f̂j(ci)∑
l=1

wj

The value m∗ is then: m∗ = maxj |wj |, over a
sequence of length zt. Rather than updating st and
zt through basic addition, we can now use a smaller
bit-wise representation for each variable, and update
via Reservoir Averaging.

4.1 Problems in Practice

Reconsidering the earlier classification experiment,
we found this approximation method led to terri-
ble results: while our experiments on synthetic data
worked well, those sequences were sampled some-
what uniformly over the range of possible values. As
seen in Figure 6, sequences arising from observed
feature weights in a practical setting may not be so
broadly distributed. In brief: the more the maxi-
mum possible update, m∗, can be viewed as an out-
lier, then the more the resulting implicit encoding
of g elements per observed weight becomes domi-
nated by “filler”. As few observed elements will in
that case require the provided range, then the im-
plicit representation will be a mostly balanced set of
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Figure 6: Frequency of individual feature weights ob-
served over a full set of communications by a single ex-
ample speaker. Most observed features have relatively
small magnitude weight. The mean value is 1.3, with

1
1+e−1.3 = 0.79 > 0.5, which properly classifies the
speaker as MALE.

1 and -1 values. These mostly balanced encodings
make it difficult to maintain an adequate approxima-
tion of the true average, when reliant on a small, im-
plicit uniform sample. Here we leave further analy-
sis aside, focusing instead on a modified solution for
the classification model under consideration.

4.2 Rewriting History

Practically we would like to restrict our range to the
dense region of weight updates, while at the same
time not throwing away or truncating larger weights
that appear outside a reduced window. We do this
by fitting a replacement to m∗: m′ ≤ m∗, based on
the classifier’s training data, such that too-large ele-
ments will be accommodated into the stream by im-
plicitly assuming that the portion of a value that falls
outside the restricted window is “spread out” over
the previously observed values. That is, we mod-
ify the contents of the implicit reservoir by rewriting
history: pretending that earlier elements were larger
than they were, but still within the reduced window.
As long as we don’t see too many values that are
overly large, then there will be room to accommo-
date the overflow without any theoretical damage to
the implicit stream: all count mass may still be ac-

counted for. If a moderately high number of overly
large elements are observed, then we expect in prac-
tice for this to have a negligible impact on down-
stream performance. If an exceptional number of
elements are overly large, then the training data was
not representative of the test set.

The newly introduced parameter m′ is used in
MODIFIEDUPDATEAVERAGE (MUA), which relies
on REWRITEHISTORY. Note that MUA uses the
same value of n when calling REWRITEHISTORY

as it does in the subsequent line calling UPDATEAV-
ERAGE: we modify the state of the reservoir without
incrementing the stream length, taking the current
overflow and pretending we saw it earlier, spread
out across previous elements. This happens by first
estimating the number of 1 values seen thus far in
the stream: s

kn, then adding in twice the overflow
value, which represents removing o instances of −σ
from the stream, and then adding o instances of σ.
We probabilistically round the resultant fraction to
achieve a modified version of s, which is returned.

Algorithm 2 MUA(n, k,m,m′, σ, g, s)
1: if m < m′ then
2: Return UPDATEAVERAGE(n, k,m,m′, σ, g, s)
3: s′ := REWRITEHISTORY(n, k,m,m′, σ, g, s)
4: Return UPDATEAVERAGE(n, k,m′,m′, σ, g, s′)

Algorithm 3 REWRITEHISTORY(n, k,m,m′, σ, g, s)
Parameters:
o : overflow to be accommodated

1: o := m−m′
2m′ g

2: if σ > 0 then
3: if s = k then
4: Return s
5: p := min(1.0, sk + 2o

n )
6: else
7: if s = 0 then
8: Return s
9: p := max(0.0, sk −

2o
n )

10: Return dpke with prob. pk − bpkc, bpkc otherwise

4.3 Experiment

Figure 7 compares the results seen in Figure 2 to
a version of the experiment when using approxima-
tion. Parameters were: g = 100; k = 255; and a
Morris-style counter for stream length using 8 bits
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Figure 7: Comparison between using explicit count-
ing and approximation on the Switchboard dataset, with
bands reflecting 95% confidence.

and a base of 1.3. The value m′ was fit indepen-
dently for each split of 10-fold cross validation, by
finding through simple line search that which mini-
mized the number of prediction errors on the origi-
nal training data (see Figure 8). This result shows
our ability to replace 2 variables of 32 bits (sum
and length) with 2 approximation variables of 8 bits
(reservoir status s, and stream length n), leading to
a 75% reduction in the cost of maintaining online
classifier state, with no significant cost in accuracy.

5 Real World Stream: Twitter

5.1 Setup

Based on the tweet IDs from the data used by
Burger et al. (2011), we recovered 2,958,107 of their
roughly 4 million original tweets.5 These tweets
were then matched against the gender labels estab-
lished in that prior work. As reported by Burger
et al., the dominant language in the collection is
English (66.7% reported), followed by Portuguese
(14.4%) then Spanish (6.0%), with a large variety of
other languages with small numbers of examples.

5Standard practice in Twitter data exchanges is to share only
the unique tweet identifications and then requery the content
from Twitter, thus allowing, e.g., the individual authors the abil-
ity to delete previous posts and have that reflected in future data
collects. While respectful of author privacy, it does pose a chal-
lenge for scientific reproducibility.
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Figure 8: Summed 0/1 loss over all utterances by each
speaker in the Switchboard training set, across 10 splits.
A value of m′ = 5 was on average that which minimized
the number of mistakes made.

Content was lowercased, then processed by regu-
lar expression to collapse the following into respec-
tive single symbols: emoticons; URLs; usernames
(@mentions); and hashtags. Any content deemed
to be a retweet (following the characters RT) was
removed. Text was then tokenized according to a
modified version of the Penn TreeBank tokenization
standard6 that was less English-centric.

5.2 Experiment

A log-linear classifier was built using all those au-
thors in the training set7 with at least 10 tweets.
Similar to the previous experiment, unigrams and
bigrams features were used exclusively, with the pa-
rameter m′ fit on the training data.

As seen in Figure 9, results were as in Switch-
board: accuracy improves as more data streams in
per author, and our approximate model sacrifices
perhaps a point of accuracy in return for a 75% re-
duction in memory requirements per author.

Table 2 gives the top features per gender. We
see similarities to Switchboard in terms such as my

6Such as codified in http://www.cis.upenn.edu/

˜treebank/tokenizer.sed
7The same training, development and test set partitions were

used as by Burger et al. (2011), minus those tweets we were
unable to retrieve (as previously discussed).
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wife, along with terms suggesting a more youthful
population. Foreign terms are recognized by their
parenthetical translation and 1st- or 2nd-person +
Male/Female gender marking. For example, the Por-
tuguese obrigado can be taken to be literally saying:
I’m obliged (thank you), and I’m male.

6 Related Work

Streaming algorithms have been developed within
the applied communities of networking, and (very
large) databases, as well as being a popular topic in
the theoretical computer science literature. A sum-

Table 2: Top thirty-five features by gender in Twitter.

Male obrigado (thank you [1M]), wife, my wife,
bro, cansado (tired [1M]), gay, mate, dude,
[@username] why, buddy, windows, album,
dope, beer, [@username] yo, sir, ps3, comics,
galera (folks/people), amigo (friend [2M]),
man !, fuckin, omg omg, cheers, ai n’t

Female obrigada (thank you [1F]), hubby, husband,
cute, my husband, ?, cansada (tired [1F]),
hair, dress, soooo, lovely, etsy, boyfriend,
jonas, loved, book, sooo, girl, sé (I),
lindo (cute), shopping, amiga (friend [2F]),
yummy, ppl, cupcakes

mary of the streaming algorithms community is be-
yond the scope of this work: interested readers are
directed to Muthukrishnan (2005) as a starting point.

Within computational linguistics interest in
streaming approaches is a more recent development;
we provide here examples of representative work,
beyond those described in previous sections. Leven-
berg and Osborne (2009) gave a streaming variant of
the earlier perfect hashing language model of Talbot
and Brants (2008), which operated in batch-mode.
Using a similar decomposition to that here, Van
Durme and Lall (2010) showed that Locality Sen-
sitive Hash (LSH) signatures (Indyk and Motwani,
1998; Charikar, 2002) built using count-based fea-
ture vectors can be maintained online, as compared
to their earlier uses in the community (Ravichandran
et al., 2005; Bhagat and Ravichandran, 2008). Fi-
nally, Goyal et al. (2009) applied the frequent items8

algorithm of Manku and Motwani (2002) to lan-
guage modeling.

For further background in predicting author at-
tributes such as gender, see (Garera and Yarowsky,
2009) for an overview of previous work and (non-
streaming) methodology.

7 Conclusions and Future Work

We have taken the predominately batch-oriented
process of analyzing communication data and shown
it to be fertile territory for research in large-scale
streaming algorithms. Using the example task of au-
tomatic gender detection, on both spoken transcripts
and microblogs, we showed that classification can
be thought of as a continuously running process, be-
coming more robust as further communications be-
come available. Once positioned within a stream-
ing framework, we presented a novel approximation
technique for compressing the streaming memory
requirements of the classifier (per author) by 75%.

There are a number of avenues to explore based
on this framework. For instance, while here we as-
sumed a static, pre-built classifier which was then
applied to streaming data, future work may consider
the interplay with online learning, based on meth-
ods such as by Crammer et al. (2006). In the appli-

8See the survey by Cormode and Hadjieleftheriou (2009) for
approaches to the frequent items problem, otherwise known as
finding heavy hitters.
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cations arena, one might take the savings provided
here to run multiple models in parallel, either for
more robust predictions (perhaps “triangulating” on
language ID and/or domain over the stream), or pre-
dicting additional properties, such as age, national-
ity, political orientation, and so forth. Finally, we
assumed here strictly count-based features; stream-
ing log-counting methods, tailored Bloom-filters for
binary feature storage, and other related topics are
assuredly applicable, and should give rise to many
interesting new results.
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Abstract

A mixture of positive (friendly) and nega-
tive (antagonistic) relations exist among users
in most social media applications. However,
many such applications do not allow users to
explicitly express the polarity of their interac-
tions. As a result most research has either ig-
nored negative links or was limited to the few
domains where such relations are explicitly
expressed (e.g. Epinions trust/distrust). We
study text exchanged between users in online
communities. We find that the polarity of the
links between users can be predicted with high
accuracy given the text they exchange. This
allows us to build a signed network represen-
tation of discussions; where every edge has
a sign: positive to denote a friendly relation,
or negative to denote an antagonistic relation.
We also connect our analysis to social psy-
chology theories of balance. We show that the
automatically predicted networks are consis-
tent with those theories. Inspired by that, we
present a technique for identifying subgroups
in discussions by partitioning singed networks
representing them.

1 Introduction

Most online communities involve a mixture of pos-
itive and negative relations between users. Positive
relations may indicate friendship, agreement, or ap-
proval. Negative relations usually indicate antago-
nism, opposition, or disagreement.

Most of the research on relations in social media
applications has almost exclusively focused on pos-
itive links between individuals (e.g. friends, fans,
followers, etc.). We think that one of the main rea-
sons, of why the interplay of positive and negative
links did not receive enough attention, is the lack of
a notion for explicitly expressing negative interac-
tions. Recently, this problem has received increas-
ing attention. However, all studies have been limited
to a handful of datasets from applications that allow
users to explicitly label relations as either positive or

negative (e.g. trust/distrust on Epinion (Leskovec et
al., 2010b) and friends/foes on Slashdot (Kunegis et
al., 2009)).

Predicting positive/negative relations between
discussants is related to another well studied prob-
lem, namely debate stance recognition. The ob-
jective of this problem is to identify which partic-
ipants are supporting and which are opposing the
topic being discussed. This line of work does not
pay enough attention to the relations between par-
ticipants, rather it focuses on participant’s stance to-
ward the topic. It also assumes that every partici-
pant either supports or opposes the topic being dis-
cussed. This is a simplistic view that ignore the
nature of complex topics that has many aspects in-
volved which may result in more than two subgroups
with different opinions.

In this work, we apply Natural Language Pro-
cessing techniques to text correspondences ex-
changed between individuals to identify the under-
lying signed social structure in online communities.
We present a method for identifying user attitude
and for automatically constructing a signed social
network representation of discussions. We apply
the proposed methods to a large set of discussion
posts. We evaluate the performance using a manu-
ally labeled dataset. We also conduct a large scale
evaluation by showing that predicted links are con-
sistent with the principals of social psychology the-
ories, namely the Structural Balance Theory (Hei-
der, 1946). The balance theory has been shown to
hold both theoretically (Heider, 1946) and empiri-
cally (Leskovec et al., 2010c) for a variety of social
community settings. Finally, we present a method
for identifying subgroups in online discussions by
identifying groups with high density of intra-group
positive relations and high density of inter-group
negative relations. This method is capable of identi-
fying subgroups even if the community splits into
more than two subgroups which is more general
than stance recognition which assumes that only two
groups exist.
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A E - I have to disagree with what you are saying.  

G A - You are missing the entire point, he is putting lives at risk. 

D I - and you manufacture lies for what reason? 

E G + you have explained your position very well. 

C H + I am neutral on this, but I agree with your assessment! 

Figure 1: An example showing a signed social network
along with evidence from text that justifies edge signs.

The input to our algorithm is a set of text corre-
spondences exchanged between users (e.g. posts or
comments). The output is a signed network where
edges signify the existence of an interaction between
two users. The resulting network has polarity asso-
ciated with every edge. Edge polarity is a means for
indicating positive or negative affinity between two
individuals.

Figure 1 shows a signed network representation
for a subset of posts from a long discussion thread.
The thread discussed the November 2010 Wikileaks
cable release. We notice that participants split into
two groups, one supporting and one opposing the
leak. We also notice that most negative edges are
between groups, and most positive edges are within
groups. It is worth mentioning that networks gen-
erated from larger datasets (i.e. with thousands of
posts) have much more noise compared to this ex-
ample.

The rest of the paper is structured as follows. In
section 2, we review some of the related prior work
on mining sentiment from text, mining online dis-
cussions, extracting social networks from text, and
analyzing signed social networks. We define our
problem and explain our approach in Section 3. Sec-
tion 4 describes our dataset. Results and discussion
are presented in Section 5. We present a method for
identifying subgroups in online discussions in Sec-
tion 3.3. We conclude in Section 6.

2 Related Work

In this section, we survey several lines of research
that are related to our work.

2.1 Mining Sentiment from Text
Our general goal of mining attitude from one indi-
vidual toward another makes our work related to a
huge body of work on sentiment analysis. One such
line of research is the well-studied problem of iden-
tifying the polarity of individual words (Hatzivas-
siloglou and McKeown, 1997; Turney and Littman,
2003; Kim and Hovy, 2004; Takamura et al., 2005).
Subjectivity analysis is yet another research line that
is closely related to our general goal of mining at-
titude. The objective of subjectivity analysis is to
identify text that presents opinion as opposed to ob-
jective text that presents factual information (Wiebe,
2000; Hatzivassiloglou and Wiebe, 2000; Banea et
al., 2008; Riloff and Wiebe, 2003). Our work is dif-
ferent from subjectivity analysis because we are not
only interested in discriminating between opinions
and facts. Rather, we are interested in identifying
the polarity of interactions between individuals. Our
method is not restricted to phrases or words, rather it
generalizes this to identifying the polarity of an in-
teraction between two individuals based on several
posts they exchange.

2.2 Stance Classification
Perhaps the closest work to this paper is the work on
stance classification. We notice that most of these
methods focus on the polarity of the written text as-
suming that anyone using positive text belongs to
one group and anyone using negative text belongs
to another. This works well for single-aspect topics
or entities like the ones used in (Tan et al., 2011)
(e.g. Obama, Sara Palin, Lakers, etc.). In this sim-
ple notion of topics, it is safe to assume that text
polarity is a good enough discriminator. This unfor-
tunately is not the case in online discussions about
complex topics having many aspects (e.g. abortion,
health care, etc.). In such complex topics, people use
positive and negative text targeting different aspects
of the topic, for example in the health care bill topic,
discussants expressed their opinion regarding many
aspects including: the enlarged coverage, the insur-
ance premiums, Obama, socialism, etc. This shows
that simply looking at text polarity is not enough to
identify groups.

Tan et al. (2011) studied how twitter following re-
lations can be used to improve stance classification.
Their main hypothesis is that connected users are
more likely to hold similar opinions. This may be
correct for the twitter following relations, but it is
not necessarily correct for open discussions where
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no such relations exist. The only criterion that can be
used to connect discussants is how often they reply
to each other’s posts. We will show later that while
many people reply to people with similar opinions,
many others reply to people with different opinions
as well.

Thomas et al. (2006) address the same problem
of determining support and opposition as applied to
congressional floor-debates. They assess the agree-
ment/disagreement between different speakers by
training a text classifier and applying it to a win-
dow surrounding the names of other speakers. They
construct their training data by assuming that if two
speaker have the same vote, then every reference
connecting them is an agreement and vice versa.
We believe this will result in a very noisy train-
ing/testing set and hence we decided to recruit hu-
man annotators to create a training set. We found
out that many instances with references to other
discussants were labeled as neither agreement nor
disagreement regardless of whether the discussants
have similar or opposing positions. We will use this
system as a baseline and will show that the exis-
tence of positive/negative words close to a person
name does not necessarily show agreement or dis-
agreement with that person.

Hassan et al. (2010) use a language model based
approach for identifying agreement and disagree-
ment sentences in discussions. This work is limited
to sentences. It does not consider the overall rela-
tion between participants. It also does not consider
subgroup detection. We will use this method as a
baseline for one of our components and will show
that the proposed method outperforms it.

Murakami and Raymond (2010) present another
method for stance recognition. They use a small
number of hand crafted rules to identify agreement
and disagreement interactions. Hand crafted rules
usually result in systems with very low recall caus-
ing them to miss many agreement/disagreement in-
stances (they report 0.26 recall at the 0.56 preci-
sion level). We present a machine learning system
to solve this problem and achieve much better per-
formance. Park et al. (2011) propose a method for
finding news articles with different views on con-
tentious issues. Mohit et al. (2008) present a set
of heuristics for including disagreement informa-
tion in a minimum cut stance classification frame-
work. Galley et al. (2004) show the value of us-
ing durational and structural features for identify-
ing agreement and disagreement in spoken conver-

sational speech. They use features like duration of
spurts, speech rate, speaker overlap, etc. which are
not applicable to written language.

Our approach is different from agree-
ment/disagreement identification because we
not only study sentiment at the local sentiment
level but also at the global level that takes into
consideration many posts exchanged between
participants to build a signed network representation
of the discussion. Research on debate stance
recognition attempts to perform classification under
the “supporting vs. opposing” paradigm. However
such simple view might not always be accurate
for discussions on more complex topics with
many aspects. After building the signed network
representation of discussions, we present a method
that can detect how the large group could split into
many subgroups (not necessarily two) with coherent
opinions.

2.3 Extracting Social Networks from Text
Little work has been done on the front of extracting
social relations between individuals from text. El-
son et al. (2010) present a method for extracting so-
cial networks from nineteenth-century British nov-
els and serials. They link two characters based on
whether they are in conversation or not. McCal-
lum et al. (2007) explored the use of structured data
such as email headers for social network construc-
tion. Gruzd and Hyrthonthwaite (2008) explored the
use of post text in discussions to study interaction
patterns in e-learning communities. Extracting so-
cial power relations from natural language (i.e. who
influences whom) has been studied in (Bramsen et
al., 2011; Danescu-Niculescu-Mizil et al., 2011).

Our work is related to this line of research because
we employ natural language processing techniques
to reveal embedded social structures. Despite sim-
ilarities, our work is uniquely characterized by the
fact that we extract signed social networks with both
positive and negative links from text.

2.4 Signed Social Networks
Most of the work on social networks analysis has
only focused on positive interactions. A few recent
papers have taken the signs of edges into account.

Brzozowski et al. (2008) study the positive and
negative relationships between users of Essembly.
Essembly is an ideological social network that dis-
tinguishes between ideological allies and nemeses.
Kunegis et al. (2009) analyze user relationships in
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the Slashdot technology news site. Slashdot allows
users of the website to tag other users as friends or
foes, providing positive and negative endorsements.
Leskovec et al. (2010b) study signed social networks
generated from Slashdot, Epinions, and Wikipedia.
They also connect their analysis to theories of signed
networks from social psychology. A similar study
used the same datasets for predicting positive and
negative links given their context (Leskovec et al.,
2010a).

All this work has been limited to analyzing a
handful of datasets for which an explicit notion of
both positive and negative relations exists. Our work
goes beyond this limitation by leveraging the power
of natural language processing to automate the dis-
covery of signed social networks using the text em-
bedded in the network.

The research presented in this paper extends this
previous work in a number of ways: (i) we present
a method based on linguistic analysis that finds in-
stances of showing positive or negative attitude be-
tween participants (ii) we propose a technique for
representing discussions as signed networks where a
sign is associated with every edge to denote whether
the relation is friendly or antagonistic (iii) we eval-
uate the proposed methods using human annotated
data and also conduct a large scale evaluation based
on social psychology theories; (iv) finally we present
a method for identifying subgroups that globally
splits the community involved in the discussion by
utilizing the dynamics of the local interactions be-
tween participants.

3 Approach

3.1 Identifying Attitude from Text

To build a signed network representation of discus-
sants, we start by trying to identify sentences that
show positive or negative attitude from the writer to
the addressee. The first step toward identifying at-
titude is to identify words with positive/negative se-
mantic orientation. The semantic orientation or po-
larity of a word indicates the direction the word devi-
ates from the norm (Lehrer, 1974). We use Opinion-
Finder (Wilson et al., 2005a) to identify words with
positive or negative semantic orientation. The polar-
ity of a word is also affected by the context where
the word appears. For example, a positive word that
appears in a negated context should have a negative
polarity. Other polarized words sometimes appear as
neutral words in some contexts. To identify contex-

tual polarity of words, a large set of features is used
including words, sentences, structure, and other fea-
tures similar to the method described in (Wilson et
al., 2005b).

Our overall objective is to find the direct attitude
between participants. Hence after identifying the se-
mantic orientation of individual words, we move on
to predicting which polarized expressions target the
addressee and which do not.

Text polarity alone cannot be used to identify at-
titude between participants. Sentences that show
an attitude are different from subjective sentences.
Subjective sentences are sentences used to express
opinions, evaluations, and speculations (Riloff and
Wiebe, 2003). While every sentence that shows an
attitude is a subjective sentence, not every subjective
sentence shows an attitude toward the recipient.

In this method, we address the problem of iden-
tifying sentences with attitude as a relation detec-
tion problem in a supervised learning setting. We
study sentences that has mentions to the addressee
and polarized expressions (negative/positive words
or phrases). Mentions could either be names of other
participants or second person pronouns (you, your,
yours) used in text posted as a reply to another par-
ticipant. Reply structure (i.e. who replies to whom)
is readily available in many discussion forums. In
cases where reply structure is not available, we can
use a method like the one in (Lin et al., 2009) to re-
cover it.

We predict whether the mention is related to the
polarized expression or not. We regard the mention
and the polarized expression as two entities and try
to learn a classifier that predicts whether the two en-
tities are related or not.

The text connecting the two entities offers a very
condensed representation of the information needed
to assess whether they are related or not. For ex-
ample the two sentences “you are completely un-
qualified” and “you know what, he is unqualified ...”
show two different ways the words “you”, and “un-
qualified” could appear in a sentence. In the first
case the polarized word “unqualified” refers to the
word “you”. In the second case, the two words are
not related. The information in the shortest path
between two entities in a dependency tree can be
used to assert whether a relationship exists between
them (Bunescu and Mooney, 2005).

The sequence of words connecting the two enti-
ties is a very good predictor of whether they are re-
lated or not. However, these paths are completely
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lexicalized and consequently their performance will
be limited by data sparseness. To alleviate this prob-
lem, we use higher levels of generalization to rep-
resent the path connecting the two tokens. These
representations are the part-of-speech tags, and the
shortest path in a dependency graph connecting the
two tokens. We represent every sentence with sev-
eral representations at different levels of generaliza-
tion. For example, the sentence “your ideas are very
inspiring” will be represented using lexical, polar-
ity, part-of-speech, and dependency information as
follows:

LEX: “YOUR ideas are very POS”
POS: “YOUR NNS VBP RB JJ POS”
DEP: “YOUR poss nsubj POS”

The set of features we use are the set of unigrams,
and bigrams representing the words, part-of-speech
tags, and dependency relations connecting the two
entities. For example the following features will be
set for the previous example:

YOUR ideas, YOUR NNS, YOUR poss,
poss nsubj, ...., etc.

We use Support Vector Machines (SVM) as a
learning system because it is good with handling
high dimensional feature spaces.

3.2 Extracting the Signed Network
In this subsection, we describe the procedure we
used to build the signed network given the compo-
nent we described in the previous subsection. This
procedure consists of two main steps. The first is
building the network without signs, and the second
is assigning signs to different edges.

To build the network, we parse our data to identify
different threads, posts and senders. Every sender is
represented with a node in the network. An edge
connects two nodes if there exists an interaction be-
tween the corresponding participants. We add a di-
rected edgeA→ B, ifA replies toB’s posts at least
n times in m different threads. We set m, and n to
2 in all of our experiments. The interaction infor-
mation (i.e. who replies to whom) can be extracted
directly from the thread structure. Alternatively, as
mentioned earlier, we can use a method similar to
the one presented in (Lin et al., 2009) to recover the
reply structure if it is not readily available.

Once we build the network, we move to the more
challenging task in which we associate a sign with

Participant Features
Number of posts per month for A (B)
Percentage of positive posts per month for A (B)
Percentage of negative posts per month for A (B)
gender
Interaction Features
Percentage/number of positive (negative) sentences per post
Percentage/number of positive (negative) posts per thread
Discussion Domain (e.g. politics, science, etc.)

Table 1: Features used by the Interaction Sign Classifier.

every edge. We have shown in the previous section
how sentences with positive and negative attitude
can be extracted from text. Unfortunately the sign
of an interaction cannot be trivially inferred from the
polarity of sentences. For example, a single negative
sentence written by A and directed to B does not
mean that the interaction between A and B is neg-
ative. One way to solve this problem would be to
compare the number of negative sentences to posi-
tive sentences in all posts betweenA andB and clas-
sify the interaction according to the plurality value.
We will show later, in our experiments section, that
such a simplistic method does not perform well in
predicting the sign of an interaction.

As a result, we decided to pose the problem as a
classical supervised learning problem. We came up
with a set of features that we think are good predic-
tors of the interaction sign, and we trained a classi-
fier using those features on a labeled dataset. Our
features include numbers and percentages of pos-
itive/negative sentences per post, posts per thread,
and so on. A sentence is labeled as positive/negative
if a relation has been detected in this sentence be-
tween a mention referring to the addressee and a
positive/negative expression. A post is considered
positive/negative based on the majority of relations
detected in it. We use two sets of features. The first
set is related to A only or B only. The second set
is related to the interactions between A and B. The
features are summarized in Table 1.

3.3 Sub-Group Detection

In any discussion, different subgroups may emerge.
Members of every subgroup usually have a common
focus (positive or negative) toward the topic being
discussed. Each member of a group is more likely
to show positive attitude to members of the same
group, and negative attitude to members of opposing
groups. The signed network representation could
prove to be very useful for identifying those sub-
groups. To detect subgroups in a discussion thread,
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we would like to partition the corresponding signed
network such that positive intra-group links and neg-
ative inter-group links are dense.

This problem is related to the constrained cluster-
ing (Wagstaff et al., 2001) and the correlation clus-
tering problem (Bansal et al., 2004). In constrained
clustering, a pairwise similarity metric (which is
not available in our domain), and a set of must-
link/cannot-link constraints are used with a standard
data clustering algorithm. Correlation clustering op-
erates in a scenario where given a signed graph
G = (V,E) where the edge label indicates whether
two nodes are similar (+) or different (-), the task
is to cluster the vertices so that similar objects are
grouped together. Bansal et. al (2004) proved NP-
hardness and gave constant-factor approximation al-
gorithms for the special case in which the graph
is complete (full information) and every edge has
weight +1 or -1 which is not the case in our network.
Alternatively, we can use a greedy optimization al-
gorithm to find partitions. A criterion function for
a local optimization partitioning procedure is con-
structed such that positive links are dense within
groups and negative links are dense between groups.

For any potential partition C, we seek to optimize
the following function: P (C) = α

∑
n +(1−α)

∑
p

where
∑

n is the number of negative links between
nodes in the same subgroup,

∑
p is the number of

positive links between nodes in different subgroups,
and α is a trade factor that represents the importance
of the two terms. We set α to 0.5 in all our experi-
ments.

Clusters are selected such that: C∗ =
arg minP (C). A greedy optimization framework
is used to minimize P (C). Initially, nodes are ran-
domly partitioned into t different clusters and the
criterion function P is evaluated for that cluster. Ev-
ery cluster has a set of neighbors in the cluster space.
A neighbor cluster is obtained by moving one node
from one cluster to another, or by exchanging two
nodes in two different clusters. Neighbor partitions
are evaluated, and if one with a lower value for the
criterion function is found, it is set as the current
partition. This greedy procedure is repeated with
random restarts until a minimal solution is found.
To determine the number of subgroups t, we select
t that minimizes the optimization function P (C). In
all experiments we used an upper limit of t = 5.
This technique was able to identify the correct num-
ber of subgroups in 77% of the times. In the rest of
the cases, the number was different from the correct

number by at most 1 except for a single case where
it was 2.

4 Data

4.1 Signed Network Extraction

Our data consists of a large amount of discussion
threads collected from online discussion forums. We
collected around 41, 000 topics (threads) and 1.2M
posts from the period between the end of 2008 and
the end of 2010. All threads were in English and had
5 posts or more. They covered 11 different domains
including: politics, religion, science, etc. The aver-
age number of participants per domain is 1320 and
per topic is 52. The data was tokenized, sentence-
split, and part-of-speech tagged with the OpenNLP
toolkit. It was parsed with the Stanford parser (Klein
and Manning, 2003).

We randomly selected around 5300 posts (1000
interactions), and asked human annotators to label
them. Our annotators were instructed to read all the
posts exchanged between two participants and de-
cide whether the interaction between them is posi-
tive or negative. We used Amazon Mechanical Turk
for annotations. Following previous work (Callison-
Burch, 2009; Akkaya et al., 2010), we took sev-
eral precautions to maintain data integrity. We re-
stricted annotators to those based in the US to main-
tain an acceptable level of English fluency. We also
restricted annotators to those who have more than
95% approval rate for all previous work. Moreover,
we asked three different annotators to label every in-
teraction. The label was computed by taking the ma-
jority vote among the three annotators. We refer to
this data as the Interactions Dataset.

We ran a different annotation task where we se-
lected sentences including mentions referring to dis-
cussants (names or pronouns) and polarized expres-
sions. Annotators were asked to select sentences
where the polarized attribute is referring to the men-
tion and hence show a positive or negative attitude
toward other discussion participants. This resulted
in a set of 5000 manually annotated sentences. We
refer to this data as the Sentences Dataset.

We asked three different annotators to label ev-
ery instance. The kappa measure between the three
groups of annotations was 0.62 for the Interactions
Dataset and 0.64 for the Sentences Dataset. To bet-
ter assess the quality of the annotations, we asked a
trained annotator to label 10% of the data. We mea-
sured the agreement between the expert annotator
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Logistic Reg.

Class Pos. Neg. Weigh. Avg.
Precision 0.848 0.724 0.809

Recall 0.884 0.657 0.812
F-Measure 0.866 0.689 0.81
Accuracy - - 0.812

SVM

Precision 0.906 0.71 0.844
Recall 0.847 0.809 0.835

F-Measure 0.875 0.756 0.838
Accuracy - - 0.835

Table 2: Interaction sign classifier performance.

Classifier Random Thresh-Num Thresh-Perc. SVM
Accuracy 65% 69% 71% 83.5%

Table 3: A comparison of different sign interaction clas-
sifiers.

and the majority label from Mechanical Turk. The
kappa measure was 0.69 for the Interactions Dataset
and 0.67 for the Sentences Dataset.

4.2 Sub-group Detection
We used a dataset of more than 42 topics and ap-
proximately 9000 posts collected from two political
forums (Createdebate1 and Politicalforum2). The fo-
rum administrators ran a poll asking participants to
select their stance from a set of possible answers
and hence the dataset was self-labeled with respect
to groups. We also used a set of discussions from
the Wikipedia discussion section. When a topic on
Wikipedia is disputed, the editors of that topic start a
discussion about it. We collected 117 Wikipedia dis-
cussion threads. The threads contain a total of 1,867
posts. The discussions were annotated by an expert
annotator (a professor in sociolinguistics, not an au-
thor of the paper) who was instructed to read each
of the Wikipedia discussion threads in its entirety
and determine whether the discussants split into sub-
groups, in which case he was asked to identify the
subgroup membership for each discussant. In to-
tal, we had 159 topics with an average of approxi-
mately 500 posts, 60 participants and 2.7 subgroups
per topic. Examples of the topics include: Arizona
immigration law, airport security, oil spill, evolution,
Ireland partitions, abortion and many others.

5 Results and Discussion

We performed experiments on the data described
in the previous section. We trained and tested the
sentence with the attitude detection classifiers de-
scribed in Section 3.1 using the Sentences Dataset.

1www.createdebate.com
2www.politicalforum.com

We also trained and tested the interaction sign clas-
sifier described in Section 3.2 using the Interactions
Dataset. We built one signed social network for ev-
ery domain (e.g. politics, economics, etc.). We de-
cided to build a network for every domain as op-
posed to one single network because the relation be-
tween any two individuals may vary across domains
(e.g. politics vs. science). In the rest of this section,
we will describe the experiments we did to assess the
performance of the sentences with attitude detection
and interaction sign prediction steps.

In addition to classical evaluation, we evaluate
our results using the structural balance theory which
has been shown to hold both theoretically (Heider,
1946) and empirically (Leskovec et al., 2010c). We
validate our results by showing that the automati-
cally extracted networks mostly agree with the the-
ory. We evaluated the approach using the structural
balance theory because it presents a global (pertain-
ing to relations between multiple edges) and large-
scale (used millions of posts and thousands of users)
evaluation of the results as opposed to traditional
evaluation which is local in nature (only considers
one edge at a time) and smaller in scale (used thou-
sands of posts).

5.1 Identifying Sentences with Attitude
We compare the proposed methods to two baselines.
The first baseline is based on the work of (Thomas
et al., 2006). We used the speaker agreement com-
ponent presented in (Thomas et al., 2006) as a base-
line. The speaker agreement component is one step
in their approach. In this component, they used
an SVM classifier trained using a window of text
surrounding references to other speakers to predict
agreement/disagreement between speakers.

We build an SVM text classifier trained on the
sentence at which the mention referring to the other
participant occurred. We refer to this baseline as
the Text Classification approach. The second base-
lines adopts the language model approach presented
in (Hassan et al., 2010). Two language models
are trained using a stream of words, part-of-speech
tags, and dependency relations, one for sentences
that show an attitude and one for sentences that do
not. New sentences are classified based on gener-
ation likelihoods. We refer to this baseline as the
Language Models approach.

We tested this component using the Sentences
Dataset described in Section 4. We compared the
performance of the proposed method and the two
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Extracted Networks Random Networks
Domain (+ + +) (+ +−) (+−−) (−−−) (+ + +) (+ +−) (+−−) (−−−)
abortion 51.67 26.31 18.92 0.48 35.39 43.92 18.16 2.52
current-events 67.36 22.26 8.76 0.23 54.08 36.90 8.39 0.64
off-topic-chat 65.28 23.54 9.45 0.25 58.07 34.59 6.88 0.46
economics 72.68 18.30 7.77 0.00 66.50 29.09 4.22 0.20
political opinions 60.60 24.24 12.81 0.43 45.97 40.79 12.06 1.19
environment 47.46 32.54 17.26 0.30 37.38 43.61 16.89 2.12
latest world news 58.29 22.41 16.33 0.62 42.26 42.20 13.98 1.56
religion 47.17 25.89 22.56 1.42 39.68 42.94 15.51 1.87
science-technology 57.53 26.03 14.33 0.00 50.14 38.93 10.05 0.87
terrorism 64.96 23.36 9.46 0.73 41.54 42.42 14.36 1.68

Table 4: Percentage of different types of triangles in the extracted networks vs. the random networks.

Method Accuracy Precision Recall F1
Text Classification 60.4 61.1 60.2 60.6
Language Models 80.3 81.0 79.4 80.2
Relation Extraction 82.3 82.3 82.3 82.3

Table 5: Comparison of attitude identification methods.

baselines. Table 5 compares the precision, recall,
F1, and accuracy for the three methods. The text
classification based approach does much worse than
others. The reasons is that it ignores the structure
and uses much less information (part-of-speech tags
and dependency trees are not used) compared to the
other methods. Additionally, the short length of the
sentences compared to what is typical in text clas-
sification may have had a bad effect on the perfor-
mance. Both other models try to learn the char-
acteristics of the path connecting the mention and
the polarized expression. We notice that optimizing
the weights for unigram and bigrams features using
SVM results in a better performance compared to
language models because it does not have the con-
straints imposed by the former model on the learned
weights.

We evaluated the importance of the feature types
(i.e. dependency vs. pos tags vs words) by measur-
ing the chi-squared statistic for every feature with
respect to the class. Dependency features were most
helpful, but other types of features helped improve
the performance as well.

5.2 Interaction Sign Classifier

We used the relation detection classifier described in
Section 3.1 to find sentences with positive and nega-
tive attitude. The output of this classifier was used to
compute the features described in Section 3.2, which
were used to train a classifier that predicts the sign
of an interaction between any two individuals.

We used both Support Vector Machines (SVM)
and logistic regression to train the sign interaction

classifier. We report several performance metrics for
them in Table 2. We notice that the SVM classifier
performs better with an accuracy of 83.5% and an
F-measure of 81%. All results were computed using
10 fold cross validation on the labeled data. To bet-
ter assess the performance of the proposed classifier,
we compare it to a baseline that labels the relation as
negative if the percentage of negative sentences ex-
ceeds a particular threshold, otherwise it is labeled
as positive. The thresholds were empirically esti-
mated using a separate development set. The accu-
racy of this baseline is only 71%.

To better assess the performance of the proposed
classifier, we compare it to three baselines. The first
is a random baseline that predicts an interaction as
positive with probability p that equals the proportion
of positive instances to all instances in the training
set. The second classifier (Thresh-Num) labels the
edge as negative if the number of negative instances
exceeds a threshold Tn. The third classifier (Thresh-
Perc) labels the edge as negative if the percentage of
negative instances to all instances exceeds a thresh-
old Tp. The cutoff thresholds were estimated using
a separate development set.

The 3 baselines were tested using the entire la-
beled dataset. The SVM classifier was tested using
10 fold cross validation. The accuracy of the ran-
dom classifier, the two based on a cut off number
and percentage , and the SVM classifier are shown
in Table 3. We notice that the random classifier per-
forms worst, and the classifier based on percentage
cutoff outperforms the one based on number cut-
off. The SVM classifier significantly outperforms all
other classifiers. We tried to train a classifier using
both the number and percentage of negative and pos-
itive posts. The improvement over using the baseline
using the percentage of negative posts was not sta-
tistically significant.

We evaluated the importance of the features listed
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in Table 1 by measuring the chi-squared statistic for
every feature with respect to the class. We found
out that the features describing the interaction be-
tween the two participants are more informative than
the ones describing individuals characteristics. The
later features are still helpful though and they im-
prove the performance by a statistically significant
amount. We also noticed that all features based on
percentages are more informative than those based
on counts. The most informative features are: per-
centage of negative posts per tread, percentage of
negative sentences per post, percentage of positive
posts per thread, number of negative posts, and dis-
cussion domain.

5.3 Structural Balance Theory
The structural balance theory is a psychological the-
ory that tries to explain the dynamics of signed so-
cial interactions. It has been shown to hold both the-
oretically (Heider, 1946) and empirically (Leskovec
et al., 2010c). In this section, we study the agree-
ment between the theory and our automatically ex-
tracted networks. The theory has its origins in the
work of Heider (1946). It was then formalized in
a graph theoretic form by (Cartwright and Harary,
1956). The theory is based on the principles that “the
friend of my friend is my friend”, “the enemy of my
friend is my enemy”, “the friend of my enemy is
my enemy”, and variations on these. The structural
balance theory states that triangles that have an odd
number of positive signs (+ + + and + - -) are bal-
anced, while triangles that have an even number of
positive signs (- - - and + + -) are not.

In this section, we compare the predictions of
edge signs made by our system to the structural bal-
ance theory by counting the frequencies of differ-
ent types of triangles in the predicted network. Ta-
ble 4 shows the frequency of every type of trian-
gle for 10 different domains. To better understand
these numbers, we compare them to the frequencies
of triangles in a set of random networks. We shuf-
fle the signs for all edges on every network keeping
the fractions of positive and negative edges constant.
We repeat shuffling for 1000 times and report the av-
erage.

We find that the all-positive triangle (+ + +) is
overrepresented in the generated network compared
to chance across all domains. We also see that the
triangle with two positive edges (+ + −), and the
all-negative triangle (− − −) are underrepresented
compared to chance across all domains. The tri-

angle with a single positive edge is slightly over-
represented in most but not all of the topics com-
pared to chance. This shows that the predicted net-
works mostly agree with the structural balance the-
ory. The slightly non standard behavior of the tri-
angle with one positive edge could be explained in
light of the weak balance theory. In this theory,
Davis (1967) states that this triangle, which corre-
sponds to the “enemy of enemy is my friend” propo-
sition, holds only if the network can be partitioned
into exactly two subsets, but not when there are more
than two. In general, the percentage of balanced tri-
angles in the predicted networks is higher than in
the shuffled networks, and hence the balanced trian-
gles are significantly overrepresented compared to
chance showing that our automatically constructed
network is similar to explicit signed networks in that
they both mostly agree with the balance theory.

5.4 Sub-Group Detection
We compare the performance of the sub-group de-
tection method to three baselines. The first base-
line uses graph clustering (GC) to partition a net-
work based on the frequency of interaction between
participants. We build a graph where each node
represents a participant. Edges link participants if
they exchange posts, and edge weights are based on
the number of posts exchanged. The second base-
line (TC) is based on the premise that participants
with similar text are more likely to belong to the
same subgroup. We measure text similarity by com-
puting the cosine similarity between the tf-idf rep-
resentations of the text in a high dimensional vec-
tor space. We tried two methods for partitioning
those graphs: spectral partitioning (Luxburg, 2007)
and a hierarchical agglomeration algorithm which
works by greedily optimizing the modularity for
graphs (Clauset et al., 2004). The third baseline is
based on stance classification approaches (e.g. (Tan
et al., 2011)). In this baseline we put all the partic-
ipants who use more positive text in one subgroup
and the participants who use more negative text in
another subgroup. Text polarity is identified using
the method described in Section 3.1.

Table 6 shows the average purity (Purity), entropy
(Entropy), Normalizes Mutual Information (NMI),
and Rand Index (RandIndex) values of the method
based on signed networks and the baselines using
different partitioning algorithms. The differences in
the results shown in the table are statistically sig-
nificant at the 0.05 level (as indicated by a 2-tailed
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Figure 2: A signed network representing participants in a discussion about the “Health Care Reform Bill”. Blue (dark)
nodes represent participants with the bill, Yellow (light) nodes represent participants against the bill, red (solid) edges
represent negative attitude, while green (dashed) edges represent positive attitude.

Createdebate Politicalforum Wikipedia
Method Purity Entropy NMI RandIndex Purity Entropy NMI RandIndex Purity Entropy NMI RandIndex
GC - Spectral 0.50 0.85 0.28 0.40 0.50 0.88 0.27 0.39 0.49 0.89 0.33 0.35
GC - Hierarchical 0.48 0.86 0.30 0.41 0.47 0.89 0.31 0.40 0.49 0.87 0.38 0.39
TC - Spectral 0.50 0.85 0.31 0.43 0.48 0.90 0.30 0.45 0.51 0.87 0.40 0.46
TC - Hierarchical 0.49 0.90 0.35 0.46 0.48 0.91 0.33 0.49 0.53 0.80 0.40 0.49
Text Polarity 0.55 0.80 0.38 0.49 0.54 0.91 0.31 0.38 0.34 0.95 0.30 0.40
Signed Networks 0.64 0.74 0.46 0.59 0.58 0.80 0.43 0.55 0.65 0.54 0.51 0.60

Table 6: Comparison of the sub-group detection method to baseline systems

paired t-test).

We notice that partitioning the signed network
that was automatically extracted from text results in
significantly better partitions on the three datasets as
indicated by the higher Purity, NMI, and RandIndex
and the lower Entropy values it achieves. We believe
that the first two baselines performed poorly because
the interaction frequency and the text similarity are
not key factors in identifying subgroup structures.
Many people would respond to people they disagree
with more, while others would mainly respond to
people they agree with most of the time. Also, peo-
ple in opposing subgroups tend to use very similar
text when discussing the same topic and hence text
clustering does not work as well. The baseline that
classifies the stance of discussants based on the po-
larity of their text performed bad too because it over-
looks the fact that most of the discussed topics in our
datasets have multiple aspects and a discussant may
use both positive and negative text targeting differ-
ent aspects of the topic. An example of a signed net-
work and the corresponding subgtoups as extracted
from real data is showm in Figure 2.

6 Conclusions

In this paper, we have shown that natural language
processing techniques can be reliably used to extract
signed social networks from text correspondences.
We believe that this work brings us closer to un-
derstanding the relation between language use and
social interactions and opens the door to further re-
search efforts that go beyond standard social net-
work analysis by studying the interplay of positive
and negative connections. We rigorously evaluated
the proposed methods on labeled data and connected
our analysis to social psychology theories to show
that our predictions mostly agree with them. Finally,
we presented potential applications that benefit from
the automatically extracted signed network.
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Abstract

User simulation is frequently used to train
statistical dialog managers for task-oriented
domains. At present, goal-driven simula-
tors (those that have a persistent notion of
what they wish to achieve in the dialog) re-
quire some task-specific engineering, making
them impossible to evaluate intrinsically. In-
stead, they have been evaluated extrinsically
by means of the dialog managers they are in-
tended to train, leading to circularity of argu-
ment. In this paper, we propose the first fully
generative goal-driven simulator that is fully
induced from data, without hand-crafting or
goal annotation. Our goals are latent, and take
the form of topics in a topic model, clustering
together semantically equivalent and phoneti-
cally confusable strings, implicitly modelling
synonymy and speech recognition noise. We
evaluate on two standard dialog resources,
the Communicator and Let’s Go datasets, and
demonstrate that our model has substantially
better fit to held out data than competing ap-
proaches. We also show that features derived
from our model allow significantly greater im-
provement over a baseline at distinguishing
real from randomly permuted dialogs.

1 Introduction

Automatically simulating user behaviour in human-
machine dialogs has become vital for training sta-
tistical dialog managers in task-oriented domains.
These managers are often trained with some vari-
ant of reinforcement learning (Sutton and Barto,
1998), where optimal behaviour is sought or learnt
through the exploration of the space of possible di-
alogs. Although learning by interacting with human

subjects is a possibility (Gas̆ić et al., 2011), it has
been argued that user simulation avoids the expen-
sive, labour intensive, and error-prone experience of
exposing real humans to fledgling dialog systems
(Eckert et al., 1997).

Training effective dialog managers should benefit
from exposure to properties exhibited by real users.
Table 1 shows an example dialog in a domain such
as we consider, where the objective is to simulate at
the semantic level. In such task oriented domains,
the user has a goal (in this case, to book a flight
from New York to Osaka), and the machine is tasked
with fulfilling it. Notice that the user is consistent
with this goal throughout the dialog, in that they do
not provide contradictory information (although an
ASR error is present), but that every mention of their
destination city uses a different string. This moti-
vates our first desideratum: that simulation be con-
sistent over the course of a dialog. Furthermore, one
can imagine users not always responding identically
in identical situations: we thus additionally require
variability. In this paper we demonstrate a fully gen-
erative, latent variable probability model exhibiting
both of these properties.

Thus far, consistent simulators have been par-
tially deterministic and have required some hand-
engineering. As a result, it has only been possible to
evaluate them extrinsically using dialog managers.
This is circular because we need simulators to train
managers, but need managers to evaluate simulators.
The issue is that judgements of quality of each de-
pend on the specifics of the other and that a proper
evaluation of one depends on the correct function-
ing of the other. Furthermore, there is little reason to
assume that because a simulator performs well with
a certain dialog manager, it would perform similarly

71



Speech Semantic Representation
M: Hello, How Can I help? M: GREETING

M: META REQUEST INFO

U: A trip from New York City to Osaka, U: PROVIDE orig city New York City
please. U: PROVIDE dest city Salt Lake City

M: Leaving from New York City to Salt Lake M: IMPLICIT CONFIRM orig dest city
City. What day would you like to travel? M: REQUEST depart date

U: No, no. Leaving from New York to Osaka U: NO ANSWER null no
in Japan. U: PROVIDE orig city New York

U: PROVIDE dest city Osaka Japan
M: Leaving from New York to Osaka Japan, M: EXPLICIT CONFIRM orig city

correct? M: EXPLICIT CONFIRM dest city
U: Yes. U: YES ANSWER null yes

Table 1: An example of a dialog in speech and its semantic equivalent. M and U denote machine and user utterances
respectively. Note how a single speech utterance is split by the semantic parser into multiple logical utterances, each
of which is broken down to an ACT, slot, and value. We consider resources where gold standard transcriptions are not
available; thus there will be speech recognition noise, e.g. Osaka rendered as Salt Lake City, something our model
is able to capture.

well with other managers. In contrast, a probabilistic
formulation such as we propose allows us to evalu-
ate our models intrinsically using standard machine
learning metrics, and without reference to a specific
manager, thus breaking the circularity, and guarding
against such experimental biases.

We demonstrate the efficacy of our model on
two tasks, and compare it to two other approaches.
Firstly we use a standard bigram model as conceived
by Eckert et al. (1997) and Levin and Pieraccini
(2000); secondly we compare to a probabilistic goal-
based simulator where the goals are string literals,
as envisaged by Scheffler and Young (2002) and
Schatzmann et al. (2007b). We demonstrate sub-
stantial improvement over these models in terms of
predicting heldout data on two standard dialog re-
sources: DARPA Communicator (Levin et al., 2000;
Georgila et al., 2005b) and Let’s Go (Black and Es-
kenazi, 2009).

2 Related Work

2.1 Related Work on User Simulation

User simulation as a stochastic process was first en-
visioned by Eckert et al. (1997): their Bigram model
conditions user utterances exclusively on the pre-
ceding machine utterance. This was extended by
Levin and Pieraccini (2000), who manually restrict

the model to estimating “sensible” pairs of user and
machine utterances by assigning all others probabil-
ity zero.

Bigram models ensure that a locally sensible
response to a machine utterance is provided by
the simulator; however, they do not ensure that
it provides responses consistent with one another
throughout the dialog. Several approaches have at-
tempted to overcome this problem. Pietquin (2004),
for example, explicitly models a user goal as a set
of slot-value pairs randomly generated once per dia-
log. He then hand selects parameters to ensure that
the user’s actions are in accordance with their goal.

Jung et al. (2009) use large amounts of dialog
state annotations (e.g. what information has been
provided so far) to learn Conditional Random Fields
over the user utterances, and assume that those fea-
tures ensure user consistency. Georgila et al. (2005a)
instead consider only act-slot pairs, and thus incon-
sistency is not a factor.

Scheffler and Young (2002) simulate user be-
haviour by introducing rules for actions that depend
on the user goal, and probabilistic modelling for ac-
tions that are not goal-dependent. They then map
out a decision network that determines user actions
at every node prior to the start of the dialog. Agenda-
based user simulation, another approach from the lit-
erature, assumes a probability distribution over the
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user goal which is either induced from data (Schatz-
mann et al., 2007b), or is manually set when no data
is available (Schatzmann et al., 2007a). An agenda,
which is a stack-like structure of utterances to be
produced given the goal, is then devised determin-
istically. Keizer et al. (2010) combine the decision
network with the agenda and goal to allow for some
variability for some actions. These models ensure
consistency but restrict the variability in user be-
haviour that can be accommodated. Furthermore,
because these approaches do not define a complete
probability distribution over user behaviour, they re-
strict possibilities for their evaluation, a point to
which we now turn.

2.2 Related Work on Simulator Evaluation

No standardised metric of evaluation has been estab-
lished for user simulators largely because they have
been so inextricably linked to dialog managers. The
most popular method of evaluation relies on gener-
ating synthetic dialogs through the interaction of the
user simulator with some dialog manager. Schatz-
mann et al. (2005) hand-craft a simple determin-
istic dialog manager based on finite automata, and
compute similarity measures between these synthet-
ically produced dialogs and real dialogs. Georgila
et al. (2006) use a scoring function to evaluate syn-
thetic dialogs using accuracy, precision, recall, and
perplexity, while Schatzmann et al. (2007b) rely
on dialog completion rates. Williams (2008) use
a Cramer–von Mises test, a hypothesis test to de-
termine whether simulated and real dialogs are sig-
nificantly different, while Janarthanam and Lemon
(2009) use Kullback Leibler Divergence between the
empirical distributions over acts in real and simu-
lated dialogs. Singh et al. (2000) and Ai and Lit-
man (2008) judge the consistency of human quality
ranked synthetic dialogs generated by different sim-
ulators interacting with the IT-SPOKE dialog sys-
tem.

Schatzmann et al. (2007b) use a simulator to train
a statistical dialog manager and then evaluate the
learned policy. Because this only indirectly evalu-
ates the simulator, it is inappropriate as a sole mea-
sure of quality.

There has been far less evaluation of simulators
without a dialog manager. The main approach is
to compute precision and recall on an utterance ba-

sis, which is intended to measure the similarity be-
tween real user responses in the corpora and simu-
lated user responses produced under similar circum-
stances (Schatzmann et al., 2005; Georgila et al.,
2006). However, this is a harsh evaluation as it as-
sumes a correct or “best” answer, and penalises valid
variability in user behaviour.

3 Dialog as a Statistical Process

We consider a dialog to be a series of turns, com-
prised of multiple utterances. Each Utterance con-
sists of an ACT, a slot, and a value, as shown in Ta-
ble 1. Dialogs proceed by the user and the machine
alternating turns. Because the dialogs are of mixed
initiative, there is no restriction on the number of
contiguous machine or user utterances.

Our aim is to model the user, and are interested
in the conditional distribution of the user utterances
given the dialog up to that point. In other words, we
are interested in the distribution p (ui|d1 . . . di−1),
where dn is either a machine utterance mn or a user
utterance un.

4 Models of Users in Dialogs

This section describes several models of increas-
ing complexity: a Bigram model, which serves as
a baseline; an upper-bound on String-Goal models,
which we design to mimic the behaviour of previous
goal-based approaches, but with a probabilistic for-
mulation; and finally our approach, the Topic-Goal
model.

4.1 Bigram Model

The simplest model we define over dialogs is the bi-
gram model of Eckert et al. (1997):

p (ui|m) = p (ui|mi−1) (1)

p (u|m) =
∏
i

p (ui|m) (2)

The probability of each user utterance ui (the com-
plete {ACT, slot, value} triple) is dependent only on
the machine utterance immediately preceding it (the
slight abuse of notationmi−1 here does not mean the
utterance at i−1 in the machine utterance list, but the
utterance immediately preceding the i-th), and utter-
ances in the dialog are conditionally independent of
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one another. (Georgila et al. (2006) found no bene-
fit from increasing the Markov horizon). Since each
utterance is generated independently of others in the
dialog with the same context, there is no enforced
consistency between utterances.

Since we require a distribution over all possible
utterances, assigning non–zero probability to cases
outside of the training data, our bigram model is in-
terpolated with a unigram model, which itself is in-
terpolated with a smoothing model which assumes
independence between the act, slot, and value el-
ements of the utterance. Interpolation weights are
set to maximise probability of a development set of
dialogs. Each sub-model uses the maximum like-
lihood estimator (the relative frequency of the ut-
terance), and unseen machine utterances place full
weight on the unigram/smoothed model (ignoring
the bigram probability since it has no meaning if
mi−1 is unobserved). We label this model the Bi-
gram model in subsequent experiments.

4.2 Goal-Based Models
One way to ensure consistency and more realistic
behaviour is to have a goal for the user in the dia-
log, which corresponds to values for slots required in
the problem. For instance, they might be the origin
and destination cities in a flight booking domain. In
standard machine learning terms, the goal becomes
a latent variable g in a probability model. We can
then define a distribution over utterances as:

p (ui|m, g) = p (ui|mi−1, g) (3)

p (u|m) =
∑
g

p (g)
∏
i

p (ui|mi−1, g) (4)

4.3 An Upper-Bound on String-Goal Models
The simplest variant of g has string values for each
of the slots the user is required to provide in order
for the dialog to succeed. Thus we may have:

g = [orig city: New York; dest city: Osaka]

as presented in Schatzmann et al. (2005) and Schatz-
mann et al. (2007b). However, in these simulators,
while the goal is probabilistic, there is no distribu-
tion over utterances given the goal because utter-
ances are assembled deterministically from a series
of rule applications. There is also no marginalisation
over the goal as in (4) above.

The issue with a model of user goals as strings
in this fashion is that users describe the same val-
ues in multiple ways (Osaka Japan, Osaka), and
speech recognition errors corrupt consistent user
input (Osaka mis-recognised as Salt Lake City).
Users also might legitimately switch their goals mid-
dialog. Inference in the model would have allow
for these possibilities: we would have to marginalise
over all possible goal switches.

For the sake of comparison, we compute an upper-
bound on string-goal models, which gives a flavour
for how such models would perform optimistically.
The upper-bound assigns probability to dialogs as
follows: for each utterance ui if the corresponding
value vi has been seen before in the dialog, the prob-
ability used for that utterance is just p (ai, si|mi−1),
that is, the probability of the act ai and slot si only;
there is no penalty for repetition of the value. If the
value is unseen in the dialog, we use the full proba-
bility of the utterance from the bigram model as de-
scribed above. This is optimistic because there is no
penalty for repeated goal changes besides that im-
posed by the bigram model itself, and no penalty is
imposed for choosing between previously sampled
goals as would be necessary in a probability model.

Any string-based model necessarily assigns lower
probabilities to data than the upper bound, because
it would penalise goal changes (in a probabilistic
sense; that is, there would be a term to reflect the
probability of some new goal given the old) to al-
low for the discrepancy in values present in dialogs.
In contrast, our upper bound does not include such
a term. Furthermore, once multiple goal values had
been uttered in the dialog, we would have to sample
one to use for the next utterance, which would again
incur some cost: again, we do not have such a cost
in our upper bound.

We could in theory use an external model of noise
to account for these value discrepancies (and the
ASR errors we model in the next section). However,
this would further decrease the probability, as some
probability mass currently assigned to the heldout
data would have to be reserved for the possibility of
string renderings other than those we observe.

It bears reiterating that our upper bound on string-
goals is not a generative model: however, it allows
us to assign probabilities to unseen data (albeit op-
timistically), and thus provides us with a point of
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comparison. Although not technically a model, we
refer to this as the String-Goal model for the remain-
der of the paper.

4.4 Topic-Goal Model
To motivate our proposal, consider that over the
course of a dialog one could look at the set of all
values used for some slot, for example the destina-
tion city, as a count vector:

vdest city = Salt Lake:1; Osaka:2; Osaka Japan:1

The above vector may arise because the user actu-
ally wants to go to Osaka, but the destination is
initially mis-recognised as Salt Lake, and the user
finally disambiguates with the addition of the coun-
try. Such situations are common in the noisy dia-
log resources from which simulators are induced—
however, any string-based goal will necessarily con-
sider these different renderings to be different goals,
and will require resampling or smoothing terms to
deal with them.

Our approach instead treats the count vector as
samples from a topic model; that is, a mixture over
multinomial distributions. Whilst by far the most
popular topic model is LDA (Blei et al., 2003), it
provides too flexible a distribution over count vec-
tors to be used with such small samples (we con-
firmed the poor suitability of this model in pre-
liminary experiments). Instead we use the simpler
Mixture-of-Multinomials model, where the latent
topic is sampled once per dialog instead of once per
value uttered. We describe below how parameters to
this model are estimated, and focus for now on how
the resulting model assigns probability to dialogs.

In this formulation, the latent goal for each slot,
which was previously a string, now becomes an in-
dicator for a topic in a topic model. Each topic can
in theory generate any string (so the model is inher-
ently smoothed), but most strings in most topics will
have only the smoothing weight and most probabil-
ity mass will be on a small number of highly corre-
lated strings. We treat the slots as being independent
of one another in the goal, and thus:

p(g) =
∏
s

p (zs) (5)

Where zs is the topic indicator for some slot s. If slot
s has associated with it a count vector of values vs,

each looking like the example above, then the distri-
bution over the values used for each slot becomes:

p (vs) =
∑
zs

p (zs) p (vs|zs) (6)

We then define a bigram-based Act model to de-
scribe the probabilities of the {ACT, slot} pairs to
which these values belong, so that:

p (u|m) =
∏
s

p (zs) ·
∏
i

p (ai, si|mi−1) p (vi|zsi)

(7)
In reality, some slots will not have corresponding
values, or will be slots whose values are not appro-
priate to model in the above way. Dates and times,
for example, have ordinal and structural relations be-
tween them, and a model which treats them as dis-
connected entities is inappropriate. For utterances
defined over such slots we use a standard bigram
model as in (1), and for appropriate utterances we
use a topic-goal model as in (7). This constitutes
the only domain knowledge necessary to adapt the
model for a new resource. We refer to this model as
the Topic-Goal model.

4.4.1 Topic Model Parameter Estimation
Our topic model is a Bayesian version of the

Mixture-of-Multinomials model. Under this model,
each dialog has associated with it a latent variable
zs for each slot s in the goal, which indicates which
topic is used to draw the values for that slot. Con-
ditioned on z, independent samples are drawn from
the distribution over words to which that value of
z corresponds—however, the effect in the marginal
distribution over words is to strongly prefer sets
which have co-occurred in training as these are as-
signed to the same topic.

Bayesian inference in mixture models has been
described in detail in Neal (1991) and Griffiths and
Steyvers (2004), so we give only a brief account here
for our particular model. We take r appropriately-
spaced samples from a Gibbs’ sampler over the pos-
terior mixture parameters θ, φ: θ are the word-topic
parameters and φ are the mixture proportions. We
assume a uniform Dirichlet prior on θ and φ, lead-
ing to Dirichlet posteriors which we integrate out in
the predictive distribution over v using the standard
Dirichlet integral. For each of our r samples we have
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components z parameterised by γrz (the Dirichlet
parameter for the z-th mixture component in the r-
th sample) and αrzj for each word j in the z-th topic
for the r-th sample. The • notation indicates a sum
over the corresponding index, i.e. γr• =

∑
z γrz .

Then:

p (v) =
1
|r|

∑
r

∑
z

γrz
γr•

p (v|αrz) (8)

p (v|α) =
Γ (α•)

Γ (α• + v•)

∏
j

Γ (vj + αj)
Γ (αj)

(9)

This states that each of the r samples has topics z
which are multinomial distributions with posteriors
governed by parameters αrz . For any of these top-
ics, the distribution over v is as given in Equation
(9) (we suppress the subscripting of α here for the
different samples and topics, since this holds what-
ever its value). The final predictive probability given
in Equation (8) averages over the samples r and the
topics z (with topics weighted by their parameters
γrz).

5 Experimental Setup

Our experiments use two standard corpora, the
first of which is DARPA Communicator (DC), a
flight booking domain collected between 2000-2001
through the interaction of real users with 10 different
systems (Levin et al., 2000). It was later automati-
cally annotated by Georgila et al. (2005b) to include
semantic information. The second corpora is Let’s
Go (LG), years 2007, 2008, and 2009, distributed as
part of the Spoken Dialog Challenge (Black and Es-
kenazi, 2009). Let’s Go is a bus routing domain in
Pittsburgh collected by having the general public in-
teract with the CMU dialog system to find their way
through the city. The dialogs in both corpora are of
mixed-initiative, having a free number of contiguous
system and user responses.

We preprocessed the corpora, converting Com-
municator XML-tagged files and Let’s Go system
log files into sequences of ACT, slot, and value ut-
terances. Table 2 gives examples. We then divided
the corpora into training, development and test sets
as follows: Communicator contains 2285 dialogs in
total, and Let’s Go contains 17992, and in each case
we selected 80% of dialogs at random for training,
10% for development, and 10% for testing.

DC: PROVIDE INFO orig city Boston
LG: INFORM place [departure place CMU,

arrival place airport]

Table 2: Example utterances from the two corpora. Note
how in addition to the value, the Let’s Go utterances con-
tain properties (departure place and arrival place).

Let’s Go is a noisy corpus that contains far more
speech recognition errors than Communicator. In
addition, users tend to be more flexible with their
bus routes than they are with their flight destinations,
and so values are a lot more varied throughout the
course of Let’s Go dialogs than Communicator ones.
Furthermore, Let’s Go semantic parses contain am-
biguity not present in Communicator; the parser
fails to distinguish departure from arrival places over
90% of the time, and instead assigns them a generic
Single Place property. Our current model assumes
the decisions made by the semantic parser are cor-
rect. In reality however, a better model would in-
corporate potential noise in the semantic parse in a
joint model. We defer this more complex treatment
for future work.

Free model parameters are set by a simple search
on the development set, where the objective is
likelihood—for the bigram model the parameters are
the interpolation weights, and for the topic model we
search for the number of topics and smoothing con-
stant for the topic distributions. For Let’s Go, since
we can have multiple places provided in a single act,
we treat each utterance as containing a set of values
and build the count vector for the topic model as the
union of these sets over the whole dialog. The slots
over which the topic model is defined for Commu-
nicator are dest city and orig city (this takes into ac-
count PROVIDE and REPROVIDE acts). For Let’s Go
we derive the model over the three properties: sin-
gle place, arrival place and departure place, as op-
posed to the less informative slot place.

6 Evaluating the Simulators

We evaluate each of the models in terms of the prob-
ability they assign to the test data. This metric is
more suitable than the precision and recall metrics
which have been previously used, because it ac-
knowledges that, rather than each user response be-
ing “correct” at the point which it is observed, there
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Model DC(A) DC(P) LG(A) LG(P)
Topic 252.78 860.2 113.45 1417.06
String 270.09 1286.03 169.87 4578.23

Bigram 347.88 5979.53 223.23 10125.87
Act 9.56 5.2 2.77 2.34

Table 3: The mean per-utterance perplexity on heldout
data. DC-A is all acts for Communicator, while DC-P is
the calculated on PROVIDE acts alone (the acts on which
our model is designed to improve prediction). LG-A and
LG-P have the same meaning for Let’s Go.

is a distribution over possible responses. Because
the models we define are full probability models, we
are able to compute this metric and do not need to
use an arbitrarily selected dialog manager for evalu-
ation.

The heldout probability metric should be under-
stood as a means of comparing the relative viabil-
ity of different models of the same data. Note that
we are reporting the probability of unobserved data,
rather than data from which the models were in-
duced, and are thus measuring the generalisability
of the models (in contrast, maximising the proba-
bility of the training data would simply encourage
overfitting). The absolute numbers are hard to inter-
pret, as there is no hard upper bound; while it may
be appealing to think of an upper bound of 1, this is
incorrect as it would imply that there was no vari-
ability in the data. However, it should be understood
that assigning particular behaviour higher probabil-
ity means that the model is more likely to exhibit
it when run in simulation mode—and since the user
behaviour in question has not been seen at training
time, this measures the extent to which the models
have generalised beyond the training data relative to
one another.

We report the mean per-utterance log probability
of unseen data, that is, the probability of the whole
heldout corpus divided by the number of user utter-
ances.

6.1 Results

Figure 1 shows the results of our evaluation. We see
that the Bigram model is weak on both resources.
The results of the String Goal model suggest that,
even using the generous evaluation we do here, there
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Figure 1: Heldout probability of the two resources for
varying percentages of training dialogs. Note that while
the percentages match across resources, Let’s Go is much
larger and thus the absolute numbers of dialogs are differ-
ent, which explains the better performance on Let’s Go.

is much variability due to synonymy and recognition
errors which string goals are unable to capture (in
contrast to our Topic Goal model). The Topic Goal
model explains this much more easily by grouping
commonly co–occurring values into the same topic.
Table 3 shows the perplexities corresponding to the
performances with 100% training data for all acts
and just PROVIDE acts (perplexity is 2−lp where lp is
the log probability). Improvements are more appar-
ent when we compute the probability over PROVIDE

acts alone, which the models are designed to handle.
And since perplexity is not on a log scale, the differ-
ences are more pronounced. The Act model, which
is a bigram model over {ACT, slot} pairs alone ex-
cluding the values, demonstrates the vast discrep-
ancy in uncertainty between the full problem and the
valueless prediction problem. We note that the per-
plexity of our Act model on Communicator is com-
parable to that of Georgila et al. (2006).

6.2 Example Simulator Behaviour

In this section we give examples of our Topic
Goal model simulator in generation mode, which
corresponds to sampling from the induced model.
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d zdest city [probability] proportion user utterance given topic zdest city and
of samples machine utterance REQUEST INFO dest city

Norfolk Virginia [0.562] 0.264 PROVIDE INFO dest city Norfolk Virginia
Norfolk [0.234] 0.111 PROVIDE INFO dest city Norfolk

1 Newark Virginia [0.088] 0.039 PROVIDE INFO dest city Newark Virginia
Virginia Beach [0.0412] 0.028 PROVIDE INFO orig city Las Vegas Nevada

Newark [0.040] 0.028 NO ANSWER null no
0.025 COMMAND start over start over

Chicago [0.350] 0.164 PROVIDE INFO dest city Chicago
Chicago Illinois [0.182] 0.082 PROVIDE INFO dest city Chicago Illinois

2 Duluth Minnesota [0.124] 0.057 PROVIDE INFO dest city New Orleans
New Orleans [0.122] 0.055 PROVIDE INFO dest city Duluth Minnesota

New Orleans Louisiana [0.085] 0.039 PROVIDE INFO dest city New Orleans Louisiana
0.028 NO ANSWER null no

Anchorage [0.539] 0.252 PROVIDE INFO dest city Anchorage
Anchorage Alaska [0.148] 0.072 PROVIDE INFO dest city Anchorage Alaska

3 Jacksonville Florida [0.124] 0.056 PROVIDE INFO dest city Jacksonville Florida
Great Anchorage Alaska [0.098] 0.048 PROVIDE INFO dest city Great Anchorage Alaska

Duluth Minnesota [0.057] 0.047 PROVIDE INFO orig city Hartford Connecticut
0.026 PROVIDE INFO dest city Duluth Minnesota

Table 4: Examples of sampling from the topic goal model. Left: top 5 strings (with probabilities) sampled from topics
for three different dialogs d. Right: top 6 utterances (plus fraction of samples in 10,000) generated in response to the
machine utterance “REQUEST INFO dest city” and conditioned on the topic zdest city .

Our examples are drawn from the model induced
for the Communicator data. Sampling from stan-
dard distributions can be implemented following
the algorithms in Bishop (2006) and other statisti-
cal resources. Utterances are sampled by sampling
ACT, slot pairs from the distribution p (ai, si|mi−1)
(drawing a value from a multinomial distribution). If
we sample a PROVIDE INFO act, we check whether
we have sampled a topic for the corresponding slot
thus far in the dialog. If not, we sample one by
drawing a topic indicator from p(zs) = γrz

γ••
and then

drawing a multinomial distribution over strings from
the Dirichlet posterior corresponding to z. Once the
topic for the slot is set, we sample values as draws
from the fixed multinomial and add these to the ACT,
slot pair.

Table 4 shows some examples drawn from the
model. For each row in the table (corresponding to a
new dialog d), we sample a topic for the dest city
and orig city as needed, and sample 10000 utter-
ances given that topic. The left hand side of the ta-
ble shows the top five strings in the sampled topic,

while the right hand side shows the top six utter-
ances in response to REQUEST INFO dest city. Note
that the proportion of utterances on the right does
not match the probability of the values on the left
because of the presence of other user acts besides
PROVIDE dest city.

7 Evaluating Model Consistency

Having shown in the previous section that our Topic
Goal model is a much better predictor of heldout
data than the String Goal model or Bigram model,
we now turn to a demonstration of the model’s cap-
turing of consistency.

In the face of value synonymy and ASR errors,
we define inconsistent dialogs to be ones that are lo-
cally coherent but lack the structure of a real dialog
from one turn to the next. We then suggest that an
appropriate task for consistent models is distinguish-
ing between consistent and inconsistent dialogs.

To test this hypothesis, we devise the following
classification problem: can we discriminate between
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Baseline Dialog length (turns)
Mean, standard deviation, min and max acts per turn

Presence of special machine acts (flight offer and confirm)
Presence of user acts (provide a dest city and arrival city)

Proportion of acts which were provides
String Consistency Did the user provide inconsistent information about dest city?

Did the user provide inconsistent information about orig city?
Topic Model Ranked list of posterior probabilities of top 50 topics

Normalised probability of dialog for topic model

Table 5: Feature sets for consistency experiments

real dialogs and those generated by randomly sam-
pling turns from different dialogs? In this section we
induce classifiers over various feature sets to demon-
strate that we can, and that the Topic Goal model
contains far more useful information in this regard
than string-based consistency features. (The bigram
model by definition provides no help here, since the
units of which dialogs consist contain the entire win-
dow of context used for the bigram model).

We take our training and development data from
the Communicator corpus in the previous section,
and create a classification problem as follows: real
dialogs form positive examples in the classification
problem. To create negative examples, we sample
{machine, user} turns at random from the appropri-
ate resource. We keep a histogram over real dia-
log lengths, and sample a number of turns for our
“fake” dialogs proportional to this histogram. We
then sample this many turns from the frequency dis-
tribution over turns in the real data, and create ex-
actly as many dialogs in this fashion as real dialogs
in the data. The result is an equal number of dialogs
comprised of real turns, of (expected) real length,
but where the sequence of turns is highly unlikely to
be coherent given the random sampling. The classi-
fication problem is thus far from trivial. We do this
from our training data to produce data with which to
train the classifier, and from our development data
to provide test instances. This gives rise to 2500
training instances, and 500 test instances.

We learn linear SVMs with various features de-
scribed in Table 6. These feature sets are designed
to capture different aspects of consistency: the base-
line features are intended to capture surface level
features of the dialogs, inspired by (Schatzmann et

al., 2005) where they provide trivial separation of
real from simulated dialogs. However, our setting
is different: we do not seek to tell real dialogs from
fully simulated ones, but real dialogs from scram-
bled versions of real dialogs. In addition to length-
based features, we add binary presence indicator for
several user and machine acts highly correlated with
the completion of dialogs, as well as for acts which
indicate the provision of information and the propor-
tion of all acts occupied by these. The table gives a
complete list of these Baseline (B) features.

We derive a second set of features intended to
replicate the utility of string-based goals: we set up
binary features to fire if contradictory information is
provided for the slots over the course of the dialog.
These are our String Consistency (SC) features.

Finally, we use our topic-model simulator to de-
rive consistency features. Our features are the pos-
terior distribution over topics for each slot given that
dialog. Our topics are induced from the real training
dialogs, and their posterior probabilities computed
for all dialogs relative to this model. We take poste-
rior probabilities of the fifty most probable topics for
each of the dest city and orig city slots as features,
as well as the normalised log probability of the di-
alog (the log probability divided by the number of
user utterances). These form our Topic Model (TM)
features.

Our classifiers are linear SVMs, and we use lib-
svm (Chang and Lin, 2011), scaling features to the
range [0 − 1]. All other parameters are left at their
defaults.
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Feature Set Accuracy
Baseline (B) 74.34 ±3.77

String Consistency (SC) 63.60 ±4.27
B + SC 77.63 ±3.58

Topic Model (TM) 79.61 ±3.44
B + SC + TM 85.96 ±2.89

Table 6: Performances for the classifiers. Errors are 95%
intervals to the accuracies assuming they are parameters
to a binomial distribution

7.1 Results

The results of the classifiers are shown in Table 5.
Since we have an equally balanced binary classifi-
cation task, accuracy is the most appropriate metric.
Here we see that the baseline and string consistency
features have roughly the same discriminatory po-
tential, and their union produces a slight improve-
ment. The topic model features are far superior to
this, and the union of all three sets gives a further
improvement.

These results demonstrate that our model encodes
notions of consistency which go substantially be-
yond those defined at the level of strings. Features
defined over the latent topic goal space substantially
improve performance in a difficult discrimination
task, demonstrating that our model captures an im-
portant notion of how real dialogs appear that is not
shared by the other models we consider.

8 Concluding Remarks and Future Work

This paper presents a fully generative goal driven
user simulator, the first to merge both consistency
and variability within a fully probabilistic frame-
work. We evaluate our model on two task-based di-
alog domains, Let’s Go and Communicator, and find
it to outperform both a simple bigram model and an
upper bound on probability models where the strings
are represented as goals, in terms of the probability
the model assigns to heldout dialogs.

We then move on to show that features derived
from the model lead to substantial improvement in
detecting real dialogs from those where the turns
have been selected at random from all turns in the
training data: this is a fairly difficult task, but our
model allows significant improvement over strong
and sensible baselines.

Our model could be extended in a number of
ways. It could be improved to incorporate noise
resulting from the decisions made by the semantic
parser. Another possible improvement is to explore
the effects of introducing dependency between the
slots in the user goal, which would enforce more
plausible values pairings and would potentially im-
prove the simulator’s performance. The effects of a
dependence assumption between the different utter-
ances occurring in a single user turn under the act
model can also be explored. We would also like to
use our simulator to train a POMDP-based dialog
manager using a form of reinforcement learning.
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Abstract

Incremental processing allows system design-
ers to address several discourse phenomena
that have previously been somewhat neglected
in interactive systems, such as backchannels
or barge-ins, but that can enhance the re-
sponsiveness and naturalness of systems. Un-
fortunately, prior work has focused largely
on deterministic incremental decision mak-
ing, rendering system behaviour less flexible
and adaptive than is desirable. We present a
novel approach to incremental decision mak-
ing that is based onHierarchical Reinforce-
ment Learningto achieve an interactive op-
timisation of Information Presentation (IP)
strategies, allowing the system to generate
and comprehend backchannels and barge-ins,
by employing the recent psycholinguistic hy-
pothesis ofinformation density (ID)(Jaeger,
2010). Results in terms of average rewards
and a human rating study show that our learnt
strategy outperforms several baselines that are
not sensitive to ID by more than23%.

1 Introduction

Recent work on incremental systems has shown
that adapting a system’s turn-taking behaviour to be
more human-like can improve the user’s experience
significantly, based on incremental models of auto-
matic speech recognition (ASR) (Baumann et al.,
2011), dialogue management (Buss et al., 2010), and
speech generation (Skantze and Hjalmarsson, 2010).
All of these approaches are based on the same gen-
eral abstract architecture of incremental processing
(Schlangen and Skantze, 2011). While this archi-
tecture offers inherently incremental mechanisms to

update and revise input hypotheses, it is affected
by a number of drawbacks, shared by determinis-
tic models of decision making in general: they rely
on hand-crafted rules which can be time-consuming
and expensive to produce, they do not provide a
mechanism to deal with uncertainty introduced by
varying user behaviour, they are unable to gener-
alise and adapt flexibly to unseen situations, and
they do not use automatic optimisation. Statisti-
cal approaches to incremental processing that ad-
dress some of these problems have been suggested
by Raux and Eskenazi (2009), who use a cost matrix
and decision theoretic principles to optimise turn-
taking in a dialogue system under the constraint that
users prefer no gaps and no overlap at turn bound-
aries. Also, DeVault et al. (2009) use maximum en-
tropy classification to support responsive overlap in
an incremental system by predicting the completions
of user utterances. Selfridge et al. (2011) use logis-
tic regression models to predict the stability and ac-
curacy of incremental speech recognition results to
enhance performance without causing delay. For re-
lated work on (deterministic) incremental language
generation, please see (Kilger and Finkler, 1995;
Purver and Otsuka, 2003).

Recent years have seen a number of data-driven
approaches to interactive systems that automatically
adapt their decisions to the dialogue context us-
ing Reinforcement Learning (Levin et al., 2000;
Walker, 2000; Young, 2000; Singh et al., 2002;
Pietquin and Dutoit, 2006; Henderson et al., 2008;
Cuaýahuitl et al., 2010; Thomson, 2009; Young et
al., 2010; Lemon, 2011; Janarthanam and Lemon,
2010; Rieser et al., 2010; Cuayáhuitl and Dethlefs,
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2011; Dethlefs and Cuayáhuitl, 2011). While these
approaches have been shown to enhance the perfor-
mance and adaptivity of interactive systems, unfor-
tunately none of them has yet been combined with
incremental processing.

In this paper, we present a novel approach to in-
cremental decision making for output planning that
is based on Hierarchical Reinforcement Learning
(HRL). In particular, we address the problem of op-
timising IP strategies while allowing the system to
generate and comprehend backchannels and barge-
ins based on a partially data-driven reward func-
tion. Generating backchannels can be beneficial for
grounding in interaction. Similarly, barge-ins can
lead to more efficient interactions, e.g. when a sys-
tem can clarify a bad recognition result immediately
before acting based on a misrecognition.

A central concept to our approach is Information
Density (ID) (Jaeger, 2010), a psycholinguistic hy-
pothesis that human utterance production is sensitive
to a uniform distribution of information across the
utterance. This hypothesis has also been adopted for
low level output planning recently, see e.g. Rajku-
mar and White (2011). Our results in terms of av-
erage rewards and a human rating study show that a
learning agent that is sensitive to ID can learn when
it is most beneficial to generate feedback to a user,
and outperforms several other agents that are not
sensitive to ID.

2 Incremental Information Presentation

2.1 Information Presentation Strategies

Our example domain of application is the Infor-
mation Presentation phase in an interactive system
for restaurant recommendations, extending previous
work by Rieser et al. (2010). This previous work
incrementally constructs IP strategies according to
the predicted user reaction, whereas our approach
focuses on whether and when to generate backchan-
nels and barge-ins and how to react to user barge-
ins in the context of dynamically changing input hy-
potheses. We therefore implement a simplified ver-
sion of Rieser et al.’s model. Their system distin-
guished two steps: the selection of an IP strategy
and the selection of attributes to present to the user.
We assume here that the choice of attributes is deter-
mined by matching the types specified in the user in-

put, so that our system only needs to choose a strat-
egy for presenting its results. Attributes includecui-
sine, food quality, location, price rangeandservice
quality of a restaurant. The system then performs a
database lookup and chooses among three main IP
strategiessummary, comparison, recommendation
and several ordered combinations of these. Please
see Rieser et al. (2010) for details. Table 1 shows
examples of the main types of IP strategies that we
generate.

2.2 Backchannels and Barge-ins

An important advantage of incremental processing
can be the increased reactiveness of systems. In this
paper, we focus on the phenomena of backchannels
and barge-ins that can act as feedback in an interac-
tion for both user and system. Figure 1 shows some
examples.Backchannelscan often be interpreted as
signals of grounding. Coming from the user, the sys-
tem may infer that the user is following the presenta-
tion of information or is confirming a piece of infor-
mation without trying to take the turn. Similarly, we
can allow a system to generate backchannels to the
user to confirm that it understands the user’s prefer-
ences, i.e. receives high confidence scores from the
ASR module. An important decision for a dialogue
system is thenwhen to generate a backchannel?

Barge-instypically occur in different situations.
The user may barge-in on the system to correct an
ASR error (such as ‘Italian’ instead of ‘Indian’ in
Figure 1) or the system may want to barge-in on the
user to confirm a low-confidence ASR hypothesis so
as to be able to start an immediate database look up
for results. In the former case, the user barging-in
on the system, we assume that the system has two
choices: yielding the turnto the user, ortrying to
keepthe turn. In the latter case, the system barging-
in on the user, the system would have to decideif and
when it would be beneficial to barge-inon a user ut-
terance. In the following sections, we will develop
a model of dialogue optimisation that can address
these question based on Hierarchical RL that opti-
mises system behaviour based on trade-offs defined
in terms of ID.
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Type Example

Comparison The restaurantRomais in the medium price range, but does not serve excellent food.
The restaurantsFirenzeandVeronaboth have great food but are more expensive. The
restaurantVeronahas good service, too.

Recommendation RestaurantVeronahas the best overall match with your query. It is a bit more expen-
sive, but has great food and service.

Summary I found 24 Italian restaurants in the city centre that match your query. 11 of them are
in the medium price range, 5 are cheap and 8 are expensive.

Table 1: Examples of IP as acomparison, recommendationandsummaryfor a user looking for Italian restaurants in
the city centre that have a good price for value.

Backchannel 1 (the system backchannels)
USR I want Italian food [500 ms] in the city centre. . .
SYS uh-huh
SYS OK. I found 24 Italian restaurants in the city centre. The
restaurantRoma is in the medium price range, but does not
have great food. The restaurantsFirenzeandVerona. . .

Backchannel 2 (the user backchannels)
USR I want Italian food in the centre of town . . .
SYS OK. I found 35 central Italian restaurants . . .
USR OK.
SYS The restaurantVeronahas great food but is also a bit
expensive. TheRomais cheaper, but not as central asVerona. . .

Barge-ins 1 (the user barges-in on system)
USR I want Italian food in the centre of town . . .
SYS I found 35 Indian . . .
USR Not Indian, I want Italian.
SYS OK, Italian . . .
SYS I have 24 Italian restaurants . . .

Barge-ins 2 (the system barges-in on user)
USR I need an Italian restaurant that is located . . .
SYS I’m sorry. Did you say

Indian or Italian?
USR I said Italian. And in the centre of town please.
SYS OK, let me see. I have 24 Italian restaurants . . .

Figure 1: Example phenomena generated with the learnt
policy. The agent has learnt to produce backchannels
and barge-ins at the appropriate moment and alternative
strategies to deal with user barge-ins.

3 Information Theory

Information Theory as introduced by Shannon
(1948) is based on two main concepts: acommuni-
cation channelthrough which information is trans-
ferred in bits and theinformation gain, i.e. the in-
formation load that each bit carries. For natural lan-
guage, the assumption is that people aim to com-

municate according to the channel’s capacity, which
corresponds to the hearer’s capacity in terms of cog-
nitive load. If they go beyond that, the cognitive load
of the listener gets too high. If they stay (far) below,
too little information is transferred per bit (i.e., the
utterance is inefficient or uninformative). The in-
formation gain of each word, which is indicative of
how close we are to the channel’s capacity, can be
computed using entropy measures.

3.1 Information Density

Psycholinguistic research has presented evidence for
users distributing information across utterances uni-
formly, so that each word is carrying roughly the
same amount of information. This has been ob-
served for phonetic phenomena based on words
(Bell et al., 2003) and syllables (Aylett and Turk,
2004), and for syntactic phenomena (Levy and
Jaeger, 2007; Jaeger, 2010). Relating ID to likeli-
hood, we can say that the less frequent a word is, the
more information it is likely to carry (Jaeger, 2010).
For example the word‘the’ often has a high corpus
frequency but a low ID.

The ID is defined as the log-probability of an
event (i.e. a word) (Shannon, 1948; Levy and Jaeger,
2007), so that for an utteranceu consisting of the
word sequencew1 . . . wi−1, we can compute the ID
at each point during the utterance as:

log
1

P (u)
=

n
∑

i=1

log
1

P (wi|w1 . . . wi−1)
(1)

While typically the context of a word is given by
all preceding words of the utterance, we follow Gen-
zel and Charniak (2002) in restricting our computa-
tion to tri-grams for computability reasons. Given a
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language model of the domain, we can therefore op-
timise ID in system-generated discourse, where we
treat ID as “an optimal solution to the problem of
rapid yet error-free communicationin a noisy envi-
ronment” (Levy and Jaeger (2007), p.2). We will
now transfer the notion of ID to IP and investigate
the distribution of information over user restaurant
queries.

3.2 Information Density in User Utterances

We aim to use ID for incremental IP in two ways:
(1) to estimate the best moment for generating
backchannels or barge-ins to the user, and (2) to de-
cide whether to yield or keep the current system turn
in case of a user barge-in. While we do not have spe-
cific data on human barge-in behaviour, we know
from the work of (Jaeger, 2010), e.g., that ID influ-
ences human language production. We therefore hy-
pothesise a relationship between ID and incremen-
tal phenomena. A human-human data collection is
planned for the near future.

To compute the ID of user and system utterances
at each time step, we estimated ann−gram lan-
guage model (using Kneser-Ney smoothing) based
on a transcribed corpus of human subjects interact-
ing with a system for restaurant recommendations of
Rieser et al. (2011).1 The corpus contained user ut-
terances as exemplified in Figure 1 and allowed us to
compute the ID at any point during a user utterance.2

In this way, we can estimate points of low density
which may be eligible for a barge-in or a backchan-
nel. Figure 2 shows some example utterances drawn
from the corpus and their ID including the first sen-
tence from Figure 1. These examples were typical
for what could generally be observed from the cor-
pus. We see that while information is transmitted
with varying amounts of density, the main bits of in-
formation are transmitted at a scale between2 and
7.

Due to a lack of human data for the system utter-
ances, we use the same corpus data to compute the
ID of system utterances.3 The learning agent can use

1Available at http://www.macs.hw.ac.uk/
ilabarchive/classicproject/data/login.php.

2Note that our model does not currently handle out-of-
domain words. In future work, we will learn when to seek clar-
ification.

3We plan a data collection of such utterances for the future,
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I want Italian food in the city centre.
Yes, I need a moderately priced restaurant in the New Chesterton area.
I need the address of a Thai restaurant.

Figure 2: Information Density for example utterances,
where peaks indicate places of high density.

this information to consider the trade-off of yielding
a current turn to the user or trying to keep it, e.g., in
case of a user barge-in given the ID of its own turn
and of the user’s incoming turn. Such decisions will
be made incrementally in our domain given dynam-
ically changing hypotheses of user input.

4 Incremental Utterance Optimisation

To optimise incremental decision making for an in-
teractive system given the optimisation measure of
ID, we formalise the dialogue module as a Hierar-
chical Reinforcement Learning agent and learn an
optimal action policy by mapping states to actions
and optimising a long-term reward signal. The di-
alogue states can be seen as representing the sys-
tem’s knowledge about the task, the user and the
environment. The dialogue actions correspond to
the system’s capabilities, such aspresent the re-
sultsor barge-in on the user. They also handle in-
cremental updates in the system. In addition, we
need a transition function that specifies the way
that actions change the environment (as expressed
in the state representation) and a reward function
which specifies a numeric value for each action
taken. In this way, decision making can be seen
as a finite sequence of states, actions and rewards
{s0, a0, r1, s1, a1, ..., rt−1, st}, where the goal is to
induce an optimal strategy automatically using Rein-
forcement Learning (RL) (Sutton and Barto, 1998).

We used Hierarchical RL, rather than flat RL, be-
cause the latter is affected by thecurse of dimen-
sionality, the fact that the state space grows expo-
nentially according to the state variables taken into
account. This affects the scalability of flat RL agents

but for now make the assumption that using the corpus data is
informative since they are from the same domain.
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and limits their application to small-scale problems.
Since timing is crucial for incremental approaches,
where processing needs to be fast, we choose a hi-
erarchical setting for better scalability. We denote
the hierarchy of RL agents asM i

j where the in-
dexesi and j only identify an agent in a unique
way, they do not specify the execution sequence of
subtasks, which is subject to optimisation. Each
agent of the hierarchy is defined as a Semi-Markov
Decision Process (SMDP) consisting of a 4-tuple
< Si

j , A
i
j , T

i
j , R

i
j >. Here,Si

j denotes the set of
states,Ai

j denotes the set of actions, andT i
j is a

probabilistic state transition function that determines
the next states′ from the current states and the per-
formed actiona. Ri

j(s
′, τ |s, a) is a reward function

that specifies the reward that an agent receives for
taking an actiona in states lasting τ time steps
(Dietterich, 1999). Since actions in SMDPs may
take a variable number of time steps to complete,
the variableτ represents this number of time steps.
The organisation of the learning process into dis-
crete time steps allows us to define incremental hy-
pothesis updates as state updates and transitions in
an SMDP. Whenever conditions in the learning en-
vironment change, such as the recogniser’s best hy-
pothesis of the user input, we represent them as tran-
sitions from one state to another. At each time step,
the agent checks for changes in its state represen-
tation and takes the currently best action according
to the new state. The best action in an incremental
framework can also include generating abackchan-
nel to the user to indicate the status of grounding
or barging-into confirm an uncertain piece of infor-
mation. Once information has been presented to the
user, it iscommittedor realised. Realised informa-
tion is represented in the agent’s state, so that it can
monitor its own output.

Actions in a Hierarchical Reinforcement learner
can be either primitive or composite. The former
are single-step actions that yield single rewards, and
the latter are multi-step actions that correspond to
SMDPs and yield cumulative rewards. Decision
making occurs at any time step of an SMDP: after
each single-step action, we check for any updates
of the environment that require a system reaction or
change of strategy. If no system action is required
(e.g. because the user is speaking), the system can

decide to do nothing. The goal of each SMDP is to
find an optimal policyπ∗ that maximises the reward
for each visited state, according to

π∗
i
j(s) = argmax

a∈A
Q∗i

j(s, a), (2)

whereQi
j(s, a) specifies the expected cumulative re-

ward for executing actiona in states and then fol-
lowing π∗. We use HSMQ-Learning to induce dia-
logue policies, see (Cuayáhuitl, 2009), p. 92.

5 Experimental Setting

5.1 Hierarchy of Learning Agents

The HRL agent in Figure 3 shows how the tasks of
(1) dealing with incrementally changing input hy-
potheses, (2) choosing a suitable IP strategy and (3)
presenting information, are connected. Note that
we focus on a detailed description of modelsM1

0...3

here, which deal with barge-ins and backchannels
and are the core of this paper. Please see Dethlefs et
al. (2012) for details of an RL model that deals with
the remaining decisions.

Briefly, modelM0
0

deals with dynamic input hy-
potheses. It chooses when to listen to an incoming
user utterance (M1

3
) and when and how to present

information (M1
0...2) by calling and passing control

to a child subtask. The variable ‘incrementalStatus’
characterises situations in which a particular (incre-
mental) action is triggered, such as a floor holder‘let
me see’, a correction or self-correction. The variable
‘presStrategy’ indicates whether a strategy for IP has
been chosen or not, and the variable ‘userReaction’
shows the user’s reaction to an IP episode. The
‘userSilence’ variable indicates whether the user is
speaking or not. The detailed state and action space
of the agents is given in Figure 4. We distinguish ac-
tions for Information Presentation (IP), actions for
attribute presentation and ordering (Slot-ordering),
and incremental actions (Incremental).

Models M1
0...2 correspond to different ways of

presenting information to the user. They perform
attribute selection and ordering and then call the
child agentsM2

0...4 for attribute realisation. When-
ever a user barges in over the system, these agents
will decide to either yield the turn to the user or to
try and keep the turn based on information density.
The variables representing the status of the cuisine,
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Figure 3: Hierarchy of learning agent for incremental In-
formation Presentation and Slot Ordering.

food, location, price and service of restaurants indi-
cate whether the slot is of interest to the user (we as-
sume that0 means that the user does not care about
this slot), and what input confidence score is cur-
rently associated with the value of the slot. For ex-
ample, if our current best hypothesis is that the user
is interested in Indian restaurants, the variable ’sta-
tusCuisine’ will have a value between 1-3 indicating
the strength of this hypothesis. Once slots have been
presented to the user, they arerealisedand can only
be changed through a correction or self-correction.

Model M1
3

is called whenever the user is speak-
ing. The system’s main choice here is to remain
silent and listen to the user or barge-in to request
the desired cuisine, location, or price range of a
restaurant. This can be beneficial in certain situa-
tions, such as when the system is able to increase its
confidence for a slot from ‘low’ to ‘high’ through
barging-in with a direct clarification request, e.g.
‘Did you say Indian?’ (and thereby saving sev-
eral turns that may be based on a wrong hypoth-
esis). This can also be harmful in certain situa-
tions, though, assuming that users have a general
preference for not being barged-in on. The learning
agent will need to learn to distinguish these situa-
tions. This agent is also responsible for generating
backchannels and will over time learn the best mo-
ments to do this.

ModelsM2
0...4 choose surface forms for presenta-

tion to the user from hand-crafted templates. They
are not the focus of this paper, however, and there-
fore not presented in detail. The state-action space
size of this agent is roughly1.5 million.4 The agent

4Note that a flat RL agent, in contrast, would need8× 10
25

million state-actions to represent this problem.

States M0

0

incrementalStatus{0=none,1=holdFloor,2=correct,3=selfCorrect}
observeUser{0=unfilled,1=filled}
presStrategy{0=unfilled,1=filled}
userReaction{0=none,1=select,2=askMore,3=other}
userSilence={0=false,1=true}
Actions M0

0

IP: compareM1

1 , recommendM1

2 , summariseM1

0 , sum-
mariseCompare, summariseRecommend, summariseCompar-
eRecommend,
Incremental:correct, selfCorrect, holdFloor, observeUser
Goal State M

0

0 0, 1, 1, 0, ?

States M1

0...2

IDSystem={0=low,1=medium, 2=high}
statusCuisine{0=unfilled,1=low,2=medium,3=high,4=realised}
statusQuality{0=unfilled,1=low,2=medium,3=high,4=realised}
statusLocation{0=unfilled,1=low,2=medium,3=high,4=realised}
statusPrice{0=unfilled,1=low,2=medium,3=high,4=realised}
statusService{0=unfilled,1=low,2=medium,3=high,4=realised}
turnType{0=holding, 1=resuming, 2=keeping, 3=yielding}
userBargeIn{0=false, 1=true}
Actions M1

0...2

Slot-ordering: presentCuisine M
2

0 , presentQuality M
2

1 ,
presentLocationM2

2 , presentPriceM2

3 , presentServiceM2

4 ,
Incremental:yieldTurn, keepTurn
Goal State M

1

0...2 ?,∨ 4, 0∨ 4, 0∨ 4, 0∨ 4, 0∨ 4, ?, ?

States M1

3

bargeInOnUser={0=undecided,1=yes, 2=no}
IDUser={0=low,1=medium, 2=high, 3=falling, 4=rising}
statusCuisine{0=unfilled,1=low,2=medium,3=high,4=realised}
statusLocation{0=unfilled,1=low,2=medium,3=high,4=realised}
statusPrice{0=unfilled,1=low,2=medium,3=high,4=realised}
Actions M1

3

Incremental:doNotBargeIn, bargeInCuisine, bargeInLocation,
bargeInPrice, backchannel
Goal State M

1

3 >0, ?, 0∨ 4, 0∨ 4, 0∨ 4

States M2

0...4

IDSystem={0=low,1=medium, 2=high}
IDUser={0=low,1=medium, 2=high, 3=falling, 4=rising}
surfaceForm{0=unrealised,1=realised}
Actions M2

0...4

Surface Realisation:[alternative surface realisations]
e.g. ‘$number$ restaurants serve $cuisine$ food’, ‘$number$
places are located in $area$, etc.
Goal State M

2

0...4 ?, ?, 1

Figure 4: The state and action space of the HRL agent.
The goal state is reached when all items (that the user
specified in the search query) have been presented. Ques-
tion marks mean that a variable does not affect the goal
state, which can be reached regardless of the variable’s
value.

reaches its goal state (defined w.r.t. the state vari-
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ables in Fig. 4) when an IP strategy has been chosen
and all information has been presented.

5.2 The Simulated Environment

For a policy to converge, a learning agent typically
needs several thousand interactions in which it is ex-
posed to a multitude of different circumstances. For
our domain, we designed a simulated environment
with three main components addressing IP, incre-
mental input hypotheses and ID. Using this simula-
tion, we trained the agent for10 thousand episodes,
where one episode corresponds to one recommenda-
tion dialogue.

5.2.1 Information Presentation

To learn a good IP strategy, we use a user simula-
tion5 by Rieser et al. (2010) which was estimated
from human data and uses bi-grams of the form
P (au,t|IPs,t), whereau,t is the predicted user reac-
tion at timet to the system’s IP strategyIPs,t in state
s at timet. We distinguish the user reactions ofse-
lecta restaurant,addMoreInfoto the current query to
constrain the search, andother. The last category is
usually considered an undesirable user reaction that
the system should learn to avoid. The simulation
uses linear smoothing to account for unseen situa-
tions. In this way, we can predict the most likely
user reaction to each system action. Even though
previous work has shown thatn-gram-based simu-
lations can lead to dialogue inconsistencies, we as-
sume that for the present study this does not present
a problem, since we focus on generating single utter-
ances and on obtaining user judgements for single,
independent utterances.

5.2.2 Input Hypothesis Updates

While the IP strategies can be used for incremen-
tal and non-incremental dialogue, the second part of
the simulation deals explicitly with the dynamic en-
vironment updates that the system will need to be
sensitive to in an incremental setting. We assume
that for each restaurant recommendation, the user
has the option of filling any or all of the attributes
cuisine, food quality, location, price rangeandser-
vice quality. The possible values of each attribute
and possible confidence scores for each value are

5The simulation data are available fromwww.
classic-project.org.

shown in Table 2. A score of0 means that the user
does not care about the attribute,1 means that the
system’s confidence in the attribute’s value is low,2
that the confidence is medium, and3 means that the
confidence is high. A value of4 means that the at-
tribute has already beenrealised, i.e. communicated
to the user. At the beginning of a learning episode,
we assign each attribute a possible value and con-
fidence score with equal probability. For food and
service quality, we assume that the user is never in-
terested in bad food or service. Subsequently, con-
fidence scores can change at each time step. In fu-
ture work these transition probabilities will be esti-
mated from a data collection, though the following
assumptions are realistic based on our experience.
We assume that a confidence score of0 changes to
any other value with a likelihood of0.05. A confi-
dence score of1 changes with a probability of0.3,
a confidence score of2 with a probability of0.1
and a confidence score of3 with a probability of
0.03. Once slots have been realised, their value is
set to4. They cannot be changed then without an ex-
plicit correction. We also assume that realised slots
change with a probability of0.1. If they change,
we assume that half of the time, the user is the ori-
gin of the change (because they changed their mind)
and half of the time the system is the origin of the
change (because of an ASR or interpretation error).
Each time a confidence score is changed, it has a
probability of 0.5 for also changing its value. The
resulting input to the system are data structures of
the formpresent(cuisine=Indian), confidence=low.
The probability of observing this data structure in
our simulation is0.1 (for Indian) × 0.2 (for low
confidence)= 0.02. Its probability of changing
to present(cuisine=italian), confidence=highis 0.1
(for changing from low to medium)× 0.05 (for
changing from Indian to Italian)= 0.005.

5.2.3 Information Density Updates

We simulate ID of user utterances based on proba-
bilistic context-free grammars (PCFG) that were au-
tomatically induced from the corpus data in Section
3.2 using the ABL algorithm (van Zaanen, 2000).
This algorithm takes a set of strings as input and
computes a context-free grammar as output by align-
ing strings based on Minimum Edit Distance. We
use then−gram language models trained earlier to
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Attribute Values Confidence

Cuisine Chinese, French, German, In-, 0, 1, 2, 3, 4
dian, Italian, Japanese, Mexi-
can, Scottish, Spanish, Thai

Quality bad, adequate, good, very good 0, 1, 2, 3, 4
Location 7 distinct areas of the city 0, 1, 2, 3, 4
Price cheap, good-price-for-value,

expensive, very expensive 0, 1, 2, 3, 4
Service bad, adequate, good, very good 0, 1, 2, 3, 4

Table 2: User goal slots for restaurant queries with possi-
ble values and confidence scores.

add probabilities to grammar rules. We use these
PCFGs to simulate user utterances to which the sys-
tem has to react. They can be meaningful utter-
ances such as‘Show me restaurants nearby’or less
meaningful fragments such as‘um let me see, do
you. . . hm’. The former type is more frequent in
the data, but both types can be simulated along with
their ID (clearly, the first type is more dense than the
second).

In addition to simulating user utterances, we
hand-crafted context-free grammars of system ut-
terances and augmented them with probabilities es-
timated using the same user corpus data as above
(where again, we make the assumption that this is
to some extent feasible given the shared domain).
We use the simulated system utterances to compute
varying degrees of ID for the system.

Both measures, the ID of user and system utter-
ances, can inform the system during learning to bal-
ance the trade-off between them for generating and
receiving backchannels and barge-ins.

5.3 A Reward Function for Incremental
Dialogue Based on Information Density

To train the HRL agent, we use a partially data-
driven reward function. For incremental IP, we use
rewards that are based on human intuition. The

agent receives

R =







































+100 if the user selects an item,
0 if the user adds further con-

straints to the search,
-100 if the user does something else

or a self-correction,
-0.5 for the system holding a turn,

-1 otherwise.

The agent is encouraged to choose those sequences
of actions that lead to the user selecting a restaurant
as quickly as possible. If the agent is not sure what to
say (because planning has not finished), it can gen-
erate a floor holding marker, but should in any case
avoid a self-correction due to having started speak-
ing too early.

The remaining rewards are based on ID scores
computed incrementally during an interaction. The
agent receives the following rewards, where info-
Density(Usr) and infoDensity(Sys) refer to the ID of
the current user and system utterance, respectively,
as defined in Equation 1.

R =















-infoDensity(Usr) for keeping a turn,
barging-in or
a backchannel,

-infoDensity(Sys) for yielding a turn.

These two measures encourage the agent to consider
the trade-offs between its own ID and the one trans-
mitted by an incoming user utterance. Barging-in
on a user utterance at a low ID point then yields a
small negative reward, whereas barging-in on a user
utterance at a high ID point yields a high negative
reward. Both rewards are negative because barging-
in on the user always contains some risk. Similarly,
keeping a turn over a non-dense user utterance re-
ceives a smaller negative reward than keeping it over
a dense user utterance. A reward of−2 is assigned
for barging-in over a user utterance fragment with a
falling ID to reflect results from a qualitative study
of our corpus data: humans tend to barge-inbetween
information peaks, so that a barge-in to clarify a low-
confidence slot appears immediately before the ID is
rising again for a new slot. The exact best moment
for barge-ins and backchannels to occur will be sub-
ject to optimisation.
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6 Experimental Results

The agent learns to barge-in or generate backchan-
nels to users at points where the ID is low but rising.
In particular, the agent learns to barge-inright before
information density peaks in an incoming user utter-
ance to clarify or request slots that are still open from
the previous information density peak. If a user has
specified their desired cuisine type but the system
has received a low ASR confidence score for it, it
may barge-in to clarify the slot. This case was illus-
trated in the last example in Figure 1, where the sys-
tem clarified the previous (cuisine) slot (which is as-
sociated with a high ID) just before the user specifies
the location slot (which again would have a high ID).
The main benefit the system can gain through clar-
ification barge-ins is to avoid self-corrections when
having acted based on a low ASR confidence, lead-
ing to more efficient interactions.

The system learns to generate backchannelsafter
information peaks to confirm newly acquired slots
that have a high confidence. An example is shown
in the first dialogue fragment in Figure 1.

In addition, the system learns to yield its current
turn to a user that is barging-in if its own ID is low,
falling or rising, or if the ID of the incoming user
utterance is high. If the system’s own ID is high, but
the user’s is not, it will try to keep the turn.6 This is
exemplified in the third dialogue fragment in Figure
1.

We compare our learnt policy against two base-
lines. Baseline 1 was designed to always generate
barge-insafter an information peak in a user utter-
ance, i.e. when ID has just switched fromhigh to
falling. We chose this baseline to confirm that users
indeed prefer barge-ins before information peaks
rather than at any point of low ID. Baseline 1 yields
a turn to a user barge-in if its own ID is low and tries
to keep it otherwise.Baseline 2 generates barge-ins
and backchannels randomly and at any point during
a user utterance. The decision of yielding or keeping
a turn in case of a user barge-in is also random. Both
baselines also use HRL to optimise their IP strategy.
We do not compare different IP strategies, which has
been done in detail by Rieser et al. (2010). All re-

6Incidentally, this also helps to prevent the system yielding
its turn to a user backchannel; cf. Example 2 in Fig. 1.
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Figure 5: Performance in terms of rewards (averaged over
10 runs) for the HRL agent and its baselines.

sults are summarised in Table 3.

6.1 Average Rewards over Time

Figure 5 shows the performance of all systems in
terms of average rewards in simulation. The learnt
policy outperforms both baselines. While the learnt
policy and Baseline 1 appear to achieve similar per-
formance, an absolute comparison of the last1000
episodes of each behaviour shows that the improve-
ment of the HRL agent over Baseline 1 corresponds
to 23.42%. The difference between the learnt policy
and its baselines is significant atp < 0.0001 accord-
ing to a paired t-test and has a high effect size of
r = 0.85.

The main reason for these different performances
is the moment each system will barge-in. Since
Baseline 1 barges-in on users after an information
peak, when ID may still be high, it continuously re-
ceives a negative reward reflecting the user prefer-
ence for late barge-ins. As a result of this contin-
uous negative reward, the agent will then learn to
avoid barge-ins altogether, which may in turn lead
to less efficient interactions because low confidence
ASR scores are clarified only late in the interaction.

The main problem of the random barge-ins of
Baseline 2 is that users may often have to restart
a turn because the system barged-in too early or
in the middle of an information peak. In addition,
Baseline 2 needs to occasionally self-correct its own
utterances because it started to present information
too early, when input hypotheses were not yet stable
enough to act upon them.
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Policy Average Reward User Rating (%)

Learnt 55.54∗∗,∗ 43%∗∗

Baseline 1 45.0∗∗ 26%

Baseline 2 1.47 31%

Table 3: Comparison of policies in terms of average re-
wards and user ratings.∗ indicates a significant improve-
ment over Baseline 1 and∗∗ over Baseline 2.

6.2 Human Rating Study

To confirm our simulation-based results, we con-
ducted a user rating study on the CrowdFlower
crowd sourcing platform.7 Participants were
shown user utterances along with three options of
barging-in over them. For example:| I want

[OPTION 1] Italian food [OPTION 2] in the

city [OPTION 3] centre|, whereOPTION 1 cor-
responds to the learnt policy,OPTION 2 to Baseline
2 andOPTION 3 to Baseline 1.

Users were asked to choose one option which they
considered the best moment for a barge-in. Partici-
pants in the study rated altogether 144 utterances.
They preferred thelearnt system 63 times (43%),
Baseline 1 37 times (26%) and Baseline 2 44 times
(31%). This is statistically significant atp < 0.02
according to a Chi-Square test (χ2 = 7.542, df =
2). In a separate test, directly comparing thelearnt
policy and Baseline 1,learnt was chosen signifi-
cantly more often than Baseline 1; i.e. 79% of the
time (for 127 utterances, using a 1-tailed Sign test,
p < 0.0001). Finally, learnt was directly compared
to Baseline 2 and shown to be significantly more of-
ten chosen; i.e. 59% of the time (138 utterances, 1-
tailed Sign test,p < 0.025). These results provide
evidence that an optimisation of the timing of gener-
ating barge-ins and backchannels in incremental di-
alogue can be sensitive to fine-grained cues in evolv-
ing ID and therefore achieve a high level of adaptiv-
ity. Such sensitivity is difficult to hand-craft as can
be concluded w.r.t. the performance of Baseline 1,
which received similar rewards tolearnt in simula-
tion, but is surprisingly beaten by the random Base-
line 2 here. This indicates a strong human dislike
for late barge-ins. The bad performance of Base-
line 2 in terms of average rewards was due to the
random barge-ins leading to less efficient dialogues.

7www.crowdflower.com

Regarding user ratings however, Baseline 2 was pre-
ferred over Baseline 1. This is most likely due to the
timing of barge-ins: since Baseline 2 has a chance
of barging-in at earlier occasions than Baseline 1,
it may have received better ratings. The evaluation
shows that humans care about timing of a barge-in
regarding the density of information that is currently
conveyed and dislike late barge-ins. ID is then useful
in determining when to barge-in. We can therefore
further conclude that ID can be a feasible optimisa-
tion criterion for incremental decision making.

7 Conclusion and Future Work

We have presented a novel approach to incremen-
tal dialogue decision making based onHierarchical
RL combined with the notion ofinformation den-
sity. We presented a learning agent in the domain of
IP for restaurant recommendations that was able to
generate backchannels and barge-ins for higher re-
sponsiveness in interaction. Results in terms of av-
erage rewards and a human rating study have shown
that a learning agent that is optimised based on a
partially data-driven reward functionthat addresses
information density can learn to decide when and if
it is beneficial to barge-in or backchannel on user
utterances and to deal with backchannels and barge-
ins from the user. Future work can take several di-
rections. Given that ID is a measure influencing
human language production, we could replace our
template-based surface realiser by an agent that op-
timises the information density of its output. Cur-
rently we learn the agent’s behaviour offline, be-
fore the interaction, and then execute it statistically.
More adaptivity towards individual users and situa-
tions could be achieved if the agent was able to learn
from ongoing interactions. Finally, we can confirm
the human results obtained from an overhearer-style
evaluation in a real interactive setting and explicitly
extend our language model to discourse phenomena
such as pauses or hesitations to take them into ac-
count in measuring ID.
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Combining Hierarchical Reinforcement Learning and
Bayesian Networks for Natural Language Generation
in Situated Dialogue. InProceedings of the 13th Eu-
ropean Workshop on Natural Language Generation
(ENLG), Nancy, France.

Nina Dethlefs, Helen Hastie, Verena Rieser, and Oliver
Lemon. 2012. Optimising Incremental Genera-
tion for Spoken Dialogue Systems: Reducing the
Need for Fillers. InProceedings of the International
Conference on Natural Language Generation (INLG),
Chicago, Illinois, USA.

David DeVault, Kenji Sagae, and David Traum. 2009.
Can I finish? Learning when to respond to incremental

interpretation result in interactive dialogue. InPro-
ceedings of the 10th Annual SigDial Meeting on Dis-
course and Dialogue, Queen Mary University, UK.

Thomas G. Dietterich. 1999. Hierarchical Reinforce-
ment Learning with the MAXQ Value Function De-
composition. Journal of Artificial Intelligence Re-
search, 13:227–303.

Dmitriy Genzel and Eugene Charniak. 2002. Entropy
Rate Constancy in Text. InProceedings of the 40th
Annual Meeting on Association for Computational
Linguistics, pages 199–206.

James Henderson, Oliver Lemon, and Kallirroi Georgila.
2008. Hybrid Reinforcement/Supervised Learning of
Dialogue Policies from Fixed Data Sets.Computa-
tional Linguistics, 34(4):487–511.

T. Florian Jaeger. 2010. Redundancy and reduction:
Speakers manage syntactic information density.Cog-
nitive Psychology, 61:23–62.

Srini Janarthanam and Oliver Lemon. 2010. Learning
to Adapt to Unknown Users: Referring Expression
Generation in Spoken Dialogue Systems. InProceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 69–78, July.

Anne Kilger and Wolfgang Finkler. 1995. Incremen-
tal generation for real-time applications. Technical re-
port, DFKI Saarbruecken, Germany.

Oliver Lemon. 2011. Learning What to Say and How to
Say It: Joint Optimization of Spoken Dialogue Man-
agement and Natural Language Generation.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
2000. A Stochastic Model of Computer-Human Inter-
action for Learning Dialogue Strategies.IEEE Trans-
actions on Speech and Audio Processing, 8:11–23.

Roger Levy and T. Florian Jaeger. 2007. Speakers opti-
mize information density through syntactic reduction.
Advances in Neural Information Processing Systems,
19.

Olivier Pietquin and Dutoit. 2006. A Probabilis-
tic Framework for Dialogue Simulation and Optimal
Strategy Learning.IEEE Transactions on Speech and
Audio Processing, 14(2):589–599.

Matthew Purver and Masayuki Otsuka. 2003. Incremen-
tal Generation by Incremental Parsing. InProceedings
of the 6th UK Special-Interesting Group for Computa-
tional Linguistics (CLUK) Colloquium.

Rajakrishnan Rajkumar and Michael White. 2011. Lin-
guistically Motivated Complementizer Choice in Sur-
face Realization. InProceedings of the EMNLP-11
Workshop on Using Corpora in NLG, Edinburgh, Scot-
land.

Antoine Raux and Maxine Eskenazi. 2009. A Finite-
State Turn-Taking Model for Spoken Dialog Sys-
tems. InProceedings of the 10th Conference of the

92



North American Chapter of the Association for Com-
putational Linguistics—Human Language Technolo-
gies (NAACL-HLT), Boulder, Colorado.

Verena Rieser, Oliver Lemon, and Xingkun Liu. 2010.
Optimising Information Presentation for Spoken Di-
alogue Systems. InProceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics (ACL), Uppsala, Sweden.

Verena Rieser, Simon Keizer, Xingkun Liu, and Oliver
Lemon. 2011. Adaptive Information Presentation
for Spoken Dialogue Systems: Evaluation with Hu-
man Subjects. InProceedings of the 13th European
Workshop on Natural Language Generation (ENLG),
Nancy, France.

David Schlangen and Gabriel Skantze. 2011. A General,
Abstract Model of Incremental Dialogue Processing.
Dialogue and Discourse, 2(1).

Ethan Selfridge, Iker Arizmendi, Peter Heeman, and Ja-
son Williams. 2011. Stability and Accuracy in In-
cremental Speech Recognition. InProceedings of the
12th Annual SigDial Meeting on Discourse and Dia-
logue, Portland, Oregon.

Claude Shannon. 1948. A Mathematical Theory of
Communications. Bell Systems Technical Journal,
27(4):623–656.

Satinder Singh, Diane Litman, Michael Kearns, and Mar-
ilyn Walker. 2002. Optimizing Dialogue Management
with Reinforcement Learning: Experiments with the
NJFun System.Journal of Artificial Intelligence Re-
search, 16:105–133.

Gabriel Skantze and Anna Hjalmarsson. 2010. Towards
Incremental Speech Generation in Dialogue Systems.
In Proceedings of the 11th Annual SigDial Meeting on
Discourse and Dialogue, Tokyo, Japan.

Richard Sutton and Andrew Barto. 1998.Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
MA.

Blaise Thomson. 2009.Statistical Methods for Spo-
ken Dialogue Management. Ph.D. thesis, University
of Cambridge.

Menno van Zaanen. 2000. Bootstrapping Syntax and
Recursion using Alignment-Based Learning. InPro-
ceedings of the Seventeenth International Conference
on Machine Learning, ICML ’00, pages 1063–1070.

Marilyn Walker. 2000. An Application of Reinforcement
Learning to Dialogue Strategy Selection in a Spoken
Dialogue System for Email.Journal of Artificial In-
telligence Research (JAIR), 12:387–416.

Steve Young, Milica Gasic, Simon Keizer, Francois
Mairesse, Jost Schatzmann, Blaise Thomson, and Kai
Yu. 2010. The Hidden Information State Model: A
Practical Framework for POMDP-based Spoken Dia-
logue Management.Computer Speech and Language,
24(2):150–174.

Steve Young. 2000. Probabilistic Methods in Spoken
Dialogue Systems.Philosophical Transactions of the
Royal Society (Series A), 358(1769):1389–1402.

93



Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 94–104, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Mixed Membership Markov Models
for Unsupervised Conversation Modeling

Michael J. Paul
Center for Language and Speech Processing

Johns Hopkins University
Baltimore, MD 21218, USA
mpaul@cs.jhu.edu

Abstract

Recent work has explored the use of hidden
Markov models for unsupervised discourse
and conversation modeling, where each seg-
ment or block of text such as a message in a
conversation is associated with a hidden state
in a sequence. We extend this approach to al-
low each block of text to be a mixture of mul-
tiple classes. Under our model, the probability
of a class in a text block is a log-linear func-
tion of the classes in the previous block. We
show that this model performs well at predic-
tive tasks on two conversation data sets, im-
proving thread reconstruction accuracy by up
to 15 percentage points over a standard HMM.
Additionally, we show quantitatively that the
induced word clusters correspond to speech
acts more closely than baseline models.

1 Introduction

The proliferation of social media in recent years has
lead to an increased use of informal Web data in
the language processing community. With this ris-
ing interest in social domains, it is natural to con-
sider models which explicitly incorporate the con-
versational patterns of social text. Compared to the
naive approach of treating conversations as flat doc-
uments, models which include conversation struc-
ture have been shown to improve tasks such as fo-
rum search (Elsas and Carbonell, 2009; Seo et al.,
2009), question answering and expert finding (Xu et
al., 2008; Wang et al., 2011a), and interpersonal re-
lationship identification (Diehl et al., 2007).

While conversational features may be important,
Web-derived corpora are not always annotated with

this information, and the nature of conversations on
the Web can vary wildly across domains and venues.
Addressing these concerns, there has been recent
work with unsupervised models of Web conversa-
tions based on hidden Markov models (Ritter et al.,
2010), where each state corresponds to a conversa-
tional class or “act.” Unlike more traditional uses of
HMMs in which a single token is emitted per time
step, HMM emissions in conversations correspond
to entire blocks of text, such that an entire message
is generated at each step. Because each time step is
associated with a block of variables, we refer to this
type of HMM as a block HMM (Fig. 1a).

While block HMMs offer a concise model of
inter-message structure, they have the limitation that
each text block (message) belongs to exactly one
class. Many modern generative models of text, in
contrast, allow documents to contain many latent
classes. For example, topic models such as Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) as-
sume each document has its own distribution over
multiple classes (often called “topics”). For many
predictive tasks, topic models outperform single-
class generative models such as Naive Bayes. These
properties could similarly be desirable in conversa-
tion modeling. An email might contain a request,
a question, and an answer to a previous question –
three distinct dialog acts within a single message.
This motivates the desire to allow a message to be a
mixture of classes.

In this paper, we introduce a new type of model
which combines the functionality of topic models,
which posit latent class assignments to each individ-
ual token, with Markovian sequence models, which
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Figure 1: The graphical models for the block HMM (left) where each block of tokens depends on exactly one latent
class, LDA (center) where each token individually depends on a latent class, and M4 (right) where the class distri-
butions are dependent across blocks. Some parameters are omitted for simplicity. This figure depicts the Bayesian
variant of the block HMM (Ritter et al., 2010) where the transition distributions π depend on a Dirichlet(α) prior.

govern the transitions between text blocks in a se-
quence. We generalize the block HMM approach so
that there is no longer a one-to-one correspondence
between states in the Markov chain and latent dis-
course classes. Instead, we allow a state in the HMM
to correspond to a mixture of many classes: we re-
fer to this family of models as mixed membership
Markov models (M4). Instead of defining explicit
transition probabilities from one class to another as
in a traditional HMM, we define the distribution over
classes as a function of the entire histogram of class
assignments of the previous text segment. We define
our model using the same number of parameters as
a standard HMM (§2), and we present a straightfor-
ward approximate inference algorithm (§3).

While we introduce a general model, we will fo-
cus on the task of unsupervised conversation model-
ing. Specifically, we build off the Bayesian block
HMMs used by Ritter et al. (2010) for modeling
Twitter conversations, which will be our primary
baseline. After discussing related work (§4), we
present experimental results on a set of Twitter con-
versations as well as a set of threads from CNET
discussion forums (§5). We show that M4 increases
thread reconstruction accuracy by up to 15% com-
pared to the HMM of Ritter et al. (2010), and we
reduce variation of information against speech act
annotations by an average of 18% from HMM and
LDA baselines. To the best of our knowledge, this
work is the first attempt to quantitatively compare
unsupervised models against gold standard speech
act annotations.

2 M4: Mixed Membership Markov Models

In this section, we extend the block HMM by intro-
ducing mixed membership Markov models (M4).

Under the block HMM, as utilized by Ritter et al.
(2010), messages in a conversation flow according to
a Markov process, where the words of messages are
generated according to language models associated
with a state in a hidden Markov model. The intu-
ition is that HMM states should correspond to some
notion of a conversation “act” such as QUESTION or
ANSWER. The intuition is the same under M4, but
now each token in a message is given its own class
assignment, according to a class distribution for that
particular message. A message’s class distribution
depends on the class assignments of the previous
message, yielding a model that retains sequential de-
pendencies between messages, while allowing for
finer grained class allocation than the block HMM.
Modeling messages (or more generally, text blocks)
as a mixture of multiple classes rather than a single
class gives rise to the “mixed membership” property.

In the subsections below, we formalize and ana-
lyze this new model.

2.1 Structure Assumptions

We first define the discourse structure and termi-
nology we will be assuming. The discourse struc-
ture is a directed graph, where nodes correspond to
segments of a document (which we will refer to as
“blocks” of text), and the edges define the dependen-
cies between them.
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Thus, a text block is a set of tokens, while a doc-
ument consists of the discourse graph and all blocks
associated with it. In the context of modeling con-
versation threads, which will be the focus of our ex-
periments later, we will assume a block corresponds
to a single message in a thread. The parent of a mes-
sage m is the message to which it is a response; if
a message is not in response to anything in particu-
lar, then it has no parent. Any replies to the message
m are the children of m. The thread as a whole is
called a document.

The discourse graph should be acyclic. A directed
acyclic graph (DAG) offers a flexible representation
of discourse (Rosé et al., 1995), but for simplic-
ity, we will restrict this and assume that each sub-
graph is a tree; i.e. no message has multiple parents.
The graph as a whole may be a forest: for example,
someone could write a new message in a conversa-
tion that is not directly in reply to any previous mes-
sage, so this message would not have any parents,
and would form the root of a new tree in the forest.

2.2 Generative Story

Extending the block HMM, latent classes in M4 are
now associated with each individual token, rather
than one class for an entire block. The key differ-
ence between the generative process behind M4 and
the block HMM is that the transition distributions
are defined with a log-linear model, which uses class
assignments in a block as features to define the dis-
tribution over classes for the children of that block.
Put another way, a state in M4 corresponds to a class
histogram, and transitions between states are func-
tions of the log-linear parameters.

Given a block b, we will use the notation b to de-
note the block’s feature vector, which consists of the
histogram of latent class assignments for the tokens
of b.1 There are K classes. Additionally, we assume
each feature vector has an extra cell containing an
indicator denoting whether the block has no parent
– this allows us to learn transitions from a “start”
state. We also include a bias feature that is always
1, to learn a default weight for each class. There

1One could also use other functions of the class histograms
rather than the raw counts themselves. For example, we experi-
mented with binary indicator features (i.e. “does class k appear
anywhere in block b?”), but this performed consistently worse
in early experiments, and we do not consider this further.

are thus K + 2 features which are used to predict
the probability of each of the K classes. The fea-
tures are weighted by transition parameters, denoted
λ. The random variable z denotes a latent class, and
φz is a discrete distribution over word types – that
is, each class is associated with a unigram language
model. The transition distribution over classes is de-
noted π, which is given in terms of λ and the feature
vector of the parent block.

Under this model, a corpus D is generated by:

1. For each (j, k) in the transition matrix ΛK×K+2:

(a) Draw transition weight λjk ∼ N (0, σ2).

2. For each class j:

(a) Draw word distribution φj ∼Dirichlet(ω).

3. For each block b of each document d in D:

(a) Set class probability πbj =
exp(λT

j a)∑
j′ exp(λT

j′a)

for all classes j, where a is the feature vec-
tor for block a, the parent of b.

(b) For each token n in block b:
i. Sample class z(b,n) ∼ πb.

ii. Sample word w(b,n) ∼ φz .

For each block of text in a document (e.g. each
message in a conversation), the distribution over
classes π is computed as a function of the feature
vector of the block’s parent and the transition pa-
rameters (feature weights) Λ. Each λjk has an intu-
itive interpretation: a positive value means that the
occurrence of class k in a parent block increases the
probability that j will appear in the next block, while
a negative value reduces this probability.

The observed words of each block are generated
by repeatedly sampling classes from the block’s dis-
tribution π, and for each sampled class z, a single
word is sampled from the class-specific distribution
over words φz . In contrast, under the block HMM, a
class z is sampled once from the transition distribu-
tion, and words are repeatedly sampled from φz .

We place a symmetric Dirichlet prior on each φ
with concentration parameter ω, which smoothes the
word distributions, and we place a 0-mean Gaussian
prior on each λ parameter, which acts as a regular-
izer. The graphical diagram is shown in Figure 1
along with the block HMM and LDA. This figure
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shows how M4 combines the sequential dependen-
cies of the block HMM with the token-specific class
assignments of LDA.

2.3 Discussion
Like the block HMM, M4 is a type of HMM. A latent
sequence under M4 forms a Markov chain in which
a state corresponds to a histogram of classes. (For
simplicity, we are ignoring the extra features of the
start state indicator and bias in this discussion.) If
we assume a priori that the length of a block is un-
bounded, then this state space is NK where 0 ∈ N.
The probability of transitioning from a state b to an-
other state b̃ ∈ NK is:

P (b→ b̃) ∝ ζNMultinomial(b̃|π(b), N) (1)

where N =
∑

k b̃k, ζN is the probability that a
block has N tokens,2 and π(b) is the transition dis-
tribution given a vector b. This follows from the
generative story defined above, with an additional
step of generating the number of tokens N from the
distribution ζ.

We currently define a block b’s distribution πb in
terms of the discrete feature vector a given by its
parent a. We could have instead made πb a func-
tion of the parent’s distribution πa – this would lead
to a model that assumes a dynamical system over a
continuous space rather than a Markov chain. How-
ever, as a generative story we believe it makes more
sense for a block’s distribution to depend on the ac-
tual class values which are emitted by the parent.
Similar arguments are made by Blei and Mcauliffe
(2007) when designing supervised topic models.

Under a block HMM with one class per block,
there are K states corresponding to the K classes,
requiring K×K parameters to define the transition
matrix. Under M4, there is a countably infinite num-
ber of states, but the transitions are still defined by
K×K parameters (ignoring extra features). M4 thus
utilizes a larger state space without increasing the
number of free parameters.

3 Inference and Parameter Estimation

We must infer the values of the hidden variables z
as well as the parameters for the word distributions

2The distribution over the number of tokens can be arbitrary,
as this is observed and does not affect inference. In topic mod-
els, this is sometimes assumed to be Poisson (Blei et al., 2003).

Φ and transition weights Λ. Standard HMM dy-
namic programming algorithms cannot straightfor-
wardly be used for M4 because of the unboundedly
large state space. We instead turn to Markov chain
Monte Carlo (MCMC) methods as a tool for approx-
imate inference. We derive a stochastic EM algo-
rithm in which we alternate between sampling class
assignments for the word tokens and optimizing the
transition parameters, outlined in the following two
subsections.

3.1 Latent Class Sampling

To explore the posterior distribution over latent
classes, we use a collapsed Gibbs sampler such that
we marginalize out each word multinomial φ and
only need to sample the token assignments z con-
ditioned on each other. Given the current state of the
sampler, we sample a token’s class according to:

P (z(b,n) = k|z−(b,n),w, λ, ω) ∝ (2)

exp(λT
k a)∑

k′ exp(λT
k′a)

nwk + ω

nk +Wω

∏
c∈C

∏
j

(
exp(λT

j b)∑
j′ exp(λT

j′b)

)njc
The notation nwk indicates the number of tokens

with word type w that have been assigned to topic k.
W is the vocabulary size. a is the parent block of b,
and C is the set of b’s children. b is the feature vector
corresponding to block b (i.e. the class histogram
plus the bias feature), where the histogram includes
the incremented count of the candidate class k.

This sampling distribution is very similar to that
of LDA (Griffiths and Steyvers, 2004), but the distri-
bution over “topics” is now a function of the previ-
ous block, which gives the leftmost term. The right-
most term is a result of the dependency of the child
blocks (C) on the class assignments of b.

Due to the rightmost term, the complexity of com-
puting the sampling distribution is quadratic in the
number of classes, rather than the linear complexity
of a single-class HMM. Our assumption is that the
number of sequence-dependent classes (e.g. speech
acts or discourse states) will be reasonably small. If
it is desired to have a large number of latent topics as
is common in LDA, this model could be combined
with a standard topic model without sequential de-
pendencies, as explored by Ritter et al. (2010).
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3.2 Transition Parameter Optimization
Differentiating the corpus likelihood with respect to
Λ yields the standard equation for log-linear models:

∂`

∂λzk
=
∑
b

ak

(
nzb − nb

exp(λT
z a)∑

z′ exp(λT
z′a)

)
− λzk

σ2

(3)
where a is the parent of block b, a is the feature vec-
tor associated with a, nzb is the number of times class
z occurs in block b and nb is the total number of to-
kens in block b.

Standard optimization methods can be used to
learn these parameters. In our experiments, we find
that we obtain good results by simply performing
a single iteration of gradient ascent after each sam-
pling iteration t,3 with the following update:

λ
(t+1)
zk = λ

(t)
zk + η(t)

∂`

∂λzk
(4)

where η is a step size function.

4 Related Work

Hidden Markov models have a recent history as sim-
ple models of document structure. Stolcke et al.
(2000) used HMMs as a general model of discourse
with an application to speech acts (or dialog acts)
in conversations. Barzilay and Lee (2004) applied
HMMs as an unsupervised model of discourse. This
work used HMMs to model the progression of sen-
tences in articles, and was shown to be useful for or-
dering sentences and generating summaries of news
articles. More recently, Wang et al. (2011b) exper-
imented with similar tasks using a related HMM-
based model called the Structural Topic Model.

Unsupervised HMMs were applied to conversa-
tional data by Ritter et al. (2010) who experimented
with Twitter conversations. The authors also experi-
mented with incorporating a topic model on top of
the HMM to distinguish speech acts from topical
clusters, with mixed results. Joty et al. (2011) ex-
tended this work by enriching the emission distribu-
tions and using additional features such as speaker
and position information. An approach to unsuper-
vised discourse modeling that does not use HMMs is

3Incremental updates are justified under the generalized EM
algorithm (Dempster et al., 1977). Each gradient step with re-
spect to λ corresponds to a generalized M-step, while each sam-
pling iteration corresponds to a stochastic E-step.

the latent permutation model of Chen et al. (2009).
This model assumes each segment (e.g. paragraph)
in a document is associated with a latent class or
topic, and the ordering of topics within a document
is modeled as a deviation from some canonical or-
dering.

Extensions to the block HMM have incorpo-
rated mixed membership properties within blocks,
notably the Markov Clustering Topic Model
(Hospedales et al., 2009), which allows each HMM
state to be associated with its own distribution over
topics in a topic model. Like the block HMM, this
still assumes a relatively small number of HMM
states, but with an extra layer of latent variables be-
fore the observations are emitted. This is more re-
strictive than the unbounded state space of M4.

Decoupling HMM states from latent classes was
considered by Beal et al. (1997) with the Factorial
HMM, which uses factorized state representations.
The Factorial HMM is most often used to model in-
dependent Markov chains, whereas M4 has a dense
graphical model topology: the probability of each
of the latent classes depends on the counts of all of
the classes in the previous block. The trick in M4

is to define the transition matrix via a function of
a limited number of parameters, allowing tractable
inference in a model with arbitrarily many states.

In topic models, log-linear formulations of la-
tent class distributions4 are utilized in correlated
topic models (Blei and Lafferty, 2007) as a means
of incorporating covariance structure among topic
probabilities. Applying log-linear regression to po-
tentially many features was combined with LDA
by Mimno and McCallum (2008), who model the
Dirichlet prior over topics as a function of document
features. In M4, such features would correspond to
the class histograms of previous blocks, introducing
additional dependencies between documents.

One topic model that imposes sequential depen-
dencies between documents is Sequential LDA (Du
et al., 2010), which models a document as a se-
quence of segments (such as paragraphs) governed
by a Pitman-Yor process, in which the latent topic
distribution of one segment serves as the base dis-
tribution for the next segment. This is in the spirit

4This formulation corresponds to the natural parameteriza-
tion of the multinomial distribution.
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of our work, where the latent classes in a segment
depend on the class distribution of the previous seg-
ment. By using the Pitman-Yor process, however,
this work assumes topics are positively correlated,
i.e. the occurrence of a topic in one segment makes
it likely to appear in the next. In contrast, we wish
to learn arbitrary transitions, both positive and neg-
ative, between the latent classes.

5 Experiments with Conversation Data

We experiment with two corpora of text-based asyn-
chronous conversations on the Web. One of these is
annotated with speech act labels, against which we
compare our unsupervised clusters. We measure the
predictive capabilities of the model via perplexity
experiments and the task of thread reconstruction.

5.1 Data Sets

First, we use a corpus of discussion threads from
CNET forums (Kim et al., 2010), which are mostly
technical discussion and support. This corpus in-
cludes 321 threads and a total of 1309 messages,
with an average message length of 78 tokens after
preprocessing.5 Second, we use the Twitter data set
created by Ritter et al. (2010). We consider 36K con-
versation threads for a total of 100K messages with
average length 13.4 tokens.

Both data sets are already annotated with the re-
ply structure, so the discourse graph is given. We
preprocess the data by treating contiguous blocks
of punctuation as tokens, and we remove infrequent
words. The Twitter corpus has some additional pre-
processing, such as converting URLs to a single
word type.

5.2 Baseline Models

Our work is motivated by the Bayesian HMM ap-
proach of Ritter et al. (2010) – the model we re-
fer to as the block HMM (BHMM) – and we con-
sider this our primary baseline. (See also (Goldwa-
ter and Griffiths, 2007) for more details on Bayesian
HMMs with Dirichlet priors.) We also compare
against LDA, which makes latent assignments at the
token-level, but blocks of text are independent of

5Three messages in this corpus have multiple parents. For
the sake of conciseness, we simply remove these threads rather
than introducing a method to model multiple parents.

each other. In other words, BHMM models sequen-
tial dependencies but allows only single-class mem-
bership, whereas LDA uses no sequence information
but has a mixed membership property. M4 combines
these two properties.

We use standard Gibbs samplers for both baseline
models, and we optimize the Dirichlet hyperparam-
eters (for the transition and topic distributions) using
Minka’s fixed-point iterations (2003).

5.3 Incorporating Background Distributions
In our experiments, we find that the intrusion of
common stop words can make the results difficult
to interpret, but we do not want to perform simple
stop word removal because common function words
often play important roles in the latent classes (i.e.
speech acts) of the conversation data we consider
here. We instead handle this by extending our model
to include a “background” distribution over words
which is independent of the latent classes in a docu-
ment; this was also done by Wang et al. (2011b).

The idea is to introduce a binary switching vari-
able x into the model which determines whether a
word is generated from the general background dis-
tribution or from the distribution specific to a latent
class z. Loosely, if the marginal probability of a
word was given by p(w) =

∑
z p(w|z)p(z), the

introduction of a background distribution gives the
marginal probability p(w) = p(x = 0)p(w|B) +
p(x = 1)

∑
z p(w|z). This is common practice and

we will not go into detail; see (Chemudugunta et al.,
2006) for a general example on sampling switching
variables. We augment all three models with a back-
ground distribution in exactly the same way, so that
the comparison is fair. We use a Beta(10.0, 10.0)
prior over the switching distribution.

5.4 Experimental Setup
All of our results are averaged across four randomly
initialized chains which are run for 5000 iterations,
with five samples collected during the final 500 it-
erations. We take small gradient steps of decreasing
size with η(t) = 0.1/(1000 + t).

We set σ2 = 10.0 as the variance of the λ
weights. We use optimized asymmetric priors as de-
scribed in §5.2, and we use a symmetric Dirichlet
for the word distributions, following Wallach et al.
(2009). We sample the scaling hyperparameter ω via
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5 10 15 20 25
CNET

Unigram 63.07 63.07 63.07 63.07 63.07
LDA 57.16 54.35 52.88 51.63 50.50

BHMM 61.26 61.06 60.92 60.86 60.85
M4 60.38 59.58 59.26 59.21 59.25

Twitter
Unigram 93.00 93.00 93.00 93.00 93.00

LDA 83.70 78.40 74.01 70.91 70.16
BHMM 90.51 89.94 89.68 89.59 89.38

M4 88.44 86.17 85.50 85.55 86.31

Table 1: Average perplexity of held-out data for various
numbers of latent classes.

Metropolis-Hastings proposals: we add Gaussian-
distributed noise to the log of the current ω, then
exponentiate this to yield the proposed ω(new). This
log-space proposal ensures that ω is always positive.

When computing the transition distributions for
M4, we normalize the class histograms so that the
counts to sum to 1. This helps with numeric sta-
bility because the input vectors stay within a small
bounded range.6

5.5 Experimental Results

5.5.1 Perplexity
We begin with standard measures of the perplex-

ity of held-out data. For these experiments, we
train on 75% of the data, and test on the remaining
25%. We run the sampler for 500 iterations using the
word distributions and transition parameters learned
during training; we compute the average perplexity
from the final ten sampling iterations.

Results for different numbers of classes are shown
in Table 1. These results demonstrate the advan-
tage of models with the mixed membership property.
Although LDA outperforms both sequence models,
this is be expected. Each block’s topic distribution
is stochastically generated with LDA, whereas in the
two sequence models, the distribution over classes
is simply a deterministic function of the previous
block. This allows LDA to infer parameters that fit
the data more tightly. Comparing only the two se-
quence models, we find that M4 does significantly
better than BHMM in all cases with p < 0.05.

6Implementations of both M4 and the block HMM will be
available at http://cs.jhu.edu/˜mpaul
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Figure 2: Accuracy at the task of thread reconstruction.
The horizontal bar indicates a random baseline.

If capturing sequence information is not impor-
tant, then LDA may provide a better fit to a corpus
than sequence models. In the next two subsections,
we will consider tasks where the sequential structure
is important, thus LDA is not an appropriate choice.

5.5.2 Thread Reconstruction
A natural predictive task of the sequence models

is to reconstruct the discourse graph of a document
where the structure is unknown. In the conversa-
tion domain, this corresponds to the task of thread
reconstruction (Yeh and Harnly, 2006; Wang et al.,
2011c). Given only a flat structure, can we recover
the reply structure of messages in the conversation?

Previous work with BHMM found the optimal
structure by computing the likelihood of all permu-
tations of a thread or sequence (Ritter et al., 2010;
Wang et al., 2011b). We take a more practical ap-
proach and find the optimal structure as part of our
inference procedure. We do this by treating the par-
ent of each block as a hidden variable to be inferred.
The parent of block b is the random variable rb, and
we alternate between sampling values of the latent
classes z and the parents r. The sampling distri-
butions are annealed, as a search technique to find
the best configuration of assignments (Finkel et al.,
2005). At temperature τ , we sample a block’s parent
according to:

P (rb = a|z, λ) ∝
∏
j

(
exp(λT

j a)∑
j′ exp(λT

j′a)

)njb/τ
(5)
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For each conversation thread, any message is a
candidate for the parent of block b (except b itself)
including the dummy “start” block.

As before, we train on 75% of the data, and run
this experiment on the remaining 25%. We run the
sampler for 500 iterations, cooling τ by 1% after
each iteration, where τ (0) = 1. We measure accu-
racy as the percentage of blocks whose assignment
for rb matches the true parent. For each fold, we
run this estimation procedure from five random ini-
tializations and average the results. Like Ritter et al.
(2010), we do not enforce temporal constraints in the
thread structure for this experiment. We are purely
evaluating the predictive abilities of the model rather
than its performance in a full-fledged reconstruction
setup, which would require richer features beyond
the scope of this paper.

Figure 2 shows results comparing M4 against
BHMM. Because all blocks are independent under
LDA, it cannot be used in this experiment; using
LDA would amount to a random baseline.

We plot the distribution of results from vari-
ous samples and various numbers of classes in
{5, . . . , 25}. Most of the variance is across folds
and samples; we find that there is not a strong trend
in accuracy as a function of the number of classes.
This suggests that most of the sequence predictions
are carried by a small subset of the classes.

On average, M4 outperforms BHMM by more
than 15 points on the CNET corpus. M4 is also bet-
ter on the Twitter corpus, but the difference is not so
stark. This seems to confirm our intuition that the
advantage of M4 over BHMM is greater when the
blocks are longer; tweets may be short enough that
the single-class assumption is not as limiting.

5.5.3 Speech Act Discovery
Thus far, we have investigated the predictive

power of the model, but we would also like to deter-
mine if the inferred clusters correspond to human-
interpretible classes. In the case of conversation
data, our hope is that some of the latent classes
represent speech acts or dialog acts (Searle, 1975).
While there is a body of work in supervised speech
act classification (Cohen et al., 2004; Bangalore et
al., 2006; Surendran and Levow, 2006; Qadir and
Riloff, 2011), the variety of conversation domains
on the Web motivates the use of unsupervised ap-
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Figure 3: The variation of information between the
human-created speech act annotations of the CNET cor-
pus and the latent class assignments by various models.

proaches.
The CNET corpus is annotated with twelve

speech act classes: QUESTION and ANSWER, which
are both broken down into multiple sub-classes, as
well as RESOLUTION, REPRODUCTION, and OTHER

(Kim et al., 2010). We would like to quantitatively
measure how closely the latent states induced by our
model match these annotations.7

We can measure this with variation of informa-
tion (Meila, 2003), which has been used in recent
years for unsupervised evaluation, e.g. in part-of-
speech clustering (Goldwater and Griffiths, 2007).
Given two sets of variable assignments z and z′, the
variation of information is defined as H(Z|Z ′) +
H(Z ′|Z). In other words, given one clustering, how
much uncertainty do we have about the other? Re-
sults are shown in Figure 3: a lower value corre-
sponds to higher similarity.

On the CNET corpus, M4 outperforms both base-
lines in all cases by a very significant margin. Qual-
itatively, we see clusters and transition parameters
that make sense. For example, the class with top
words {i,my, have, computer, am, ?, tried, help}
is most likely to begin a thread (with λ = +1.94)
and appears to describe questions or requests for

7Some messages have multiple labels. Since messages are
not annotated at finer granularities, we handle this by simply
duplicating such messages, once per label, and measuring clus-
tering performance on this expanded set of labeled data which
now has one label per token.
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Figure 4: Example output from a model trained on the Twitter corpus with 15 classes (7 shown). Each node corre-
sponds to a class learned by the model, and the most probable words are shown for each class. The symbols + and
− on the directed edges denote the sign of the λ associated with transitioning from one class to another, and the size
of the symbols is scaled by the magnitude of λ. Non-edge arrows going into a node represent the weight of starting a
conversation with that class. Low-magnitude weights are not shown, and some edges are omitted to avoid clutter.

help. The class is not likely to be followed by itself
(λ = −0.32) but is likely to be followed by the class
with words {you, your, /, com, ., http, windows}
(with λ = +1.38).

The Twitter corpus does not have speech act an-
notations, so we offer example output in Figure 4.
We again see patterns that we might expect to find in
social media conversations, and some classes appear
to correspond to speech acts such a declarations, per-
sonal questions, and replies. For example, the class
in the center of the figure has words like you and but
which suggests it is used in reply to other messages,
and indeed we see that it has a positive weight of
following almost every class, but a negative weight
for actually starting a thread. Conversely, the class
containing URLs (which corresponds to the act of
sharing news or media) is likely to begin a thread,
but is not likely to follow other classes except itself.

How well unsupervised models can truly capture
speech acts is an open question. Much as LDA
“topics” do not always correspond to what humans
would judge to be semantic classes (Chang et al.,
2009), the conversation classes inferred by unsu-
pervised sequence models are similarly unlikely to
be a perfect fit to human-assigned classes. Never-
theless, these results suggest M4 is a step forward.

Our model provides a framework for defining inter-
message transitions as functions of multiple classes,
which will be a desirable property for many corpora.

6 Conclusion

We have presented mixed membership Markov
models (M4), which extend the simple HMM ap-
proach to discourse modeling by positing class as-
signments at the level of individual tokens. This al-
lows blocks of text to belong to potentially multiple
classes, a property that relates M4 to topic models.
This type of model can be viewed as an HMM with
an expanded state space, but because the transition
probabilities are a function of a small number of pa-
rameters, the output remains human-interpretible.

M4 can be taken as a general family of models and
can be readily extended. In this work, we focused
on introducing a model of inter-message structure,
but certainly more sophisticated models of intra-
message structure beyond unigram language mod-
els could be incorporated into M4. Standard topic
model extensions such as n-gram models (Wallach,
2006) can straightforwardly be applied here, and in-
deed we already applied such an extension by in-
corporating background distributions in §5.3. For
conversational data, it could make sense to segment
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messages (e.g. into sentences) and constraint each
segment to belong to one class or speech act; modi-
fications along these lines have been applied to topic
models as well (Gruber et al., 2007). While we have
focused on conversation modeling, M4 is a general
probabilistic model that could be applied to other
discourse applications, for example modeling sen-
tences or paragraphs in articles rather than messages
in conversations; it could also be applied to data be-
yond text.

Compared to a Bayesian block HMM, M4 per-
forms much better at a variety of tasks. A draw-
back is that the time complexity of inference as pre-
sented here is quadratic in the number of classes
rather than linear. Improving this may be the subject
of future research. Another potential avenue of fu-
ture work is to model transitions such that a Dirichlet
prior for the class distribution of a block, rather than
the class distribution itself, depends on the previous
class assignments. This would yield a model that
more closely resembles LDA, but with topic priors
that encode sequence information.
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Abstract 

Entity Linking (EL) has received 
considerable attention in recent years. 
Given many name mentions in a document, 
the goal of EL is to predict their referent 
entities in a knowledge base. Traditionally, 
there have been two distinct directions of 
EL research: one focusing on the effects of 
mention’s context compatibility, assuming 
that “the referent entity of a mention is 
reflected by its context”; the other dealing 
with the effects of document’s topic 
coherence, assuming that “a mention’s 
referent entity should be coherent with the 
document’s main topics”. In this paper, we 
propose a generative model – called entity-
topic model, to effectively join the above 
two complementary directions together. By 
jointly modeling and exploiting the context 
compatibility, the topic coherence and the 
correlation between them, our model can 
accurately link all mentions in a document 
using both the local information (including 
the words and the mentions in a document) 
and the global knowledge (including the 
topic knowledge, the entity context 
knowledge and the entity name knowledge). 
Experimental results demonstrate the 
effectiveness of the proposed model. 

1 Introduction 

Entity Linking (EL) has received considerable 
research attention in recent years (McNamee & 
Dang, 2009; Ji et al., 2010). Given many name 
mentions in a document, the goal of EL is to 
predict their referent entities in a given knowledge 
base (KB), such as the Wikipedia1. For example, as 
                                                           
1 www.wikipedia.org 

shown in Figure 1, an EL system should identify 
the referent entities of the three mentions WWDC, 
Apple and Lion correspondingly are the entities 
Apple Worldwide Developers Conference, Apple 
Inc. and Mac OS X Lion in KB. The EL problem 
appears in many different guises throughout the 
areas of natural language processing, information 
retrieval and text mining. For instance, in many 
applications we need to collect all appearances of a 
specific entity in different documents, EL is an 
effective way to resolve such an information 
integration problem. Furthermore, EL can bridge 
the mentions in documents with the semantic 
information in knowledge bases (e.g., Wikipedia 
and Freebase 2 ), thus can provide a solid 
foundation for knowledge-rich methods. 

 
Figure 1. A Demo of Entity Linking 

Unfortunately, the accurate EL is often hindered 
by the name ambiguity problem, i.e., a name may 
refer to different entities in different contexts. For 
example, the name Apple may refer to more than 
20 entities in Wikipedia, such as Apple Inc., Apple 
(band) and Apple Bank. Traditionally, there have 
been two distinct directions in EL to resolve the 
name ambiguity problem: one focusing on the 
effects of mention’s context compatibility and the 
other dealing with the effects of document’s topic 
coherence. EL methods based on context 

                                                           
2 www.freebase.com 
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compatibility assume that “the referent entity of a 
mention is reflected by its context”(Mihalcea & 
Cosomai, 2007; Zhang et al., 2010; Zheng et al., 
2010; Han & Sun, 2011; Kataria et al., 2011; Sen 
2012). For example, the context compatibility 
based methods will identify the referent entity of 
the mention Lion in Figure 1 is the entity Mac OS 
X Lion, since this entity is more compatible with its 
context words operating system and release than 
other candidates such as Lion(big cats) or 
Lion(band). EL methods based on topic coherence 
assume that “a mention’s referent entity should be 
coherent with document’s main topics” (Medelyan 
et al., 2008; Milne & Witten, 2008; Kulkarni et al., 
2009; Han et al., 2011). For example, the topic 
coherence based methods will link the mention 
Apple in Figure 1 to the entity Apple Inc., since it 
is more coherent with the document’s topic MAC 
OS X Lion Release than other referent candidates 
such as Apple (band) or Apple Bank. 

In recent years, both of the above two EL 
directions have shown their effectiveness to some 
extent, and obviously they are complementary to 
each other. Therefore we believe that bring the 
above two directions together will enhance the EL 
performance. Traditionally, the above two 
directions are usually be brought together using a 
hybrid method (Zhang and Sim, 2011; Ratinov et 
al., 2011; Han et al., 2011), i.e., the context 
compatibility and the topic coherence are first 
separately modeled, then their EL evidence are 
combined through an additional model. For 
example, Zhang and Sim (2011) first models the 
context compatibility as a context similarity and 
the topic coherence as a similarity between the 
underlying topics of documents and KB entries, 
then these two similarities are combined through 
an additional SVM classifier for the final EL 
decision. 

The main drawback of these hybrid methods, 
however, is that they model the context 
compatibility and the topic coherence separately, 
which makes it difficult to capture the mutual 
reinforcement effect between the above two 
directions. That is, the topic coherence and the 
context compatibility are highly correlated and 
their evidence can be used to reinforce each other 
in EL decisions. For example, in Figure 1, if the 
context compatibility gives a high likelihood the 
mention Apple refers to the entity Apple Inc., then 
this likelihood will give more evidence for this 

document’s topic is about MAC OS X Lion, and it 
in turn will reinforce the topic coherence between 
the entity MAC OS X Lion and the document. In 
reverse, once we known the topic of this document 
is about MAC OS X Lion, the context compatibility 
between the mention Apple and the entity Apple 
Inc. can be improved as the importance of the 
context words operating system and release will be 
increased using the topic knowledge. In this way, 
we believe that modeling the above two directions 
jointly, rather than separately, will further improve 
the EL performance by capturing the mutual 
reinforcement effect between the context 
compatibility and the topic coherence. 

In this paper, we propose a method to jointly 
model and exploit the context compatibility, the 
topic coherence and the correlation between them 
for better EL performance. Specifically, we 
propose a generative probabilistic model – called 
entity-topic model, which can uniformly model the 
text compatibility and the topic coherence as the 
statistical dependencies between the mentions, the 
words, the underlying entities and the underlying 
topics of a document by assuming that each 
document is generated according to the following 
two assumptions: 

1) Topic coherence assumption: All entities 
in a document should be centered around the main 
topics of the document. For example, the entity 
Apple Inc. tends to occur in documents about IT, 
but the entity Apple Bank  will more likely to occur 
in documents about bank or investment. 

2) Context compatibility assumption: The 
context words of a mention should be centered on 
its referent entity. For example, the words 
computer, phone and music tends to occur in the 
context of the entity Apple Inc., meanwhile the 
words loan, invest and deposit will more likely to 
occur in the context of the entity Apple Bank. 

In this way, the entity-topic model uniformly 
models the context compatibility, the topic 
coherence and the correlation between them as the 
dependencies between the observed information 
(the mentions and the words) in a document and 
the hidden information we want to know (the 
underlying topics and entities) through the global 
knowledge (including the topic knowledge, the 
entity name knowledge and the entity context 
knowledge). And the EL problem can now be 
decomposed into the following two inference tasks: 
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1) Predicting the underlying topics and the 
underlying entities of a document based on the 
observed information and the global knowledge. 
We call such a task the prediction task; 

2) Estimating the global knowledge from data. 
Notice that the topic knowledge, the entity 
name knowledge and the entity context 
knowledge are all not previously given, thus we 
need to estimate them from data. We call such a 
task the knowledge discovery task. 

Because the accurate inference of the above two 
tasks is intractable in our entity-topic model, this 
paper also develops an approximate inference 
algorithm – the Gibbs sampling algorithm to solve 
them. 

Contributions. The main contributions of this 
paper are summarized below: 

 We propose a generative probabilistic 
model, the entity-topic model, which can jointly 
model and exploit the context compatibility, the 
topic coherence and the correlation between them 
for better EL performance; 

 We develop a Gibbs sampling algorithm to 
solve the two inference tasks of our model: 1) 
Discovering the global knowledge from data; and 2) 
Collectively making accurate EL decisions. 

This paper is organized as follows. Section 2 
describes the proposed entity-topic model. Section 
3 demonstrates the Gibbs sampling algorithm. The 
experimental results are presented and discussed in 
Section 4. The related work is reviewed in Section 
5. Finally we conclude this paper in Section 6. 

2 The Entity-Topic Model for Entity 
Linking 

In this section, we describe the proposed entity-
topic model. In following we first demonstrate how 
to capture the context compatibility, the topic 
coherence and the correlation between them in the 
document generative process, then we incorporate 
the global knowledge generation into our model 
for knowledge estimation from data. 

2.1 Document Generative Process 

As shown in Section 1, we jointly model the 
context compatibility and the topic coherence as 
the statistical dependencies in the entity-topic 
model by assuming that all documents are 
generated in a topical coherent and context 

compatible way. In following we describe the 
document generative process. 

In our model, each document d is assumed 
composed of two types of information, i.e., the 
mentions and the words. Formally, we represent a 
document as: 

A document is a collection of M mentions and 
N words, denoted as d = {m1, …, mM; w1, …, 
wN}, with mi the ith mention and wj the jth word. 
For example, the document in Figure 1 is 

represented as d = {WWDC, Apple, Lion;   at, the, 
conference, …}, where WWDC, Apple, Lion are 
the three mentions and the other are the words. 

To generate a document, our model relies on 
three types of global knowledge, including: 

 Topic Knowledge ÁÁ  (The entity 
distribution of topics): In our model, all entities in 
a document are generated based on its underlying 
topics, with each topic is a group of semantically 
related entities. Statistically, we model each topic 
as a multinomial distribution of entities, with the 
probability indicating the likelihood an entity to be 
extracted from this topic. For example, we may 
have a topic ÁApple Inc:ÁApple Inc:= {Steve Jobs0.12, iPhone0.07, 
iPod0.08, …}, indicating the likelihood of the entity 
Steve Jobs be extracted from this topic is 0.12, etc. 

 Entity Name Knowledge ÃÃ  (The name 
distribution of entities): In our model, all name 
mentions are generated using the name knowledge 
of its referent entity. Specifically, we model the 
name knowledge of an entity as a multinomial 
distribution of its names, with the probability 
indicating the likelihood this entity is mentioned 
by the name. For example, the name knowledge of 
the entity Apple Inc. may be ÃApple Inc:ÃApple Inc: = {Apple0.51, 
Apple Computer Inc.0.10, Apple Inc.0.07, …}, indicating 
that the entity Apple Inc. is mentioned by the name 
Apple with probability 0.51, etc. 

 Entity Context Knowledge »» (The context 
word distribution of entities): In our model, all 
context words of an entity’s mention are generated 
using its context knowledge. Concretely, we model 
the context knowledge of an entity as a 
multinomial distribution of words, with the 
probability indicating the likelihood a word 
appearing in this entity’s context. For example, we 
may have »Apple Inc:»Apple Inc:= {phone0.07, computer0.10, IT0.06, 
phone0.002, …}, indicating that the word computer 
appearing in the context of the entity Apple Inc. 
with probability 0.1, etc. 
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Figure 2. The document generative process, with 
Dir(:)Dir(:), Mult(:)Mult(:) and Unif(:)Unif(:) correspondingly 

Dirichlet, Multinomial and Uniform distribution 

Given the entity list E = {e1, e2, …, eE} in the 
knowledge base, the word list V = {w1, w2, …, wv}, 
the entity name list K = {n1, n2, …, nK} and the 
global knowledge described in above, the 
generation process of a document collection 
(corpus) D = {d1, d2, …, dD} is shown in Figure 2.  
To demonstrate the generation process, we also 
demonstrate how the document in Figure 1 can be 
generated using our model in following steps: 

Step 1: The model generates the topic 
distribution of the document as μdμd = {Apple Inc.0.45, 
Operating System(OS)0.55}; 

Step 2: For the three mentions in the document: 
i. According to the topic distribution  μdμd, the 

model generates their topic assignments as 
z1=Apple Inc., z2 = Apple Inc., z3 = OS; 

ii. According to the topic knowledge ÁÁApple Inc. , 
ÁÁOS  and the topic assignments z1, z2, z3, the model 
generates their entity assignments as e1 = Apple 
Worldwide Developers Conference, e2 = Apple Inc., 
e3 = Mac OS X Lion; 

iii. According to the name knowledge of the 
entities Apple Worldwide Developers Conference, 
Apple Inc. and Mac OS X Lion, our model 
generates the three mentions as m1=WWDC, m2 = 
Apple, m3 = Lion; 

Step 3: For all words in the document: 
i. According to the referent entity set in 

document ed = {Apple Worldwide Developers 
Conference, Apple Inc., Mac OS X Lion}, the 
model generates the target entity they describes as 

a3=Apple Worldwide Developers Conference and 
a4=Apple Inc.; 

ii. According to their target entity and the 
context knowledge of these entities, the model 
generates the context words in the document. For 
example, according to the context knowledge of 
the entities Apple Worldwide Developers 
Conference, the model generates its context word 
w3 =conference, and according to the context 
knowledge of the entity Apple Inc., the model 
generates its context word w4 = introduces. 

Through the above generative process, we can 
see that all entities in a document are extracted 
from the document’s underlying topics, ensuring 
the topic coherence; and all words in a document 
are extracted from the context word distributions 
of its referent entities, resulting in the context 
compatibility. Furthermore, the generation of 
topics, entities, mentions and words are highly 
correlated, thus our model can capture the 
correlation between the topic coherence and the 
context compatibility. 

2.2 Global Knowledge Generative Process 

The entity-topic model relies on three types of 
global knowledge (including the topic knowledge, 
the entity name knowledge and the entity context 
knowledge) to generate a document. Unfortunately, 
all three types of global knowledge are unknown 
and thus need to be estimated from data. In this 
paper we estimate the global knowledge through 
Bayesian inference by also incorporating the 
knowledge generation process into our model. 

Specifically, given the topic number T, the entity 
number E, the name number K and the word 
number V, the entity-topic model generates the 
global knowledge as follows: 

1) Áj¯ » Dir(¯)Áj¯ » Dir(¯) 

For each topic z, our model samples its entity 
distribution ÁzÁz from an E-dimensional Dirichlet 
distribution with hyperparameter ¯̄. 

2) Ãj° » Dir(°)Ãj° » Dir(°) 

For each entity e, our model samples its name 
distribution ÃeÃe from a K-dimensional Dirichlet 
distribution with hyperparameter °°. 

3) »j± » Dir(±)»j± » Dir(±) 

Given the topic knowledge ÁÁ , the entity name 
knowledge ÃÃ and the entity context knowledge »»: 
1. For each doc d in D, sample its topic distribution
μd » Dir(®); 

2. For each of the Md mentions mi in doc d: 
a) Sample a topic assignment zi » Mult(μd); 
b) Sample an entity assignment ei » Mult(Ázi);
c) Sample a mention mi » Mult(Ãei); 

3. For each of the Nd words wi in doc d: 
a) Sample a target entity it describes from d’s 
referent entities ai » Unif(em1 ; em2 ;¢ ¢ ¢ ; emd

);
b) Sample a describing word using aiai’s context 
word distribution wi » Mult(»ai). 
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For each entity e, our model samples its context 
word distribution »e»e  from a V-dimensional 
Dirichlet distribution with hyperparameter ±±. 

Finally, the full entity-topic model is shown in 
Figure 3 using the plate representation. 

ÁÁ

±±
 

Figure 3. The plate representation of the entity-
topic model 

2.3 The Probability of a Corpus 

Using the entity-topic model, the probability of 
generating a corpus D={d1, d2, …, dD} given 
hyperparameters ®®, ¯̄, °° and ±± can be expressed as: 
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where mdmd  and eded  correspondingly the set of 
mentions and their entity assignments in document 
d, wdwd and adad correspondingly the set of words and 
their entity assignments in document d. 

3 Inference using Gibbs Sampling 

In this section, we describe how to resolve the 
entity linking problem using the entity-topic model. 
Overall, there were two inference tasks for EL: 

1) The prediction task. Given a document d, 
predicting its entity assignments (eded for mentions 
and adad  for words) and topic assignments ( zdzd ). 
Notice that here the EL decisions are just the 
prediction of per-mention entity assignments (eded). 

2) The knowledge discovery task. Given a 
corpus D={d1, d2, …, dD}, estimating the global 
knowledge (including the entity distribution of 
topics ÁÁ, the name distribution ÃÃ and the context 
word distribution »» of entities) from data. 

Unfortunately, due to the heaven correlation 
between topics, entities, mentions and words (the 
correlation is also demonstrated in Eq. (2.1), where 
the integral is intractable due to the coupling 
between μμ , ÁÁ, ÃÃ and »» ), the accurate inference of 
the above two tasks is intractable. For this reason, 
we propose an approximate inference algorithm – 
the Gibbs sampling algorithm for the entity-topic 
model by extending the well-known Gibbs 
sampling algorithm for LDA (Griffiths & Steyvers, 
2004). In Gibbs sampling, we first construct the 
posterior distribution P (z; e;ajD)P (z; e;ajD) , then this 
posterior distribution is used to: 1) estimate μμ, ÁÁ, ÃÃ 
and »»; and 2) predict the entities and the topics of 
all documents in D. Specifically, we first derive the 
joint posterior distribution from Eq. (2.1) as: 

P (z; e; ajD) / P (z)P (ejz)P (mje)P (aje)P (wja)P (z; e; ajD) / P (z)P (ejz)P (mje)P (aje)P (wja) 
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is the probability of the joint topic assignment z to 
all mentions m in corpus D, and 
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is the conditional probability of the joint entity 
assignments ee to all mentions m in corpus D given 
all topic assignments zz, and 
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is the conditional probability of all mentions mm 
given all per-mention entity assignments ee, and 
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is the conditional probability of the joint entity  
assignments aa to all words w in corpus D given all 
per-mention entity assignments ee, and 
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is the conditional probability of all words ww given 
all per-word entity assignments aa . In all above 
formulas, ¡(:)¡(:) is the Gamma function, CDT

dtCDT
dt  is the 

times topic t has been assigned for all mentions in 
document d, CDT

d¤ =
P

t CDT
dtCDT

d¤ =
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t CDT
dt  is the topic number 

in document d, and CTE
teCTE
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have similar explanation. 
Based on the above joint probability, we 

construct a Markov chain that converges to the 
posterior distribution P (z; e;ajD)P (z; e;ajD) and then draw 
samples from this Markov chain for inference. For 
entity-topic model, each state in the Markov chain 
is an assignment (including topic assignment to a 
mention, entity assignment to a mention and entity 
assignment to a word). In Gibbs sampling, all 
assignments are sequentially sampled conditioned 
on all the current other assignments. So here we 
only need to derive the following three fully 
conditional assignment distributions: 

1) P (zi = tjz¡i; e;a;D)P (zi = tjz¡i; e;a;D): the topic assignment 
distribution to a mention given the current 
other topic assignments z¡iz¡i , the current 
entity assignments ee and aa; 

2) P (ei = ejz; e¡i;a;D)P (ei = ejz; e¡i;a;D) : the entity 
assignment distribution to a mention given 
the current entity assignments of all other 
mentions e¡ie¡i, the current topic assignments 
zz  and the current entity assignments of 
context words aa; 

3) P (ai = ejz; e; a¡i;D)P (ai = ejz; e; a¡i;D) : the entity 
assignment distribution to a context word 
given the current entity assignments of all 
other context words a¡ia¡i, the current topic 
assignments  zz  and the current entity 
assignments ee of mentions. 

Using the Formula 3.1-3.5, we can derive the 
above three conditional distributions as (where mi 
is contained in doc d): 
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where the topic assignment to a mention is 
determined by the probability this topic appearing 
in doc d (the 1st term) and the probability the 
referent entity appearing in this topic (the 2nd term); 
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where the entity assignment to a mention is 
determined by the probability this entity extracted 
from the assigned topic (the 1st term), the 
probability this entity is referred by the name m 
(the 2nd term) and the contextual words describing 
this entity in doc d (the 3rd term); 
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where the entity assignment to a word is 
determined by the number of times this entity has 
been assigned to mentions in doc d (the 1st term) 
and the probability the word appearing in the 
context of this entity (the 2nd term). 

Finally, using the above three conditional 
distributions, we iteratively update all assignments 
of corpus D until coverage, then the global 
knowledge is estimated using the final assignments, 
and the final entity assignments are used as the 
referents of their corresponding mentions. 

Inference on Unseen Documents. When 
unseen documents are given, we predict its entities 
and topics using the incremental Gibbs sampling 
algorithm described in (Kataria et al., 2011), i.e., 
we iteratively update the entity assignments and 
the topic assignments of an unseen document as 
the same as the above inference process, but with 
the previously learned global knowledge fixed. 

Hyperparameter setting. One still problem 
here is the setting of the hyperparameters ®®, ¯̄, °° 
and ±±. For ®® and ¯̄ , this paper empirically set the 
value of them to ® = 50=T® = 50=T  and ¯ = 0:1¯ = 0:1  as in 
Griffiths & Steyvers(2004). For °°, we notice that 
K°K° is the number of pseudo names added to each 
entity, when ° = 0° = 0  our model only mentions an 
entity using its previously used names. Observed 
that an entity typically has a fixed set of names, we 
set °° to a small value by setting K° = 1:0K° = 1:0. For ±±, 
we notice that V ±V ± is the number of pseudo words 
added to each entity, playing the role of smoothing 
its context word distribution. As there is typically a 
relatively loose correlation between an entity and 
its context words, we set ±±  to a relatively large 
value by fixing the total smoothing words added to 
each entity, a typical value is V ±V ± = 2000. 
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4 Experiments 

In this section, we evaluate our method and 
compare it with the traditional EL methods. We 
first explain the experimental settings in Section 
4.1-4.4, then discuss the results in Section 4.5. 

4.1 Knowledge Base 
In our experiments, we use the Jan. 30, 2010 
English version of Wikipedia as the knowledge 
base, which contains over 3 million entities. Notice 
that we also take the general concepts in Wikipedia 
(such as Apple, Video, Computer, etc.) as entities, 
so the entity in this paper may not strictly follow 
its definition. 

4.2 Data Sets 
There are two standard data sets for EL: IITB3 and 
TAC 2009 EL data set (McNamee & Dang, 2009), 
where IITB focuses on aggressive recall EL and 
TAC 2009 focuses on EL on salient mentions. Due 
to the collective nature of our method, we mainly 
used the IITB as the primary data set as the same 
as Kulkarni et al.(2009) and Han et al.(2011). But 
we also give the EL accuracies on the TAC 2009 in 
Sect. 4.5.4 as auxiliary results.  

Overall, the IITB data set contains 107 web 
documents. For each document, the name 
mentions’ referent entities in Wikipedia are 
manually annotated to be as exhaustive as possible. 
In total, 17,200 name mentions are annotated, with 
161 name mentions per document on average. In 
our experiments, we use only the name mentions 
whose referent entities are contained in Wikipedia. 

4.3 Evaluation Criteria 

This paper adopted the same performance metrics 
used in the Kulkarni et al. (2009), which includes 
Recall, Precision and F1. Let M* be the golden 
standard set of the EL results (each EL result is a 
pair (m, e), with m the mention and e its referent 
entity), M be the set of EL results outputted by an 
EL system, then these metrics are computed as: 

Precision = jM\M¤j
jMjPrecision = jM\M¤j
jMj  

Recall = jM\M¤j
jM¤jRecall = jM\M¤j
jM¤j  

where two EL results are considered equal if and 
only if both their mentions and referent entities are 
equal. As the same as Kulkarni et al.(2009), 
                                                           
3 http://www.cse.iitb.ac.in/~soumen/doc/QCQ/ 

Precision and Recall are averaged across 
documents and overall F1 is used as the primary 
performance metric by computing from average 
Precision and Recall. 

4.4 Baselines 

We compare our method with five baselines which 
are described as follows: 

Wikify!. This is a context compatibility based 
EL method using vector space model (Mihalcea & 
Csomai, 2007). Wikify! computes the context 
compatibility using the word overlap between the 
mention’s context and the entity’s Wikipedia entry. 

EM-Model. This is a statistical context 
compatibility based EL method described in Han 
& Sun(2011), which computes the compatibility by 
integrating the evidence from the entity popularity, 
the entity name knowledge and the context word 
distribution of entities. 

M&W. This is a relational topic coherence based 
EL method described in Milne & Witten(2008). 
M&W measures an entity’s topic coherence to a 
document as its average semantic relatedness to the 
unambiguous entities in the document. 

CSAW. This is an EL method which combines 
context compatibility and topic coherence using a 
hybrid method (Kulkarni et al., 2009), where 
context compatibility and topic coherence are first 
separated modeled as context similarity and the 
sum of all pair-wise semantic relatedness between 
the entities in the document, then the entities which 
can maximize the weighted sum of the context 
compatibility and the topic coherence are identified 
as the referent entities of the document. 

EL-Graph. This is a graph based hybrid EL 
method described in Han et al. (2011), which first 
models the context compatibility as text similarity 
and the topic coherence of an entity as its node 
importance in a referent graph which captures all 
mention-entity and entity-entity relations in a 
document, then a random walk algorithm is used to 
collectively find all referent entities of a document. 

Except for CSAW and EL-Graph, all other 
baselines are designed only to link the salient name 
mentions (i.e., key phrases) in a document. In our 
experiment, in order to compare the EL 
performances on also the non-salient name 
mentions, we push these systems’ recall by 
reducing their respective importance thresholds of 
linked mentions. 
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4.5 Experimental Results 

4.5.1 Overall Performance 
We compared our method with all the above five 
baselines. For our method, we estimate the global 
knowledge using all the articles in the Jan. 30, 
2010 English version of Wikipedia, and totally 
there were 3,083,158 articles. For each article, the 
mentions within it are detected using the methods 
described in Medelyan et al.(2008) and all terms in 
an article are used as context words, so a term may 
both be a mention and a context word. The topic 
number of our model is T = 300T = 300  (will be 
empirically set in Sect 4.5.2). To train the entity-
topic model, we run 500500  iterations of our Gibbs 
sampling algorithm to converge. The training time 
of our model is nearly one week on our server 
using 20 GB RAM and one core of 3.2 GHz CPU. 
Since the training can be done offline, we believe 
that the training time is not critical to the real-
world usage as the online inference on new 
document is very quick. Using the above settings, 
the overall results are shown in Table 1. 

 Precision Recall F1 
Wikify! 0.55 0.28 0.37 

EM-Model 0.82 0.48 0.61 
M&W 0.80 0.38 0.52 
CSAW 0.65 0.73 0.69 

EL-Graph 0.69 0.76 0.73 
Our Method 0.81 0.80 0.80 

Table 1. The overall results on IITB data set 

From the overall results in Table 1, we can see that: 
1) By jointly modeling and exploiting the 

context compatibility and the topic coherence, our 
method can achieve competitive performance: ○1  
compared with the context compatibility baselines 
Wikify! and EM-Model, our method 
correspondingly gets 43% and 19% F1 
improvement; ○2  compared with the topic 
coherence baselines M&W, our method achieves 
28% F1 improvement; ③  compared with the 
hybrid baselines CSAW and EL-Graph, our method 
correspondingly achieves 11% and 7% F1 
improvement. 

2) Compared with the context compatibility 
only and the topic coherence only methods, the 
main advantage of our method is that, rather than 
only achieved high entity linking precision on 
salient mentions, it can also effectively link the 

non-salient mentions in a document: this is 
demonstrated in our method’s significant Recall 
improvement: a 32~52% Recall improvement over 
baselines Wikify!, EM-Model and M&W. We 
believe this is because a document usually contains 
little evidence for EL decisions on non-salient 
mentions, so with either only context compatibility 
or only topic coherence the evidence is not enough 
for EL decisions on these non-salient mentions, 
and bring these two directions together is critical 
for the accurate EL on these mentions. 

3) Compared with the hybrid methods, the 
main advantage of our method is the improvement 
of EL precision (a 11~16% improvement over 
baselines CSAW and EL-Graph), we believe this is 
because: ○1 Our method can further capture the 
mutual reinforcement effect between the context 
compatibility and the topic coherence; ○2 The 
traditional hybrid methods usually determine the 
topic coherence of an entity to a document using 
all entities in the document, in comparison our 
method uses only the entities in the same topic, we 
believe this is more reasonable for EL decisions. 

4.5.2 Parameter Tuning 
One still parameter of our method is the topic 
number T. An appropriate T will distribute entities 
into well-organized topics, in turn it will capture 
the co-occurrence information of entities. Figure 4 
plots the F1 at different T values. We can see that 
the F1 is not very sensitive to the topic number and 
with T = 300T = 300  our method achieves its best F1 
performance. 

0 200 400 600 800 1000
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Figure 4. The F1 vs. the topic number T 

4.5.3 Detailed Analysis 
In this section we analyze why and how our 
method works well in detail. Generally, we believe 
the main advantages of our method are: 

1) The effects of topic knowledge. One main 
advantage of our model is that the topic knowledge 
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can provide a document-specific entity prior for EL. 
Concretely, using the topic knowledge and the 
topic distribution of documents, the prior for an 
entity appearing in a document d is highly related 
to the document’s topics: 

P (ejd) =
P

z P (zjd)P (ejz)P (ejd) =
P

z P (zjd)P (ejz) 
This prior is obviously more reasonable than the 
“information less prior” (i.e., all entities have equal 
prior) or “a global entity popularity prior” (Han & 
Sun, 2011). To demonstrate, Table 2-3 show the 3 
topics where the Apple Inc. and the fruit Apple 
have the largest generation probability P(e|z) from 
these topics. We can see that the topic knowledge 
can provide a reasonable prior for entities 
appearing in a document: the Apple Inc. has a large 
prior in documents about Computer, Video and 
Software, and the fruit Apple has a large prior in 
documents about Wine, Food and Plant. 

Topic(Computer) Topic(Video) Topic(Software) 
Computer 

CPU 
Hardware 

Personal computer 

Video 
Mobile phone 
Mass media 

Music 

Computer software
Microsoft Windows

Linux 
Web browser 

Computer memory Television Operating system
Table 2. The 3 topics where the Apple Inc. has the 

largest P(e|z) 
Topic(Wine) Topic(Food) Topic(Plant) 

Wine 
Grape 

Vineyard 
Winery 

Food 
Restaurant 

Meat 
Cheese 

Plant 
Flower 

Leaf 
Tree 

Apple Vegetable Fruit 
Table 3. The 3 topics where the fruit Apple has the 

largest P(e|z) 
2) The effects of a fine-tuned context model. 

The second advantage of our model is that it 
provides a statistical framework for fine-tuning the 
context model from data. To demonstrate such an 
effect, Table 4 compares the EL performance of  
① the entity-topic model with no context model is 
used (No Context), i.e., we determine the referent 
entity of a mention by deleting the 3rd term of the 
formula P (ei = ejz;e¡i;a;D)P (ei = ejz;e¡i;a;D) in Section 3; ② with 
the context model estimated using the entity’s 
Wikipedia page (Article Content), ③ with the 
context model estimated using the 50 word 
window of all its mentions in Wikipedia (Mention 
Context) and; ④  with the context model in the 
original entity-topic model (Entity-Topic Model). 
From Table 4 we can see that a fine-tuned context 
model will result in a 2~7% F1 improvement. 

Context Model F1 
No Context 0.73 

Article Content 
Mention Context 

Entity-Topic Model 

0.75 
0.78 
0.80 

Table 4. The F1 using different context models 
3) The effects of joint model. The third 

advantage of our model is that it jointly model the 
context compatibility and the topic coherence, 
which bring two benefits: ①  the mutual 
reinforcement between the two directions can be 
captured in our model; ② the context compatibility 
and the topic coherence are uniformly modeled and 
jointly estimated, which makes the model more 
accurate for EL. 

4.5.4 EL Accuracies on TAC 2009 dataset 
We also compare our method with the top 5 EL 
systems in TAC 2009 and the two state-of-the-art 
systems (EM-Model and EL-Graph) on TAC 2009 
data set in Figure 5 (For EL-Graph and our method, 
a NIL threshold is used to detect whether the 
referent entity is contained in the knowledge base, 
if the knowledge base not contains the referent 
entity, we assign the mention to a NIL entity). 
From Figure 5, we can see that our method is 
competitive: 1) Our method can achieve a 3.4% 
accuracy improvement over the best system in 
TAC 2009; 2) Our method, EM-Model and EL-
Graph get very close accuracies (0.854, 0.86 and 
0.838 correspondingly), we believe this is because: 
○1  The mentions to be linked in TAC data set are 
mostly salient mentions; ○2  The influence of the 
NIL referent entity problem, i.e., the referent entity 
is not contained in the given knowledge base: Most 
referent entities (67.5%) on TAC 2009 are NIL 
entity and our method has no special handling on 
this problem, rather than other methods such as the 
EM-Model, which affects the overall performance 
of our method. 

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

 
Figure 5. The EL accuracies on TAC 2009 dataset 

113



5 Related Work 

In this section, we briefly review the related work 
of EL. Traditionally, the context compatibility 
based methods link a mention to the entity which 
has the largest compatibility with it. Cucerzan 
(2007) modeled the compatibility as the cosine 
similarity between the vector space representation 
of mention’s context and of entity’s Wikipedia 
entry. Mihalcea & Csomai (2007), Bunescu & 
Pasca (2006), Fader et al. (2009), Gottipati et 
al.(2011) and Zhang et al.(2011) extended the 
vector space model with more information such as 
the entity category and the acronym expansion, etc. 
Han & Sun (2011) proposed a generative model 
which computes the compatibility using the 
evidences from entity’s popularity, name 
distribution and context word distribution. Kataria 
et al.(2011) and Sen (2012) used a latent topic 
model to learn the context model of entities. Zheng 
et al. (2010), Dredze et al. (2010), Zhang et al. 
(2010), Zhou et al. (2010) and Ji & Chen(2011) 
employed the ranking techniques to further take 
relations between candidate entities into account. 

On the other side, the topic coherence based 
methods link a mention to the entity which are 
most coherent to the document containing it. 
Medelyan et al. (2008) measured the topic 
coherence of an entity to a document as the 
weighted average of its relatedness to the 
unambiguous entities in the document. Milne and 
Witten (2008) extended Medelyan et al. (2008)’s 
coherence by incorporating commonness and 
context quality. Bhattacharya and Getoor (2006) 
modeled the topic coherence as the likelihood an 
entity is generated from the latent topics of a 
document. Sen (2012) modeled the topic coherence 
as the groups of co-occurring entities. Kulkarni et 
al. (2009) modeled the topic coherence as the sum 
of all pair-wise relatedness between the referent 
entities of a document. Han et al.(2011) and 
Hoffart et al.(2011) modeled the topic coherence of 
an entity as its node importance in a graph which 
captures all mention-entity and entity-entity 
relations in a document. 

6 Conclusions and Future Work 

This paper proposes a generative model, the entity-
topic model, for entity linking. By uniformly 
modeling context compatibility, topic coherence 
and the correlation between them as statistical 

dependencies, our model provides an effective way 
to jointly exploit them for better EL performance. 

In this paper, the entity-topic model can only 
link mentions to the previously given entities in a 
knowledge base. For future work, we want to 
overcome this limit by incorporating an entity 
discovery ability into our model, so that it can also 
discover and learn the knowledge of previously 
unseen entities from a corpus for linking name 
mentions to these entities. 
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Abstract

Existing techniques for disambiguating named
entities in text mostly focus on Wikipedia as
a target catalog of entities. Yet for many
types of entities, such as restaurants and
cult movies, relational databases exist that
contain far more extensive information than
Wikipedia. This paper introduces a new task,
called Open-Database Named-Entity Disam-
biguation (Open-DB NED), in which a system
must be able to resolve named entities to sym-
bols in an arbitrary database, without requir-
ing labeled data for each new database. We
introduce two techniques for Open-DB NED,
one based on distant supervision and the other
based on domain adaptation. In experiments
on two domains, one with poor coverage by
Wikipedia and the other with near-perfect cov-
erage, our Open-DB NED strategies outper-
form a state-of-the-art Wikipedia NED system
by over 25% in accuracy.

1 Introduction

Named-entity disambiguation (NED) is the task of
linking names mentioned in text with an established
catalog of entities (Bunescu and Pasca, 2006; Rati-
nov et al., 2011). It is a vital first step for se-
mantic understanding of text, such as in grounded
semantic parsing (Kwiatkowski et al., 2011), as
well as for information retrieval tasks like person
name search (Chen and Martin, 2007; Mann and
Yarowsky, 2003).

NED requires a catalog of symbols, called refer-
ents, to which named-entities will be resolved. Most
NED systems today use Wikipedia as the catalog of

referents, but exclusive focus on Wikipedia as a tar-
get for NED systems has significant drawbacks: de-
spite its breadth, Wikipedia still does not contain all
or even most real-world entities mentioned in text.
As one example, it has poor coverage of entities that
are mostly important in a small geographical region,
such as hotels and restaurants, which are widely dis-
cussed on the Web. 57% of the named-entities in
the Text Analysis Conference’s (TAC) 2009 entity
linking task refer to an entity that does not appear
in Wikipedia (McNamee et al., 2009). Wikipedia is
clearly a highly valuable resource, but it should not
be thought of as the only one.

Instead of relying solely on Wikipedia, we pro-
pose a novel approach to NED, which we refer to
as Open-DB NED: the task is to resolve an en-
tity to Wikipedia or to any relational database that
meets mild conditions about the format of the data,
described below. Leveraging structured, relational
data should allow systems to achieve strong accu-
racy, as with domain-specific or database-specific
NED techniques like Hoffart et al.’s NED system
for YAGO (Hoffart et al., 2011). And because of
the availability of huge numbers of databases on
the Web, many for specialized domains, a success-
ful system for this task will cover entities that a
Wikipedia NED or database-specific system cannot.

We investigate two complementary learning
strategies for Open-DB NED, both of which signifi-
cantly relax the assumptions of traditional NED sys-
tems. The first strategy, a distant supervision ap-
proach, uses the relational information in a given
database and a large corpus of unlabeled text to
learn a database-specific model. The second strat-
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egy, a domain adaptation approach, assumes a sin-
gle source database that has accompanying labeled
data. Classifiers in this setting must learn a model
that transfers from the source database to any new
database, without requiring new training data for the
new database. Experiments show that both strategies
outperform a state-of-the-art Wikipedia NED sys-
tem by wide margins without requiring any labeled
data from the test domain, highlighting the signifi-
cant advantage of having domain-specific relational
data.

The next section contrasts Open-DB NED with
previous work. Section 3 formalizes the task. Sec-
tions 4 and 5 present our distant supervision strategy
and domain-adaptation strategy, respectively. Sec-
tion 6 introduces a technique that is a hybrid of the
two learning strategies. Section 7 describes our ex-
periments, and Section 8 concludes.

2 Previous Work

As mentioned above, restricting the catalog of ref-
erents to Wikipedia, as most recent NED systems
do (Bunescu and Pasca, 2006; Mihalcea and Cso-
mai, 2007; Fader et al., 2009; Han and Zhao, 2009;
Kulkarni et al., 2009; Ratinov et al., 2011), can re-
strict the coverage of the system. Zhou et al. (2010)
estimate that 23% of names in Yahoo! news arti-
cles have no referent in Wikipedia, and Cucerzan
(2007) estimates the rate at 16% in MSNBC news
articles. There is reason to suspect that these esti-
mates are on the low side, however, as news tends to
cover popular entities, which are most likely to ap-
pear in Wikipedia; the mentions in TAC’s 2009 en-
tity linking task are drawn from both newswire and
blogs, and have a far higher rate (57%) of missing
Wikipedia entries. Lin et al. (2012) find that 33% of
mentions in a corpus of 500 million Web documents
cannot be linked to Wikipedia.

NED systems that are focused on specific do-
mains (or verticals) greatly benefit from reposito-
ries of domain-specific knowledge, only a subset
of which may be found in Wikipedia. For exam-
ple, Pantel and Fuxman (2011) use a query-click
graph to resolve names in search engine queries to a
large product catalog from a commercial search en-
gine, while Dalvi et al. (2009; 2012) focus on movie
and restaurant databases. Bellare and McCallum

(2009) use the sequence information available in ci-
tation text to link author, title, and venue names to a
publication database. Open-DB NED systems work
on any database, so they can serve as baselines for
domain-specific NED tasks, as well as provide dis-
ambiguation for domains where no domain-specific
NED system exists.

Numerous previous studies have considered dis-
tant or weak supervision from a single relational
database as an alternative to manual supervision for
information extraction (Hoffmann et al., 2011; Weld
et al., 2009; Bellare and McCallum, 2007; Bunescu
and Mooney, 2007; Mintz et al., 2009; Riedel et al.,
2010; Yao et al., 2010). In contrast to these sys-
tems, our distant supervision NED system provides
a meta-algorithm for generating an NED system for
any database and any entity type.

Existing domain adaptation or transfer learning
approaches are inappropriate for the Open-DB NED
task, either because they require labeled data in both
the source and target domains (Daumé III et al.,
2010; Ben-David et al., 2010), or because they lever-
age some notion of distributional similarity between
words in the source and target domains (Blitzer et
al., 2006; Huang and Yates, 2009), which does not
apply to the database symbols across the two do-
mains. Instead, our domain adaptation technique
uses domain-independent features of relational data,
which apply regardless of the actual contents of the
database, as explained further below.

3 The Open-DB NED Problem and
Assumptions

3.1 Problem Formulation

A mention is an occurrence of a named-entity
in a document. Formally, a mention m =
(d, start, end) is a triple consisting of a document
d, as well as a start and end position for the men-
tion within the document. We say that d is the
context of m. A relational database is a 2-tuple
(S,R). Here, S is a set of symbols for constants,
attributes, and relations in the database, and R =
{r1, . . . , rn} is a set of relation instances of the form
ri = {(c1,1, . . . , c1,ki

), . . . , (cni,1, . . . , cni,ki
)},

where each cj is taken from S, ki is the arity of re-
lation ri and ni is the number of known instances
of ri. We will write example database symbols in

117



movie 

id title year 

1 Next Door 1975 

2 Next Door 2005 

3 Next Door 2008 

4 Next Door 2008 

5 Next Door 2010 

… … … 

actor 

id name 

1 Nicole Kreux 

2 Richard Ryan 

3 Kristoffer Joner 

4 Lee Perkins 

5 Carla Valentine 

… … 

acted_in 

movie_id actor_id role 

5 1 Evelyn 

5 2 Bruce 

2 3 John 

1 4 Kid 

3 5 Elana 

… … … 

player 

id name height position 

1 Carlos Lee 6’2” LF 

2 Rob Bironas 6’0” K 

3 Chris Johnson 6’3” 3B 

4 Chris Johnson 5’11” RB 

5 Chris Johnson 6’1” DB 

… … … 

team 

id name 

1 San Diego Padres 

2 Houston Texans 

3 Tennessee Titans 

4 Oakland Raiders 

5 Houston Astros 

… … 

plays_for 

player_id team_id 

4 3 

5 2 

3 5 

1 5 

2 3 

… … 

Figure 1: Example movie database (above) and sports
database (below) in BCNF.

teletype, and mentions in “quotations.” For a
particular database DB, we refer to its components
as DB.S and DB.R. For a set of databases D, de-
fine the set of referents as SD = (

⋃
DB∈DDB.S)∪

{OOD}, where OOD is a special symbol indicat-
ing something that is “out of database”, or not found
in any of the databases in D.

Given a corpus C, a set of mentions M that oc-
cur in C, and a set of databases D, the Open-DB
NED task is to produce a function f : M → SD,
which identifies an appropriate target symbol from
one of the databases in D, or determines that the
mention is OOD. Note that this problem formula-
tion assumes no labeled data. This is significantly
more challenging than traditional NED settings, but
allows the system to generalize easily to any new
database. In the domain adaptation section below,
we relax this condition somewhat, to allow labeled
data for a small number of initial databases; the sys-
tem must then transfer what it learns from the la-
beled domains to any new database. Also note that
the focus for this paper is disambiguation; we as-
sume that the set of mentions are correctly demar-
cated in the input text. Previous systems, such as
Lex (Downey et al., 2007), have investigated the task
of finding correct named-entity boundaries in text.

3.2 Assumptions

To allow our systems to handle arbitrary databases,
we need to make some assumptions about a standard
format for the data. We will assume that databases
are provided in a particular form, called Boyce-Codd

Normal Form (BCNF) (Silberschatz et al., 2010).
A relational schema is said to be in BCNF when
all redundancy based on functional dependency has
been removed, although other types of redundancy
may still exist. Formally, a schema R is said to
be in BCNF with respect to a set of functional de-
pendencies F if for every one of the dependencies
(X → Y ) ∈ F , either

1. Y ⊂ X , meaning this is a trivial functional de-
pendency, or

2. X is a superkey, meaning that X is a set of at-
tributes that together define a unique ID for the
relation.

In practice, this is a relatively safe assumption as
database designers often aim for even stricter normal
forms. For databases not in BCNF, such as tables
extracted from Web pages, standard algorithms ex-
ist for converting them into BCNF, given appropri-
ate functional dependencies, although there are sets
of functional dependencies for which BCNF is not
achievable. Figure 1 shows two example databases
in BCNF. We use these tables as examples through-
out the paper.

We will additionally assume that all attributes, in-
cluding names and nicknames, of entities that are
covered by the database are treated as functional de-
pendencies of the entity. Again, in practice, this
is a fairly safe assumption as this is part of good
database design, but if a database does not con-
form to this, then there will be some entities in the
database that our algorithms cannot resolve to. This
assumption implies that it is enough to use the set of
superkeys for relations as the set of possible refer-
ents; our algorithms make use of this fact.

Finally, we will assume the existence of a func-
tion µ(s, t) which indicates whether the text t is a
valid surface form of database symbol s. Our exper-
iments in Section 7.3 explore several possible simple
definitions for this function.

4 A Distant Supervision Strategy for
Open-DB NED

Our first approach to the Open-DB NED problem re-
lies on the fact that, while many mentions are indeed
ambiguous and difficult to resolve correctly, most
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mentions have only a very small number of possi-
ble referents in a given database. “Chris Johnson”
is the name of doubtless thousands of people, but
for articles that are reasonably well-aligned with our
sports database, most of the time the name will refer
to just three different people. Most sports names are
in fact less ambiguous still. Thus, taking a corpus of
unlabeled sports articles, we use the information in
the database to provide (uncertain) labels, and then
train a log-linear model from this probabilistically-
labeled data.

This strategy requires a set of features for the
model. Traditionally, such features would be hand-
crafted for a particular domain and database. As a
first step towards our Open-DB system, we present
a log-linear model for disambiguation, as well as a
simple feature-generation algorithm that produces a
large set of useful features from a BCNF database.
We then present a distant-supervision learning pro-
cedure for this model.

4.1 Disambiguation Model

Let SD be the set of possible referents. We construct
a vector of feature functions f(m, s) describing the
degree to which m and s ∈ SD appear to match
one another. The feature functions are described be-
low. The model includes a vector of weights w, one
weight per feature function, and sets the probability
of entity s given m and w as:

P (s|m,w) =
exp (w · f(m, s))∑

s′∈SD
exp (w · f(m, s′))

(1)

4.2 Database-driven Feature Generation

Figure 2 shows our algorithm for automatically gen-
erating feature functions fi(m, s) from a BCNF
database. As mentioned above, we only need to con-
sider resolving to database symbols s that are keys,
or unique IDs, for some tuple in a database. For
an entity in the database with key id, the feature
generation algorithm generates two types of feature
functions: attribute counts and similar entity counts.
Each of these features measures the similarity be-
tween the information stored in the database about
the entity id, and the information in the text in d sur-
rounding mention m.

An attribute count feature function fatti,j (m, id)
for the jth attribute of relation ri counts how many

Algorithm: Feature Generation

Input: DB, a database in BCNF
Output: F, a set of feature functions
Initialization: F← ∅
Attribute Count Feature Functions:
For each relation ri ∈ DB.R

For each j in {1, . . . , ki}
Define function fatti,j (m, id):
count← 0
Identify the tuple t ∈ ri containing id
val← tj
count← count +

ContextMatches(val,m)
return count

F← F ∪ {fatti,j }

Similar-Entity Count Feature Functions:
For each relation ri ∈ DB.R

For each j in {1, . . . , ki}
Define function fsimi,j (m, id):
count← 0
Identify the tuple t ∈ ri containing id
val← tj
Identify the set of similar tuples T ′:

T ′ = {t′|t′ ∈ ri, t′j = val}
For each tuple t′ ∈ T ′

For each j′ ∈ {1, . . . , ki}
val′ ← t′j
count← count +

ContextMatches(val′,m)
return count

F← F ∪ {fsimi,j }

Figure 2: Feature generation algorithm. The
ContextMatches(s,m) function counts how many
times a string that matches database symbol s appears
in the context of m. In our implementation, we use all
of d(m) as the context. Matching between strings and
database symbols is discussed in Sec. 7.3.

attributes of the entity id appear near m. For exam-
ple, if id is 5 in the movie relation in Figure 1, the
feature function for attribute yearwould count how
often 2010 matches the text surrounding mention
m. Defining precisely whether a database symbol
“matches” a word or phrase is a subtle issue; we ex-
plore several possibilities in Section 7.3. In addition
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to attribute counts for attributes within a single rela-
tion, we also use attributes from relations that have
been inner-joined on primary key and foreign key
pairs. For example, for movies, we include attributes
such as director name, genre, and actor name. High
values for these attribute count features indicate that
the text around m closely matches the information
in the database about entity id, and therefore id is a
strong candidate for the referent of m. We use the
whole document as the context for finding matches,
although other variants are worth future investiga-
tion.

A similar entity count feature function
fsimi,j (m, id) for the jth attribute in relation ri
counts how many entities similar to id are men-
tioned in the neighborhood of m. As an example,
consider a mention of “Chris Johnson”, id = 3,
and the similar entity feature for the position
attribute of the players relation in the sports
database. The feature function would first identify
that 3B is the position of the player with id = 3. It
would then identify all players that had the same
position. Finally, it would count how often any
attributes of this set of players appear near “Chris
Johnson”. Likewise, the similar entity feature for
the team id attribute would count how many
teammates of the player with id = 3 appear near
“Chris Johnson”. A high count for this teammate
feature is a strong clue that id is the correct referent
for m, while a high count for players of the same
position is a weak but still valuable clue.

4.3 Parameter Estimation via Distant
Supervision

Using string similarity, we can heuristically deter-
mine that three IDs with name attribute Chris
Johnson are highly likely to be the correct target
for a mention of “Chris Johnson”. Our distant su-
pervision parameter estimation strategy is to move
as much probability mass as possible onto the set
of realistic referents obtained via string similarity.
Since our features rely on finding attributes and sim-
ilar entities, the side effect of this strategy is that
most of the probability mass for a particular mention
is moved onto the one target ID with high attribute
count and similar entity count features, thus disam-
biguating the entity. Although the string-similarity
heuristic is typically noisy, the strong information in

the database and the fact that many entity mentions
are typically not ambiguous allows the technique to
learn effectively from unlabeled text.

Let φ(m,DB) be a heuristic string-matching
function that returns a set of plausible ID values in
databaseDB for mentionm. The objective function
for this training procedure is a modified marginal log
likelihood (MLL) function that encourages probabil-
ity mass to be placed on the heuristically-matched
targets:

MLL(M,w) =
∑
m∈M

log
∑

id∈φ(m,DB)

P (id|m,w)

This objective is smooth but non-convex. We use
a gradient-based optimization procedure that finds a
local maximum. Our implementation uses an open-
source version of the LBFG-S optimization tech-
nique (Liu and Nocedal, 1989). The gradient of our
objective is given by

∂LL(M,w)

∂wi
=

∑
m∈M

Eid∈φ(m,DB) [fi(m, id)]

−Eid∈DB.S [fi(m, id)]

where the expectations are taken according to
P (id|m,w).

5 A Domain-Adaptation Strategy for
Open-DB NED

Our domain-adaptation strategy builds an Open-DB
NED system by training it on labeled examples from
an initial database or small set of initial databases.
Unlike traditional NED, however, the purpose in
Open-DB NED is to resolve to any database. Thus
the strategy must take care to build a model that
can transfer what it has learned to a new database,
without requiring additional labeled data for the new
database.

At first, the problem seems intractable — just
because a system can disambiguate between “Next
Door”, the 2005 Norwegian film, and “Next Door”,
the 1975 short film by director Andrew Silver, that
seems to provide little benefit for disambiguating be-
tween different athletes named “Andre Smith.” The
crux of the problem lies in the fact that database-
driven features are domain-specific. Counting how
many times the director of a movie appears is highly
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useful in the movie domain, but worthless in the
sports domain.

Our solution works by re-defining the problem in
such a way that we can define domain-independent
and database-independent features. For example,
rather than counting how often the director of
a movie appears in the context around a movie
mention, we create a domain-independent Count
Att(m, s) feature function that counts how often any
attribute of s appears in the context of m. For
movies, Count Att will add together counts for ap-
pearances of a movie’s production year and IMDB
rating, among other attributes. In the sports domain,
Count Att will add together counts for appearances
of a player’s height, position, salary, etc.. But in ei-
ther domain, the feature is well-defined, and in either
domain, larger values of the feature indicate a better
match between m and s. Thus there is a hope for
training a model with domain-independent features
like Count Att on labeled data from one domain, say
movies, and producing a model that has high accu-
racy on the sports domain.

We first formalize the notion of a domain adap-
tation NED model, and then describe our algorithm
for producing such a model. We say that a domain
consists of a database DB as well as a distribution
D(M), whereM is the space of mentions. For in-
stance, the movie domain might consist of the Inter-
net Movie Database (IMDB) and a distribution that
places most probability mass on documents about
movies and Hollywood stars. In domain adapta-
tion, a system observes a set of training examples
(m, s, g(m, s)), where instances m ∈ M are drawn
from a source domain’s distribution DS and refer-
ents s are drawn from the source domain’s database
DBS . The labels g(m, s) are boolean values in-
dicating a correct or incorrect match between the
mention and referent. The system must then learn
a hypothesis for classifying examples (m, s) drawn
from a target domain’s distributionDT and database
DBT . Note that for domain adaptation, we can-
not use the more traditional problem formulation in
which the referent s is a label (i.e., s = g(m)) for the
mention, since the set of possible referents changes
from domain to domain, and therefore the output of
g would be completely different from one domain to
the next.

Table 1 lists the domain-independent features

Domain-Independent Feature Functions

Count Att:
∑

i,j f
att
i,j (m, s)

Count Sim:
∑

i,j f
sim
i,j (m, s)

Count All: Count Att + Count Sim

Count Unique:
∑

i,j

{
0 if fatti,j (m, s) = 0,

1 if fatti,j (m, s) > 0.

Count Num:
∑

i,j|jis a numeric att. f
att
i,j (m, s)

Table 1: Primary feature functions for a domain adapta-
tion approach to NED. These features made the biggest
difference in our experiments, but we also tested varia-
tions such as counting unique numeric attribute appear-
ances, counting unique similar entities, counting relation
name appearances, counting extended attributed appear-
ances, and others.

used in our domain adaptation model. These fea-
tures use the attribute counts and similar entity
counts from the distant supervision model as subrou-
tines. By aggregating over those domain-dependent
feature functions, the domain adaptation system ar-
rives at feature functions that can be defined for any
database, rather than for a specific database.

Note that there is a tradeoff between the do-
main adaptation technique and the distant super-
vision technique. The domain adaptation model
has access to labeled data, unlike the distant su-
pervision model. In addition, the domain adapta-
tion model requires no text whatsoever from the tar-
get domain, not even an unlabeled corpus, to set
weights for the target domain. Once trained, it is
ready for NED over any database that meets our as-
sumptions, out of the box. However, because the
model needs to be able to transfer to arbitrary new
domains, the domain adaptation model is restricted
to domain-independent features, which are “coarser-
grained.” That is, the distant supervision model has
the ability to place more weight on attributes like
director rather than genre, or team rather than po-
sition, if those attributes are more discriminative.
The domain adaptation model cannot place differ-
ent weights on the different attributes, since those
weights would not transfer across databases.

As with distant supervision, the domain adapta-
tion strategy uses a log-linear model over these fea-
ture functions. We use standard techniques for train-
ing the model using labeled data from the source do-
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main: conditional log likelihood (CLL) as the objec-
tive function, and LBFG-S for convex optimization.

CLL(L,w) =
∑

(m,id,label)∈L

logP (label|m, id,w)

The training algorithm is guaranteed to converge to
the globally optimal parameter setting for this objec-
tive function over the training data. The manually
annotated data contains only positive examples; to
generate negative examples, we use the same name-
matching heuristic φ(m,DB) to identify a set of po-
tentially confusing bad matches. On test data, we
use the trained model to choose the id for a given m
with the highest probability of being correct.

6 A Hybrid Model

The distant supervision and domain adaptation
strategies use two very different sources of evidence
for training a disambiguation classifier: the string-
matching heuristic and unlabeled text from the target
domain for the the distant supervision model, and
aggregate features over labeled text from a separate
domain for domain adaptation. This begs the ques-
tion, do these sources of evidence complement one
another? To address this question, we design a Hy-
brid model with features and training strategies from
both distant supervision and domain adaptation.

The training data consists of a set LS of labeled
mentions from a source domain, a source database
DBS , a set of unlabeled mentions MT from the tar-
get domain, and the target-domain database DBT .
The full feature set of the Hybrid model is the union
of the distant supervision feature functions for the
target domain and the domain-independent domain
adaptation feature functions. Note that the distant
supervision feature functions are domain-specific,
so they almost always will be uniformly zero on LS ,
but the domain adaptation feature functions will be
activated on both LS and MT . The combined train-
ing objective for the Hybrid model is:

LL(LS ,MT ,w) = CLL(LS ,w) +MLL(MT ,w)

7 Experiments

Our experiments compare our strategies for Open-
DB NED against one another, as well as against a
Wikipedia NED system from previous work, on two
domains: sports and movies.

7.1 Data

For the movie domain, we collected a set of
156 cult movie titles from an online movie site
(www.olivefilms.com). For each movie title, we ex-
ecuted a Web search using a commercial search en-
gine, and collected the top five documents for each
title from the search engine’s results. Nearly all top-
five results included at least one mention of an en-
tity not found in Wikipedia; overall, only 16% of the
mentions could be linked to Wikipedia. After strip-
ping javascript and html annotations, we removed
documents with fewer than 50 words, leaving a to-
tal of 770 documents. We select one occurrence of
any of the 156 movie titles from each document as
our set of mentions. Many titles are ambiguous not
just among different movies with the same name, but
also among novels, plays, geographical entities, and
assorted other types of entities. To provide labels for
these mentions, we use both a movie database and
Wikipedia. We downloaded the complete data dump
from the online Internet Movie Database (IMDB,
www.imdb.com). For our set of possible referents,
we use the set of all key values in IMDB, and the set
of all Wikipedia articles. Annotators manually la-
beled each mention using this set of referents. Table
2 shows summary statistics about this labeled data.

For the sports domain, we downloaded all player
data from Yahoo!, Inc.’s sports database for the
years 2011-2012 and two American sports leagues,
the National Football League (NFL) and Major
League Baseball (MLB). From the database, we ex-
tracted ambiguous player names and team names,
including names like “Philadelphia” which may re-
fer to Philadelphia Eagles in the NFL data,
Philadelphia Phillies in the MLB data, or
the city of Philadelphia itself (in both types of
data). We then collected 1300 Yahoo! news arti-
cles which include a mention that partially matches
at least one of these database symbols. We manu-
ally labeled a random sample of 564 mentions from
this data, including 279 player name mentions and
285 city name mentions. Many player name and
place name mentions are ambiguous between the
two sports leagues, as well as with teams or play-
ers from other leagues. In order to focus on the
hardest cases, we specifically exclude mentions like
“Philadelphia” from the labeled data if any of their
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domain |M | E|φ(m,DB)| OOD Wiki

movies 770 2.6 13% 16%
sports 549 4.5 0% 100%

Table 2: Number of mentions, average number of refer-
ents per mention, % of mentions that are OOD, and %
of mentions that are in Wikipedia in our movie and sports
data.

unambiguous completions appears in the same arti-
cle (that is, if either of the team names “Philadelphia
Eagles” or “Philadelphia Phillies” appears in the
same article, we exclude the “Philadelphia” men-
tion). As before, the set of possible referents in-
cludes the symbol OOD, key values from the sports
database, and Wikipedia articles, and a given men-
tion may be labeled with both a sports entity and a
Wikipedia article, if appropriate. All of our data is
available from the last author’s website.

7.2 Evaluation Metric

We report on a version of exact-match accuracy. The
system chooses the most likely label ŝ for each m.
This is judged correct if ŝ matches the correct label
s exactly, or (in cases where both a Wikipedia and a
database entity are considered correct) if one of the
labels matches ŝ exactly. This metric allows systems
to resolve against either reference, Wikipedia or an-
other database, without requiring it to match both if
the same entity appears in both references.

7.3 Exact or Partial Matching?

One important question in the design of our systems
is how to determine the “match” between database
symbols and text. This question comes into play in
two components of our systems: it affects the com-
putation of feature functions that count how often a
match of some attribute is found in text, and it af-
fects which set of heuristically-determined database
entities are considered to be possible matches for a
given mention.

We experiment with two different matching
strategies between a symbol s and text t, exact
matching and partial matching. Exact matching
µexact(s, t) requires the sequence of characters in s
to appear exactly (modulo character encoding) in t.
For instance, the database value Chris Johnson

System Accuracy

No-Wikipedia Domain Adapt. 0.61
DocSim-Wikipedia Domain Adapt. 0.69

Table 3: Including a simple document-similarity feature
for comparing a mention’s context with a Wikipedia page
provides an 8% improvement over ignoring Wikipedia in-
formation.

would match “Chris Johnson”, but not “C. John-
son” or “Johnson” in text. For partial matching,
we used different tests for numeric and textual en-
tities. For numeric entities, µpartial matched s and
t if the numeric value of one was within 10% of
the other, so that 5312 would match “5,000.” We
made no attempt to convert numeric phrases, such
as “3.6 million”, into numeric values. For textual
entities, µpartial matched s and t if at least one
token from each matched exactly. Thus Chris
Johnson matches both “Chris” and “C. Johnson”.

We found µpartial to be consistently superior for
computing φ(m,DB), since it has much better re-
call for mentions like “Philadelphia”. On the other
hand, if we use µpartial for computing our models’
feature functions, like the Count Att(m, s) in the do-
main adaptation model, counts varied widely across
domains. A simple version of the domain adapta-
tion classifier (only the Count All and Count Unique
features) trained on sports data and tested on movies
achieved an accuracy of 24% using µpartial, com-
pared with 61% using µexact. For all remaining
tests, we used µexact for computing features, and
µpartial for computing φ(m,DB).

7.4 Incorporating Wikipedia referents

Thus far, all of our features work on relational data,
not Wikipedia. In order to allow our systems to link
to Wikipedia, we create a single “document simi-
larity” feature describing the similarity between the
text around a mention and the text appearing on a
Wikipedia page. We build a vector space model of
both the document containing the mention and the
Wikipedia page, remove stopwords, and use cosine
similarity to compute this feature.

To evaluate the effectiveness of this Wikipedia
feature, we tested two versions of our domain adap-
tation system, both trained on sports data and tested
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Figure 3: All three Open-DB NED strategies out-
perform a state-of-the-art Wikipedia NED system by
25% or more on sports and movies, and outperform
a Wikipedia NED system with oracle information by
14% or more on the movie data. Differences between
the Modified Zhou Wikifier and the Open-DB strategies
are statistically significant (p < 0.01, Fisher’s exact test)
on both domains.

on the movies domain. The first version involves
no Wikipedia information whatsoever, thus it has no
reason to select a Wikipedia article over OOD. The
second system includes the document similarity fea-
ture. Table 3 shows the results of these systems. En-
couragingly, our single document similarity feature
produces a significant improvement over the model
without Wikipedia information, so we use this fea-
ture in all of our systems tested below. More so-
phisticated use of Wikipedia is certainly possible,
and an important question for future work is how
to combine Open-DB NED more seamlessly with
Wikipedia NED.

7.5 Comparing Open-DB NED Strategies

For each domain, we compare our domain-
adaptation strategy, distant supervision, and hy-
brid strategies. The domain-adaptation model is
trained on the labeled data for sports when testing
on movies, and vice versa. We use a movies test set
of 180 mentions that is separate from the develop-
ment data used for the above tests. For the distant
supervision strategy, we use the entire collection of
texts from each domain as input (1300 articles for
sports, 770 articles for movies), with the labels re-
moved during training.

We compare against a state-of-the-art Wikipedia

NED system used in production by a major Web
company. This system is a modified version of the
system described by Zhou et al. (2010), where cer-
tain features have been removed for efficiency. We
refer to this as the Modified-Zhou Wikifier. This
system uses a gradient-boosted decision tree and
multiple local and global features for computing
the similarity between a mention’s context and a
Wikipedia article. We also test a hypothetical sys-
tem, Oracle Wikifier, which is given no information
about entities in IMDB, but is assumed to be able
to correctly resolve any mention that refers to an
entity found in Wikipedia. Thus, this system has
perfect accuracy on mentions that can be found in
Wikipedia, and accuracy similar to a baseline that
predicts randomly on all mentions that fall outside
of Wikipedia1. Oracle-Wikifier serves as an upper
bound on systems that have no access to a domain-
specific database. In addition, we compare against
two standard baselines: a classifier that always pre-
dicts OOD, and a classifier that chooses randomly.
Finally, we compare against a system that trains the
domain adaptation model using distant supervision
(“DA Trained with DS”).

Figure 3 shows our results. All three Open-DB
approaches outperform the baseline techniques on
this test by wide margins, with the Hybrid model in-
creasing by 30% or more over the random baseline.
On the movie domain, the Hybrid model outper-
forms the Oracle Wikifier by nearly 20%. Encour-
agingly, the Hybrid model consistently outperforms
both distant supervision and domain adaptation, sug-
gesting that the two sources of evidence are partially
complementary. Distant supervision performs better
on the movies test, whereas domain adaptation has
the advantage on sports. The differences among all
three Open-DB approaches is relatively small, com-
pared with the difference between these approaches
and Oracle Wikifier on the movie data.

The domain adaptation system outperforms DA
Trained with DS on both domains, suggesting
that labeled data from a separate domain is bet-
ter evidence for parameter estimates than unlabeled
data from the same domain. The distant super-
vision system also outperforms DA Trained with

1Alternatively, one could make the oracle system predict
OOD on all mentions that fall outside of Wikipedia. Random
predictions perform better on our data.
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DS on both domains, suggesting that the fine-
grained, domain-specific features do in fact provide
more helpful information than the coarser-grained,
domain-independent features of the domain adapta-
tion model.

All of the Open-DB NED systems outperform the
Modified Zhou Wikifier on both data sets by a wide
margin. In fact the Modified Zhou Wikifier has sim-
ilar results on both domains, despite the fact that
Wikipedia has far greater coverage on sports than
movies. In part, the poor performance of the Modi-
fied Zhou Wikifier reflects the difficult nature of the
task. In previous experiments on an MSNBC news
test set it reached 85% accuracy, but a random clas-
sifier there achieved 60% accuracy compared with
21% on our sports data. Another difficulty with
the Modified Zhou Wikifier is its strong preference
for globally common entities. It consistently clas-
sifies mentions that are ambiguous between a city
and a team (like “Chicago” in “Chicago sweeps the
Red Sox”) as cities when they should be resolved
to teams, in large part because Chicago is a more
common referent in general text than either of the
baseball teams that play in that city. In sports arti-
cles, however, both meanings are common, and only
the surrounding context can help determine the cor-
rect referent.

Besides wikifiers, NED systems may also be
compared with dictionary-based word sense disam-
biguation techniques like the Lesk algorithm2 (Lesk,
1986). The Lesk algorithm is “open” in the sense
that it works for arbitrary dictionaries, and it defines
a vector space model of the dictionary definitions
that may be likened to the attribute-value model in
our representation of entities in the database. Our
approach, however, estimates parameters for a sta-
tistical model from data, whereas the Lesk algorithm
uses an equal weight for all attributes. To make an
empirical comparison, we created a variant of the
Lesk algorithm for relational data: we took the dis-
ambiguation model from Eqn. 1, supplied all of
the features from the distant supervision model, and
manually set w = 1. This “relational Lesk” model
achieves an accuracy of 0.11 on movies, and 0.15
on sports, significantly below the random baseline.
Giving equal weight to noisy attributes like genre

2We thank the reviewers for making this connection.

and more discriminative attributes like director
significantly hurts the performance.

For both the movie and sports domain, approx-
imately 80% of the Hybrid model’s errors are be-
cause of predicting database symbols, when the cor-
rect referent is a Wikipedia page or OOD. This
nearly always occurs because some words in the
context of a mention match an attribute of an in-
correct database referent. For instance, the crime
genre is an attribute for several movies, but it also
matches in contexts surrounding book titles and nu-
merous other entities. In the movie domain, most of
the remaining errors are incorrect OOD predictions
for mentions that should resolve to the database, but
the article contains no attributes or similar entities
to the database entity. In the sports domain, many
of the remaining errors were due to predicting in-
correct player referents. Quite often, this was be-
cause the document discusses a fantasy sports league
or team, where players from different professional
sports teams are mixed together on a “fantasy team”
belonging to a fan of the sport. Since players in the
fantasy leagues have different teammates than they
do in the database, these articles consistently con-
fuse our methods.

8 Conclusion and Future Work

This paper introduces the task of Open-DB Named
Entity Disambiguation, and presents two distinct
strategies for solving this task. Experiments indicate
that a mixture of the two strategies significantly out-
performs a state-of-the-art Wikipedia NED system,
on a dataset where Wikipedia has good coverage and
on another dataset where Wikipedia has poor cover-
age. The results indicate that there is a significant
benefit to leveraging other sources of knowledge in
addition to Wikipedia, and that it is possible to lever-
age this knowledge without requiring labeled data
for each new source. The initial success of these
Open-DB NED approaches indicates that this task is
a promising area for future research, including ex-
citing extensions that link large numbers of domain-
specific databases to text.
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Abstract

Generic rule-based systems for Information
Extraction (IE) have been shown to work
reasonably well out-of-the-box, and achieve
state-of-the-art accuracy with further domain
customization. However, it is generally rec-
ognized that manually building and customiz-
ing rules is a complex and labor intensive pro-
cess. In this paper, we discuss an approach
that facilitates the process of building cus-
tomizable rules for Named-Entity Recognition
(NER) tasks via rule induction, in the Annota-
tion Query Language (AQL). Given a set of
basic features and an annotated document col-
lection, our goal is to generate an initial set
of rules with reasonable accuracy, that are in-
terpretable and thus can be easily refined by
a human developer. We present an efficient
rule induction process, modeled on a four-
stage manual rule development process and
present initial promising results with our sys-
tem. We also propose a simple notion of ex-
tractor complexity as a first step to quantify
the interpretability of an extractor, and study
the effect of induction bias and customization
of basic features on the accuracy and complex-
ity of induced rules. We demonstrate through
experiments that the induced rules have good
accuracy and low complexity according to our
complexity measure.

1 Introduction
Named-entity recognition (NER) is the task of iden-
tifying mentions of rigid designators from text be-
longing to named-entity types such as persons, orga-
nizations and locations (Nadeau and Sekine, 2007).
Generic NER rules have been shown to work reason-
ably well-out-of-the-box, and with further domain
customization (Chiticariu et al., 2010b), achieve
quality surpassing state-of-the-art results. Table 1

System Dataset Fβ=1

Generic Customized
GATE ACE2002 57.8 82.2

ACE 2005 57.32 88.95
SystemT CoNLL 2003 64.15 91.77

Enron 76.53 85.29

Table 1: Quality of generic vs. customized rules.

summarizes the quality of NER rules out-of-the-box
and after domain customization in the GATE (Cun-
ningham et al., 2011) and SystemT (Chiticariu et
al., 2010a) systems, as reported in (Maynard et al.,
2003) and (Chiticariu et al., 2010b) respectively.

Rule-based systems are widely used in enterprise
settings due to their explainability. Rules are trans-
parent, which leads to better explainability of errors.
One can easily identify the cause of a false positive
or negative, and refine the rules without affecting
other correct results identified by the system. Fur-
thermore, rules are typically easier to understand by
an IE developer and can be customized for a new
domain without requiring additional labeled data.

Typically, a rule-based NER system consists of a
combination of four categories of rules (Chiticariu et
al., 2010b): (1) Basic Feature (BF) rules to identify
components of an entity such as first name and last
name. (2) Candidate definition (CD) rules to iden-
tify complete occurrences of an entity by combining
the output of multiple BF rules, e.g., first name fol-
lowed by last name is a person candidate. (3) Candi-
date refinement (CR) rules to refine candidates gen-
erated by CD rules. E.g., discard candidate persons
contained within organizations. (4) Consolidation
rules (CO) to resolve overlapping candidates gener-
ated by multiple CD and CR rules.

A well-known drawback that influences the
adoptability of rule-based NER systems is the man-
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ual effort required to build the rules. A common ap-
proach to address this problem is to build a generic
NER extractor and then customize it for specific do-
mains. While this approach partially alleviates the
problem, substantial manual effort (in the order of
several person weeks) is still required for the two
stages as reported in (Maynard et al., 2003; Chiti-
cariu et al., 2010b). In this paper, we present initial
work towards facilitating the process of building a
generic NER extractor using induction techniques.

Specifically, given as input an annotated docu-
ment corpus, a set of BF rules, and a default CO
rule for each entity type, our goal is to generate a
set of CD and CR rules such that the resulting ex-
tractor constitutes a good starting point for further
refinement by a developer. Since the generic NER
extractor has to be manually customized, a major
challenge is to ensure that the generated rules have
good accuracy, and, at the same time, that they are
not too complex, and consequently interpretable.

The main contributions in this paper are

1. An efficient system for NER rule induction, us-
ing a highly expressive rule language (AQL) as
the target language. The first phase of rule in-
duction uses a combination of clustering and
relative least general generalization (RLGG)
techniques to learn CD rules. The second phase
identifies CR rules using a propositional rule
learner like JRIP to learn accurate composi-
tions of CD rules.

2. Usage of induction biases to enhance the inter-
pretability of rules. These biases capture the
expertise gleaned from manual rule develop-
ment and constrain the search space in our in-
duction system.

3. Definition of an initial notion of extractor com-
plexity to quantify the interpretability of an ex-
tractor and to guide the process of adding in-
duction biases to favor learning less complex
extractors. This is to ensure that the rules are
easily customizable by the developer.

4. Scalable induction process through usage of
SystemT, a state-of-the-art IE system which
serves as a highly efficient theorem prover for
AQL, and performance optimizations such as
clustering of examples and parallelizing vari-
ous modules (E.g.: propositional rule learning).

Roadmap We first describe preliminaries on Sys-
temT and AQL (Section 3) and define the target lan-
guage for our induction algorithm and the notion of
rule complexity (Section 4). We then present our
approach for inducing CD and CR rules, and dis-
cuss induction biases that would favor interpretabil-
ity (Section 5), and discuss the results of an empir-
ical evaluation (Section 6). We conclude with av-
enues for improvement in the future (Section 7).

2 Related Work
Existing approaches to rule induction for IE focus
on rule-based systems based on the cascading gram-
mar formalism exemplified by the Common Pat-
tern Specification Language (CPSL) (Appelt and
Onyshkevych, 1998), where rules are specified as
a sequence of basic features that describe an en-
tity, with limited predicates in the context of an
entity mention. Patel et al. (2009) and Soderland
(1999) elaborate on top-down techniques for induc-
tion of IE rules, whereas (Califf and Mooney, 1997;
Califf and Mooney, 1999) discuss a bottom-up IE
rule induction system that uses the relative least gen-
eral generalization (RLGG) of examples1. However,
in all these systems, the expressivity of the rule-
representation language is restricted to that of cap-
turing sequence information. As discussed in Sec-
tion 3, contextual clues and higher level rule inter-
actions such as filtering and join are very difficult,
if not impossible to express in such representations
without resorting to custom code. Learning higher
level interactions between rules has received little
attention. Our technique for learning higher level in-
teractions is similar to the induction of ripple down
rules (Gaines and Compton, 1995), which, to the
best of our knowledge, has not been previously ap-
plied to IE. A framework for refining AQL extractors
based on an annotated document corpus described
in (Liu et al., 2010). We present complementary
techniques for inducing an initial extractor that can
be automatically refined in this framework.

3 Preliminaries
SystemT is a declarative IE system based on an al-
gebraic framework. In SystemT, developers write
rules in AQL. To represent annotations in a docu-

1Our work also makes use of RLGGs but computes these
generalizations for clusters of examples, instead of pairs.
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Figure 1: Example Person extractor in AQL

ment, AQL uses a simple relational data model with
three types: a span is a region of text within a docu-
ment identified by its “begin” and “end” positions; a
tuple is a fixed-size list of spans; a relation, or view,
is a multi-set of tuples, where every tuple in the view
must be of the same size.

Figure 1 shows a portion of a Person extractor
written in AQL. The basic building block of AQL
is a view. A view is a logical description of a set of
tuples in terms of (i) the document text (denoted as a
special view called Document), and (ii) the contents
of other views, as specified in the from clauses of
each statement. Figure 1 also illustrates five of the
basic constructs that can be used to define a view,
and which we explain next. The complete specifica-
tion can be found in the AQL manual (IBM, 2012).
In the paper, we will use ‘rules’ and ‘views’ inter-
changeably.
The extract statement specifies basic character-
level extraction primitives such as regular expression
and dictionary matching over text, creating a tuple
for each match. As an example, rule R1 uses the ex-
tract statement to identify matches (Caps spans) of a

regular expression for capitalized words.
The select statement is similar to the SQL select
statement but it contains an additional consolidate
on clause (explained further), along with an exten-
sive collection of text-specific predicates. Rule R5

illustrates a complex example: it selects First spans
immediately followed within zero tokens by a Last
span, where the latter is also a Caps span. The
two conditions are specified using two join predi-
cates: FollowsTok and Equals respectively. For each
triplet of First, Last and Caps spans satisfying the two
predicates, the CombineSpans built-in scalar func-
tion in the select clause constructs larger PersonFirst-
Last spans that begin at the begin position of the First
span, and end at the end position of the Last (also
Caps) span.
The union all statement merges the outputs of two
or more statements. For example, rule R6 unions
person candidates identified by rules R4 and R5.
The minus statement subtracts the output of one
statement from the output of another. For example,
rule R8 defines a view PersonAll by filtering out Per-
sonInvalid tuples from the set of PersonCandidate tu-
ples. Notice that rule R7 used to define the view Per-
sonInvalid illustrates another join predicate of AQL
called Overlaps, which returns true if its two argu-
ment spans overlap in the input text. Therefore, at
a high level, rule R8 removes person candidates that
overlap with an Organization span. (The Organization
extractor is not depicted in the figure.)
The consolidate clause of a select statement re-
moves selected overlapping spans from the indicated
column of the input tuples, according to the spec-
ified policy (for instance, ‘ContainedWithin’). For
example, rule R9 retains PersonAll spans that are not
contained in other PersonAll spans.

Internally, SystemT compiles an AQL extractor
into an executable plan in the form of a graph of
operators. The formal definition of these operators
takes the form of an algebra (Reiss et al., 2008), sim-
ilar to relational algebra, but with extensions for text
processing. The decoupling between AQL and the
operator algebra allows for greater rule expressiv-
ity because the rule language is not constrained by
the need to compile to a finite state transducer, as in
grammar systems based on the CPSL standard. In
fact, join predicates such as Overlaps, as well as fil-
ter operations (minus) are extremely difficult to ex-
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press in CPSL systems such as GATE without an
escape to custom code (Chiticariu et al., 2010b). In
addition, the decoupling between the AQL specifi-
cation of “what” to extract from “how” to extract
it, allows greater flexibility in choosing an efficient
execution strategy among the many possible opera-
tor graphs that may exist for the same AQL extrac-
tor. Therefore, extractors written in AQL achieve
orders of magnitude higher throughput (Chiticariu
et al., 2010a).

4 Induction Target Language
Our goal is to automatically generate NER extrac-
tors with good quality, and at the same time, man-
ageable complexity, so that the extractors can be fur-
ther refined and customized by the developer. To this
end, we focus on inducing extractors using the sub-
set of AQL constructs described in Section 3. We
note that we have chosen a small subset of AQL con-
structs that are sufficient to implement several com-
mon operations required for NER. However, AQL is
a much more expressive language, and incorporating
additional constructs is subject to our future work.

In this section we describe the building blocks of
our target language, and propose a simple definition
for measuring the complexity of an extractor.
Target Language. The components of the target
language are as follows, and summarized in Table 2.
Basic features (BF): BF views are specified using the
extract statement, such as rules R1 to R3 in Figure 1.
In this paper, we assume as input a set of basic fea-
tures, consisting of dictionaries and regular expres-
sions.
Candidate definition (CD): CD views are expressed
using the select statement to combine BF views with
join predicates (e.g., Equals, FollowsTok or Over-
laps), and the CombineSpans scalar function to con-
struct larger candidate spans from input spans. Rules
R4 and R5 in Figure 1 are example CD rules. In
general, a CD view is defined as: “Select all spans
constructed from view1, view2, . . ., viewn, such that all
join predicates are satisfied”.
Candidate refinement (CR): CR views are used to
discard spans output by the CD views that may be
incorrect. In general, a CR view is defined as: “From
the list of spans of viewvalid subtract all those spans that
belong to viewinvalid”. viewvalid is obtained by join-
ing all the positive CD clues on the Equals predicate

and viewinvalid is obtained by joining all the nega-
tive overlapping clues with the Overlaps predicate
and subsequently ’union’ing all the negative clues.
(e.g., similar in spirit to rules R6, R7 and R8 in Fig-
ure 1, except that the subtraction is done from a sin-
gle view and not the union of multiple views).
Consolidation (CO): Finally, a select statement with
a fixed consolidate clause is used for each entity type
to remove overlapping spans from CR views. An
example CO view is defined by rule R9 in Figure 1.
Extractor Complexity. Since our goal is to gener-
ate extractors with manageable complexity, we must
introduce a quantitative measure of extractor com-
plexity, in order to (1) judge the complexity of the
extractors generated by our system, and (2) reduce
the search space considered by the induction system.

To this end, we define a simple complexity score
that is a function of the number of rules, and the
number of input views to each rule of the extrac-
tor. In particular, we define the length of rule R,
denoted as L(R), as the number of input views in
the from clause(s) of the view. For example, in Fig-
ure 1, we have L(R4) = 2 and L(R5) = 3, since
R4 and R5 have two, and respectively three views
in the from clause. Furthermore, L(R8) = 2 since
each of the two inner statements of R8 has one from
clause with a single input view. The complexity of
BF rules (e.g., R1 to R3) and CO rules (e.g., R9) is
always 1, since these types of rules have a single in-
put view. We define the complexity of extractor E,
denoted as C(E) as the sum of lengths of all rules of
E. For example, the complexity of the Person extrac-
tor from Figure 1 is 15, plus the length of all rules
involved in defining Organization, which are omitted
from the figure.

Our simple notion of rule length is motivated
by existing literature in the area of database sys-
tems (Abiteboul et al., 1995), where the size of a
conjunctive query is determined only by the number
of atoms in the body of the query (e.g., items in the
FROM clause), and it is independent on the number
of join variables (i.e., items in the WHERE clause),
or the size of the head of the query (e.g., items in the
SELECT clause). As such, our notion of complexity
is rather coarse, and we shall discuss its shortcom-
ings in detail in Section 6.2. However, we shall show
that the complexity score significantly reduces the
search space of our induction techniques leading to
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Phase name AQL statements Prescription Rule Type
Basic Features extract Off-the-shelf, Learning using prior

work (Riloff, 1993; Li et al., 2008)
Basic Features Definition

Phase 1 (Clustering and
RLGG)

select Bottom-up learning (LGG), Top-down refine-
ment

Development of Candidate
Rules

Phase 2 (Propositional Rule
Learning)

select, union
all, minus

RIPPER, Lightweight Rule Induction Candidate Rules Filtering

Consolidation consolidate,
union all

Manually identified consolidation rules, based
on domain knowledge

Consolidation rules

Table 2: Phases in induction, the language constructs invoked in each phase, the prescriptions for inducing rules in the
phase and the corresponding type of rule in manual rule development.

simpler and smaller extractors, and therefore consti-
tutes a good basis for more comprehensive measures
of interpretability in the future.

5 Induction of Rules

Since the goal is to generate rules that can be cus-
tomized by humans, the overall structure of the in-
duced rules must be similar in spirit to what a devel-
oper following best practices would write. Hence,
the induction process is divided into multiple phases.
Figure 2 shows the correspondence between the
phases of induction and the types of rules. In Ta-
ble 2, we summarize the phases of our induction al-
gorithm, along with the subset of AQL constructs
that comprise the language of the rules learnt in that
phase, the possible methods prescribed for inducing
the rules and their correspondence with the stages in
the manual rule development.

Our induction system generates rules for two of
the four categories, namely CD and CR rules as
highlighted in Figure 2. We assume that we are
given the BFs in the form of dictionaries and reg-
ular expressions. Prior work on learning dictionar-
ies (Riloff, 1993) and regular expressions (Li et al.,
2008) could be leveraged to semi-automate the pro-
cess of defining the basic features.

We represent each example, in conjunction with
relevant background knowledge in the form first
order horn clauses. This background knowledge
will serve as input to our induction system. The
first phase of induction uses a combination of
clustering and relative least general generalization
(RLGG) (Nienhuys-Cheng and Wolf, 1997; Muggle-
ton and Feng, 1992) techniques. At the end of this
phase, we have a number of CD rules. In the sec-
ond phase, we begin by forming a structure called
the span-view table. Broadly speaking, this is an

attribute-value table formed by all the views induced
in the first phase along with the textual spans gener-
ated by them. The attribute-value table is used as
input to a propositional rule learner such as JRIP
to learn accurate compositions of a useful (as deter-
mined by the learning algorithm) subset of the CD
rules. This forms the second phase of our system.
The rules learnt from this phase are the CR rules.
At various phases, several induction biases are intro-
duced to enhance the interpretability of rules. These
biases capture the expertise gleaned from manual
rule development and constrain the search space in
our induction system.

The hypothesis language of our induction sys-
tem is Annotation Query Language (AQL) and we
use SystemT as the theorem prover. SystemT pro-
vides a very fast rule execution engine and is cru-
cial in our induction system as we test multiple hy-
potheses in the search for the more promising ones.
AQL provides a very expressive rule representation
language that is proven to be capable of encoding
all the paradigms that any rule-based representa-
tion can encode. The dual advantages of rich rule-
representation and execution efficiency are the main
motivation behind our choice.

We discuss our induction procedure in detail next.

5.1 Basic Features and Background Knowledge

We assume that we are provided with a set of dictio-
naries and regular expressions for defining all our
basic create view statements. R1, R2 and R3 in
Figure 1 are such basic view definitions. The ba-
sic views are compiled and executed in SystemT
over the training document collection and the re-
sulting spans are represented by equivalent predi-
cates in first order logic. Essentially, each train-
ing example is represented as a definite clause,
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Figure 2: Correspondence between Manual Rule devel-
opment and Rule Induction.

that includes in its body, the basic view-types en-
coded as background knowledge predicates. To es-
tablish relationships between different background
knowledge predicates for each training example, we
define some additional “glue predicates” such as
contains and before.

5.2 Induction of Candidate Definition Rules

Clustering Module. We obtain non-overlapping
clusters of examples within each type, by comput-
ing similarities between their representations as def-
inite clauses. We present the intuition behind this
approach in Figure 3 which illustrates the process
of taking two examples and finding their generaliza-
tion. It is worthwhile to look at generalizations of
instances that are similar. For instance, two token
person names such as Mark Waugh and Mark Twain
are part of a single cluster. However, we would not
be able to generalize a two-token name (e.g., Mark
Waugh) with another name consisting of initials fol-
lowed by a token (e.g., M. Waugh). Using a wrap-
per around the hierarchical agglomerative cluster-
ing implemented in LingPipe2, we cluster examples
and look at generalizations only within each cluster.
Clustering also helps improve efficiency by reduc-
ing the computational overhead, since otherwise, we
would have to consider generalizations of all pairs of
examples (Muggleton and Feng, 1992).
RLGG computation. We compute our CD
rules as the relative least general generalization
(RLGG) (Nienhuys-Cheng and Wolf, 1997; Mug-
gleton and Feng, 1992) of examples in each clus-
ter. Given a set of clauses in first order logic,
their RLGG is the least generalized clause in the

2http://alias-i.com/lingpipe/demos/tutorial/cluster/read-
me.html

Figure 3: Relative Least General Generalization

subsumption lattice of the clauses relative to the
background knowledge (Nienhuys-Cheng and Wolf,
1997). RLGG is associative, and we use this fact
to compute RLGGs of sets of examples in a clus-
ter. The RLGG of two bottom clauses as computed
in our system and its translation to an AQL view is
illustrated in Figure 3. We filter out noisy RLGGs
and convert the selected RLGGs into the equivalent
AQL views. Each such AQL view is treated as a
CD rule. We next discuss the process of filtering-
out noisy RLGGs. We interchangeably refer to the
RLGGs and the clusters they represent .
Iterative Clustering and RLGG filtering. Since
clustering is sub-optimal, we expected some clusters
in a single run of clustering to have poor RLGGs, ei-
ther in terms of complexity or precision. We there-
fore use an iterative clustering approach, based on
the separate-and-conquer (Fürnkranz, 1999) strat-
egy. In each iteration, we pick the clusters with the
best RLGGs and remove all examples covered by
those RLGGs. The best RLGGs must have preci-
sion and number of examples covered above a pre-
specified threshold.

5.3 Induction of Candidate Refinement Rules

Span-View Table. The CD views from phase 1
along with the textual spans they generate, yield the
span-view table. The rows of the table correspond
to the set of spans returned by all the CD views. The
columns correspond to the set of CD view names.
Each span either belongs to one of the named en-
tity types (PER, ORG or LOC) or is none of them
(NONE); the type information constitutes its class
label (see Figure 4 for an illustrated example). The
cells in the table correspond to either a match (M) or
a no-match (N) or partial/overlapping match (O) of
a span generated by a CD view. This attribute-value
table is used as input to a propositional rule learner
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Figure 4: Span-View Table

like JRIP to learn compositions of CD views.
Propositional Rule Learning. Based on our study
of different propositional rule learners, we decided
to use RIPPER (Fürnkranz and Widmer, 1994) im-
plemented as the JRIP classifier in weka (Witten et
al., 2011). Some considerations that favor JRIP are
(i) absence of rule ordering, (ii) ease of conversion
to AQL and (iii) amenability to add induction biases
in the implementation.

A number of syntactic biases were introduced in
JRIP to aid in the interpretability of the induced
rules. We observed in our manually developed rules
that CR rules for a type involve interaction between
CDs for the same type and negations (not-overlaps,
not matches) of CDs of the other types. This bias
was incorporated by constraining a JRIP rule to con-
tain only positive features (CDs) of the same type
(say PER) and negative features (CDs) of only other
types (ORG and LOC, in this case).

The output of the JRIP algorithm is a set of
rules, one set for each of PER, ORG and LOC.
Here is an example rule: PER-CR-Rule ⇐ (PerCD

= m) AND (LocCD != o) which is read as : “If a
span matches PerCD and does not overlap with LocCD,
then that span denotes a PER named entity”. Here
PerCD is {[FirstName ∧ CapsPerson][LastName

∧ CapsPerson]} 3 and LocCD is {[CapsPlace ∧
CitiesDict]}. This rule filters out wrong person
annotations like “Prince William” in Prince William
Sound. (This is the name of a location but has over-
lapped with a person named entity.) In AQL, this
effect can be achieved most elegantly by the minus

(filter) construct. Such an AQL rule will filter all
those occurrences of Prince William from the list of

3Two consecutive spans where the 1st is FirstName and
CapsPerson and the 2nd is LastName and CapsPerson.

persons that overlap with a city name.
Steps such as clustering, computation of RLGGs,

JRIP, and theorem proving using SystemT were par-
allelized. Once the CR views for each type of
named entity are learnt, many forms of consolida-
tions (COs) are possible, both within and across
types. A simple consolidation policy that we have
incorporated in the system is as follows: union all
the rules of a particular type, then perform a con-
tained within consolidation, resulting in the final set
of consolidated views for each named entity type.

6 Experiments
We evaluate our system on CoNLL03 (Tjong
Kim Sang and De Meulder, 2003), a collection
of Reuters news stories. We used the CoNLL03
training set for induction and report results on the
CoNLL03 test collection.

The basic features (BFs) form the primary input to
our induction system. We experimented with three
sets of BFs:

Initial set(E1): The goal in this setup is to induce
an initial set of rules based on a small set of reason-
able BFs. We use a conservative initial set consisting
of 15 BFs (5 regular expressions and 10 dictionar-
ies).

Enhanced set (E2): Based on the results of E1,
we identify a set of additional domain independent
BFs4. Five views were added to the existing set in
E1 (1 regular expression and 4 dictionaries). The
goal is to observe whether our approach yields rea-
sonable accuracies compared to generic rules devel-
oped manually.

Domain customized set (E3): Based on the
knowledge of the domain of the training dataset
(CoNLL03), we introduced a set of features specific
to this dataset. These included sports-related person,
organization and location dictionaries5. These views
were added to the existing set in E2. The intended
goal is to observe what are the best possible accura-
cies that could be achieved with BFs customized to
a particular domain.

The set of parameters for iterative clustering on
which the accuracies reported are : the precision
threshold for the RLGGs of the clusters was 70%

4E.g., the feature preposition dictionary was added in E2 to
help identify organization names such as Bank of England.

5Half of the documents in CoNLL03 are sports-related.
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Train Test
Type P R F P R F C(E)

E1 (Initial set)
PER 88.5 41.4 56.4 92.5 39.4 55.3 144
ORG 89.1 7.3 13.4 85.9 5.2 9.7 22
LOC 91.6 54.5 68.3 87.3 55.3 67.8 105

Overall 90.2 35.3 50.7 89.2 33.3 48.5 234
E2 (Enhanced set)

PER 84.7 52.9 65.1 87.5 49.9 63.5 233
ORG 88.2 7.8 14.3 85.8 5.9 11.0 99
LOC 92.1 58.6 71.7 88.6 59.1 70.9 257

Overall 88.6 40.7 55.8 88.0 38.2 53.3 457
E3 (Domain customized set)

PER 89.9 57.3 70.0 91.7 56.0 69.5 430
ORG 86.9 50.9 64.2 86.9 47.5 61.4 348
LOC 90.8 67.0 77.1 84.3 67.3 74.8 356

Overall 89.4 58.7 70.9 87.3 57.0 68.9 844

Table 3: Results on CoNLL03 dataset with different basic
feature sets

and the number of examples covered by each RLGG
was 5. We selected the top 5 clusters from each iter-
ation whose RLGGs crossed this threshold. If there
were no such clusters then we would lower the preci-
sion threshold to 35% (half of the threshold). When
no new clusters were formed, we ended the itera-
tions.

6.1 Experiments and Results

Effect of Augmenting Basic Features. Table 3
shows the accuracy and complexity of rules induced
with the three basic feature sets E1, E2 and E3,
respectively 6. The overall F-measure on the test
dataset is 48.5% with E1, it increases to around
53.3% with E2 and is highest at 68.9% with E3.
As we increase the number of BFs, the accuracies
of the induced extractors increases, at the cost of
an increase in complexity. In particular, the re-
call increases significantly across the board, and is
more prominent between E2 and E3, where the ad-
ditional domain specific features result in recall in-
crease from 5.9% to 47.5% for ORG. The precision
increases slightly for PER, but decreases slightly for
LOC and ORG with the addition of domain specific
features.
Comparison with manually developed rules. We
compared the induced extractors with the manually
developed extractors of (Chiticariu et al., 2010b),
heretofore referred to as manual extractors. (For a
detailed analysis, we obtained the extractors from

6These are the results for the configuration with bias.

the authors). Table 4 shows the accuracy and com-
plexity of the induced rules with E2 and E3 and the
manual extractors for the generic domain and, re-
spectively, customized for the CoNLL03 domain.
(In the table, ignore the column Induced (without
bias), which is discussed later). Our technique
compares reasonably with the manually constructed
generic extractor for two of the three entity types;
and on precision for all entity types, especially since
our system generated the rules in 1 hour, whereas the
development of manual rules took much longer 7.
Additional work is required to match the manual
customized extractor’s performance, primarily due
to shortcomings in our current target language. Re-
call that our framework is limited to a small subset
of AQL constructs for expressing CD and CR rules,
and there is a single consolidation rule. In particu-
lar, advanced constructs such as dynamic dictionar-
ies are not supported, and the set of predicates to the
Filter construct supported in our system is restricted
to predicates over other concepts, which is only a
subset of those used in (Chiticariu et al., 2010b).
The manual extractors also contain a larger number
of rules covering many different cases, improving
the accuracy, but also leading to a higher complex-
ity score. To better analyze the complexity, we also
computed the average rule length for each extrac-
tor by dividing the complexity score by the number
of AQL views of the extractor. The average rule
length is 1.78 and 1.87 for the induced extractors
with E2 and E3, respectively, and 1.9 and 2.1 for the
generic and customized extractors of (Chiticariu et
al., 2010b), respectively. The average rule length in-
creases from the generic extractor to the customized
extractor in both cases. On average, however, an in-
dividual induced rule is slightly smaller than a man-
ually developed rule.
Effect of Bias. The goal of this experiment is to
demonstrate the importance of biases in the induc-
tion process. The biases added to the system are
broadly of two types: (i) Partition of basic features
based on types (ii) Restriction on the type of CD
views that can appear in a CR view. 8 Without

7 (Chiticariu et al., 2010b) mentions that customization for 3
domains required 8 person weeks. It is reasonable to infer that
developing the generic rules took comparable effort.

8For e.g., person CR view can contain only person CD views
as positive clues and CD views of other types as negative clues.

135



(i) many semantically similar basic features (espe-
cially, regular expressions) would match a given to-
ken, leading to an increase in the length of a CD
a rule. For example, in the CD rule [FirstName-
Dict][CapsPerson ∧ CapsOrg]} (“A FirstNameDict
span followed by a CapsPerson span that is also a Cap-
sOrg span”), CapsPerson and CapsOrg are two very
similar regular expressions identifying capitalized
phrases that look like person, and respectively, orga-
nization names, with small variations (e.g., the for-
mer may allow special characters such as ‘-’). In-
cluding both BFs in a CD rule leads to a larger rule
that is unintuitive for a developer. The former bias
excludes such CD rules from consideration.

The latter type of bias prevents CD rules of one
type to appear as positive clues for a CR rule of
a different type. For instance, without this bias,
one of the CR rules obtained was Per ⇐ (OrgCD

= m) AND (LocCD != o) (“If a span matches OrgCD
and does not overlap with LocCD, then that span
denotes a PER named entity”. Here OrgCD was
{[CapsOrg][CapsOrg]} and LocCD was {[CapsLoc
∧ CitiesDict]}. The inclusion of an Organization
CD rule as a positive clue for a Person CR rule is
unintuitive for a developer.

Table 4, shows the effect (for E2 and E3) on the
test dataset of disabling and enabling bias during
the induction of CR rules using JRIP. Adding bias
improves the precision of the induced rules. With-
out bias, however, the system is less constrained in
its search for high recall rules, leading to slightly
higher overall F measure. This comes at the cost
of an increase in extractor complexity and average
rule length. For example, for E2, the average rule
length decreases from 2.17 to 1.78 after adding the
bias. Overall, our results show that biases lead to
less complex extractors with only a very minor ef-
fect on accuracy, thus biases are important factors
contributing to inducing rules that are understand-
able and may be refined by humans.
Comparison with other induction systems. We
also experimented with two other induction systems,
Aleph9 and ALP10, a package that implements one
of the reportedly good information extraction algo-
rithms (Ciravegna, 2001). While induction in Aleph

9A system for inductive logic programming. See
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

10http://code.google.com/p/alpie/

was performed with the same target language as in
our approach, the target language of ALP is JAPE,
which has been shown (Chiticariu et al., 2010b) to
lack in some of the constructs (such as minus) that
AQL provides and which form a part of our tar-
get language (especially the rule refinement phase).
However, despite experimenting with all possible
parameter configurations for each of these (in each
of E1, E2 and E3 settings), the accuracies obtained
were substantially (30-50%) worse and the extrac-
tor complexity was much (around 60%) higher when
compared to our system (with or without bias). Ad-
ditionally, Aleph takes close to three days for induc-
tion, whereas both ALP and our system require less
than an hour.

6.2 Discussion

Weak and Strong CDs reflected in CRs. In
our experiments, we found that varying the pre-
cision and complexity thresholds while inducing
the CDs (c.f Section 5) affected the F1 of the fi-
nal extractor only minimally. But reducing the
precision threshold generally improved the preci-
sion of the final extractor, which seemed counter-
intuitive at first. We found that CR rules learned
by JRIP consist of a strong CD rule (high preci-
sion, typically involving a dictionary) and a weak
CD rule (low precision, typically involving only
regular expressions). The strong CD rule always
corresponded to a positive clue (match) and the
weak CD rule corresponded to the negative clue
(overlaps or not-matches). This is illustrated in
the following CR rule: PER ⇐ (PerCD = m) AND

(OrgCD != o) where (PerCD is {[CapsPersonR]
[CapsPersonR ∧ LastNameDict]} and (OrgCD is
{[CapsOrgR][CapsOrgR][CapsOrgR]}. This is
posited to be the way the CR rule learner operates
– it tries to learn conjunctions of weak and strong
clues so as to filter one from the other. Therefore,
setting a precision threshold too high limited the
number of such weak clues and the ability of the CR
rule learner to find such rules.
Interpretability. Measuring interpretability of rules
is a difficult problem. In this work, we have taken
a first step towards measuring interpretability using
a coarse grain measure in the form of a simple no-
tion of complexity score. The complexity is very
helpful in comparing alternative rule sets based on
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Chiticariu et al. 2010b Induced (With Bias) Induced (Without Bias)
P R F C(E) P R F C(E) P R F C(E)

Generic (E2) PER 82.2 60.3 69.5 945 87.5 49.9 63.5 233 85.8 53.7 66.0 476
ORG 75.7 17.5 28.5 1015 85.8 5.9 11.0 99 74.1 15.7 25.9 327
LOC 72.2 86.1 78.6 921 88.6 59.1 70.9 257 85.9 61.5 71.7 303

Overall 75.9 54.6 63.5 1015 88.0 38.2 53.3 457 84.2 43.5 57.4 907
Customised (E3) PER 96.3 92.2 94.2 2154 91.7 56.0 69.5 430 90.7 60.3 72.4 359

ORG 91.1 85.1 88.0 2154 86.9 47.5 61.4 348 90.4 46.8 61.7 397
LOC 93.3 91.7 92.5 2154 84.3 67.3 74.8 356 83.9 69.1 75.8 486

Overall 93.5 89.6 91.5 2160 87.3 57.0 68.9 844 87.8 58.7 70.4 901

Table 4: Comparison of induced rules (with and without bias) and manually developed rules. (CoNLL03 test dataset)

the number of rules, and the size of each rule, but
exhibits a number of shortcomings described next.
First, it disregards other components of a rule be-
sides its from clause, for example, the number of
items in the select clause, or the where clause. Sec-
ond, rule developers use semantically meaningful
view names such as those shown in Figure 1 to help
them recall the semantics of a rule at a high-level, an
aspect that is not captured by the complexity mea-
sure. Automatic generation of meaningful names
for induced views is an interesting direction for fu-
ture work. Finally, the overall structure of an extrac-
tors is not considered. In simple terms, an extrac-
tor consisting of 5 rules of size 1 is indistinguish-
able from an extractor consisting of a single rule
of size 5, and it is arguable which of these extrac-
tors is more interpretable. More generally, the ex-
tent of this shortcoming is best explained using an
example. When informally examining the rules in-
duced by our system, we found that CD rules are
similar in spirit to those written by rule develop-
ers. On the other hand, the induced CR rules are
too fine-grained. In general, rule developers group
CD rules with similar semantics, then write refine-
ment rules at the higher level of the group, as op-
posed to the lower level of individual CD views. For
example, one may write multiple CD rules for can-
didate person names of the form 〈First〉〈Last〉, and
multiple CD rules of the form 〈Last〉, 〈First〉. One
would then union together the candidates from each
of the two groups into two different views, e.g., Per-
FirstLast and PerLastCommaFirst, and write filter
rules at the higher level of these two views, e.g.,
“Remove PerLastCommaFirst spans that overlap with a
PerFirstLast span”. In contrast, our induction algo-
rithm considers CR rules consisting of combinations
of CD rules directly, leading to many semantically

similar CR rules, each operating over small parts of
a larger semantic group (see rule in Section 6.1).
This results in repetition, and qualitatively less in-
terpretable rules, since humans prefer higher levels
of abstraction and generalization. This nuance is not
captured by the complexity score which may deem
an extractor consisting of many rules, where many
of the rules operate at higher levels of groups of can-
didates to be more complex than a smaller extrac-
tor with many fine-grained rules. Indeed, as shown
before, the complexity of the induced extractors is
much smaller compared to that of manual extrac-
tors, although the latter follow the semantic group-
ing principle and are considered more interpretable.

7 Conclusion

We presented a system for efficiently inducing
named entity annotation rules in the AQL language.
The design of our approach is aimed at producing
accurate rules that can be understood and refined
by humans, by placing special emphasis on low
complexity and efficient computation of the induced
rules, while mimicking a four stage approach used
for manually constructing rules. The induced rules
have good accuracy and low complexity according
to our complexity measure. While our complexity
measure informs the biases in our system and leads
to simpler, smaller extractors, it captures extrac-
tor interpretability only to a certain extent. There-
fore, we believe more work is required to devise a
more comprehensive quantitative measure for inter-
pretability, and refine our techniques in order to in-
crease the interpretability of induced rules. Other
interesting directions for future work are introduc-
ing more constructs in our framework, and applying
our techniques to other languages.
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Abstract 

Active learning is a promising way for 
sentiment classification to reduce the 
annotation cost. In this paper, we focus on 
the imbalanced class distribution scenario 
for sentiment classification, wherein the 
number of positive samples is quite 
different from that of negative samples. 
This scenario posits new challenges to 
active learning. To address these 
challenges, we propose a novel active 
learning approach, named co-selecting, by 
taking both the imbalanced class 
distribution issue and uncertainty into 
account. Specifically, our co-selecting 
approach employs two feature subspace 
classifiers to collectively select most 
informative minority-class samples for 
manual annotation by leveraging a 
certainty measurement and an uncertainty 
measurement, and in the meanwhile, 
automatically label most informative 
majority-class samples, to reduce human-
annotation efforts. Extensive experiments 
across four domains demonstrate great 
potential and effectiveness of our proposed 
co-selecting approach to active learning for 
imbalanced sentiment classification. 1 

1 Introduction 

Sentiment classification is the task of identifying 
the sentiment polarity (e.g., positive or negative) of 

                                                           
*1 Corresponding author 

a natural language text towards a given topic (Pang 
et al., 2002; Turney, 2002) and has become the 
core component of many important applications in 
opinion analysis (Cui et al., 2006; Li et al., 2009; 
Lloret et al., 2009; Zhang and Ye, 2008). 

Most of previous studies in sentiment 
classification focus on learning models from a 
large number of labeled data. However, in many 
real-world applications, manual annotation is 
expensive and time-consuming. In these situations, 
active learning approaches could be helpful by 
actively selecting most informative samples for 
manual annotation. Compared to traditional active 
learning for sentiment classification, active 
learning for imbalanced sentiment classification 
faces some unique challenges.  

As a specific type of sentiment classification, 
imbalanced sentiment classification deals with the 
situation in which there are many more samples of 
one class (called majority class) than the other 
class (called minority class), and has attracted 
much attention due to its high realistic value in 
real-world applications (Li et al., 2011a). In 
imbalanced sentiment classification, since the 
minority-class samples (denoted as MI samples) 
are normally much sparse and thus more precious 
and informative for learning compared to the 
majority-class ones (denoted as MA samples), it is 
worthwhile to spend more on manually annotating 
MI samples to  guarantee both the quality and 
quantity of MI samples. Traditionally, uncertainty 
has been popularly used as a basic measurement in 
active learning (Lewis and Gale, 2004). Therefore, 
how to select most informative MI samples for 
manual annotation without violating the basic 
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uncertainty requirement in active learning is 
challenging in imbalanced sentiment classification. 

In this paper, we address above challenges in 
active learning for imbalanced sentiment 
classification. The basic idea of our active learning 
approach is to use two complementary classifiers 
for collectively selecting most informative MI 
samples: one to adopt a certainty measurement for 
selecting most possible MI samples and the other 
to adopt an uncertainty measurement for selecting 
most uncertain MI samples from the most possible 
MI samples returned from the first classifier. 
Specifically, the two classifiers are trained with 
two disjoint feature subspaces to guarantee their 
complementariness. This also applies to selecting 
most informative MA samples. We call our novel 
active learning approach co-selecting due to its 
collectively selecting informative samples through 
two disjoint feature subspace classifiers. To further 
reduce the annotation efforts, we only manually 
annotate those most informative MI samples while 
those most informative MA samples are 
automatically labeled using the predicted labels 
provided by the first classifier.  

In principle, our active learning approach differs 
from existing ones in two main aspects. First, a 
certainty measurement and an uncertainty 
measurement are employed in two complementary 
subspace classifiers respectively to collectively 
select most informative MI samples for manual 
annotation. Second, most informative MA samples 
are automatically labeled to further reduce the 
annotation cost. Evaluation across four domains 
shows that our active learning approach is effective 
for imbalanced sentiment classification and 
significantly outperforms the state-of-the-art active 
learning alternatives, such as uncertainty sampling 
(Lewis and Gale, 2004) and co-testing (Muslea et 
al., 2006). 

The remainder of this paper is organized as 
follows. Section 2 overviews the related work on 
sentiment classification and active learning. 
Section 3 proposes our active learning approach 
for imbalanced sentiment classification. Section 4 
reports the experimental results. Finally, Section 5 
draws the conclusion and outlines the future work. 

2 Related Work 

In this section, we give a brief overview on 
sentiment classification and active learning. 

2.1 Sentiment Classification 

Sentiment classification has become a hot research 
topic in NLP community and various kinds of 
classification methods have been proposed, such as 
unsupervised learning methods (Turney, 2002), 
supervised learning methods (Pang et al., 2002), 
semi-supervised learning methods (Wan, 2009; Li 
et al., 2010), and cross-domain classification 
methods (Blitzer et al., 2007; Li and Zong, 2008; 
He et al., 2011). However, imbalanced sentiment 
classification is relatively new and there are only a 
few studies in the literature. 

Li et al. (2011a) pioneer the research in 
imbalanced sentiment classification and propose a 
co-training algorithm to perform semi-supervised 
learning for imbalanced sentiment classification 
with the help of a great amount of unlabeled 
samples. However, their semi-supervised approach 
to imbalanced sentiment classification suffers from 
the problem that their balanced selection strategy 
in co-training would generate many errors in late 
iterations due to the imbalanced nature of the 
unbalanced data. In comparison, our proposed 
active learning approach can effectively avoid this 
problem. By the way, it is worth to note that the 
experiments therein show the superiority of under-
sampling over other alternatives such as cost-
sensitive and one-class classification for 
imbalanced sentiment classification. 

Li et al. (2011b) focus on supervised learning 
for imbalanced sentiment classification and 
propose a clustering-based approach to improve 
traditional under-sampling approaches. However, 
the improvement of the proposed clustering-based 
approach over under-sampling is very limited. 

Unlike all the studies mentioned above, our 
study pioneers active learning on imbalanced 
sentiment classification. 

2.2 Active Learning 

Active leaning, as a standard machine learning 
problem, has been extensively studied in many 
research communities and several approaches have 
been proposed to address this problem (Settles, 
2009). Based on different sample selection 
strategies, they can be grouped into two main 
categories: (1) uncertainty sampling (Lewis and 
Gale, 2004) where the active learner iteratively 
select most uncertain unlabeled samples for 
manual annotation; and (2) committee-based 

140



sampling where the active learner selects those 
unlabeled samples which have the largest 
disagreement among several committee classifiers. 
Besides query by committee (QBC) as the first of 
such type (Freund et al., 1997), co-testing learns a 
committee of member classifiers from different 
views and selects those contention points (i.e., 
unlabeled examples on which the views predict 
different labels) for manual annotation (Muslea et 
al., 2006). 

However, most previous studies focus on the 
scenario of balanced class distribution and only a 
few recent studies address the active learning issue 
on imbalanced classification problems including 
Yang and Ma (2010), Zhu and Hovy (2007), 
Ertekin et al. (2007a) and Ertekin et al. (2007b)2. 
Unfortunately, they straightly adopt the uncertainty 
sampling as the active selection strategy to address 
active learning in imbalanced classification, which 
completely ignores the class imbalance problem in 
the selected samples.  

Attenberg and Provost (2010) highlights the 
importance of selecting samples by considering the 
proportion of the classes. Their simulation 
experiment on text categorization confirms that 
selecting class-balanced samples is more important 
than traditional active selection strategies like 
uncertainty. However, the proposed experiment is 
simulated and non real strategy is proposed to 
balance the class distribution of the selected 
samples. 

Doyle et al. (2011) propose a real strategy to 
select balanced samples. They first select a set of 
uncertainty samples and then randomly select 
balanced samples from the uncertainty-sample set. 
However, the classifier used for selecting balanced 
samples is the same as the one for supervising 
uncertainty, which makes the balance control 
unreliable (the selected uncertainty samples take 
very low confidences which are unreliable to 
correctly predict the class label for controlling the 
balance). Different from their study, our approach 
possesses two merits: First, two feature subspace 
classifiers are trained to finely integrate the 
certainty and uncertainty measurements. Second, 
the MA samples are automatically annotated, 

                                                           
2  Ertekin et al. (2007a) and Ertekin et al. (2007b) select 
samples closest to the hyperplane provided by the SVM 
classifier (within the margin). Their strategy can be seen as a 
special case of uncertainty sampling. 

which reduces the annotation cost in a further 
effort.  

3 Active Learning for Imbalanced 
Sentiment Classification 

Generally, active learning can be either stream-
based or pool-based (Sassano, 2002). The main 
difference between the two is that the former scans 
through the data sequentially and selects 
informative samples individually, whereas the 
latter evaluates and ranks the entire collection 
before selecting most informative samples at batch. 
As a large collection of samples can easily 
gathered once in sentiment classification, pool-
based active learning is adopted in this study. 

Figure 1 illustrates a standard pool-based active 
learning approach, where the most important issue 
is the sampling strategy, which evaluates the 
informativeness of one sample. 
 

Input: 
       Labeled data L; 
       Unlabeled pool U; 
Output: 
    New Labeled data L 
Procedure: 
Loop for N iterations: 
(1). Learn a classifier using current L  
(2). Use current classifier to label all unlabeled 

samples 
(3). Use the sampling strategy to select n most 

informative samples for manual annotation 
(4). Move newly-labeled samples from U to L 
 

 
Figure 1: Pool-based active learning 

3.1 Sampling Strategy: Uncertainty vs. 
Certainty 

As one of the most popular selection strategies in 
active learning, uncertainty sampling depends on 
an uncertainty measurement to select informative 
samples. Since sentiment classification is a binary 
classification problem, the uncertainty 
measurement of a document d can be simply 
defined as follows: 

{ , }
( ) min ( | )

y pos neg
Uncer d P y d


  

Where ( | )P y d denotes the posterior probability of 
the document d belonging to the class y and {pos, 
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neg} denotes the class labels of positive and 
negative. 

In imbalanced sentiment classification, MI 
samples are much sparse yet precious for learning 
and thus are believed to be more valuable for 
manual annotation. The key in active learning for 
imbalanced sentiment classification is to guarantee 
both the quality and quantity of newly-added MI 
samples. To guarantee the selection of MI samples, 
a certainty measurement is necessary. In this study, 
the certainty measurement is defined as follows: 

{ , }
( ) max ( | )

y pos neg
Cer d P y d


  

Meanwhile, in order to balance the samples in 
the two classes, once an informative MI sample is 
manually annotated, an informative MA sample is 
automatically labeled. In this way, the annotated 
data become more balanced than a random 
selection strategy.  

However, the two sampling strategies discussed 
above are apparently contradicted: while the 
uncertainty measurement is prone to selecting the 
samples whose posterior probabilities are nearest 
to 0.5, the certainty measurement is prone to 
selecting the samples whose posterior probabilities 
are nearest to 1. Therefore, it is essential to find a 
solution to balance uncertainty sampling and 
certainty sampling in imbalanced sentiment 
classification,  

3.2 Co-selecting with Feature Subspace 
Classifiers 

In sentiment classification, a document is 
represented as a feature vector generated from the 
feature set  1,..., mF f f . When a feature subset, 

i.e.,  1 ,...,S S S
rF f f  ( r m ), is used, the 

original m-dimensional feature space becomes an 
r-dimensional feature subspace. In this study, we 
call a classifier trained with a feature subspace a 
feature subspace classifier. 

Our basic idea of balancing both the uncertainty 
measurement and the certainty measurement is to 
train two subspace classifiers to adopt them 
respectively. In our implementation, we randomly 
select two disjoint feature subspaces, each of 
which is used to train a subspace classifier. On one 
side, one subspace classifier is employed to select 
some certain samples; on the other side, the other 
classifier is employed to select the most uncertain 
sample from those certain samples for manual 

annotation. In this way, the selected samples are 
certain in terms of one feature subspace for 
selecting more possible MI samples. Meanwhile, 
the selected sample remains uncertain in terms of 
the other feature subspace to introduce uncertain 
knowledge into current learning model. We name 
this approach as co-selecting because it 
collectively selects informative samples by two 
separate classifiers. Figure 2 illustrates the co-
selecting algorithm. In our algorithm, we strictly 
constrain the balance of the samples between the 
two classes, i.e., positive and negative. Therefore, 
once two samples are annotated with the same 
class label, they will not be added to the labeled 
data, as shown in step (7) in Figure 2. 

 
Input: 

Labeled data L with balanced samples over the 
two classes 

Unlabeled pool U  
Output: 
    New Labeled data L 
Procedure: 
Loop for N iterations: 
(1). Randomly select a feature subset SF  with 

size r (with the proportion /r m  ) from F  
(2). Generate a feature subspace from SF  and 

train a corresponding feature subspace 
classifier CerC  with L 

(3). Generate another feature subspace from the 
complement set of SF , i.e., SF F  and train 
a corresponding feature subspace classifier 

UncerC  with L 

(4). Use CerC  to select top certain k positive and k 
negative samples, denoted as a sample set 

1CER  

(5). Use UncerC  to select the most uncertain 
positive sample and negative sample from 

1CER   
(6). Manually annotate the two selected samples 
(7). If the annotated labels of the two selected 

samples are different from each other: 
      Add the two newly-annotated samples into L 

 
Figure 2: The co-selecting algorithm 

 
There are two parameters in the algorithm: the 

size of the feature subspace for training the first 
subspace classifier, i.e.,   and the number of 
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selected certain samples, i.e., k. Both of the two 
parameters will be empirically studied in our 
experiments. 

3.3 Co-selecting with Selected MA Samples 
Automatically Labeled 

 
Input: 

Labeled data L with balanced samples over the 
two classes 

Unlabeled pool U 
MA and MI Label (positive or negative) 

Output: 
    New Labeled data L 
Procedure: 
Loop for N iterations: 
(1). Randomly select a proportion of features 

(with the proportion  ) from F to get a 
feature subset SF  

(2). Generate a feature subspace from SF  and 
train a corresponding subspace classifier CerC  
with L 

(3). Generate another feature subspace from the 
complement set of SF , i.e., SF F  and train 
a corresponding subspace classifier UncerC  
with L 

(4). Use CerC  to select top certain k positive and k 
negative samples, denoted as a sample set 

1CER  

(5). Use UncerC  to select the most uncertain 
positive sample and negative sample from 

1CER  
(6). Manually annotate the sample that is predicted 

as a MI sample by CerC  and automatically 
annotate the sample that is predicted as 
majority class 

(7). If the annotated labels of the two selected 
samples are different from each other: 

          Add the two newly-annotated samples into L 

Figure 3: The co-selecting algorithm with selected 
MA samples automatically labeled 

 
To minimize manual annotation, it is a good choice 
to automatically label those selected MA samples. 
In our co-selecting approach, automatically 
labeling those selected MA samples is easy and 

straightforward: the subspace classifier for 
monitoring the certainty measurement provides an 
ideal solution to annotate the samples that have 
been predicted as majority class. Figure 3 shows 
the co-selecting algorithm with those selected MA 
samples automatically labeled. The main 
difference from the original co-selecting is shown 
in Step (6) in Figure 3. Another difference is the 
input where a prior knowledge of which class is 
majority class or minority class should be known. 
In real applications, it is not difficult to know this. 
We first use a classifier trained with the initial 
labeled data to test all unlabeled data. If the 
predicted labels in the classification results are 
greatly imbalanced, we can assume that the 
unlabeled data is imbalanced, and consider the 
dominated class as majority class.  

4 Experimentation 

In this section, we will systematically evaluate our 
active learning approach for imbalanced sentiment 
classification and compare it with the state-of-the-
art active learning alternatives. 

4.1 Experimental Setting 

Dataset 
We use the same data as used by Li et al. (2011a). 
The data collection consists of four domains: Book, 
DVD, Electronic, and Kitchen （Blitzer et al., 
2007). For each domain, we randomly select an 
initial balanced labeled data with 50 negative 
samples and 50 positive samples. For the unlabeled 
data, we randomly select 2000 negative samples, 
and 14580/12160/7140/7560 positive samples from 
the four domains respectively, keeping the same 
imbalanced ratio as the whole data. For the test 
data in each domain, we randomly extract 800 
negative samples and 800 positive samples.  
 
Classification algorithm 
The Maximum Entropy (ME) classifier 
implemented with the Mallet 3  tool is mainly 
adopted, except that in the margin-based active 
learning approach (Ertekin et al., 2007a) where 
SVM is implemented with light-SVM 4 . The 
features for classification are unigram words with 
Boolean weights. 

                                                           
3 http://mallet.cs.umass.edu/  
4 http://www.cs.cornell.edu/people/tj/svm_light/ 
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Figure 4: Performance comparison of different active learning approaches on imbalanced sentiment 

classification 
 

Evaluation metrics 
The popular geometric mean 

= rate rateG - mean TP TN  is adopted, where rateTP  

is the true positive rate (also called positive recall 
or sensitivity) and rateTN  is the true negative rate 
(also called negative recall or specificity) (Kubat 
and Matwin, 1997). 

4.2 Experimental Results 

For thorough comparison, various kinds of active 
learning approaches are implemented including: 
 Random: randomly select the samples from the 

unlabeled data for manual annotation; 
 Margin-based: iteratively select samples 

closest to the hyperplane provided by the SVM 
classifier, which is suggested by Ertekin et al. 
(2007a) and Ertekin et al. (2007b). One sample 
is selected in each iteration; 

 Uncertainty: iteratively select samples using 
the uncertainty measurement according to the 
output of ME classifier. One sample is selected 
in each iteration; 

 Certainty: iteratively select class-balanced 
samples using the certainty measurement 
according to the output of ME classifier. One 
positive and negative sample (the positive and 
negative label is provided by the ME classifier) 
are selected in each iteration; 

 Co-testing: first get contention samples (i.e., 
unlabeled examples on which the member 

classifiers predict different labels) and then 
select the least confidence one among the 
hypotheses of different member classifiers, i.e., 
the aggressive strategy as described Muslea et 
al. (2006). Specifically, the member classifiers 
are two subspace classifiers trained by splitting 
the whole feature space into two disjoint 
subspaces of same size; 

 Self-selecting: first select k uncertainty samples 
and then randomly select a positive and 
negative sample from the uncertainty-sample 
set, which is suggested by Doyle et al. (2011). 
We call it self-selecting since only one 
classifier is involved to measure uncertainty 
and predict class labels. 

 
For those approaches involving random 

selection of features, we run 5 times for them and 
report the average results. Note that the samples 
selected by these approaches are imbalanced. To 
address the problem of classification on 
imbalanced data, we adopt the under-sampling 
strategy which has been shown effective for 
supervised imbalanced sentiment classification (Li 
et al., 2011a). Our active learning approach 
includes two versions: the co-selecting algorithm 
as described in Section 3.2 and the co-selecting 
with selected MA samples automatically labeled as 
described in Section 3.3. For clarity, we refer the 
former as co-selecting-basic and the latter as co-
selecting-plus in the following. 
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Comparison with other active learning 
approaches 
Figure 4 compares different active learning 
approaches to imbalanced sentiment classification 
when 600 unlabeled samples are selected for 
annotation. Specifically, the parameters  and k is 
set to be 1/16 and 50 respectively. Figure 4 
justifies that it is challenging to perform active 
learning in imbalanced sentiment classification: the 
approaches of margin-based, uncertainty-based 
and self-selecting perform no better than random 
selection while co-testing only outperforms 
random selection in two domains: DVD and 
Electronic with only a small improvement (about 
1%). In comparison, our approaches, both co-
selecting-basic and co-selecting-plus significantly 
outperform the random selection approach on all 
the four domains. It also shows that co-selecting-
plus is preferable over co-selecting-basic. This 
verifies the effectiveness of automatically labeling 
those selected MA samples in imbalanced 
sentiment classification.  

Specifically, we notice that only using the 
certainty measurement (i.e., certainty) performs 
worst, which reflects that only considering sample 

balance factor in imbalanced sentiment 
classification is not helpful. 

Figure 5 compares our approach to other active 
learning approaches by varying the number of the 
selected samples for manually annotation. For 
clarity, we only include random selection and co-
testing in comparison and do not show the 
performances of the other active learning 
approaches due to their similar behavior to random 
selection. From this figure, we can see that co-
testing is effective on Book and Electronic when 
less than 1500 samples are selected for manual 
annotation but it fails to outperform random 
selection in the other two domains. In contract, our 
co-selecting-plus approach is apparently more 
advantageous and significantly outperforms 
random selection across all domains (p-value<0.05) 
when less than 4800 samples are selected for 
manual annotation. 
 
Sensitiveness of the parameters    
The size of the feature subspace is an important 
parameter in our approach. Figure 6 shows the 
performance of co-selecting-plus with varying 
sizes of the feature subspaces for the first subspace 
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Figure 5:  Performance comparison of three active learning approaches:  random selection, co-testing 
and co-selecting-plus, by varying the number of the selected samples for manually annotation 
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classifier CerC . From Figure 6, we can see that a 
choice of the proportion   between 1/8 and 1/32 is 
recommended. This result also shows that the size 
of the feature subspace for selecting certain 
samples should be much less than that for selecting 
uncertain samples, which indicates the more 
important role of the uncertainty measurement in 
active learning. 
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Figure 6: Performance of co-selecting-plus over 

varying sizes of feature subspaces ( ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7: Performance of co-selecting-plus over 
varying numbers of the selected certain samples (k) 

 
Sensitiveness of parameter k 
Figure 7 presents the performance of co-selecting-
plus with different numbers of the selected certain 
samples in each iteration, i.e., parameter k. 
Empirical studies suggest that setting k between 20 
and 100 could get a stable performance. Also, this 
figure demonstrates that using certainty as the only 
query strategy is much less effective (see the result 
when k=1). This once again verifies the importance 
of the uncertainty strategy in active learning. 

Number of MI samples selected for manual 
annotation 
In Table 1, we investigate the number of the MI 
samples selected for manual annotation using 
different active learning approaches when a total of 
600 unlabeled samples are selected for annotation. 
From this table, we can see that almost all the 
existing active learning approaches can only select 
a small amount of MI samples, taking similar 
imbalanced ratios as the whole unlabeled data. 
Although the certainty approach could select 
many MI samples for annotation, this approach 
performs worst due to its totally ignoring the 
uncertainty factor. When our approach is applied, 
especially co-selecting-plus, more MI samples are 
selected for manual annotation and finally included 
to learn the models. This greatly improves the 
effectiveness of our active learning approach.  
 

Table 1: The number of MI samples selected for 
manual annotation when 600 samples are 

annotated on the whole. 
 

 Book DVD Electronic Kitchen
Random 71 82 131 123 

SVM-based 65 72 135 106 
Uncertainty 78 93 137 136 
Certainty 160 200 236 227 
Co-testing 89 84 136 109 

Self-selecting 87 95 141 126 
Co-selecting-

basic 
101 112 179 174 

Co-selecting-
plus 

161 156 250 272 

 
Precision of automatically labeled MA samples 
In co-selecting-plus, all the added MA samples are 
automatically labeled by the first subspace 
classifier. It is encouraging to observe that 92.5%, 
91.25%, 92%, and 93.5% of automatically labeled 
MA samples are correctly annotated in Book, DVD, 
Electronic, and Kitchen respectively. This suggests 
that the subspace classifiers are able to predict the 
MA samples with a high precision. This indicates 
the rationality of automatically annotating MA 
samples. 

5 Conclusion  

In this paper, we propose a novel active learning 
approach, named co-selecting, to reduce the 
annotation cost for imbalanced sentiment 
classification. It first trains two complementary 
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classifiers with two disjoint feature subspaces and 
then uses them to collectively select most 
informative MI samples for manual annotation, 
leaving most informative MA samples for 
automatic annotation. Empirical studies show that 
our co-selecting approach is capable of greatly 
reducing the annotation cost and in the meanwhile, 
significantly outperforms several active learning 
alternatives 

For the future work, we are interested in 
applying our co-selecting approach to active 
learning for other imbalanced classification tasks, 
especially those with much higher imbalanced ratio. 
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Abstract

We propose the weakly supervised Multi-
Experts Model (MEM) for analyzing the se-
mantic orientation of opinions expressed in
natural language reviews. In contrast to most
prior work, MEM predicts both opinion po-
larity and opinion strength at the level of in-
dividual sentences; such fine-grained analysis
helps to understand better why users like or
dislike the entity under review. A key chal-
lenge in this setting is that it is hard to ob-
tain sentence-level training data for both po-
larity and strength. For this reason, MEM is
weakly supervised: It starts with potentially
noisy indicators obtained from coarse-grained
training data (i.e., document-level ratings), a
small set of diverse base predictors, and, if
available, small amounts of fine-grained train-
ing data. We integrate these noisy indicators
into a unified probabilistic framework using
ideas from ensemble learning and graph-based
semi-supervised learning. Our experiments in-
dicate that MEM outperforms state-of-the-art
methods by a significant margin.

1 Introduction

Opinion mining is concerned with analyzing opin-
ions expressed in natural language text. For example,
many internet websites allow their users to provide
both natural language reviews and numerical ratings
to items of interest (such as products or movies).
In this context, opinion mining aims to uncover the
relationship between users and (features of) items.
Preferences of users to items can be well understood
by coarse-grained methods of opinion mining, which

focus on analyzing the semantic orientation of doc-
uments as a whole. To understand why users like or
dislike certain items, however, we need to perform
more fine-grained analysis of the review text itself.

In this paper, we focus on sentence-level analy-
sis of semantic orientation (SO) in online reviews.
The SO consists of polarity (positive, negative, or
other1) and strength (degree to which a sentence is
positive or negative). Both quantities can be ana-
lyzed jointly by mapping them to numerical ratings:
Large negative/positive ratings indicate a strong neg-
ative/positive orientation. A key challenge in fine-
grained rating prediction is that fine-grained train-
ing data for both polarity and strength is hard to
obtain. We thus focus on a weakly supervised set-
ting in which only coarse-level training data (such
as document ratings and subjectivity lexicons) and,
optionally, a small amount of fine-grained training
data (such as sentence polarities) is available.

A number of lexicon-based approaches for phrase-
level rating prediction has been proposed in the liter-
ature (Taboada et al., 2011; Qu et al., 2010). These
methods utilize a subjectivity lexicon of words along
with information about their semantic orientation;
they focus on phrases that contain words from the
lexicon. A key advantage of sentence-level methods
is that they are able to cover all sentences in a review
and that phrase identification is avoided. To the best
of our knowledge, the problem of rating prediction
at the sentence level has not been addressed in the
literature. A naive approach would be to simply aver-
age phrase-level ratings. Such an approach performs

1We assign polarity other to text fragments that are off-topic
or not directly related to the entity under review.
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poorly, however, since (1) phrases are analyzed out
of context (e.g., modal verbs or conditional clauses),
(2) domain-dependent information about semantic
orientation is not captured in the lexicons, (3) only
phrases that contain lexicon words are covered. Here
(1) and (2) lead to low precision, (3) to low recall.

To address the challenges outlined above, we pro-
pose the weakly supervised Multi-Experts Model
(MEM) for sentence-level rating prediction. MEM
starts with a set of potentially noisy indicators of SO
including phrase-level predictions, language heuris-
tics, and co-occurrence counts. We refer to these
indicators as base predictors; they constitute the set
of experts used in our model. MEM is designed
such that new base predictors can be easily integrated.
Since the information provided by the base predictors
can be contradicting, we use ideas from ensemble
learning (Dietterichl, 2002) to learn the most con-
fident indicators and to exploit domain-dependent
information revealed by document ratings. Thus, in-
stead of averaging base predictors, MEM integrates
their features along with the available coarse-grained
training data into a unified probabilistic model.

The integrated model can be regarded as a Gaus-
sian process (GP) model (Rasmussen, 2004) with
a novel multi-expert prior. The multi-expert prior
decomposes into two component distributions. The
first component distribution integrates sentence-local
information obtained from the base predictors. It
forms a special realization of stacking (Dzeroski and
Zenko, 2004) but uses the features from the base pre-
dictors instead of the actual predictions. The second
component distribution propagates SO information
across similar sentences using techniques from graph-
based semi-supervised learning (GSSL) (Zhu et al.,
2003; Belkin et al., 2006). It aims to improve the
predictions on sentences that are not covered well
enough by our base predictors. Traditional GSSL al-
gorithms support either discrete labels (classification)
or numerical labels (regression); we extend these
techniques to support both types of labels simulta-
neously. We use a novel variant of word sequence
kernels (Cancedda et al., 2003) to measure sentence
similarity. Our kernel takes the relative positions of
words but also their SO and synonymity into account.

Our experiments indicate that MEM significantly
outperforms prior work in both sentence-level rating
prediction and sentence-level polarity classification.

2 Related Work

There exists a large body of work on analyzing the
semantic orientation of natural language text. Our
approach is unique in that it is weakly supervised,
predicts both polarity and strength, and operates on
the sentence level.

Supervised approaches for sentiment analysis fo-
cus mainly on opinion mining at the document
level (Pang and Lee, 2004; Pang et al., 2002; Pang
and Lee, 2005; Goldberg and Zhu, 2006), but have
also been applied to sentence-level polarity classifi-
cation in specific domains (Mao and Lebanon, 2006;
Pang and Lee, 2004; McDonald et al., 2007). In
these settings, a sufficient amount of training data is
available. In contrast, we focus on opinion mining
tasks with little or no fine-grained training data.

The weakly supervised HCRF model (Täckström
and McDonald, 2011b; Täckström and McDonald,
2011a) for sentence-level polarity classification is per-
haps closest to our work in spirit. Similar to MEM,
HCRF uses coarse-grained training data and, when
available, a small amount of fine-grained sentence
polarities. In contrast to MEM, HCRF does not pre-
dict the strength of semantic orientation and ignores
the order of words within sentences.

There exists a large number of lexicon-based meth-
ods for polarity classification (Ding et al., 2008; Choi
and Cardie, 2009; Hu and Liu, 2004; Zhuang et al.,
2006; Fu and Wang, 2010; Ku et al., 2008). The
lexicon-based methods of (Taboada et al., 2011; Qu
et al., 2010) also predict ratings at the phrase level;
these methods are used as experts in our model.

MEM leverages ideas from ensemble learning (Di-
etterichl, 2002; Bishop, 2006) and GSSL meth-
ods (Zhu et al., 2003; Zhu and Ghahramani, 2002;
Chapelle et al., 2006; Belkin et al., 2006). We extend
GSSL with support for multiple, heterogenous labels.
This allows us to integrate our base predictors as well
as the available training data into a unified model
that exploits that strengths of algorithms from both
families.

3 Base Predictors

Each of our base predictors predicts the polarity or
the rating of a single phrase. As indicated above,
we do not use these predictions directly in MEM but
instead integrate the features of the base predictors
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(see Sec. 4.4). MEM is designed such that new base
predictors can be integrated easily.

Our base predictors use a diverse set of available
web and linguistic resources. The hope is that this di-
versity increases overall prediction performance (Di-
etterichl, 2002): The statistical polarity predictor fo-
cuses on local syntactic patterns; it is based on corpus
statistics for SO-carrying words and opinion topic
words. The heuristic polarity predictor uses manu-
ally constructed rules to achieve high precision but
low recall. Both the bag-of-opinions rating predictor
and the SO-CAL rating predictor are based on lexi-
cons. The BoO predictor uses a lexicon trained from
a large generic-domain corpus and is recall-oriented;
the SO-CAL predictor uses a different lexicon with
manually assigned weights and is precision-oriented.

3.1 Statistical Polarity Predictor

The polarity of an SO-carrying word strongly de-
pends on its target word. For example, consider the
phrase “I began this novel with the greatest of hopes
[...]”. Here, “greatest” has a positive semantic orien-
tation in all subjectivity lexicons, but the combination
“greatest of hopes” often indicates a negative senti-
ment. We refer to a pair of SO-carrying word (“great-
est”) and a target word (“hopes”) as an opinion-target
pair. Our statistical polarity predictor learns the po-
larity of opinions and targets jointly, which increases
the robustness of its predictions.

Syntactic dependency relations of the form
A

R−→ B are a strong indicator for opinion-target
pairs (Qiu et al., 2009; Zhuang et al., 2006); e.g.,
“great” nmod−−−→“product”. To achieve high precision,
we only consider pairs connected by the follow-
ing predefined set of shortest dependency paths:

verb
subj←−− noun, verb

obj←− noun, adj nmod−−−→ noun,

adj
prd−−→ verb

subj←−− noun. We only retain opinion-
target pairs that are sufficiently frequent.

For each extracted pair z, we count how often it
co-occurs with each document polarity y ∈ Y , where
Y = {positive, negative, other} denotes the set of po-
larities. If z occurs in a document but is preceded by
a negator, we treat it as a co-occurrence of opposite
document polarity. If z occurs in a document with po-
larity other, we count the occurrence with only half
weight, i.e., we increase both #z and #(other, z)
by 0.5. These documents are typically a mixture of

positive and negative opinions so that we want to
reduce their impact. The marginal distribution of
polarity label y given that z occurs in a sentence is
estimated as P (y | z) = #(y, z)/#z. The predictor
is trained using the text and ratings of the reviews in
the training data, i.e., without relying on fine-grained
annotations.

The statistical polarity predictor can be used to pre-
dict sentence-level polarities by averaging the phrase-
level predictions. As discussed previously, such an
approach is problematic; we use it as a baseline ap-
proach in our experimental study. We also employ
phrase-level averaging to estimate the variance of
base predictors; see Sec. 4.3. Denote by Z(x) the set
of opinion-target pairs in sentence x. To predict the
sentence polarity y ∈ Y , we take the Bayesian aver-
age of the phrase-level predictors: P (y | Z(x)) =∑

z∈Z(x) P (y | z)P (z) =
∑

z∈Z(x) P (y, z). Thus
the most likely polarity is the one with the highest
co-occurrence count.

3.2 Heuristic Polarity Predictor

Heuristic patterns can also serve as base predictors.
In particular, we found that some authors list positive
and negative aspects separately after keywords such
as “pros” and “cons”. A heuristic that exploits such
patterns achieved a high precision (> 90%) but low
recall (< 5%) in our experiments.

3.3 Bag-of-Opinions Rating Predictor

We leverage the bag-of-opinion (BoO) model of Qu et
al. (2010) as a base predictor for phrase-level ratings.
The BoO model was trained from a large generic
corpus without fine-grained annotations.

In BoO, an opinion consists of three components:
an SO-carrying word (e.g., “good”), a set of intensi-
fiers (e.g., “very”) and a set of negators (e.g., “not”).
Each opinion is scored based on these words (repre-
sented as a boolean vector b) and the polarity of the
SO-carrying word (represented as sgn(r) ∈ {−1, 1})
as indicated by the MPQA lexicon of Wilson et
al. (2005). In particular, the score is computed as
sgn(r)ωTb, where ω is the learned weight vector.
The sign function sgn(r) ensures consistent weight
assignment for intensifiers and negators. For exam-
ple, an intensifier like “very” can obtain a large posi-
tive or a large negative weight depending on whether
it is used with a positive or negative SO-carrying
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word, respectively.

3.4 SO-CAL Rating Predictor

The Semantic Orientation Calculator (SO-CAL) of
Taboada et al. (2011) also predicts phrase-level rat-
ings via a scoring function similar to the one of BoO.
The SO-CAL predictor uses a manually created lexi-
con, in which each word is classified as either an SO-
carrying word (associated with a numerical score), an
intensifier (associated with a modifier on the numer-
ical score), or a negator. SO-CAL employs various
heuristics to detect irrealis and to correct for the pos-
itive bias inherent in most lexicon-based classifiers.
Compared to BoO, SO-CAL has lower recall but
higher precision.

4 Multi-Experts Model

Our multi-experts model incorporates features from
the individual base predictors, coarse-grained labels
(i.e., document ratings or polarities), similarities be-
tween sentences, and optionally a small amount of
sentence polarity labels into an unified probabilistic
model. We first give an overview of MEM, and then
describe its components in detail.

4.1 Model Overview

Denote by X = {x1, . . . ,xN} a set of sentences.
We associate each sentence xi with a set of initial
labels ŷi, which are strong indicators of semantic
orientation: the coarse-grained rating of the corre-
sponding document, the polarity label of our heuristic
polarity predictor, the phrase-level ratings from the
SO-CAL predictor, and optionally a manual polarity
label. Note that the number of initial labels may vary
from sentence to sentence and that initial labels are
heterogeneous in that they refer to either polarities
or ratings. Let Ŷ = {ŷ1, . . . , ŷN}. Our goal is to
predict the unobserved ratings r = {r1, . . . , rN} of
each sentence.

Our multi-expert model is a probabilistic model
for X, Ŷ, and r. In particular, we model the rating
vector r via a multi-expert prior PE(r | X,β) with
parameter β (Sec. 4.2). PE integrates both features
from the base predictors and sentence similarities.
We correlate ratings to initial labels via a set of con-
ditional distributions Pb(ŷ

b | r), where b denotes the
type of initial label (Sec. 4.3). The posterior of r is

then given by

P (r | X, Ŷ,β) ∝
∏
b

Pb(ŷ
b | r)PE(r | X,β).

Note that the posterior is influenced by both the multi-
expert prior and the set of initial labels.

We use MAP inference to obtain the most likely
rating of each sentence, i.e., we solve

argmin
r,β

−
∑

b

log(Pb(ŷ
b | r))− log(PE(r | X,β)),

where as before β denotes the model parameters. We
solve the above optimization problem using cyclic
coordinate descent (Friedman et al., 2008).

4.2 Multi-Expert Prior

The multi-expert prior PE(r | X,β) consists of two
component distributions N1 and N2. Distribution
N1 integrates features from the base predictors, N2

incorporates sentence similarities to propagate infor-
mation across sentences.

In a slight abuse of notation, denote by xi the set of
features for the i-th sentence. Vector xi contains the
features of all the base predictors but also includes bi-
gram features for increased coverage of syntactic pat-
terns; see Sec. 4.4 for details about the feature design.
Letm(xi) = βTxi be a linear predictor for ri, where
β is a real weight vector. Assuming Gaussian noise,
ri follows a Gaussian distribution N1(ri | mi, σ

2)
with mean mi = m(xi) and variance σ2. Note that
predictor m can be regarded as a linear combination
of base predictors because both m and each of the
base predictors are linear functions. By integrating
all features into a single function, the base predictors
are trained jointly so that weight vector β automati-
cally adapts to domain-dependent properties of the
data. This integrated approach significantly outper-
formed the alternative approach of using a weighted
vote of the individual predictions made by the base
predictors. We regularize the weight vector β us-
ing a Laplace prior P (β | α) with parameter α to
encourage sparsity.

Note that the bigram features in xi partially cap-
ture sentence similarity. However, such features can-
not be extended to longer subsequences such as tri-
grams due to data sparsity: useful features become
as infrequent as noisy terms. Moreover, we would
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like to capture sentence similarity using gapped (i.e.,
non-consecutive) subsequences. For example, the
sentences “The book is an easy read.” and “It is easy
to read.” are similar but do not share any consecutive
bigrams. They do share the subsequence “easy read”,
however. To capture this similarity, we make use of a
novel sentiment-augmented variant of word sequence
kernels (Cancedda et al., 2003). Our kernel is used
to construct a similarity matrix W among sentences
and the corresponding regularized Laplacian L̃. To
capture the intuition that similar sentences should
have similar ratings, we introduce a Gaussian prior
N2(r | 0, L̃−1) as a component into our multi-expert
prior; see Sec. 4.5 for details and a discussion of
why this prior encourages similar ratings for similar
sentences.

Since the two component distributions feature dif-
ferent expertise, we take their product and obtain the
multi-expert prior

PE(r | X,β) ∝ N1(r |m, Iσ2)N2(r | 0, L̃−1)P (β | α),

where m = (m1, . . . ,mN ). Note that the normal-
izing constant of PE can be ignored during MAP
inference since it does not depend on β.

4.3 Incorporating Initial Labels

Recall that the initial labels Ŷ are strong indica-
tors of semantic orientation associated with each
sentence; they correspond to either discrete polarity
labels or to continuous rating labels. This hetero-
geneity constitutes the main difficulty for incorporat-
ing the initial labels via the conditional distributions
Pb(ŷ

b | r). We assume independence throughout so
that Pb(ŷ

b | r) =
∏

i Pb(ŷ
b
i | ri).

Rating Labels For continuous labels, we assume
Gaussian noise and set Pb(ŷ

b
i | ri) = N (ŷb

i | ri, ηb
i ),

where variance ηb
i is a type- and sentence-dependent.

For SO-CAL labels, we simply set ηSO-CAL
i =

ηSO-CAL, where ηSO-CAL is a hyperparameter. The
SO-CAL scores have limited influence in our overall
model; we found that more complex designs lead to
little improvement. We proceed differently for docu-
ment ratings. Our experiment suggests that document
ratings constitute the most important indicator of the
SO of a sentence. Thus sentence ratings should be
close to document ratings unless strong evidence to

the contrary exists. In other words, we want variance
ηDoc

i to be small.
When no manually created sentence-level polar-

ity labels are available, we set the value of ηDoc
i de-

pending on the polarity class. In particular, we set
ηDoc

i = 1 for both positive and negative documents,
and ηDoc

i = 2 for neutral documents. The reasoning
behind this choice is that sentence ratings in neu-
tral documents express higher variance because these
documents often contain a mixture of positive and
negative sentences.

When a small set of manually created sentence
polarity labels is available, we train a classifier that
predicts whether the sentence polarity coincides with
the document polarity. If so, we set the corresponding
variance ηDoc

i to a small value; otherwise, we choose
a larger value. In particular, we train a logistic regres-
sion classifier (Bishop, 2006) using the following
binary features: (1) an indicator variable for each
document polarity, and (2) an indicator variable for
each triple of base predictor, predicted polarity, and
document polarity (set to 1 if the polarities match).
We then set ηDoc

i = (τpi)
−1, where pi is the probabil-

ity of matching polarities obtained from the classifier
and τ is a hyperparameter that ensures correct scal-
ing.

Polarity Labels We now describe how to model
the correlation between the polarity of a sentence and
its rating. An simple and effective approach is to
partition the range of ratings into three consecutive
partitions, one for each polarity class. We thus consid-
ering the polarity classes {positive, other, negative}
as ordered and formulate polarity classification as an
ordinal regression problem (Chu and Ghahramani,
2006). We immediately obtain the distribution

Pb(ŷ
b
i = pos | ri) = Φ

(
ri − b+√

ηb

)

Pb(ŷ
b
i = oth | ri) = Φ

(
b+ − ri√

ηb

)
− Φ

(
b− − ri√

ηb

)

Pb(ŷ
b
i = neg | ri) = Φ

(
b− − ri√

ηb

)
,

where b+ and b− are the partition boundaries between
positive/other and other/negative, respectively,2 Φ(x)
denotes the cumulative distribution function of the

2We set b+ = 0.3 and b− = −0.3 to calibrate to SO-CAL,
which treats ratings in [−0.3, 0, 3] as polarity other.
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Figure 1: Distribution of polarity given rating.

Gaussian distribution, and variance ηb is a hyper-
parameter. It is easy to verify that

∑
ŷb

i∈Y
p(ŷb

i |
ri) = 1. The resulting distribution is shown in Fig. 1.
We can use the same distribution to use MEM for
sentence-level polarity classification; in this case, we
pick the polarity with the highest probability.

4.4 Incorporating Base Predictors
Base predictors are integrated into MEM via compo-
nent N1(ri | mi, σ

2) of the multi-expert prior (see
Sec. 4.2). Recall that mi is a linear function of the
features xi of each sentence. In this section, we dis-
cuss how xi is constructed from the features of the
base predictors. New base predictors can be inte-
grated easily by exposing their features to MEM.

Most base predictors operate on the phrase level;
our goal is to construct features for the entire sen-
tence. Denote by nb

i the number of phrases in the
i-th sentence covered by base predictor b, and let
ob

ij denote a set of associated features. Features ob
ij

may or may not correspond directly to the features
of base predictor b; see the discussion below. A
straightforward strategy is to set xb

i = (nb
i)
−1
∑

j ob
ij .

We proceed slightly differently and average the fea-
tures associated with phrases of positive prior polar-
ity separately from those of phrases with negative
prior polarity (Taboada et al., 2011). We then con-
catenate the averaged feature vectors, i.e., we set
xb

i = (ōb,pos
ij ōb,neg

ij ), where ōb,p
ij denotes the average

of the feature vectors ob
ij associated with phrases of

prior polarity p. This procedure allows us to learn
a different weight for each feature depending on its

context (e.g., the weight of intensifier “very” may dif-
fer for positive and negative phrases). We construct
xi by concatenating the sentence-level features xb

i of
each base predictor and a feature vector of bigrams.

To integrate a base predictor, we only need to
specify the relevant features and, if applicable, prior
phrase polarities. For our choice of base predictors,
we use the following features:

SO-CAL predictor. The prior polarity of a SO-
CAL phrase is given by the polarity of its SO-
carrying word in the SO-CAL lexicon. The feature
vector oSO-CAL

ij consists of the weight of the SO-
carrying word from the lexicon as well the set of
negator words, irrealis marker words, and intensifier
words in the phrase. Moreover, we add the first two
words preceding the SO-carrying word as context
features (skipping nouns, negators, irrealis markers,
and intensifiers, and stopping at clause boundaries).
All words are encoded as binary indicator features.

BoO predictor. Similar to SO-CAL, we deter-
mine the prior polarity of a phrase based on the BoO
dictionary. In contrast to SO-CAL, we directly use
the BoO score as a feature because the BoO predictor
weights have been trained on a very large corpus and
are thus reliable. We also add irrealis marker words
in the form of indicator features.

Statistical polarity predictor. Recall that the sta-
tistical polarity predictor is based on co-occurrence
counts of opinion-topic pairs and document polar-
ities. We treat each opinion-topic pair as a phrase
and use the most frequently co-occurring polarity
as the phrase’s prior polarity. We use the logarithm
of the co-occurrence counts with positive, negative,
and other polarity as features; this set of features per-
formed better than using the co-occurrence counts or
estimated class probabilities directly. We also add
the same type of context features as for SO-CAL, but
rescale each binary feature by the logarithm of the
occurrence count #z of the opinion-topic pair (i.e.,
the features take values in {0, log #z}).

4.5 Incorporating Sentence Similarities
The component distribution N2(r | 0, L̃−1) in the
multi-expert prior encourages similar sentences to
have similar ratings. The main purpose of N2 is to
propagate information from sentences on which the
base predictors perform well to sentences for which
base prediction is unreliable or unavailable (e.g., be-
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cause they do not contain SO-carrying words). To
obtain this distribution, we first construct an N ×N
sentence similarity matrix W using a sentiment-
augmented word sequence kernel (see below). We
then compute the regularized graph Laplacian L̃ =
L+I/λ2 based on the unnormalized graph Laplacian
L = D−W (Chapelle et al., 2006), where D be a
diagonal matrix with dii =

∑
j wij and hyperparam-

eter λ2 controls the scale of sentence ratings.
To gain insight into distribution N2, observe that

N2(r | 0, L̃−1)

∝ exp
(
−1

2

∑
i,j

wij(ri − rj)2 − ‖r‖22/λ2
)
.

The left term in the exponent forces the ratings of
similar sentences to be similar: the larger the sen-
tence similarity wij , the more penalty is paid for dis-
similar ratings. For this reason, N2 has a smoothing
effect. The right term is an L2 regularizer and encour-
ages small ratings; it is controlled by hyperparameter
λ2.

The entries wij in the sentence similarity matrix
determine the degree of smoothing for each pair of
sentence ratings. We compute these values by a novel
sentiment-augmented word sequence kernel, which
extends the well-known word sequence kernel of Can-
cedda et al. (2003) by (1) BoO weights to strengthen
the correlation of sentence similarity and rating sim-
ilarity and (2) synonym resolution based on Word-
Net (Miller, 1995).

In general, a word sequence kernel computes a
similarity score of two sequences based on their
shared subsequences. In more detail, we first de-
fine a score function for a pair of shared subse-
quences, and then sum up these scores to obtain
the overall similarity score. Consider for example
the two sentences “The book is an easy read.” (s1)
and “It is easy to read.” (s2) along with the shared
subsequence “is easy read” (u). Observe that the
words “an” and “to” serve as gaps as they are not
part of the subsequence. We represent subsequence
u in sentence s via a real-valued projection function
φu(s). In our example, φu(s1) = υisυ

g
anυeasyυread

and φu(s2) = υisυeasyυ
g
toυread. The decay factors

υw ∈ (0, 1] for matching words characterize the
importance of a word (large values for significant
words). On the contrary, decay factors υg

w ∈ (0, 1]

for gap words are penalty terms for mismatches
(small values for significant words). The score of
subsequence u is defined as φu(s1)φu(s2). Thus
two shared subsequences have high similarity if they
share significant words and few gaps. Following Can-
cedda et al. (2003), we define the similarity between
two sequences as

kn(si, sj) =
∑

u∈Ωn

φu(si)φu(sj),

where Ω is a finite set of words and n denotes the
length of the considered subsequences. This sim-
ilarity function can be computed efficiently using
dynamic programming.

To apply the word sequence kernel, we need to
specify the decay factors. A traditional choice is
υw = log( N

Nw
)/ log(N), where Nw is the document

frequency of the word w and N is the total number
of documents. This IDF decay factor is not well-
suited to our setting: Important opinion words such
as “great” have a low IDF value due to their high
document frequency. To overcome this problem,
we incorporate additional weights for SO-carrying
words using the BoO lexicon. To do so, we first
rescale the BoO weights into [0, 1] using the sig-
moid g(w) = (1 + exp(−aωw + b))−1, where ωw

denotes the BoO weight of word w.3 We then set
υw = min(log( N

Nw
)/ log(N) + g(w), 0.9). The de-

cay factor for gaps is given by υg
w = 1 − υw. Thus

we strongly penalize gaps that consist of infrequent
words or opinion words.

To address data sparsity, we incorporate synonyms
and hypernyms from WordNet into our kernel. In
particular, we represent words found in WordNet by
their first two synset names (for verbs, adjectives,
nouns) and their direct hypernym (nouns only). Two
words are considered the same when their synsets
overlap. Thus, for example, “writer” has the same
representation as “author”.

To build the similarity matrix W, we construct
a k-nearest-neighbor graph for all sentences.4 We
consider subsequences consisting of three words (i.e.,
wij = k3(si, sj)); longer subsequences are overly
sparse, shorter subsequences are covered by the bi-
grams features in N1.

3We set a = 2 and b = 1 in our experiments.
4We use k = 15 and only consider neighbors with a similar-

ity above 0.001.
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5 Experiments

We evaluated both MEM and a number of alternative
approaches for both sentence-level polarity classifi-
cation and sentence-level strength prediction across
a number of domains. We found that MEM out-
performs state-of-the-art approaches by a significant
margin.

5.1 Experimental Setup

We implemented MEM as well as the HCRF classi-
fier of (Täckström and McDonald, 2011a; Täckström
and McDonald, 2011b), which is the best-performing
estimator of sentence-level polarity in the weakly-
supervised setting reported in the literature. We train
both methods using (1) only coarse labels (MEM-
Coarse, HCRF-Coarse) and (2) additionally a small
number of sentence polarities (MEM-Fine, HCRF-
Fine5). We also implemented a number of baselines
for both polarity classification and strength predic-
tion: a document oracle (DocOracle) that simply uses
the document label for each sentence, the BoO rat-
ing predictor (BaseBoO), and the SO-CAL rating pre-
dictor (BaseSO-CAL). For polarity classification, we
compare our methods also to the statistical polarity
predictor (Basepolarity). To judge on the effectiveness
of our multi-export prior for combining base predic-
tors, we take the majority vote of all base predic-
tors and document polarity as an additional baseline
(Majority-Vote). Similarly, for strength prediction,
we take the arithmetic mean of the document rat-
ing and the phrase-level predictions of BaseBoO and
BaseSO-CAL as a baseline (Mean-Rating). We use the
same hyperparameter setting for MEM across all our
experiments.

We evaluated all methods on Amazon reviews
from different domains using the corpus of Ding et al.
(2008) and the test set of Täckström and McDonald
(2011a). For each domain, we constructed a large bal-
anced dataset by randomly sampling 33,000 reviews
from the corpus of Ding et al. (2008). We chose
the books, electronics, and music domains for our
experiments; the dvd domain was used for develop-
ment. For sentence polarity classification, we use the
test set of Täckström and McDonald (2011a), which

5We used the best-performing model that fuses HCRF-Coarse
and the supervised model (McDonald et al., 2007) by interpola-
tion.

contains roughly 60 reviews per domain (20 for each
polarity). For strength evaluation, we created a test
set of 300 pairs of sentences per domain from the
polarity test set. Each pair consisted of two sentences
of the same polarity; we manually determined which
of the sentences is more positive. We chose this pair-
wise approach because (1) we wanted the evaluation
to be invariant to the scale of the predicted ratings,
and (2) it much easier for human annotators to rank
a pair of sentences than to rank a large collection of
sentences.

We followed Täckström and McDonald (2011b)
and used 3-fold cross-validation, where each fold
consisted of a set of roughly 20 documents from the
test set. In each fold, we merged the test set with the
reviews from the corresponding domain. For MEM-
Fine and HCRF-Fine, we use the data from the other
two folds as fine-grained polarity annotations. For
our experiments on polarity classification, we con-
verted the predicted ratings of MEM, BaseBoO, and
BaseSO-CAL into polarities by the method described
in Sec. 4.3. We compare the performance of each
method in terms of accuracy, which is defined as the
fraction of correct predictions on the test set (correct
label for polarity / correct ranking for strength). All
reported numbers are averages over the three folds. In
our tables, boldface numbers are statistically signifi-
cant against all other methods (t-test, p-value 0.05).

5.2 Results for Polarity Classification

Table 1 summarizes the results of our experiments for
sentence polarity classification. The base predictors
perform poorly across all domains, mainly due to
the aforementioned problems associated with aver-
aging phrase-level predictions. In fact, DocOracle
performs almost always better than any of the base
predictors. However, accurracy increases when we
combine base predictors and DocOracle using ma-
jority voting, which indicates that ensemble methods
work well.

When no fine-grained annotations are available
(HCRF-Coarse, MEM-Coarse), both MEM-Coarse
and Majority-Vote outperformed HCRF-Coarse,
which in turn has been shown to outperform a num-
ber of lexicon-based methods as well as classifiers
trained on document labels (Täckström and McDon-
ald, 2011a). MEM-Coarse also performs better than
Majority-Vote. This is because MEM propagates
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Book Electronics Music Avg
Basepolarity 43.7 40.3 43.8 42.6
BaseBoO 50.9 48.9 52.6 50.8
BaseSO-CAL 44.6 50.2 45.0 46.6
DocOracle 51.9 49.6 59.3 53.6
Majority-Vote 53.7 53.4 58.7 55.2
HCRF-Coarse 52.2 53.4 57.2 54.3
MEM-Coarse 54.4 54.9 64.5 57.9
HCRF-Fine 55.9 61.0 58.7 58.5
MEM-Fine 59.7 59.6 63.8 61.0

Table 1: Accuracy of polarity classification per do-
main and averaged across domains.

evidence across similar sentences, which is espe-
cially useful when no explicit SO-carrying words
exist. Also, MEM learns weights of features of base
predictors, which leads to a more adaptive integration,
and our ordinal regression formulation for polarity
prediction allows direct competition among positive
and negative evidence for improved accuracy.

When we incorporate a small amount of sentence
polarity labels (HCRF-Fine, MEM-Fine), the accu-
racy of all models greatly improves. HCRF-Fine has
been shown to outperform the strongest supervised
method on the same dataset (McDonald et al., 2007;
Täckström and McDonald, 2011b). MEM-Fine falls
short of HCRF-Fine only in the electronics domain
but performs better on all other domains. In the book
and music domains, where MEM-Fine is particularly
effective, many sentences feature complex syntac-
tic structure and SO-carrying words are often used
without reference to the quality of the product (but to
describe contents, e.g., “a love story” or “a horrible
accident”).

Our models perform especially well when they are
applied to sentences containing no or few opinion
words from lexicons. Table 2 reports the evaluation
results for both sentences containing SO-carrying
words from either MPQA or SO-CAL lexicons and
for sentences containing no such words. The re-
sults explain why our model falls short of HCRF-
Fine in the electronics domain: reviews of electronic
products contain many SO-carrying words, which
almost always express opinions. Nevertheless, MEM-
Fine handles sentences without explicit SO-carrying
words well across all domains; here the propagation
of information across sentences helps to learn the SO

Book Electronics Music
op fact op fact op fact

HCRF-Fine 55.7 55.9 63.3 54.6 59.0 57.4
MEM-Fine 58.9 62.4 60.7 56.7 64.5 60.8

Table 2: Accuracy of polarity classification for sen-
tences with opinion words (op) and without opinion
words (fact).

of facts (such as “short battery life”).
We found that for all methods, most of the errors

are caused by misclassifying positive/negative sen-
tences as other and vice versa. Moreover, sentences
with polarity opposite to the document polarity are
hard cases if they do not feature frequent strong pat-
terns. Another difficulty lies in off-topic sentences,
which may contain explicit SO-carrying words but
are not related to the item under review. This is one
of the main reasons for the poor performance of the
lexicon-based methods.

Overall, we found that MEM-Fine is the method of
choice. Thus our multi-expert model can indeed bal-
ance the strength of the individual experts to obtain
better estimation accuracy.

5.3 Results for Strength Prediction

Table 3 shows the accuracy results for strength pre-
diction. Here our models outperformed all baselines
by a large margin. Although document ratings are
strong indicators in the polarity classification task,
they lead to worse performance than lexicon-based
methods. The main reason for this drop in accuracy
is that the document oracle assigns the same rating
to all sentences within a review. Thus DocOracle
cannot rank sentences from the same review, which
is a severe limitation. This shortage can be partly
compensated by averaging the base predictions and
document rating (Mean-Rating). Note that it is non-
trivial to apply existing ensemble methods for the
weights of individual base predictors because of the
absence of the sentence ratings as training labels. In
contrast, our MEM models use indirect supervision
to adaptively assign weights to the features from base
predictors. Similar to polarity classification, a small
amount of sentence polarity labels often improved
the performance of MEM.
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Book Electronics Music Avg
BaseBoO 58.3 51.6 53.5 54.5
BaseSO-CAL 60.6 57.1 47.6 55.1
DocOracle 45.1 36.2 41.4 40.9
Mean-Rating 70.3 57.0 60.8 62.7
MEM-Coarse 68.7 60.5 69.5 66.2
MEM-Fine 72.4 63.3 67.2 67.6

Table 3: Accuracy of strength prediction.

6 Conclusion

We proposed the Multi-Experts Model for analyz-
ing both opinion polarity and opinion strength at
the sentence level. MEM is weakly supervised; it
can run without any fine-grained annotations but is
also able to leverage such annotations when avail-
able. MEM is driven by a novel multi-expert prior,
which integrates a number of diverse base predictors
and propagates information across sentences using a
sentiment-augmented word sequence kernel. Our ex-
periments indicate that MEM achieves better overall
accuracy than alternative methods.
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Abstract

This paper focuses on the task of colloca-
tion polarity disambiguation. The collocation
refers to a binary tuple of a polarity word and
a target (such as ⟨long, battery life⟩ or ⟨long,
startup⟩), in which the sentiment orientation of
the polarity word (“long”) changes along with
different targets (“battery life” or “startup”).
To disambiguate a collocation’s polarity, pre-
vious work always turned to investigate the
polarities of its surrounding contexts, and then
assigned the majority polarity to the collo-
cation. However, these contexts are limited,
thus the resulting polarity is insufficient to be
reliable. We therefore propose an unsuper-
vised three-component framework to expand
some pseudo contexts from web, to help dis-
ambiguate a collocation’s polarity.Without us-
ing any additional labeled data, experiments
show that our method is effective.

1 Introduction

In recent years, more attention has been paid to
sentiment analysis as it has been widely used in
various natural language processing applications,
such as question answering (Wiebe et al., 2003;
Yu and Hatzivassiloglou, 2003), information extrac-
tion (Riloff et al., 2005) and opinion-oriented sum-
marization (Hu and Liu, 2004; Liu et al., 2005).
Meanwhile, it also brings us lots of interesting and
challenging research topics, such as subjectivity
analysis (Riloff and Wiebe, 2003), sentiment clas-
sification (Pang et al., 2002; Kim and Hovy, 2005;

∗Correspondence author: tliu@ir.hit.edu.cn

Wilson et al., 2009; He et al., 2011), opinion re-
trieval (Zhang et al., 2007; Zhang and Ye, 2008;
Li et al., 2010) and so on.

One fundamental task for sentiment analysis is
to determine the semantic orientations of words.
For example, the word “beautiful” is positive, while
“ugly” is negative. Many researchers have devel-
oped several algorithms for this purpose and gener-
ated large static lexicons of words marked with prior
polarities (Hatzivassiloglou and McKeown, 1997;
Turney et al., 2003; Esuli, 2008; Mohammad et al.,
2009; Velikovich et al., 2010). However, there exist
some polarity-ambiguous words, which can dynam-
ically reflect different polarities along with different
contexts. A typical polarity-ambiguous word “长”
(“long” in English) is shown with two example sen-
tences as follows.

1. 该相机的[电池寿命]t很[长]p。(Positive)

Translated as: The [battery life]t of this camera
is [long]p. (Positive)

2. 该相机的[启动时间]t很[长]p。(Negative)

Translated as: This camera has [long]p

[startup]t. (Negative)

The phrases marked with p superscript are the
polarity-ambiguous words, and the phrases marked
with t superscript are targets modified by the polar-
ity words. In the above two sentences, the sentiment
orientation of the polarity word “长” (“long” in En-
glish) changes along with different targets. When
modifying the target “电池寿命” (“battery life” in
English), its polarity is positive; and when modify-
ing “启动时间” (“startup” in English), its polarity is
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negative. In this paper, we especially define the col-
location as a binary tuple of the polarity-ambiguous
word and its modified target, such as ⟨长,电池寿命⟩
(⟨long, battery life⟩ in English) or ⟨长,启动时间⟩
(⟨long, startup⟩ in English). This paper concentrates
on the task of collocation polarity disambiguation.

This is an important task as the problem of
polarity-ambiguity is frequent. We analyze 4,861
common binary tuples of polarity words and their
modified targets from 478 reviews1, and find that
over 20% of them are the collocations defined in this
paper. Therefore, the task of collocation polarity dis-
ambiguation is worthy of study.

For a sentence s containing such a collocation c,
since the in-sentence features are always ambiguous,
it is difficult to disambiguate the polarity of c by us-
ing them. Thus some previous work turned to in-
vestigate its surrounding contexts’ polarities (such
as the sentences before or after s), and then assigned
the majority polarity to the collocation c (Hatzivas-
siloglou and McKeown, 1997; Hu and Liu, 2004;
Kanayama and Nasukawa, 2006). However, since
the amount of contexts from the original review is
very limited, the final resulting polarity for the col-
location c is insufficient to be reliable.

Fortunately, most collocations may appear multi-
ple times, in different forms, both within the same
review and within topically-related reviews. Thus
for a collocation, we can collect large amounts of
contexts from other reviews to improve its polarity
disambiguation. These expanded contexts are called
pseudo contexts in this paper. Some previous work
used the similar methods. For example, Ding (Ding
et al., 2008) expanded some pseudo contexts from
a topically-related review set. But since the review
set is limited, the expanded contexts are still lim-
ited and unreliable. In order to overcome this prob-
lem, we propose an unsupervised three-component
framework to expand more pseudo contexts from
web for the collocation polarity disambiguation.

Without using any labeled data, experiments on
a Chinese data set from four product domains show
that the three-component framework is feasible and
the web-based pseudo contexts are useful for the
collocation polarity disambiguation. Compared to
other previous work, our method achieves an F1

1The dataset will be introduced in Section 4.1 in detail.

score of 72.02%, which is about 15% higher.
The remainder of this paper is organized as fol-

lows. Section 2 introduces the related work. Section
3 shows the proposed approach including three in-
dependent components. Section 4 and 5 presents the
experiments and results. Finally we conclude this
paper in Section 6.

2 Related Work

The key of the collocation polarity disambigua-
tion task is to recognize the polarity word’s sen-
timent orientation of a collocation. There are ba-
sically two types of approaches for word polar-
ity recognition: corpus-based and dictionary-based
approaches. Corpus-based approaches find co-
occurrence patterns of words in the large corpora
to determine the word sentiments, such as the work
in (Hatzivassiloglou and McKeown, 1997; Wiebe,
2000; Riloff and Wiebe, 2003; Turney et al., 2003;
Kaji and Kitsuregawa, 2007; Velikovich et al.,
2010). On the other hand, dictionary-based ap-
proaches use synonyms and antonyms in WordNet
to determine word sentiments based on a set of seed
polarity words. Such approaches are studied in (Kim
and Hovy, 2006; Esuli and Sebastiani, 2005; Kamps
et al., 2004). Overall, most of the above approaches
aim to generate a large static polarity word lexicon
marked with prior polarities.

However, it is not sensible to predict a word’s sen-
timent orientation without considering its context.
In fact, even in the same domain, a word may indi-
cate different polarities depending on what targets it
is applied to, especially for the polarity-ambiguous
words, such as “长” (“long” in English) shown in
Section 1. Based on these, we need to consider both
the polarity words and their modified targets, i.e.,
the collocations mentioned in this paper, rather than
only the polarity words.

To date, the task in this paper is similar with
much previous work. Some researchers exploited
the features of the sentences containing colloca-
tions to help disambiguate the polarity of the
polarity-ambiguous word. For example, Hatzivas-
siloglou (Hatzivassiloglou and McKeown, 1997)
and Kanayama (Kanayama and Nasukawa, 2006)
used conjunction rules to solve this problem from
large domain corpora. Suzuki (Suzuki et al., 2006)
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took into account many contextual information of
the word within the sentence, such as exclamation
words, emoticons and so on. However, the experi-
mental results show that these in-sentence features
are not rich enough.

Instead of considering the current sentence alone,
some researchers exploited external information and
evidences in other sentences or other reviews to infer
the collocation’s polarity. For a collocation, Hu (Hu
and Liu, 2004) analyzed its surrounding sentences’
polarities to disambiguate its polarity. Ding (Ding
et al., 2008) proposed a holistic lexicon-based ap-
proach of using global information to solve this
problem. However, the contexts or evidences from
these two methods are limited and unreliable. Ex-
cept for the above unsupervised methods, some re-
searchers (Wilson et al., 2005; Wilson et al., 2009)
proposed supervised methods for this task, which
need large annotated corpora.

In addition, many related works tried to learn
word polarity in a specific domain, but ignored the
problem that even the same word in the same do-
main may indicate different polarities (Jijkoun et al.,
2010; Bollegala et al., 2011). And some work (Lu et
al., 2011) combined difference sources of informa-
tion, especially the lexicons and heuristic rules for
this task, but ignored the important role of the con-
text. Besides, there exists some research focusing
on word sense subjectivity disambiguation, which
aims to classify a word sense into subjective or ob-
jective (Wiebe and Mihalcea, 2006; Su and Markert,
2009). Obviously, this task is different from ours.

3 The Proposed Approach

3.1 Overview

The motivation of our approach is to make full use of
web sources to collect more useful pseudo contexts
for a collocation, whose original contexts are lim-
ited or unreliable. The framework of our approach
is illustrated in Figure 1.

In order to disambiguate a collocation’s polarity,
three components are carried out:

1. Query Expansion and Pseudo Context Ac-
quisition: This paper uses the collocation as query.
For a collocation, three heuristic query expansion
strategies are used to generate more flexible queries,
which have the same or completely opposite polar-
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Figure 1: The framework of our approach.

ity with this collocation. Searching these queries in
the domain-related websites, lots of snippets can be
acquired. Then we can extract the pseudo contexts
from these snippets.

2. Sentiment Analysis: For both original con-
texts and the expanded pseudo contexts from web, a
simple lexicon-based sentiment computing method
is used to recognize each context’s polarity.

3. Combination: Two strategies are designed to
integrate the polarities of the original and pseudo
contexts, under the assumption that these two kinds
of contexts can be complementary to each other.

It is worth noting that this three-component
framework is flexible and we can try to design dif-
ferent strategies for each component. Next sections
will give a simple example strategy for each compo-
nent to show its feasibility and effectiveness.

3.2 Query Expansion and Pseudo Context
Acquisition

3.2.1 Why Expanding Queries
For a collocation, such as ⟨长,电池寿命⟩ (⟨long,

battery life⟩ in English), the most intuitive query
used for searching is constructed by the form of “tar-
get + polarity word”, i.e., 电池寿命长 (battery
life long in English). Even if we search this query
alone, a great many web snippets covering the po-
larity word and target will be retrieved. But why do
we still need to expand the queries?

In fact, for a collocation, though the amount of the
retrieved snippets is large, lots of them cannot pro-
vide accurate pseudo contexts. The reason is that the
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polarity words in some snippets do not really mod-
ify the targets, such as in the sentence “The battery
life is short, and finds few buyers for a long time.”
There exist no modifying relation between “battery
life” and “long”.

In order to filter these meaningless snippets, we
can simply search with a new query “电池寿命长”
by surrounding it with quotes (noted as Strategy0).
However, this can drastically decline the amount of
snippets. In addition, as the new query is short, in
many retrieved snippets, there also exist no modify-
ing relations between the polarity words and targets.
As a result, if we just use this query strategy, the ex-
panded pseudo contexts are limited and cannot yield
ideal performance.

Therefore, we need to design some effective
query expansion strategies to ensure that (1) the po-
larity words do modify the targets in the retrieved
web snippets, and (2) the snippets are more enough.

3.2.2 Query Expansion Strategy
We first investigate the modifying relations be-

tween polarity words and the targets, and then con-
struct effective queries.

Observed from previous work (Bloom et al.,
2007; Kobayashi et al., 2004; Popescu and Etzioni,
2005), there are two kinds of common relations be-
tween the polarity words and their targets. One is
the “subject-copula-predicate” relation, such as the
relationship between “long” and “battery life” in the
sentence “The battery life of this camera is long”.
The other is the “attribute-head” relation, such as
the relationship between them in the sentence “This
camera has long battery life”.

As a result, three heuristic query expansion strate-
gies are adopted to construct efficient queries for
searching. Take the collocation ⟨长,电池寿命⟩
(⟨long, battery life⟩ in English) as an example, the
strategies are described as follows.

Strategy1: target + modifier + polarity word:
Such as the query “电池寿命很长” or “电池寿命
非常长” (“the battery life is very long” in English).
Different from Strategy0, this strategy adds a mod-
ifier element. It refers to the words that are used to
change the degree of a polarity word, such as “很” or
“非常” (“very” in English). Due to the usage of the
modifiers, the queries from this strategy can satisfy
the “subject-copula-predicate” relation.

Strategy2: modifier + polarity word + 的+ tar-
get: Such as the query “很长的电池寿命” or “非
常长的电池寿命” (“very long battery life” in En-
glish). This strategy also uses modifiers to modify
polarity words, and the generated queries can satisfy
the “attribute-head” relation.

Strategy3: negation word + polarity word +的+
target: Such as the query “不长的电池寿命” or “没
有长的电池寿命” (“not long battery life” in En-
glish). This strategy uses negation words to modify
the polarity words. And the queries from this strat-
egy can satisfy the “attribute-head” relation. The
only difference is that the polarity of this kind of
queries is opposite to that of the collocation.

Similar to the queries from Strategy0, the queries
generated by Strategy1∼3 are all searched with
quotes. In addition, note that the modifier and the
negation word are taken from Modifier Lexicon and
Negation Lexicon introduced in Table 2.

3.2.3 Pseudo Context Acquisition
For each query from Strategy0∼3, we search it in

some websites to acquire the related snippets. If we
directly search it using Google without site restric-
tions, it does return all the snippets containing the
query, but lots of them are non-reviews. Further, the
pseudo contexts generated by these non-reviews are
useless or even harmful. To overcome this problem,
the advanced search of Google is used to search the
query within the forum sites of the product domain.
We can flexibly choose several popular forum sites
for each domain. The URLs of the forum sites used
in this paper are listed in Table 1.

Formally, given a collocation c, the expanded
pseudo contexts Conx(c) can be obtained using the
following function:

Conx(c) =
∪3

i=0 f(Queryi)

=
∪3

i=0

∪n
j=1 f(queryij)

(1)

Here, Queryi is the query set generated by the ith
query expansion strategy; queryij is the jth query
generated by the ith strategy. And the parameter n is
the total number of queries from the ith query expan-
sion strategy. From this function, we can collect the
contexts of c by summing up all the pseudo contexts
from every queryij .
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Domain URL

Camera

http://www.qqdc.com.cn
http://forums.nphoto.net
http://dc.pconline.com.cn
http://photobbs.it168.com

http://club.tech.sina.com.cn/dc

Car

http://bbs.chetx.com
http://bbs.pcauto.com.cn

http://club.autohome.com.cn
http://bbs.cheshi.com

http://www.xcar.com.cn
http://www.autohome.com.cn

Notebook

http://benyouhui.it168.com/index.php
http://nbbbs.zol.com.cn
http://www.ibijiben.com

http://notebook.pconline.com.cn
http://nbbbs.enet.com.cn

Phone

http://bbs.imobile.com.cn
http://sjbbs.zol.com.cn

http://bbs.shouji.com.cn
http://bbs.cnmo.com

http://forum.younet.com

Table 1: The URLs used in context expansion for differ-
ent domains.

In detail, the pseudo context acquisition algorithm
for a collocation c is illustrated in Figure 2. Note
that, the original context acquisition of c can be con-
sidered as a simplified version of the pseudo context
acquisition. That’s because the current review con-
taining c can be considered as only one snippet in
pseudo context acquisition. Thus, we can just carry
out the two steps in (2) of Figure 2 to obtain the orig-
inal contexts.

Analyzing either the pseudo contexts or the orig-
inal contexts, we can find that not all of them are
useful contexts. Thus we will simply filter the noisy
ones by context sentiment computation, and choose
the contexts showing sentiment orientations as the
useful contexts.

3.3 Sentiment Analysis

For both the original and expanded pseudo contexts,
we employ the lexicon-based sentiment computing
method (Hu and Liu, 2004) to compute the polarity
value for each context. This unsupervised approach
is quite straightforward and makes use of the senti-
ment lexicons in Table 2.

The polarity value Polarity(con) for a context con

Algorithm: Pseudo Context Expansion Algorithm

Input: A collocation c and the URL list

Output: The pseudo context set Conx(c)

1. Use Strategy0~3 to expand c and the expanded queries 

are saved as a set Query(c).

2. For any query q Query(c),   acquire its pseudo 

contexts Conx(q) as follows:

(1) search q in the domain-related URL list, the top 100 

retrieved snippets for each URL are collected as Snip(q)

(2) for each snippet sp Snip(q)

find the sentence s containing q

obtain the two sentences before and after s as the 

contexts of q in this sp, noted as Conx(q, sp)

Conx(q) = 

3. Conx(c) =                      =

∈

∈

U
)(

),(
qSnipsp

spqConx
∈

U
)(

)(
cQueryq

qConx
∈

U U
)( )(

),(
cQueryq qSnipsp

spqConx
∈ ∈

Figure 2: The algorithm for pseudo context acquisition.

Lexicon Content

Modifier Lexicon
很,比较,非常,十分,太,特,
特别,挺,相当,格外,分外

(“very” or “quite” in English)

Negation Lexicon 没有,不,不是
(“no” or “not” in English)

Positive Lexicon There are 3,730 Chinese words
are collected from HOWNET1.

Negative Lexicon There are 3,116 Chinese words
are collected from HOWNET.

1 http://www.keenage.com/html/e index.html.

Table 2: The lexicons used in this paper.

is computed by summing up the polarity values of all
words in con, making use of both the word polarity
defined in the positive and negative lexicons and the
contextual shifters defined in the negation lexicon.
The algorithm is illustrated in Figure 3.

In this algorithm, n is the parameter controlling
the window size within which the negation words
have influence on the polarity words, and here n is
set to 3.

Normally, if the polarity value Polarity(con) is
more than 0, the context con is labeled as positive; if
less than 0, the context is negative. We also consider
the transitional words, such as “但是” (“but” in En-
glish). Finally, the contexts with positive/negative
polarities are used as the useful contexts.
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Domain # of reviews # of c # of single c Sig / All # of multiple c
(All) (Sig) (%) / kinds of multiple c

Camera 138 295 183 62.03 112 / 35
Car 161 232 131 56.47 101 / 33

Notebook 56 147 94 63.95 53 / 20
Phone 123 327 192 58.72 135 / 35
Total 478 1001 600 59.94 401 / 123 ≈ 3.3

Table 3: Statistics for the Chinese collocation corpus.

Algorithm: Sentiment Analysis 

Input: a context con, and three lexicons: Positive_Dic, 

Negative_Dic, Negation_Dic

Output: Polarity value Polarity(con)

1. Segment con into word set W(con)

2. For each word w W(con), compute its polarity value 

Polarity(w) as follows:

(1) if w Positive_Dic, Polarity(w) = 1;

(2) if w Negative_Dic, Polarity(w) = -1;

(3) otherwise, Polarity(w) = 0;

(4) Within the window of n words previous to w, if 

there is a word w′ Negation_Dic, 

Polarity(w) = -Polarity(w)

3. Polarity(con)  = 

∈

∈

∑
∈ )(

)(
conWw

wPolarity

∈

∈

Figure 3: The algorithm for context polarity computation.

3.4 Combination

After the pseudo context acquisition and polarity
computation, two kinds of effective contexts: orig-
inal contexts and pseudo contexts, and their corre-
sponding polarities can be obtained.

In order to yield a relatively accurate polarity Po-
larity(c) for a collocation c, we exploit the following
combination methods:

1. Majority Voting: Rather than considering the
difference between the two kinds of contexts, this
combination method relies on the polarity tag of
each context. Suppose c has n effective contexts
(including original and pseudo contexts), it can ob-
tain n polarity tags based on the individual sentiment
analysis algorithm. The polarity tag receiving more
votes is chosen as the final polarity of c.

2. Complementation: For a collocation c, we
first employ “Majority Voting” method just on the
expanded pseudo contexts to obtain the polarity tag.

If the polarity of c cannot be recognized2, the ma-
jority polarity tag voted on the original contexts is
chosen as the final polarity tag.

4 Experimental Setup

4.1 Dataset and Evaluation Metrics

We conduct the experiments on a Chinese colloca-
tion corpus of four product domains, which is from
the Task3 of the Chinese Opinion Analysis Evalua-
tion (COAE)3 (Zhao et al., 2008). Table 3 describes
the corpus in detail.

From 478 reviews, 1,001 collocations (454 pos-
itive and 547 negative) with polarity-ambiguous
words are found and manually annotated by two an-
notators. Cohen’s kappa (Cohen, 1960), a measure
of inter-annotator agreement ranging from zero to
one, is 0.83, indicating a good strength of agree-
ment 4. In Table 3, Sig of the fourth column denotes
the collocations that appear once in all the domain-
related reviews. And multiple in the last column
denotes the collocations that appear several times.
From Table 3, we can find that among all the re-
views, nearly 60% collocations only appear once.
Even for the multiple collocations, they averagely
appear less than 4 times. Therefore, for a colloca-
tion, if we only consider its original contexts alone
or the expanded pseudo contexts from the domain-
related review set alone, the contexts are obviously
limited and unreliable.

Instead of using accuracy, we use precision (P),
recall (R) and F-measure (F1) to measure the perfor-
mance of this task. That’s because two kinds of col-
locations’ polarities cannot be disambiguated. One

2The reason will be explained in the last paragraph of Sec-
tion 4.1.

3http://www.ir-china.org.cn/coae2008.html
4A small number of collocations are still difficult to be dis-

ambiguated from contexts.
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is the sparse collocations, which obtain no effective
contexts. The other is the collocations that acquire
the same amount of positive and negative contexts.
The metrics are defined as follows.

P =
correctly disambiguated collocations

disambiguated collocations
(2)

R =
correctly disambiguated collocations

all collocations
(3)

F1 =
2PR

P + R
(4)

4.2 System Description
In order to compare our method with previous work,
we build several systems as follows:

NoExp: Following the method proposed by
Hu (Hu and Liu, 2004), without using the expanded
pseudo contexts, we only consider the two original
contexts Senbef and Senaft of a collocation c in the
current review. If Senbef expresses the polarity po-
lar, then Polarity(ac) = polar. Else if Senaft

expresses the polarity polar′, then Polarity(ac) =
polar′. Else, this method cannot disambiguate the
polarity of c. In this method, the transitional words,
such as “但是” (“but” in English) are considered.

Expdataset: Following the method proposed by
Ding (Ding et al., 2008), we solve this task with the
help of the pseudo contexts in the domain-related re-
view dataset. For a collocation c appearing in many
domain-related reviews, this method refers to the po-
larities of the same c in other reviews. The majority
polarity is chosen as final polarity.

Expweb+sig: This method is the same as our
method in this paper, except for (1) not combining
the original contexts, and (2) not using all the three
query expansion strategies, but just using the sin-
gle (abbv. sig) Strategy0. This method expands the
pseudo contexts from the web. The majority polarity
is chosen as the final polarity.

Expweb+exp: This method is the same as our pro-
posed method in this paper, except for not combin-
ing the original contexts. It expands the pseudo con-
texts from the web. And the “exp” in the subscript
means that this method uses all the query expansion
strategies. The majority polarity of all the pseudo
contexts is chosen as the final polarity.

Exp
mv/c
web+exp+com: This is the method proposed

in this paper, which combines the original and ex-
panded pseudo contexts. The superscript “mv/c” is
short for the two combination methods: Majority
Voting and Complementation.

5 Results

5.1 Comparisons among All the Systems

In fact, all the systems shown in Section 4.2 can be
considered as context based methods. The essential
difference among them lies in the contexts they used.
For a collocation, the contexts for NoExp are two
original contexts from the current review. Breaking
down the boundary of the current review, Expdataset

explores the pseudo contexts from other domain-
related reviews. Further, Expweb+sig, Expweb+exp

and Exp
mv/c
web+exp+com expand the pseudo contexts

from web, which can be considered as a large corpus
and can provide more evidences for the collocation
polarity disambiguation.

System P(%) R(%) F1(%)
NoExp 67.32 41.16 51.08

Expdataset 68.14 47.85 56.22
Expweb+sig 70.00 53.85 60.87
Expweb+exp 74.97 63.14 68.55

Expmv
web+exp+com 75.53 67.83 71.47

Expc
web+exp+com 74.36 69.83 72.02

Table 4: Comparative results for the collocation polarity
disambiguation task.

Table 4 illustrates the comparative results of all
systems for collocation polarity disambiguation. It
can be observed that our system Expmv

web+exp+com

and Expc
web+exp+com outperform all the other sys-

tems. We discuss the experimental results as fol-
lows:

NoExp yields the worst performance, especially
on the recall. The reason is that the original con-
texts used in this system are limited, and some of
them are even noisy. In comparison, Expdataset

adds a post-processing step of expanding pseudo
contexts from the topically-related review dataset,
which achieves a better result with an absolute im-
provement of 5.14% (F1). This suggests that the
contexts expanded from other reviews are helpful in
disambiguating the collocation’s polarity.
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However, Expdataset is just effective in disam-
biguating the polarity of such a collocation c, which
appears many times in the domain-related reviews.
From Table 3, we can notice that this kind of collo-
cations only accounts for 40% in all the collocations,
and further they appear less than 4 times on average.
Thus, for such a collocation c, the pseudo contexts
expanded from other reviews that contain the same
c are still far from enough, since the review set size
in this system is not very large.

In order to avoid the context limitation problem,
we expand more pseudo contexts from web for each
collocation. We first try to use a simple query
form (Strategy0) for web mining. Table 4 illustrates
that the corresponding system Expweb+sig outper-
forms the system Expdataset. It can demonstrate
that our web mining based pseudo context expan-
sion is useful for disambiguating the collocation’s
polarity, since this system can explore more con-
texts. However, we can find that the performance
is not very ideal. This system can generate some
harmful contexts for the reason of the wrong mod-
ifying relations between polarity words and targets
in the retrieved snippets.

Thus this paper adds three query expansion strate-
gies to generate more and accurate pseudo con-
texts. Table 4 shows that the corresponding sys-
tem Expweb+exp can achieve a better result with F1
= 68.55%, which is significantly (χ2 test with p <
0.01) outperforms Expweb+sig. It demonstrates that
the query expansion strategies are useful.

Finally, Table 4 gives the results of our method in
this paper, Expmv

web+exp+com and Expc
web+exp+com,

which combines the original and expanded pseudo
contexts to yield a final polarity. We can ob-
serve that both of these systems outperform the sys-
tem NoExp of just using the original contexts and
the system Expweb+exp of just using the expanded
pseudo contexts. This can illustrate that the two
kinds of contexts are complementary to each other.
In addition, we can also find that the two combi-
nation methods produce similar results. In detail,
Expmv

web+exp+com disambiguates 899 collocations,
679 of them are correct; Expc

web+exp+com disam-
biguates 940 collocations, 699 of them are correct.

We can further find that, although the amount of
original contexts is small, it also plays an important
role in disambiguating the polarities of the collo-

cations that cannot be recognized by the expanded
pseudo contexts.

5.2 The Contributions of the Query Expansion
Strategies

The expanded pseudo contexts from our method can
be partly credited to the query expansion strategies.
Based on this, this section aims to analyze the differ-
ent contributions of the query expansion strategies in
our method.

Strategy P(%) R(%) F1(%) Avg(#)
Strategy0 70.00 53.85 60.87 71
Strategy1 74.14 55.84 63.70 112
Strategy2 61.84 37.56 46.74 26
Strategy3 64.34 33.17 43.77 20

Expweb+exp 74.97 63.14 68.55 229

Table 5: The performance of our method based on each
query expansion strategy for collocation polarity disam-
biguation.

Table 5 provides the performance of our method
based on each query expansion strategy for collo-
cation polarity disambiguation. For each strategy,
“Avg” in Table 5 denotes the average number of
the expanded pseudo contexts for each collocation.
From this table, we can find that the larger the “Avg”
is, the better (F1) the strategy is. In detail, Strategy1
with the largest “Avg” has the best performance; and
Strategy3 with the fewest “Avg” has the worst per-
formance. This can further demonstrate our idea
that more and effective pseudo contexts can improve
the performance of the collocation polarity disam-
biguation task. Expweb+exp integrates all the query
expansion strategies and obtains much more “Avg”.
Therefore, this can significantly increase the recall
value, and further produce a better result. On the
other hand, the results in Table 5 show that these
heuristic query expansion strategies are effective.

5.3 Deep Experiments in the
Three-Component Framework

In order to do a detailed analysis into our three-
component framework, some deep experiments are
made:

Query Expansion The aim of query expansion
is to retrieve lots of relative snippets, from which
we can extract the useful pseudo contexts. For each
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Strategy0 Strategy1 Strategy2 Strategy3
(%) (%) (%) (%)

Query Expansion 76.75 94.50 85.50 85.25
Pseudo Context 71.25 73.50 67.50 74.50

Sentiment Analysis 63.00 68.25 59.00 69.75

Table 6: The accuracies of the query expansion, pseudo context and sentiment analysis for each strategy.

snippet, if the polarity word of the collocation does
modify the target, we consider this snippet as a cor-
rect query expansion result.

Pseudo Context For each expanded pseudo con-
text from web, if it shows the same sentiment ori-
entation with the collocation (or opposite with the
collocation’s polarity because of the usage of transi-
tional words), we consider this context as a correct
pseudo context.

Sentiment Analysis For each expanded pseudo
context, if its polarity can be correctly recognized
by the polarity computation method in Figure 3, and
meanwhile it shows the same sentiment orientation
with the collocation, we consider this context as a
correct one.

Table 6 illustrates the accuracy of each experi-
ment for each strategy in detail, where 400 web re-
trieved snippets for Query Expansion and 400 ex-
panded pseudo contexts for Pseudo Context and
Sentiment Analysis are randomly selected and man-
ually evaluated for each strategy.

Seen from Table 6, we can find that:
1. For Query Expansion, all strategies yield good

accuracies except for Strategy0. This can draw a
same conclusion with our analysis in Section 3.2.1.
The queries from Strategy0 are short, thus in many
retrieved snippets, there exist no modifying relations
between the polarity words and targets. Accord-
ingly, the pseudo contexts from these snippets are
incorrect. This can result in the low accuracy of
Strategy0. On the other hand, we can find that the
other three query expansion strategies perform well.

2. Although the final result of our three-
component framework is good, the accuracies of
Pseudo Context and Sentiment Analysis for each
strategy is not very high. This is perhaps caused by
unrefined work on the specific sub-stages. For ex-
ample, we get all the pseudo contexts using the al-
gorithm in Figure 2. However, in some reviews, the
two sentences before and after the target sentence

have no polarity relation with the target sentence it-
self. This can bring in some noises. On the other
hand, the context polarity computation algorithm in
Figure 3 is just a simple attempt, which is not the
best way to compute the context’s polarity.

In fact, this paper aims to try some simple algo-
rithms for each component to validate the effective-
ness of the three-component framework. We will
polish every component of our framework in future.

6 Conclusion and Future Work

This paper proposes a web-based context expan-
sion framework for collocation polarity disambigua-
tion. The basic assumption of this framework is
that, if a collocation appears in different forms, both
within the same review and within topically-related
reviews, then the large amounts of pseudo contexts
from these reviews can help to disambiguate such
a collocation’s polarity. Based on this assumption,
this framework includes three independent compo-
nents. First, the heuristic query expansion strate-
gies are adopted to expand pseudo contexts from
web; then a simple but effective polarity computa-
tion method is used to recognize the polarities for
both the original contexts and the expanded pseudo
contexts; and finally, we integrate the polarities from
the original and pseudo contexts as the collocation’s
polarity. Without using any additional labeled data,
experiments on a Chinese data set from four product
domains show that the proposed framework outper-
forms other previous work.

This paper can be concluded as follows:

1. A framework including three independent com-
ponents is proposed for collocation polarity
disambiguation. We can try other different al-
gorithms for each component.

2. Web-based pseudo contexts are effective for
disambiguating a collocation’s polarity.
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3. The query expansion strategies are promising,
which can generate more useful and correct
contexts.

4. The initial contexts from current reviews and
the expanded contexts from web are comple-
mentary to each other.

The immediate extension of our work is to polish
each component of this framework, such as improv-
ing the accuracy of query expansion and pseudo con-
text acquisition, using other effective polarity com-
puting methods for each context and so on. In ad-
dition, we will explore other query expansion strate-
gies to generate more effective contexts.
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Abstract

Generating coherent discourse is an important
aspect in natural language generation. Our
aim is to learn factors that constitute coherent
discourse from data, with a focus on how to re-
alize predicate-argument structures in a model
that exceeds the sentence level. We present
an important subtask for this overall goal, in
which we align predicates across compara-
ble texts, admitting partial argument struc-
ture correspondence. The contribution of this
work is two-fold: We first construct a large
corpus resource of comparable texts, includ-
ing an evaluation set with manual predicate
alignments. Secondly, we present a novel ap-
proach for aligning predicates across compa-
rable texts using graph-based clustering with
Mincuts. Our method significantly outper-
forms other alignment techniques when ap-
plied to this novel alignment task, by a margin
of at least 6.5 percentage points in F1-score.

1 Introduction

Discourse coherence is an important aspect in natu-
ral language generation (NLG) applications. A num-
ber of theories have investigated coherence inducing
factors. A prominent example is Centering Theory
(Grosz et al., 1995), which models local coherence
by relating the choice of referring expressions to the
importance of an entity at a certain stage of a dis-
course. A data-driven model based on this theory
is the entity-based approach by Barzilay and Lap-
ata (2008), which models coherence phenomena by
observing sentence-to-sentence transitions of entity
occurrences.

Barzilay and Lapata show that their approach can
discriminate between a coherent and a non-coherent
set of ordered sentences. However, their model is
not able to generate alternative entity realizations by
itself. Furthermore, the entity-based approach only
investigates realization patterns for individual enti-
ties in discourse in terms of core grammatical func-
tions. It does not investigate the interplay between
entity transitions and realization patterns for full-
fledged semantic structures. This interplay, how-
ever, is an important factor for a semantics-based,
generative model of discourse coherence.

The main hypothesis of our work is that we can
automatically learn context-specific realization pat-
terns for predicate argument structures (PAS) from a
semantically parsed corpus of comparable text pairs.
Our assumption builds on the success of previous
research, where comparable and parallel texts have
been exploited for a range of related learning tasks,
e.g., unsupervised discourse segmentation (Barzilay
and Lee, 2004) and bootstrapping semantic analyz-
ers (Titov and Kozhevnikov, 2010).

For our purposes, we are interested in finding cor-
responding PAS across comparable texts that are
known to talk about the same events, and hence in-
volve the same set of underlying event participants.
By aligning predicates in such texts, we can inves-
tigate the factors that determine discourse coher-
ence in the realization patterns for the involved argu-
ments. These include the specific forms of argument
realization, as a pronoun or a specific type of refer-
ential expression, as studied in prior work in NLG
(Belz et al., 2009, inter alia). The specific set-up
we examine, however, allows us to further investi-
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gate the factors that govern the non-realization of
an argument position, as a special form of coher-
ence inducing element in discourse. Example (1),
extracted from our corpus of aligned texts,illustrates
this point: Both texts report on the same event of
locating victims in an avalanche. While (1.a) explic-
itly talks about the location of this event, the role re-
mains implicit in the second sentence of (1.b), given
that it can be recovered from the preceding sentence.
In fact, realization of this argument role would im-
pede the fluency of discourse by being overly repet-
itive.

(1) a. . . . The official said that [no bodies]Arg1 had
been recovered [from the avalanches]Arg2 which
occurred late Friday in the Central Asian coun-
try near the Afghan border some 300 kilometers
(185 miles) southeast of the capital Dushanbe.

b. Three other victims were trapped in an
avalanche in the village of Khichikh. [None
of the victims bodies]Arg1 have been found
[ ]Argm-loc.

This phenomenon clearly relates to the problem
of discourse-linking of implicit roles, a very chal-
lenging task in discourse processing.1 In our work,
we consider this problem from a content-based gen-
eration perspective, concentrating on the discourse
factors that allow for the omission of a role.

Thus, our aim is to identify comparable predica-
tions across aligned texts, and to study the discourse
coherence factors that determine the realization pat-
terns of arguments in the respective discourses. This
can be achieved by considering the full set of argu-
ments that can be recovered from the aligned pred-
ications. This paper focuses on the first of these
tasks, henceforth called predicate alignment.2

In line with data-driven approaches in NLP, we
automatically align predicates in a suitable corpus of
paired texts. The induced alignments will (i) serve to
identify events described in both comparable texts,
and (ii) provide information about the underlying ar-
gument structures and how they are realized in each
context to establish a coherent discourse. We in-
vestigate a graph-based clustering method for induc-

1See the recent SemEval 2010 task: Linking Events and
their Participants in Discourse, (Ruppenhofer et al., 2010).

2Note that we provide details regarding the construction of
a suitable data set and further examples involving non-realized
arguments in a complementary paper (Roth and Frank, 2012).

ing such alignments as clustering provides a suitable
framework to implicitly relate alignment decisions
to one another, by exploiting global information en-
coded in a graph.

The remainder of this paper is structured as fol-
lows: In Section 2, we discuss previous work in re-
lated tasks. Section 3 describes our task and a suit-
able data set. Section 4 introduces a graph-based
clustering model using Mincuts for the alignment of
predicates. Section 5 outlines the experiments and
presents evaluation results. Finally, we conclude in
Section 6 and discuss future work.

2 Related Work

The task of aligning words in general has been stud-
ied extensively in previous work, for example as part
of research in statistical machine translation (SMT).
Typically, alignment models in SMT are trained by
observing and (re-)estimating co-occurrence counts
of word pairs in parallel sentences (Brown et al.,
1993). The same methods have also been applied
in monolingual settings, for example to align words
in paraphrases (Cohn et al., 2008). In contrast to
traditional word alignment tasks, our focus is not on
pairs of isolated sentences but on aligning predicates
within the discourse contexts in which they are sit-
uated. Furthermore, text pairs for our task should
not be strictly parallel as we are specifically inter-
ested in the impact of different discourse contexts.
In Section 5, we will show that this particular set-
ting indeed constitutes a more challenging task com-
pared to traditional word alignment in parallel or
paraphrasing sentences.

Another set of related tasks is found in the area of
textual inference. Since 2006, there have been reg-
ular challenges on the task of Recognizing Textual
Entailment (RTE). In the original task description,
Dagan et al. (2006) define textual entailment “as a
directional relationship between pairs of text expres-
sions, denoted by T - the entailing ‘Text’ -, and H
- the entailed ‘Hypothesis’. (. . . ) T entails H if the
meaning of H can be inferred from the meaning of
T, as would typically be interpreted by people.” Al-
though this relation does not necessarily require the
presence of corresponding predicates, previous work
by MacCartney et al. (2008) shows that word align-
ments can serve as a good indicator of entailment.
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As a matter of fact, the same holds true for the task
of detecting paraphrases. In contrast to RTE, this lat-
ter task requires bi-directional entailments, i.e., each
of the two phrases must entail the other. Wan et al.
(2006) show that a simple approach solely based on
word (and lemmatized n-gram) overlap can already
achieve an F1-score of up to 83% for detecting para-
phrases in the Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005, MSRPC). In fact,
this is just 0.6% points below the state-of-the-art re-
sults recently reported by Socher et al. (2011).

The MSRPC and data sets from the first RTE
challenges only consisted of isolated pairs of sen-
tences. The Fifth PASCAL Recognizing Textual En-
tailment Challenge (Bentivogli et al., 2009) intro-
duced a “Search Task”, where entailing sentences
for a hypothesis have to be found in a set of full
documents. This new task first opened the doors for
assessing the role of discourse (Mirkin et al., 2010a;
Mirkin et al., 2010b) in RTE. However, this setting is
still limited as discourse contexts are only provided
for the entailing part (T ) of each text pair but not for
the hypothesis H .

A further task related to ours is the detection
of event coreference. The goal of this task is to
identify all mentions of the same event within a
document and, in some settings, also across docu-
ments. However, the task setting is typically more
restricted than ours in that its focus lies on iden-
tical events/references (cf. Walker et al. (2006),
Weischedel et al. (2011), inter alia). In particular,
verbalizations of different aspects of an event (e.g.,
‘buy’–‘sell’, ‘kill’–‘die’, ‘recover’–‘find’) are gen-
erally not linked in this paradigm. In contrast to co-
reference methods that identify chains of events, we
are interested in pairs of corresponding predicates
(and their argument structure), for which we can ob-
serve alternative realizations in discourse.

3 Aligning Predicates Across Texts

This section summarizes how we built a large cor-
pus of comparable texts, as a basis for the predicate
alignment task. We motivate the choice of the cor-
pus and present a strategy for extracting comparable
text pairs. Subsequently, we report on the prepara-
tion of an evaluation data set with manual predicate
alignments across the paired texts. We conclude this

section with an example that showcases the poten-
tial of using aligned predicates for the study of co-
herence phenomena. More detailed information re-
garding corpus creation, annotation guidelines and
additional examples illustrating the potential of this
corpus can be found in Roth and Frank (2012).

3.1 Corpus Creation
The goal of our work is to investigate coherence fac-
tors for argument structure realization, using com-
parable texts that describe the same events, but that
include variation in textual presentation. This re-
quirement fits well with the news domain, for which
we can trace varying textual sources that describe
the same underlying events. The English Gigaword
Fifth Edition (Parker et al., 2011) corpus (henceforth
just Gigaword) is one of the largest corpus collec-
tions for English. It comprises a total of 9.8 million
newswire articles from seven distinct sources.

In previous work (Roth and Frank, 2012), we in-
troduced GigaPairs, a sub-corpus extracted from Gi-
gaword that includes over 160,000 pairs of newswire
articles from distinct sources. GigaPairs has been
derived from Gigaword using the pairwise similar-
ity method on headlines presented by Wubben et al.
(2009). In addition to calculating the similarity of
news titles, we impose an additional date constraint
to further increase the precision of extracted pairs of
texts. Random inspection of about 100 documents
revealed only two texts describing different events.
Overall, we extracted 167,728 document pairs con-
taining a total of 50 million word tokens. Each doc-
ument in this corpus consists of up to 7.564 words
with a mean and median of 301 and 213 words, re-
spectively. All texts have been pre-processed us-
ing MATE tools (Björkelund et al., 2010; Bohnet,
2010), a pipeline of NLP modules including a state-
of-the-art semantic role labeler that computes Prop-
Bank/NomBank annotations (Palmer et al., 2005;
Meyers et al., 2008).

3.2 Gold Standard Annotation
We selected 70 text pairs from the GigaPairs cor-
pus for manual predicate alignment. All document
pairs were randomly chosen with the constraint that
each text consists of 100 to 300 words.3 Predi-

3This constraint is satisfied by 75.3% of all documents in
GigaPairs.
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cates identified by the semantic parser are provided
as pre-labeled annotations for alignment. We asked
two students4 to tag corresponding predicates across
each text pair. Following standard practice in word
alignment tasks (cf. Cohn et al. (2008)) the annota-
tors were instructed to distinguish between sure and
possible alignments, depending on how certainly, in
their opinion, two predicates describe verbalizations
of the same event. The following examples show
predicate pairings marked as sure (2) and as possi-
ble alignments (3).

(2) a. The regulator ruled on September 27 that Nas-
daq too was qualified to bid for OMX [. . . ]

b. The authority [. . . ] had already approved a sim-
ilar application by Nasdaq.

(3) a. Myanmar’s military government said earlier this
year it has released some 220 political prisoners
[. . . ]

b. The government has been regularly releasing
members of Suu Kyi’s National League for
Democracy party [. . . ]

In total, the annotators (A/B) aligned 487/451 sure
and 221/180 possible alignments with a Kappa score
(Cohen, 1960) of 0.86.5 For the construction of a
gold standard, we merged the alignments from both
annotators by taking the union of all possible align-
ments and the intersection of all sure alignments.
Cases which involved a sure alignment on which the
annotators disagreed were resolved in a group dis-
cussion with the first author.

We split the final corpus into a development set
of 10 document pairs and a test set of 60 document
pairs. The test set contains a total of 3,453 predicates
(1,531 nouns and 1,922 verbs). Its gold standard an-
notation consists of 446 sure and 361 possible align-
ments, which corresponds to an average of 7.4 sure
(6.0 possible) alignments per document pair. Most
of the gold alignments (82.4%) are between predi-
cates of the same part-of-speech (242 noun and 423
verb pairs). A total of 383 gold alignments (47.5%)
have been annotated between predicates with iden-
tical lemma form. Diverging numbers of realized
arguments can be observed in 320 pairs (39.7%).

4Both annotators are students in computational linguistics,
one undergraduate (A) and one postgraduate (B) student.

5Following Brockett (2007), we computed agreement on la-
beled annotations, including unaligned predicate pairs as an ad-
ditional null category.

3.3 Potential for Discourse Coherence
This section presents an example of an aligned
predicate pair from our development set that il-
lustrates the potential of aggregating corresponding
PAS across comparable texts. The example repre-
sents one of eleven cases involving unrealized argu-
ments that can be found in our development set of
only ten document pairs.

(4) a. The Chadians said theyArg0 had fled in fear of
their lives.

b. The United Nations says some 20,000
refugeesArg0 have fled into CameroonArg1.

In both sentences, the Arg0 role of the predicate flee
is filled, but Arg1 (here: the goal) has not been real-
ized in (4.a). However, sentence (4.a) is still part of a
coherent discourse, as a role filler for the omitted ar-
gument can be inferred from the preceding context.
For the goal of our work, we are interested in factors
that license such omissions of an argument. Poten-
tial factors on the discourse level include the infor-
mation status of the entity filling an argument posi-
tion, and its salience at the corresponding point in
discourse. Roth and Frank (2012) discuss additional
examples that demonstrate the importance of fac-
tors on further linguistic levels, e.g., lexical choice
of predicates and their syntactic realization.

In the example above, the aggregation of aligned
PAS presents an effective means to identify appro-
priate fillers for unrealized roles. Hence, we can uti-
lize each such pair as one positive and one negative
training instance for a model of discourse coherence
that controls the omissibility of arguments. In what
follows, we introduce an alignment approach that
can be used to automatically acquire more training
data using the entire GigaPairs corpus.

4 Model

For the automatic induction of predicate alignments
across texts, we opt for an unsupervised graph-based
clustering method. In this section, we first define a
graph representation for pairs of documents. In par-
ticular, predicates are represented as nodes in such a
graph and similarities between predicates as edges.
We then proceed to describe various similarity mea-
sures that can be used to identify similar predicate
instances. Finally, we introduce the clustering algo-
rithm that we apply to graphs (representing pairs of

174



documents) in order to induce alignments between
corresponding predicates.

4.1 Graph representation
We build a bipartite graph representation for each
pair of texts, using as vertices the predicate argu-
ment structures assigned in pre-processing (cf. Sec-
tion 3.1). We represent each predicate as a node and
integrate information about arguments only implic-
itly. Given the sets of predicates P1 and P2 of two
comparable texts T1 and T2, respectively, we for-
mally define an undirected graph GP1,P2 as follows:

GP1,P2 = 〈V,E〉 where
V = P1 ∪ P2

E = P1 × P2
(1)

Edge weights. We specify the edge weight be-
tween two nodes representing predicates p1 ∈ P1

and p2 ∈ P2 as a weighted linear combination of
four similarity measures described in the next sec-
tion: WordNet and VerbNet similarity, Distributional
similarity and Argument similarity.

wp1p2 = λ1 ∗ simWN(p1, p2)
+ λ2 ∗ simVN(p1, p2)
+ λ3 ∗ simDist(p1, p2)
+ λ4 ∗ simArg(p1, p2)

(2)

Initially we set all weighting parameters λ1 . . . λ4 to
have uniform weights by default. In Section 5, we
define an optimized weighting setting for the indi-
vidual similarity measures.

4.2 Similarity Measures
We employ a number of similarity measures
that make use of complementary information
that is type-based (simWN/VN/Dist) or token-based
(simArg).6 Given two lemmatized predicates p1, p2

and their set of arguments A1 = args(p1), A2 =
args(p2), we define the following measures.

WordNet similarity. Given all pairs of synsets s1,
s2 that contain the predicates p1, p2, respectively,
we compute the maximal similarity using the infor-
mation theoretic measure described in Lin (1998).
Our implementation exploits the WordNet hierarchy

6All token-based frequency counts (i.e., freq() and idf())
are computed over all documents from the AFP and APW parts
of the English Gigaword Fifth Edition.

(Fellbaum, 1998) to find the synset of the least com-
mon subsumer (lcs) and uses the pre-computed In-
formation Content (IC) files from Pedersen et al.
(2004) to compute Lin’s measure:

simWN(p1, p2) =
IC(lcs(s1, s2))
IC(s1) ∗ IC(s2)

(3)

In order to compute similarities between verbal and
nominal predicates, we further use derivation infor-
mation from NomBank (Meyers et al., 2008): if a
noun represents a nominalization of a verbal pred-
icate, we resort to the corresponding verb synset.
If no relation can be found between two predicates,
we set a default value of simWN = 0. This applies
in particular to all cases that involve a predicate not
present in WordNet.

VerbNet similarity. To overcome systematic
problems with the WordNet verb hierarchy (cf.
Richens (2008)), we further compute similarity
between verbal predicates using VerbNet (Kipper
et al., 2008). Verbs in VerbNet are categorized into
semantic classes according to their syntactic behav-
ior. A class C can recursively embed sub-classes
Cs ∈ sub(C) that represent finer semantic and
syntactic distinctions. We define a simple similarity
function that defines fixed similarity scores between
0 and 1 for pairs of predicates p1, p2 depending on
their relatedness within the VerbNet class hierarchy:

simVN(p1, p2) =


1.0 if ∃C : p1, p2 ∈ C
0.8 if ∃C,Cs : Cs ∈ sub(C)

∧ p1, p2 ∈ C ∪ Cs

0.0 else

(4)

Distributional similarity. As some predicates
may not be covered by the WordNet and VerbNet hi-
erarchies, we additionally calculate similarity based
on distributional meaning in a semantic space (Lan-
dauer and Dumais, 1997). Following the traditional
bag-of-words approach that has been applied in re-
lated tasks (Guo and Diab, 2011; Mitchell and La-
pata, 2010), we consider the 2,000 most frequent
context words c1, . . . , c2000 ∈ C as dimensions of
a vector space and define predicates as vectors using
their Pointwise Mutual Information (PMI):

~p = (PMI(p, c1), . . . ,PMI(p, c2000) (5)
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with PMI(x, y) =
freq(x, y)

freq(x) ∗ freq(y)

Given the vector representations of two predicates,
we calculate their similarity as the cosine of the an-
gle between the two vectors:

simDist(p1, p2) =
~p1 · ~p2

|~p1| ∗ |~p2|
(6)

Argument similarity. While the previous similar-
ity measures are purely type-based, argument simi-
larity integrates token-based, i.e., discourse-specific,
similarity information about predications by taking
into account the similarity of their arguments. This
measure calculates the association between the ar-
guments A1 of the first and the arguments A2 of the
second predicate by determining the ratio of over-
lapping words in both argument sets.

simArg(p1, p2) =

∑
w∈A1∩A2

idf(w)∑
w∈A1

idf(w) +
∑

w∈A2
idf(w)

(7)
In order to give higher weight to (rare) content
words, we weight each word by its Inverse Docu-
ment Frequency (IDF), which we calculate over all
documents d from the AFP and APW sections of the
Gigaword corpus:

idf(w) = log
|D|

|{d : w ∈ D|}
(8)

Normalization. In order to make the outputs of all
similarity measures comparable, we normalize their
value ranges on the development set to have a mean
and standard deviation of 1.0.

4.3 Mincut-based Clustering
Our graph clustering method uses minimum cuts (or
Mincut) in order to partition the bipartite text graph
into clusters of aligned predicates. A Mincut op-
eration divides a given graph into two disjoint sub-
graphs. Each minimum cut is performed as a cut
between some source node s and some target node
t, such that (i) each of the two nodes will be in a
different sub-graph and (ii) the sum of weights of all
removed edges will be as small as possible. Our sys-
tem determines each Mincut using an implementa-
tion of the method by Goldberg and Tarjan (1986).7

7Basic graph operations are performed using the freely
available Java library JGraph, cf. http://jgrapht.org/.

function CLUSTER(G)
clusters← ∅
E ← GETEDGES(G) . Step 1
e← GETEDGEWITHLOWESTWEIGHT(E)
s← GETSOURCENODE(e)
t← GETTARGETNODE(e)
G′ ← MINCUT(G, s, t) . Step 2
C ← GETCONNECTEDCOMPONENTS(G′)
for all Gs ∈ C do . Step 3

if SIZE(Gs) <= 2 then
clusters← clusters ∪Gs

else
clusters← clusters ∪ CLUSTER(Gs)

end if
end for
return clusters;

end function

Figure 2: Pseudo code of our clustering algorithm

As our goal is to induce clusters that correspond to
pairs of similar predicates, we set a maximum num-
ber of two nodes per cluster as stopping criterion.
Given an input graph G, our algorithm recursively
applies Mincuts in three steps as described in Figure
2. Step 1 identifies the edge e with lowest weight in
the given graph G. Step 2 performs the actual Min-
cut operation on G. Finally, the stopping criterion
and recursion are applied in Step 3. An example of
a clustered graph is illustrated in Figure 1.

The advantage of our method compared to off-
the-shelf clustering techniques is two-fold: On the
one hand, the clustering algorithm is free of any pa-
rameters, such as the number of clusters or a clus-
tering threshold, that require fine-tuning. On the
other hand, the approach makes use of a termina-
tion criterion that very well represents the nature of
the goal of our task, namely to align pairs of predi-
cates across comparable texts. The next section pro-
vides empirical evidence for the advantage of this
approach.

5 Experiments

This section evaluates our graph-clustering model
on the task of aligning predicates across compara-
ble texts. For comparison to related tasks and meth-
ods, we describe different evaluation settings, vari-
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Figure 1: The predicates of two sentences (white: “The company has said it plans to restate its earnings for 2000
through 2002.”; grey: “The company had announced in January that it would have to restate earnings (. . . )”) from the
Microsoft Research Paragraph Corpus are aligned by computing clusters with minimum cuts.

ous baselines, as well as results for these baselines
and the model presented above.

5.1 Settings

In order to benchmark our model against tradi-
tional methods for word alignment, we first apply
our graph-based alignment model (Full) on three
sentence-based paraphrase corpora. This model uses
the similarity measures defined in Section 4.2 and
the clustering algorithm introduced in Section 4.3.

In a second experiment, we evaluate Full on our
novel task of inducing predicate alignments across
comparable monolingual texts, using the GigaPairs
data set described in Section 3. We evaluate against
the manually annotated gold alignments in the test
data set described in Section 3.2. To gain more in-
sight into the performance of the various similar-
ity measures included in the Full model, we eval-
uate simplified versions that omit individual similar-
ity measures (Full–[measure name]).

The relative differences in performance against
various baselines will help us quantify the differ-
ences and difficulties between a traditional sentence-
based word alignment setting and our novel align-
ment task that operates on full texts.

5.1.1 Sentence-level Alignment Setting
For sentence-based predicate alignment we make
use of the following three corpora that are word-
aligned subsets of the paraphrase collections de-
scribed in (Cohn et al., 2008): MTC consists of 100

sentence pairs from the Multiple-Translation Chi-
nese Corpus (Huang et al., 2002), Leagues contains
100 sentential paraphrases from two translations of
Jules Verne’s “Twenty Thousand Leagues Under
the Sea”, and MSR is a sub-set of the Microsoft
Research Paraphrase Corpus (Dolan and Brockett,
2005), consisting of 130 sentence pairs. All three
paraphrase collections are in English.

Results for these experiments are reported in Sec-
tion 5.3.1. Note that in order to determine alignment
candidates, we apply the same pre-processing steps
as used for the annotation of our corpus. The se-
mantic parser identified an average number of 3.8,
5.1 and 4.7 predicates per text (i.e., per paraphrase
sentence) in MTC, Leagues and MSR, respectively.
All models are evaluated against the subset of gold
standard alignments (cf. Cohn et al. (2008)) between
pairs of words marked as predicates.

5.1.2 Text-level Alignment Setting
Results for our own data set, GigaPairs, are reported
in Section 5.3.2. In this setting, models are evaluated
against the annotated gold standard alignments be-
tween predicates as described in Section 3.2. Since
all text pairs in GigaPairs comprise multiple sen-
tences each, the average number of predicates per
text to consider (27.5) is much higher than in the
paraphrase settings. As the full graph representa-
tion becomes rather inefficient to handle (by default,
edges are inserted between all predicate pairs), we
use the development set of 10 text pairs to estimate
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MTC Leagues MSR
Precision Recall F1 Precision Recall F1 Precision Recall F1

LemmaId 25.1** 74.9 37.6** 31.5** 67.2 42.9** 42.3** 90.8 57.7**
Greedy 74.8** 88.3** 81.0 75.0** 86.0** 80.1 80.7** 97.0** 88.1

WordAlign 99.3 86.6 92.5 98.7 78.5 87.4 99.5 96.0* 97.7*
Full 92.3 72.2 81.1 92.7 69.4 79.4 94.5 88.3 91.3

Table 1: Results for sentence-based predicte alignment in the three benchmark settings MTC, Leagues and MSR (all
numbers in %); results that significantly differ from Full are marked with asterisks (* p<0.05; ** p<0.01).

a threshold on predicate similarity for adding edges.
We tested all thresholds from 1.5 to 4.0 with a step-
size of 0.25 and found 2.5 to perform best. This
threshold is applied in the evaluation of all graph-
based models.

5.2 Baselines

A simple baseline for both settings is to align all
predicates whose lemmas are identical. This base-
line, henceforth called LemmaId, is computed as a
lower bound for all settings. In order to assess the
benefits of the clustering step, we propose a second
baseline that uses the same similarity measures and
thresholds as our Full model, but omits the cluster-
ing step described in Section 4.3. Instead, it greed-
ily computes as many 1-to-1 alignments as possible,
starting from the highest similarity to the learned
threshold (Greedy).

As a more sophisticated baseline, we make
use of alignment tools commonly used in sta-
tistical machine translation (SMT). For the three
sentence-based paraphrase settings MTC, Leagues
and MSR, Cohn et al. (2008) readily provide
GIZA++ (Och and Ney, 2003) alignments as part
of their word-aligned paraphrase corpus. For the
experiments in the GigaPairs setting, we train our
own word alignment model using the state-of-the-
art word alignment tool Berkeley Aligner (Liang et
al., 2006). As word alignment tools require pairs of
sentences as input, we first extract paraphrases in the
latter setting using a re-implementation of the para-
phrase detection system by Wan et al. (2006).8 In
the following section, we abbreviate both baselines
using SMT alignment tools as WordAlign.

8Note that the performance of this system lies slightly be-
low the state-of-the-art results reported by Socher et al. (2011)
However, we were not able to reproduce the results of Socher et
al. using the publicly available release of their software.

5.3 Results

We measure precision as the number of predicted
alignments that are annotated in the gold standard
divided by the total number of predictions. Recall
is measured as the number of correctly predicted
sure alignments divided by the total number of sure
alignments in the gold standard. This conforms to
evaluation measures used for word alignment mod-
els in SMT (Och and Ney, 2003). Following Cohn
et al. (2008), we subsequently compute the F1-score
as the harmonic mean between precision and recall.

We compute statistical significance of result dif-
ferences with a paired t-test (Cohen, 1995) over the
affected test set documents and provide correspond-
ing significance levels where appropriate.

5.3.1 Sentence-level Predicate Alignment
The results for MTC, Leagues and MSR are pre-
sented in Table 1. The numbers indicate that
WordAlign consistently outperforms all other mod-
els on the three data sets in terms of F1-score. Sta-
tistical significance of result differences between
WordAlign and Full can only be observed for recall
and F1-score on the MSR data set (p<0.05). Other
differences are not significant due to high variance
of results compared to data set sizes.

The overall performance of WordAlign does not
come much as a surprise, seeing that all three data
sets consist of highly parallel sentence pairs. In
fact, the results for LemmaId show that by align-
ing all predicates with identical lemmas, most of the
sure alignments in the three settings are already cov-
ered. The reason for the low precision lies in the
fact that the same lemma can occur multiple times
in the same paraphrase, a phenomenon that is bet-
ter handled by WordAlign, Greedy and Full. In-
terestingly, the Greedy model achieves the highest
recall in all settings but it performs below our Full
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model in terms of precision and F1-score. The per-
formance differences between Greedy and Full are
statistically significant (p<0.01) regarding precision
and recall.

5.3.2 Text-level Predicate Alignment
We now turn to the experiments on our own data
set, GigaPairs, which comprises full documents
of unequal lengths instead of pairs of single sen-
tences. Table 2 presents the results for our full model
and the three baselines. From all four approaches,
WordAlign yields lowest performance. We observe
two main reasons for this: On the one hand, sen-
tence paraphrase detection does not perform per-
fectly. Hence, the extracted sentence pairs do not
always contain gold alignments. On the other hand,
even sentence pairs that contain gold alignments are
generally less parallel than in the previous settings,
which make them harder to align. The increased dif-
ficulty can also be seen in the results for the Greedy
baseline, which only achieves an F1-score of 20.1%
in this setting. In contrast, we observe that the ma-
jority of all sure alignments (60.3%) can be retrieved
by applying the LemmaId model.

The Full model achieves a recall of 46.6%, but
it significantly outperforms LemmaId (p<0.01) in
terms of precision (58.7%, +18.4 percentage points).
This is an important factor for us, as we plan to use
the alignments in subsequent tasks. With 52.0%,
Full achieves the best overall F1-score.

Ablating similarity measures. All aforemen-
tioned results were conducted in experiments with
a uniform weighting scheme of similarity measures
as introduced in Section 4.3. Table 3 shows the per-
formance impact of individual similarity measures
by removing them completely (i.e., setting their
weight to 0.0). The numbers indicate that not all
measures contribute positively to the overall perfor-
mance when using equal weights. However, a signif-
icant difference can only be observed when remov-
ing the argument similarity measure, which drasti-
cally reduces the results. This clearly highlights the
importance of incorporating the context of individ-
ual predications in this task.

Tuning weights. Subsequently, we tested various
combinations of weights on our development set in
order to estimate a good overall weighting scheme.

Precision Recall F1
LemmaId 40.3** 60.3** 48.3

Greedy 19.6** 20.6** 20.1**
WordAlign 19.7** 15.2** 17.2**

Full 58.7 46.6 52.0

Table 2: Results for GigaPairs (all numbers in %); re-
sults that significantly differ from Full are marked with
asterisks (* p<0.05; ** p<0.01).

Precision Recall F1
Full–WN 58.9 48.0 52.9
Full–VN 57.3 48.7 52.6

Full–Dist 54.3 42.8 47.9
Full–Args 40.1** 24.0** 30.0**

Full 58.7 46.6 52.0
Full+tuned 59.7** 50.7** 54.8**

Table 3: Impact of removing individual measures and us-
ing a tuned weighting scheme (all numbers in %); results
that significantly differ from Full are marked with aster-
isks (* p<0.05; ** p<0.01).

This tuning procedure is implemented as a brute-
force technique, in which we fix the weight of one
similarity measure and allow all other measures to
receive a weight assignment between 0.25 to 5.0
times the fixed weight. Finally, the resulting weights
are normalized to sum to 1.0. We found the best per-
forming weighting scheme to be 0.09, 0.48, 0.24 and
0.19 for λ1, . . . , λ4, respectively (cf. Eq. (2), Section
4). The performance gains of the resulting model
(Full+tuned) can be seen in Table 3. Comput-
ing statistical significance of the result differences
between Full+tuned and all baseline models con-
firmed significant improvements (p<0.01) for both
precision and F1-score.

5.4 Error Analysis

We perform an error analysis on the output of
Full+tuned on the development set of GigaPairs
in order to determine re-occurring problems. In to-
tal, the model missed 13 out of 35 sure alignments
(Type I errors) and predicted 23 alignments not an-
notated in the gold standard (Type II errors).

Six Type I errors (46%) occurred when the lemma
of an affected predicate occurred more than once in a
text and the model missed a correct link. Vice versa,
identical predicates that refer to different events have
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been the source of 8 Type II errors (35%). We ob-
serve that these errors are frequently related to pred-
icates, such as “say” and “appear”, that often occur
in news texts. Altogether, we find 15 Type II errors
(65%) that are due to high predicate similarity de-
spite low argument overlap (cf. Example (5)).

(5) a. The US alert (. . . ) followed intelligence reports
that . . .

b. The Foreign Ministry announcement called on
Japanese citizens to be cautious . . .

We observe that argument overlap itself can be low
even for correct alignments. This clearly indicates
that a better integration of context is needed. Ex-
ample (6.a) illustrates a case in which the agent of
a warning event is not realized. Here, contextual in-
formation is required to correctly align it to the first
warning event in (6.b). This involves inference be-
yond the local PAS.

(6) a. The US alert (. . . ) is one step down from a full
[travel]Arg1 warning [ ]Arg0.

b. Japan has issued a travel alert . . . (which)
follows similar warnings [from Ameri-
can and British authorities]Arg0. (. . . ) An offi-
cial said it was highly unusual for [Tokyo]Arg0
to issue such a warning . . .

6 Conclusion

We presented a novel task for predicate alignment
across comparable monolingual texts, which we ad-
dress using graph-based clustering with Mincuts.
The motivation for this task is to acquire empirical
data for studying discourse coherence factors related
to argument structure realization.

As a first step, we constructed a data set of com-
parable texts that provide full discourse contexts
for alternative verbalizations of the same underlying
events. The data set is derived from all newswire
pairs found in the English Gigaword Fifth Edition
and contains a total of more than 160,000 paired
documents.

A subset of these pairs forms an evaluation set,
annotated with gold alignments that relate predica-
tions, which exhibit a (possibly partial) correspond-
ing argument structure. We established that the an-
notation task, while difficult, can be performed with
good inter-annotator agreement (κ at 0.86).

Our main contribution is a novel clustering ap-
proach using Mincuts for aligning predications
across comparable texts. Our experiments estab-
lished that recursive clustering improves on greedy
selection methods by profiting from global infor-
mation encoded in the graph representation. While
the Mincut-based method is in itself unsupervised, a
small amount of development data is needed to tune
parameters for the construction of particularly suit-
able input graphs.

We tested our full model against two additional
baselines: simple heuristic alignment based on iden-
tical lemma forms and a combination of techniques
from SMT and paraphrase detection. The evalua-
tion for our novel task was complemented by a tra-
ditional word alignment task using established para-
phrase data sets. We determined clear differences in
performance for all models for the two types of task
settings. While word alignment methods from SMT
outperform the competing models in the sentence-
based alignment tasks, they perform poorly in the
discourse setting.

In future work, we will enhance our model by
incorporating more refined similarity measures in-
cluding discourse-based criteria. We will further ex-
plore tuning techniques, e.g., a more suitable pre-
selection method for edges in graph construction, in
order to increase either precision or recall. The deci-
sion of optimizing towards one measure or another
is clearly task-dependent. In our case, high preci-
sion is favorable as we plan to learn accurate dis-
course model parameters from the computed align-
ments. Even though such an optimization will result
in an overall lower recall, application of the align-
ment model on the entire GigaPairs corpus can still
provide us with a large amount of precise predicate
alignments. Using this set of alignments, we will
then proceed to exploit contextual information in or-
der to learn a semantic model for discourse coher-
ence in argument structure realization.
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Abstract

Computational approaches to metonymy res-
olution have focused almost exclusively on
the local context, especially the constraints
placed on a potentially metonymic word by
its grammatical collocates. We expand such
approaches by taking into account the larger
context. Our algorithm is tested on the data
from the metonymy resolution task (Task 8) at
SemEval 2007. The results show that incorpo-
ration of the global context can improve over
the use of the local context alone, depending
on the types of metonymies addressed. As a
second contribution, we move towards unsu-
pervised resolution of metonymies, made fea-
sible by considering ontological relations as
possible readings. We show that such an unsu-
pervised approach delivers promising results:
it beats the supervised most frequent sense
baseline and performs close to a supervised
approach using only standard lexico-syntactic
features.

1 Introduction

With the exception of explicit tasks in metonymy
and metaphor analysis, computational treatment of
language relies on the assumption that the texts to be
processed have a literal interpretation. This contrasts
with the fact that figurative expressions are com-
mon in language, as exemplified by the metonymy
in the excerpt from a Wikipedia article in Exam-
ple 1 and another in Example 2 from the SemEval
2007 metonymy resolution task (Markert and Nis-
sim, 2009).

(1) In the gold medal game, Canada defeated the
American team 2-0 to win their third consecu-
tive gold.

(2) This keyword is only required when your rela-
tional database is Oracle.

The defeating in Example 1 will not be done
by the country as such, but by a team represent-
ing the country in a sporting event. Hence, in a
metonymy a potentially metonymic expression or
word (here Canada) stands for a conceptually re-
lated entity (here, people of Canada). In the sec-
ond Example, a company name (Oracle) stands for
a product (database) developed by the company.

Metonymy resolution can be important for a
variety of tasks. Textual entailment may need
metonymy resolution (Bentivogli et al., 2007): for
example, we would like to be able to induce from
Example 1 the hypothesis

The Canadian team won . . . .
Leveling and Hartrumpf (2008) show that
metonymy recognition on location proper names
helps geographical information retrieval by ex-
cluding metonymically used place names from
consideration (such as Example 1 or the use of
Vietnam for the Vietnam war). Metonymies also fre-
quently interact with anaphora resolution (Nunberg,
1995; Markert and Hahn, 2002), as in Example 1
where the metonymic use of Canada is referred to
by a plural pronoun afterward (their).

Metonymies can be quite regular: company
names can be used for their management or their
products, country names can be used for associated
sports teams. Following from this, the currently

183



prevalent set-up for metonymy resolution — as in
the SemEval 2007 task — provides a manually com-
piled list of frequent readings or metonymic patterns
such as organization-for-product for pre-
specified semantic classes (such as organizations) as
well as annotated examples for these patterns so that
systems can then treat metonymy resolution as a (su-
pervised) word sense disambiguation task. How-
ever, this approach needs novel, manual provision
of readings as well as annotated examples for each
new semantic class.

In contrast, we will see readings as relations be-
tween the potentially metonymic word (PMW) and
other concepts in a large concept network, a priori
allowing all possible relations as readings. We base
this approach on the observation that metonymic
words stand in for concepts that they are related
with – e.g. the part for the whole, the company
for the product. These readings are obtained on
the fly and are therefore independent of manually
provided, preclassified interpretations or semantic
classes, leading eventually to the possibility of un-
supervised metonymy resolution. We achieve this
by first linking a PMW to an article in Wikipedia.
Then we extract from a large concept network de-
rived from Wikipedia the relations surrounding the
PMW.

As there will be (many) more than one such rela-
tion, these need to be ranked or scored. We achieve
this in a probabilistic framework where we condi-
tion the probability of a relation on the context of
the PMW. This ranking showcases our second major
innovation in that the flexibility of our framework al-
lows us to incorporate a wider context than in most
prior approaches. Let us consider the indications for
metonymic readings and its interpretation in Exam-
ple 1, on the one hand, and Example 2, on the other
hand. In Example 1, the grammatical relation to the
verb defeat and the verb’s selectional preferences in-
dicate the metonymy. We will call all such grammat-
ically related words and the grammatical relations
the local context of the PMW. Such types of local
context have been used by most prior approaches
(Pustejovsky, 1991; Hobbs et al., 1993; Fass, 1991;
Nastase and Strube, 2009, among others). However,
Example 2 shows that the local context can be am-
biguous or often weak, such as the verb to be. In
these examples, the wider context (database, key-

word) is a better indication for a metonymy but has
not been satisfactorily integrated in prior approaches
(see Section 2). We here call all words surround-
ing the PMW but not grammatically related to it the
global context.

In our approach we integrate both the local and
the global context in our probabilistic framework.
For the local context, we compute the selectional
preferences for the words related to the PMW from a
corpus of English Wikipedia articles and generalize
them in the Wikipedia concept network, thus (auto-
matically) providing a set of abstractions – general
concepts in the network that capture the semantic
classes required by the local context. In the next
step we compute probabilities of the global con-
text surrounding the PMWs under each (locally re-
quired) abstraction, and combine this with the se-
lectional preferences of the grammatically related
words. That we can integrate local and global con-
text in one probabilistic but also knowledge-based
framework is possible because we combine two de-
scriptions of meaning – ontological and distribu-
tional – by exploiting different sources of informa-
tion in Wikipedia (category-article hierarchy and ar-
ticle texts).

We compute the probabilities of the relations (=
readings) between the concept corresponding to the
PMW and its directly related concepts. These can
be used either (i) as additional features in a super-
vised approach or (ii) directly for unsupervised res-
olution. We do both in this paper and show that (i)
the supervised approach using both local and global
context can outperform one using just local con-
text, dependent on the semantic class studied and
(ii) that an unsupervised approach — although lower
than the supervised one — outperforms the super-
vised most frequent reading baseline and performs
close to a standard supervised model with the basic
set of lexico-syntactic features (Nissim and Markert,
2005).

2 Related Work

The word sense disambiguation setting for
metonymy resolution as developed by Nissim
and Markert (2005) and used for the SemEval 2007
task (Markert and Nissim, 2009) uses a small, pre-
specified number of frequently occurring readings.
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The approaches building on this work (Farkas et
al., 2007; Nicolae et al., 2007, among others) are
supervised, mostly using shallow surface features
as well as grammatical relations.1 Most effective
in the SemEval task as summarized in Markert
and Nissim (2009) has been the local, grammatical
context, with the two systems relying on the global
context or the local/global context in a BOW model
(Leveling, 2007; Poibeau, 2007) not outperforming
the most frequent reading baseline. We believe
that might be due to the lack of a link between the
local and global context in these approaches — in
our work, we condition the global context on the
abstractions and selectional preferences yielded by
the local context and achieve better results.

Lapata (2003), Shutova (2009) as well as Roberts
and Harabagiu (2011) deal with the issue of logical
metonymy, where the participant stands in for the
full event: e.g. Mary enjoyed the book., where book
stands in for reading the book, and this missing event
(reading) can be inferred from a corpus. Utiyama
et al. (2000), Lapata (2003) propose a probabilis-
tic model for finding the correct interpretation of
such metonymies in an unsupervised manner. How-
ever, these event type metonymies differ from the
problem dealt with in our paper and the SemEval
2007 task in that their recognition (i.e. their distinc-
tion from literal occurrences) is achieved simply by
grammatical patterns (a noun instead of a gerund or
to-infinitive following the verb) and the problem is
limited to interpretation.

Our view of relations in a concept network being
the interpretations of metonymies is strongly remi-
niscent of older work in metonymy resolution such
as Hobbs et al. (1993), Fass (1991), Markert and
Hahn (2002) or the use of a generative lexicon and
its relations in Pustejovsky (1991), which also are
unsupervised. However, these approaches lacked
scalability due to the use of small hand-modeled
knowledge bases which our use of a very large
Wikipedia-derived ontology overcomes. In addition,
most of these approaches (Fass, 1991; Hobbs et al.,
1993; Pustejovsky, 1991; Harabagiu, 1998) rely on
the view that metonymies violate selectional restric-
tions in their immediate, local context, usually those

1Brun et al. (2007) is semi-supervised but again relies on the
local grammatical context.

imposed by the verbs on their arguments. As can
be seen in the Example 2, this misses metonymies
which do not violate selectional restrictions. Nas-
tase and Strube (2009) use more flexible proba-
bilistic selectional preferences instead of strict con-
straint violations as well as WordNet as a larger tax-
onomy but are also restricted to the local context.
Markert and Hahn (2002) do propose a treatment of
metonymies that takes into account the larger dis-
course in the form of anaphoric relations between
a metonymy and the prior context. However, they
constrain discourse integration to potential PMWs
that are definite NPs and the context to few previous
noun phrases. In addition, their framework uses a
strict rule-based ranking of competing readings that
cannot be easily extended.

The work presented here also relies on a con-
cept network, built automatically from Wikipedia.
This resource provides us with links between enti-
ties in the text, and also a variety of ontological re-
lations for the PMW, that will allow us to identify a
wide variety of metonymic interpretations. Our ap-
proach combines information from the concept net-
work with automatically acquired selectional prefer-
ences as well as a possibility to combine in a prob-
abilistic framework the influence of the local and
global context on the interpretation of a potentially
metonymic word.

3 The Approach

The approach we present takes into account both
the local, grammatical, context and the larger textual
context of a potentially metonymic word. Figure 1
presents a graphical representation of our approach.

On the one hand, the word/term to be interpreted
(the potentially metonymic word/term – PMW) is
mapped onto a concept in the concept network (Sec-
tion 3.3), which gives us access to the conceptual
relations (Ri) between the PMW and other concepts
(cx ∈ CRi). On the other hand, any word w gram-
matically related to the PMW via a grammatical re-
lation r provides us with semantic restrictions on the
interpretation of the PMW, namely preferred seman-
tic classes Aj (we call them abstractions) and a se-
lectional preference score.2 These are automatically

2We restrict the grammatical context that provides selec-
tional preferences to verbs or adjectives grammatically related
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Figure 1: Metonymy resolution using selectional preferencesAj derived from local contextw and r, semantic relations
Ri to the PMW from a concept network, and the global context surrounding a term to be interpreted

acquired by using a corpus of Wikipedia articles and
a repository of encyclopedic knowledge (presented
in Section 3.1), as described in detail in 3.2. Because
the abstractions Aj and the PMW’s related concepts
(cx) come from the same structured resource, we
can compute the probabilities for each Ri given the
grammatically related word w and the grammatical
relation r. The global context can also easily be
added to the computation, as the probability of each
word in the context relative to an abstraction Aj can
be computed through the resource’s is a hierarchy
and its link to Wikipedia articles. This is detailed in
Section 3.4.

3.1 A concept network obtained from
Wikipedia

We use a Wikipedia article dump (January 2011)
which provided over 3.5 million English articles,
interconnected through a hierarchy of categories
and hyperlinks. This partly structured repository
is transformed into a large-scale multilingual con-
cept network, whose nodes are concepts correspond-
ing to articles or categories in Wikipedia (Nastase
et al., 2010). Concepts in this network are con-
nected through a variety of semantic relations (e.g.
is a, member of, nationality) derived from category
names and infoboxes. The version of WikiNet used

to the PMW.

had 3,707,718 nodes and 49,931,266 relation in-
stances of 494 types, and is freely available3.

WikiNet is used here as a concept inventory,
and its links and structure to generalize more spe-
cific concepts identified in texts to general concepts.
The fact that nodes in WikiNet correspond to arti-
cles/categories in Wikipedia is used to link article
texts in Wikipedia to general concepts, for the pur-
pose of computing various probability scores (de-
tailed in Section 3.4).

3.2 Selectional preferences and abstractions
To compute selectional preferences we use the set of
English Wikipedia articles, which describe specific
concepts. Wikipedia contributors are encouraged to
insert hyperlinks, which link important terms in an
article to the corresponding articles. A hyperlink
consists of two parts, the actual link (i.e. a URL)
and a phrase to appear in the text. Hyperlinks then
constitute a bridge from the textual level to the con-
ceptual level without the need for word sense dis-
ambiguation. We exploit these links to gather con-
cept arguments for verbs and adjectives, and gen-
eralize these using the concept network built from
Wikipedia.

The corpus of Wikipedia articles was first en-
riched with hyperlinks, making the “one sense per

3http://www.h-its.org/english/research/
nlp/download/wikinet.php
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Algorithm 1 computeSelPrefs(G,WkN)
Input: G – grammatical relation triples

WkN – WikiNet
M – maximum number of generalization steps

Output: Γ

Γ = {}
for all (w, r) such that (c, r, w) ∈ G do
S = {(c, f)|f is the frequency of (c, r, w) in G}
Γw,r = S
mdl = MDL(Γw,r,S)
for all i = 1,M do

Γ′ = abstract(S,WkN)
mdlΓ′ = MDL(Γ′,S)
if mdlΓ′ < mdl then

Γw,r = Γ′

Γ = {Γw,r} ∪ Γ
return Γ

Algorithm 2 MDL(Γ,S)
Input: Γ = {(c, f)} – a scored list of concepts
S – the set of observations (concept collocates)

Output: MDL(Γ,S)

θ̂ =< f1, ..., fn >; (ci, fi) ∈ Γ
remove {(c, f) ∈ Γ|f = 1} // parameter description
length :
L(θ̂|Γ) = |Γ|−1

2 ∗ log(|S|) // data description length :
for all (c, f) ∈ Γ do
L(S|Γ, θ̂) = L(S|Γ, θ̂) + f ∗ log( f

hyponyms(c)∗|Γ| )

return L(θ̂|Γ)− L(S|Γ, θ̂)

Algorithm 3 abstract(S,WkN)
Input: S = {(c, f)|(w,R, c) ∈ G}

WkN – WikiNet
Output: S ′

S ′ = {}
for c|(c, ) ∈ S do

while c has only one is a link do
c = c′, (c, is a, c′) ∈WkN

C = {(c′, c)|(c, is a, c′) ∈WkN}
for (c′, c) ∈ C do

if (c′, f ′) ∈ S ′ then
replace (c′, f ′) with (c′, f ′ + f

|C| ), (c, f) ∈ S
in S ′

else
S ′∪ = {(c′, f)}, (c, f) ∈ S

// Remove hyponyms.
for all {(c, c′) ∈ S ′|(c′, is a, c) ∈WkN} do

// update frequency f of c
fc = fc + fc′ , f ∈ S
delete c′

return S ′

discourse” assumption – a phrase that appears as-
sociated with a hyperlink once in the article body
will be associated with the same hyperlink through-
out the article (this applies to the article title as well,
which is not hyperlinked in the article itself). This
new version of the corpus was then split into sen-
tences, and those without hyperlinks were removed.
The remaining 18 million sentences were parsed
with a parallelized version of Ensemble4 (Surdeanu
and Manning, 2010), and we extracted G, the set of
all grammatical relations of the type (verb, depen-
dency, hyperlink) and (adjective, dependency, hy-
perlink), with the hyperlinks resolved to their cor-
responding node (concept) in the network ( |G| =
1,578,413 triples). For each verb and adjective in the
extracted collocations, and for each of their depen-
dency relations, their collocates were generalized in
the network defined by the hypernym/hyponym re-
lations in WikiNet following a method similar to the
Minimum Description Length principle (Li and Abe,
1998).

Essentially, we aimed to determine a small set of
(more general) concepts that describe the set of col-
locates for a word w and grammatical relation r.
Starting from the concept collocates gathered, we
go upwards following WikiNet’s is a links, and for
each node found that covers at least N concept col-
locates (N is a parameter, N=2 in the experiments
presented here), the MDL score of the node is com-
puted (Algorithm 2). We place a limit M on the
number of upward steps in the hierarchy (M=3 in
our experiments). The disjoint set of nodes that has
the lowest overall MDL score is chosen (Γ), and for
each node in this cut (which we call abstraction),
we compute the selectional preference score, based
on the number of concepts it dominates.

As an example, for the verb defeat, the corpus
leads to collocations such as5:
defeat

nsubj
Earle Page (10357) – 8, Manuela Maleeva
(1092361) – 7, New York Yankees
(10128601) – 5, Tommy Haas (1118005)
– 5, . . .

obj

4http://www.surdeanu.name/mihai/
ensemble/

5The format is:
Article name (Article Id) – frequency.
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New York Yankees (10128601) – 9, Oak-
land Athletics (11641124) – 6, Phoenix
Suns (11309373) – 4, Jason Suttie
(10080653) – 3, Ravana (100234) – 3, . . .

Determining abstractions and selectional prefer-
ences leads to the following information6:

defeat
nsubj

Martial artists (118977183) – 0.5, Person
(219599) – 0.3518, Interest (146738) –
0.037, . . .

obj
Video games (9570081) – 0.25, British
games (24489088) – 0.25, Person (219599)
– 0.1445, Interest (146738) – 0.1341, . . .

3.3 Linking the PMW to the concept network
In our environment, linking the PMW to the con-
cept network is equivalent to finding its correspond-
ing concept in our ontology, WikiNet. We see this
corresponding concept as the literal reading of the
PMW. Doing so is a non-trivial task (see the Cross-
Lingual Link Discovery task at NTCIR-9 (Tang et
al., 2011) and the Cross-Lingual Entity Linking task
– part of the Knowledge Base Population track – at
TAC 20117). In our particular setting, where we use
the metonymy data from SemEval 2007, the domain
of the PMW is well defined: locations and compa-
nies, respectively. Using these constraints, finding
the corresponding Wikipedia articles is much sim-
plified, by using the category hierarchy and con-
straining the concepts to fall under the Geography
and Companies categories respectively. When mul-
tiple options are present, we find instead a matching
disambiguation page. In this case we pick the article
that is listed first on this disambiguation page. On
a manually checked random sample, the accuracy of
the approach was 100% (on a sample of 100 PMWs).

3.4 Scoring conceptual relations with local and
global context

We work under the assumption that the concept cor-
responding to the PMW is related to the possible in-
terpretations through a semantic relation, in particu-
lar one that is captured in the concept network. After

6The format is:
Concept name (Concept Id) – selectional preference score.

7http://nlp.cs.qc.cuny.edu/kbp/2011/

countries : Administrator of, Architect of,
Based in, Built in, Continent, ...

companies : Association, Brand, Company, Dis-
tributed by, Executive of, ...

Table 1: Example conceptual relations

establishing the connection to the resource by link-
ing the PMW to the concept cPMW corresponding to
its literal interpretation (see Section 3.3), we extract
the relations in which it is involved (Ri, i = 1, k),
and the concepts it is connected to through these re-
lations (CRi = {cx|(cPMWRicx)}). Table 1 shows
examples of conceptual relations extracted for com-
panies and countries.

We are interested in computing the likelihood of
a conceptual relation being the correct interpreta-
tion of a PMW, given its local and global context
p(Ri|Cont, w, r).

3.4.1 The local context
The local context considered in this work are all

grammatically related verbs and adjectives w and
their associated grammatical relation r. The gram-
matical analysis (see Section 3.2) provides the set of
abstractions corresponding to the grammatically re-
lated word w and grammatical relation r: Aj , j =
1, n. Remember that these are local context con-
straints on the interpretation of the PMW.

Through the knowledge resource used we can es-
tablish and quantify connections between each cx
and Aj , and thus between eachRi and Aj :

p(Ri|Aj) =
∑

x∈CRi

p(cx|Aj)(3)

where p(cx|Aj) is the probability of concept cx un-
der abstraction Aj , which is computed based on the
semantic relations in WikiNet:

p(cx|Aj) =
∑
H

∏
hi∈H

p(hi|hi+1)

whereH is in turn each path from cx toAj following
is a links in WikiNet, starting with cx (i.e. h0 = cx)
and ending in Aj . p(hi|hi+1) is the probability of
the child node hi given its ancestor hi+1. Within this
work we assume a uniform probability distribution
in each node:
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p(hi|hi+1) =
1

|descendants(hi+1)|

Through this, it is straightforward that∑
cx
p(cx|Aj) = 1 when cx ranges over all

concepts subsumed by Aj , and is thus a valid
probability distribution.

3.4.2 The global context
The abstractions obtained before are concepts.

We extract all nodes in the network subsumed
by these concepts, and their corresponding articles
in Wikipedia (if they have one). This produces
“abstraction-specific” article sets, based on which
we compute the probability of the global context of
a PMW for each abstraction. We are interested in
the probability of an abstraction, given the context
and the word w and grammatical relation r, which
we compute as:

p(Aj |Cont, w, r) =
p(Cont|Aj , w, r) ∗ p(Aj , w, r)

p(Cont, w, r)

which, considering that p(Cont, w, r) is the same
for a given context, we approximate as

p(Aj |Cont) ≈ p(Cont|Aj) ∗ p(Aj , w, r)

p(Aj , w, r) = p(Aj |w, r)∗p(w, r), and we approxi-
mate it through the computed selectional preference
p(Aj |w, r), since p(w, r) is constant for a given ex-
ample to analyze.

p(Cont|Aj , w, r) =

n∑
j=1

p(Cont|Aj)p(Aj |w, r)

=

n∑
j=1

(

m∏
l=1

p(wl|Aj))p(Aj |w, r)

where Cont is the global context consisting of m
words wl, l = 1,m.8

8The global context therefore could be all words in a text
or all words in a sentence or any other token-based definition
in our framework. As the SemEval 2007 data gives metonymic
examples in a three-sentence context we use all the words in the
3 sentences as our global context.

p(wl|Aj) =
count(wl,Aj)

|Aj |
where Aj is the set of articles subsumed by abstrac-
tion Aj , and count(wl,Aj) is the number of times
word wl appears in the article collection Aj .

3.4.3 Putting it all together
This enables us now to compute p(Ri|Cont, w, r)

based on the formulas 3, 4:

p(Ri|Cont, w, r) =
n∑

j=1

(p(Ri|Aj)∗p(Aj |Cont, w, r))

4 Experiments

The computed probabilities for each conceptual re-
lation (= potential readings) of the PMW in the con-
cept network can be used as features in a supervised
framework or directly as an unsupervised prediction,
returning the most likely conceptual relation given
the context as the required reading.

Although the latter is our ultimate goal, to allow
comparison with related work from the metonymy
resolution task (Task 8) at SemEval 2007, we first
investigate the supervised set-up. We then simulate
the unsupervised setting in Section 4.3.

4.1 Data
We use the data from the metonymy resolution task
(Task 8) at SemEval 2007. It consists of training and
test data for country and company names which are
potentially metonymic. Table 2 shows the statistics
of the data, and the possible interpretations for the
PMWs. The training-test division was achieved ran-
domly so that the test data can have metonymic read-
ings for which no training data exists, showing again
the limitations of a supervised approach of prespec-
ified readings.

Grammatical features The features used by Nis-
sim and Markert (2005), and commonly used for
the supervised classification of metonymy readings
(Markert and Nissim, 2009):

• grammatical role of PMW (subj, obj, ...);

• lemmatized head/modifier of PMW (announce,
say, ...);
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reading train test
locations 925 908
literal 737 721
mixed 15 20
othermet 9 11
obj-for-name 0 4
obj-for-representation 0 0
place-for-people 161 141
place-for-event 3 10
place-for-product 0 1

organizations 1090 842
literal 690 520
mixed 59 60
othermet 14 8
obj-for-name 8 6
obj-for-representation 1 0
org-for-members 220 161
org-for-event 2 1
org-for-product 74 67
org-for-facility 15 16
org-for-index 7 3

Table 2: Statistics for the Task 8 data

• determiner of PMW (def, indef, bare, demonst,
other, ...);

• grammatical number of PMW (sg, pl);

• number of grammatical roles in which the
PMW appears in its current context;

• number of words in PMW.

All these features can be extracted from the gram-
matically annotated and POS tagged data provided
by the organizers.

The annotations provided are dependency rela-
tions, many of which contain a preposition as an ar-
gument (e.g. (to, pp, UK) from the example ... the
visit to the UK of ...). Such relations are not infor-
mative, but together with the head that dominates the
prepositional complement (e.g. visit to) they may be.
Because of this, we process the provided annotations
and add wherever possible to the simple prepositions
the head of their subsuming constituent. This would
change the above mentioned dependency to (visit,
prep-to, UK).

Semantic relations as features To evaluate the
proposed approach we use the PMW’s conceptual
relations as features. The feature values are the
p(Ri|Cont, w, r) scores.

For the “countries” portion of the data this adds
109 semantic relation features, and for companies
29 features. Table 1 showed examples of these new
features.

4.2 Supervised learning

We use the SMO classifier in the WEKA machine
learning toolkit (Witten and Frank, 2000) with its
standard settings, training on the SemEval 2007
(Task 8) training set.

Table 3 shows the results of various configura-
tions on the test data, in comparison with a most
frequent reading baseline (assigning literal to all
PMWs) as well as a system M&N that shows the re-
sults computed using only the features proposed by
Nissim and Markert (2005). In addition, we com-
pare to the best results9 at SemEval 2007 (SEmax)
and Nastase and Strube (2009) (N09). Nastase and
Strube (2009) added WordNet supersenses as fea-
tures, and their values are selectional preferences
computed with reference to WordNet. These are
similar to our abstractions, which in our approach
serve to link the local and the global context to the
ontological relations, but do not appear as features.

Our system SP shows the results obtained us-
ing the M&N features plus the conceptual relation
features conditioned on both local and global con-
text whereas SPlocal and SPglobal use conceptual
relations conditioned on local (p(Aj |Cont, w, r) ≈
p(Aj |w, r)) or global context (p(Aj |Cont, w, r) ≈
p(Aj |Cont) =

∑n
j=1(

∏m
l=1 p(wl|Aj))) only.

While the differences in overall accuracies are
small, there are significant differences in classifying
individual classes, as shown in Tables 4 – 510, where
the distrib. column shows the class distribution in
the test data. It is interesting to note that, in our set-
ting, the global context is more useful than the local

9We show the best result for each category, not necessarily
from the overall best performing system. This holds for Tables
4 and 5 as well.

10The detailed results for previous approaches are reproduced
from (Nastase and Strube, 2009). We include only the classes
that have a non-zero F-score for at least one of the presented
approaches.
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task ↓ method→ baseline SEmax N09 M&N SP SPlocal SPglobal SPunsup

LOCATION-COARSE 79.4 85.2 86.1 83.4 85.8 83.0 85.0 81.6
LOCATION-MEDIUM 79.4 84.8 85.9 82.3 85.7 82.7 84.6 81.5
LOCATION-FINE 79.4 84.4 85.0 81.3 84.7 82.1 83.8 81.0
ORGANIZATION-COARSE 61.8 76.7 74.9 74.0 77.0 76.4 76.8 67.8
ORGANIZATION-MEDIUM 61.8 73.3 72.4 69.4 74.6 74.0 74.4 66.3
ORGANIZATION-FINE 61.8 72.8 71.0 68.5 72.8 71.9 72.7 65.3

Table 3: Accuracy scores

task ↓ method→ distrib. SEmax N09 SP
LOCATION-COARSE

literal 79.4 91.2 91.6 91.4
non-literal 20.6 57.6 59.1 58.5
LOCATION-MEDIUM

literal 79.4 91.2 91.6 91.4
metonymic 18.4 58.0 61.5 61.6
mixed 2.2 8.3 16 9.1
LOCATION-FINE

literal 79.4 91.2 91.6 91.4
place-for-people 15.5 58.9 61.7 61.1
place-for-event 1.1 16.7 0 0
obj-for-name 0.4 66.7 0 0
mixed 2.2 8.3 16 9.1

Table 4: Fine-grained results for each classification task
for countries (F-scores)

one for resolving metonymies. Combining local and
global evidence improves over both, indicating that
the information they provide is not redundant.

For companies the difference is small in terms of
accuracy, but in classification of individual classes
the difference in performance is higher, but because
of the small data size not statistically significant.

Countries in WikiNet have a high number of sur-
rounding relations, because they are used as cat-
egorization criteria for professionals, for example,
which generates fine-grained relations such as Ad-
ministrator of, Ambassador of, Chemist of .... Such
a fine grained distinction between different profes-
sions for people in a country is not necessary, or in-
deed, desirable, for the metonymy resolution task.
The results show that despite this shortcoming, the
results are on par with the state-of-the-art, but in fu-
ture work we plan to explore the task of relation gen-
eralization and its impact on the current task.

task ↓ method→ distrib. SEmax N09 SP
ORGANIZATION-COARSE

literal 61.8 82.5 81.4 82.7
non-literal 38.2 65.2 61.6 65.5
ORGANIZATION-MEDIUM

literal 61.8 82.5 81.4 82.7
metonymic 31.0 60.4 58.7 63.1
mixed 7.2 30.8 26.8 27.4
ORGANIZATION-FINE

literal 61.8 82.6 81.4 82.7
org-for-members 19.1 63.0 59.7 66.5
org-for-product 8.0 50.0 44.4 35.0
org-for-facility 2.0 22.2 36.3 45.5
org-for-name 0.7 80.0 58.8 44.4
mixed 7.2 34.3 27.1 27.4

Table 5: Fine-grained results for each classification task
for companies (F-scores)

4.3 Simulating unsupervised metonymy
resolution

In an unsupervised metonymy resolution approach,
we would assign as interpretation the conceptual re-
lation whose probability given the PMW, global and
local contexts is highest. To simulate then the un-
supervised metonymy resolution task, we make the
relation features (used in the supervised approach)
binary, where for each instance the relation that has
highest probability has the value 1, the others 0.

Using only the relation features simulates an un-
supervised approach – this set-up learns a map-
ping between the relations used as features and
the metonymy classes in the data used. Column
SPUnsup in Table 3 shows the results obtained in
this configuration. As expected the results are lower,
but still close to the supervised method when using
only grammatical features (M&N) for the location
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setting. The results also significantly beat the base-
line (apart from the Location-Fine setting). One fea-
ture that contributes greatly to the results, especially
for the company semantic class, is the grammatical
role of the PMW, but we could not incorporate this
in the unsupervised setting.

The results in the simulated unsupervised set-
ting indicate that relations are a viable substitute
for manually provided classes in an unsupervised
framework, while leaving space for improvement.

5 Conclusion

We have explored the usage of local and global con-
text for the task of metonymy resolution in a prob-
abilistic framework. The global context has been
rarely used for the task of determining the intended
reading of a potentially metonymic word (PMW)
in context. We rely on automatically computed se-
lectional preferences, extracted from a corpus of
Wikipedia articles, and generalized based on a con-
cept network also extracted from Wikipedia. De-
spite relying on automatically derived resources, the
presented approach produces results on-a-par with
current state-of-the-art systems. The method de-
scribed here is also a step towards the unsupervised
resolution of metonymic words in context, by tak-
ing into account knowledge about the concept cor-
responding to the literal interpretation of the PMW,
and its relations to other concepts. This frame-
work would also allow for exploring the metonymy
resolution phenomena in various languages (since
Wikipedia and WikiNet are multilingual), and inves-
tigate whether the same relations apply or different
languages have different metonymic patterns.
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Abstract

Learning inference relations between verbs is
at the heart of many semantic applications.
However, most prior work on learning such
rules focused on a rather narrow set of in-
formation sources: mainly distributional sim-
ilarity, and to a lesser extent manually con-
structed verb co-occurrence patterns. In this
paper, we claim that it is imperative to uti-
lize information from various textual scopes:
verb co-occurrence within a sentence, verb co-
occurrence within a document, as well as over-
all corpus statistics. To this end, we propose
a much richer novel set of linguistically mo-
tivated cues for detecting entailment between
verbs and combine them as features in a su-
pervised classification framework. We empir-
ically demonstrate that our model significantly
outperforms previous methods and that infor-
mation from each textual scope contributes to
the verb entailment learning task.

1 Introduction

Inference rules are an important building block of
many semantic applications, such as Question An-
swering (Ravichandran and Hovy, 2002) and In-
formation Extraction (Shinyama and Sekine, 2006).
For example, given the sentence “Churros are
coated with sugar”, one can use the rule ‘coat →
cover’ to answer the question “What are Churros
covered with?”. Inference rules specify a directional
inference relation between two text fragments, and
we follow the Textual Entailment modeling of infer-
ence (Dagan et al., 2006), which refers to such rules
as entailment rules. In this work we focus on one

of the most important rule types, namely, lexical en-
tailment rules between verbs (verb entailment), e.g.,
‘whisper → talk’, ‘win → play’ and ‘buy → own’.
The significance of such rules has led to active re-
search in automatic learning of entailment rules be-
tween verbs or verb-like structures (Zanzotto et al.,
2006; Abe et al., 2008; Schoenmackers et al., 2010).

Most prior efforts to learn verb entailment rules
from large corpora employed distributional similar-
ity methods, assuming that verbs are semantically
similar if they occur in similar contexts (Lin, 1998;
Berant et al., 2012). This led to the automatic ac-
quisition of large scale knowledge bases, but with
limited precision. Fewer works, such as VerbOcean
(Chklovski and Pantel, 2004), focused on identi-
fying verb entailment through verb instantiation of
manually constructed patterns. For example, the
sentence “he scared and even startled me” implies
that ‘startle→ scare’. This led to more precise rule
extraction, but with poor coverage since contrary
to nouns, in which patterns are common (Hearst,
1992), verbs do not co-occur often within rigid pat-
terns. However, verbs do tend to co-occur in the
same document, and also in different clauses of the
same sentence.

In this paper, we claim that on top of standard
pattern-based and distributional similarity methods,
corpus-based learning of verb entailment can greatly
benefit from exploiting additional linguistically-
motivated cues that are specific to verbs. For in-
stance, when verbs co-occur in different clauses of
the same sentence, the syntactic relation between the
clauses can be viewed as a proxy for the semantic re-
lation between the verbs. Moreover, we claim that to

194



improve performance it is crucial to combine infor-
mation sources from different textual scopes: verb
co-occurrence within a sentence and within a docu-
ment, distributional similarity over the entire corpus,
etc.

Our contribution in this paper is two-fold. First,
we suggest a novel set of entailment indicators that
help to detect the likelihood of verb entailment.
Our novel indicators are specific to verbs and are
linguistically-motivated. Second, we encode our
novel indicators as features within a supervised clas-
sification framework and integrate them with other
standard features adapted from prior work. This re-
sults in a supervised corpus-based learning method
that combines verb entailment information at the
sentence, document and corpus levels.

We test our model on a manually labeled data
set, and show that it outperforms the best perform-
ing previous work by 24%. In addition, we ex-
amine the effectiveness of indicators that operate at
the sentence-level, document-level and corpus-level.
This analysis reveals that using a rich and diverse
set of indicators that capture sentence-level interac-
tions between verbs substantially improves verb en-
tailment detection.

2 Background

The main approach for learning entailment rules be-
tween verbs and verb-like structures has employed
the distributional hypothesis, which assumes that
words with similar meanings appear in similar con-
texts. For example, we expect the words ‘buy’ and
‘purchase’ to occur with similar subjects and objects
in a large corpus. This observation has led to ample
work on developing both symmetric and directional
similarity measures that attempt to capture semantic
relations between lexical items by comparing their
neighborhood context (Lin, 1998; Weeds and Weir,
2003; Geffet and Dagan, 2005; Szpektor and Dagan,
2008; Kotlerman et al., 2010).

A far less explored direction for learning verb en-
tailment involves exploiting verb co-occurrence in
a sentence or a document. One prominent work
is Chklovsky and Pantel’s VerbOcean (2004). In
VerbOcean, the authors manually constructed 33
patterns and divided them into five pattern groups,
where each group signals one of the following five

semantic relations: similarity, strength, antonymy,
enablement and happens-before. For example, the
pattern ‘Xed and later Yed’ signals the happens-
before relation between the verbs ‘X’ and ‘Y’. Start-
ing with candidate verb pairs based on a distribu-
tional similarity measure, the patterns are used to
choose a semantic relation per verb pair based on
the different patterns this pair instantiates. This
method is more precise than distributional similarity
approaches, but it is highly susceptible to sparseness
issues, since verbs do not typically co-occur within
rigid patterns. Utilizing verb co-occurrence at the
document level, Chambers and Jurafsky (2008) es-
timate whether a pair of verbs is narratively related
by counting the number of times the verbs share an
argument in the same document. In a similar man-
ner, Pekar (2008) detects entailment rules between
templates from shared arguments within discourse-
related clauses in the same document.

Recently, supervised classification has become
standard in performing various semantic tasks.
Mirkin et al. (2006) introduced a system for learn-
ing entailment rules between nouns (e.g., ‘novel→
book’) that combines distributional similarity and
Hearst patterns as features in a supervised clas-
sifier. Pennacchiotti and Pantel (2009) augment
Mirkin et al’s features with web-based features for
the task of entity extraction. Hagiwara et al. (2009)
perform synonym identification based on both dis-
tributional and contextual features. Tremper (2010)
extract “loose” sentence-level features in order to
identify the presupposition relation (e.g., , the verb
‘win’ presupposes the verb ‘play’). Last, Be-
rant et al. (2012) utilized various distributional
similarity features to identify entailment between
lexical-syntactic predicates.

In this paper, we follow the supervised approach
for semantic relation detection in order to identify
verb entailment. While we utilize and adapt useful
features from prior work, we introduce a diverse set
of novel features for the task, effectively combining
verb co-occurrence information at the sentence, doc-
ument, and corpus levels.

3 Linguistically-Motivated Indicators

As mentioned in Section 1, verbs behave quite dif-
ferently from nouns in corpora. In this section, we
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introduce linguistically motivated indicators that are
specific to verbs and may signal the semantic re-
lation between verb pairs. Then, in Section 4 we
describe how these indicators are exactly encoded
as features within a supervised classification frame-
work.

Verb co-occurrence When (non-auxiliary) verbs
co-occur in a sentence, they are often the main verbs
of different clauses. We thus aim to use information
about the relation between clauses to learn about
the relation between the clauses’ main verbs. Dis-
course markers (Hobbs, 1979; Schiffrin, 1988) are
lexical terms such as ‘because’ and ‘however’ that
indicate a semantic relation between discourse frag-
ments (i.e., propositions or speech acts). We suggest
that these markers can indicate semantic relations
between the main verbs of the connected clauses.
For example, in the sentence “He always snores
while he sleeps”, the marker ‘while’ indicates a tem-
poral relation between the clauses, indicating that
‘snoring’ occurs while ‘sleeping’ (and so ‘snore→
sleep’).

Often the relation between clauses is not ex-
pressed explicitly with an overt discourse marker,
but is still implied by the syntactic structure of
the sentence. For example, in dependency parsing
the relation can be captured by labeled dependency
edges expressing that one clause is an adverbial ad-
junct of the other, or that two clauses are coordi-
nated. This can indicate the existence (or lack) of
entailment between verbs. For instance, in the sen-
tence “When I walked into the room, he was working
out”, the verb ‘walk’ is an adverbial adjunct of the
verb ‘work out’. Such co-occurrence structure does
not indicate a deep semantic relation, such as entail-
ment, between the two verbs.

Verb classes Verb classes are sets of semantically-
related verbs sharing some linguistic properties
(Levin, 1993). One of the most general verb classes
are stative vs. event verbs (Jackendoff, 1983). Sta-
tive verb, such as ‘love’ and ‘think’, usually describe
a state that lasts some time. On the other hand, event
verbs, such as ‘run’ and ‘kiss’, describe an action.
We hypothesize that verb classes are relevant for de-
termining entailment, for example, that stative verbs
are not likely to entail event verbs.

Verb generality Verb-particle constructions are
multi-word expressions consisting of a head verb
and a particle, e.g., switch off (Baldwin and Villav-
icencio, 2002). We conjecture that the more gen-
eral a verb is, the more likely it is to appear with
many different particles. Detecting verb generality
can help us tackle an infamous property of distribu-
tional similarity methods, namely, the difficulty in
detecting the direction of entailment (Berant et al.,
2012). For example, the verb ’cover’ appears with
many different particles such as ’up’ and ’for’, while
the verb ’coat’ does not. Thus, assuming we have
evidence for an entailment relation between the two
verbs, this indicator can help us discern the direction
of entailment and determine that ‘coat→ cover’.

Typed Distributional Similarity As discussed in
section 2, distributional similarity is the most com-
mon source of information for learning semantic re-
lations between verbs. Yet, we suggest that on top
of standard distributional similarity measures, which
take several verbal arguments into account (such as
subject, object, etc.) simultaneously, we should also
focus on each type of argument independently. In
particular, we apply this approach to compute simi-
larity between verbs based on the set of adverbs that
modify them. Our hypothesis is that adverbs may
contain relevant information for capturing the direc-
tion of entailment. If a verb appears with a small set
of adverbs, it is more likely to be a specific verb that
already conveys a specific action or state, making an
additional adverb redundant. For example, the verb
‘whisper’ conveys a specific manner of talking and
will probably not appear with the adverb ‘loudly’,
while the verb ‘talk’ is more likely to appear with
such an adverb. Thus, measuring similarity based
solely on adverb modifiers could reveal this phe-
nomenon.

4 Supervised Entailment Detection

In the previous section, we discussed linguistic ob-
servations regarding novel indicators that may help
in detecting entailment relations between verbs. We
next describe how to incorporate these indicators as
features within a supervised framework for learning
lexical entailment rules between verbs. We follow
prior work on supervised lexical semantics (Mirkin
et al., 2006; Hagiwara et al., 2009; Tremper, 2010)
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and address the rule learning task as a classification
task. Specifically, given an ordered verb pair (v1, v2)
as input, we learn a classifier that detects whether the
entailment relation ‘v1→ v2’ holds for this pair.

We next detail how our novel indicators, as well
as other diverse sources of information found useful
in prior work, are encoded as features. Then, we
describe the learning model and our feature analysis
procedure.

4.1 Entailment features

Most of our features are based on information ex-
tracted from the target verb pair co-occurring within
varying textual scopes (sentence, document, cor-
pus). Hence, we group the features according to
their related scope. Naturally, when the scope is
small, i.e., at a sentence level, the semantic rela-
tion between the verbs is easier to discern but the
information may be sparse. Conversely, when co-
occurrence is loose the relation is harder to discern
but coverage is increased.

4.1.1 Sentence-level co-occurrence
We next detail features that address co-occurrence

of the target verb pair within a sentence. These in-
clude our novel linguistically-motivated indicators,
as well as features that were adapted from prior
work.

Discourse markers As discussed in Section 3,
discourse markers may signal relations between the
main verbs of adjacent clauses. The literature is
abundant with taxonomies that classify markers to
various discourse relations (Mann and Thompson,
1988; Hovy and Maier, 1993; Knott and Sanders,
1998). Inspired by Marcu and Echihabi (2002), we
employ markers that are mapped to four discourse
relations ’Contrast’, ’Cause’, ’Condition’ and ’Tem-
poral’, as specified in Table 1. This definition
can be viewed as a relaxed version of VerbOcean’s
(Chklovski and Pantel, 2004) patterns, although the
underlying intuition is different (see Section 3).

For a target verb pair (v1, v2) and each discourse
relation r, we count the number of times that v1 is
the main verb in the main clause, v2 is the main verb
in the subordinate clause, and the clauses are con-
nected via a marker mapped to r. For example, given
the sentence “You must enroll in the competition be-

fore you can participate in it”, the verb pair (‘en-
roll’,‘participate’) appears in the ’Temporal’ rela-
tion, indicated by the marker ‘before’, where ‘enroll’
is in the main clause. Each count is then normalized
by the total number of times (v1, v2) appear with any
marker. The same procedure is done when v1 is in
the subordinate clause and v2 in the main clause. We
term the features by the relevant discourse relation,
e.g., ‘v1-contrast-v2’ refers to v1 being in the main
clause and connected to the subordinate clause via a
contrast marker.

Dependency relations between clauses As noted
in Section 3, the syntactic structure of verb co-
occurrence can indicate the existence or lack of en-
tailment. In dependency parsing this may be ex-
pressed via the label of the dependency relation con-
necting the main and subordinate clauses. In our ex-
periments we used the ukWaC corpus1 (Baroni et al.,
2009) which was parsed by the MALT parser (Nivre
et al., 2006). Hence, we identified three MALT de-
pendency relations that connect a main clause with
its subordinate clause. The first relation is the object
complement relation ‘obj’. In this case the subor-
dinate clause is an object complement of the main
clause. For example, in “it surprised me that the
lizard could talk” the verb pair (‘surprise’,‘talk’) is
connected by the ‘obj’ relation. The second rela-
tion is the adverbial adjunct relation ‘adv’, in which
the subordinate clause is adverbial and describes the
time, place, manner, etc. of the main clause, e.g., “he
gave his consent without thinking about the reper-
cussions”. The last relation is the coordination rela-
tion ‘coord’, e.g., “every night my dog Lucky sleeps
on the bed and my cat Flippers naps in the bathtub”.

Similar to discourse markers, we compute for
each verb pair (v1,v2) and each dependency label d
the proportion of times that v1 is the main verb of the
main clause, v2 is the main verb of the subordinate
clause, and the clauses are connected by dependency
relation d, out of all the times they are connected by
any dependency relation. We term the features by
the dependency label, e.g., ‘v1-adv-v2’ refers to v1
being in the main clause and connected to the subor-
dinate clause via an adverbial adjunct.

1http://wacky.sslmit.unibo.it/doku.php?
id=corpora
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Discourse Rel. Discourse Markers
Contrast although , despite , but , whereas , notwithstanding , though
Cause because , therefore , thus

Condition if , unless
Temporal whenever , after , before , until , when , finally , during , afterwards , meanwhile

Table 1: Discourse relations and their mapped markers.

Pattern-based We follow Chklovski and Pan-
tel (2004) and extract occurrences of VerbOcean pat-
terns that are instantiated by the target verb pair. As
mentioned in Section 2, VerbOcean patterns were
originally grouped into five semantic classes. Based
on a preliminary study we conducted, we decided
to utilize only four strength-class patterns as posi-
tive indicators for entailment, e.g., “he scared and
even startled me”, and three antonym-class patterns
as negative indicators for entailment, e.g., “you can
either open or close the door”. We note that these
patterns are also commonly used by RTE systems2.

Since the corpus pattern counts were very sparse,
we defined for a target verb pair (v1, v2) two bi-
nary features: the first denotes whether the verb
pair instantiates at least one positive pattern, and
the second denotes whether the verb pair instanti-
ates at least one negative pattern. For example, given
the aforementioned sentences, the value of the pos-
itive feature for the verb pair (‘startle’,‘scare’) is
‘1’. Patterns are directional, and so the value of
(‘scare’,‘startle’) is ‘0’.

Polarity We compute the proportion of times that
the two verbs appear in different polarity. For exam-
ple, in “he didn’t say why he left”, the verb ’say’ ap-
pears in negative polarity and the verb ’leave’ in pos-
itive polarity. Such change in polarity is usually an
indicator of non-entailment between the two verbs.

Tense ordering The temporal relation between
verbs may provide information about their seman-
tic relation. For each verb pair co-occurrence, we
extract the verbs’ tenses and order them as follows:
past < present < future. We then add the fea-
tures ‘tense-v1<tense-v2’, ‘tense-v1=tense-v2’, and
‘tense-v1>tense-v2’, corresponding to the propor-

2http://aclweb.org/aclwiki/index.php?
title=RTE_Knowledge_Resources#Ablation_
Tests

tion of times the tense of v1 is smaller, equal to,
or bigger than the tense of v2. This indicates the
prevalent temporal relation between the verbs in the
corpus and may assist in detecting the direction of
entailment. e.g., if tense-v1>tense-v2, the verb pair
is less likely to entail.

Co-reference Following Tremper (2010), in every
co-occurrence of (v1,v2) we extract for each verb
the set of arguments at either the subject or object
positions, denoted A1 and A2 (for v1 and v2, re-
spectively). We then compute the proportion of co-
occurrences in which v1 and v2 share an argument,
i.e., A1 ∩ A2 6= φ, out of all the co-occurrences in
which bothA1 andA2 are non-empty. The intuition,
which is similar to distributional similarity, is that
semantically related verbs tend to share arguments.

Syntactic and lexical distance Following Trem-
per (2010) again, we compute the average distance
d in dependency edges between the co-occurring
verbs. We compute three features corresponding to
three bins indicating if d < 3, 3 ≤ d ≤ 7, or
d > 7. Similar features are computed for the dis-
tance in words (bins are 0 < d < 5, 5 ≤ d ≤ 10,
d > 10). This feature provides insight into the syn-
tactic relatedness of the verbs.

Sentence-level pmi Pointwise mutual information
(pmi) between v1 and v2 is computed, where the co-
occurrence scope is a sentence. Higher pmi should
hint at semantically related verbs.

4.1.2 Document-level co-occurrence
This group of features addresses co-occurrence of

a target verb pair within the same document. These
features are less sparse, but tend to capture coarser
semantic relations between the target verbs.

Narrative score Chambers and Jurafsky (2008)
suggested a method for learning sequences of ac-
tions or events (expressed by verbs) in which a sin-
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gle entity is involved. They proposed a pmi-like nar-
rative score (see Eq. (1) in their paper) that esti-
mates whether a pair consisting of a verb and one
of its dependency relations (v1, r1) is narratively-
related to another such pair (v2, r2). Their estima-
tion is based on quantifying the likelihood that two
verbs will share an argument that instantiates both
the dependency position (v1, r1) and (v2, r2) within
documents in which the two verbs co-occur. For ex-
ample, given the document “Lindsay was prosecuted
for DUI. Lindsay was convicted of DUI.” the pairs
(‘prosecute’,‘subj’) and (‘convict’,‘subj’) share the
argument ‘Lindsay’ and are part of a narrative chain.
Such narrative relations may provide cues to the se-
mantic relatedness of the verb pair.

We compute for every target verb pair nine fea-
tures using their narrative score. In four features,
r1 = r2 and the common dependency is either a sub-
ject, an object, a preposition complement (e.g., “we
meet at the station.), or an adverb (termed chamb-
subj, chamb-obj, and so on). In the next three fea-
tures, r1 6= r2 and r1, r2 denote either a subject,
object, or preposition complement3 (termed chamb-
subj-obj and so on). Last, we add as features the
average of the four features where r1 = r2 (termed
chamb-same), and the average of the three features
where r1 6= r2 (termed chamb-diff ).

Document-level pmi Similar to sentence-level
pmi, we compute the pmi between v1 and v2, but
this time the co-occurrence scope is a document.

4.1.3 Corpus-level statistics
The final group of features ignores sentence or

document boundaries and is based on overall corpus
statistics.

Distributional similarity Following our hypoth-
esis regarding typed distributional similarity (Sec-
tion 3), we first compute for each verb and each
argument (subject, object, preposition complement
and adverb) a separate vector that counts the num-
ber of times each word in the corpus instantiates
the argument of that verb. In addition, we also
compute a vector that is the concatenation of the
previous separate vectors, which captures the stan-
dard distributional similarity statistics. We then

3adverbs never instantiate the subject, object or preposition
complement positions.

apply three state-of-the-art distributional similarity
measures, Lin (Lin, 1998), Weeds precision (Weeds
and Weir, 2003) and BInc (Szpektor and Dagan,
2008), to compute for every verb pair a similarity
score between each of the five count vectors4. We
term each feature by the method and argument, e.g.,
weeds-prep and lin-all represent the Weeds measure
over prepositional complements and the Lin mea-
sure over all arguments.

Verb classes Following our discussion in Sec-
tion 3, we first measure for each target verb v a “sta-
tive” feature f by computing the proportion of times
it appears in progressive tense, since stative verbs
usually do not appear in the progressive tense (e.g.,
‘knowing’). Then, given a verb pair (v1,v2) and their
corresponding stative features f1 and f2, we add two
features f1 · f2 and f1

f2
, which capture the interaction

between the verb classes of the two verbs.

Verb generality For each verb, we add as a feature
the number of different particles it appears with in
the corpus, following the hypothesis that this is a
cue to its generality. Then, given a verb pair (v1,v2)
and their corresponding features f1 and f2, we add
the feature f1

f2
. We expect that when f1

f2
is high, v1 is

more general than v2, which is a negative entailment
indicator.

4.2 Learning model and feature analysis

The total number of features in our model as de-
scribed above is 63. We combine the features in
a supervised classification framework with a linear
SVM. Since our model contains many novel fea-
tures, it is important to investigate their utility for
detecting verb entailment. To that end, we employ
feature ranking methods as suggested by Guyon et
al. (2003). In feature ranking methods, features are
ranked by some score computed for each feature in-
dependently. In this paper we use Pearson correla-
tion between the feature values and the correspond-
ing labels as the ranking criterion.

4We employ the common practice of using the pmi between
a verb and an argument rather than the argument count as the
argument’s weight.
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5 Evaluation and Analysis

5.1 Experimental Setting

To evaluate our proposed supervised model, we con-
structed a dataset containing labeled verb pairs. We
started by randomly sampling 50 verbs out of the
common verbs in the RCV1 corpus5, which we de-
note here as seed verbs. Next, we extracted the 20
most similar verbs to each seed verb according to
the Lin similarity measure (Lin, 1998), which was
computed on the RCV1 corpus. Then, for each seed
verb vs and one of its extracted similar verbs vi

s we
generated the two directed pairs (vs, v

i
s) and (vi

s, vs),
which represent the candidate rules ‘vs → vi

s’ and
‘vi

s → vs’ respectively. To reduce noise, we filtered
out verb pairs where one of the verbs is an auxiliary
or a light verb such as ’do’, ’get’ and ’have’. This
step resulted in 812 verb pairs as our dataset6, which
were manually annotated by the authors as repre-
senting a valid entailment rule or not. To annotate
these pairs, we generally followed the rule-based ap-
proach for entailment rule annotation, where a rule
‘v1 → v2’ is considered as correct if the annotator
could think of reasonable contexts under which the
rule holds (Dekang and Pantel, 2001; Szpektor et
al., 2004). In total 225 verb pairs were labeled as
entailing (the rule ‘v1 → v2’ was judged as correct)
and 587 verb pairs were labeled as non-entailing (the
rule ‘v1 → v2’ was judged as incorrect). The Inter-
Annotator Agreement (IAA) for a random sample of
100 pairs was moderate (0.47), as expected from the
rule-based approach (Szpektor et al., 2007).

For each verb pair, all 63 features within our
model (Section 4) were computed using the ukWaC
corpus (Baroni et al., 2009), which contains 2 billion
words. For classification, we utilized SVM-perf’s
(Joachims, 2005) linear SVM implementation with
default parameters, and evaluated our model by per-
forming 10-fold cross validation (CV) over the la-
beled dataset.

5http://trec.nist.gov/data/reuters/
reuters.html

6The data set is available at http://www.cs.biu.ac.
il/˜nlp/downloads/verb-pair-annotation.
html

5.2 Feature selection and analysis

As discussed in Section 4.2, we followed the feature
ranking method proposed by Guyon et al. (2003) to
investigate the utility of our proposed features. Ta-
ble 2 depicts the 10 most positively and negatively
correlated features with entailment according to the
Pearson correlation measure

From Table 2, it is clear that distributional simi-
larity features are amongst the most positively cor-
related with entailment, which is in line with prior
work (Geffet and Dagan, 2005; Kotlerman et al.,
2010). Looking more closely, our suggestion for
typed distributional similarity proved to be useful,
and indeed most of the highly correlated distribu-
tional similarity features are typed measures. Stand-
ing out are the adverb-typed measures, with two fea-
tures in the top 10, including the highest, ‘Weeds-
adverb’, and ‘BInc-adverb’. We also note that the
highly correlated distributional similarity measures
are directional, Weeds and BInc.

The table also indicates that document-level co-
occurrence contributes positively to entailment de-
tection. This includes both the Chambers narrative
measure, with the typed feature Chambers-obj, and
document-level PMI, which captures a more loose
co-occurrence relationship between verbs. Again,
we point at the significant correlation of our novel
typed measures with verb entailment, in this case the
typed narrative measure.

Last, our feature analysis shows that many of our
novel co-occurrence features at the sentence level
contribute useful negative information. For exam-
ple, verbs connected via an adverbial adjunct (‘v2-
adverb-v1’) or an object complement (‘v1-obj-v2’)
are negatively correlated with entailment. In addi-
tion, the novel ‘verb generality’ feature as well as
the tense difference feature (‘tense-v1 > tense-v2’)
are also strong negative indicators. On the other
hand, ‘v2-coord-v1’ is positively correlated with en-
tailment. This shows that encoding various aspects
of verb co-occurrence at the sentence level can lead
to better prediction of verb entailment. Finally, we
note that PMI at the sentence level is highly corre-
lated with entailment even more than at the docu-
ment level, since the local textual scope is more in-
dicative, though sparser.

To conclude, our feature analysis shows that fea-
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Rank Top Positive Top Negative
1 Weeds-adverb tense-v1 > tense-v2
2 Sentence-level PMI v2-adverb-v1 co-occurrence
3 Weeds-subj v2-obj-v1 co-occurrence
4 Weeds-prep v1-obj-v2 co-occurrence
5 Weeds-all v1-adverb-v2 co-occurrence
6 Chambers-obj verb generality f1

f2

7 v2-coord-v1 co-occurrence v1-contrast-v2
8 BInc-adverb tense-v1 < tense-v2
9 Document-level PMI lexical-distance 0-5
10 Chambers-same Lin-subj

Table 2: Top 10 positive and negative features according to the Pearson correlation score.

tures at all levels: sentence, document and corpus,
contain useful information for entailment detection,
both positive and negative, and should be combined
together. Moreover, many of our novel features are
among the highly correlated features, showing that
devising a rich set of verb-specific and linguistically-
motivated features provides better discriminative ev-
idence for entailment detection.

5.3 Results and Analysis

We compared our method to the following baselines
which were mostly taken from or inspired by prior
work:

Random: A simple decision rule: for any
pair (v1, v2), randomly classify as “yes” with a
probability equal to the number of entailing verb
pairs out of all verb pairs in the labeled dataset (i.e.,
225
812 = 0.277).

VO-KB: A simple unsupervised rule: for any
pair (v1, v2), classify as “yes” if the pair appears in
the strength relation (corresponding to entailment)
in the VerbOcean knowledge-base, which was com-
puted over Web counts.

VO-ukWaC: A simple unsupervised rule: for any
pair (v1, v2), classify as “yes” if the value of the
positive VerbOcean feature is ‘1’ (Section 4.1, com-
puted over ukWaC).

TDS: Include only the 15 distributional similarity
features in our supervised model. This baseline ex-
tends Berant et al. (2012), who trained an entailment

Method P% R% AUC F1

All 40.2 71.0 0.65 0.51
TDS+VO 36.8 53.2 0.58 0.41
TDS 34.6 44.8 0.56 0.37
Random 27.9 28.8 0.51 0.28
VO-KB 33.1 14.8 0.53 0.2
VO-ukWaC 23.3 4.7 0.29 0.08

Table 3: Average precision, recall, AUC and F1 for our
method and the baselines.

classifier over several distributional similarity fea-
tures, and provides an evaluation of the discrimina-
tive power of distributional similarity alone, without
co-occurrence features.

TDS+VO: Include only the 15 typed distribu-
tional similarity features and the two VerbOcean
features in our supervised model. This baseline
is inspired by Mirkin et al. (2006), who combined
distributional similarity features and Hearst pat-
terns (Hearst, 1992) for learning entailment between
nouns.

All: Our full-blown model, including all features
described in Section 4.1.

For all tested methods, we performed 10-fold
cross validation and averaged Precision, Recall,
Area under the ROC curve (AUC) and F1 over the 10
folds. Table 3 presents the results of our full-blown
model as well as the baselines.

First, we note that, as expected, the VerbOcean
baselines VO-KB and VO-ukWaC provide low recall,
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Method P% R% AUC F1

All 40.2 71.0 0.65 0.51
Sent+Corpus-level 39.7 70.4 0.64 0.50
Sent+Doc-level 39.0 70.0 0.63 0.50
Doc+Corpus-level 37.7 64.0 0.62 0.47
Sent-level 35.8 63.8 0.59 0.46
Doc-level 30.0 45.4 0.52 0.35
Corpus-level 35.4 58.1 0.58 0.44

Table 4: Average precision, recall, AUC and F1 for each
subset of the feature groups.

due to the sparseness of rigid pattern instantiation
for verbs both in the ukWaC corpus and on the web.
Yet, VerbOcean positive and negative patterns do
add some discriminative power over only distribu-
tional similarity measures, as seen by the improve-
ment of TDS+VO over TDS in all criteria. But, it is
the combination of all types of information sources
that yields the best performance. Our complete
model, employing the full set of features, outper-
forms all other models in terms of both precision and
recall. Its improvement in terms of F1 over the sec-
ond best model (TDS+VO), which includes all distri-
butional similarity features as well as pattern-based
features, is by 24%. This result shows the benefits
of integrating linguistically motivated co-occurrence
features with traditional pattern-based and distribu-
tional similarity information.

To further investigate the contribution of fea-
tures at various co-occurrence levels, we trained
and tested our model with all possible combina-
tions of feature groups corresponding to a certain
co-occurrence scope (sentence, document and cor-
pus). Table 4 presents the results of these tests.

The most notable result of this analysis is that
sentence-level features play an important role within
our model. Indeed, removing either the document-
level features (Sent+Corpus-level) or the corpus-
level features (Sent+Doc-level) results in only a
slight decline in performance. Yet, removing the
sentence-level features (Doc+Corpus-level), ends in
a more substantial decline of 8.5% in F1. In addi-
tion, sentence-level features alone (Sent-level) pro-
vide the best discriminative power for verb entail-
ment, compared to document and corpus levels,
which include distributional similarity features. Yet,

we note that sentence-level features alone do not
capture all the information within our model, and
they should be combined with one of the other fea-
ture groups to reach performance close to the com-
plete model. This shows again the importance of
combining co-occurrence indicators at different lev-
els.

As an additional insight from Table 4, we point
out that document-level features are not good en-
tailment indicators by themselves (Doc-level in Ta-
ble 4), and they perform worse than the distribu-
tional similarity baseline (TDS at Table 3). Still, they
do complement each of the other feature groups. In
particular, since the Sent+Doc-level model performs
almost as good as the full model, this subset may
be a good substitute to the full model, since its fea-
tures are easier to extract from large corpora, as they
may be extracted in an on-line fashion, processing
one document at a time (contrary to corpus-level fea-
tures).

As a final analysis, we randomly sampled cor-
rect entailment rules learned by our model but
missed by the typed distributional similarity classi-
fier (TDS). Our overall impression is that employ-
ing co-occurrence information helps to better cap-
ture entailment relations other than synonymy and
troponymy. For example, our model learns that ac-
quire→ own, corresponding to the cause-effect en-
tailment relation, and that patent → invent, corre-
sponding to the presupposition entailment relation.

6 Conclusions and Future Work

We presented a supervised classification model for
detecting lexical entailment between verbs. At the
heart of our model stand novel linguistically moti-
vated indicators that capture positive and negative
entailment information. These indicators encom-
pass co-occurrence relationships between verbs at
the sentence, document and corpus level, as well
as more fine-grained typed distributional similarity
measures. Our model incorporates these novel indi-
cators together with useful features from prior work,
combining co-occurrence and distributional similar-
ity information about verb pairs.

Our experiment over a manually labeled dataset
showed that our model significantly outperforms
several state-of-the-art models both in terms of Pre-
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cision and Recall. Further feature analysis indicated
that our novel indicators contribute greatly to the
performance of the model, and that co-occurrence
at multiple levels, combined with distributional sim-
ilarity features, is necessary to achieve the model’s
best performance.

In future work we’d like to investigate which in-
dicators may contribute to learning different fine-
grained types of entailment, such as presupposition
and cause-effect, and attempt to perform a more
fine-grained classification to subtypes of entailment.
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Abstract

Recently there has been substantial interest in
using spectral methods to learn generative se-
quence models like HMMs. Spectral meth-
ods are attractive as they provide globally con-
sistent estimates of the model parameters and
are very fast and scalable, unlike EM meth-
ods, which can get stuck in local minima. In
this paper, we present a novel extension of
this class of spectral methods to learn depen-
dency tree structures. We propose a simple
yet powerful latent variable generative model
for dependency parsing, and a spectral learn-
ing method to efficiently estimate it. As a pi-
lot experimental evaluation, we use the spec-
tral tree probabilities estimated by our model
to re-rank the outputs of a near state-of-the-
art parser. Our approach gives us a moderate
reduction in error of up to 4.6% over the base-
line re-ranker.

1 Introduction

Markov models have been for two decades a
workhorse of statistical pattern recognition with ap-
plications ranging from speech to vision to lan-
guage. Adding latent variables to these models gives
us additional modeling power and have shown suc-
cess in applications like POS tagging (Merialdo,
1994), speech recognition (Rabiner, 1989) and ob-
ject recognition (Quattoni et al., 2004). However,
this comes at the cost that the resulting parameter
estimation problem becomes non-convex and tech-
niques like EM (Dempster et al., 1977) which are
used to estimate the parameters can only lead to lo-
cally optimal solutions.

Recent work by Hsu et al. (2008) has shown that
globally consistent estimates of the parameters of
HMMs can be found by using spectral methods, par-
ticularly by singular value decomposition (SVD) of
appropriately defined linear systems. They avoid the
NP Hard problem of the global optimization prob-
lem of the HMM parameters (Terwijn, 2002), by
putting restrictions on the smallest singular value
of the HMM parameters. The main intuition be-
hind the model is that, although the observed data
(i.e. words) seem to live in a very high dimensional
space, but in reality they live in a very low dimen-
sional space (size k ∼ 30 − 50) and an appropriate
eigen decomposition of the observed data will re-
veal the underlying low dimensional dynamics and
thereby revealing the parameters of the model. Be-
sides ducking the NP hard problem, the spectral
methods are very fast and scalable to train compared
to EM methods.

In this paper we generalize the approach of Hsu
et al. (2008) to learn dependency tree structures with
latent variables.1 Petrov et al. (2006) and Musillo
and Merlo (2008) have shown that learning PCFGs
and dependency grammars respectively with latent
variables can produce parsers with very good gen-
eralization performance. However, both these ap-
proaches rely on EM for parameter estimation and
can benefit from using spectral methods.

We propose a simple yet powerful latent vari-
able generative model for use with dependency pars-

1Actually, instead of using the model by Hsu et al. (2008)
we work with a related model proposed by Foster et al. (2012)
which addresses some of the shortcomings of the earlier model
which we detail below.
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ing which has one hidden node for each word in
the sentence, like the one shown in Figure 1 and
work out the details for the parameter estimation
of the corresponding spectral learning model. At
a very high level, the parameter estimation of our
model involves collecting unigram, bigram and tri-
gram counts sensitive to the underlying dependency
structure of the given sentence.

Recently, Luque et al. (2012) have also proposed
a spectral method for dependency parsing, however
they deal with horizontal markovization and use hid-
den states to model sequential dependencies within a
word’s sequence of children. In contrast with that, in
this paper, we propose a spectral learning algorithm
where latent states are not restricted to HMM-like
distributions of modifier sequences for a particular
head, but instead allow information to be propagated
through the entire tree.

More recently, Cohen et al. (2012) have proposed
a spectral method for learning PCFGs.

Its worth noting that recent work by Parikh et al.
(2011) also extends Hsu et al. (2008) to latent vari-
able dependency trees like us but under the restric-
tive conditions that model parameters are trained for
a specified, albeit arbitrary, tree topology.2 In other
words, all training sentences and test sentences must
have identical tree topologies. By doing this they al-
low for node-specific model parameters, but must re-
train the model entirely when a different tree topol-
ogy is encountered. Our model on the other hand al-
lows the flexibility and efficiency of processing sen-
tences with a variety of tree topologies from a single
training run.

Most of the current state-of-the-art dependency
parsers are discriminative parsers (Koo et al., 2008;
McDonald, 2006) due to the flexibility of represen-
tations which can be used as features leading to bet-
ter accuracies and the ease of reproducibility of re-
sults. However, unlike discriminative models, gen-
erative models can exploit unlabeled data. Also, as
is common in statistical parsing, re-ranking the out-
puts of a parser leads to significant reductions in er-
ror (Collins and Koo, 2005).

Since our spectral learning algorithm uses a gen-

2This can be useful in modeling phylogeny trees for in-
stance, but precludes most NLP applications, since there is a
need to model the full set of different tree topologies possible
in parsing.

h0

h1 h2

was

Kilroy here

Figure 1: Sample dependency parsing tree for “Kilroy
was here”

erative model of words given a tree structure, it can
score a tree structure i.e. its probability of genera-
tion. Thus, it can be used to re-rank the n-best out-
puts of a given parser.

The remainder of the paper is organized as fol-
lows. In the next section we introduce the notation
and give a brief overview of the spectral algorithm
for learning HMMs (Hsu et al., 2008; Foster et al.,
2012). In Section 3 we describe our proposed model
for dependency parsing in detail and work out the
theory behind it. Section 4 provides experimental
evaluation of our model on Penn Treebank data. We
conclude with a brief summary and future avenues
for research.

2 Spectral Algorithm For Learning HMMs

In this section we describe the spectral algorithm for
learning HMMs.3

2.1 Notation
The HMM that we consider in this section is a se-
quence of hidden states h ∈ {1, . . . , k} that follow
the Markov property:

p(ht|h1, . . . , ht−1) = p(ht|ht−1)

and a sequence of observations x ∈ {1, . . . , n} such
that

p(xt|x1, . . . , xt−1, h1, . . . , ht) = p(xt|ht)

3As mentioned earlier, we use the model by Foster et al.
(2012) which is conceptually similar to the one by Hsu et al.
(2008), but does further dimensionality reduction and thus has
lower sample complexity. Also, critically, the fully reduced di-
mension model that we use generalizes much more cleanly to
trees.
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The parameters of this HMM are:

• A vector π of length k where πi = p(h1 = i):
The probability of the start state in the sequence
being i.

• A matrix T of size k × k where
Ti,j = p(ht+1 = i|ht = j): The probability of
transitioning to state i, given that the previous
state was j.

• A matrix O of size n× k where
Oi,j = p(x = i|h = j): The probability of
state h emitting observation x.

Define δj to be the vector of length n with a 1 in
the jth entry and 0 everywhere else, and diag(v) to
be the matrix with the entries of v on the diagonal
and 0 everywhere else.

The joint distribution of a sequence of observa-
tions x1, . . . , xm and a sequence of hidden states
h1, . . . , hm is:

p(x1, . . . ,xm, h1, . . . , hm)

= πh1

m−1∏
j=2

Thj ,hj−1

m∏
j=1

Oxj ,hj

Now, we can write the marginal probability of a
sequence of observations as

p(x1, . . . xm)

=
∑

h1,...,hm

p(x1, . . . , xm, h1, . . . , hm)

which can be expressed in matrix form4 as:

p(x1, . . . , xm) = 1>AxmAxm−1 · · ·Am1π

where Axm ≡ Tdiag(O>δxm), and 1 is a k-
dimensional vector with every entry equal to 1.
A is called an “observation operator”, and is ef-

fectively a third order tensor, and Axm which is a
matrix, gives the distribution vector over states at
timem+1 as a function of the state distribution vec-
tor at the current time m and the current observation
δxm . SinceAxm depends on the hidden state, it is not
observable, and hence cannot be directly estimated.

4This is essentially the matrix form of the standard dynamic
program (forward algorithm) used to estimate HMMs.

However, Hsu et al. (2008) and Foster et al. (2012)
showed that under certain conditions there exists a
fully observable representation of the observable op-
erator model.

2.2 Fully observable representation

Before presenting the model, we need to address a
few more points. First, let U be a “representation
matrix” (eigenfeature dictionary) which maps each
observation to a reduced dimension space (n → k)
that satisfies the conditions:

• U>O is invertible

• |Uij | < 1.

Hsu et al. (2008); Foster et al. (2012) discuss U
in more detail, but U can, for example, be obtained
by the SVD of the bigram probability matrix (where
Pij = p(xt+1 = i|xt = j)) or by doing CCA on
neighboring n-grams (Dhillon et al., 2011).

Letting yi = U>δxi , we have

p(x1, . . . , xm)

= c>∞C(ym)C(ym−1) . . . C(y1)c1 (1)

where

c1 = µ

c∞ = µ>Σ−1

C(y) = K(y)Σ−1

and µ, Σ and K, described in more detail below, are
quantities estimated by frequencies of unigrams, bi-
grams, and trigrams in the observed (training) data.

Under the assumption that data is generated by
an HMM, the distribution p̂ obtained by substituting
the estimated values ĉ1, ĉ∞, and Ĉ(y) into equation
(1) converges to p sufficiently fast as the amount of
training data increases, giving us consistent param-
eter estimates. For details of the convergence proof,
please see Hsu et al. (2008) and Foster et al. (2012).

3 Spectral Algorithm For Learning
Dependency Trees

In this section, we first describe a simple latent vari-
able generative model for dependency parsing. We
then define some extra notation and finally present
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the details of the corresponding spectral learning al-
gorithm for dependency parsing, and prove that our
learning algorithm provides a consistent estimation
of the marginal probabilities.

It is worth mentioning that an alternate way of ap-
proaching the spectral estimation of latent states for
dependency parsing is by converting the dependency
trees into linear sequences from root-to-leaf and do-
ing a spectral estimation of latent states using Hsu
et al. (2008). However, this approach would not
give us the correct probability distribution over trees
as the probability calculations for different paths
through the trees are not independent. Thus, al-
though one could calculate the probability of a path
from the root to a leaf, one cannot generalize from
this probability to say anything about the neighbor-
ing nodes or words. Put another way, when a par-
ent has more than the one descendant, one has to be
careful to take into account that the hidden variables
at each child node are all conditioned on the hidden
variable of the parent.

3.1 A latent variable generative model for
dependency parsing

In the standard setting, we are given training exam-
ples where each training example consists of a se-
quence of words x1, . . . , xm together with a depen-
dency structure over those words, and we want to
estimate the probability of the observed structure.
This marginal probability estimates can then be used
to build an actual generative dependency parser or,
since the marginal probability is conditioned on the
tree structure, it can be used re-rank the outputs of a
parser.

As in the conventional HMM described in the pre-
vious section, we can define a simple latent variable
first order dependency parsing model by introduc-
ing a hidden variable hi for each word xi. The
joint probability of a sequence of observed nodes
x1, . . . , xm together with hidden nodes h1, . . . , hm

can be written as

p(x1, . . . ,xm, h1, . . . , hm)

= πh1

m∏
j=2

td(j)(hj |hpa(j))

m∏
j=1

o(xj |hj)

(2)

h1

h2 h3
y1

y2 y3

Figure 2: Dependency parsing tree with observed vari-
ables y1, y2, and y3.

where pa(j) is the parent of node j and d(j) ∈
{L,R} indicates whether hj is a left or a right node
of hpa(j). For simplicity, the number of hidden and
observed nodes in our tree are the same, however
they are not required to be so.

As is the case with the conventional HMM, the
parameters used to calculate this joint probability
are unobservable, but it turns out that under suitable
conditions a fully observable model is also possible
for the dependency tree case with the parameteriza-
tion as described below.

3.2 Model parameters

We will define both the theoretical representations
of our observable parameters, and the sampling ver-
sions of these parameters. Note that in all the cases,
the estimated versions are unbiased estimates of the
theoretical quantities.

Define Td and T u
d where d ∈ {L,R} to be the

hidden state transition matrices from parent to left
or right child, and from left or right child to parent
(hence the u for ‘up’), respectively. In other words
(referring to Figure 2)

TR = t(h3|h1)

TL = t(h2|h1)

T u
R = t(h1|h3)

T u
L = t(h1|h2)

Let Ux(i) be the ith entry of vector U>δx andG =

U>O. Further, recall the notation diag(v), which is
a matrix with elements of v on its diagonal, then:

• Define the k-dimensional vector µ (unigram
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counts):

µ = Gπ

[µ̂]i =

n∑
u=1

c̄(u)Uu(i)

where c̄(u) = c(u)
N1

, c(u) is the count of ob-
servation u in the training sample, and N1 =∑

u∈n c(u).

• Define the k×k matrices ΣL and ΣR (left child-
parent and right child-parent bigram counts):

[Σ̂L]i,j =

n∑
u=1

n∑
v=1

c̄L(u, v)Uu(j)Uv(i)

ΣL = GT u
Ldiag(π)G>

[Σ̂R]i,j =
n∑

u=1

n∑
v=1

c̄R(u, v)Uu(j)Uv(i)

ΣR = GT u
Rdiag(π)G>

where c̄L(u, v) = cL(u,v)
N2L

, cL(u, v) is the count
of bigram (u, v) where u is the left child and
v is the parent in the training sample, and
N2L =

∑
(u,v)∈n×n cL(u, v). Define c̄R(u, v)

similarly.

• Define k × k × k tensor K (left child-parent-
right child trigram counts):

K̂i,j,l =
n∑

u=1

n∑
v=1

n∑
w=1

c̄(u, v, w)Uw(i)Uu(j)Uv(l)

K(y) = GTLdiag(G>y)T u
Rdiag(π)G>

where c̄(w, u, v) = c(w,u,v)
N3

, c(w, u, v) is
the count of bigram (w, u, v) where w is
the left child, u is the parent and v is the
right child in the training sample, and N3 =∑

(w,u,v)∈n×n×n c(w, u, v).

• Define k×k matrices ΩL and ΩR (skip-bigram
counts (left child-right child) and (right child-

left child)) 5:

[Ω̂L]i,j =
n∑

u=1

n∑
v=1

n∑
w=1

c̄(u, v, w)Uw(i)Uu(j)

ΩL = GTLT
u
Rdiag(π)G>

[Ω̂R]i,j =

n∑
u=1

n∑
v=1

n∑
w=1

c̄(u, v, w)Uw(j)Uu(i)

ΩR = GTRT
u
Ldiag(π)G>

3.3 Parameter estimation
Using the above definitions, we can estimate the pa-
rameters of the model, namely µ,ΣL,ΣR,ΩL,ΩR

andK, from the training data and define observables
useful for the dependency model as6

c1 = µ

cT∞ = µT Σ−1
R

EL = ΩLΣ−1
R

ER = ΩRΣ−1
L

D(y) = E−1
L K(y)Σ−1

R

As we will see, these quantities allow us to recur-
sively compute the marginal probability of the de-
pendency tree, p̂(x1, . . . , xm), in a bottom up man-
ner by using belief propagation.

To see this, let hch(i) be the set of hidden chil-
dren of hidden node i (in Figure 2 for instance,
hch(1) = {2, 3}) and let och(i) be the set of ob-
served children of hidden node i (in the same figure
och(i) = {1}). Then compute the marginal proba-
bility p(x1, . . . , xm) from Equation 2 as

ri(h) =
∏

j∈hch(i)

αj(h)
∏

j∈och(i)

o(xj |h) (3)

where αi(h) is defined by summing over all
the hidden random variables i.e., αi(h) =∑

h′ p(h
′|h)ri(h

′).
This can be written in a compact matrix form as

−→ri> = 1>
∏

j∈hch(i)

diag(T>dj

−→rj )

·
∏

j∈och(i)

diag(O>δxj ) (4)

5Note than ΩR = ΩT
L , which is not immediately obvious

from the matrix representations.
6The details of the derivation follow directly from the matrix

versions of the variables.
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where −→ri is a vector of size k (the dimensionality of
the hidden space) of values ri(h). Note that since in
Equation 2 we condition on whether xj is the left or
right child of its parent, we have separate transition
matrices for left and right transitions from a given
hidden node dj ∈ {L,R}.

The recursive computation can be written in terms
of observables as:

−→ri> = c>∞
∏

j∈hch(i)

D(E>dj

−→rj )

·
∏

j∈och(i)

D((U>U)−1U>δxj )

The final calculation for the marginal probability
of a given sequence is

p̂(x1, . . . , xm) = −→r1>c1 (5)

The spectral estimation procedure is described be-
low in Algorithm 1.

Algorithm 1 Spectral dependency parsing (Comput-
ing marginal probability of a tree.)

1: Input: Training examples- x(i) for i ∈ {1, . . . ,M}
along with dependency structures where each se-
quence x(i) = x

(i)
1 , . . . , x

(i)
mi .

2: Compute the spectral parameters µ̂, Σ̂R, Σ̂L, Ω̂R,
Ω̂L, and K̂
#Now, for a given sentence, we can recursively com-
pute the following:

3: for x(i)
j for j ∈ {mi, . . . , 1} do

4: Compute:

−→ri> = c>∞
∏

j∈hch(i)

D(E>dj

−→rj )

·
∏

j∈och(i)

D((U>U)−1U>δxj
)

5: end for
6: Finally compute

p̂(x1, . . . , xmi
) = −→r1>c1

#The marginal probability of an entire tree.

3.4 Sample complexity
Our main theoretical result states that the above
scheme for spectral estimation of marginal proba-
bilities provides a guaranteed consistent estimation
scheme for the marginal probabilities:

Theorem 3.1. Let the sequence {x1, . . . , xm} be
generated by an k ≥ 2 state HMM. Suppose we are
given a U which has the property that U>O is in-
vertible, and |Uij | ≤ 1. Suppose we use equation
(5) to estimate the probability based on N indepen-
dent triples. Then

N ≥ Cm
k2

ε2
log

(
k

δ

)
(6)

where Cm is specified in the appendix, implies that

1− ε ≤
∣∣∣∣ p̂(x1, . . . , xm)

p(x1, . . . , xm)

∣∣∣∣ ≤ 1 + ε

holds with probability at least 1− δ.

Proof. A sketch of the proof, in the case without di-
rectional transition parameters, can be found in the
appendix. The proof with directional transition pa-
rameters is almost identical.

4 Experimental Evaluation

Since our algorithm can score any given tree struc-
ture by computing its marginal probability, a natu-
ral way to benchmark our parser is to generate n-
best dependency trees using some standard parser
and then use our algorithm to re-rank the candidate
dependency trees, e.g. using the log spectral prob-
ability as described in Algorithm 1 as a feature in a
discriminative re-ranker.

4.1 Experimental Setup
Our base parser was the discriminatively trained
MSTParser (McDonald, 2006), which implements
both first and second order parsers and is trained
using MIRA (Crammer et al., 2006) and used the
standard baseline features as described in McDon-
ald (2006).

We tested our methods on the English Penn Tree-
bank (Marcus et al., 1993). We use the standard
splits of Penn Treebank; i.e., we used sections 2-21
for training, section 22 for development and section
23 for testing. We used the PennConverter7 tool to
convert Penn Treebank from constituent to depen-
dency format. Following (McDonald, 2006; Koo

7http://nlp.cs.lth.se/software/treebank_
converter/
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et al., 2008), we used the POS tagger by Ratnaparkhi
(1996) trained on the full training data to provide
POS tags for development and test sets and used 10-
way jackknifing to generate tags for the training set.
As is common practice we stripped our sentences of
all the punctuation. We evaluated our approach on
sentences of all lengths.

4.2 Details of spectral learning

For the spectral learning phase, we need to just col-
lect word counts from the training data as described
above, so there are no tunable parameters as such.
However, we need to have access to an attribute dic-
tionary U which contains a k dimensional represen-
tation for each word in the corpus. A possible way
of generating U as suggested by Hsu et al. (2008) is
by performing SVD on bigrams P21 and using the
left eigenvectors as U . We instead used the eigen-
feature dictionary proposed by Dhillon et al. (2011)
(LR-MVL) which is obtained by performing CCA
on neighboring words and has provably better sam-
ple complexity for rare words compared to the SVD
alternative.

We induced the LR-MVL embeddings for words
using the Reuters RCV1 corpus which contains
about 63 million tokens in 3.3 million sentences and
used their context oblivious embeddings as our esti-
mate of U . We experimented with different choices
of k (the size of the low dimensional projection)
on the development set and found k = 10 to work
reasonably well and fast. Using k = 10 we were
able to estimate our spectral learning parameters
µ,ΣL,R,ΩL,R,K from the entire training data in un-
der 2 minutes on a 64 bit Intel 2.4 Ghz processor.

4.3 Re-ranking the outputs of MST parser

We could not find any previous work which de-
scribes features for discriminative re-ranking for de-
pendency parsing, which is due to the fact that un-
like constituency parsing, the base parsers for depen-
dency parsing are discriminative (e.g. MST parser)
which obviates the need for re-ranking as one could
add a variety of features to the baseline parser itself.
However, parse re-ranking is a good testbed for our
spectral dependency parser which can score a given
tree. So, we came up with a baseline set of features
to use in an averaged perceptron re-ranker (Collins,
2002). Our baseline features comprised of two main

Method Accuracy Complete
I Order
MST Parser (No RR) 90.8 37.2

RR w. Base. Features 91.3 37.5
RR w. Base. Features +log p̂ 91.7 37.8

II Order
MST Parser (No RR) 91.8 40.6

RR w. Base. Features 92.4 41.0
RR w. Base. Features +log p̂ 92.7 41.3

Table 1: (Unlabeled) Dependency Parse re-ranking re-
sults for English test set (Section 23). Note: 1). RR =
Re-ranking 2). Accuracy is the number of words which
correctly identified their parent and Complete is the num-
ber of sentences for which the entire dependency tree was
correct. 3). Base. Features are the two re-ranking fea-
tures described in Section 4.3. 4). log p̂ is the spectral log
probability feature.

features which capture information that varies across
the different n-best parses and moreover were not
used as features by the baseline MST parser, 〈POS-
left-modifier ∧ POS-head ∧ POS-right-modifier〉
and 〈POS-left/right-modifier ∧ POS-head ∧ POS-
grandparent〉8. In addition to that we used the log of
spectral probability (p̂(x1, . . . , xm) - as calculated
using Algorithm 1) as a feature.

We used the MST parser trained on entire training
data to generate a list of n-best parses for the devel-
opment and test sets. The n-best parses for the train-
ing set were generated by 3-fold cross validation,
where we train on 2 folds to get the parses for the
third fold. In all our experiments we used n = 50.
The results are shown in Table 1. As can be seen,
the best results give up to 4.6% reduction in error
over the re-ranker which uses just the baseline set of
features.

5 Discussion and Future Work

Spectral learning of structured latent variable mod-
els in general is a promising direction as has been
shown by the recent interest in this area. It al-
lows us to circumvent the ubiquitous problem of get-
ting stuck in local minima when estimating the la-
tent variable models via EM. In this paper we ex-

8One might be able to come up with better features for de-
pendency parse re-ranking. Our goal in this paper was just to
get a reasonable baseline.
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tended the spectral learning ideas to learn a simple
yet powerful dependency parser. As future work, we
are working on building an end-to-end parser which
would involve coming up with a spectral version of
the inside-outside algorithm for our setting. We are
also working on extending it to learn more power-
ful grammars e.g. split head-automata grammars
(SHAG) (Eisner and Satta, 1999).

6 Conclusion

In this paper we proposed a novel spectral method
for dependency parsing. Unlike EM trained gen-
erative latent variable models, our method does not
get stuck in local optima, it gives consistent param-
eter estimates, and it is extremely fast to train. We
worked out the theory of a simple yet powerful gen-
erative model and showed how it can be learned us-
ing a spectral method. As a pilot experimental evalu-
ation we showed the efficacy of our approach by us-
ing the spectral probabilities output by our model for
re-ranking the outputs of MST parser. Our method
reduced the error of the baseline re-ranker by up to
a moderate 4.6%.

7 Appendix

This appendix offers a sketch of the proof of The-
orem 1. The proof uses the following definitions,
which are slightly modified from those of Foster
et al. (2012).

Definition 1. Define Λ as the smallest element of µ,
Σ−1, Ω−1, and K(). In other words,

Λ ≡min{min
i
|µi|,min

i,j
|Σ−1

ij |,min
i,j
|Ω−1

ij |,

min
i,j,k
|Kijk|,min

i,j
|Σij |,min

i,j
|Ωij |, }

where Kijk = K(δj)ik are the elements of the ten-
sor K().

Definition 2. Define σk as the smallest singular
value of Σ and Ω.

The proof relies on the fact that a row vector mul-
tiplied by a series of matrices, and finally multiplied
by a column vector amounts to a sum over all possi-
ble products of individual entries in the vectors and
matrices. With this in mind, if we bound the largest
relative error of any particular entry in the matrix by,
say, ω, and there are, say, s parameters (vectors and

matrices) being multiplied together, then by simple
algebra the total relative error of the sum over the
products is bounded by ωs.

The proof then follows from two basic steps.
First, one must bound the maximal relative error, ω
for any particular entry in the parameters, which can
be done using central limit-type theorems and the
quantity Λ described above. Then, to calculate the
exponent s one simply counts the number of param-
eters multiplied together when calculating the prob-
ability of a particular sequence of observations.

Since each hidden node is associated with exactly
one observed node, it follows that s = 12m + 2L,
where L is the number of levels (for instance in our
example “Kilroy was here” there are two levels). s
can be easily computed for arbitrary tree topologies.

It follows from Foster et al. (2012) that we achieve
a sample complexity

N ≥ 128k2s2

ε2 Λ2σ4
k

log

(
2k

δ

)

·

≈1︷ ︸︸ ︷
ε2/s2

( s
√

1 + ε− 1)2
(7)

leading to the theorem stated above.
Lastly, note that in reality one does not see Λ and

σk but instead estimates of these quantities; Foster
et al. (2012) shows how to incorporate the accuracy
of the estimates into the sample complexity.

Acknowledgement: We would like to thank
Emily Pitler for valuable feedback on the paper.
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Abstract

Topic models traditionally rely on the bag-
of-words assumption. In data mining appli-
cations, this often results in end-users being
presented with inscrutable lists of topical un-
igrams, single words inferred as representa-
tive of their topics. In this article, we present
a hierarchical generative probabilistic model
of topical phrases. The model simultane-
ously infers the location, length, and topic of
phrases within a corpus and relaxes the bag-
of-words assumption within phrases by using
a hierarchy of Pitman-Yor processes. We use
Markov chain Monte Carlo techniques for ap-
proximate inference in the model and perform
slice sampling to learn its hyperparameters.
We show via an experiment on human subjects
that our model finds substantially better, more
interpretable topical phrases than do compet-
ing models.

1 Introduction

Probabilistic topic models have been the focus of
intense study in recent years. The archetypal topic
model, Latent Dirichlet Allocation (LDA), posits
that words within a document are conditionally
independent given their topic (Blei et al., 2003).
This “bag-of-words” assumption is a common sim-
plification in which word order is ignored, but
one which introduces undesirable properties into
a model meant to serve as an unsupervised ex-
ploratory tool for data analysis.

When an end-user runs a topic model, the output
he or she is often interested in is a list of topical

unigrams, words probable in a topic (hence, repre-
sentative of it). In many situations, such as during
the use of the topic model for the analysis of a new
or ill-understood corpus, these lists can be insuffi-
ciently informative. For instance, if a layperson ran
LDA on the NIPS corpus, he would likely get a topic
whose most prominent words include policy, value,
and reward. Seeing these words isolated from their
context in a list would not be particularly insightful
to the layperson unfamiliar with computer science
research. An alternative to LDA which produced
richer output like policy iteration algorithm, value
function, and model-based reinforcement learning
alongside the unigrams would be much more en-
lightening. Most situations where a topic model is
actually useful for data exploration require a model
whose output is rich enough to dispel the need for
the user’s extensive prior knowledge of the data.

Furthermore, lists of topical unigrams are often
made only marginally interpretable by virtue of their
non-compositionality, the principle that a colloca-
tion’s meaning typically is not derivable from its
constituent words (Schone and Jurafsky, 2001). For
example, the meaning of compact disc as a mu-
sic medium comes from neither the unigram com-
pact nor the unigram disc, but emerges from the bi-
gram as a whole. Moreover, non-compositionality
is topic dependent; compact disc should be inter-
preted as a music medium in a music topic, and as
a small region bounded by a circle in a mathemati-
cal topic. LDA is prone to decompose collocations
into different topics and violate the principle of non-
compositionality, and its unigram lists are harder to
interpret as a result.
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We present an extension of LDA called Phrase-
Discovering LDA (PDLDA) that satisfies two
desiderata: providing rich, interpretable output and
honoring the non-compositionality of collocations.
PDLDA is built in the tradition of the “Topical N-
Gram” (TNG) model of Wang et al. (2007). TNG is
a topic model which satisfies the first desideratum by
producing lists of representative, topically cohesive
n-grams of the form shown in Figure 1. We diverge
from TNG by our addressing the second desidera-
tum, and we do so through a more straightforward
and intuitive definition of what constitutes a phrase
and its topic. In the furtherance of our goals, we
employ a hierarchical method of modeling phrases
that uses dependent Pitman-Yor processes to ame-
liorate overfitting. Pitman-Yor processes have been
successfully used in the past in n-gram (Teh, 2006)
and LDA-based models (Wallach, 2006) for creat-
ing Bayesian language models which exploit word
order, and they prove equally useful in this scenario
of exploiting both word order and topics.

This article is organized as follows: after describ-
ing TNG, we discuss PDLDA and how PDLDA ad-
dresses the limitations of TNG. We then provide de-
tails of our inference procedures and evaluate our
model against competing models on a subset of the
TREC AP corpus (Harman, 1992) in an experi-
ment on human subjects which assesses the inter-
pretability of topical n-gram lists. The experiment
is premised on the notion that topic models should
be evaluated through a real-world task instead of
through information-theoretic measures which often
negatively correlate with topic quality (Chang et al.,
2009).

2 Background: LDA and TNG

LDA represents documents as probabilistic mixtures
of latent topics. Each wordw in a corpus w is drawn
from a distribution φ indexed by a topic z, where z is
drawn from a distribution θ indexed by its document
d. The formal definition of LDA is

θd ∼ Dirichlet (α) zi | d, θ ∼ Discrete (θd)
φz ∼ Dirichlet (β) wi | zi, φ ∼ Discrete (φzi)

where θd is document d’s topic distribution, φz is
topic z’s distribution over words, zi is the topic as-
signment of the ith token, and wi is the ith word.
α and β are hyperparameters to the Dirichlet priors.

Here and throughout the article, we use a bold font
for vector notation: for example, z is the vector of all
topic assignments, and its ith entry, zi, corresponds
to the topic assignment of the ith token in the corpus.

TNG extends LDA to model n-grams of arbitrary
length in order to create the kind of rich output for
text mining discussed in the introduction. It does
this by representing a joint distribution P (z, c|w)
where each ci is a Boolean variable that signals the
start of a new n-gram beginning at the ith token. c
partitions a corpus into consecutive non-overlapping
n-grams of various lengths. Formally, TNG differs
from LDA by the distributional assumptions

wi | wi−1, zi, ci = 1, φ ∼ Discrete(φzi)

wi | wi−1, zi, ci = 0, σ ∼ Discrete(σziwi−1)

ci | wi−1, zi−1, π ∼ Bernoulli(πzi−1wi−1)

where the new distributions πzw and σzw are en-
dowed with conjugate prior distributions: πzw ∼
Beta(λ) and σzw ∼ Dirichlet(δ). When ci = 0,
word wi is joined into a topic-specific bigram with
wi−1. When ci = 1, wi is drawn from a topic-
specific unigram distribution and is the start of a new
n-gram.

An unusual feature of TNG is that words within
a topical n-gram, a sequence of words delineated
by c, do not share the same topic. To compen-
sate for this after running a Gibbs sampler, Wang
et al. (2007) analyze each topical n-gram post hoc
as if the topic of the final word in the n-gram was
the topic assignment of the entire n-gram. Though
this design simplifies inference, we perceive it as a
shortcoming since the aforementioned principle of
non-compositionality supports the intuitive idea that
each collocation ought to be drawn from a single
topic. Another potential drawback of TNG is that
the topic-specific bigram distributions σzw share no
probability mass between each other or with the un-
igram distributions φz . Hence, observing a bigram
under one topic does not make it more likely under
another topic or make its constituent unigrams more
probable. To be more concrete, in TNG, observing
space shuttle under a topic z (or under two topics,
one for each word) regrettably does not make space
shuttle more likely under a topic z′ 6= z, nor does it
make observing shuttle more likely under any topic.
Smoothing, the sharing of probability mass between
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matter
atoms
elements
electrons
atom
molecules
form
oxygen
hydrogen
particles
element
solution
substance
reaction
nucleus

chemical reactions
atomic number
hydrogen atoms
hydrogen atom
periodic table
chemical change
physical properties
chemical reaction
water molecules
sodium chloride
small amounts
positive charge
carbon atoms
physical change
chemical properties

like charges repel
positively charged nucleus
unlike charges attract
outer energy level
reaction takes place
negatively charged electrons
chemical change takes place
form new substances
physical change takes place
form sodium chloride
modern atomic theory
electrically charged particles
increasing atomic number
second ionization energies
higher energy levels

(a) Topic 1

president
congress
vote
party
constitution
state
members
office
government
states
elected
representatives
senate
house
washington

supreme court
new york
democratic party
vice president
political parties
national government
executive branch
civil rights
new government
political party
andrew jackson
chief justice
federal government
state legislatures
public opinion

civil rights act
civil rights movement
supreme court ruled
president theodore roosevelt
second continental congress
equal rights amendment
strong central government
sherman antitrust act
civil rights legislation
public opinion polls
major political parties
congress shall make
federal district court
supreme court decisions
american foreign policy

(b) Topic 2

words
word
sentence
write
writing
paragraph
sentences
meaning
use
subject
language
read
example
verb
topic

main idea
topic sentence
english language
following paragraph
words like
quotation marks
direct object
word processing
sentence tells
figurative language
writing process
following sentences
subject matter
standard english
use words

word processing center
word processing systems
word processing equipment
speak different languages
use quotation marks
single main idea
use words like
topic sentence states
present perfect tense
express complete thoughts
word processing software
use formal english
standard american english
collective noun refers
formal standard english

(c) Topic 3

energy
used
oil
heat
coal
use
fuel
produce
power
source
light
electricity
burn
gas
gasoline

natural resources
natural gas
heat energy
iron ore
carbon dioxide
potential energy
solar energy
light energy
fossil fuels
hot water
steam engine
large amounts
sun's energy
radiant energy
nuclear energy

nuclear power plants
nuclear power plant
important natural resources
electric power plants
called fossil fuels
important natural resource
produce large amounts
called solar energy
electric light bulb
use electrical energy
use solar energy
carbon dioxide gas
called potential energy
gas called carbon dioxide
called crude oil

(d) Topic 4

water
air
temperature
heat
liquid
gas
gases
hot
pressure
atmosphere
warm
cold
surface
oxygen
clouds

water vapor
air pollution
air pressure
warm air
cold water
earth's surface
room temperature
boiling point
drinking water
atmospheric pressure
cold war
high temperatures
liquid water
cold air
warm water

water vapor condenses
warm air rises
cold air mass
called water vapor
water vapor changes
process takes place
warm air mass
clean air act
gas called water vapor
dry spell holds
air pressure inside
sewage treatment plant
air pollution laws
high melting points
high melting point

(e) Topic 5

china
africa
india
europe
people
chinese
asia
egypt
world
rome
land
east
trade
countries
empire

middle east
western europe
north africa
mediterranean sea
years ago
roman empire
far east
southeast asia
west africa
saudi arabia
capital letter
asia minor
united states
capital city
centuries ago

2000 years ago
east india company
eastern united states
4000 years ago
southwestern united states
middle atlantic states
northeastern united states
western united states
southeastern united states
200 years ago
middle atlantic region
indus river valley
western roman empire
british north america act
coast guard station

(f) Topic 6

Figure 1: Six out of one hundred topics found by our model, PDLDA, on the Touchstone Applied Science
Associates (TASA) corpus (Landauer and Dumais, 1997). Each column within a box shows the top fifteen
phrases for a topic and is restricted to phrases of a minimum length of one, two, or three words, respectively.
The rows are ordered by likelihood.
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Figure 2: PDLDA drawn in plate notation.

contexts, is desirable so that a model like this does
not need to independently infer the probability of
every bigram under every topic. The advantages of
smoothing are especially pronounced for small cor-
pora or for a large number of topics. In these sit-
uations, the observed number of bigrams in a given
topic will necessarily be very small and thus not sup-
port strong inferences.

3 PDLDA

A more natural definition of a topical phrase, one
which meets our second desideratum, is to have each
phrase possess a single topic. We adopt this in-
tuitive idea in PDLDA. It can also be understood
through the lens of Bayesian changepoint detection.
Changepoint detection is used in time series mod-
els in which the generative parameters periodically
change abruptly (Adams and MacKay, 2007). View-
ing a sentence as a time series of words, we posit that
the generative parameter, the topic, changes period-

ically in accordance with the changepoint indicators
c. Because there is no restriction on the number of
words between changepoints, topical phrases can be
arbitrarily long but will always have a single topic
drawn from θd.

The full definition of PDLDA is given by

wi | u ∼ Discrete(Gu)

Gu ∼ PYP(a|u|, b|u|, Gπ(u))

G∅ ∼ PYP(a0, b0, H)

zi | d, zi−1, θd, ci ∼

{
δzi−1 if ci = 0

Discrete (θd) if ci = 1

ci | wi−1, zi−1, π ∼ Bernoulli
(
πwi−1zi−1

)
with the prior distriutions over the parameters as

θd ∼ Dirichlet (α) πzw ∼ Beta (λ)
a|u| ∼ Beta (ρ) b|u| ∼ Gamma (ε)

Like TNG, PDLDA assumes that the probability
of a changepoint ci+1 after the ith token depends on
the current topic zi and word wi. This causes the
length of a phrase to depend on its topic and con-
stituent words. The changepoints explicitly model
which words tend to start and end phrases in each
document. Depending on ci, zi is either set deter-
ministically to the preceding topic (when ci = 0)
or is drawn anew from θd (when ci = 1). In this
way, each topical phrase has a single topic drawn
from its document’s topic distribution. As in TNG,
the parameters πzw and θd are given conjugate priors
parameterized by λ and α.

Let u be a context vector consisting of the
phrase topic and the past m words: u , <
zi, wi−1, wi−2, . . . , wi−m >. The operator π(u) de-
notes the prefix of u, the vector with the rightmost
element of u removed. |u| denotes the length of u,
and ∅ represents an empty context. For practical rea-
sons, we pad u with a special start symbol when the
context overlaps a phrase boundary. For example,
the first word wi of a phrase beginning at a position
i necessarily has ci = 1; consequently, all the pre-
ceding words wi−j in the context vector are treated
as start symbols so that wi is effectively drawn from
a topic-specific unigram distribution.

In PDLDA, each token is drawn from a distribu-
tion conditioned on its context u. When m = 1,
this conditioning is analogous to TNG’s word dis-
tribution. However, in contrast with TNG, the word
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Figure 3: Illustration of the hierarchical Pitman-Yor
process for a toy two-word vocabulary V = {honda,
civic} and two-topic (T = 2) model with m = 1.
Each node G in the tree is a Pitman-Yor process
whose base distribution is its parent node, andH is a
uniform distribution over V . When, for example, the
context is u = z1 : honda, the darkened path is fol-
lowed and the probability of the next word is calcu-
lated from the shaded node using Equation 1, which
combines predictions from all the nodes along the
darkened path.

distributions used are Pitman-Yor processes (PYPs)
linked together into a tree structure. This hierar-
chical construction creates the desired smoothing
among different contexts. The next section explains
this hierarchical distribution in more detail.

3.1 Hierarchical Pitman-Yor process

Words in PDLDA are emitted from Gu, which has
a PYP prior (Pitman and Yor, 1997). PYPs are a
generalization of the Dirichlet Process, with the ad-
dition of a discount parameter 0 ≤ a ≤ 1. When
considering the distribution of a sequence of words
w drawn iid from a PYP-distributed G, one can an-
alytically marginalize G and consider the resulting
conditional distribution of w given its parameters a,
b, and base distribution φ. This marginal can best
be understood by considering the distribution of any
wi|w1, . . . , wi−1, a, b, φ, which is characterized by
a generative process known as the generalized Chi-
nese Restaurant Process (CRP) (Pitman, 2002). In
the CRP metaphor, one imagines a restaurant with
an unbounded number of tables, where each table
has one shared dish (a draw from φ) and can seat an
unlimited number of customers. The CRP specifies a

process by which customers entering the restaurant
choose a table to sit at and, consequently, the dish
they eat. The first customer to arrive always sits at
the first table. Subsequent customers sit at an occu-
pied table k with probability proportional to ck − a
and choose a new unoccupied table with probabil-
ity proportional to b + ta, where ck is the number
of customers seated at table k and t is the number
of occupied tables in G. For our language modeling
purposes, “customers” are word tokens and “dishes”
are word types.

The hierarchical PYP (HPYP) is an intuitive re-
cursive formulation of the PYP in which the base
distribution φ is itself PYP-distributed. Figure 3
demonstrates this principle as applied to PDLDA.
The hierarchy forms a tree structure, where leaves
are restaurants corresponding to full contexts and in-
ternal nodes correspond to partial contexts. An edge
between a parent and child node represents a depen-
dency of the child on the parent, where the base dis-
tribution of the child node is its parent. This smooths
each context’s distribution like the Bayesian n-gram
model of Teh (2006), which is a Bayesian version
of interpolated Kneser-Ney smoothing (Chen and
Goodman, 1998). One ramification of this setup
is that if a word occurs in a context u, the shar-
ing makes it more likely in other contexts that have
something in common with u, such as a shared topic
or word.

The HPYP gives the following probability for a
word following the context u being w:

Pu(w | τ,a,b) =
cuw· − a|u|tuw
b|u| + cu··

+

b|u| + a|u|tu·

b|u| + cu··
Pπ(u)(w | τ,a,b) (1)

where Pπ(∅)(w|τ,a,b) = G∅(w), cuw· is the num-
ber of customers eating dish w in restaurant u, and
tuw is the number of tables serving w in restau-
rant u, and τ represents the current seating arrange-
ment. Here and throughout the rest of the paper, we
use a dot to indicate marginal counts: e.g., cuw· =∑

k cuwk where cuwk is the number of customers
eating w in u at table k. The base distribution of
G∅ was chosen to be uniform: H(w) = 1/V with V
being the vocabulary size. The above equation an in-
terpolation between distributions of context lengths
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|u|, |u| − 1, . . . 0 and realizes the sharing of statisti-
cal strength between different contexts.

3.2 Inference

In this section, we describe Markov chain Monte
Carlo procedures to sample from P (z, c, τ |w, U),
the posterior distribution over topic assignments z,
phrase boundaries c, and seating arrangements τ
given an observed corpus w. Let U be short-
hand for α, λ,a,b. In order to draw samples
from P (z, c, τ |w, U), we employ a Metropolis-
Hastings sampler for approximate inference. The
sampler we use is a collapsed sampler (Griffiths and
Steyvers, 2004), wherein θ, φ, and G are analyti-
cally marginalized. Because we marginalize eachG,
we use the Chinese Restaurant Franchise representa-
tion of the hierarchical PYPs (Teh, 2006). However,
rather than onerously storing the table assignment
of every token in w, we store only the counts of how
many tables there are in a restaurant and how many
customers are sitting at each table in that restaurant.
We refer the inquisitive reader to the appendix of
Teh (2006) for further details of this procedure.

Our sampling strategy for a given token i in doc-
ument d is to jointly propose changes to the change-
point ci and topic assignment zi, and then to the
seating arrangement τ . Recall that according to the
model, if ci = 0, zi = zi−1; otherwise zi is gen-
erated from the topic distribution for document d.
Since the topic assignment remains the same until a
new changepoint at a position i′ is reached, each to-
ken wj for j from position i until i′ − 1 will depend
on zi because for these j, zj = zi. We call this set of
tokens the phrase suffix of the ith token and denote
it s(i). More formally, let s(i) be the maximal set
of continuous indices j ≥ i including i such that, if
j 6= i, cj = 0. That is, s(i) are the indices compris-
ing the remainder of the phrase beginning at position
i. In addition, let x(i) indicate the extended suffix
version of s(i) which includes one additional index:
x(i) , {s(i) ∪ {max (s(i)) + 1}}. In addition to
the words in the suffix s(i), the changepoint indica-
tor variables cj for j in x(i) are also conditioned on
zi. To make these dependencies more explicit, we
refer to zs(i) , zj ∀j ∈ s(i), which are constrained
by the model to share a topic.

The variables that depend directly on zi, ci are
zs(i),ws(i), cx(i). The proposal distribution first

draws from a multinomial over T + 1 options: one
option for ci = 0, zi = zi − 1; and one for ci = 1
paired with each possible zi = z ∈ 1 . . . T . This is
given by
P (zs(i), ci | z¬s(i), c¬i, τ¬s(i),w, U) ∝

∏
j∈x(i)

n
¬x(j)
zj−1wj−1cj + λcj

n
¬x(j)
zj−1wj−1· + λ0 + λ1∏

j∈s(i)

P (zj | c, z¬s(j), U) Puj (wj | τ¬s(i), U)

with

P (zj | c, z¬s(j), U) =


n
¬s(j)
dzj

+ α

n
¬s(j)
d· + Tα

if cj = 1

δzj ,zj−1 if cj = 0

where Puj (wj | τ¬s(i), U) is given by Equation 1,

T is the number of topics, n¬s(j)dz is the number of
phrases in document d that have topic z when s(j)’s
assignment is excluded, and n¬s(j)zwc is the number of
times a changepoint c has followed a word w with
topic z when s(j)’s assignments are excluded.

After drawing a proposal for ci, zs(i) for token i,
the sampler adds a customer eating wi to a table
serving wi in restaurant ui. An old table k is se-
lected with probability ∝ max(0, cuwk − a|u|) and
a new table is selected with probability ∝ (b|ui| +
a|ui|tui·)Pπ(u)(wi).

Let z′s(i), c
′
i, τ
′
s(i) denote the proposed change to

zs(i), ci, τs(i). We accept the proposal with probabil-
ity min(A, 1) where

A =
P̂ (z′s(i), c

′
i, τ
′
s(i)) Q(zs(i), ci, τs(i))

P̂ (zs(i), ci, τs(i)) Q(z′s(i), c
′
i, τ
′
s(i))

where Q is the proposal distribution and P̂ is the
true unnormalized distribution. P̂ differs from Q in
that the probability of each word wj and the seating
arrangement depends only on ¬s(j), as opposed to
the simplification of using ¬s(i). Almost all propos-
als are accepted; hence, this theoretically motivated
Metropolis Hastings correction step makes little dif-
ference in practice.

Because the parameters a and b have no intuitive
interpretation and we lack any strong belief about
what they should be, we give them vague priors
where ρ1 = ρ2 = 1 and ε1 = 10, ε2 = .1. We then
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interleave a slice sampling algorithm (Neal, 2000)
between sweeps of the Metropolis-Hastings sampler
to learn these parameters. We chose not to do infer-
ence on α in order to make the tests of our model
against TNG more equitable.

4 Related Work

An integral part of modeling topical phrases is the
relaxation of the bag-of-words assumption in LDA.
There are many models that make this relaxation.
Among them, Griffiths and Steyvers (2005) present
a model in which words are generated either con-
ditioned on a topic or conditioned on the previous
word in a bigram, but not both. They use this to
model human performance on a word-association
task. Wallach (2006) experiments with incorpo-
rating LDA into a bigram language model. Her
model uses a hierarchical Dirichlet to share param-
eters across bigrams in a topic in a manner similar
to our use of PYPs, but it lacks a notion of the topic
being shared between the words in an n-gram. The
Hidden Topic Markov Model (HTMM) (Gruber et
al., 2007) assumes that all words in a sentence have
the same topic, and consecutive sentences are likely
to have the same topic. By dropping the indepen-
dence assumption among topics, HTMM is able to
achieve lower perplexity scores than LDA at mini-
mal additional computational costs. These models
are unconcerned with topical n-grams and thus do
not model phrases.

Johnson (2010) presents an Adaptor Grammar
model of topical phrases. Adaptor Grammars are
a framework for specifying nonparametric Bayesian
models over context-free grammars in which certain
subtrees are “memoized” or remembered for reuse.
In Johnson’s model, subtrees corresponding to com-
mon phrases for a topic are memoized, resulting in a
model in which each topic is associated with a distri-
bution over whole phrases. While it is a theoretically
elegant method for finding topical phrases, for large
corpora we found inference to be impractically slow.

5 Phrase Intrusion Experiment

Perplexity is the typical information theoretic mea-
sure of language model quality used in lieu of ex-
trinsic measures, which are more difficult and costly
to run. However, it is well known that perplexity

Trial 1 of 80 
countries 

britain 
france 

museum 

Trial 2 of 80 
air force 

beverly hills 
defense minister 

u.s. troops 

Trial 3 of 80 
fda 

book 
smoking 

cigarettes 

Trial 4 of 80 
roman catholic church 
air traffic controllers 
roman catholic priest 
roman catholic bishop 

Figure 4: Experimental setup of the phrase intrusion
experiment in which subjects must click on the n-
gram that does not belong.

scores may negatively correlate with actual quality
as assessed by humans (Chang et al., 2009). With
that fact in mind, we expanded the methodology of
Chang et al. (2009) to create a “phrase intrusion”
task that quantitatively compares the quality of the
topical n-gram lists produced by our model against
those of other models.

Each of 48 subjects underwent 80 trials of a web-
based experiment on Amazon Mechanical Turk, a
reliable (Paolacci et al., 2010) and increasingly com-
mon venue for conducting online experiments. In
each trial, a subject is presented with a randomly or-
dered list of four n-grams (cf. Figure 4). Each sub-
ject’s task is to select the intruder phrase, a spurious
n-gram not belonging with the others in the list. If,
other than the intruder, the items in the list are all
on the same topic, then subjects can easily identify
the intruder because the list is semantically cohesive
and makes sense. If the list is incohesive and has no
discernible topic, subjects must guess arbitrarily and
performance is at random.

To construct each trial’s list, we chose two top-
ics z and z′ (z 6= z′), then selected the three most
probable n-grams from z and the intruder phrase, an
n-gram probable in z′ and improbable in z. This
design ensures that the intruder is not identifiable
due solely to its being rare. Interspersed among the
phrase intrusion trials were several simple screen-
ing trials intended to affirm that subjects possessed
a minimal level of attentiveness and reading com-
prehension. For example, one such screening trial
presented subjects with the list banana, apple, tele-
vision, orange. Subjects who got any of these trials
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Figure 5: An across-subject measure of the ability to detect intruders as a function of n-gram size and model.
Excluding trials with repeated words does not qualitatively affect the results.

wrong were excluded from our analyses.

Each subject was presented with trials constructed
from the output of PDLDA and TNG for unigrams,
bigrams, and trigrams. For unigrams, we also tested
the output of the original smoothed LDA (Blei et
al., 2003). The experiment was conducted twice for
a 2,246-document subset of the TREC AP corpus
(Blei et al., 2003; Harman, 1992): the first time pro-
ceeded as described above, but the second time did
not allow word repetition within a topic’s list. The
topical phrases found by TNG and PDLDA often
revolve around a central n-gram, with other words
pre- or post- appended to it. In this intrusion exper-
iment, any n-gram not containing the central word
or phrase may be trivially identifiable, regardless of
its relevance to the topic. For example, the intruder
in Trial 4 of Figure 4 is easily identifiable even if
a subject does not understand English. This second
experiment was designed to test whether our conclu-
sions hinge on word repetition.

We used the MALLET toolbox (McCallum,
2002) for the implementations of LDA and TNG.
Each model was run with 100 topics for 5,000 it-
erations. We set m = 2, α = .01, β = .01, λ = 1,
π1 = π2 = 1, ρ1 = 10, and ρ2 = .1. For all mod-
els, we treated certain punctuation as the start of a
phrase by setting cj = 1 for all tokens j immediately
following periods, commas, semicolons, and excla-
mation and question marks. To reduce runtime, we
removed stopwords occuring in the MALLET tool-

box’s stopword list. Because TNG and LDA had
trouble with single character words not in the sto-
plist, we manually removed them before the experi-
ment. Any token immediately following a removed
word was treated as if it were the start of a phrase.

As in Chang et al. (2009), performance is mea-
sured via model precision, the fraction of subjects
agreeing with the model. It is defined as MPm,nk =∑
s
1(im,nk,s = ωm,nk,s )/S where ωm,nk,s is the index of

the intruding n-gram for subject s among the words
generated from the kth topic of model m, im,nk,s is the
intruder selected by s, and S is the number of sub-
jects. The model precisions are shown in Figure 5.
PDLDA achieves the highest precision in all condi-
tions. Model precision is low in all models, which is
a reflection of how challenging the task is on a small
corpus laden with proper nouns and low-frequency
words. Figure 5b demonstrates that the outcome of
the experiment does not depend strongly on whether
the topical n-gram lists have repeated words.

6 Conclusion

We presented a topic model which simultaneously
segments a corpus into phrases of varying lengths
and assigns topics to them. The topical phrases
found by PDLDA are much richer sources of in-
formation than the topical unigrams typically pro-
duced in topic modeling. As evidenced by the
phrase-intrusion experiment, the topical n-gram lists
that PDLDA finds are much more interpretable than
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those found by TNG.
The formalism of Bayesian changepoint detection

arose naturally from the intuitive assumption that the
topic of a sequence of tokens changes periodically,
and that the tokens in between changepoints com-
prise a phrase. This formalism provides a principled
way to discover phrases within the LDA framework.
We presented a model embodying these principles
and showed how to incorporate dependent Pitman-
Yor processes into it.
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Abstract

We describe a nonparametric model
and corresponding inference algorithm
for learning Synchronous Context Free
Grammar derivations for parallel text. The
model employs a Pitman-Yor Process prior
which uses a novel base distribution over
synchronous grammar rules. Through both
synthetic grammar induction and statistical
machine translation experiments, we show
that our model learns complex translational
correspondences— including discontiguous,
many-to-many alignments—and produces
competitive translation results. Further,
inference is efficient and we present results on
significantly larger corpora than prior work.

1 Introduction

In the twenty years since Brown et al. (1992) pio-
neered the first word-based statistical machine trans-
lation (SMT) models substantially more expressive
models of translational equivalence have been devel-
oped. The prevalence of complex phrasal, discon-
tiguous, and non-monotonic translation phenomena
in real-world applications of machine translation has
driven the development of hierarchical and syntac-
tic models based on synchronous context-free gram-
mars (SCFGs). Such models are now widely used in
translation and represent the state-of-the-art in most
language pairs (Galley et al., 2004; Chiang, 2007).
However, while the models used for translation have
evolved, the way in which they are learnt has not:
näıve word-based models are still used to infer trans-
lational correspondences from parallel corpora.

In this work we bring the learning of the minimal
units of translation in step with the representational
power of modern translation models. We present a
nonparametric Bayesian model of translation based
on SCFGs, and we use its posterior distribution to
infer synchronous derivations for a parallel corpus
using a novel Gibbs sampler. Our model is able
to: 1) directly model many-to-many alignments,
thereby capturing non-compositional and idiomatic
translations;2) align discontiguous phrases in both
the source and target languages;3) have no restric-
tions on the length of a rule, the number of nonter-
minal symbols per rule, or their configuration.

Learning synchronous grammars is hard due to
the high polynomial complexity of dynamic pro-
gramming and the exponential space of possible
rules. As such most prior work for learning SCFGs
has relied on inference algorithms that were heuristi-
cally constrained or biased by word-based alignment
models and small experiments (Wu, 1997; Zhang et
al., 2008; Blunsom et al., 2009; Neubig et al., 2011).
In contrast to these previous attempts, our SCFG
model scales to large datasets (over1.3M sentence
pairs) without imposing restrictions on the form of
the grammar rules or otherwise constraining the set
of learnable rules (e.g., with a word alignment).

We validate our sampler by demonstrating its
ability to recover grammars used to generate
synthetic datasets. We then evaluate our model by
inducing word alignments for SMT experiments
in several typologically diverse language pairs and
across a range of corpora sizes. Our results attest to
our model’s ability to learn synchronous grammars
encoding complex translation phenomena.
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2 Prior Work

The goal of directly inducing phrasal translation
models from parallel corpora has received a lot of
attention in the NLP and SMT literature. Marcu
and Wong (2002) presented an ambitious maximum
likelihood model and EM inference algorithm for
learning phrasal translation representations. The
first issue this model faced was a massive parameter
space and intractable inference. However a more
subtle issue is that likelihood based models of this
form suffer from a degenerate solution, resulting
in the model learning whole sentences as phrases
rather than minimal units of translation. DeNero
et al. (2008) recognised this problem and proposed
a nonparametric Bayesian prior for contiguous
phrases. This had the dual benefits of biasing the
model towards learning minimal translation units,
and integrating out the parameters such that a much
smaller set of statistics would suffice for inference
with a Gibbs sampler. However this work fell short
by not evaluating the model independently, instead
only presenting results in which it was combined
with a standard word-alignment initialisation, thus
leaving open the question of its efficacy.

The fact that flat phrasal models lack a structured
approach to reordering has led many researchers to
pursue SCFG induction instead (Wu, 1997; Cherry
and Lin, 2007; Zhang et al., 2008; Blunsom et
al., 2009). The asymptotic time complexity of
the inside algorithm for even the simplest SCFG
models isO(|s|3|t|3), too high to be practical for
most real translation data. A popular solution to
this problem is to heuristically restrict inference
to derivations which agree with an independent
alignment model (Cherry and Lin, 2007; Zhang et
al., 2008). However this may have the unintended
effect of biasing the model back towards the initial
alignments that they attempt to improve upon.
More recently Neubig et al. (2011) reported a
novel Bayesian model for phrasal alignment and
extraction that was able to model phrases of multiple
granularities via a synchronous Adaptor Grammar.
However this model suffered from the common
problem of intractable inference and results were
presented for a very small number of samples from
a heuristically pruned beam, making interpreting
the results difficult.

Blunsom et al. (2009) presented an approach
similar to ours that implemented a Gibbs sampler
for a nonparametric Bayesian model of ITG. While
that work managed to scale to a non-trivially sized
corpus, like other works it relied on a state-of-the-art
word alignment model for initialisation. Our model
goes further by allowing discontiguous phrasal
translation units. Surprisingly, the freedom
that this extra power affords allows the Gibbs
sampler we propose to mix more quickly, allowing
state-of-the-art results from a simple initialiser.

3 Model

We use a nonparametric generative model based on
the 2-parameter Pitman-Yor process (PYP) (Pitman
and Yor, 1997), a generalisation of the Dirichlet Pro-
cess, which has been used for various NLP modeling
tasks with state-of-the-art results such as language
modeling, word segmentation, text compression and
part of speech induction (Teh, 2006; Goldwater et
al., 2006; Wood et al., 2011; Blunsom and Cohn,
2011). In this section we first provide a brief defi-
nition of the SCFG formalism and then describe our
PYP prior for them.

3.1 Synchronous Context-Free Grammar

An synchronous context-free grammar (SCFG) is a
5-tuple〈Σ, ∆, V, S, R〉 that generalises context-free
grammar to generate strings concurrently in two lan-
guages (Lewis and Stearns, 1968).Σ is a finite set of
source language terminal symbols,∆ is a finite set
of target language terminal symbols,V is a set of
nonterminal symbols, with a designated start sym-
bol S, andR is a set of synchronous rewrite rules.
A string pair is generated by starting with the pair
〈S1 | S1〉 and recursively applying rewrite rules of
the form X → 〈s, t, a〉 where the left hand side
(LHS) X is a nonterminal inV , s is a string in
(Σ ∪ V )∗, t is a string in(∆ ∪ V )∗ anda specifies
a one-to-one mapping (bijection) between nontermi-
nal symbols ins andt. The following are examples:1

VP → 〈 schlage NP1 NP2 vor | suggest NP2 to NP1 〉

NP→ 〈 die Kommission | the commission 〉

1The nonterminal alignmenta is indicated through sub-
scripts on the nonterminals.
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In a probabilistic SCFG, rules are associated with
probabilities such that the probabilities of all
rewrites of a particular LHS category sum to 1.

Translation with SCFGs is carried out by parsing
the source language with the monolingual source
language projection of the grammar (using standard
monolingual parsing algorithms), which induces
a parallel tree structure and translation in the
target language (Chiang, 2007). Alignment or
synchronous parsing is the process of concurrently
parsing both the source and target sentences,
uncovering the derivation or derivations that give
rise to a string pair (Wu, 1997; Dyer, 2010).

Our goal is to infer the most probable SCFG
derivations that explain a corpus of parallel sen-
tences, given a nonparametric prior over probabilis-
tic SCFGs. In this work we will consider grammars
with a single nonterminal category X.

3.2 Pitman-Yor Process SCFG

Before training we have no way of knowing how
many rules will be needed in our grammar to ade-
quately represent the data. By using the Pitman-
Yor process as a prior on the parameters of a syn-
chronous grammar we can formulate a model which
prefers smaller numbers of rules that are reused
often, thereby avoiding degenerate grammars con-
sisting of large, overly specific rules. However, as
the data being fit grows, the model can become more
complex. The PYP is parameterised by adiscount
parameterd, a strength parameterθ, and the base
distribution G0, which gives the prior probability
of an event (in our case, events are rules) before
any observations have occurred. The discount is
subtracted from each positive rule count and damp-
ens the rich get richer effect where frequent rules
are given higher probability compared to infrequent
ones. The strength parameter controls the variance,
or concentration, about the base distribution.

In our model, a draw from a PYP is a distribution
over SCFG rules with a particular LHS (in fact, it is
a distribution over all well-formed rules). From this
distribution we can in turn draw individual rules:

GX ∼ PY(d, θ,G0),
X → 〈s, t, a〉 ∼ GX .

Although the PYP has no known analytical form,
we can marginalise out theGX ’s and reason about

Step 1: Generate source side length.

Step 2: Generate source side configuration of 

terminals (and non-terminal placeholders).

Step 3: Generate target length.

Step 4. Generate target side configuration of 

terminals (and non-terminal placeholders).

Step 5. Generate the words.

X < _ _ _  ||| ? >

X < X1 _ X2 ||| ? >

X < X1 _ X2 ||| _ _ _  >

X < X1 _ X2 ||| _ X1 X2  >

X < X1 你 X2 ||| you X1 X2  >

Figure 1: Example generation of a synchronous
grammar rule in ourG0.

individual rules directly using the process described
by Teh (2006). In this process, at timen a rulern
is generated by stochastically deciding whether to
make another copy of a previously generated rule
or to draw a new one from the base distribution,G0.
Letϕ = (ϕ1, ϕ2, . . .) be the sequence of draws from
G0; thus|ϕ| is the total number of draws fromG0. A
rule rn corresponds to a selection of aϕk. Let ck
be a counter indicating the number of timesϕk has
been selected. In particular, we setrn to ϕk with
probability

ck − d

θ + n
,

and incrementck, or with probability

θ + d · |ϕ|

θ + n
,

we draw a new rule fromG0, append it toϕ, and use
it for rn.

3.3 Base Distribution

The base distributionG0 for the PYP assigns prob-
ability to a rule based our belief about what consti-
tutes a good rule independent of observing any of
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the data. We describe a novel generative process for
all rulesX → 〈s, t, a〉 that encodes these beliefs.

We describe the generative process generally here
in text, and readers may refer to the example in Fig-
ure 1. The process begins by generating the source
length (total number of terminal and nonterminal
symbols, written|s|) by drawing from a Poisson dis-
tribution with mean1:

|s| ∼ Poisson(1) .

This assigns high probability to shorter rules,
but arbitrarily long rules are possible with a low
probability. Then, for every position ins, we decide
whether it will contain a terminal or nonterminal
symbol by repeated, independent draws from a
Bernoulli distribution. Since we believe that shorter
rules should be relatively more likely to contain
terminal symbols than longer rules, we define the
probability of a terminal symbol to beφ|s| where
0 < φ < 1 is a hyperparameter.

si ∼ Bernoulli(φ|s|) ∀ i ∈ [1, |s|] .

We next generate the length of the target side of
the rule. Let#NT(s) denote the number of nonter-
minal symbols we generated ins, i.e., the arity of
the rule. Our intuition here is that source and target
lengths should be similar. However, to ensure that
the rule is well-formed,t must contain exactly as
many nonterminal symbols as the source does. We
therefore draw the number of target terminal sym-
bols from a Poisson whose mean is the number of
terminal symbols in the source, plus a small constant
λ0 to ensure that it is greater than zero:

|t| −#NT(s) ∼ Poisson (|s| −#NT(s) + λ0) .

We then determine whether each position int is
a terminal or nonterminal symbol by drawing uni-
formly from the bag of#NT(s) source nontermi-
nals and|t| − #NT(s) terminal indicators, with-
out replacement. At this point we have created a
rule template which indicates how large the rule is,
whether each position contains a terminal or non-
terminal symbol, and the reordering of the source
nonterminalsa. To conclude the process we must
select the terminal types from the source and target

vocabularies. To do so, we use the following distri-
bution:

Pterminals(s, t) =
PM1←(s, t) + PM1→(s, t)

2

wherePM1←(s, t) (PM1→(s, t)) first generates the
source (target) terminals from uniform draws from
the vocabulary, then generates the string in the other
language according to IBM MODEL 1, marginaliz-
ing over the alignments (Brown et al., 1993).

4 Gibbs Sampler

In this section we introduce a Gibbs sampler that
enables us to perform posterior inference given a
corpus of sentence pairs. Our innovation is to repre-
sent the synchronous derivation of a sentence pair in
a hierarchical 4-dimensional binary alignment grid,
with elementsz[s,t,u,v] ∈ {0, 1}.

The settings of the grid variables completely
determine the SCFG rules in the current derivation.
A setting of a binary variablez[s,t,u,v] = 1 represents
a constituent linking the source span[s, t] and the
target span[u, v] in the current derivation; variables
with a value of0 indicate no link between spans
[s, t] and [u, v].2 This relationship from our grid
representation is illustrated in Figure 2a.

Our Gibbs sampler operates over the space of all
the random variablesz[s,t,u,v], resampling one at a
time. Changes to a single variable imply that at most
two additional rules must be generated, as illustrated
in Figure 2b. The probability of choosing a binary
setting of0 or 1 for a variable is proportional to the
probability of generating the two derivations under
the model described in the previous section. Note
that for a given sentence, most of the bispan vari-
ables must be set to0 otherwise they would violate
thestrict nesting constraint required for valid SCFG
derivations. We discuss below how to exploit this
fact to limit the number of binary variables that must
be resampled for each sentence.

To be valid, a Gibbs sampler must beergodic and
satisfy detailed balance. Ergodicity requires that
there is non-zero probability that any state in the
sampler be reachable from any other state. Clearly

2Our grid representation is the synchronous generalisation
of the well-known correspondence between CFG derivations
and Boolean matrices; see Lee (2002) for an overview.
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Amna will

{mna

succeed

kAmyAb

hw

gy

AMNA

SUCCESSFUL

BE

WILL

(a) An example grid representation of a syn-
chronous derivation. The SCFG rules (annotated
with their bispans) that correspond to this setting
of the grid are:

X[0,4,0,3] →

〈 X[0,1,0,1] X[1,4,1,3] | X[0,1,0,1] X[1,4,1,3] 〉

X[0,1,0,1] → 〈 {mna | Amna 〉

X[1,4,1,3] → 〈 kAmyAb hw gy | will succeed 〉

Amna will

{mna

succeed

kAmyAb

hw

gy

AMNA

SUCCESSFUL

BE

WILL

(b) The toggle operator resamples a bispan vari-
able (here,z[1,3,2,3], shown in blue) to determine
whether it should be subtracted from the immedi-
ately dominating rule (bispan in red) and made into
a child rule in the derivation. This would require
the addition of the following two rules:

X[1,4,1,3] → 〈 X[1,3,2,3] gy | will X[1,3,2,3]〉

X[1,3,2,3] → 〈 kAmyAb hw | succeed 〉

Alternatively, the active bispan variable can be set
so it isnot a constituent, which would require the
single rule:

X[1,4,1,3] → 〈 kAmyAb hw gy | will succeed 〉

Figure 2: A single operation of the Gibbs sampler for a binary alignment grid.

our operator satisfies this since given any configu-
ration of the alignment grid we can use the toggle
operator to flatten the derivation to a single rule and
then break it back down to reach any derivation.

Detailed balance requires that the probability of
transitioning between two possible adjacent sampler
states respects their joint probabilities in the station-
ary distribution. One way to ensure this is to make
the order in which bispan variables are visited deter-
ministic and independent of the variables’ current
settings. Then, the probability of the sampler tar-
geting any bispan in the grid is equal regardless of
the current configuration of the alignment grid.

A naive instantiation of this strategy is to visit all
|s|2|t|2 bispans in some order. However, since we
wish to be able to draw many samples, this is not
computationally feasible. A much more efficient
approach avoids resampling variables that would
result in violations without visiting each of them
individually. However, to ensure detailed balanced
is maintained, the order that we resample bispans
has to match the order we would sample them using

any exhaustive approach. We achieve this by always
checking a derivation top-down, from largest to
smallest bispan. Under this ordering, whether or not
a smaller bispan is visited will be independent of
how the larger ones were resampled. Furthermore,
the set of variables that may be resampled is fixed
given this ordering. Therefore, the probability of
sampling any possible bispan in the sentence pair is
still uniform (ensuring detailed balance), while our
sampler remains fast.

5 Evaluation

The preceding sections have introduced a model,
and accompanying inference technique, designed to
induce a posterior distribution over SCFG deriva-
tions containing discontiguous and phrasal transla-
tion rules. The evaluation that follows aims to deter-
mine our models ability to meet these design goals,
and to do so in a range of translation scenarios.

In order to validate both the model and the sam-
pler’s ability to learn an SCFG we first conduct a
synthetic experiment in which the true grammar is
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known. Subsequently we conduct a series of experi-
ments on real parallel corpora of increasing sizes to
explore the empirical properties of our model.

5.1 Synthetic Data Experiments

Prior work on SCFG induction for SMT has val-
idated modeling claims by reporting BLEU scores
on real translation tasks. However, the combination
of noisy data and the complexity of SMT pipelines
conspire to obscure whether models actually achieve
their design goals, normally stated in terms of an
ability to induce SCFGs with particular properties.

Here we include a small synthetic data experiment
to clearly validate our models ability to learn an
SCFG that includes discontiguous and phrasal trans-
lation rules with non-monotonic word order.

Using the probabilistic SCFG shown in the top
half of Table 1 we stochastically generated three
thousand parallel sentence pairs as training data for
our model. We then ran the Gibbs sampler for fifty
iterations through the data.

The bottom half of Table 1 lists the five rules
with the highest marginal probability estimated by
the sampler. Encouragingly our model was able to
recover a grammar very close to the original. Even
for such a small grammar the space of derivations
is enormous and the task of recovering it from a
data sample is non-trivial. The divergence from the
true probabilities is due to the effect of the prior
assigning shorter rules higher probability. With a
larger data sample we would expect the influence of
the prior in the posterior to diminish.

5.2 Machine Translation Evaluation

Ultimately the efficacy of a model for SCFG induc-
tion will be judged on its ability to underpin a state-
of-the-art SMT system. Here we evaluate our model
by applying it to learning word alignments for par-
allel corpora from which SMT systems are induced.
We train models across a range of corpora sizes and
for language pairs that exhibit the type of complex
alignment phenomena that we are interested in mod-
eling: Chinese→ English (ZH-EN), Urdu→ English
(UR-EN) and German→ English (DE-EN).

Data and Baselines

TheUR-EN corpus is the smallest of those used in
our experiments and is taken from the NIST 2009

GRAMMAR RULE TRUE PROBABILITY

X→ 〈 X1 a X2 |X1 X2 1 〉 0.2
X→ 〈 b c d | 3 2 〉 0.2

X→ 〈 b d | 3 〉 0.2
X→ 〈 d | 3 〉 0.2

X→ 〈 c d | 3 1 〉 0.2

SAMPLED RULE SAMPLED PROBABILITY

X→ 〈 d | 3 〉 0.25
X→ 〈 b d | 3 〉 0.24
X→ 〈 c d | 3 1 〉 0.24

X→ 〈 b c d | 3 2 〉 0.211
X→ 〈 X1 a X2 |X1 X2 1 〉 0.012

Table 1: Manually created SCFG used to generate
synthetic data, and the five most probable inferred
rules by our model.

ZH-EN

NIST
UR-EN

NIST
DE-EN

EUROPARL

TRAIN (SRC) 8.6M 1.2M 34M
TRAIN (TRG) 9.5M 1.0M 36M
DEV (SRC) 22K 18K 26K

DEV (TRG) 27K 16K 28K

Table 2: Corpora statistics (in words).

translation evaluation.3 The ZH-EN data is of a
medium scale and comes from the FBIS corpus.
The DE-EN pair constitutes the largest corpus and
is taken from Europarl, the proceedings of the Euro-
pean Parliament (Koehn, 2003). Statistics for the
data are shown in Table 2. We measure translation
quality via the BLEU score (Papineni et al., 2001).

All translation systems employ a Hiero
translation model during decoding. Baseline
word alignments were obtained by running
GIZA ++ in both directions and symmetrizing using
thegrow-diag-final-and heuristic (Och and
Ney, 2003; Koehn et al., 2003). Decoding was
performed with thecdec decoder (Dyer et al.,
2010) with the synchronous grammar extracted
using the techniques developed by Lopez (2008).
All translation systems include a5-gram language
model built from a five hundred million token subset

3http://www.itl.nist.gov/iad/mig/tests/
mt/2009/
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LANGUAGE TEST MODEL 4 MODEL 1 PYP-SCFG
PAIR SET BASELINE INITIALISATION WEAK M1 INIT. STRONG HMM I NIT.

UR-EN MT09 23.1 18.5 23.7 24.0

ZH-EN MT03-08 29.4 19.8 28.3 29.8

DE-EN EUROPARL 28.4 25.5 27.8 29.2

Table 3: Results for the SMT experiments in BLEU . The baseline is produced using a full GIZA ++ run. The
MODEL 1 INITIALISATION column is from the initialisation alignments using MODEL 1 and no sampling.
The PYP-SCFG columns show results for the500th sample for both MODEL 1 and HMM initialisations.

of all the English data made available for the NIST
2009 shared task (Graff, 2003).

Experimental Setup

To obtain the PYP-SCFG word alignments we
ran the sampler for five hundred iterations for each
of the language pairs and experimental conditions
described below. We used the approach of Newman
et al. (2007) to distribute the sampler across multi-
ple threads. The strengthθ and discountd hyper-
parameters of the Pitman-Yor Processes, and the ter-
minal penaltyφ (Section 3.3), were inferred using
slice sampling (Neal, 2000).

The Gibbs sampler requires an initial set of
derivations from which to commence sampling. In
our experiments we investigated bothweak and
a strong initialisations, the former based on word
alignments from IBM Model 1 and the latter on
alignments from an HMM model (Vogel et al.,
1996). For decoding we used the word alignments
implied by the derivations in the final sample to
extract a Hiero grammar with the same standard set
of relative frequency, length, and language model
features used for the baseline.

Weak Initialisation

Our first translation experiments ascertain the
degree to which our proposed Gibbs sampling
inference algorithm is able to learn good
synchronous derivations for the PYP-SCFG model.
A number of prior works on alignment with Gibbs
samplers have only evaluated models initialised
with the more complex GIZA ++ alignment models
(Blunsom et al., 2009; DeNero et al., 2008), as a
result it can be difficult to separate the performance
of the sampler from that of the initialisation.
In order to do this, we initialise the sampler

PYP-SCFG
LANGUAGE PAIR MODEL 1 INIT. HMM I NIT.

UR-EN 1.93/2.08 1.45/1.58
ZH-EN 3.47/4.28 1.69/2.37
DE-EN 4.05/4.77 1.50/2.04

Table 4: Average source/target rule lengths in the
PYP-SCFG models after the 500th sample for the
different initialisations.

using just the MODEL 1 distribution used in the
PYP-SCFG model’s base distribution. We denote
this a weak initialisation as no alignment models
outside of those included in the PYP-SCFG model
influence the resulting word alignments. The
BLEU scores for translation systems built from the
five hundredth sample are show in the WEAK M1
INIT. column of Table 3. Additionally we build a
translation system from the MODEL 1 alignment
used to initialise the sampler without using using our
PYP-SCFG model or sampling. BLEU scores are
shown in the MODEL 1 INITIALISATION column
of Table 3. Firstly it is clear MODEL 1 is indeed a
weak initialiser as the resulting translation systems
achieve uniformly low BLEU scores. In contrast, the
models built from the output of the Gibbs sampler
for the PYP-SCFG model achieve BLEU scores
comparable to those of the MODEL 4 BASELINE.
Thus the sampler has moved a good distance from
its initialisation, and done so in a direction that
results in better synchronous derivations.

Strong Initialisation

Given we have established that the sampler can
produce state-of-the-art translation results from a
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weak initialisation, it is instructive to investigate
whether initialising the model with a strong
alignment system, the GIZA ++ HMM (Vogel et
al., 1996), leads to further improvements. Column
HMM INIT. of Table 3 shows the results for
initialising with the HMM word alignments and
sampling for 500 iterations. Starting with a stronger
initial sample results in both quicker mixing and
better translation quality for the same number of
sampling iterations.

Table 4 compares the average lengths of the rules
produced by the sampler with both the strong and
weak initialisers. As the size of the training corpora
increases (UR-EN → ZH-EN → DE-EN) we see that
the average size of the rules produced by the weakly
initialised sampler also increases, while that of the
strongly initialised model stays relatively uniform.
Initially both samplers start out with a large num-
ber of long rules and as the sampling progresses
the rules are broken down into smaller, more gen-
eralisable, pieces. As such we conclude from these
metrics that after five hundred samples the strongly
initialised model has converged to sampling from a
mode of the distribution while the weakly initialised
model converges more slowly and on the longer cor-
pora is still travelling towards a mode. This sug-
gests that longer sampling runs, and Gibbs operators
that make simultaneous updates to multiple parts
of a derivation, would enable the weakly initialised
model to obtain better translation results.

Grammar Analysis

The BLEU scores are informative as a measure of
translation quality but we also explored some of the
differences in the grammars obtained from the PYP-
SCFG model compared to the standard approach. In
Figures 3 and 4 we show some basic statistics of
the grammars our model produces. From Figure 3
we see that the number of unique rules in the PYP-
SCFG grammar decreases steadily as the sampler
iterates through the data, so the model is finding an
increasingly sparser distribution with fewer but bet-
ter quality rules as sampling progresses. Note that
the gradient of the curves appears to be a function of
the size of the corpus and suggests that the model
built from the largeDE-EN corpus would benefit
from a longer sampling run. Figure 4 shows the dis-
tribution of rules with a given arity as a percentage
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Figure 3: Unique grammar rules for each language
pair as a function of the number of samples. The
number of rule types decreases monotonically as
sampling continues. Rule counts are displayed by
normalised corpus size (see Table 2).

X→ 〈底 | end of〉
X→ 〈届全 | ninth 〉*
X→ 〈运作 X | charter X〉
X→ 〈信心 | confidence in〉
X→ 〈中国政府 X | the chinese government X〉

X→ 〈都是 | are〉
X→ 〈新华社北京 X | beijing , X 〉*
X→ 〈有关部门 | departments concerned〉
X→ 〈新华社华盛顿 X | washington , X〉*
X→ 〈鲍威尔 X1了 X2 , | he X1 X2 , 〉*

Table 5: The five highestZH-EN probability rules in
the Hiero grammar built from the PYP-SCFG that
are not in the baseline Hiero grammar (top), and the
top five rules in the baseline Hiero grammar that
are not in the PYP-SCFG grammar (bottom). An
* indicates a bad translation rule.

of the full grammar after the final sampling iteration.
The model prior biases the results to shorter rules as
the vast majority of the model probability mass is on
rules with zero, one or two nonterminals.

Tables 5 and 6 show the most probable rules in the
Hiero translation system obtained using the PYP-
SCFG alignments that are not present in the TM
from the GIZA ++ alignments and visa versa. For
both language pairs, four of the top five rules in
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X→ 〈 yh | it is 〉
X→ 〈 zmyn| the earth〉
X→ 〈 yhy X | the same X〉
X→ 〈 X1 nhyN X2 gy | X2 not be X1 〉
X→ 〈 X1 gY kh X2 | recommend that X2 X1 〉*

X→ 〈 hwN gY | will 〉
X→ 〈 Gyr mlky | international〉*
X→ 〈 X1 *rAye kY X 2 | X2 to X1 sources〉*
X→ 〈 nY X1 nhyN kyA X2 | did not X1 X2 〉*
X→ 〈 xAtwn X1 ky X2 | woman X2 the X1〉

Table 6: Five of the top scoring rules in theUR-EN

Hiero grammar from sampled PYP-SCFG align-
ments (top) versus the baselineUR-EN Hiero gram-
mar rules not in the sampled grammar (bottom). An
* indicates a bad translation rule.
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Figure 4: The percentage of rules with a given arity
in the final grammar of the PYP-SCFG model.

the PYP-SCFG grammar that are not in the heuris-
tically extracted grammar are correct and minimal
phrasal units of translation, whereas only two of the
top probability rules in the GIZA ++ grammar are of
good translation quality.

6 Conclusion and Further Work

In this paper we have presented a nonparametric
Bayesian model for learning SCFGs directly
from parallel corpora. We have also introduced
a novel Gibbs sampller that allows for efficient
posterior inference. We show state-of-the-art
results and learn complex translation phenomena,
including discontiguous and many-to-many

phrasal alignments, without applying any heuristic
restrictions on the model to make learning tractable.
Our evaluation shows that we can use a principled
approach to induce SCFGs designed specifically
to utilize the full power of grammar based SMT
instead of relying on complex word alignment
heuristics with inherent bias.

Future work includes the obvious extension to
learning SCFGs that contain multiple nonterminals
instead of a single nonterminal grammar. We also
expect that expanding our sampler beyond strict
binary sampling may allow us to explore the space
of hierarchical word alignments more quickly
allowing for faster mixing. We expect with these
extensions our model of grammar induction may
further improve translation output.
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Abstract

Multi-document summarization involves
many aspects of content selection and sur-
face realization. The summaries must be
informative, succinct, grammatical, and obey
stylistic writing conventions. We present a
method where such individual aspects are
learned separately from data (without any
hand-engineering) but optimized jointly
using an integer linear programme. The
ILP framework allows us to combine the
decisions of the expert learners and to select
and rewrite source content through a mixture
of objective setting, soft and hard constraints.
Experimental results on the TAC-08 data set
show that our model achieves state-of-the-art
performance using ROUGE and signifi-
cantly improves the informativeness of the
summaries.

1 Introduction

Automatic summarization has enjoyed wide popu-
larity in natural language processing (see the pro-
ceedings of the Document Understanding and Text
Analysis conferences) due to its potential for prac-
tical applications but also because it incorporates
many important aspects of both natural language un-
derstanding and generation. Of the many summa-
rization paradigms that have been identified over the
years (see Sparck Jones (1999) and Mani (2001) for
comprehensive overviews), multi-document sum-
marization — the task of producing summaries from
clusters of thematically related documents — has
consistently attracted attention.

Despite considerable research effort, the auto-
matic generation of multi-document summaries that
resemble those written by humans remains chal-
lenging. This is primarily due to the task itself
which is complex and subject to several constraints:
the summary must be maximally informative and
minimally redundant, grammatical, coherent, adhere
to a pre-specified length and stylistic conventions.
An ideal model would learn to output summaries
that simultaneously meet all these constraints from
data (i.e., document clusters and their correspond-
ing summaries). This global inference problem is,
however, hard — the solution space is large and the
lack of easily accessible datasets an obstacle to joint
learning. It is thus no surprise that previous work has
focused on specific aspects of joint learning.

Initial global formulations of the multi-document
summarization task focused on extractive summa-
rization and used approximate greedy algorithms for
finding the sentences of the summary. Goldstein et
al. (2000) search for the set of sentences that are
both relevant and non-redundant, whereas Filatova
and Hatzivassiloglou (2004) model multi-document
summarization as an instance of the maximum cov-
erage set problem.1 More recent work improves on
the search problem by considering exact solutions
and permits a limited amount of rewriting. McDon-
ald (2007) proposes an integer linear programming
formulation that maximizes the sum of relevance
scores of the selected sentences penalized by the

1Given C, a finite set of weighted elements, a collection T of
subsets of C, and an integer k, find those k sets that maximize the
total number of elements in the union of T ’s members (Hochba,
1997).
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sum of redundancy scores of all pairs of selected
sentences. Gillick et al. (2008) develop an exact so-
lution for a model similar to Filatova and Hatzivas-
siloglou (2004) under the assumption that the value
of a summary is the sum of values of the unique con-
cepts (approximated by bigrams) it contains. Subse-
quent work (Gillick et al., 2009; Berg-Kirkpatrick et
al., 2011) extends this model to allow sentence com-
pression in the form of word or constituent deletion.

In this paper we propose a model for multi-
document summarization that attempts to cover
many different aspects of the task such as content se-
lection, surface realization, paraphrasing, and stylis-
tic conventions. These aspects are learned separately
using specific “expert” predictors, but are optimized
jointly using an integer linear programming model
(ILP) to generate the output summary.2 All experts
are learned from data without requiring additional
annotation over and above the summaries written
for each document cluster. Our predictors include
the use of unique bigram information to model con-
tent and avoid redundancy, positional information to
model important and poor locations of content, and
language modeling to capture stylistic conventions.
Learning each predictor separately gives better gen-
eralization, while the ILP framework allows us to
combine the decisions of the expert learners through
the use of objectives, hard and soft constraints.

The experts work collaboratively to rewrite the
content using rules extracted from document clusters
and model summaries. We adopt the synchronous
tree substitution grammar (STSG) formalism (Eis-
ner, 2003) which can model non-isomorphic tree
structures (the grammar rules can comprise trees of
arbitrary depth) and is thus suited to text-rewriting
tasks which typically involve a number of local mod-
ifications to the input text. Specifically, we pro-
pose quasi-synchronous tree substitution grammar
(QTSG) as a flexible formalism to learn general tree-
edits from loosely-aligned phrase structure trees.

We evaluate our model on the 100-word “non-

2Our task is standard multi-document summarization and
should not be confused with “guided” summarization where
system and human summarizers are given a list of important
aspects to cover in the summary. Our usage of the term aspects
broadly refers to the different types of constraints (e.g., relating
to content or style) a summary must meet, but these are learned
rather than specified in advance.

update” summarization task as defined in the the
Text Analysis Conference (TAC 2008). Experimen-
tal results show that our method obtains perfor-
mance comparable and in some cases superior to
state-of-the-art, in terms of ROUGE and human rat-
ings of summary grammaticality and informative-
ness. Importantly, there is nothing inherent in our
model that is specific to this particular summariza-
tion task. As all of the different experts are learned
from data, it could easily adapt to other summariza-
tion styles or conventions as needed.

2 Related work

Recent years have seen increased interest in global
inference methods for summarization. ILP-based
models have been developed for several subtasks
ranging from sentence compression (Clarke and La-
pata, 2008), to single- and multi-document sum-
marization (McDonald, 2007; Martins and Smith,
2009; Gillick and Favre, 2009; Woodsend and Lap-
ata, 2010; Berg-Kirkpatrick et al., 2011), and head-
line generation (Deshpande et al., 2007; Wood-
send et al., 2010). Most of these approaches are ei-
ther purely extractive or implement a single rewrite
operation, namely word deletion. Although it is
well-known that hand-written summaries often ex-
hibit additional edits and sentence recombinations
(Jing, 2002), the challenges involved in acquiring
the rewrite rules, interfacing them with inference,
and ensuring grammatical output make the develop-
ment of abstractive models non-trivial.

Our work is closest to Gillick et al. (2008) who
also develop an ILP model for multi-document sum-
marization. A key assumption in their model which
we also follow is that input documents contain a
variety of concepts, each of which are allocated a
value, and the goal of a good summary is to max-
imize the sum of these values subject to the length
constraint. The authors use bigrams as concepts and
their frequency in the input documents as a proxy
for their value. This model can also perform sen-
tence compression (see also Gillick et al. (2009)),
however, the deletion rules are hand-coded. Berg-
Kirkpatrick et al. (2011) build on this work by re-
casting it as a structured prediction problem. They
essentially combine the same bigram content scor-
ing system with features relating to the parse tree
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which they learn using a maximum-margin SVM
trained on annotated gold-standard compressions.

Our multi-document summarization model jointly
optimizes different aspects of the task involving both
content selection and surface realization. Each indi-
vidual aspect has its own dedicated expert, which we
argue is advantageous as it renders inference simpler
and affords flexibility (e.g., additional aspects can be
incorporated into the model or trained separately on
different datasets). Our work differs from Gillick et
al. (2009) and Berg-Kirkpatrick et al. (2011) in three
important respects. Firstly, we develop a genuinely
abstractive model that is not limited to deletion.
Our rewrite rules are encoded in quasi-synchronous
tree substitution grammar and learned automatically
from source documents and their summaries. Un-
like previous applications of STSG to sentence com-
pression (Cohn and Lapata, 2009; Cohn and Lap-
ata, 2008) our quasi-synchronous TSG does not at-
tempt to learn the complete translation from source
to target sentence; it only loosely links the syntactic
structure of the two (Smith and Eisner, 2006), and
is therefore well suited to describing the relation-
ship between documents and their abstracts. Sec-
ondly, our content selection component extends to
features beyond the bigram horizon, as we learn to
identify important concepts based on syntactic and
positional information. We also learn which words
are unlikely to appear in a summary. Thirdly, unlike
Berg-Kirkpatrick et al. (2011) our model does not
try to learn all the parameters (e.g., content, rewrite
rules, style) of the summarization problem jointly;
although decoupling learning from inference is per-
haps less elegant from a modeling perspective, the
learning process is more robust and reliable.

3 Modeling

There are many aspects to producing a good sum-
mary of multiple documents. The important con-
tent needs to be captured, typically key facts in
each individual document, and information seen
across the cluster. Stylistic features may be differ-
ent in the summary from original documents. For
instance, summaries tend to use more concise lan-
guage, sources are not attributed as they are in news
articles, and relative dates are not included. In addi-
tion, the summary must be fluent, coherent, and re-

spect a pre-specified maximum length requirement.
We present an approach where elements of all the

above considerations are learned from training data
by separate dedicated components, and then com-
bined in an integer linear programme. Content se-
lection is performed partly through identifying the
most salient topics (bigrams); an additional compo-
nent learns to identify which information from the
source documents should be in the summary based
on positional information. Meanwhile, in terms of
surface realization, a language model identifies the
words that should not be in the output summaries,
whereas a separate component learns to exclude
sentences that are poor candidates for summaries.
QTSG rules, learned from the training corpus, are
used to generate alternative compressions and para-
phrases of the source sentences, in the style suit-
able for the summaries. Finally, an ILP model com-
bines the output of these components into a sum-
mary, jointly optimizing content selection and sur-
face realization preferences, and providing the flexi-
bility to treat some components as soft while others
as hard constraints.

3.1 Document Representation

Given an input sentence, our approach deconstructs
it into component phrases and clauses, typical of a
phrase structure parser. In our experiments, we ob-
tain this representation from the output of the Stan-
ford parser (Klein and Manning, 2003) but any other
broadly similar parser could be used instead. Nodes
in the parse tree represent points where QTSG rules
can be applied (and paraphrases generated), and they
also represent decision points for the ILP. In the fol-
lowing, we will refer to these decision nodes as the
set N , and decisions for each node using the binary
variable zi, i ∈N .

3.2 Content Selection Using Bigrams

We follow Gillick et al. (2008) in modeling the infor-
mation content of the summary as the weighted sum
of the individual information units it contains. We
represent information units as the set of bigrams B
seen in the source documents. The weight w of each
bigram is calculated from the number of source doc-
uments where the bigram was seen. The summary is
thus given the score fB(z), i.e., the weighted sum of
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its information units:

fB(z) = ∑
j∈B

w jb j (1)

where w j is the weight of concept j, b j a binary vari-
able to indicate if concept j is present in the sum-
mary, and j ∈ B .

Importantly, each information unit is counted only
once; this encourages wide coverage of the source
documents, and removes any drive towards redun-
dant information without actively discouraging it,
contrary to other global formulations where redun-
dancy measures form part of the objective (McDon-
ald, 2007). The counting mechanism is achieved by
linking the variables z indicating nodes in the parse
tree and b indicating bigrams:

b j ≤ ∑
i∈N : j∈Bi

zi ∀ j ∈ B (2)

where Bi ⊂ B is the subset of bigrams that are con-
tained in node i. A drawback of the global nature
of this counting mechanism, however, is that it can-
not be integrated with local features such as those
described below; our approach takes local features
into account but these are weighted by other compo-
nents.

3.3 Content Selection Using Salience

The bigram approach is a powerful method for
identifying important concepts within the document
cluster. It works particularly well in the sentence ex-
traction paradigm. However, additional elements are
known to be good predictors of important informa-
tion. Examples include the position of a sentence
in the document (e.g., first sentences often con-
tain salient information), whether it contains proper
nouns, numbers, pronouns, mentions of money, and
so on. We decided to learn which of these elements
(represented as nodes in the parse tree) are infor-
mative from training data. Specifically, sentences
in the cluster documents were aligned to sentences
from corresponding human summaries. Alignment
was based rather simply on identifying the sentence
pairs with the highest number of overlapping bi-
grams, without compensating for sentence length, or
matching the sequence of information in the sum-
maries and source documents (Nelken and Schieber,

Weight Feature
1.21 From first sentence in document
0.73 Contains proper nouns
0.68 Contains nouns
0.57 From first paragraph
0.53 From first three sentences
0.51 Contains numbers

-0.50 Contains pronouns
0.32 Contains money

Table 1: Weights and features of SVM that predicts the
salience of summary content. Negative weights indicate
information that should not be included in the summary.

2006). Matched sentences in the source documents
were given positive labels, while unaligned sen-
tences were given negative labels. These labels were
then propagated to phrase structure nodes.

We trained an SVM on this data (tree nodes and
their labels) using surface features that do not over-
lap with bigram information: sentence and para-
graph position, POS-tag information. Table 1 shows
the most important features learned by the model as
predictors of salient content.

The summary can be given a salience score fS (z)
using the raw SVM prediction scores of the individ-
ual parse tree nodes:

fS (z) = ∑
i∈N

(Φ(i) ·θ)zi (3)

where Φ(i) is the feature vector for node i, and θ the
weights learned by the SVM.

3.4 Surface Realization Using Style
Some sentences in the source documents will make
poor summary sentences, despite the information
they contain, and therefore contrary to the predic-
tions of the content selection indicators described
above. This may be because the source sentence is
very short, or is expressed as a quotation, or con-
tains many pronouns that will not be resolved when
the sentence is extracted.

Our idea is to learn which sentences are poor from
a stylistic perspective using again aligned training
data. We train a second SVM on the aligned sen-
tences and their labels using surface features at the
sentence level, such as sentence length and POS-tag
information. The most important features learned by
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Weight Feature
-1.04 Word count less than 10
-0.83 Word count less than 20
-0.30 Question
-0.30 Quotation
-0.14 Personal pronouns

Table 2: Weights and features of SVM that predicts poor
candidate sentences.

the model as predictors of poor sentences, and the
weights assigned to them, are shown in Table 2.

The predictions of the SVM are incorporated into
the ILP as a hard constraint, by forcing all parse tree
nodes within those sentences predicted as poor (the
set N −) to be zero:

zi = 0 ∀i ∈N −. (4)

3.5 Surface Realization Using Lexical
Preferences

Human-written summaries differ from the source
news articles in a number of ways. They delete ex-
traneous information, merge material from several
sentences, employ paraphrases and syntactic trans-
formations, change the order of the source sentences
and replace phrases or clauses with more general
or specific descriptions. We could attempt to learn
the “language of summaries” with a language model
which we could then use to guide the generation
process (e.g., by producing maximally probable out-
put). Aside from the logistics of gathering training
data large enough to provide robust estimates, we
believe that a more compelling approach is to focus
on the words that are unlikely to appear in the sum-
mary despite appearing in the source documents.

A comparison of the language models generated
from the source documents and model summaries,
even at the unigram level, is revealing. Table 3 shows
lexemes that appear in both source and summary
documents, but where the likelihood of the lexeme
appearing in the summary is much less than that
of it appearing the document, taking into account
that the summary is much shorter anyway. The fi-
nal column shows the log10-ratio (L(w)) between
the two probabilities. We can see that least prob-
able words are those that correspond to attribut-
ing information sources (e.g., said, told, according

Lexeme w Source Summary L(w)
count count

say 5670 88 -1.63
go 638 11 -1.52
last 616 9 -1.69
get 543 15 -1.05
tell 512 8 -1.62
come 488 12 -1.17
know 404 9 -1.27
monday 391 8 -1.35
think 382 7 -1.46
next 239 7 -0.99
spokesman 197 4 -1.36

Table 3: Counts of lexemes in the source news articles and
summaries, and measure of the ratio of their probabilities
(for most common lexemes with ratio <−0.95).

to, spokesman), dates described relatively (e.g., last
Monday), and events that are in the process of hap-
pening (e.g., coming, going).

As the amount of training data tends to be lim-
ited — there are usually only a few human-written
summaries available per document cluster — we
use a unigram language model, but conceivably a
longer-range n-gram could be employed in the same
vein. We incorporate preferences about summary
language into the model as a soft constraint. The
log-ratio values fLR (z) are included in the objective
and defined at the tree node level:

fLR (z) = ∑
i∈N

∑
w∈Wi

L(w)zi (5)

where L(w), w ∈Wi is the log-ratio value for an in-
dividual word w:

L(w) = log10
Psrc(w)

Psum(w)
,

Psrc(w) and Psum(w) are the probabilities of word w
appearing in the source and summary documents re-
spectively, and Wi is the set of words at parse tree
node i. Importantly, we include only those those lex-
emes with negative L(w) values. This guides the
model away from the kind of phrases described
above, but not towards any particular language pref-
erences.
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3.6 Quasi-synchronous Tree Substitution
Grammar

Rewrite rules involving substitutions, deletions and
reorderings are captured in our model using a quasi-
synchronous tree substitution grammar. Given an in-
put (source) sentence S1 or its parse tree T1, the
QTSG contains rules for generating possible trans-
lation trees T2. A grammar node in the target tree T2
is modeled on a subset of nodes in the source tree,
with a rather loose alignment between the trees.

We extract QTSG rules from aligned source
and summary sentence pairs represented by their
phrase structure trees. Our algorithm builds up a
list of leaf node alignments based on lexical iden-
tity. Direct parent nodes are aligned where more
than one child node aligns. This quasi-synchronous
“bottom-up” process gives us better ability to match
non-isomorphic structures. We do not assume an
alignment between source and target root nodes, nor
do we require a surjective alignment of all target
nodes to the source tree. QTSG rules are then cre-
ated from aligned nodes above the leaf node level if
all the nodes in the target tree can be explained us-
ing nodes from the source. Individual rewrite rules
describe the mapping of source tree fragments into
target tree fragments, and so the grammar represents
the space of valid target trees that can be produced
from a given source tree (Eisner, 2003; Cohn and
Lapata, 2009).

Examples of the most frequent QTSG rules
learned by the above process are shown in Figure 1.
Many of the rules relate to the compression of noun
phrases through deletion, and examples are shown
in the upper box. Others capture the compression of
verb phrases (middle box). An important rewrite op-
eration is the abstraction of a sentence from a more
complex source sentence, adding final punctuation if
necessary (lower box).

At generation, paraphrases are created from
source sentence parse trees by identifying and ap-
plying QTSG rules with matching structure. The
transduction process starts at the root node of the
parse tree, applying QTSG rules to sub-trees un-
til leaf nodes are reached. Note that we do not use
the Bayesian probability model normally associated
with quasi-synchronous grammars (Smith and Eis-
ner, 2006); instead, we ask the QTSG to provide

〈NP, NP〉 → 〈[NP 1 PP], [NP 1 ]〉
〈NP, NP〉 → 〈[NP 1 VP], [NP 1 ]〉
〈NP, NP〉 → 〈[NP 1 SBAR], [NP 1 ]〉
〈NP, NP〉 → 〈[NP 1 , NP ,], [NP 1 ]〉
〈NP, NP〉 → 〈[NP 1 CC NP], [NP 1 ]〉
〈NP, NP〉 → 〈[NNP NNP 1 ], [NNP 1 ]〉
〈NP, NP〉 → 〈[DT 1 JJ NN 2 ], [DT 1 NN 2 ]〉
〈VP, VP〉 → 〈[VP 1 CC VP], [VP 1 ]〉
〈VP, VP〉 → 〈[VP CC VP 1 ], [VP 1 ]〉
〈VP, VP〉 → 〈[VP 1 , CC VP], [VP 1 ]〉
〈S, S〉 → 〈[NP 1 VP 2 ], [NP 1 VP 2 .]〉
〈S, S〉 → 〈[ADVP , NP 1 VP 2 .], [NP 1 VP 2 .]〉

Figure 1: Examples of most frequently learned QTSG
rules. Boxed subscripts show aligned nodes.

paraphrases that are acceptable rather than probable,
and generate all paraphrases licensed by the QTSG.

The alternative paraphrases are incorporated into
the target phrase structure tree as choices that the
ILP can make. We use the set C ⊂ N to be the
set of nodes where a choice of paraphrases is avail-
able, and Ci ⊂N , i ∈ C to be the actual paraphrases
of i. Where there are alternatives, it makes sense of
course to select only one, which we implement using
the constraint:

∑
j∈Ci

z j = zi ∀i ∈ C , j ∈ Ci (6)

More generally, we need to constrain the output to
ensure that a parse tree structure is maintained. For
each node i ∈N , the set Di ⊂N contains the list of
dependent nodes (both ancestors and descendants)
of node i, so that each set Di contains the nodes that
depend on the presence of i. We introduce a con-
straint to force node i to be present if any of its de-
pendent nodes are chosen:

z j→ zi ∀i ∈N , j ∈Di (7)

3.7 The ILP Objective
The model we propose for generating a multi-
document summary is expressed as an integer linear
programme and incorporates the content selection
and surface realization preferences, as well as the
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soft and hard constraints described in the preceding
sections. The objective of the optimization problem
is to maximize the score contributed by the various
elements of content selection ( fB(z) and fS (z)) and
soft surface realization constraints ( fLR (z)) :

max
z

fB(z)+ fS (z)+ fLR (z) (8)

This objective is subject to the constraints (2), (4),
(6), and (7) that represent hard constraint decisions,
or maintain the logical integrity of the model. An
overall length constraint completes the model:

∑
i∈N

lizi ≤ lmax (9)

where li is the number of words generated by choos-
ing node i, and lmax is the global word length limit.

Note that the scores in the objective are for each
tree node and not each sentence. This affords the
model flexibility: the content selection elements are
generally not competing with each other to give a
decision on a sentence (see McDonald (2007)). In-
stead, components are marking positive and nega-
tive nodes. The ILP is implicitly searching the gram-
mar rules for ways to rewrite the sentence, with the
aim of including the salient nodes while removing
negative-scoring nodes (deleting them increases the
score of the node to zero). Figure 2 shows an exam-
ple of a source sentence where the bigram, salience
and language preference components of the ILP
work together to score nodes in the parse tree. The
nodes NP 1 , VP 3 and VP 4 all have positive scores,
while “said Tuesday” is negative. As a rewrite pos-
sibility, the rewrite rule shown bottom left is avail-
able, which will remove the negative node. Further
rewrite rules allow VP 2 to be compressed. The out-
put actually generated by the model used sub-trees
(b) and (d) — the final text is included in Table 6.

4 Experimental Set-up

Data Our model was evaluated on the TAC non-
update multi-document summarization task which
involves generating a 100-word-limited summary
from a cluster of 10 related input documents; ad-
ditionally, TAC provides a set of four model sum-
maries for each cluster, written by human experts.
We used the 44 document clusters from TAC-2009
as training data, to learn the different elements of

the model. The 48 document clusters of TAC-2008
were reserved for the generation of test summaries.3

Training The two components described in Sec-
tions 3.3 and 3.4 were trained using binary SVM
classifiers, with labels inferred automatically via
alignment. The salience classifier was trained on
102,754 node instances (16,042 positive and 86,712
negative). The style classifier was trained on 20,443
sentence instances (2,083 positive and 18,360 neg-
ative). We learned the feature weights with a linear
SVM, using the software SVM-OOPS (Woodsend
and Gondzio, 2009). Because of the high compres-
sion rate in this task, sentence alignment leads to an
unbalanced data set. We compensated for this by us-
ing different SVM hyper-parameters C+ and C− as
the loss multiplier for misclassification of positive
and negative training samples respectively. SVM
hyper-parameters were chosen that gave the high-
est F1 values using 10-fold cross-validation. The
salience SVM obtained a precision of 0.28 and re-
call of 0.43. Precision for the style SVM was 0.20
and recall 0.63, respectively. The classifiers on their
own would thus not be great predictors of salience
or style, but in practice they were useful for break-
ing ties in bigram scores.

Aligned sentences from the training data were
also used to learn the quasi-synchronous tree sub-
stitution grammar, using the process described in
Section 3.6. Rules seen fewer than 3 times were re-
moved, resulting in a total of 339 QTSG rules. Two
unigram language models (see Section 3.5) were
trained on the source articles and summaries, respec-
tively. Their probabilities were compared to give the
word list shown in Table 3. We removed words with
a source count less than 50, providing a list of 60 lex-
emes. The resulting integer linear programmes were
solved using SCIP,4 and it took 55 seconds on aver-
age to read in and solve a document cluster problem.

Evaluation We compared our model against two
systems. As a baseline, we used the ICSI-1 extrac-
tive system (Gillick et al., 2008) which is also based
on ILP and was highly ranked in the TAC-2008
evaluation. We also compared against the “learned
phrase compression” system of Berg-Kirkpatrick et

3This split follows Berg-Kirkpatrick et al. (2011).
4http://scip.zib.de/
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(a) S

.

.

VP

said Tuesday

NP

a top space
official

,

,

S

VP 2

SBAR 4

if its maiden unmanned spacecraft Chandrayaan-1,
slated to be launched by 2008, is successful in
mapping the lunar surface

VP 3

will launch more mis-
sions to the moon

NP 1

India

(b) S

.VP 2NP 1

(c) VP 2

VP 3

(d) VP 2

SBAR 4VP 3

〈S, S〉 →
〈[NP 1 VP 2 ], [NP 1 VP 2 .]〉

〈VP 2 , VP 2 〉 →
〈[VP 3 SBAR], [VP 3 ]〉

〈VP 2 , VP 2 〉 →
〈[VP 3 SBAR 4 ], [VP 3 SBAR 4 ]〉

Figure 2: Sentence representation provided to the ILP. (a) The source sentence representation (child nodes condensed
for space reasons). Bigrams are shown in bold, slanted text indicates phrases with high salience scores fS , while said
Tuesday is penalized by fLR . Alternative sub-trees (b), (c) and (d) are created using QTSG rules (dashed lines). The
output sentence (see Table 6) was generated from sub-trees (b) and (d).

al. (2011) (henceforth B-K), which has the highest
reported ROUGE scores that we are aware of.5 In
addition to the full model described in Section 3, we
also produced outputs where each of the five compo-
nents described in Sections 3.2–3.6 were removed,
to assess their individual contribution.

We evaluated the output summaries in two ways,
using automatic measures and human judgements.
Automatic evaluation was performed with ROUGE

(Lin and Hovy, 2003) using TAC-2008 parame-
ter settings. We report bigram overlap (ROUGE-2)
and skip-bigram (ROUGE-SU4) recall values. We
also used Translation Edit Rate (TER, Snover et al.
(2006)) to examine the systems’ rewrite potential.
TER is defined as the minimum number of edits
(insertions, deletions, substitutions, and shifts) re-
quired to change the system output so that it exactly
matches a reference (here, the reference is the most
closely aligning source sentence). The perfect TER
score is 0, however note that it can be higher than 1
due to insertions.

Our judgement elicitation study was conducted
as follows. We randomly selected ten document

5We are grateful to Taylor Berg-Kirkpatrick for making his
system output available to us.

clusters from the test set and generated summaries
with our model (and its lesser variations). We also
included the corresponding ICSI-1 and B-K sum-
maries, and one randomly-selected model summary.
The study was conducted over the Internet using
Mechanical Turk and was completed by 54 volun-
teers, all self reported native English speakers. Par-
ticipants were first asked to read the documents in
each cluster. Next, they were asked a few compre-
hension questions to ensure they had understood and
processed the documents. Finally, they were pre-
sented with a summary and asked to rate it along
two dimensions: grammaticality (is the summary
fluent and grammatical?), and informativeness (are
the main topics captured in the summary?). The sub-
jects used a 1–5 rating scale, with half-points al-
lowed. Participants who declared themselves as non-
native English speakers, did not answer the compre-
hension questions correctly or took only a few min-
utes to complete the task were eliminated.

5 Results

Our results are summarized in Table 4. Let us first
discuss those obtained using ROUGE-2 (2-R) and
ROUGE-SU4 (SU4-R) recall values. As can be seen
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Models ROUGE TER (%) Sentences
2-R SU4-R Ins Del Sub Shift Count CR (%) Mod (%)

ICSI-1 11.03 13.96 — — — — 200 — —
B-K 11.71 14.47 0.2 26.2 2.3 0.4 216 74.0 63.9
MA-ILP 11.37 14.47 0.7 11.6 5.3 0.6 191 89.1 61.8
ILP w/o bigrams 9.24 12.66 0.8 15.4 11.8 1.2 205 85.4 80.0
ILP w/o salience 11.38 14.71 1.1 19.1 12.0 1.3 233 82.1 92.3
ILP w/o style 11.83 15.09 1.4 17.4 18.9 1.7 271 84.1 86.3
ILP w/o log-ratio 11.41 14.70 1.2 16.9 12.5 1.5 223 84.3 90.1
ILP w/o QTSG 10.32 13.68 0 0 0 0 163 100.0 0

Table 4: Performance of the multiple-aspect ILP model against comparison systems using ROUGE and the four com-
ponents of TER (insertion, deletion, substitution, shifts). In the lower section, performance of our model without (w/o)
each component in turn. The final columns show the number of source sentences, the average compression ratio, and
the proportion of sentences modified.

from the upper section of Table 4, the systems incor-
porating some form of rewriting gain slightly higher
ROUGE scores than ICSI-1. The multiple aspects
ILP system (MA-ILP) yields ROUGE scores simi-
lar to B-K, despite performing rewriting operations
which increase the scope for error and without re-
quiring any hand-crafted compression rules or man-
ually annotated training data. Indeed, the outputs of
the two systems are not significantly different under
ROUGE (using a paired t-test, p > 0.5).

In the lower section of Table 4, we show the per-
formance of our model when each of the contribut-
ing components described in Section 3 are removed.
Clearly the bigram content indicators are an impor-
tant element for the ROUGE scores, as their removal
yields a reduction of 2.46 points (see the row ILP
w/o bigrams in Table 4). The model without QTSG
rules (ILP w/o QTSG) is effectively limited to sen-
tence extraction, and removing rewrite rules also
lowers ROUGE scores to levels similar to ICSI-1.
ROUGE scores are increased by allowing the model
to select “poor quality” sentences (ILP w/o style),
higher indeed than those of the B-K system. The
inclusion of non-summary language (ILP w/o log-
ratio) does not affect ROUGE scores to the same ex-
tent that bigrams and QTSG do.

Table 4 includes a break-down of the systems’
rewrite operations as measured by TER. We also
show the number of source sentences (Count), the
average compression ratio (CR %) and the propor-
tion of sentences modified (Mod %) by each system.
As can be seen, MA-ILP draws on fewer sentences,

Models Grammar Inform
ICSI-1 4.68 2.55
B-K 4.40 2.70
MA-ILP 4.68 3.90
ILP w/o style 3.30 2.67
Gold 4.90 4.75

Table 5: Mean ratings on system output output.

performs less deletion and more rewriting than B-K.
The number of deletions increases when individual
ILP components are removed and so does the num-
ber of substitutions. All the subsystems are more ag-
gressive in their rewriting than when used in com-
bination (higher TER, higher compression rate and
a larger number of sentences are modified). Expect-
edly, when removing the QTSG rules, the ILP is lim-
ited to a pure extractive system (last row in Table 4).

The results of our human evaluation study are
shown in Table 5. We elicited grammaticality and in-
formativeness ratings for a randomly selected model
summary, ICSI-1, B-K, the multiple aspect ILP
(MA-ILP), and the ILP w/o style which we in-
cluded in this study as it performed best under
ROUGE. ICSI-1, B-K, and MA-ILP are rated highly
on the grammaticality dimension. MA-ILP is in-
distinguishable from the sentence extraction sys-
tem (ICSI-1). Both systems are significantly more
grammatical than B-K (α < 0.05, using a Post-hoc
Tukey test). Notice that summaries created by the
ILP w/o style are rated poorly by humans, contrary
to ROUGE. The style component stops very short
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Florida’s Governor Jeb Bush asked the US
Supreme Court to intervene to keep a comatose
woman alive, over the wishes of her husband,
who wants to disconnect the feeding tube that
has sustained her for 14 years. Her husband,
Michael Schiavo, and her parents, Robert and
Mary Schindler, have conflicts of interest that pre-
vent them from fairly deciding whether to keep
her alive. Some doctors have testified that Terri
Schiavo is in a persistent vegetative state with
no hope for recovery. The state House in Florida
passed a bill Thursday to extend life support for a
brain-damaged woman.

The space agencies of India and France signed an
agreement to cooperate in launching a satellite in
four years that will help make climate predictions
more accurate. The Indian Space Research Orga-
nization (ISRO) has short-listed experiments from
five nations including the United States, Britain
and Germany, for a slot on India’s unmanned
moon mission Chandrayaan-1 to be undertaken
by 2006-2007, the Press Trust of India (PTI) re-
ported Monday. India will launch more missions
to the moon if its maiden unmanned spacecraft
Chandrayaan-1, slated to be launched by 2008, is
successful in mapping the lunar surface.

Table 6: Example summaries generated by the multiple
aspects model (MA-ILP).

sentences and quotations from being included in the
summary even if they have quite high bigram or
content scores. Without it, the model tends to gen-
erate summaries that are fragmentary and lacking
proper context, resulting in lower grammaticality
(and informativeness) when judged by humans. The
MA-ILP system obtains the highest rating with re-
spect to information content. It is significantly better
(α < 0.05) than ICSI-1 and B-K. This is not entirely
surprising as our model includes additional content
selection elements over and above the bigram units.
There is still a significant gap from all systems to the
gold-standard human-authored summaries. Example
output summaries of the full ILP model are shown in
Table 6.

Overall, we obtain best results when considering

the contributions from the individual model experts
collectively. This suggests that additional improve-
ments could be obtained with more experts. It is also
possible that optimizing the relative weightings of
experts in the ILP objective would improve output.
The TER analysis shows that the experts have a tem-
pering effect on each other, resulting in less aggres-
sive, but qualitatively better, rewriting than when
used individually. Generally, experts work together
to shape an output sentence, but they can also com-
pete. In the future, we also plan to test the ability
of the model to adapt to other multi-document sum-
marization tasks, where the location of summary in-
formation is not as regular as it is in news articles.
We would also like interface our model with sen-
tence ordering and more generally with some notion
of the coherence of the generated summary.
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Abstract

Comprehension and corpus studies have found
that the tendency to minimize dependency
length has a strong influence on constituent or-
dering choices. In this paper, we investigate
dependency length minimization in the con-
text of discriminative realization ranking, fo-
cusing on its potential to eliminate egregious
ordering errors as well as better match the dis-
tributional characteristics of sentence order-
ings in news text. We find that with a state-
of-the-art, comprehensive realization rank-
ing model, dependency length minimization
yields statistically significant improvements
in BLEU scores and significantly reduces
the number of heavy/light ordering errors.
Through distributional analyses, we also show
that with simpler ranking models, dependency
length minimization can go overboard, too of-
ten sacrificing canonical word order to shorten
dependencies, while richer models manage to
better counterbalance the dependency length
minimization preference against (sometimes)
competing canonical word order preferences.

1 Introduction

In this paper, we show that for the constituent or-
dering problem in surface realization, incorporating
insights from the minimal dependency length the-
ory of language production (Temperley, 2007) into a
discriminative realization ranking model yields sig-
nificant improvements upon a state-of-the-art base-
line. We demonstrate empirically using OpenCCG,
our CCG-based (Steedman, 2000) surface realiza-
tion system, the utility of a global feature encoding

the total dependency length of a given derivation.
Although other works in the realization literature
have used phrase length or head-dependent distances
in their models (Filippova and Strube, 2009; Velldal
and Oepen, 2005; White and Rajkumar, 2009, i.a.),
to the best of our knowledge, this paper is the first
to use insights from the minimal dependency length
theory directly and study their effects, both qualita-
tively and quantitatively.

The impetus for this paper was the discovery
that despite incorporating a sophisticated syntac-
tic model borrowed from the parsing literature—
including features with head-dependent distances at
various scales—White & Rajkumar’s (2009) real-
ization ranking model still often performed poorly
on weight-related decisions such as when to em-
ploy heavy-NP shift. Table 1 illustrates this point.
In wsj 0034.9, the full model (incorporating numer-
ous syntactic features) succeeds in reproducing the
reference sentence, which is clearly preferable to
the rather awkward variant selected by the base-
line model (using various n-gram models). How-
ever, in wsj 0013.16, the full model fails to shift the
temporal modifier for now next to the phrasal verb
turned down, leaving it at the end of its very long
verb phrase where it is highly ambiguous (with mul-
tiple intervening attachment sites). Conversely, in
wsj 0044.3, the full model shifts before next to the
verb, despite the NP cheating being very light, yield-
ing a very confusing ordering given that before is
meant to be intransitive.

The syntactic features in White & Rajku-
mar’s (2009) realization ranking model are taken
from Clark & Curran’s (2007) normal form model
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wsj 0034.9 they fell into oblivion after the 1929 crash .
FULL [same]
BASELINE they fell after the 1929 crash into oblivion .

wsj 0013.16 separately , the Federal Energy Regulatory Commission [V P turned down for now [NP a request
by Northeast [V P seeking approval of [NP its possible purchase of PS of New Hampshire]]]] .

FULL separately , the Federal Energy Regulatory Commission [V P turned down [NP a request by North-
east [V P seeking approval of [NP its possible purchase of PS of New Hampshire]]] for now] .

wsj 0044.3 she had seen cheating before , but these notes were uncanny .
FULL she had seen before cheating , but these notes were uncanny .

Table 1: Examples of OpenCCG output with White & Rajkumar’s (2009) models—the first represents a successful
case, the latter two egregious ordering errors

(Table 3; see Section 3). In this model, head-
dependenct distances are considered in conjunc-
tion with lexicalized and unlexicalized CCG deriva-
tion steps, thereby appearing in numerous features.
As such, the model takes into account the inter-
action of dependency length with derivation steps,
but in essence does not consider the main ef-
fect of dependency length itself. In this light,
our investigation of dependency length minimiza-
tion can be viewed as examining the question of
whether realization ranking models can be made
more accurate—and in particular, avoid egregious
ordering errors—by incorporating a feature to ac-
count for the main effect of dependency length.

It is important to observe at this point that de-
pendency length minimization is more of a prefer-
ence than an optimization objective, which must be
balanced against other order preferences at times.
A closer reading of Temperley’s (2007) study re-
veals that dependency length can sometimes run
counter to many canonical word order choices. A
case in point is the class of examples involving
pre-modifying adjunct sequences that precede both
the subject and the verb. Assuming that their par-
ent head is the main verb of the sentence, a long-
short sequence would minimize overall dependency
length. However, in 613 examples found in the Penn
Treebank, the average length of the first adjunct was
3.15 words while the second adjunct was 3.48 words
long, thus reflecting a short-long pattern, as illus-
trated in the Temperley p.c. example in Table 2.
Apart from these, Hawkins (2001) shows that argu-
ments are generally located closer to the verb than
adjuncts. Gildea and Temperley (2007) also suggest

that adverb placement might involve cases which go
against dependency length minimization. An exam-
ination of 295 legitimate long-short post-verbal con-
stituent orders (counter to dependency length) from
Section 00 of the Penn Treebank revealed that tem-
poral adverb phrases are often involved in long-short
orders, as shown in wsj 0075.13 in Table 2. In our
setup, the preference to minimize dependency length
can be balanced by features capturing preferences
for alternate choices (e.g. the argument-adjunct dis-
tinction in our dependency ordering model, Table 4).
Via distributional analyses, we show that while sim-
pler realization ranking models can go overboard
in minimizing dependency length, richer models
largely succeed in overcoming this issue, while still
taking advantage of dependency length minimiza-
tion to avoid egregious ordering errors.

2 Background

2.1 Minimal Dependency Length

Comprehension and corpus studies (Gibson, 1998;
Gibson, 2000; Temperley, 2007) point to the ten-
dency of production and comprehension systems to
adhere to principles of dependency length minimiza-
tion. The idea of dependency length minimization
is based on Gibson’s (1998) Dependency Locality
Theory (DLT) of comprehension, which predicts
that longer dependencies are more difficult to pro-
cess. DLT predictions have been further validated
using comprehension studies involving eye-tracking
corpora (Demberg and Keller, 2008). DLT metrics
also correlate reasonably well with activation de-
cay over time expressed in computational models of
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Temperley (p.c.) [In 1976], [as a film student at the Purchase campus of the State University of New York], Mr.
Lane, shot ...

wsj 0075.13 The Treasury also said it plans to sell [$ 10 billion] [in 36-day cash management bills] [on
Thursday].

Table 2: Counter-examples to dependency length minimization

comprehension (Lewis et al., 2006; Lewis and Va-
sishth, 2005).

Extending these ideas from comprehension, Tem-
perley (2007) poses the question: Does language
production reflect a preference for shorter dependen-
cies as well so as to facilitate comprehension? By
means of a study of Penn Treebank data, Temperley
shows that English sentences do display a tendency
to minimize the sum of all their head-dependent
distances as illustrated by a variety of construc-
tions. Further, Gildea and Temperley (2007) report
that random linearizations have higher dependency
lengths compared to actual English, while an “opti-
mal” algorithm (from the perspective of dependency
length minimization), which places dependents on
either sides of a head in order of increasing length,
is closer to actual English. Tily (2010) also applies
insights from the above cited papers to show that
dependency length constitutes a significant pressure
towards language change. For head-final languages
(e.g., Japanese), dependency length minimization
results in the “long-short” constituent ordering in
language production (Yamashita and Chang, 2001).
More generally, Hawkins’s (1994; 2000) processing
domains, dependency length minimization and end-
weight effects in constituent ordering (Wasow and
Arnold, 2003) are all very closely related. The de-
pendency length hypothesis goes beyond the predic-
tions made by Hawkins’ Minimize Domains princi-
ple in the case of English clauses with three post-
verbal adjuncts: Gibson’s DLT correctly predicts
that the first constituent tends to be shorter than the
second, while Hawkins’ approach does not make
predictions about the relative orders of the first two
constituents.

However, it would be very reductive to consider
dependency length minimization as the sole factor
in language production. In fact, a large body of
prior work discusses a variety of other factors in-
volved in language production. These other prefer-

ences are either correlated with dependency length
or can override the minimal dependency length pref-
erence. Complexity (Wasow, 2002; Wasow and
Arnold, 2003), animacy (Snider and Zaenen, 2006;
Branigan et al., 2008), information status consid-
erations (Wasow and Arnold, 2003; Arnold et al.,
2000), the argument-adjunct distinction (Hawkins,
2001) and lexical bias (Wasow and Arnold, 2003;
Bresnan et al., 2007) are a few prominent factors.
More recently, Anttila et al. (2010) argued that the
principle of end weight can be revised by calculat-
ing weight in prosodic terms to provide more ex-
planatory power. As Temperley (2007) suggests,
a satisactory model should combine insights from
multiple approaches, a theme which we investigate
in this work by means of a rich feature set adapted
from the parsing and realization literature. Our fea-
ture design has been inspired by the conclusions of
the above-cited works pertaining to the role of de-
pendency length minimization in syntactic choice
in conjuction with other factors influencing con-
stituent order. However, going beyond Temper-
ley’s corpus study, we confirm the utility of incor-
porating a feature for minimizing dependency length
into machine-learned models with hundreds of thou-
sands of features found to be useful in previous pars-
ing and realization work, and investigate the extent
to which these features can counterbalance a de-
pendency length minimization preference in cases
where canonical word order considerations should
prevail.

2.2 Surface Realization with Combinatory
Categorial Grammar (CCG)

We provide here a brief overview of CCG and the
OpenCCG realizer; for further details, see the works
cited below.

CCG (Steedman, 2000) is a unification-based
categorial grammar formalism defined almost en-
tirely in terms of lexical entries that encode sub-
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Feature Type Example
LexCat + Word s/s/np + before
LexCat + POS s/s/np + IN
Rule sdcl → np sdcl\np
Rule + Word sdcl → np sdcl\np + bought
Rule + POS sdcl → np sdcl\np + VBD
Word-Word 〈company, sdcl → np sdcl\np, bought〉
Word-POS 〈company, sdcl → np sdcl\np, VBD〉
POS-Word 〈NN, sdcl → np sdcl\np, bought〉
Word + ∆w 〈bought, sdcl → np sdcl\np〉 + dw

POS + ∆w 〈VBD, sdcl → np sdcl\np〉 + dw

Word + ∆p 〈bought, sdcl → np sdcl\np〉 + dp

POS + ∆p 〈VBD, sdcl → np sdcl\np〉 + dp

Word + ∆v 〈bought, sdcl → np sdcl\np〉 + dv

POS + ∆v 〈VBD, sdcl → np sdcl\np〉 + dv

Table 3: Basic and dependency features from Clark &
Curran’s (2007) normal form model; distances are in in-
tervening words, punctuation marks and verbs, and are
capped at 3, 3 and 2, respectively

categorization as well as syntactic features (e.g.
number and agreement). OpenCCG is a pars-
ing/generation library which includes a hybrid
symbolic-statistical chart realizer (White, 2006;
White and Rajkumar, 2009). The input to the
OpenCCG realizer is a semantic graph, where each
node has a lexical predication and a set of seman-
tic features; nodes are connected via dependency re-
lations. Internally, such graphs are represented us-
ing Hybrid Logic Dependency Semantics (HLDS),
a dependency-based approach to representing lin-
guistic meaning (Baldridge and Kruijff, 2002). Al-
ternative realizations are ranked using integrated n-
gram or averaged perceptron scoring models. In the
experiments reported below, the inputs are derived
from the gold standard derivations in the CCGbank
(Hockenmaier and Steedman, 2007), and the outputs
are the highest-scoring realizations found during the
realizer’s chart-based search.1

3 Feature Design

In the realm of paraphrasing using tree lineariza-
tion, Kempen and Harbusch (2004) explore features
which have later been appropriated into classifica-
tion approaches for surface realization (Filippova
and Strube, 2007). Prominent features include in-

1The realizer can also be run using inputs derived from
OpenCCG’s parser, though informal experiments suggest that
parse errors tend to decrease generation quality.

formation status, animacy and phrase length. In the
case of ranking models for surface realization, by far
the most comprehensive experiments involving lin-
guistically motivated features are reported in work
of Cahill for German realization ranking (Cahill et
al., 2007; Cahill and Riester, 2009). Apart from
language model and Lexical Functional Grammar
(LFG) c-structure and f -structure based features,
Cahill also designed and incorporated features mod-
eling information status considerations.

The feature sets explored in this paper ex-
tend those in previous work on realization ranking
with OpenCCG using averaged perceptron models
(White and Rajkumar, 2009; Rajkumar et al., 2009;
Rajkumar and White, 2010) to include more com-
prehensive ordering features. The feature classes
are listed below, where DEPLEN, HOCKENMAIER

and DEPORD are novel, and the rest are as in ear-
lier OpenCCG models. The inclusion of the DE-
PORD features is intended to yield a model with a
similarly rich set of ordering features as Cahill and
Forster’s (2009) realization ranking model for Ger-
man. Except where otherwise indicated, features are
integer-valued, representing counts of occurrences
in a derivation.

DEPLEN The total of the length between all se-
mantic heads and dependents for a realization,
where length is in intervening words2 exclud-
ing punctuation. For length purposes, collapsed
named entities were counted as a single word in
the experiments reported here.

NGRAMS The log probabilities of the word se-
quence scored using three different n-gram
models: a trigram word model, a trigram
word model with named entity classes replac-
ing words, and a trigram model over POS tags
and supertags.

HOCKENMAIER As an extra component of the
generative baseline, the log probability of the
derivation according to (a reimplementation

2We also experimented with two other definitions of depen-
dency length described in the literature, namely (1) counting
only nouns and verbs to approximate counting by discourse ref-
erents (Gibson, 1998) and (2) omitting function words to ap-
proximate prosodic weight (Anttila et al., 2010); however, re-
alization ranking accuracy was slightly worse than counting all
non-punctuation words.
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Feature Type Example
HeadBroadPos + Rel + Precedes + HeadWord + DepWord 〈VB, Arg0, dep, wants, he〉

. . . + HeadWord + DepPOS 〈VB, Arg0, dep, wants, PRP〉

. . . + HeadPOS + DepWord 〈VB, Arg0, dep, VBZ, he〉

. . . + HeadWord + DepPOS 〈VB, Arg0, dep, VBZ, PRP〉
HeadBroadPos + Side + DepWord1 + DepWord2 〈NN, left, an, important〉

. . . + DepWord1 + DepPOS2 〈NN, left, an, JJ〉

. . . + DepPOS1 + DepWord2 〈NN, left, DT, important〉
. . . + DepPOS1 + DepPOS2 〈NN, left, DT, JJ〉

. . . + Rel1 + Rel2 〈NN, left, Det, Mod〉

Table 4: Basic head-dependent and sibling dependent ordering features

of) Hockenmaier’s (2003) generative syntactic
model.

DISCRIMINATIVE NGRAMS Sequences from each
of the n-gram models in the perceptron model.

AGREEMENT Features for subject-verb and ani-
macy agreement as well as balanced punctua-
tion.

C&C NF BASE The features from Clark & Cur-
ran’s (2007) normal form model, listed in Ta-
ble 3, minus the distance features.

C&C NF DISTANCE The distance features from
the C&C normal form model, where the dis-
tance between a head and its dependent is mea-
sured in intervening words, punctuation marks
or verbs; caps of 3, 3 and 2 (resp.) on the
distances have the effect of binning longer dis-
tances.

DEPORD Several classes of features for ordering
heads and dependents as well as sibling depen-
dents on the same side of the head. The ba-
sic features—using words, POS tags and de-
pendency relations, grouped by the broad POS
tag of the head—are shown in Table 4. There
are also similar features using words and a
word class (instead of words and POS tags),
where the class is either the named entity class,
COLOR for color words, PRO for pronouns,
one of 60-odd suffixes culled from the web, or
HYPHEN or CAP for hyphenated or capital-
ized words. Additionally, there are features for
detecting definiteness of an NP or PP (where
the definiteness value is used in place of the
POS tag).

Model # Alph Feats # Model Feats
GLOBAL 4 4
DEPLEN-GLOBAL 5 5
DEPORD-NONF 790,887 269,249
DEPORD-NODIST 1,035,915 365,287
DEPLEN-NODIST 1,035,916 366,094
DEPORD-NF 1,173,815 431,226
DEPLEN 1,173,816 428,775

Table 6: Model sizes—number of features in alphabet for
each model (satisfying count cutoff of 5) along with num-
ber active in model after 5 training epochs

4 Evaluation

4.1 Experimental Conditions

We followed the averaged perceptron training proce-
dure of White and Rajkumar (2009) with a couple of
updates. First, as noted earlier, we used a reimple-
mentation of Hockenmaier’s (2003) generative syn-
tactic model as an extra component of our genera-
tive baseline; and second, only five epochs of train-
ing were used, which was found to work as well as
using additional epochs on the development set. As
in the earlier work, the models were trained on the
standard training sections (02–21) of an enhanced
version of the CCGbank, using a lexico-grammar
extracted from these sections.

The models tested in the experiments reported be-
low are summarized in Table 5. The three groups
of models are designed to test the impact of the
dependency length feature when added to feature
sets of increasing complexity. In more detail,
the GLOBAL and DEPLEN-GLOBAL models contain
dense features on entire derivations; their values
are the log probabilities of the three n-gram mod-
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Model Dep Ngram Hocken- Discr Agree- C&C NF C&C NF Dep
Len Mods maier Ngrams ment Base Dist Ord

GLOBAL N Y Y N N N N N
DEPLEN-GLOBAL Y Y Y N N N N N
DEPORD-NONF N Y Y Y Y N N Y
DEPORD-NODIST N Y Y Y Y Y N Y
DEPLEN-NODIST Y Y Y Y Y Y N Y
DEPORD-NF N Y Y Y Y Y Y Y
DEPLEN Y Y Y Y Y Y Y Y

Table 5: Legend for experimental conditions

els used in the earlier work along with the Hock-
enmaier model (and the dependency length feature,
in DEPLEN-GLOBAL). The second group is cen-
tered on DEPORD-NODIST, which contains all fea-
tures except the dependency length feature and the
distance features in Clark & Curran’s normal form
model, which may indirectly capture some depen-
dency length minimization preferences. In addition
to DEPLEN-NODIST—where the dependency length
feature is added—this group also contains DEPORD-
NONF, which is designed to test (as a side compari-
son) whether the Clark & Curran normal form base
features are still useful even when used in conjunc-
tion with the new dependency ordering features. In
the final group, DEPORD-NF contains all the features
examined in this paper except the dependency length
feature, while DEPLEN contains all the features in-
cluding the dependency length feature. Note that the
learned weight of the total dependency length fea-
ture was negative in each case, as expected.

Table 6 shows the sizes of the various models. For
each model, the alphabet—whose size increases to
over a million features—is the set of applicable fea-
tures found to have discriminative value in at least 5
training examples; from these, a subset are made ac-
tive (i.e., take on a non-zero weight) through percep-
tron updates when the feature value differs between
the model-best and oracle-best realization.

4.2 BLEU Results

Following the usual practice in the realization rank-
ing, we first evaluate our results quantitatively us-
ing exact matches and BLEU (Papineni et al., 2002),
a corpus similarity metric developed for MT evalu-
ation. Realization results for the development and

Model % Exact BLEU Signif
Sect 00
GLOBAL 33.03 0.8292 -
DEPLEN-GLOBAL 34.73 0.8345 ***
DEPORD-NONF 42.33 0.8534 **
DEPORD-NODIST 43.12 0.8560 -
DEPLEN-NODIST 43.87 0.8587 ***
DEPORD-NF 43.44 0.8590 -
DEPLEN 44.56 0.8610 **

Sect 23
GLOBAL 34.75 0.8302 -
DEPLEN-GLOBAL 34.70 0.8330 ***
DEPORD-NODIST 41.42 0.8561 -
DEPLEN-NODIST 42.95 0.8603 ***
DEPORD-NF 41.32 0.8577 -
DEPLEN 42.05 0.8596 **

Table 7: Development (Section 00) & test (Section 23)
set results—exact match percentage and BLEU scores,
along with statistical significance of BLEU compared to
the unmarked model in each group (* = p < 0.1, ** =
p < 0.05, *** = p < 0.01); significant within-group
winners (at p < 0.05) are shown in bold

test sections appear in Table 7. For all three model
groups, the dependency length feature yields signif-
icant increases in BLEU scores, even in compar-
ison to the model (DEPORD-NF) containing Clark
& Curran’s distance features in addition to the new
dependency ordering features (as well as all other
features but total dependency length). The second
group additionally shows that the Clark & Curran
normal form base features do indeed have a signif-
icant impact on BLEU scores even when used with
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Model % DL % DL DL Signif
Lower Greater Mean

GOLD n.a. n.a. 41.02 -
GLOBAL 17.23 21.59 42.40 ***
DEPLEN-GLOBAL 24.37 12.81 40.29 ***
DEPORD-NONF 15.76 19.34 42.34 ***
DEPORD-NODIST 14.58 19.06 42.03 ***
DEPLEN-NODIST 17.75 14.82 40.87 n.s.
DEPORD-NF 14.96 17.65 41.58 ***
DEPLEN 16.28 14.78 40.97 n.s.

Table 8: Dependency length compared to corpus—
percentage of realizations with dependency length less
than and greater than gold standard, along with mean
dependency length, whose significance is tested against
gold; 1671 development set (Section 00) complete real-
izations analyzed

the new dependency ordering model, as DEPORD-
NONF is significantly worse than DEPORD-NODIST

(the impact of the distance features is evident in the
increases from the second group to the third group).
As with the dev set, the dependency length feature
yielded a significant increase in BLEU scores for
each comparison on the test set also.

For each group, the statistical significance of the
difference in BLEU scores between a model and the
unmarked model (-) is determined by bootstrap re-
sampling (Koehn, 2004).3 Note that although the
differences in BLEU scores are small, they end
up being statistically significant because the mod-
els frequently yield the same top scoring realiza-
tion, and reliably deliver improvements in the cases
where they differ. In particular, note that DEPLEN

and DEPORD-NF agree on the best realization 81%
of the time, while DEPLEN-NODIST and DEPORD-
NODIST have 78.1% agreement, and DEPLEN-
GLOBAL and GLOBAL show 77.4% agreement; by
comparison, DEPORD-NODIST and GLOBAL only
agree on the best realization 51.1% of the time.

4.3 Detailed Analyses

The effect of the dependency length feature on the
distribution of dependency lengths is illustrated in
Table 8. The table shows the mean of the total de-
pendency length of each realized derivation com-

3Kudos to Kevin Gimpel for making his resampling
scripts available from http://www.ark.cs.cmu.edu/
MT/paired_bootstrap_v13a.tar.gz.

Model % Short % Long % Eq % Single
/ Long / Short Constit

GOLD 25.25 4.87 4.08 65.79
GLOBAL 23.15 7.86 3.94 65.04
DEPLEN-GLOBAL 24.58 5.57 4.09 65.76
DEPORD-NONF 23.13 6.61 4.03 66.23
DEPORD-NODIST 23.38 6.52 3.94 66.15
DEPLEN-NODIST 24.03 5.38 4.01 66.58
DEPORD-NF 23.74 5.92 3.96 66.40
DEPLEN 24.36 5.36 4.07 66.21

Table 9: Distribution of various kinds of post-verbal con-
stituents in the development set (Section 00); 4692 gold
cases considered

pared to the corresponding gold standard derivation,
as well as the number of derivations with greater and
lower dependency length. According to paired t-
tests, the mean dependency lengths for the DEPLEN-
NODIST and DEPLEN models do not differ signifi-
cantly from the gold standard. In contrast, the mean
dependency length of all the models that do not in-
clude the dependency length feature does differ sig-
nificantly (p < 0.001) from the gold standard. Ad-
ditionally, all these models have more realizations
with dependency length greater than the gold stan-
dard, in comparison to the dependency length min-
imizing models; this shows the efficacy of the de-
pendency length feature in approximating the gold
standard. Interestingly, the DEPLEN-GLOBAL model
significantly undershoots the gold standard on mean
dependency length, and has the most skewed dis-
tribution of sentences with greater vs. lesser depen-
dency length than the gold standard.

Apart from studying dependency length directly,
we also looked at one of the attested effects of de-
pendency length minimization, viz. the tendency to
prefer short-long post-verbal constituents in produc-
tion (Temperley, 2007). The relative lengths of ad-
jacent post-verbal constituents were computed and
their distribution is shown in Table 9. While cal-
culating length, punctuation marks were excluded.
Four kinds of constituents were found in the post-
verbal domain. For every verb, apart from single
constituents and equal length constituents, short-
long and long-short sequences were also observed.
Table 9 demonstrates that for both the gold standard
corpus as well as the realizer models, short-long
constituents were more frequent than long-short or
equal length constituents. This follows the trend re-
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Model % Light % Heavy Signif
/ Heavy / Light

GOLD 8.60 0.36 -
GLOBAL 7.73 2.02 ***
DEPLEN-GLOBAL 8.35 0.75 **
DEPORD-NONF 7.98 1.15 ***
DEPORD-NODIST 8.04 1.12 ***
DEPLEN-NODIST 8.23 0.45 n.s.
DEPORD-NF 8.26 0.71 **
DEPLEN 8.36 0.51 n.s.

Table 10: Distribution of heavy unequal constituents
(length difference > 5) in Section 00; 4692 gold cases
considered and significance tested against the gold stan-
dard using a χ-square test

ported by previous corpus studies of English (Tem-
perley, 2007; Wasow and Arnold, 2003). The figures
reported here show the tendency of the DEPLEN*
models to be closer to the gold standard than the
other models, especially in the case of short-long
constituents.

We also performed an analysis of relative con-
stituent lengths focusing on light-heavy and heavy-
light cases; specifically, we examined unequal
length constituent sequences where the length dif-
ference of the constituents was greater than 5, and
the shorter constituent was under 5 words. Table 10
shows the results. Using a χ-square test, the distri-
bution of heavy unequal length constituent counts in
the DEPLEN-NODIST and DEPLEN models does not
significantly differ from that of the gold standard. In
contrast, for all the other models, the counts do dif-
fer significantly from the gold standard.

4.4 Examples

Table 11 shows examples of how the dependency
length feature (DEPLEN) affects the output even in
comparison to a model (DEPORD) with a rich set
of discriminative syntactic and dependency order-
ing features, but no features directly targeting rel-
ative weight. In wsj 0015.7, the dependency length
model produces an exact match, while the DEPORD

model fails to shift the short temporal adverbial next
year next to the verb, leaving a confusingly repeti-
tive this year next year at the end of the sentence.
In wsj 0020.1, the dependency length model pro-
duces a nearly exact match with just an equally ac-

ceptable inversion of closely watching. By contrast,
the DEPORD model mistakenly shifts the direct ob-
ject South Korea, Taiwan and Saudia Arabia to the
end of the sentence where it is difficult to under-
stand following two very long intervening phrases.
In wsj 0021.8, both models mysteriously put not in
front of the auxiliary and leave out the complemen-
tizer, but DEPORD also mistakenly leaves before at
the end of the verb phrase where it is again apt to
be interpreted as modifying the preceding verb. In
wsj 0075.13, both models put the temporal modi-
fier on Thursday in its canonical VP-final position,
despite this order running counter to dependency
length minimization. Finally, wsj 0014.2 shows a
case where DEPORD is nearly an exact match (except
for a missing comma), but the dependency length
model fronts the PP on the 12-member board, where
it is grammatical but rather marked (and not moti-
vated in the discourse context).

4.5 Interim Discussion

The experiments show a consistent positive effect of
the dependency length feature in improving BLEU
scores and achieving a better match with the corpus
distributions of dependency length and short/long
constituent orders. The results in Table 10 are partic-
ulary encouraging, as they show that minimizing de-
pendency length reduces the number of realizations
in which a heavy constituent precedes a light one
down to essentially the level of the corpus, thereby
eliminating many realizations that can be expected
to have egregious errors like those shown in Ta-
ble 11.

Intriguingly, there is some evidence that a nega-
tively weighted total dependency length feature can
go too far in minimizing dependency length, in the
absence of other informative features to counterbal-
ance it. In particular, the DEPLEN-GLOBAL model in
Table 8 has significantly lower dependency length
than the corpus, but in the richer models with dis-
criminative synactic and dependency ordering fea-
tures, there are no significant differences. It may still
be though that additional features are necessary to
counteract the tendency towards dependency length
minimization, for example to ensure that initial con-
stituents play their intended role in establishing and
continuing topics in discourse, as also observed in
Table 11.
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wsj 0015.7 the exact amount of the refund will be determined next year based on actual collections made until
Dec. 31 of this year .

DEPLEN [same]
DEPORD the exact amount of the refund will be determined based on actual collections made until Dec. 31

of this year next year .

wsj 0020.1 the U.S. , claiming some success in its trade diplomacy , removed South Korea , Taiwan and Saudi
Arabia from a list of countries it is closely watching for allegedly failing to honor U.S. patents ,
copyrights and other intellectual-property rights .

DEPLEN the U.S. claiming some success in its trade diplomacy , removed South Korea , Taiwan and Saudi
Arabia from a list of countries it is watching closely for allegedly failing to honor U.S. patents ,
copyrights and other intellectual-property rights .

DEPORD the U.S. removed from a list of countries it is watching closely for allegedly failing to honor U.S.
patents , copyrights and other intellectual-property rights , claiming some success in its trade diplo-
macy , South Korea , Taiwan and Saudi Arabia .

wsj 0021.8 but he has not said before that the country wants half the debt forgiven .
DEPLEN but he not has said before ∅ the country wants half the debt forgiven .
DEPORD but he not has said ∅ the country wants half the debt forgiven before .

wsj 0075.13 The Treasury also said it plans to sell [$ 10 billion] [in 36-day cash management bills] [on Thurs-
day].

DEPLEN [same]
DEPORD [same]

wsj 0014.2 they succeed Daniel M. Rexinger , retired Circuit City executive vice president , and Robert R.
Glauber , U.S. Treasury undersecretary , on the 12-member board .

DEPORD they succeed Daniel M. Rexinger , retired Circuit City executive vice president , and Robert R.
Glauber , U.S. Treasury undersecretary ∅ on the 12-member board .

DEPLEN on the 12-member board they succeed Daniel M. Rexinger , retired Circuit City executive vice
president , and Robert R. Glauber , U.S. Treasury undersecretary .

Table 11: Examples of realized output for full models with and without the dependency length feature

4.6 Targeted Human Evaluation

To determine whether heavy-light ordering differ-
ences often represent ordering errors (including
egregious ones), rather than simply representing ac-
ceptable variation, we conducted a targeted human
evaluation on examples of this kind. Specifically,
for each of the DEPLEN* models and their corre-
sponding models without the dependency length fea-
ture, we chose the 25 sentences from the develop-
ment section whose realizations exhibited the great-
est difference in dependency length between sibling
constituents appearing in opposite orders, and asked
two judges (not the authors) to choose which of the
two realizations best expressed the meaning of the
reference sentence in a grammatical and fluent way,
with the choice forced (2AFC). Table 12 shows the
results. Agreement between the judges was high,

Model % Preferred % Agr Signif
GLOBAL 22 - -
DEPLEN-GLOBAL 78 84 ***
DEPORD-NODIST 24 - -
DEPLEN-NODIST 76 92 ***
DEPORD-NF 26 - -
DEPLEN 74 96 ***

Table 12: Targeted human evaluation—percentage of re-
alizations preferred by two human judges in a 2AFC test
among the 25 development set sentences with the great-
est differences in dependency length, with a binomial test
for significance
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with only one disagreement on the realizations from
the DEPLEN and DEPORD-NF models (involving an
acceptable paraphrase in our judgment), and only
four disagreements on the DEPLEN-GLOBAL and
GLOBAL realizations. Pooling the judgments, the
preference for the DEPLEN* models was well above
the chance level of 50% according to a binomial test
(p < 0.001 in each case). Inspecting the data our-
selves, we found that many of the items did indeed
involve egregious ordering errors that the DEPLEN*
models managed to avoid.

5 Related Work

As noted in the introduction, to the best of our
knowledge this paper is the first to examine the im-
pact of dependency length minimization on realiza-
tion ranking. While there have been quite a few
papers to date reporting results on Penn Treebank
data, since the various systems make different as-
sumptions regarding the specificity of their inputs,
all but the most broad-brushed comparisons remain
impossible at present, and thus detailed studies such
as the present one can only be made within the con-
text of different models for the same system. Some
progress on this issue has been made in the con-
text of the Generation Challenges Surface Realiza-
tion Shared Task (Belz et al., 2011), but it remains
to be seen to what extent fair cross-system compar-
isons using common inputs can be achieved.

For (very) rough comparison purposes, Table 13
lists our results in the context of those reported for
various other systems on PTB Section 23. As the
table shows, the OpenCCG scores are quite com-
petitive, exceeded only by Callaway’s (2005) ex-
tensively hand-crafted system as well as Bohnet et
al.’s (2011) system on shared task shallow inputs
(-S), which performs much better than their sys-
tem on deep inputs (-D) that more closely resemble
OpenCCG’s.

6 Conclusions

In this paper, we have investigated dependency
length minimization in the context of realization
ranking, focusing on its potential to eliminate egre-
gious ordering errors as well as better match the dis-
tributional characteristics of sentence orderings in
news text. When added to a state-of-the-art, com-

System Coverage BLEU % Exact
Callaway (05) 98.5% 0.9321 57.5
Bohnet et al.-S (11) 100% 0.8911
OpenCCG (12) 97.1% 0.8596 42.1
OpenCCG (09) 97.1% 0.8506 40.5
Ringger et al. (04) 100% 0.836 35.7
Bohnet et al.-D (11) 100% 0.7943
Langkilde-Geary (02) 83% 0.757 28.2
Guo et al. (08) 100% 0.7440 19.8
Hogan et al. (07) ≈100% 0.6882
OpenCCG (08) 96.0% 0.6701 16.0
Nakanishi et al. (05) 90.8% 0.7733

Table 13: PTB Section 23 BLEU scores and exact match
percentages in the NLG literature (Nakanishi et al.’s re-
sults are for sentences of length 20 or less)

prehensive realization ranking model, we showed
that including a dense, global feature for minimiz-
ing total dependency length yields statistically sig-
nificant improvements in BLEU scores and signif-
icantly reduces the number of heavy-light ordering
errors. Going beyond the BLEU metric, we also
conducted a targeted human evaluation to confirm
the utility of the dependency length feature in mod-
els of varying richness. Interestingly, even with the
richest model, in some cases we found that the de-
pendency length feature still appears to go too far in
minimizing dependency length, suggesting that fur-
ther counter-balancing features—especially ones for
the sentence-initial position (Filippova and Strube,
2009)—warrant investigation in future work.
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Abstract

We present a new approach to the problem
of automatic text summarization called Au-
tomatic Summarization using Reinforcement
Learning (ASRL) in this paper, which models
the process of constructing a summary within
the framework of reinforcement learning and
attempts to optimize the given score function
with the given feature representation of a sum-
mary. We demonstrate that the method of re-
inforcement learning can be adapted to auto-
matic summarization problems naturally and
simply, and other summarizing techniques,
such as sentence compression, can be easily
adapted as actions of the framework.

The experimental results indicated ASRL was
superior to the best performing method in
DUC2004 and comparable to the state of the
art ILP-style method, in terms of ROUGE
scores. The results also revealed ASRL can
search for sub-optimal solutions efficiently
under conditions for effectively selecting fea-
tures and the score function.

1 Introduction

Automatic text summarization aims to automatically
produce a short and well-organized summary of sin-
gle or multiple documents (Mani, 2001). Automatic
summarization, especially multi-document summa-
rization, has been an increasingly important task in
recent years, because of the exponential explosion
of available information. The brief summary that
the summarization system produces allows readers
to quickly and easily understand the content of orig-
inal documents without having to read each individ-

ual document, and it should be helpful for dealing
with enormous amounts of information.

The extractive approach to automatic summariza-
tion is a popular and well-known approach in this
field, which creates a summary by directly selecting
some textual units (e.g., words and sentences) from
the original documents, because it is difficult to gen-
uinely evaluate and guarantee the linguistic quality
of the produced summary.

One of the most well-known extractive ap-
proaches is maximal marginal relevance (MMR),
which scores each textual unit and extracts the unit
that has the highest score in terms of the MMR cri-
teria (Goldstein et al., 2000). Greedy MMR-style
algorithms are widely used; however, they cannot
take into account the whole quality of the sum-
mary due to their greediness, although a summary
should convey all the information in given docu-
ments. Global inference algorithms for the extrac-
tive approach have been researched widely in recent
years (Filatova and Hatzivassiloglou, 2004; McDon-
ald, 2007; Takamura and Okumura, 2009) to con-
sider whether the summary is “good” as a whole.
These algorithms formulate the problem as integer
linear programming (ILP) to optimize the score:
however, as ILP is non-deterministic polynomial-
time hard (NP-hard), the time complexity is very
large. Consequently, we need some more efficient
algorithm for calculations.

We present a new approach to the problem of au-
tomatic text summarization called Automatic Sum-
marization using Reinforcement Learning (ASRL),
which models the process of construction of a sum-
mary within the framework of reinforcement learn-
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ing and attempts to optimize the given score function
with the given feature representation of a summary.
We demonstrate that the method of reinforcement
learning can be adapted to problems with automatic
summarization naturally and simply, and other sum-
marizing techniques, such as sentence compression,
can be easily adapted as actions of the framework,
which should be helpful to enhance the quality of
the summary that is produced. This is the first paper
utilizing reinforcement learning for problems with
automatic summarization of text.

We evaluated ASRL with the DUC2004 summa-
rization task 2, and the experimental results revealed
ASRL is superior to the best method of performance
in DUC2004 and comparable with the state of the
art ILP-style method, based on maximum coverage
with the knapsack constraint problem, in terms of
ROUGE scores with experimental settings. We also
evaluated ASRL in terms of optimality and execu-
tion time. The experimental results indicated ASRL
can search the state space efficiently for some sub-
optimal solutions under the condition of effectively
selecting features and the score function, and pro-
duce a summary whose score denotes the expecta-
tion of the score of the same features’ states. The
evaluation of the quality of a produced summary
only depends on the given score function, and there-
fore it is easy to adapt the new method of evaluation
without having to modify the structure of the frame-
work.

2 Formulation of Extractive Approach

We first focus on the extractive approach, which is
directly used to produce a summary by extracting
some textual units, by avoiding the difficulty of hav-
ing to consider the genuine linguistic quality of a
summary.

The given document (or documents) in extractive
summarization approaches is reduced to the set of
textual units: D = {x1, x2, · · · , xn}, where n is
the size of the set, and xi denotes individual textual
units. Note that any textual unit is permitted, such
as character, word, sentence, phrase, and concep-
tual unit. If we determine a sentence is a textual unit
to be extracted, the formulated problem is a problem
of extracting sentences from the source document,
which is one of the most popular settings for sum-

marization tasks.
Next, we define the score function, score(S), for

any subset of the document: S ⊂ D. Subset S is one
of the summaries of the given document. The aim of
this summarization problem is to find the summary
that maximizes this function when the score function
is given. The score function is typically defined by
taking into consideration the tradeoff between rele-
vance and redundancy.

Then, we define length function L(S), which in-
dicates the length of summary S. The length is
also arbitrary, which can be based on the character,
word, and sentence. We assume the limitation of
summary length K is given in summarization tasks.

Finally, we define the extractive approach of the
automatic summarization problem as:

S∗ = arg max
S⊂D

score(S) (1)

s.t. L(S) ≤ K.

3 Motivation

We can regard the extractive approach as a search
problem. It is extremely difficult to solve this search
problem because the final result of evaluation given
by the given score function is not available until it
finishes, and we therefore need to try all combina-
tions of textual units. Consequently, the score func-
tion, which denotes some criterion for the quality
of a summary, tends to be determined so that the
function can be decomposed to components and it
is solved with global inference algorithms, such as
ILP. However, both decomposing the score func-
tion properly and utilizing the evaluation of half-way
process of searches are generally difficult. For ex-
ample, let us assume that we design the score func-
tion by using some complex semantic considerations
to take into account the readability of a summary,
and the score is efficiently calculated if the whole
summary is given. Then, formulating the problem
as a global inference problem and solving it with
methods of integer linear programming might gen-
erally be difficult, because of the complex compo-
sition of the score function, despite the ease with
which the whole summary is evaluated. The read-
ability score might be based on extremely complex
calculations of dependency relations, or a great deal
of external knowledge the summarizer cannot know
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merely from the source documents. In fact, it is ideal
that we can only directly utilize the score function,
in the sense that we do not have to consider the de-
composed form of the given score function.

We need to consider the problem with automatic
summarization to be the same as that with reinforce-
ment learning to handle these problems. Reinforce-
ment learning is one of the solutions to three prob-
lems.

• The learning of the agent only depends on the
reward provided by the environment.

• Furthermore, the reward is delayed, in the sense
that the agent cannot immediately know the ac-
tual evaluation of the executed action.

• The agent only estimates the value of the
state with the information on rewards, without
knowledge of the actual form of the score func-
tion, to maximize future rewards.

We suggest the formulation of the problem as we
have just described will enable us to freely design
the score function without limitations and expand
the capabilities of automatic summarization.

4 Models of Extractive Approach for
Reinforcement Learning

4.1 Reinforcement Learning
Reinforcement learning is a powerful method of
solving planning problems, especially problems for-
mulated as Markov decision processes (MDPs) (Sut-
ton and Barto, 1998). The agent of reinforcement
learning repeats three steps until terminated at each
episode in the learning process.

1. The agent observes current state s from the en-
vironment, contained in state space S .

2. Next, it determines and executes next action a
according to current policy π. Action a is con-
tained in the action space limited by the current
state: A(s), which is a subset of whole action
space A =

∪
s∈S A(s). Policy π is the strat-

egy for selecting action, represented as a con-
ditional distribution of actions: p(a|s).

3. It then observes next state s′ and receives re-
ward r from the environment.

The aim of reinforcement learning is to find optimal
policy π∗ only with information on sample trajecto-
ries and to reward the experienced agent.

We describe how to adapt the extractive approach
to the problem of reinforcement learning in the sec-
tions that follow.

4.2 State

A state denotes a summary. We represent state s
as a tuple of summary S (a set of textual units) and
additional state variables: s = (S, A, f). We assume
s has the history of actions A that the agent executed
to achieve this state. Additionally, s has the binary
state variable, f ∈ {0, 1}, which denotes whether s
is a terminal state or not. Initial state s0 is (∅, ∅, 0).

We assume the d-dimensional feature representa-
tion of state s: ϕ(s) ∈ Rd, which only depends on
the feature of summary ϕ′(S) ∈ Rd−1. Given ϕ′(S),
we define the features as:

ϕ(s) =

{
(ϕ′(S), 0)T (L(S) ≤ K)

(0, 1)T (K < L(S))
. (2)

This definition denotes that summaries that violate
the length limitation are shrunk to a single feature,
(0, 1)T, which means it is not a summary.

Note the features of the state only depend on the
features of the summary, not on the executed actions
to achieve the state. Unlike naive search methods,
this property has the potential for different states to
be represented as the same vector, which has the
same features. The agent, however, should search as
many possible states as it can. Therefore, the gen-
eralization function of the feature representation is
of utmost importance. The accurate selection of fea-
tures contributes to reducing the search space and
provides efficient learning as will be discussed later.

4.3 Action

An action denotes a transition operation that pro-
duces a new state from a current state. We assumed
all actions were deterministic in this study. We de-
fine inserti(1 ≤ i ≤ n) actions, each of which
inserts textual unit xi to the current state unless the
state is terminated, as described in the following di-
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agram:

st at st+1 St

At

0

 inserti−−−−→

 St ∪ {xi}
At ∪ {inserti}

0

 . (3)

In addition to insertion actions, we define finish
that terminates the current episode in reinforcement
learning:

st at st+1 St

At

0

 finish−−−−→

 St

At ∪ {finish}
1

 (4)

Note that ft = 1 means state st is a terminal state.
Then, the whole action set, A, is defined by

inserti and finish:

A = {insert1, insert2, · · · , insertn,finish}. (5)

We can calculate the available actions limited by
state st:

A(st) =

{
A\At (L(St) ≤ K)
{finish} (K < L(St))

. (6)

This definition means that the agent may execute one
of the actions that have not yet been executed in this
episode, and it has no choice but to finish if the sum-
mary of the current state already violates length lim-
itations.

4.4 Reward
The agent receives a reward from the environment
as some kind of criterion of how good the action the
agent executed was. If the current state is st, the
agent executes at, and the state makes a transition
into st+1; then, the agent receives the reward, rt+1:

rt+1=


score(St) (at = finish, L(St) ≤ K)
−Rpenalty (at = finish,K < L(St))

0 (otherwise)
, (7)

where Rpenalty > 0.
The agent can receive the score awarded by the

given score function if and only if the executed ac-
tion is finish and the summary length is appropri-
ate. If the summary length is inappropriate but the

executed action is finish, the environment awards
a penalty to the agent. The most important point of
this definition is that the agent receives nothing un-
der the condition where the next state is not termi-
nated. In this sense, the reward is delayed. Due to
this definition, maximizing the expectation of future
rewards is equivalent to maximizing the given score
function, and we do not need to consider the decom-
posed form of the score function, i.e., we only need
to consider the final score of the whole summary.

4.5 Value Function Approximation
Our aim is to find the optimal policy. This is
achieved by obtaining the optimal state value func-
tion, V ∗(s), because if we obtain this, the greedy
policy is optimal, which determines the action so as
to maximize the state value after the transition oc-
curred. Therefore, our aim is equivalent to finding
V ∗(s). Let us try to estimate the state value func-
tion with parameter θ ∈ Rd:

V (s) = θTϕ(s). (8)

We can also represent and estimate the action value
function, Q(s, a), by using V (s):

Q(s, a) = r + γV (s′), (9)

where the execution of a causes the state transition
from s to s′ and the agent receives reward r, and
γ(0 ≤ γ ≤ 1) is the discount rate. Note that all
actions are deterministic in this study.

By using these value functions, we define the
policy as the conditional distribution, p(a|s; θ, τ),
which is parameterized by θ and a temperature pa-
rameter τ :

p(a|s; θ, τ) =
eQ(s,a)/τ∑
a′ eQ(s,a′)/τ

. (10)

Temperature τ decreases as learning progresses,
which causes the policy to be greedier. This softmax
selection strategy is called Boltzmann selection.

4.6 Learning Algorithm
The goal of learning is to estimate θ. We use the

TD (λ) algorithm with function approximation (Sut-
ton and Barto, 1998). Algorithm 1 represents the
whole system of our method, called Automatic Sum-
marization using Reinforcement Learning (ASRL)
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Algorithm 1 ASRL
Input: document D = {x1, x2, · · · , xn},

score function score(S)
1: initialize θ = 0
2: for k = 1 to N do
3: s← (∅, ∅, 0)

// initial state
4: e = 0
5: while s is not terminated do
6: a ∼ p(a|s; θ, τk)

// selects action with current policy
7: (s′, r)← execute(s, a)

// observes next state and receive reward
8: δ ← r + γθTϕ(s′)− θTϕ(s)

// calculates TD-error
9: e← γλe + ϕ(s)

// updates the eligibility trace
10: θ ← θ + αkδe

// learning with current learning rate
11: s← s′

12: end while
13: end for
14: s← (∅, ∅, 0)
15: while s is not terminated do
16: a← maxa Q(s, a)

// selects action greedily
with the learned policy

17: (s′, r)← execute(s, a)
18: s← s′

19: end while
20: return the summary of s

in this paper. N is the number of learning episodes,
and e(∈ Rd) and λ(0 ≤ λ ≤ 1) correspond to the el-
igibility trace and the trace decay parameter. The el-
igibility trace, e, conveys all information on the fea-
tures of states that the agent previously experienced,
with previously decaying influences of features due
to decay parameter λ and discount rate γ (Line 9).

Line 1 initializes parameter θ to start up its learn-
ing. The following procedures from Lines 2 to 13
learn θ with the TD (λ) algorithm, by using infor-
mation on actual interactions with the environment.
Learning rate αk and temperature parameter τk de-
cay as the learning episode progresses. The best
summary with the obtained policy is calculated in
steps from Lines 14 to 19. If the agent can estimate

θ properly, greedy output is the optimal solution.

5 Models of Combined Approach for
Reinforcement Learning

We formulated the extractive approach as a problem
with reinforcement learning in the previous section.
In fact, we can also formulate a more general model
of summarization, since evaluation only depends on
the final state and it is not actually very important to
regard the given documents as a set of textual units
contained in the original documents.

We explain how to take into account other meth-
ods within the ASRL framework by modifying the
models in this section, with an example of sentence
compression. We assume that we have a method of
sentence compression, comp(x), and that a textual
unit to be extracted is a sentence. What we have to
do is to only simply modify the definitions of the
state and action. Note that this is just one example
of the combined method. Even other summarization
systems can be similarly adapted to ASRL.

5.1 State
We do not want to execute sentence compression
twice, so we have to modify the state variables to
convey the information: s = (S, A, c, f), where
c ∈ {0, 1}, and S, A, and f are the same definitions
as previously described.

5.2 Action
We add deterministic action comp toA, which pro-
duces the new summary constructed by compressing
the last inserted sentence of the current summary:

st at st+1
St

At

0
0

 comp−−−−→


St\{xc} ∪ {comp(xc)}

At ∪ {comp}
1
0

,(11)

where xc is the last sentence that is inserted into St.
Next, we modify inserti and finish:

st at st+1
St

At

ct

0

 inserti−−−−→


St ∪ {xi}

At ∪ {inserti}
0
0

 ,(12)
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st at st+1
St

At

ct

0

 finish−−−−→


St

At ∪ {finish}
ct

1

 . (13)

Note comp ∈ A(st) may be executed if and only if
ct = 0. inserti resets c to 0.

6 Experiments

We conducted three experiments in this study. First,
we evaluated our method with ROUGE metrics
(Lin, 2004), in terms of ROUGE-1, ROUGE-2, and
ROUGE-L. Second, we conducted an experiment on
measuring the optimization capabilities of ASRL,
with the scores we obtained and the execution time.
Third, we evaluated ASRL taking into consideration
sentence compression by using a very naive method,
in terms of ROUGE-1, ROUGE-2, and ROUGE-3.

6.1 Experimental Settings
We used sentences as textual units for the extrac-
tive approach in this research. Each sentence and
document were represented as a bag-of-words vec-
tor with tf*idf values, with stopwords removed. All
tokens were stemmed by using Porter’s stemmer
(Porter, 1980).

We experimented with our proposed method on
the dataset of DUC2004 task2. This is a multi-
document summarization task that contains 50 docu-
ment clusters, each of which has 10 documents. We
set up the length limitation to 665 bytes, used in the
evaluation of DUC2004.

We set up the parameters of ASRL where the
number of episodes N = 300, the training rate
αk = 0.001 · 101/(100 + k1.1), and the tempera-
ture τk = 1.0 · 0.987k−1 where k was the number of
episodes that decayed as learning progressed. Both
discount rate γ and trace decay parameter λ were
fixed to 1 for episodic tasks. The penalty, Rpenalty,
was fixed to 1.

We used the following score function in this
study:

score(S) =
∑
xi∈S

λsRel(xi)

−
∑

xi,xj∈S,i<j

(1− λs)Red(xi, xj), (14)

where

Rel(xi) = Sim(xi, D) + Pos(xi)
−1 (15)

Red(xi, xj) = Sim(xi, xj). (16)

λs is the parameter for the trade-off between
relevance and redundancy, Sim(xi, D) and
Sim(xi, xj) correspond to the cosine similarities
between sentence xi and the sentence set of the
given original documents D, and between sentence
xi and sentence xj . Pos(xi) is the position of
the occurrence of xi when we index sentences in
each document from top to bottom with one origin.
This score function was determined by reference
to McDonald (2007). We set λs = 0.9 in this
experiment.

We designed ϕ′(S), i.e., the vector representation
of a summary, to adapt it to the summarization prob-
lem as follows.

• Coverage of important words: The elements
are the top 100 words in terms of the tf*idf of
the given document with binary representation.

• Coverage ratio: This is calculated by counting
up the number of top 100 elements included in
the summary.

• Redundancy ratio: This is calculated by
counting up the number of elements that exces-
sively cover the top 100 elements.

• Length ratio: This is the ratio between the
length of the summary and length limitation K.

• Position: This feature takes into consideration
the position of sentence occurrences. It is cal-
culated with

∑
x∈S Pos(x)−1.

Consequently, ϕ′(S) is a 104-dimensional vector.
We executed ASRL 10 times with the settings pre-

viously described and used all the results for evalu-
ation.

We used the dataset of DUC2003, which is a simi-
lar task that contains 30 document clusters and each
cluster had 10 documents, to determine τk and λs.
We determined the parameters so that they would
converge properly and become close to the opti-
mal solutions calculated by ILP, under the condi-
tions that the described feature representation and
the score function were given.
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ROUGE-1 ROUGE-2 ROUGE-L
ASRL 0.39013 0.09479 0.33769
MCKP 0.39033 0.09613 0.34225
PEER65 0.38279 0.09217 0.33099
ILP 0.34712 0.07528 0.31241
GREEDY 0.30618 0.06400 0.27507

Table 1: Results of ROUGE evaluation compared with
other peers in DUC2004. Scores for ILP and GREEDY
have statistically significant differences from scores of
ASRL.

6.2 Evaluation
We compared ASRL with four other conventional
methods.

• GREEDY: This method is a simple greedy al-
gorithm, which repeats the selection of the sen-
tence with the highest score of the remaining
sentences by using an MMR-like method of
scoring as follows:

x = arg max
x∈D\S

[λsRel(x)

−(1− λs)max
xi∈S

Red(x, xi)], (17)

where S is the current summary.

• ILP: This indicates the method proposed by
McDonald (2007) for maximizing the score
function (14) with integer linear programming.

• PEER65: This is the best performing system in
task 2 of the DUC2004 competition in terms of
ROUGE-1 proposed by Conroy et al. (2004).

• MCKP: This method was proposed by Taka-
mura and Okamura (2009). MCKP defines an
automatic summarization problem as a maxi-
mum coverage problem with a knapsack con-
straint, which uses conceptual units (Filatova
and Hatzivassiloglou, 2004), and composes the
meaning of sentences, as textual units and at-
tempts to cover as many units as possible under
the knapsack constraint.

7 Results

7.1 Evaluation with ROUGE
We evaluated our method of ASRL with ROUGE,
in terms of ROUGE-1, ROUGE-2, and ROUGE-L.

ROUGE-1 ROUGE-2 ROUGE-L
ASRL.0 0.39274 0.09537 0.34010
ASRL.1 0.39243 0.09683 0.33855
ASRL.2 0.39241 0.09597 0.34070
ASRL.3 0.39190 0.09580 0.33898
ASRL.4 0.39054 0.09579 0.33663
ASRL.5 0.38911 0.09395 0.33551
ASRL.6 0.38866 0.09392 0.33701
ASRL.7 0.38854 0.09338 0.33661
ASRL.8 0.38821 0.09363 0.33833
ASRL.9 0.38532 0.09281 0.33321

Table 2: Results of ROGUE evaluation for each ASRL
peer of 10 results in DUC2004. ASRL did not converge
with stable solution with these experimental settings be-
cause of property of randomness.

The experimental results are summarized in Tables
1 and 2. Table 1 lists the results for the comparison
and Table 2 lists all the results for ASRL peers.

The results imply ASRL is superior to PEER65,
ILP, and GREEDY, and comparable to MCKP with
these experimental settings in terms of ROUGE met-
rics. Note that ASRL is a kind of approximate
method, because actions are selected probabilisti-
cally and the method of reinforcement learning oc-
casionally converges with some sub-optimal solu-
tion. This can be expected from Table 2, which in-
dicates the results vary although each ASRL solu-
tion converged with some solution. However, in this
experiment, ASRL achieved higher ROUGE scores
than ILP, which achieved optimal solutions. This
seems to have been caused by the properties of the
features, which we will discuss later. It seems this
feature representation is useful for efficiently search-
ing the feature space. The method of mapping a state
to features is, however, approximate in the sense that
some states will shrink to the same feature vector,
and ASRL therefore has no tendency to converge
with some stable solution.

7.2 Evaluation of Optimization Capabilities

Since we proposed our method as an approach to ap-
proximate optimization, there was the possibility of
convergence with some sub-optimal solution as pre-
viously discussed. We also evaluated our approach
from the point of view of the obtained scores and the
execution time to confirm whether our method had
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Figure 1: Average score for each episode in ASRL in
DUC2004. Horizontal lines indicate scores of summaries
obtained with ILP and GREEDY.

optimization capabilities.
The experimental results are plotted in Figures

1 and 2. Figure 1 plots the average for the re-
wards (i.e., scores) that the agent obtained for each
episode. The horizontal line for ILP is the average
for the optimal scores of (14). The score in ASRL
increases as the number of episodes increases, and
overtakes the score of GREEDY at some episode.
The agent attempts to come close to the optimal
score line of ILP but seems to fail, and finally con-
verges to some local optimal solution. We should
increase the number of episodes, adjust parameters
α and τ , and select more appropriate features for
the state to improve the optimization capabilities of
ASRL.

Figure 2 plots the execution time for each peer.
The horizontal axis is the number of textual units,
i.e., the number of sentences in this experiment. The
vertical axis is the execution time taken by the task.
The plots of ASRL and ILP fit a linear function for
the former and an exponential function for the lat-
ter. The experimental results indicate that while the
execution time for ILP tends to increase exponen-
tially, that for ASRL increases linearly. The time
complexity of ASRL is linear with respect to the
number of actions because the agent has to select
the next action from the available actions for each
episode, whose time complexity is naively O(|A|).
As inserti actions are dominant in the extractive
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Figure 2: Execution time on number of textual units for
each problem in DUC2004. Plot of ASRL is fitted to lin-
ear function and that of ILP is fitted to exponential func-
tion.

approach, the execution time increases linearly with
respect to the number of textual units. However, ILP
has to take into account the combinations of textual
units, whose number increases exponentially.

In conclusion, both the experimental results in-
dicate that ASRL efficiently calculated a summary
that was sub-optimal, but that was of relatively high-
quality in terms of ROUGE metrics, with the exper-
imental settings we used.

7.3 Evaluation of Effects of Sentence
Compression

We also evaluated the combined approach with sen-
tence compression. We evaluated the method de-
scribed in Section 5 called ASRLC in this experi-
ment for the sake of convenience. We used a very
naive method of sentence compression for this ex-
periment, which compressed a sentence to only im-
portant words, i.e., selecting word order by using
the tf*idf score to compress the length to about
half. This method of compression did not take into
consideration either readability or linguistic quality.
Note we wanted to confirm what effect the other
methods would have, and we expected this to im-
prove the ROUGE-1 score. We used the ROUGE-3
score in this evaluation instead of ROUGE-L, to con-
firm whether naive sentence compression occurred.

The experimental results are summarized in Ta-
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ROUGE-1 ROUGE-2 ROUGE-3
ASRL 0.39013 0.09479 0.03435
ASRLC 0.39141 0.09259 0.03239

Table 3: Evaluation of combined methods.

ble 3, which indicates ROUGE-1 increases but
ROUGE-2 and ROUGE-3 decrease as expected. The
variations, however, are small. This phenomenon
was reported by Lin (2003) in that the effectiveness
of sentence compression by local optimization at the
sentence level was insufficient. Therefore, we would
have to consider the range of applications with the
combined method.

8 Discussion

8.1 Local Optimality of ASRL

We will discuss why ASRL seems to converge with
some “good” local optimum with the described ex-
perimental settings in this section.

Since our model of the state value function was
simply linear and our parameter estimation was im-
plemented by TD (λ), which is a simple method
in RL, it seems simply employing more efficient
or state-of-the-art reinforcement learning methods
may improve the performance of ASRL, such as
GTD and GTD2 (Sutton et al., 2009b; Sutton et al.,
2009a). These methods basically only contribute to
faster convergence, and the score that they will con-
verge to might not differ significantly. As a result, it
would not matter much which method was used for
optimization.

The main point of this problem is modeling the
feature representation of states, and this causes
sub-optimality. The vector representation of states
shrinks the different states to a single representation,
i.e., the agent regards states whose features are simi-
lar to be similar states. Due to this property, the pol-
icy of reinforcement learning is learned to maximize
the expected score of each feature vector, which
includes many states. Such sub-optimality aver-
agely balanced by the feature representation raises
the possibility of achieving states that have a high-
quality summary with a low score, since we do not
have a genuine score function.

Thus, the most important thing in our method
is to intentionally design the features of states and

the score function, so that the agent can generalize
states, while taking into consideration truly-essential
features for the required summarization. It would be
useful if the forms of features and the score function
could be arbitrarily designed by the user because
there is the capability of obtaining a high-quality
summaries.

8.2 Potential of Combined Method

Other useful methods, even other summarization
systems, can easily be adapted to ASRL as was de-
scribed in Section 5. The experimental results re-
vealed that sentence compression has some effect.
In fact, all operations that produce a new summary
from an old summary can be used, i.e., even other
summarizing methods can be employed for an ac-
tion. We assumed a general combined method may
have a great deal of potential to enhance the quality
of summaries.

8.3 Can We Obtain “a Global Policy”?

We formulated each summarization task as a rein-
forcement learning task in this paper, i.e., where
each learned policy differs. As this may be a little
unnatural, we wanted to obtain a single learned pol-
icy, i.e., a global policy.

However, we assessed that we cannot achieve a
global policy with these feature and score function
settings because the best vector, which is the fea-
ture representation of the summary that achieves an
optimal score under the current settings, seems to
vary for each cluster, even if the domain of the clus-
ters is the same (e.g., a news domain). Having said
that, we simultaneously surmised that we could ob-
tain a global policy if we could obtain a highly gen-
eral, crucial, and efficient feature representation of a
summary. We also think a global policy is essential
in terms of reinforcement learning and we intend to
attempt to achieve this in future work.

9 Conclusion

We presented a new approach to the problem of
automatic text summarization called ASRL in this
paper, which models the process of constructing
a summary with the framework of reinforcement
learning and attempts to optimize the given score
function with the given feature representation.
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The experimental results demonstrated ASRL
tends to converge sub-optimally, and excessively de-
pends on the formulation of features and the score
function. Although it is difficult, we believe this for-
mulation would enable us to improve the quality of
summaries by designing them freely.

We intend to employ the ROUGE score as the
score function in future work, and obtain the param-
eters of the state value function. Using these results,
we will attempt to obtain a single learned policy by
employing the ROUGE score or human evaluations
as rewards. We also intend to consider efficient fea-
tures and a score to achieve stable convergence. In
addition, we plan to use other methods of function
approximation, such as RBF networks.
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Abstract

We apply slice sampling to Bayesian de-
cipherment and use our new decipherment
framework to improve out-of-domain machine
translation. Compared with the state of the
art algorithm, our approach is highly scalable
and produces better results, which allows us
to decipher ciphertext with billions of tokens
and hundreds of thousands of word types with
high accuracy. We decipher a large amount
of monolingual data to improve out-of-domain
translation and achieve significant gains of up
to 3.8 BLEU points.

1 Introduction

Nowadays, state of the art statistical machine trans-
lation (SMT) systems are built using large amounts
of bilingual parallel corpora. Those corpora are
used to estimate probabilities of word-to-word trans-
lation, word sequences rearrangement, and even
syntactic transformation. Unfortunately, as paral-
lel corpora are expensive and not available for ev-
ery domain, performance of SMT systems drops
significantly when translating out-of-domain texts
(Callison-Burch et al., 2008).

In general, it is easier to obtain in-domain mono-
lingual corpora. Is it possible to use domain specific
monolingual data to improve an MT system trained
on parallel texts from a different domain? Some re-
searchers have attempted to do this by adding a do-
main specific dictionary (Wu et al., 2008), or mining
unseen words (Daumé and Jagarlamudi, 2011) us-
ing one of several translation lexicon induction tech-
niques (Haghighi et al., 2008; Koehn and Knight,

2002; Rapp, 1995). However, a dictionary is not al-
ways available, and it is difficult to assign probabil-
ities to a translation lexicon.

(Ravi and Knight, 2011b) have shown that one
can use decipherment to learn a full translation
model from non-parallel data. Their approach is able
to find translations, and assign probabilities to them.
But their work also has certain limitations. First of
all, the corpus they use to build the translation sys-
tem has a very small vocabulary. Secondly, although
their algorithm is able to handle word substitution
ciphers with limited vocabulary, its deciphering ac-
curacy is low.

The contributions of this work are:

• We improve previous decipherment work by in-
troducing a more efficient sampling algorithm.
In experiments, our new method improves de-
ciphering accuracy from 82.5% to 88.1% on
(Ravi and Knight, 2011b)’s domain specific
data set. Furthermore, we also solve a very
large word substitution cipher built from the
English Gigaword corpus and achieve 92.2%
deciphering accuracy on news text.

• With the ability to handle a much larger vocab-
ulary, we learn a domain specific translation ta-
ble from a large amount of monolingual data
and use the translation table to improve out-of-
domain machine translation. In experiments,
we observe significant gains of up to 3.8 BLEU
points. Unlike previous works, the translation
table we build from monolingual data do not
only contain unseen words but also words seen
in parallel data.
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2 Word Substitution Ciphers

Before we present our new decipherment frame-
work, we quickly review word substitution decipher-
ment.

Recently, there has been an increasing interest in
decipherment work (Ravi and Knight, 2011a; Ravi
and Knight, 2008). While letter substitution ciphers
can be solved easily, nobody has been able to solve
a word substitution cipher with high accuracy.

As shown in Figure 1, a word substitution cipher
is generated by replacing each word in a natural lan-
guage (plaintext) sequence with a cipher token ac-
cording to a substitution table. The mapping in the
table is deterministic – each plaintext word type is
only encoded with one unique cipher token. Solv-
ing a word substitution cipher means recovering the
original plaintext from the ciphertext without know-
ing the substitution table. The only thing we rely on
is knowledge about the underlying language.

Figure 1: Encoding and Decipherment of a Word Substi-
tution Cipher

How can we solve a word substitution cipher?
The approach is similar to those taken by cryptana-
lysts who try to recover keys that convert encrypted
texts to readable texts. Suppose we observe a large
cipher string f and want to decipher it into English e.
We can follow the work in (Ravi and Knight, 2011b)
and assume that the cipher string f is generated in
the following way:

• Generate English plaintext sequence e =
e1, e2...en with probability P(e).

• Replace each English plaintext token ei with a
cipher token fi with probability P (fi|ei).

Based on the above generative story, we write the
probability of the cipher string f as:

P (f)θ =
∑

e

P (e) ·
n∏
i

Pθ(fi|ei) (1)

We use this equation as an objective function for
maximum likelihood training. In the equation, P (e)
is given by an ngram language model, which is
trained using a large amount of monolingual texts.
The rest of the task is to manipulate channel prob-
abilities Pθ(fi|ei) so that the probability of the ob-
served texts P (f)θ is maximized.

Theoretically, we can directly apply EM, as pro-
posed in (Knight et al., 2006), or Bayesian decipher-
ment (Ravi and Knight, 2011a) to solve the prob-
lem. However, unlike letter substitution ciphers,
word substitution ciphers pose much greater chal-
lenges to algorithm scalability. To solve a word sub-
stitution cipher, the EM algorithm has a computa-
tional complexity of O(N · V 2 · R) and the com-
plexity of Bayesian method is O(N · V · R), where
V is the size of plaintext vocabulary, N is the length
of ciphertext, and R is the number of iterations. In
the world of word substitution ciphers, both V and
N are very large, making these approaches impracti-
cal. (Ravi and Knight, 2011b) propose several mod-
ifications to the existing algorithms. However, the
modified algorithms are only an approximation of
the original algorithms and produce poor decipher-
ing accuracy, and they are still unable to handle very
large scale ciphers.

To address the above problems, we propose the
following two new improvements to previous deci-
pherment methods.

• We apply slice sampling (Neal, 2000) to scale
up to ciphers with a very large vocabulary.

• Instead of deciphering using the original ci-
phertext, we break the ciphertext into bigrams,
collect their counts, and use the bigrams with
their counts for decipherment.
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The new improvements allow us to solve a word
substitution cipher with billions of tokens and hun-
dreds of thousands of word types. Through better
approximation, we achieve a significant increase in
deciphering accuracy. In the following section, we
present details of our new approach.

3 Slice Sampling for Bayesian
Decipherment

In this section, we first give an introduction to
Bayesian decipherment and then describe how to use
slice sampling for it.

3.1 Bayesian Decipherment

Bayesian inference has been widely used in natural
language processing (Goldwater and Griffiths, 2007;
Blunsom et al., 2009; Ravi and Knight, 2011b). It is
very attractive for problems like word substitution
ciphers for the following reasons. First, there are
no memory bottlenecks as compared to EM, which
has an O(N · V 2) space complexity. Second, priors
encourage the model to learn a sparse distribution.

The inference is usually performed using Gibbs
sampling. For decipherment, a Gibbs sampler keeps
drawing samples from plaintext sequences accord-
ing to derivation probability P (d):

P (d) = P (e) ·
n∏
i

P (ci|ei) (2)

In Bayesian inference, P (e) is still given by an
ngram language model, while the channel probabil-
ity is modeled by the Chinese Restaurant Process
(CRP):

P (ci|ei) =
α · prior + count(ci, ei)

α + count(ei)
(3)

Where prior is the base distribution (we set prior
to 1

C in all our experiments, where C is the number
of word types in ciphertext), and count, also called
“cache”, records events that occurred in the history.
Each sampling operation involves changing a plain-
text token ei, which has V possible choices, where
V is the plaintext vocabulary size, and the final sam-
ple is chosen with probability P (d)∑V

n=1 P (d)
.

3.2 Slice Sampling

With Gibbs sampling, one has to evaluate all possi-
ble plaintext word types (10k—1M) for each sam-
ple decision. This become intractable when the vo-
cabulary is large and the ciphertext is long. Slice
sampling (Neal, 2000) can solve this problem by au-
tomatically adjusting the number of samples to be
considered for each sampling operation.

Suppose the derivation probability for current
sample is P (current s). Then slice sampling draws
a sample in two steps:

• Select a threshold T uniformly from the range
{0, P (current s)}.

• Draw a new sample new s uniformly from a
pool of candidates: {new s|P (new s) > T}.

From the above two steps, we can see that given a
threshold T , we only need to consider those samples
whose probability is higher than the threshold. This
will lead to a significant reduction on the number
of samples to be considered, if probabilities of the
most samples are below T . In practice, the first step
is easy to implement, while it is difficult to make the
second step efficient. An obvious way to collect can-
didate samples is to go over all possible samples and
record those with probabilities higher than T . How-
ever, doing this will not save any time. Fortunately,
for Bayesian decipherment, we are able to complete
the second step efficiently.

According to Equation 1, the probability of the
current sample is given by a language model P (e)
and a channel model P (c|e). The language model
is usually an ngram language model. Suppose our
current sample current s contains English tokens
X , Y , and Z at position i − 1, i, and i + 1 respec-
tively. Let ci be the cipher token at position i. To
obtain a new sample, we just need to change token
Y to Y ′. Since the rest of the sample stays the same,
we only need to calculate the probability of any tri-
gram 1: P (XY ′Z) and the channel model probabil-
ity: P (ci|Y ′), and multiply them together as shown
in Equation 4.

P (XY ′Z) · P (ci|Y ′) (4)

1The probability is given by a bigram language model.
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In slice sampling, each sampling operation has
two steps. For the first step, we choose a thresh-
old T uniformly between 0 and P (XY Z) ·P (ci|Y ).
For the second step, there are two cases.

First, we notice that two types of Y ′ are more
likely to pass the threshold T : (1) Those that have
a very high trigram probability , and (2) those that
have high channel model probability. To find can-
didates that have high trigram probability, we build
sorted lists ranked by P (XY ′Z), which can be pre-
computed off-line. We only keep the top K En-
glish words for each of the sorted list. When the
last item YK in the list satisfies P (XYkZ) · prior <
T , We draw a sample in the following way: set
A = {Y ′|P (XY ′Z) · prior > T} and set B =
{Y ′|count(ci, Y

′) > 0}, then we only need to sam-
ple Y ′ uniformly from A ∪ B until Equation 4 is
greater than T . 2

Second, what happens when the last item YK in
the list does not satisfy P (XYkZ) · prior < T ?
Then we always choose a word Y ′ randomly and ac-
cept it as a new sample if Equation 4 is greater than
T .

Our algorithm alternates between the two cases.
The actual number of choices the algorithm looks at
depends on the K and the total number of possible
choices. In different experiments, we find that when
K = 500, the algorithm only looks at 0.06% of all
possible choices. When K = 2000, this further re-
duces to 0.007%.

3.3 Deciphering with Bigrams

Since we can decipher with a bigram language
model, we posit that a frequency list of ciphertext
bigrams may contain enough information for deci-
pherment. In our letter substitution experiments, we
find that breaking ciphertext into bigrams doesn’t
hurt decipherment accuracy. Table 1 shows how full
English sentences in the original data are broken into
bigrams and their counts.

Instead of doing sampling on full sentences, we
treat each bigram as a full “sentence”. There are

2It is easy to prove that all other candidates that are not in
the sorted list and with count(ci, Y

′) = 0 have a upper bound
probability: P (XYkZ) · prior. Therefore, they are ignored
when P (XYkZ) · prior < T .

man they took our land .
they took our arable land .

took our 2
they took 2
land . 2
man they 1
arable land 1

Table 1: Converting full sentences to bigrams

two advantages to use bigrams and their counts for
decipherment.

First of all, the bigrams and counts are a much
more compact representation of the original cipher-
text with full sentences. For instance, after breaking
a billion tokens from the English Gigaword corpus,
we find only 29m bigrams and 58m tokens, which
is only 1/17 of the original text. In practice, we fur-
ther discard all bigrams with low frequency, which
makes the ciphertext even shorter.

Secondly, using bigrams significantly reduces the
number of sorted lists (from |V |2 to 2|V |) mentioned
in the previous section. The number of lists reduces
from |V |2 to 2|V | because words in a bigram only
have one neighbor. Therefore, for any word W in a
bigram, we need only 2|V | lists (“words to the right
of W” and “words to the left of W”) instead of |V |2
lists (“pairs of words that surround W”).

3.4 Iterative Sampling

Although we can directly apply slice sampling on
a large number of bigrams, we find that gradually
including less frequent bigrams into a sampling pro-
cess saves deciphering time – we call this iterative
sampling:

• Break the ciphertext into bigrams and collect
their counts

• Keep bigrams whose counts are greater than a
threshold α. Then initialize the first sample
randomly and use slice sampling to perform
maximum likelihood training. In the end, ex-
tract a translation table T according to the final
sample.

• Lower the threshold α to include more bi-
grams into the sampling process. Initialize the
first sample using the translation table obtained
from the previous sampling run (for each ci-
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pher token f, choose a plaintext token e whose
P (e|f) is the largest). Perform sampling again.

• Repeat until α = 1.

3.5 Parallel Sampling
Inspired by (Newman et al., 2009), our parallel sam-
pling procedure is described below:

• Collect bigrams and their counts from cipher-
text and split the bigrams into N parts.

• Run slice sampling on each part for 5 iterations
independently.

• Combine counts from each part to form a new
count table and run sampling again on each part
using the new table.3

4 Decipherment Experiments

In this section, we evaluate our new sampling algo-
rithm in two different experiments. In the first ex-
periment, we compare our method with (Ravi and
Knight, 2011b) on their data set to prove correct-
ness of our approach. In the second experiment, we
scale up to the whole English Gigaword corpus and
achieve a much higher deciphering accuracy.

4.1 Deciphering Transtac Corpus
4.1.1 Data

We split the Transtac corpus the same way it was
split in (Ravi and Knight, 2011b). The data used to
create ciphertext consists of 1 million tokens, and
3397 word types. The data for language model
training contains 2.7 million tokens and 25761 word
types.4 The ciphertext is created by replacing each
English word with a cipher word.

We use a bigram language model for decipher-
ment training. When the training terminates, a trans-
lation table with probability P (c|e) is built based on
the counts collected from the final sample. For de-
coding, we employ a trigram language model using
full sentences. We use Moses (Koehn et al., 2007)

3Except for combining the counts to form a new count table,
other parameters remain the same. For instance, each part i has
its own prior set to 1

Ci
, where Ci is the number of word types

in that part of ciphertext.
4In practice, we replaced singletons with a “UNK” symbol,

leaving around 16904 word types.

Method Deciphering Accuracy
Ravi and Knight 80.0 (with bigram LM)

82.5 (with trigram LM)
Slice Sampling 88.1 (with bigram LM)

Table 2: Decipherment Accuracy on Transtac Corpus
from (Ravi and Knight, 2011b)

Gold Decoded
man i’ve come to file
a complaint against
some people .

man i’ve come to hand
a telephone lines some
people .

man they took our land
.

man they took our
farm .

they took our arable
land .

they took our slide
door .

okay man . okay man .
eighty donums . miflih donums .

Table 3: Sample Decoding Results on Transtac Corpus
from (Ravi and Knight, 2011b)

to perform the decoding. We set the distortion limit
to 0 and cube the translation probabilities. Essen-
tially, Moses tries to find an English sequence e that
maximizes P (e) · P (c|e)3

4.1.2 Results
We evaluate the performance of our algorithm

by decipherment accuracy, which measures the per-
centage of correctly deciphered cipher tokens. Table
2 compares the deciphering accuracy with the state
of the art algorithm.

Results show that our algorithm improves the de-
ciphering accuracy to 88.1%, which amounts to 33%
reduction in error rate. This justifies our claim: do-
ing better approximation using slice sampling im-
proves decipherment accuracy.

Table 3 shows the first 5 decoding results and
compares them with the gold plaintext. From the ta-
ble we can see that the algorithm recovered the ma-
jority of the plaintext correctly.

4.2 Deciphering Gigaword Corpus

To prove the scalability of our new approach, we ap-
ply it to solve a much larger word substitution cipher
built from English Gigaword corpus. The corpus
contains news articles from different news agencies
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and has a much larger vocabulary compared with the
Transtac corpus.

4.2.1 Data

We split the corpus into two parts chronologically.
Each part contains approximately 1.2 billion tokens.
We uses the first part to build a word substitution
cipher, which is 10k times longer than the one in the
previous experiment, and the second part to build a
bigram language model. 5

4.2.2 Results

We first use a single machine and apply iterative
sampling to solve a 68 million token cipher. Then
we use the result from the first step to initialize our
parallel sampling process, which uses as many as
100 machines. For evaluation, we calculate deci-
phering accuracy over the first 1000 sentences (33k
tokens).

After 2000 iterations of the parallel sampling pro-
cess, the deciphering accuracy reaches 92.2%. Fig-
ure 2 shows the learning curve of the algorithm. It
can be seen from the graph that both token and type
accuracy increase as more and more data becomes
available.

Figure 2: Learning curve for a very large word substitu-
tion cipher: Both token and type accuracy rise as more
and more ciphertext becomes available.

5Before building the language model, we replace low fre-
quency word types with an ”UNK” symbol, leaving 129k
unique word types.

5 Improving Out-of-Domain Machine
Translation

Domain specific machine translation (MT) is a chal-
lenge for statistical machine translation (SMT) sys-
tems trained on parallel corpora. It is common to see
a significant drop in translation quality when trans-
lating out-of-domain texts. Although it is hard to
find parallel corpora for any specific domain, it is
relatively easy to find domain specific monolingual
corpora. In this section, we show how to use our new
decipherment framework to learn a domain specific
translation table and use it to improve out-of-domain
translations.

5.1 Baseline SMT System
We build a state of the art phrase-based SMT system
using Moses (Koehn et al., 2007). The baseline sys-
tem has 3 models: a translation model, a reordering
model, and a language model. The language model
can be trained on monolingual data, and the rest are
trained on parallel data. By default, Moses uses the
following 8 features to score a candidate translation:

• direct and inverse translation probabilities

• direct and inverse lexical weighting

• phrase penalty

• a language model

• a re-ordering model

• word penalty

Each of the 8 features has its own weight, which
can be tuned on a held-out set using minimum error
rate training. (Och, 2003). In the following sections,
we describe how to use decipherment to learn do-
main specific translation probabilities, and use the
new features to improve the baseline.

5.2 Learning a New Translation Table with
Decipherment

From a decipherment perspective, machine transla-
tion is a much more complex task than solving a
word substitution cipher and poses three major chal-
lenges:

• Mappings between languages are nondetermin-
istic, as words can have multiple translations
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• Re-ordering of words

• Insertion and deletion of words

Fortunately, our decipherment model does not as-
sume deterministic mapping and is able to discover
multiple translations. For the reordering problem,
we treat Spanish as a simple word substitution for
French. Despite the simplification in the assump-
tion, we still expect to learn a useful word-to-word
lexicon via decipherment and use the lexicon to im-
prove our baseline.

Problem formulation: By ignoring word re-
orderings, we can formulate MT decipherment prob-
lem as word substitution decipherment. We view
source language f as ciphertext and target language
e as plaintext. Our goal is to decipher f into e and
estimate translation probabilities based on the deci-
pherment.

Probabilistic decipherment: Similar to solving
a word substitution cipher, all we have to do here is
to estimate the translation model parameters Pθ(f |e)
using a large amount of monolingual data in f and
e respectively. According to Equation 5, our objec-
tive is to estimate the model parameters so that the
probability of source text P(f) is maximized.

arg max
θ

∑
e

P (e) ·
n∏
i

Pθ(fi|ei) (5)

Building a translation table: Once the sampling
process completes, we estimate translation probabil-
ity P (f |e) from the final sample using maximum
likelihood estimation. We also decipher from the re-
verse direction to estimate P (e|f). Finally, we build
a phrase table by taking translation pairs seen in both
decipherments.

5.3 Combining Phrase Tables
We now have two phrase tables: one learnt from par-
allel corpus and one learnt from non-parallel mono-
lingual corpus through decipherment. The phrase ta-
ble learnt through decipherment only contains word
to word translations, and each translation option
only has two scores. Moses has a function to decode
with multiple phrase tables, so we just need to add
the newly learnt phrase table and specify two more
weights for the scores in it. During decoding, if a
source word only appears in the decipherment table,

Train
French: 28.5 million tokens
Spanish: 26.6 million tokens

Tune
French: 28k tokens
Spanish: 26k tokens

Test
French: 30k tokens
Spanish: 28k tokens

Table 4: Europarl Training, Tuning, and Testing Data

that table’s translation will be used. If a source word
exists in both tables, Moses will create two separate
decoding paths and choose the best one after taking
other features into account. If a word is not seen in
either of the tables, it is copied literally to the output.

6 MT Experiments and Results

6.1 Data
In our MT experiments, we translate French into
Spanish and use the following corpora to learn our
translation systems:

• Europarl Corpus (Koehn, 2005): The Europarl
parallel corpus is extracted from the proceed-
ings of the European Parliament and includes
versions in 11 European languages. The cor-
pus contains articles from the political domain
and is used to train our baseline system. We
use the 6th version of the corpus. After clean-
ing, there are 1.3 million lines left for training.
We use the last 2k lines for tuning and testing
(1k for each), and the rest for training. Details
of training, tuning, and testing data are listed in
Table 4.

• EMEA Corpus (Tiedemann, 2009): EMEA is
a parallel corpus made out of PDF documents
from the European Medicines Agency. It con-
tains articles from the medical domain, which
is a good test bed for out-of-domain tasks. We
use the first 2k pairs of sentences for tuning
and testing (1k for each), and use the rest (1.1
million lines) for decipherment training. We
split the training corpus in ways that no parallel
sentences are included in the training set. The
splitting methods are listed in Table 5.

For decipherment training, we use lexical transla-
tion tables learned from the Europarl corpus to ini-

272



Comparable EMEA :
French: Every odd line, 8.7 million tokens
Spanish: Every even line, 8.1 million tokens
Non-parallel EMEA:
French: First 550k sentences, 9.1 million tokens
Spanish: Last 550k sentences, 7.7 million to-
kens

Table 5: EMEA Decipherment Training Data

tialize our sampling process.

6.2 Results

BLEU (Papineni et al., 2002) is used as a standard
evaluation metric. We compare the following 3 sys-
tems in our experiments, and present the results in
Table 6.

• Baseline: Trained on Europarl

• Decipher-CP: Trained on Europarl + Compa-
rable EMEA

• Decipher-NP: Trained on Europarl + Non-
Parallel EMEA

Our baseline system achieves 38.2 BLEU score
on Europarl test set. In the second row of Table
6, the test set changes to EMEA, and the baseline
BLEU score drops to 24.9. In the third row, the base-
line score rises to 30.5 with a language model built
from EMEA corpus. Although it is much higher
than the previous baseline, we further improve it
by including a new phrase table learnt from domain
specific monolingual data. In a real out-of-domain
task, we are unlikely to have any parallel data to
tune weights for the new phrase table. Therefore,
we can only set it manually. In experiments, each
score in the new phrase table has a weight of 5, and
the BLEU score rises up to 33.2. In the fourth row
of the table, we assume that there is a small amount
of domain specific parallel data for tuning. With
better weights, our baseline BLEU score increases
to 37.3, and our combined systems increase to 41.1
and 39.7 respectively. In the last row of the table, we
compare the combined systems with an even better
baseline. This time, the baseline is given half of the
EMEA tuning set for training and uses the other half

French Spanish P (fr|es) P (es|fr)

< < 0.32 1.00
hépatique hepático 0.88 0.08

hepática 0.76 0.85
injectable inyectable 0.91 0.92

dl dl 1.00 0.70
> > 0.32 1.00

ribavirine ribavirina 0.40 1.00
olanzapine olanzapina 0.57 1.00
clairance aclaramiento 0.99 0.64

pelliculéss recubiertos 1.00 1.00
pharmaco-
cinétique

farmaco-
cinético

1.00 1.00

Table 7: 10 most frequent OOV words in the table learnt
from non-parallel EMEA corpus

for weight tuning. Results show that our combined
systems still outperform the baseline.

The phrase table learnt from monolingual data
consists of both observed and unknown words. Ta-
ble 7 shows the top 10 most frequent OOV words
in the table learnt from non-parallel EMEA corpus.
Among the 10 words, 9 have correct translations. It
is interesting to see that our algorithm finds mul-
tiple correct translations for the word “hépatique”.
The only mistake in the table is sensible as French
word “pelliculés” is translated into “recubiertos con
pelı́cula” in Spanish.

7 Conclusion and Future Work

We apply slice sampling to Bayesian Decipherment
and show significant improvement in deciphering
accuracy compared with the state of the art algo-
rithm. Our method is not only accurate but also
highly scalable. In experiments, we decipher at the
scale of the English Gigaword corpus, which con-
tains over billions of tokens and hundreds of thou-
sands word types. We further show the value of
our new decipherment algorithm by using it to im-
prove out-of-domain translation. In the future, we
will work with more language pairs, especially those
with significant word re-orderings. Moreover, the
monolingual corpora used in the experiments are far
smaller than what our algorithm can handle. We will
continue to work in scenarios where large amount of
monolingual data is readily available.
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Train Data Tune Data Tune LM Test Data Test LM Baseline
Decipher-

CP
Decipher-

NP
Europarl Europarl Europarl Europarl Europarl 38.2
Europarl Europarl Europarl EMEA Europarl 24.9

Europarl Europarl Europarl EMEA EMEA 30.5
33.2

(+2.7)
32.4

(+1.9)

Europarl EMEA EMEA EMEA EMEA 37.3
41.1

(+3.8)
39.7

(+2.4)
Europarl +

EMEA
EMEA EMEA EMEA EMEA 67.4

68.7
(+1.3)

68.7
(+1.3)

Table 6: MT experiment results: The table shows how much the combined systems outperform the baseline system in
different experiments. Each row has a different set of training, tuning, and testing data. Baseline is trained on parallel
data only. Tune LM and Test LM specify language models used for tuning and testing respectively. Decipher-CP and
Decipher-NP use a phrase table learnt from comparable and non-parallel EMEA corpus respectively.
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Abstract

Tense is a small element to a sentence, how-
ever, error tense can raise odd grammars and
result in misunderstanding. Recently, tense
has drawn attention in many natural language
processing applications. However, most of
current Statistical Machine Translation (SMT)
systems mainly depend on translation model
and language model. They never consider and
make full use of tense information. In this pa-
per, we propose n-gram-based tense models
for SMT and successfully integrate them in-
to a state-of-the-art phrase-based SMT system
via two additional features. Experimental re-
sults on the NIST Chinese-English translation
task show that our proposed tense models are
very effective, contributing performance im-
provement by 0.62 BLUE points over a strong
baseline.

1 Introduction

For many NLP applications, such as event extraction
and summarization, tense has been regarded as a key
factor in providing temporal order. However, tense
information has been largely overlooked by current
SMT research. Consider the following example:
SRC:ù�B$´eÔ�(J ,ØU�Ny3��³

,���N¥I�î�m�º�'X"

REF:The embargo is a result of the Cold War and does not

reflect the present situation nor the partnership between China

and the EU.

MOSES: the embargo is the result of the cold war, not reflect

the present situation, it did not reflect the partnership with the

european union.
∗*Corresponding author.

Although the translated text produced by Moses1

is understandable, it has very odd tense combination
from the grammatical aspect, i.e. with tense incon-
sistency (is/does in REF vs. is/did in Moses). Ob-
viously, slight modification, such as changing “is”
into “was”, can much improve the readability of the
translated text. It is also interesting to note that such
modification can much affect the evaluation. If we
change “did” to “does”, the BLEU-4 score increases
from 22.65 to 27.86 (as matching the 4-gram “does
not reflect the” in REF). However, if we change “is”
to “was”, the BLEU score decreases from 22.65 to
21.44.

The above example seems special. To testify its
impact on SMT in wider range, we design a special
experiment based on the 2005 NIST MT data (see
section 6.1). This data has 4 references. We choose
one reference and modify its sentences with error
tense2. After that, we use other 3 references to mea-
sure this reference. The modified reference leads to
a sharp drop in BLEU-4 score, from 52.46 to 50.27
in all. So it is not a random phenomenon that tense
can affect translation results.

The key is how to detect tense errors and choose
correct tenses during the translation procedure. By
carefully comparing the references with Moses out-
put, we obtain the following useful observations,

Observation(1): to most simple sentences, coor-
dinate verbs should be translated with the same tense
while they have different tense in Moses output;

Observation(2): to some compound sentences,

1http://www.statmt.org/moses/
2Such changes are small by mainly modifying one auxiliary

verb for a sentence, such as “is→ was”, “has→ had”.
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the subordinate clause should have the consisten-
t tense with its main clause while Moses fails;

Observation(3): the diversity of tense usage in a
document is common. However, in most cases, the
neighbored sentences tends to share the same main
tense. In some extreme examples, one tense (past or
present), even dominates the whole document.

One possible solution to model above observa-
tions is using rules. Dorr (2002) refers to six ba-
sic English tense structures and defines the possible
paired combinations of “present, past, future”. But
the practical cases are very complicated, especial-
ly in news domain. There are a lot of complicat-
ed sentences in news articles. Our preliminary in-
vestigation shows that such six paired combinations
can only cover limited real cases in Chinese-English
SMT.

This paper proposes a simple yet effective method
to model above observations. For each target sen-
tence in the training corpus, we first parse it and ex-
tract its tense sequence. Then, a target-side tense
n-gram model is constructed. Such model can be
used to estimate the rationality of tense combina-
tion in a sentence and thus supervise SMT to reduce
tense inconsistency errors against Observations (1)
and (2) in the sentence-level. In comparison, Ob-
servation (3) actually reflects the tense distributions
among one document. After extracting each main
tense for each sentence, we build another tense n-
gram model in the document-level. For clarity, this
paper denotes document-level tense as “inter-tense”
and sentence-level tense as “intra-tense”.

After that, we propose to integrate such tense
models into SMT systems in a dynamic way. It
is well known there are many errors in the current
MT output (David et al., 2006). Unlike previously
making trouble with reference texts, the BLEU-4 s-
core cannot be influenced obviously by modifying
a small part of abnormal sentences in a static way.
In our system, both inter-tense and intra-tense mod-
el are integrated into a SMT system via additional
features and thus can supervise the decoding proce-
dure. During decoding, once some words with cor-
rect tense can be determined, with the help of lan-
guage model and other related features, the smal-
l component–“tense”–can affect surrounding words
and improve the performance of the whole sentence.
Our experimental results (see the examples in Sec-

tion 6.4) show the effectiveness of this way.
Rather than the rule-based model, our models are

fully statistical-based. So they can be easily scaled
up and integrated into either phrase-based or syntax-
based SMT systems. In this paper, we employ a
strong phrase-based SMT baseline system, as pro-
posed in Gong et al. (2011), which uses document as
translation unit, for better incorporating document-
level information.

The rest of this paper is organized as follows: Sec-
tion 2 reviews the related work. Section 3 and 4 are
related to tense models. Section 3 describes the pre-
processing work for building tense models. Section
4 presents how to build target-side tense models and
discuss their characteristics. Section 5 shows our
way of integrating such tense models into a SMT
system. Session 6 gives the experimental results. Fi-
nally, we conclude this paper in Section 7.

2 Related Work

In this section, we focus on related work on integrat-
ing the tense information into SMT. Since both inter-
and intra-tense models need to analyze and extract
tense information, we also give a brief overview on
tense prediction (or tagging).

2.1 Tense Prediction

The tense prediction task often needs to build a mod-
el based on a large corpus annotated with temporal
relations and thus its focus is on how to recognize,
interpret and normalize time expressions. As a rep-
resentative, Lapata and Lascarides (2006) proposed
a simple yet effective data-intensive approach. In
particular, they trained models on main and subor-
dinate clauses connected with some special tempo-
ral marker words, such as “after” and “before”, and
employed them in temporal inference.

Another typical task is cross-lingual tense pred-
ication. Some languages, such as English, are in-
flectional, whose verbs can express tense via certain
stems or suffix, while others, such as Chinese of-
ten lack inflectional forms. Take Chinese to English
translation as example, if Chinese text contains par-
ticle word “
(Le)”, the nearest Chinese verb prefers
to be translated into English verb with the past tense.
Ye and Zhang (2005), Ye et al. (2007) and Liu et al.
(2011) focus on labeling the tenses for keywords in
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source-side language.

Ye and Zhang (2005) first built a small amoun-
t of manually-labeled data, which provide the tense
mapping from Chinese text to English text. Then,
they trained a CRF-based tense classifier to label
tense on Chinese documents. Ye et al. (2007) fur-
ther reported that syntactic features contribute most
to the marking of aspectual information. Liu et al.
(2011) proposed a parallel mapping method to au-
tomatically generate annotated data. In particular,
they used English verbs to label tense information
for Chinese verbs via a parallel Chinese-English cor-
pus.

It is reasonable to label such source-side verb to
supervise the translation process since the tense of
English sentence is often determined by verbs. The
problem is that due to the diversity of English ver-
b inflection, it is difficult to map such Chinese tense
information into the English text. To our best knowl-
edge, although above works attempt to serve for
SMT, all of them fail to address how to integrate
them into a SMT system.

2.2 Machine Translation with Tense

Dorr (1992) described a two-level knowledge repre-
sentation model based on Lexical Conceptual Struc-
tures (LCS) for machine translation which integrates
the aspectual information and the lexical-semantic
information. Her system is based on an inter-lingual
model and does not belong to a SMT system.

Olsen et al. (2001) relied on LCS to generate
appropriately-tensed English translations for Chi-
nese. In particular, they addressed tense reconstruc-
tion on a binary taxonomy (present and past) for
Chinese text and reported that incorporating lexical
aspect features of telicity can obtain a 20% to 35%
boost in accuracy on tense realization.

Ye et al. (2006) showed that incorporating latent
features into tense classifiers can boost the perfor-
mance. They reported the tense resolution results
based on the best-ranked translation text produced
by a SMT system. However, they did not report the
variation of translation performance after introduc-
ing tense information.

3 Preprocessing for Tense Modeling

In this paper, tense modeling is done on the target-
side language. Since our experiments are done
on Chinese to English SMT, our tense models are
learned only from the English text. In the literature,
the taxonomy of English tenses typically includes
three basic tenses (i.e. present, past and future) plus
their combination with the progressive and perfec-
tive aspects. Here, we consider four basic tenses:
present, past, future and UNK (unknown) and ignore
the aspectual information. Furthermore, we assume
that one sentence has only one main tense but maybe
has many subordinate tenses.

This section describes the preprocessing work of
building tense models, which mainly involves how
to extract tense sequence via tense verbs.

3.1 Tense Verbs
Lapata et al.(2006) used syntactic parse trees to find
clauses connected with special aspect markers and
collected them to train some special classifiers for
temporal inference. Inspired by their work, we use
the Stanford parser3 to parse tense sequence for each
sentence.

Take the following three typical sentences as ex-
amples, (a) is a simple sentence which contains two
coordinate verbs, while (b) and (c) are compound
sentences and (b) contains a quoted text.
(a) Japan’s constitution renounces the right to go to war and

prohibits the nation from having military forces except for self-

defense.

(b) “We also hope Hong Kong will not be affected by diseases

like the severe acute respiratory syndrome again!” , added Ms.

Yang.

(c) Cheng said he felt at home in Hong Kong and he sincerely

wished Hong Kong more peaceful and more prosperous.

Figure 1 shows the parse tree with Penn Treebank
style for each sentence, which has strict level struc-
tures and POS tags for all the terminal words. Here,
the level structures mainly contribute to extract main
tense for each sentence (to be described in Section
3.2) and POS tags are utilized to detect tense verbs,
i.e. verbs with tense information.

Normally, POS tags in the parse tree can distin-
guish five different forms of verbs: the base form
(tagged as VB), and forms with overt endings D for

3http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 1: The Stanford parse trees with Penn Treebank style

past tense, G for present participle, N for past par-
ticiple, and Z for third person singular present. It is
worth noting that VB, VBG and VBN cannot deter-
mine the specific tenses by themselves. In addition,
the verbs with POS tag “MD” need to be special-
ly considered to distinguish future tense from other
tenses.

Algorithm 1 illustrates how to determine what
tense a node has. If the return value is not “UNK”,
the node belongs to a tense verb.

Algorithm 1 Determine the tense of a node.
Input:

The TreeNode of one parse tree, leafnode;
Output:

The tense, tense;
1: tense = “UNK ′′

2: Obtaining the POS tag lpostag from leafnode;
3: Obtaining the word lword from leafnode;
4: if (lpostag in [“V BP ′′, “V BZ ′′]) then
5: tense = “present′′

6: else if (lpostag == “V BD′′]) then
7: tense = “past′′

8: else if (lpostag == “MD′′]) then
9: if (lword in [“will′′, “ll′′, “shall′′]) then

10: tense = “future′′

11: else if (lword in [“would′′, “could′′]) then
12: tense = “past′′

13: else
14: tense = “present′′

15: end if
16: end if
17: return tense;

3.2 Tense Extraction Based on Tense Verbs

As described in Section 1, the inter-tense
(document-level) refers to the main tense of
one sentence and the intra-tense (sentence-level)
corresponds to all tense sequence of one sentence.
This section introduces how to recognize the main
tense and extract all useful tense sequence for each
sentence.

The idea of determining the main tense is to find
the tense verb located in the top level of a parse tree.
According to the Penn Treebank style, the method
to determine the main tense can be described as fol-
lows:
(1) Traverse the parse tree top-down until a tree node

containing more than one child is identified, denot-
ed as Sm .

(2) Consider each child of Sm with tag “VP”, recursive-
ly traverse such “VP” node to find a tense verb. If
found, use it as the main tense and return the tense;
if not, go to step (3).

(3) Consider each child of Sm with tag “S”, which ac-
tually corresponds to subordinate clause of this sen-
tence. Starting from the first subordinate clause, ap-
ply the similar policy of step (2) to find the tense
verb. If not found, search remaining subordinate
clauses.

(4) If no tense verb found, return “UNK” as the main
tense.

Here, “VP” nodes dominated by Sm directly are
preferred over those located in subordinate clauses.
This is to ensure that the main tense is decided by
the top-level tense verb.
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Take Figure 1 as an example, the main tense of
sentence (a) and (b) can be determined only by step
(2). The tense verb of “(VBZ renounces)” dominat-
ed in the “VP” tag determines that (a) is in present
tense. Similarly the node “(VBD added)” indicates
that (b) is in past tense. Sentence (c) needs to be fur-
ther treated by step (3) since there is no “VP” nodes
dominated by Sm directly. The node “(VBD said)”
located in the first subordinate clause shows its main
tense is “past”.

The next task is to extract the tense sequence for
each sentence. They are determined by all tense
verbs in this sentence according to the strict top-
down order. For example, the tense sequence of
sentence (a), (b) and (c) are {present, present},
{present, future, past} and {past, past, past}. In or-
der to explore whether the main tense of intra-tense
model has an impact on SMT or not, we introduce
a special marker “*” to denote the main tense. So
the tense sequence marked with main tense of (a),
(b) and (c) are {present*, present},{present, future,
past*} and {past*, past, past}. It is worth noting, the
intra-tense model (see Section 4) based on the latter
tense sequence is different to the former.

4 N-gram-based Tense Models

4.1 Tense N-gram Estimation

After applying the previous method to extract tense
for an English text corpus, we can obtain a big tense
corpus.

Given the current tense is indexed as ti, we call
the previous n − 1 tenses plus the current tense as
tense n-gram.

Based on the tense corpus, tense n-gram statistics
can be done according to the Formula 1.

P (ti|t(i−(n−1)), ..., t(i−1)) =

count(t(i−(n−1)), . . . , t(i−1), ti)

count(t(i−(n−1)), ..., t(i−1))

(1)

Here, the function of “count” return the tense n-gram
frequency. In order to avoid doing specific smooth-
ing work, we estimate tense n-gram probability us-
ing SRI language modeling (SRILM) tool (Stolcke,
2002).

To compute the probability of intra-tense n-gram,
we first extract all tense sequence for each sentence

and put them into a new file. Based on this new file,
we can get the intra-tense n-gram model via SRILM
tool.

To compute the probability of inter-tense n-gram,
we need to extract the main tense for each sentence
at first. Then, for each document, we re-organized
the main tenses of all sentences into a special line.
After putting all these special lines into a new file,
we can use SRILM to obtain the inter-tense n-gram
model.

4.2 Characteristic of Tense N-gram Models

We construct n-gram-based tense models on English
Gigaword corpus (LDC2003T05). This corpus is
used to build language model for most SMT sys-
tems. It includes 30221 documents (we remove such
files: file size is less than 1K or the number of con-
tinuous “UNK” tenses is greater than 5).

Figure 2 shows the unigram and bigram probabil-
ities (Log10-style) for intra-tense and inter-tense.

The part (a) and (c) in Figure 2 refer to unigram.
The horizontal axis indicts tense type, and the ver-
tical axis shows its probabilities. The parts (a) and
(c) also indicate “present” and “past” are two main
tense types in news domain.

The part (b) and (d) refer to bigram. The horizon-
tal axis indicts history tense. Each different color-
ful bar indicts one current tense. The vertical axis
shows the transfer possibilities from a history tense
to a current tense.

The part (b)4 reflects transfer possibilities of tense
types in one sentence. It also slightly reflects some
linguistic information. For example, in one sen-
tence, the probability of co-occurrence of “present
→ present”, “past → past” and “future → present”
is more than other combinations, which can be a-
gainst tense inconsistency errors described in Obser-
vation (1) and (2) (see Section 1). However, it seem-
s strange that “present→ past” exceeds “present→
future”. We checked our corpus and found a lot of
sentences like this–“the bill has been . . . , he said. ”.

The part (d) shows tense type can be switched be-
tween two neighbored sentences. However, it shows
the strong tendency to use the same tense type for

4The co-occurrence of the “UNK” tense and other tense
types in one sentence cannot happen, so the “UNK” tense is
omitted.
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Figure 2: statistics of intra-tense and inter-tense N-gram

neighbored sentences. This statistics conform to the
previous observation (3) very much.

5 Integrating N-gram-based Tense Models
into SMT

In this section, we discuss how to integrate the pre-
vious tense models into a SMT system.

5.1 Basic phrase-based SMT system
It is well known that the translation process of SMT
can be modeled as obtaining the best translation e
of the source sentence f by maximizing following
posterior probability(Brown et al., 1993):

ebest = arg max
e

P (e|f)

= arg max
e

P (f |e)Plm(e)
(2)

where P (e|f) is a translation model and Plm is a
language model.

Our baseline is a modified Moses, which follows
Koehn et al. (2003) and adopts similar six groups
of features. Besides, the log-linear model ( Och and
Ney, 2000) is employed to linearly interpolate these
features for obtaining the best translation according
to the formula 3:

ebest = arg max
e

M∑
m=1

λmhm(e, f) (3)

where hm(e, f) is a feature function, and λm is
the weight of hm(e, f) optimized by a discrimina-
tive training method on a held-out development da-
ta(Och, 2003).

5.2 The Workflow of Our System
Our system works as follows:

When a hypothesis has covered all source-side
words during the decoding procedure, the decoder

first obtains tense sequence for such hypothesis and
computes intra-tense feature Fs(see Section 5.3). At
the same time, it recognizes the main tense of this
hypothesis and associate the main tense of previous
sentence to compute inter-tense feature Fm (see Sec-
tion 5.3).

Next, the decoder uses such two additional feature
values to re-score this hypothesis automatically and
choose one hypothesis with highest score as the final
translation.

After translating one sentence, the decoder caches
its main tense and pass it to the next sentence.
When one document has been processed, the de-
coder cleans this cache.

In order to successfully implement above work-
flow, we should firstly design some related features,
then resolve another key problem of determining
tense (especially main tense) for SMT output. They
are described in Section 5.3 and 5.4 respectively.

5.3 Two Additional Features

Although the previous tense models show strong
tendency to use the consistent tenses for one sen-
tence or one document, other tense combinations al-
so can be permitted. So we should use such models
in a soft and dynamic way. We design two features:
inter-tense feature and intra-tense feature. And the
weight of each feature is tuned by the MERT script
in Moses packages.

Given main tense sequence of one documen-
t t1, . . . , tm, the inter-tense feature Fm is calculated
according to the following formula:

Fm =

m∏
i=2

P (ti|ti−(n−1), . . . , t(i−1)) (4)

The P (·) of formula 4 can be estimated by the for-
mula 1. It is worth noting the first sentence of one
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document often scares tense information since it cor-
responds to the title at most cases. To the first sen-
tence, the P (·) value is set to 1

4 (4 tense types).
Given tense sequence of one sentence

s1, . . . , se (e > 1), the intra-tense feature Fs

is calculated as follows:

Fs = e−1

√√√√ e∏
i=2

P (si|si−(n−1), . . . , s(i−1)) (5)

Here the square-root operator is used to avoid pun-
ishing translations with long tense sequence. It is
worth noting if the sentence only contains one tense,
the P (·) value of formula 5 is also set to 1

4 .
Since the average length of intra-tense sequence

is about 2.5, we mainly consider intra-tense bigram
model and thus n equals to 2. 5

5.4 Determining Tense For SMT Output
The current SMT systems often produce odd transla-
tions partly because of abnormal word ordering and
uncompleted text etc. For these abnormal translated
texts, the syntactic parser cannot work well in our
initial experiments, so the previous method to parse
main tense and tense sequence of regular texts can-
not be applied here too.

Fortunately, the solely utilization of Stanford POS
tagger for our SMT output is not bad although it has
the same issues described in Och et al. (2002). The
reason may be that phrase-based SMT contains short
contexts that POS tagger can utilize while the syntax
parser fails.

Once obtaining a completed hypothesis, the de-
coder will pass it to the Stanford POS tagger and ac-
cording to tense verbs to get all tense sequence for
this hypothesis. However, since the POS tagger can
not return the information about level structures, the
decoder cannot recognize the main tense from such
tense sequence.

Liu et al. (2011) once used target-side verbs to la-
bel tense of source-side verbs. It is natural to consid-
er whether Chinese verbs can provide similar clues
in an opposite direction.

Since Chinese verbs have good correlation with
English verbs (described in section 6.2), we obtain

5In our experiment, the intra-tense bigram model can ob-
tain the comparable performance to the trigram model. And the
inter-tense trigram model can not exceed the bigram one.

Figure 3: trees for parallel sentences

main tense for SMT output according to such tense
verb, which corresponds to the “VV”(Chinese POS
labels are different to English ones, “VV” refers to
Chinese verb) node in the top level of the source-side
parse tree. Take Figure 3 as an example, the English
node “(VBD announced)” is a tense verb which can
tell the main tense for this English sentence. The
Chinese verb “(VVúÙ)” in the top-level of the
Chinese parse tree is just the corresponding part for
this English verb.

So, before translating one sentence, the decoder
first parses it and records the location of one Chinese
“VV” node which located in the top-level, denotes
this location as Sarea.

Once a completed hypothesis is generated, ac-
cording to the phrase alignment information, the de-
coder can map Sarea into the English location Tarea

and obtain the main tense according to the POS tags
in Tarea .

If Tarea does not contain tense verb, such as the
verb POS tags in the list of {VB, VBN, VBG},
which cannot tell tense type by themselves, our sys-
tem permits to find main tense in the left/right 3
words neighbored to Tarea. And the proportion that
the top-level verb of Chinese has a verb correspon-
dence in English can reach to 83% in this way.

6 Experimentation

6.1 Experimental Setting for SMT

In our experiment, SRI language modeling toolk-
it was used to train a 5-Gram general language
model on the Xinhua portion of the Gigaword cor-
pus. Word alignment was performed on the train-
ing parallel corpus using GIZA++ ( Och and Ney,
2000) in two directions. For evaluation, the NIST
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BLEU script (version 13) with the default setting is
used to calculate the BLEU score (Papineni et al.,
2002), which measures case-insensitive matching of
4-grams. To see whether an improvement is statisti-
cally significant, we also conduct significance tests
using the paired bootstrap approach (Koehn, 2004).
In this paper, “***” and “**” denote p-values equal
to 0.05, and bigger than 0.05, which mean signifi-
cantly better, moderately better respectively.

Corpus Sentences Documents
Role Name
Train FBIS 228455 10000
Dev NIST2003 919 100
Test NIST2005 1082 100

Table 1: Corpus statistics

We use FBIS as the training data, the 2003 NIST
MT evaluation test data as the development data, and
the 2005 NIST MT test data as the test data. Table 1
shows the statistics of these data sets (with document
boundaries annotated).

6.2 The Correlation of Chinese Verbs and
English Verbs

In this section, an additional experiment is designed
to show English Verbs have close correspondence
with Chinese Verbs.

We use the Stanford POS tagger to tag the Chi-
nese and English sentences in our training corpus
respectively at first. Then we utilize Giza++ to build
alignment for these special Word-POS pairs. Ac-
cording to the alignment results, we find the corre-
sponding relation for some special POS tags in two
languages.

Chinese Verb POS English POS Number
VV Verb VBD 89830

POS VBP 27276
VBZ 32588
MD 40378
VBG 86025
VBN 75019
VB 153596
In sum: 504712

Other Non-Verb 149318
Verb Corresponding Ratio 0.77169

Table 2: The Chinese and English Verb Pos Alignment

The “Number” column of Table 2 shows the num-
bers of Chinese words with “VV” tag correspond-
ing to English words with different verb POS tags.

We found Chinese verbs have more than 77% possi-
bilities to align to English verbs in total. However,
our method will fail when some special Chinese sen-
tences only contain noun predicates.

6.3 Experimental Results

All the experiment results are showed on the table 3.
Our Baseline is a modified Moses. The major modi-
fication is input and output module in order to trans-
late using document as unit. The performance of our
baseline exceeds the baseline reported by Gong et al.
(2011) about 2 percent based on the similar training
and test corpus.

System BLEU BLEU on Test(%)
Dev(%) BLEU NIST

Moses Md(Baseline) 29.21 28.30 8.4528
Baseline+Fm 30.56 28.87(***) 8.7935
Baseline+Fs 31.28 28.61(**) 8.5645
Baseline+Fs(∗) 31.04 28.74(**) 8.6271
Baseline+Fm+Fs 31.75 28.88(***) 8.7987
Baseline+Fm+Fs(*) 31.42 28.92(***) 8.8201

Table 3: The performance of using different feature com-
binations

The system denoted as “Baseline+Fm” integrates
the inter-tense feature. The performance boosts
0.57(***) in BLEU score.

The system denoted as “Baseline+Fs” integrates
the intra-tense feature into the baseline. The im-
provement is less than the inter-tense model, on-
ly 0.31(**). It seems the tenses in one sentence
has more flexible formats than the document-level
ones. It is worth noting, this method can gain high-
er performance on the develop data than the one of
“Baseline+Fm” while fail to improve the test data.
Maybe the related weight is tuned over-fit.

The system denoted as “Baseline+Fs(*)” is s-
lightly different from “Baseline+Fs”. This experi-
ment is to check whether the main tense has an im-
pact on intra-tense model or not (see Section 3.2).
Here, the intra-tense model based on the tense se-
quence with main tense marker is slightly different
to the model showed in Figure 2. The results are
slightly better than the previous system by 0.13.

Finally, we use the two features together
(Baseline+Fm+Fs). The best way improved the
performance by 0.62(***) in BLEU score over our
baseline.
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6.4 Discussion

Table 4 shows special examples whose intra-tenses
are changed in our proposed system. The exam-
ple 1 and 2 show such modification can improve
the BLEU score but the example 3 obtains negative
impact. From these examples, we can see not only
tense verbs have changed but also their surrounding
words have subtle variation.

No. BLEU Translation sentence
1 8.64 Baseline: the gulf countries , the bahraini royal fam-

ily members by the military career of part of the
banned to their marriage stories like children , have
become the theme of television films .

19.71 Ours: the gulf country is a member of the bahraini
royal family , a risk by military career risks part of
the banned to their marriage like children , has be-
come a story of the television and film industry .

2 17.16 Baseline:economists said that the sharp appreciation
of the euro , in the recent investigation continues to
have an impact on economic confidence , it is esti-
mated that the economy is expected to rebound to
pick up .

24.25 Ours: economists said that the sharp appreciation of
the euro , in the recent investigation continued to
have an impact on economic confidence and there-
fore no reason to predict the economy expected to
pick up a rebound .

3 73.03 Baseline: the middle east news agency said that , af-
ter the concerns of all parties concerned in the mid-
dle east peace process , israel and palestine , egypt ,
the united states , russia and several european coun-
tries will hold a meeting in washington .

72.95 Ours: the middle east news agency said that after the
concerns of all parties in the middle east peace pro-
cess , israel and palestine , egypt , the united states ,
russia and several european countries held a meeting
in washington .

Table 4: Examples with tense variation using intra-tense
model

From the results showed on Table 3, the
document-level tense model seems more effective
than the sentence-level one. We manually choose
and analyzed 5 documents with significant improve-
ment in the test data. The part (a) of Figure 4 shows
the main tense distributions of one reference. The
main tense distributions for the baseline and our pro-
posed system are showed in the part (b) and (c) re-
spectively. These documents have different numbers
of sentences but all less than 10. The vertical axis in-
dicates different tense: 1 to “past”, 2 to “present”, 3
to “future” and 4 to “UNK”. It is obvious that our
system has closer distributions to the ones of this
reference.

The examples in Table 5 indicate the joint impact
of inter-tense and intra-tense model on SMT. Sen-

Src:
1)±Ú�ô¬Kµ£�^Ì��´ ,|Æô�«; ½Â
�ôÂ"
2)nVd")�|�+ECnd�¼Oc ��àÜW
¢	Ë|ð ,ù´L�oc5±Ú��ÛÄgONnV
d"�+�<Ôë\��! �;"
Ref:
1)Israeli settlers blockaded a major road to protest a mortar attack
on the settlement area.
2)PLO leader Abbas had also been allowed to go to the West Bank
town of Bethlehem , which is the first time in the past four years
Israeli authorities have allowed a senior Palestinian leader to attend
Christmas celebrations.
Baseline:
1)israel has imposed a main road to protest by mortars attack .
2)the palestinian leader also visited the west bank cities and towns
to bethlehem , which in the past four years , the israeli authorities
allowed the palestinian leading figures attended the ceremony .
Ours:
1)israel has imposed a main road to protest against the mortars at-
tack .
2)leader of the palestinian liberation organization have also been
allowed to go to the west bank towns , bethlehem in the past four
years . this is the first time the israeli authorities allow palestinian
leading figures attended the ceremony .

Table 5: the joint impact of inter- tense and intra-tense
models on SMT

tence 1) and 2) are two neighbored sentences in one
document. Both the reference and our output tend
to use the same main tense type, but the former is in
“past” tense and the latter is in “present” tense. The
baseline cannot show such tendency. Although our
main tense is different to the reference one, the con-
sistent tenses in document level bring better trans-
lation results than the baseline. And the tenses in
sentence level also show better consistency than the
baseline.

7 Conclusion

This paper explores document-level SMT from the
tense perspective. In particular, we focus on how to
build document-level and sentence-level tense mod-
els and how to integrate such models into a popular
SMT system.

Compared with the inter-tense model which great-
ly improves the performance of SMT, the intra-tense
model needs to be further explored. The reasons are
many folds, e.g. the failure to exclude quoted texts
when modeling intra-tense, since tenses in quoted
texts behave much diversely from normal texts. In
the future work, we will focus on modeling intra-
tense variation according to specific sentence types
and using more features to improve it.
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Figure 4: the comparison of the inter-tense distributions for reference, baseline and our proposed system
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Abstract

We propose a novel, language-independent
approach for improving machine translation
from a resource-poor language toX by adapt-
ing a large bi-text for a related resource-rich
language andX (the same target language).
We assume a small bi-text for the resource-
poor language toX pair, which we use to
learn word-level and phrase-level paraphrases
and cross-lingual morphological variants be-
tween the resource-rich and the resource-poor
language; we then adapt the former to get
closer to the latter. Our experiments for
Indonesian/Malay–English translation show
that using the large adapted resource-rich bi-
text yields 6.7 BLEU points of improvement
over the unadapted one and 2.6 BLEU points
over the original small bi-text. Moreover,
combining the small bi-text with the adapted
bi-text outperforms the corresponding com-
binations with the unadapted bi-text by 1.5–
3 BLEU points. We also demonstrate applica-
bility to other languages and domains.

1 Introduction

Statistical machine translation (SMT) systems learn
how to translate from large sentence-aligned bilin-
gual corpora of human-generated translations, called
bi-texts. Unfortunately, collecting sufficiently large,
high-quality bi-texts is hard, and thus most of the
6,500+ world languages remain resource-poor. For-
tunately, many of these resource-poor languages
are related to some resource-rich language, with
whom they overlap in vocabulary and share cog-
nates, which offers opportunities for bi-text reuse.

Example pairs of such resource rich–poor lan-
guages include Spanish–Catalan, Finnish–Estonian,
Swedish–Norwegian, Russian–Ukrainian, Irish–
Gaelic Scottish, Standard German–Swiss Ger-
man, Modern Standard Arabic–Dialectical Arabic
(e.g., Gulf, Egyptian), Turkish–Azerbaijani, etc.

Previous work has already demonstrated the ben-
efits of using a bi-text for a related resource-rich
language toX (e.g., X=English) to improve ma-
chine translation from a resource-poor language to
X (Nakov and Ng, 2009; Nakov and Ng, 2012).
Here we take a different, orthogonal approach: we
adaptthe resource-rich language to get closer to the
resource-poor one.

We assume a small bi-text for the resource-poor
language, which we use to learn word-level and
phrase-level paraphrases and cross-lingual morpho-
logical variants between the two languages. Assum-
ing translation into the same target languageX, we
adapt (the source side of) a large training bi-text for
a related resource-rich language andX.

Training on the adapted large bi-text yields very
significant improvements in translation quality com-
pared to both (a) training on the unadapted version,
and (b) training on the small bi-text for the resource-
poor language. We further achieve very sizable im-
provements when combining the small bi-text with
the large adapted bi-text, compared to combining the
former with the unadapted bi-text.

While we focus on adapting Malay to look like
Indonesian in our experiments, we also demonstrate
the applicability of our approach to another language
pair, Bulgarian–Macedonian, which is also from a
different domain.
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2 Related Work

One relevant line of research is on machine trans-
lation between closely related languages, which is
arguably simpler than general SMT, and thus can
be handled using word-for-word translation, man-
ual language-specific rules that take care of the nec-
essary morphological and syntactic transformations,
or character-level translation/transliteration. This
has been tried for a number of language pairs in-
cluding Czech–Slovak (Hajič et al., 2000), Turkish–
Crimean Tatar (Altintas and Cicekli, 2002), Irish–
Scottish Gaelic (Scannell, 2006), and Bulgarian–
Macedonian (Nakov and Tiedemann, 2012). In con-
trast, we have a different objective – we do not carry
out full translation but rather adaptation since our
ultimate goal is to translate into a third languageX.

A special case of this same line of research is the
translation between dialects of the same language,
e.g., between Cantonese and Mandarin (Zhang,
1998), or between a dialect of a language and a stan-
dard version of that language, e.g., between some
Arabic dialect (e.g., Egyptian) and Modern Standard
Arabic (Bakr et al., 2008; Sawaf, 2010; Salloum and
Habash, 2011). Here again, manual rules and/or
language-specific tools are typically used. In the
case of Arabic dialects, a further complication arises
by the informal status of the dialects, which are not
standardized and not used in formal contexts but
rather only in informal online communities1 such as
social networks, chats, Twitter and SMS messages.
This causes further mismatch in domain and genre.

Thus, translating from Arabic dialects to Modern
Standard Arabic requires, among other things, nor-
malizing informal text to a formal form. In fact,
this is a more general problem, which arises with
informal sources like SMS messages and Tweets for
just any language (Aw et al., 2006; Han and Bald-
win, 2011). Here the main focus is on coping with
spelling errors, abbreviations, and slang, which are
typically addressed using string edit distance, while
also taking pronunciation into account. This is dif-
ferent from our task, where we try to adapt good,
formal text from one language into another.

A second relevant line of research is on language
adaptation and normalization, when done specifi-
cally for improving SMT into another language.

1The Egyptian Wikipedia is one notable exception.

For example, Marujo et al. (2011) described a
rule-based system for adapting Brazilian Portuguese
(BP) to European Portuguese (EP), which they used
to adapt BP–English bi-texts to EP–English. They
report small improvements in BLEU for EP–English
translation when training on the adapted “EP”–En
bi-text compared to using the unadapted BP–En
(38.55 vs. 38.29), or when an EP–English bi-text is
used in addition to the adapted/unadapted one (41.07
vs. 40.91 BLEU). Unlike this work, which heav-
ily relied on language-specific rules, our approach is
statistical, and largely language-independent; more-
over, our improvements are much more sizable.

A third relevant line of research is on reusing bi-
texts between related languages without or with very
little adaptation, which works well for very closely
related languages. For example, our previous work
(Nakov and Ng, 2009; Nakov and Ng, 2012) ex-
perimented with various techniques for combining
a small bi-text for a resource-poor language (In-
donesian or Spanish, pretending that Spanish is
resource-poor) with a much larger bi-text for a re-
lated resource-rich language (Malay or Portuguese);
the target language of all bi-texts was English. How-
ever, our previous work did not attempt language
adaptation, except for very simple transliteration for
Portuguese–Spanish that ignored context entirely;
since it could not substitute one word for a com-
pletely different word, it did not help much for
Malay–Indonesian, which use unified spelling. Still,
once we have language-adapted the large bi-text, it
makes sense to try to combine it further with the
small bi-text; thus, below we will directly compare
and combine these two approaches.

Another alternative, which we do not explore in
this work, is to use cascaded translation using a
pivot language (Utiyama and Isahara, 2007; Cohn
and Lapata, 2007; Wu and Wang, 2009). Unfortu-
nately, using the resource-rich language as a pivot
(poor→rich→X) would require an additional paral-
lel poor–rich bi-text, which we do not have. Pivoting
over the targetX (rich→X→poor) for the purpose
of language adaptation, on the other hand, would
miss the opportunity to exploit the relationship be-
tween the resource-poor and the resource-rich lan-
guage; this would also be circular since the first step
would ask an SMT system to translate its own train-
ing data (we only have one rich–X bi-text).
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3 Malay and Indonesian

Malay and Indonesian are closely related, mutually
intelligible Austronesian languages with 180 million
speakers combined. They have a unified spelling,
with occasional differences, e.g.,keranavs. karena
(‘because’),Inggeris vs. Inggris (‘English’), and
wangvs. uang(‘money’).

They differ more substantially in vocabulary,
mostly because of loan words, where Malay typi-
cally follows the English pronunciation, while In-
donesian tends to follow Dutch, e.g.,televisyenvs.
televisi, Julai vs. Juli, andJordanvs. Yordania.

While there are many cognates between the two
languages, there are also a lot of false friends, e.g.,
polisi meanspolicy in Malay butpolice in Indone-
sian. There are also many partial cognates, e.g.,
nantimeans bothwill (future tense marker) andlater
in Malay but onlylater in Indonesian.

Thus, fluent Malay and fluent Indonesian can dif-
fer substantially. Consider, for example, Article 1 of
theUniversal Declaration of Human Rights:2

• Semuamanusia dilahirkanbebas dansamarata dari segi kemu-

liaan dan hak-hak. Merekamempunyai pemikiran danperasaan

hati dan hendaklah bertindak di antara satu sama laindengan

semangat persaudaraan. (Malay)

• Semua orang dilahirkan merdeka danmempunyai marta-

bat dan hak-hakyang sama. Merekadikaruniai akal dan

hati nurani dan hendaknya bergaul satu sama laindalam

semangat persaudaraan. (Indonesian)

There is only 50% overlap at the word level, but
the actual vocabulary overlap is much higher, e.g.,
there is only one word in the Malay text that does
not exist in Indonesian:samarata(‘equal’). Other
differences are due to the use of different morpho-
logical forms, e.g.,hendaklahvs. hendaknya(‘con-
science’), derivational variants ofhendak(‘want’).

Of course, word choice in translation is often a
matter of taste. Thus, we asked a native speaker of
Indonesian to adapt the Malay version to Indonesian
while preserving as many words as possible:

• Semua manusia dilahirkan bebas danmempunyai martabat

dan hak-hakyang sama. Mereka mempunyai pemikiran dan

perasaan dan hendaklah bergaul satu sama lain dalam

semangat persaudaraan. (Indonesian)

2English:All human beings are born free and equal in dig-
nity and rights. They are endowed with reason and conscience
and should act towards one another in a spirit of brotherhood.

Obtaining this latter version from the original
Malay text requires three word-level operations:
(1) deletion ofdari, segi, (2) insertion ofyang, sama,
and (3) substitution ofsamaratawith mempunyai.

Unfortunately, we do not have parallel Malay-
Indonesian text, which complicates the process of
learning when to apply these operations. Thus, be-
low we restrict our attention to the simplest and most
common operation of word substitution only, leav-
ing the other two3 operations for future work.

Note that word substitution is enough in many
cases, e.g., it is all that is needed for the following
Malay-Indonesian sentence pair:4

• KDNK Malaysia dijangka cecah 8 peratus pada tahun 2010.

• PDB Malaysia akan mencapai 8 persen pada tahun 2010.

4 Method
We improve machine translation from a resource-
poor language (Indonesian) to English byadaptinga
bi-text for a related resource-rich language (Malay)
and English, usingword-levelandphrase-levelpara-
phrases and cross-lingual morphological variants.

4.1 Word-Level Paraphrasing

Given a Malay sentence, we generate a confusion
network containing multiple Indonesian word-level
paraphrase options for each Malay word. Each such
Indonesian option is associated with a correspond-
ing weight in the network, which is defined as the
probability of this option being a translation of the
original Malay word (see Eq. 1 below). We decode
this confusion network using a large Indonesian lan-
guage model, thus generating a ranked list ofn cor-
responding adapted “Indonesian” sentences.

Then, we pair each such adapted “Indonesian”
sentence with the English counter-part for the
Malay sentence it was derived from, thus obtain-
ing a synthetic “Indonesian”–English bi-text. Fi-
nally, we combine this synthetic bi-text with the
original Indonesian–English one to train the final
Indonesian–English SMT system.

Below we first describe how we generate word-
level Indonesian options and corresponding weights
for the Malay words. Then, we explain how we
build, decode, and improve the confusion network.

3There are other potentially useful operations, e.g., a correct
translation for the Malaysamaratacan be obtained by splitting
it into the Indonesian sequencesama rata.

4Malaysia’s GDP is expected to reach 8 percent in 2010.
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4.1.1 Inducing Word-Level Paraphrases

We use pivoting over English to induce potential
Indonesian translations for a given Malay word.

First, we generate separate word-level alignments
for the Indonesian–English and the Malay–English
bi-texts. Then, we induce Indonesian-Malay word
translation pairs assuming that if an Indonesian word
i and a Malay wordm are aligned to the same
English worde, they could be mutual translations.
Each translation pair is associated with a conditional
probability, estimated by pivoting over English:

Pr(i|m) =
∑

e

Pr(i|e)Pr(e|m) (1)

Pr(i|e) and Pr(e|m) are estimated using maxi-
mum likelihood from the word alignments. Follow-
ing (Callison-Burch et al., 2006), we further assume
thati is conditionally independent ofm givene.

4.1.2 Confusion Network Construction

Given a Malay sentence, we construct an Indone-
sian confusion network, where each Malay word is
augmented with a set of network transitions: pos-
sible Indonesian word translations. The weight
of such a transition is the conditional Indonesian-
Malay translation probability as calculated by Eq. 1;
the original Malay word is assigned a weight of 1.

Note that we paraphraseeach word in the in-
put Malay sentence as opposed to only those Malay
words that we believe not to exist in Indonesian, e.g.,
because they do not appear in our Indonesian mono-
lingual text. This is necessary because of the large
number of false friends and partial cognates between
Malay and Indonesian (see Section 3).

Finally, we decode the confusion network for a
Malay sentence using a large Indonesian language
model, and we extract ann-best list.5 Table 1
shows the 10-best adapted “Indonesian” sentences6

we generated for the confusion network in Figure 1.

4.1.3 Further Refinements

Many of our paraphrases are bad: some have very
low probabilities, while others involve rare words
for which the probability estimates are unreliable.

5For balance, in case of less thann adaptations for a Malay
sentence, we randomly repeat some of the available ones.

6According to a native Indonesian speaker, options 1 and 3
in Table 1 are perfect adaptations, options 2 and 5 have a wrong
word order, and the rest are grammatical though not perfect.

Moreover, the options we propose for a Malay
word are inherently restricted to the small Indone-
sian vocabulary of the Indonesian–English bi-text.
Below we describe how we address these issues.

Score-based filtering. We filter out translation
pairs whose probabilities (Eq. 1) are lower than
some threshold (tuned on the dev dataset), e.g., 0.01.

Improved estimations for Pr(i|e). We concate-
natek copies of the Indonesian–English bi-text and
one copy of the Malay–English bi-text, where the
value ofk is selected so that we have roughly the
same number of Indonesian and Malay sentences.
Then, we generate word-level alignments for the
resulting bi-text. Finally, we truncate these align-
ments keeping them for one copy of the original
Indonesian–English bi-text only. Thus, we end up
with improved word alignments for the Indonesian–
English bi-text, and with better estimations for Eq. 1.
Since Malay and Indonesian share many cognates,
this improves word alignments for Indonesian words
that occur rarely in the small Indonesian–English bi-
text but are relatively frequent in the larger Malay–
English one; it also helps for some frequent words.

Cross-lingual morphological variants. We in-
crease the Indonesian options for a Malay word us-
ing morphology. Since the set of Indonesian op-
tions for a Malay word in pivoting is restricted to
the Indonesian vocabulary of the small Indonesian–
English bi-text, this is a severe limitation of pivot-
ing. Thus, assuming a large monolingual Indone-
sian text, we first build a lexicon of the words in the
text. Then, we lemmatize these words using two dif-
ferent lemmatizers: the Malay lemmatizer of Bald-
win and Awab (2006), and a similar Indonesian lem-
matizer. Since these two analyzers have different
strengths and weaknesses, we combine their outputs
to increase recall. Next, we group all Indonesian
words that share the same lemma, e.g., forminum,
we obtain {diminum, diminumkan, diminumnya, makan-minum,

makananminuman, meminum, meminumkan, meminumnya, meminum-

minuman, minum, minum-minum, minum-minuman, minuman, minu-

manku, minumannya, peminum, peminumnya, perminum, terminum}.
Since Malay and Indonesian are subject to the same
morphological processes and share many lemmata,
we use such groups to propose Indonesian transla-
tion options for a Malay word. We first lemmatize
the target Malay word, and then we find all groups
of Indonesian words the Malay lemmata belong to.
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Figure 1: Indonesian confusion network for the Malay sentence “KDNK Malaysia dijangka cecah 8 peratus pada tahun 2010.”
Arcs with scores below 0.01 are omitted, and words that existin Indonesian are not paraphrased (for better readability).

Rank “Indonesian” Sentence
1 pdb malaysia akan mencapai 8 persen pada tahun 2010 .
2 pdb malaysia untuk mencapai 8 persen pada tahun 2010 .
3 pdb malaysia diperkirakan mencapai 8 persen pada tahun 2010 .
4 maka malaysia akan mencapai 8 persen pada tahun 2010 .
5 maka malaysia untuk mencapai 8 persen pada tahun 2010 .
6 pdb malaysia dapat mencapai 8 persen pada tahun 2010 .
7 maka malaysia diperkirakan mencapai 8 persen pada tahun 2010 .
8 sebesar malaysia akan mencapai 8 persen pada tahun 2010 .
9 pdb malaysia diharapkan mencapai 8 persen pada tahun 2010 .
10 pdb malaysia ini mencapai 8 persen pada tahun 2010 .

Table 1: The 10-best “Indonesian” sentences extracted fromthe confusion network in Figure 1.

The union of these groups is the set of morpholog-
ical variants that we will add to the confusion net-
work as additional options for the Malay word.7 For
example, givenseperminuman(‘drinking’) in the
Malay input, we first find its stemminum, and then
we get the above example set of Indonesian words,
which contains some reasonable substitutes such as
minuman(‘drink’). In the confusion network, the
weight of the original Malay word is set to 1, while
the weight of a morphological option is one minus
the minimum edit distance ratio (Ristad and Yian-
ilos, 1998) between it and the Malay word, multi-
plied by the highest probability for all pivoting vari-
ants for the Malay word.

4.2 Phrase-Level Paraphrasing
Word-levelparaphrasing ignores context when gen-
erating Indonesian variants, relying on the Indone-
sian language model to make the right contextual
choice. We also try to model context more directly
by generating adaptation options at thephrase level.

7While the different morphological forms typically have dif-
ferent meanings, e.g.,minum(‘drink’) vs. peminum(‘drinker’),
in some cases the forms could have the same translation in En-
glish, e.g.,minum(‘drink’, verb) vs. minuman(‘drink’, noun).
This is our motivation for trying morphological variants, even
though they are almost exclusively derivational, and thus quite
risky as translational variants; see also (Nakov and Ng, 2011).

Phrase-level paraphrase induction. We use
standard phrase-based SMT techniques to build sep-
arate phrase tables for the Indonesian–English and
the Malay–English bi-texts, where we have four
conditional probabilities: forward/reverse phrase
translation probability, and forward/reverse lexical-
ized phrase translation probability. We pivot over
English to generate Indonesian-Malay phrase pairs,
whose probabilities are derived from the corre-
sponding ones in the two phrase tables using Eq. 1.

Cross-lingual morphological variants. While
phrase-level paraphrasing models context better, it
remains limited in the size of its Indonesian vocab-
ulary by the small Indonesian–English bi-text, just
like word-level paraphrasing was. We address this
by transforming the sentences in thedevelopment
and thetestIndonesian–English bi-texts into confu-
sion networks, where we add Malay morphological
variants for the Indonesian words, weighting them as
before. Note that we do not alter the training bi-text.

4.3 Combining Bi-texts

We combine the Indonesian–English and the syn-
thetic “Indonesian”–English bi-texts as follows:

Simple concatenation. Assuming the two bi-
texts are of comparable quality, we simply train an
SMT system on their concatenation.
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Balanced concatenation with repetitions.How-
ever, the two bi-texts are not directly comparable and
are clearly not equally good as a source of training
data for an Indonesian-English SMT system. For
one thing, the “Indonesian”–English bi-text is ob-
tained fromn-best lists, i.e., it has exactlyn very
similar variants for each Malay sentence. Moreover,
the original Malay–English bi-text is much larger
in size than the Indonesian–English one, and now
it has been further expandedn times in order to be-
come an “Indonesian”–English bi-text, which means
that it will dominate the concatenation due to its
size. In order to counter-balance this, we repeat the
smaller Indonesian–English bi-text enough times so
that we can make the number of sentences it contains
roughly the same as for the “Indonesian”–English
bi-text; then we concatenate the two bi-texts and we
train an SMT system on the resulting bi-text.

Sophisticated phrase table combination. Fi-
nally, we experiment with a method for combining
phrase tables proposed in (Nakov and Ng, 2009;
Nakov and Ng, 2012). The first phrase table is
extracted from word alignments for the balanced
concatenation with repetitions, which are then trun-
cated so that they are kept for only one copy of the
Indonesian–English bi-text. The second table is built
from the simple concatenation. The two tables are
then merged as follows: all phrase pairs from the
first one are retained, and to them are added those
phrase pairs from the second one that are not present
in the first one. Each phrase pair retains its orig-
inal scores, which are further augmented with 1–3
additional feature scores indicating its origin: the
first/second/third feature is 1 if the pair came from
the first/second/both table(s), and 0 otherwise. We
experiment using all three, the first two, or the first
feature only; we also try setting the features to 0.5
instead of 0. This makes the following six combina-
tions (0, 00, 000, .5, .5.5, .5.5.5); on testing, we use
the one that achieves the highest BLEU score on the
development set.

Other possibilities for combining the phrase ta-
bles include using alternative decoding paths (Birch
et al., 2007), simple linear interpolation, and direct
phrase table merging with extra features (Callison-
Burch et al., 2006); they were previously found in-
ferior to the last two approaches above (Nakov and
Ng, 2009; Nakov and Ng, 2012).

5 Experiments

We run two kinds of experiments: (a)isolated,
where we train on the synthetic “Indonesian”–
English bi-text only, and (b)combined, where we
combine it with the Indonesian–English bi-text.

5.1 Datasets
In our experiments, we use the following datasets,
normally required for Indonesian–English SMT:

• Indonesian–English train bi-text (IN2EN):
28,383 sentence pairs; 915,192 English tokens;
796,787 Indonesian tokens;

• Indon.–English dev bi-text (IN2EN-dev):
2,000 sentence pairs; 36,584 English tokens;
35,708 Indonesian tokens;

• Indon.–English test bi-text (IN2EN-test):
2,018 sentence pairs; 37,101 English tokens;
35,509 Indonesian tokens;

• Monolingual English text (EN-LM): 174,443
sentences; 5,071,988 English tokens.

We also use a Malay–English set (to be turned
into “Indonesian”–English), and monolingual In-
donesian text (for decoding the confusion network):

• Malay–English train bi-text ( ML2EN):
290,000 sentence pairs; 8,638,780 English
tokens; 8,061,729 Malay tokens;

• Monolingual Indonesian text (IN-LM):
1,132,082 sentences; 20,452,064 Indonesian
tokens.

5.2 Baseline Systems

We build five baseline systems – two using a sin-
gle bi-text, ML2EN or IN2EN, and three combin-
ing ML2ENandIN2EN, using simple concatenation,
balanced concatenation, and sophisticated phrase ta-
ble combination. The last combination is a very
strong baseline and the most relevant one we need
to improve upon.

5.3 Isolated Experiments

The isolated experiments only use the adapted
“Indonesian”–English bi-text, which allows for a di-
rect comparison to usingML2EN / IN2ENonly.

5.3.1 Word-Level Paraphrasing
In our word-level paraphrasing experiments, we

adapt Malay to Indonesian using three kinds of con-
fusion networks (see Section 4.1.3 for details):
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• CN:pivot – using word-level pivoting only;
• CN:pivot′ – using word-level pivoting, with

probabilities from word alignments forIN2EN
that were improved usingML2EN;

• CN:pivot′+morph – CN:pivot′ augmented with
cross-lingual morphological variants.

There are two parameter values to be tuned
on IN2EN-devfor the above confusion networks:
(1) the minimum pivoting probability threshold for
the Malay-Indonesian word-level paraphrases, and
(2) the number ofn-best Indonesian-adapted sen-
tences that are to be generated for each input Malay
sentence. We try{0.001, 0.005, 0.01, 0.05} for the
threshold and{1, 5, 10} for n.

5.3.2 Phrase-Level Paraphrasing

In our phrase-level paraphrasing experiments, we
use pivoted phrase tables (PPT) with the following
features for each phrase table entry (in addition to
the phrase penalty; see Section 4.2 for more details):

• PPT:1 – only uses the forward conditional
translation probability;

• PPT:4 – uses all four conditional probabilities;
• PPT:4::CN:morph – PPT:4 but used with a

cross-lingual morphological confusion network
for the dev/test Indonesian sentences.

Here we tune one parameter only: the number of
n-best Indonesian-adapted sentences to be generated
for each input Malay sentence; we try{1, 5, 10}.

5.4 Combined Experiments

These experiments assess the impact of our adap-
tation approach when combined with the original
Indonesian–English bi-textIN2EN as opposed to
combiningML2EN with IN2EN (as was in the last
three baselines). We experiment with the same three
combinations: simple concatenation, balanced con-
catenation, and sophisticated phrase table combina-
tion. We tune the parameters as before; for the last
combination, we further tune the six extra feature
combinations (see Section 4.3 for details).

6 Results and Discussion

For all tables, statistically significant improvements
(p < 0.01), according to Collins et al. (2005)’s sign
test, over the baseline are inbold; in case of two
baselines, underlineis used for the second baseline.

System BLEU
ML2EN 14.50
IN2EN 18.67
Simple concatenation 18.49
Balanced concatenation 19.79
Sophisticated phrase table combination20.10(.5.5)

Table 2:The five baselines.The subscript indicates the
parameters found onIN2EN-devand used forIN2EN-test.
The scores that are statistically significantly better than
ML2EN and IN2EN (p < 0.01, Collins’ sign test) are
shown inbold and are underlined, respectively.

6.1 Baseline Experiments

The results for the baseline systems are shown in Ta-
ble 2. We can see that training onML2EN instead of
IN2EN yields over 4 points absolute drop in BLEU
(Papineni et al., 2002) score, even thoughML2EN is
about 10 times larger thanIN2EN and both bi-texts
are from the same domain. This confirms the exis-
tence of important differences between Malay and
Indonesian. While simple concatenation does not
help, balanced concatenation with repetitions im-
proves by 1.12 BLEU points overIN2EN, which
shows the importance of givingIN2EN a proper
weight in the combined bi-text. This is further re-
confirmed by the sophisticated phrase table combi-
nation, which yields an additional absolute gain of
0.31 BLEU points.

6.2 Isolated Experiments

Table 3 shows the results for the isolated experi-
ments. We can see that word-level paraphrasing
improves by up to 5.56 and 1.39 BLEU points
over the two baselines (both statistically signifi-
cant). Compared toML2EN, CN:pivotyields an ab-
solute improvement of 4.41 BLEU points,CN:pivot′

adds another 0.59, andCN:pivot′+morph adds 0.56
more. The scores for TER (v. 0.7.25) and METEOR
(v. 1.3) are on par with those for BLEU (NIST v. 13).

Table 3 further shows that the optimal parameters
for the word-level SMT systems (CN:*) involve a
very low probability cutoff, and a high number of
n-best sentences. This shows that they are robust to
noise, probably because bad source-side phrases are
unlikely to match the test-time input. Note also the
effect of repetitions: good word choices are shared
by manyn-best sentences, and thus they would have
higher probabilities compared to bad word choices.
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n-gram precision
System 1-gr. 2-gr. 3-gr. 4-gr. BLEU TER METEOR
ML2EN (baseline) 48.34 19.22 9.54 4.98 14.50 67.14 43.28
IN2EN (baseline) 55.04 23.90 12.87 7.18 18.67 61.99 54.34

CN:pivot 54.50 24.41 13.09 7.35 18.91(+4.41,+0.24)
(0.005,10best)

61.94 51.07

CN:pivot′ 55.05 25.09 13.60 7.69 19.50(+5.00,+0.83)
(0.001,10best)

61.25 51.97

(i) CN:pivot′+morph 55.97 25.73 14.06 7.99 20.06(+5.56,+1.39)
(0.005,10best)

60.31 55.65

PPT:1 55.11 25.04 13.66 7.80 19.58(+5.08,+0.91)
(10best)

60.92 51.93

PPT:4 56.64 26.20 14.53 8.40 20.63(+6.13,+1.96)
(10best)

59.33 54.23

(ii) PPT:4::CN:morph 56.91 26.53 14.76 8.55 20.89(+6.39,+2.22)
(10best)

59.30 57.19

System combination: (i) + (ii) 57.73 27.00 15.03 8.71 21.24(+6.74,+2.57) 58.19 54.63

Table 3:Isolated experiments.The subscript shows the best tuning parameters, and the superscript shows the absolute
test improvement over theML2ENand theIN2ENbaselines. The last line shows system combination results.

Combining IN2EN with an adapted version ofML2EN
Combination with Simple Concatenation Balanced Concatenation Sophisticated Combination

(i) + ML2EN (unadapted; baseline) 18.49 19.79 20.10(.5.5)

+ CN:pivot 19.99(+1.50)
(0.001,1best)

20.16(+0.37)
(0.001,10best)

20.32(+0.22)
(0.01,10best,.5.5)

+ CN:pivot′ 20.03(+1.54)
(0.05,1best)

20.80(+1.01)
(0.05,10best)

20.55(+0.45)
(0.05,10best,.5.5)

(ii) + CN:pivot′+morph 20.60(+2.11)
(0.01,10best)

21.15(+1.36)
(0.01,10best)

21.05(+0.95)
(0.01,5best,00)

+ PPT:1 20.61(+2.12)
(1best)

20.71(+0.92)
(10best)

20.32(+0.22)
(1best,000)

+ PPT:4 20.75(+2.26)
(1best)

21.08(+1.29)
(5best)

20.76(+0.66)
(10best,.5.5.5)

(iii) + PPT:4::CN:morph 21.01(+2.52)
(1best)

21.31(+1.52)
(5best)

20.98(+0.88)
(10best,.5)

System combination: (i) + (ii) + (iii) 21.55(+3.06) 21.64(+1.85) 21.62(+1.52)

Table 4: Combined experiments: BLEU.The best tuning parameter values are in subscript, and the absolute test
improvement over the corresponding baseline (on top of eachcolumn) is in superscript.

The gap betweenML2ENandIN2EN for unigram
precision could be explained by vocabulary differ-
ences between Malay and Indonesian. Compared
to IN2EN, all CN:* models have higher 2/3/4-gram
precision. However,CN:pivot has lower unigram
precision, which could be due to bad word align-
ments, as the results forCN:pivot′ show.

When morphological variants are further added,
the unigram precision improves by almost 1% ab-
solute overCN:pivot′. This shows the importance
of morphology for overcoming the limitations of the
small Indonesian vocabulary of theIN2ENbi-text.

The lower part of Table 3 shows that phrase-level
paraphrasing performs a bit better. This confirms the
importance of modeling context for closely-related
languages like Malay and Indonesian, which are rich
in false friends and partial cognates. We further
see that using more scores in the phrase table is
better. Extending the Indonesian vocabulary with
cross-lingual morphological variants is still helpful,
though not as much as at the word-level.

Finally, the combination of the output of
the best PPT and the best CN systems using
MEMT (Heafield and Lavie, 2010) yields even fur-
ther improvements, which shows that the two kinds
of paraphrases are complementary. The best overall
BLEU score for our isolated experiments is 21.24,
which is better than the results for all five baselines
in Table 2, including the three bi-text combination
baselines, which only achieve up to 20.10 BLEU.

6.3 Combined Experiments

Table 4 shows the performance of the three bi-
text combination strategies (see Section 4.3 for ad-
ditional details) when applied to combineIN2EN
(1) with the originalML2EN and (2) with various
adapted versions of it.

We can see that for the word-level paraphras-
ing experiments (CN:*), all combinations except
for CN:pivot perform significantly better than their
corresponding baselines, but the improvements are
most sizeable for the simple concatenation.
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Note that while there is a difference of 0.31 BLEU
points between the balanced concatenation and the
sophisticated combination for the originalML2EN,
they differ little for the adapted versions. This is
probably due to the sophisticated combination as-
suming that the second bi-text is worse than the first
one, which is not really the case for the adapted ver-
sions: as Table 3 shows, they all outperformIN2EN.

Overall, phrase-level paraphrasing performs a bit
better than word-level paraphrasing, and system
combination with MEMT improves even further.
This is consistent with the isolated experiments.

7 Further Analysis

Paraphrasing non-Indonesian words only. In
CN:* above, we paraphrasedeachword in the Malay
input, because of false friends likepolisi and partial
cognates likenanti. This risks proposing worse al-
ternatives, e.g., changingbeliau(‘he’, respectful) to
ia (‘he’, casual), which confusion network weights
and LM would not always handle. Thus, we tried
paraphrasing non-Indonesian words only, i.e., those
not in IN-LM. Since IN-LM occasionally contains
some Malay-specific words, we also tried paraphras-
ing words that occur at mostt times in IN-LM. Ta-
ble 5 shows that this hurts by up to 1 BLEU point
for t = 0; 10, and a bit less fort = 20; 40.

System BLEU
CN:pivot, t = 0 17.88(0.01,5best)

CN:pivot, t = 10 17.88(0.05,10best)

CN:pivot, t = 20 18.14(0.01,5best)

CN:pivot, t = 40 18.34(0.01,5best)

CN:pivot(i.e., paraphrase all) 18.91(0.005,10best)

Table 5: Paraphrasing non-Indonesian words only:
those appearing at mostt times inIN-LM.

Manual evaluation. We asked a native Indone-
sian speaker who does not speak Malay to judge
whether our “Indonesian” adaptations are more un-
derstandable to him than the original Malay in-
put for 100 random sentences. We presented him
with two extreme systems: (a) the conservative
CN:pivot,t=0 vs. (b)CN:pivot′+morph. Since the
latter is noisy, the top 3 choices were judged for
it. Table 6 shows thatCN:pivot,t=0 is better/equal
to the original 53%/31% of the time. In contrast,
CN:pivot′+morph is typically worse than the orig-
inal; even compared to the best in top 3, the bet-
ter:worse ratio is 45%:43%.

Still, this latter model works better, which means
that phrase-based SMT systems are robust to noise
and prefer more variety. Note also that the judg-
ments were at the sentence level, while phrases are
sub-sentential, i.e., there can be many good phrases
in a “bad” sentence.

System Better Equal Worse
CN:pivot,t = 0(Rank1) 53% 31% 16%
CN:pivot′+morph(Rank1) 38% 8% 54%
CN:pivot′+morph(Rank2) 41% 9% 50%
CN:pivot′+morph(Rank3) 32% 11% 57%
CN:pivot′+morph(Ranks:1−3) 45% 12% 43%

Table 6:Human judgments: Malay vs. “Indonesian”.
The parameter values are those from Tables 3 and 5.

Reversed Adaptation.In all experiments above,
we were adapting the Malay sentences to look like
Indonesian. Here we try to reverse the direction of
adaptation, i.e., to adapt Indonesian to Malay: we
thus build a “Malay” confusion network for each
dev/test Indonesian sentence to be used as an in-
put to a Malay–English SMT system trained on the
ML2ENdataset. We tried two variations of this idea:

• lattice: Use Indonesian-to-Malay confusion
networks directly as input to theML2EN SMT
system, i.e., tune a log-linear model using con-
fusion networks for the source side of the
IN2EN-devdataset, and then evaluate the tuned
system using confusion networks for the source
side of theIN2EN-testdataset.

• 1-best: Use the 1-best output from the
Indonesian-to-Malay confusion network for
each sentence ofIN2EN-devand IN2EN-test.
Then pair each 1-best output with the corre-
sponding English sentence. Finally, get an
adapted “Malay”–English development set and
an adapted “Malay”–English test set, and use
them to tune and evaluate theML2EN SMT
system.

Table 7 shows that both variations perform worse
thanCN:pivot. We believe this is becauselatticeen-
codes many options, but does not use a Malay LM,
while 1-bestuses a Malay LM, but has to commit
to 1-best. In contrast,CN:pivot uses bothn-best
outputs and an Indonesian LM; designing a similar
setup for reversed adaptation is a research direction
we would like to pursue in future work.
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System BLEU
CN:pivot(Malay→Indonesian) 18.91(0.005,10best)

CN:pivot(Indonesian→Malay) – lattice 17.22(0.05)

CN:pivot(Indonesian→Malay) – 1-best 17.77(0.001)

Table 7:Reversed adaptation: Indonesian to Malay.

Adapting Macedonian to Bulgarian. We ex-
perimented with another pair of closely-related lan-
guages,8 Macedonian (MK) and Bulgarian (BG), us-
ing data from a different, non-newswire domain: the
OPUS corpus of movie subtitles (Tiedemann, 2009).
We used datasets of sizes that are comparable to
those in the previous experiments: 160KMK2EN
and 1.5MBG2ENsentence pairs (1.2M and 11.5M
EN words). Since the sentences were short, we used
10K MK2EN sentence pairs for tuning and testing
(77K and 72K English words). For the LM, we used
9.2M Macedonian and 433M English words.

Table 8 shows that bothCN:* and PPT:* yield
statistically significant improvements over balanced
concatenation with unadaptedBG2EN; system com-
bination with MEMT improves even further. This
indicates that our approach can work for other pairs
of related languages and even for other domains.

We should note though that the improvements
here are less sizeable than for Indonesian/Malay.
This may be due to our monolingualMK dataset be-
ing smaller (10MMK vs. 20M IN words), and too
noisy, containing many OCR errors, typos, concate-
nated words, and even some Bulgarian text. More-
over, Macedonian and Bulgarian are arguably some-
what more dissimilar than Malay and Indonesian.

System BLEU TER METEOR
BG2EN(baseline) 24.57 57.64 41.60
MK2EN (baseline) 26.46 54.55 46.15
Balanced concatenation ofMK2EN with an adapted BG2EN

+ BG2EN(unadapted) 27.33 54.61 48.16
+ CN:pivot′+morph 27.97(+0.64,+1.51) 54.08 49.65
+ PPT:4::CN:morph 28.38(+1.05,+1.92) 53.35 48.21
Combining last three 29.05(+1.72,+2.59) 52.31 50.96

Table 8: Improving Macedonian–English SMT by
adapting Bulgarian to Macedonian.

8There is a heated political and linguistic debate about
whether Macedonian represents a separate language or is a re-
gional literary form of Bulgarian. Since there are no clear cri-
teria for distinguishing a dialect from a language, linguists are
divided on this issue. Politically, the Macedonian remains un-
recognized as a language by Bulgaria and Greece.

8 Conclusion and Future Work

We have presented a novel approach for improving
machine translation for a resource-poor language by
adapting a bi-text for a related resource-rich lan-
guage, using confusion networks, word/phrase-level
paraphrasing, and morphological analysis.

We have achieved very significant improvements
over several baselines (6.7 BLEU points over an un-
adapted version ofML2EN, 2.6 BLEU points over
IN2EN, and 1.5–3 BLEU points over three bi-text
combinations ofML2EN andIN2EN), thus proving
the potential of the idea. We have further demon-
strated the applicability of the general approach to
other languages and domains.

In future work, we would like to add word dele-
tion, insertion, splitting, and concatenation as al-
lowed editing operations. We further want to ex-
plore tighter integration of word-based and phrase-
based paraphrasing. Finally, we plan experiments
with other language pairs and application to other
linguistic problems.
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Jan Hajǐc, Jan Hric, and Vladislav Kuboň. 2000. Ma-
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Abstract

The possibility of deleting a word from a sen-
tence without violating its syntactic correct-
ness belongs to traditionally known manifes-
tations of syntactic dependency. We introduce
a novel unsupervised parsing approach that is
based on a new n-gram reducibility measure.
We perform experiments across 18 languages
available in CoNLL data and we show that
our approach achieves better accuracy for the
majority of the languages then previously re-
ported results.

1 Introduction

The true nature of the notion of dependency (af-
ter removing sedimentary deposits of rules imposed
only by more or less arbitrary conventions) remains
still somewhat vague and elusive. This holds in spite
of a seemingly strong background intuition and even
after a decade of formalized large-scale dependency-
based resources being available to the research com-
munity. It is undeniable that a huge progress has
been reached in the field of supervised dependency
parsing, especially due to the CoNLL shared task se-
ries. However, when it comes to unsupervised pars-
ing, there are surprisingly few clues we could rely
on.

As mentioned e.g. by Kübler et al. (2009), one of
the traditional linguistic criteria for recognizing de-
pendency relations (including their head-dependent
orientation) is that a head H of a construction C de-
termines the syntactic category of C and can often
replace C. Or, in words of Dependency Analysis by

Reduction (Lopatková et al., 2005), stepwise dele-
tion of dependent elements within a sentence pre-
serves its syntactic correctness. A similar idea of
dependency analysis by splitting a sentence into all
possible acceptable fragments is used by Gerdes and
Kahane (2011).

Of course, all the above works had to respond to
the notorious fact that there are many language phe-
nomena precluding the ideal (word by word) sen-
tence reducibility (e.g. in the case of prepositional
groups, or in the case of subjects in English finite
clauses). However, we disregard their solutions ten-
tatively and borrow only the very core of the re-
ducibility idea: if a word can be removed from a
sentence without damaging it, then it is likely to be
dependent on some other (still present) word.

As it is usual with dichotomies in natural lan-
guages, it seems more adequate to use a continuous
scale instead of the reducible-irreducible opposition.
That is why we introduce a simple reducibility mea-
sure based on n-gram corpus statistics. We employ
this reducibility measure as the main feature in our
unsupervised parsing procedure.

The procedure is based on a commonly used
Bayesian inference technique called Gibbs sampling
(Gilks et al., 1996). In our sampler, the more re-
ducible a given token is, the more likely it is to
be sampled as a dependant and not as a head. Af-
ter certain number of sampling iterations, for each
sentence a final dependency tree is created (one to-
ken per node, including punctuation) that maximizes
the product of edge probabilities gathered along the
sampling history.

Our approach allows to utilize information from
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very large corpora. While the computationally de-
manding sampling procedure can be applied only
on limited data, the unrepeated precomputation of
statistics for reducibility estimates can easily exploit
much larger data.

We are not aware of any other published work
on unsupervised parsing employing reducibility or
a similar idea. Dominating approaches in unsuper-
vised parsing are typically based on repeated pat-
terns, and not on the possibility of a deletion inside
a pattern. It seems that the two views of depen-
dency (frequent co-occurrence of head-dependant
pair, versus reducibility of the dependant) are rather
complementary, so fruitful combinations can be
hopefully expected in future.

The remainder of this paper is structured as fol-
lows. Section 2 briefly outlines the state of the art in
unsupervised dependency parsing. Our measure of
reducibility based on a large monolingual corpus is
presented in Section 3. Section 4 shows our models
which serve for generating probability estimates for
edge sampling described in Section 5. Experimen-
tal parsing results for languages included in CoNLL
shared task treebanks are summarized in Section 6.
Section 7 concludes this article.

2 Related Work

The most popular approach in unsupervised de-
pendency parsing of the recent years is to employ
Dependency Model with Valence (DMV), which
was introduced by Klein and Manning (2004).
The inference algorithm was further improved by
Smith (2007) and Cohen et al. (2008). Headden,
Johnson and McClosky (2009) introduced the Ex-
tended Valence Grammar (EVG) and added lexical-
ization and smoothing. Blunsom and Cohn (2010)
use tree substitution grammars, which allow learn-
ing larger dependency fragments.

Unfortunately, many of these works show results
only for English.1 However, the main feature of
unsupervised methods should be their applicabil-
ity across a wide range of languages. Such exper-
iments were done by Spitkovsky (2011b; 2011c),
where the parsing algorithm was evaluated on all 19
languages included in CoNLL 2006 (Buchholz and

1The state-of-the-art unsupervised parsers achieve more
than 50% of attachment score measured on the Penn Treebank.

Marsi, 2006) and 2007 (Nivre et al., 2007) shared
tasks.

The fully unsupervised linguistic analysis
(Spitkovsky et al., 2011a) shows that the unsuper-
vised part-of-speech tags may be more useful for
this task than the supervised ones.

Another possibility for obtaining dependency
structures for languages without any linguistically
annotated resources can be the projection using a
parallel treebank with a resource-rich language (typ-
ically English). McDonald et al. (2011) showed that
such projection produce better structures than the
current unsupervised parsers do. However, our task
is different. We would like to produce structures that
are not burdened by any linguistic conventions.

In this paper, we describe a novel approach to un-
supervised dependency parsing. Our model differs
from DMV, since we employ the reducibility feature
and use fertility of nodes instead of generating STOP
signs.

We use Gibbs sampling procedure for inference
instead of Variational Bayes, which has been more
common for induction of linguistic strucures. Gibbs
sampling algorithm for grammar induction was used
also by Mareček and Žabokrtský (2011). However,
their sampling algorithm produces generally non-
projective trees. Our sampler, which is described in
Section 5, introduces a completely different small-
change operator that guarantees projective edges.

3 Computing Reducibility scores

We call a word (or a sequence of words) in a sen-
tence reducible, if the sentence after removing the
word remains grammatically correct. Although we
cannot automatically recognize grammaticality of
such newly created sentence, we can search for it
in a large corpus. If we find it, we assume the word
was reducible in the original sentence.

Since the number of such reducible word se-
quences found in any corpus will be low, we de-
termine the reducibility scores from their individual
types (part-of-speech tags). This then implicitly al-
lows some sharing of the scores between different
word sequences.

The necessity to search for the whole sentences
in the corpus and not only for some smaller context
(considering, for example, just left and right neigh-
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bor), which would lead to lower sparsity, is rational-
ized by the following example:

Their children went to school.
I took their children to school.

The verb ‘went’ would be reducible in the context
‘their children went to school’, because the sequence
‘their children to school’ occurs in the second sen-
tence. One could find such examples frequently even
for large contexts. For instance, verbs in free word-
order languages can be placed almost at any posi-
tion in a sentence; therefore, without the full sen-
tence context, they would have to be considered as
reducible. To prevent this, we decided to work ex-
clusively with the full sentence context instead of
shorter contexts.

Other way that would lead to lower sparsity would
be searching for sequences of part-of-speech tags in-
stead of sequences of word forms. However, this
also does not bring desired results. For instance, the
two following sentence patterns

DT NNS VBD IN DT NN .
DT NNS VBD DT NN .

are quite frequent in English and we can deduce
from them that the preposition IN is reducible. But
this is of course a wrong deduction, since the prepo-
sition cannot be removed from the prepositional
phrase. Using part-of-speech tags instead of word
forms is thus not suitable for computing reducibility
scores.

Although we search for reducible sequences of
word forms in the corpus, we compute reducibil-
ity scores for sequences of part-of-speech tags. This
requires to have the corpus morphologically disam-
biguated. A sequences of part-of-speech tags will be
denoted as “PoS n-gram” in the following text.

Assume a PoS n-gram g = [t1, . . . , tn]. We go
through the corpus and search for all its occurrences.
For each such occurrence, we remove the respec-
tive words from the current sentence and check in
the corpus whether the rest of the sentence occurs at
least once elsewhere in the corpus.2 If so, then such
occurrence of PoS n-gram is reducible, otherwise it
is not. We denote the number of such reducible oc-

2We do not take into account sentences with less then 10
words, because they could be nominal (without any verb) and
might influence the reducibility scores of verbs.

unigrams R bigrams R trigrams R
VB 0.04 VBN IN 0.00 IN DT JJ 0.00
TO 0.07 IN DT 0.02 JJ NN IN 0.00
IN 0.11 NN IN 0.04 NN IN NNP 0.00
VBD 0.12 NNS IN 0.05 VBN IN DT 0.00
CC 0.13 JJ NNS 0.07 JJ NN . 0.00
VBZ 0.16 NN . 0.08 DT JJ NN 0.04
NN 0.22 DT NNP 0.09 DT NNP NNP 0.05
VBN 0.24 DT NN 0.09 NNS IN DT 0.14
. 0.32 NN , 0.11 NNP NNP . 0.15
NNS 0.38 DT JJ 0.13 NN IN DT 0.23
DT 0.43 JJ NN 0.14 NNP NNP , 0.46
NNP 0.78 NNP . 0.15 IN DT NNP 0.55
JJ 0.84 NN NN 0.22 DT NN IN 0.59
RB 2.07 IN NN 0.67 NNP NNP NNP 0.64
, 3.77 NNP NNP 0.76 IN DT NN 0.80
CD 55.6 IN NNP 1.81 IN NNP NNP 4.27

Table 1: Reducibility scores of the most frequent
English n-grams. (V* are verbs, N* are nouns, DET
are determiners, IN are prepositions, JJ are adjec-
tives, RB are adverbs, CD are numerals, and CC are
coordinating conjunctions)

currences of PoS n-gram g by r(g). The number of
all its occurrences is c(g).

The relative reducibility R(g) of a PoS n-gram g
is then computed as

R(g) =
1

N

r(g) + σ1

c(g) + σ2
, (1)

where the normalization constant N , which ex-
presses relative reducibility over all the PoS n-grams
(denoted by G), causes the scores are concentrated
around the value 1.

N =

∑
g∈G(r(g) + σ1)∑
g∈G(c(g) + σ2)

(2)

Smoothing constants σ1 and σ2, which prevent re-
ducibility scores from being equal to zero, are set
to

σ1 =

∑
g∈G r(g)∑
g∈G c(g)

, σ2 = 1 (3)

This setting causes that even if a given PoS n-gram is
not reducible anywhere in the corpus, its reducibility
score is 1/(c(g) + 1).

Tables 1, 2, and 3 show reducibility scores of the
most frequent PoS n-grams of three selected lan-
guages: English, German, and Czech. If we consider
only unigrams, we can see that the scores for verbs
are often among the lowest. Verbs are followed by
prepositions and nouns, and the scores for adjectives
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unigrams R bigrams R trigrams R
VVPP 0.00 NN APPR 0.00 NN APPR NN 0.01
APPR 0.27 APPR ART 0.00 ADJA NN APPR 0.01
VVFIN 0.28 ART ADJA 0.00 APPR ART ADJA 0.01
APPRART 0.32 NN VVPP 0.00 NN KON NN 0.01
VAFIN 0.37 NN $( 0.01 ADJA NN $. 0.01
KON 0.37 NN NN 0.01 NN ART NN 0.32
NN 0.43 NN ART 0.21 ART NN ART 0.49
ART 0.49 ADJA NN 0.28 NN ART ADJA 0.90
$( 0.57 NN $, 0.67 ADJA NN ART 0.95
$. 1.01 NN VAFIN 0.85 NN APPR ART 0.95
NE 1.14 NN VVFIN 0.89 NN VVPP $. 1.01
CARD 1.38 NN $. 0.95 ART NN APPR 1.35
ADJA 2.38 ART NN 1.07 ART ADJA NN 1.58
$, 2.94 NN KON 2.41 APPR ART NN 2.60
ADJD 3.54 APPR NN 2.65 APPR ADJA NN 2.65
ADV 7.69 APPRART NN 3.06 ART NN VVFIN 9.51

Table 2: Reducibility scores of the most frequent
German n-grams. (V* are verbs, N* are nouns, ART
are articles, APPR* are prepositions, ADJ* are ad-
jectives, ADV are adverbs, CARD are numerals, and
KON are conjunctions)

and adverbs are very high for all three examined lan-
guages. That is desired, because the reducible uni-
grams will more likely become leaves in dependency
trees. Considering bigrams, the couples [determiner
– noun], [adjective – noun], and [preposition – noun]
obtained reasonably high scores. However, there
are also n-grams such as the German trigram [de-
terminer – noun – preposition] (ART-NN-APPR)
whose reducibility score is undesirably high.3

4 Models

We introduce a new generative model that is dif-
ferent from the widely used Dependency Model
with Valence (DMV). In DMV (Klein and Manning,
2004) and in the extended model EVG (Headden III
et al., 2009), there is a STOP sign indicating that no
more dependents in a given direction will be gener-
ated. Given a certain head, all its dependents in left
direction are generated first, then the STOP sign in
that direction, then all its right dependents and then
STOP in the other direction. This process continues
recursively for all generated dependents.

Our model introduces fertility of a node, which
substitutes the STOP sign. For a given head, we first
generate the number of its left and right children

3The high reducibility score of ART-NN-APPR was proba-
bly caused by German particles, which have the same PoS tag
as prepositions.

unigrams R bigrams R trigrams R
P4 0.00 RR AA 0.00 RR NN Z: 0.00
RV 0.00 Z: J, 0.00 NN RR AA 0.00
Vp 0.06 Vp NN 0.00 NN AA NN 0.16
Vf 0.06 VB NN 0.12 AA NN RR 0.23
P7 0.16 NN Vp 0.13 NN RR NN 0.46
J, 0.24 NN VB 0.18 NN Jˆ NN 0.46
RR 0.28 NN RR 0.22 AA NN NN 0.47
VB 0.33 NN AA 0.23 NN Z: Z: 0.48
NN 0.72 NN Jˆ 0.62 NN Z: NN 0.52
Jˆ 1.72 AA NN 0.62 NN NN NN 0.70
C= 1.85 NN NN 0.70 AA AA NN 0.72
PD 2.06 NN Z: 0.97 AA NN Z: 0.86
AA 2.22 Z: NN 1.72 NN NN Z: 1.38
Dg 3.21 Z: Z: 1.97 RR NN NN 2.26
Z: 4.01 Jˆ NN 2.05 RR AA NN 2.65
Db 4.62 RR NN 2.20 Z: NN Z: 8.32

Table 3: Reducibility scores of the most frequent
Czech n-grams. (V* are verbs, N* are nouns, P* are
pronouns, R* are prepositions, A* are adjectives, D*
are adverbs, C* are numerals, J* are conjunctions,
and Z* is punctuation)

(fertility model) and then we fill these positions by
generating its individual dependents (edge model).
If a zero fertility is generated in both the directions,
the head becomes a leaf.

Besides the fertility model and the edge model,
we use two more models (subtree model and dis-
tance model), which force the generated trees to
have more desired shape.4

4.1 Fertility Model

We express a fertility of a node by a pair of num-
bers: the number of its left dependents and the num-
ber of its right dependents. For example, fertility
“1-3” means that the node has one left and three
right dependents, fertility “0-0” indicates that it is
a leaf. Fertility is conditioned by part-of-speech tag
of the node and it is computed following the Chi-
nese restaurant process. This means that if a specific
fertility has been frequent for a given PoS tag in the
past, it is more likely to be generated again. The
formula for computing probability of fertility fi of a
word on the position i in the corpus is as follows:

Pf (fi|ti) =
c−i(“ti, fi”) + αP0(fi)

c−i(“ti”) + α
, (4)

4In fact, the subtree model and the distance model disrupt a
bit the generative story, because the probabilites do not sum up
to one when they are used. However, they proved to help with
inducing better linguistic structures.
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where ti is part-of-speech tag of the word on the po-
sition i, c−i(“ti, fi”) stands for the count of words
with PoS tag ti and fertility fi in the history, and
P0 is a prior probability for the given fertility which
depends on the total number of node dependents de-
noted by |fi| (the sum of numbers of left and right
dependents):

P0(fi) =
1

2|fi|+1
(5)

This prior probability has a nice property: for a
given number of nodes, the product of fertility prob-
abilities over all the nodes is equal for all possible
dependency trees. This ensures the stability of this
model during the inference.

Besides the basic fertility model, we introduce
also an extended fertility model, which uses fre-
quency of a given word form for generating number
of children. We assume that the most frequent words
are mostly function words (e.g. determiners, prepo-
sitions, auxiliary verbs, conjunctions). Such words
tend to have a stable number of children, for exam-
ple (i) some function words are exclusively leaves,
(ii) prepositions have just one child, and (iii) attach-
ment of auxiliary verbs depends on the annotation
style, but number of their children is also not very
variable. The higher the frequency of a word form,
the higher probability mass is concentrated on one
specific number of children and the lower Dirichlet
hyperparameter α in Equation 4 is needed. The ex-
tended fertility is described by equation

P ′f (fi|ti, wi) =
c−i(“ti, fi”) + αe

F (wi)
P0(fi)

c−i(“ti”) + αe
F (wi)

, (6)

where F (wi) is a frequency of the word wi, which
is computed as a number of words wi in our corpus
divided by number of all words.

4.2 Edge Model
After the fertility (number of left and right depen-
dents) is generated, the individual slots are filled us-
ing the edge model. A part-of-speech tag of each de-
pendent is conditioned by part-of-speech tag of the
head and the edge direction (position of the depen-
dent related to the head).5

5For the edge model purposes, the PoS tag of the technical
root is set to ‘<root>’ and it is in the zero-th position in the

Similarly as for the fertility model, we employ
Chinese restaurant process to assign probabilities of
individual dependent.

Pe(tj |ti, dj) =
c−i(“ti, tj , dj”) + β

c−i(“ti, dj”) + β|T |
, (7)

where ti and tj are the part-of-speech tags of the
head and the generated dependent respectively; dj is
a direction of edge between the words i and j, which
can have two values: left and right. c−i(“ti, tj , dj”)
stands for the count of edges ti ← tj with the direc-
tion dj in the history, |T | is a number of unique tags
in the corpus and β is a Dirichlet hyperparameter.

4.3 Distance Model
Distance model is an auxiliary model that prevents
the resulting trees from being too flat. Ideally, it
would not be needed, but experiments showed that
it helps to infer better trees. This simple model says
that shorter edges are more probable than longer
ones. We define probability of a distance between
a word and its parent as its inverse value,6 which is
then normalized by the normalization constant εd.

Pd(i, j) =
1

εd

(
1

|i− j|

)γ
(8)

The hyperparameter γ determines the weight of this
model.

4.4 Subtree Model
The subtree model uses the reducibility measure. It
plays an important role since it forces the reducible
words to be leaves and reducible n-grams to be sub-
trees. Words with low reducibility are forced to-
wards the root of the tree. We define desc(i) as a
sequence of tags [tl, . . . , tr] that corresponds to all
the descendants of the word wi including wi, i.e. the
whole subtree of wi. The probability of such sub-
tree is proportional to its reducibility R(desc(i)).
The hyperparameter δ determines the weight of the
model; εs is a normalization constant.

Ps(i) =
1

εs
R(desc(i))δ (9)

sentence, so the head word of the sentence is always its right
dependent.

6Distance between any word and the technical root of the
dependency tree was set to 10. Since each technical root has
only one dependent, this value does not affect the model.
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4.5 Probability of the Whole Treebank
We want to maximize the probability of the whole
generated treebank, which is computed as follows:

Ptreebank =
n∏
i=1

(P ′f (fi|ti, wi) (10)

Pe(ti|tπ(i), di) (11)

Pd(i, π(i)) (12)

Ps(i)), (13)

where π(i) denotes the parent of the word on the
position i. We multiply the probabilities of fertil-
ity, edge, distance from parent, and subtree over all
words (nodes) in the corpus. The extended fertility
model P ′f can be substituted by its basic variant Pf .

5 Sampling Algorithm

For stochastic searching for the most probable de-
pendency trees, we employ Gibbs sampling, a stan-
dard Markov Chain Monte Carlo technique (Gilks et
al., 1996). In each iteration, we loop over all words
in the corpus in a random order and change the de-
pendencies in their neighborhood (a small change
described in Section 5.2). In the end, “average” trees
based on the whole sampling are built.

5.1 Initialization
Before the sampling starts, we initialize the projec-
tive trees randomly. For doing so, we tried the fol-
lowing two initializers:

• For each sentence, we choose randomly one
word as the head and attach all other words to
it.

• We are picking one word after another in a ran-
dom order and we attach it to the nearest left (or
right) neighbor that has not been attached yet.
The left-right choice is made by a coin flip. If it
is not possible to attach a word to one side, we
attach it to the other side. The last unattached
word becomes the head of the sentence.

While the first method generates only flat trees,
the second one can generate all possible projective
trees. However, the sampler converges to similar re-
sults for both the initializations. Therefore we con-
clude that the choice of the initialization mechanism

The   dog   was   in   the   park  .

(((The) dog) was (in ((the) park)) (.))

Figure 1: Arrow and bracketing notation of a projec-
tive dependency tree.

(((The) dog) was  in ((the) park)  (.))

(((The) dog) was  in ((the) park)  (.))
(((The) dog) was  in ((the) park)  (.))
(((The) dog) was  in ((the) park)  (.))

(
(
(

)
)

)

(((The) dog) was  in ((the) park)  (.))
(((The) dog) was  in ((the) park)  (.))(

(
)

)

Figure 2: An example of small change in a projec-
tive tree. The bracket (in the park) is removed and
there are five possibilities how to replace it.

is not so important here and we choose the first one
due to its simplicity.

5.2 Small Change Operator
We use the bracketing notation for illustrating the
small change operator. Each projective dependency
tree consisting of n words can be expressed by n
pairs of brackets. Each bracket pair belongs to one
node and delimits its descendants from the rest of
the sentence. Furthermore, each bracketed segment
contains just one word that is not embedded deeper;
this node is the segment head. An example of this
notation is in Figure 1.

The small change is then very simple. We remove
one pair of brackets and add another, so that the con-
ditions defined above are not violated. An example
of such change is in Figure 2.

From the perspective of dependency structures,
the small change can be described as follows:

1. Pick a random non-root word w (the word in
in our example) and find its parent p (the word
was).

2. Find all other children of w and p (the words
dog, park, and .) and denote this set by C.

3. Choose the new head out of w and p. Mark the
new head as g and the second candidate as d.
Attach d to g.
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4. Select a neighborhoodD adjacent to the word d
as a continuous subset ofC and attach all words
from D to d. D may be also empty.

5. Attach the remaining words from C that were
not in D to the new head g.

5.3 Building “Average” Trees
The “burn-in” period is set to 10 iterations. After
this period, we begin to count how many times an
edge occurs at a particular location in the corpus.
These counts are collected over the whole corpus
with the collection-rate 0.01.7

When the samling is finished, we build final de-
pendency trees based on the edge counts obtained
during the sampling. We employ the maximum
spanning tree (MST) algorithm (Chu and Liu, 1965)
to find them; the weights of edges for computing
MST correspond to the number of times they were
present during the sampling. This averaging method
was used also by Mareček and Žabokrtský (2011).

Other possibilities for obtaining final depen-
dency trees would be using Eisner’s projective al-
gorithm (Eisner, 1996) or using annealing method
(favoring more likely changes) at the end of the sam-
pling. However, the general non-projective MST al-
gorithm enable non-projective edges, which are by
no means negligible in treebanks (Havelka, 2007).

6 Experiments and Evaluation

We evaluate our parser on 20 treebanks (18
languages) included in CoNLL shared tasks
2006 (Buchholz and Marsi, 2006) and 2007 (Nivre
et al., 2007).

Similarly to some previous papers on unsuper-
vised parsing (Gillenwater et al., 2011; Spitkovsky
et al., 2011b), the tuning experiments were per-
formed on English only. We used English for check-
ing functionality of the individual models and for
optimizing hyperparameter values. The best config-
uration of the parser achieved on English develop-
ment data was then used for parsing all other lan-
guages. This simulates the situation in which we
have only one treebank (English) on which we can
tune our parser and we want to parse other languages
for which we have no manually annotated treebanks.

7After each small change is made, the edges from the whole
corpus are collected with a probability 0.01.

language tokens (mil.) language tokens (mil.)
Arabic 19.7 Greek 20.9
Basque 14.1 Hungarian 26.3
Bulgarian 18.8 Italian 39.7
Catalan 27.0 Japanese 2.6
Czech 20.3 Portuguese 31.7
Danish 15.9 Slovenian 13.7
Dutch 27.1 Spanish 53.4
English 85.0 Swedish 19.2
German 56.9 Turkish 16.5

Table 4: Wikipedia texts statistics

6.1 Data

We need two kinds of data for our experiments: a
smaller treebank, which is used for sampling and for
evaluation, and a large corpus, from which we com-
pute n-gram reducibility scores.

The treebanks are taken from the CoNLL shared
task 2006 and 2007. The experiments are per-
formed for all languages except for Chinese.8 We
use only the testing parts of the treebanks (the files
test.conll) for the dependency tree induction.
As a source of the part-of-speech tags, we use the
fine-grained gold PoS tags, which are in the fifth col-
umn in the CoNLL format.

For obtaining reducibility scores, we used the
W2C corpus9 of Wikipedia articles, which was
downloaded by Majliš and Žabokrtský (2012). Their
statistics across languages are shown in Table 4. To
make them useful, the necessary preprocessing steps
must have been done. The texts were first automati-
cally segmented and tokenized10 and then they were
part-of-speech tagged by TnT tagger (Brants, 2000),
which was trained on the respective CoNLL train-
ing data (the files train.conll). The quality of
such tagging is not very high, since we do not use
any lexicons11 or pretrained models. However, it is
sufficient for obtaining good reducibility scores.

8We do not have appropriate Chinese segmenter that would
segment Chinese texts in the same way as in CoNLL.

9http://ufal.mff.cuni.cz/˜majlis/w2c/
10The segmentation to sentences and tokenization was per-

formed using the TectoMT framework (Popel and Žabokrtský,
2010).

11Using lexicons or another pretrained models for tagging
means using other sources of human annotated data, which is
not allowed if we want to compare our results with others.
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6.2 Setting the Hyperparameters

The applicability of individual models and their pa-
rameters were tested on development data set of
English (the file en/dtest.conll in CoNLL
shared task 2007).

After several experiments, we have observed that
the extended fertility model provides better results
than the basic fertility model; the parser using the
basic fertility model achieved 44.1% attachment
score for English, whereas the extended fertility
model increased the score to 46.8%. The four hy-
perparameters αe (extended fertility model), β (edge
model), γ (distance model), and δ (subtree model),
were set by a grid search algorithm,12 which found
the following optimal values:

αe = 0.01, β = 1, γ = 1.5, δ = 1

In informal experiments, parameters were tuned
also for other treebanks and we found out that they
vary across languages. Therefore, adjusting the hy-
perparameters on another language would probably
change the scores significantly.

6.3 Evaluation

The best setting from the experiments on English is
now used for evaluating our parser on all CoNLL
languages. To be able to compare our parser attach-
ment score to previously published results, the fol-
lowing steps must be done:

• We take the testing part of each treebank (the
file test.conll) and remove all the punctu-
ation marks. If the punctuation node is not a
leaf, its children are attached to the parent of
the removed node.

• Some previous papers report results on up-to-
10-words sentences only. Therefore we extract
such sentences from the test data and evaluate
on this subsets as well.

12Here we make use of manually annotated trees. However,
we use only English treebank an we are setting only four num-
bers out of several previously given values (e.g αe out of 0.01,
0.1, 1, 10). These numbers could be tuned also by inspecting
the outputs. So we believe this method can be treated as unsu-
pervised.

CoNLL ≤ 10 tokens all sentences
language year gil11 our spi11 our
Arabic 06 – 40.5 16.6 26.5
Arabic 07 – 48.0 49.5 27.9
Basque 07 – 30.8 24.0 26.8
Bulgarian 06 58.3 53.2 43.9 46.0
Catalan 07 – 63.5 59.8 47.0
Czech 06 53.2 58.9 27.7 49.5
Czech 07 – 63.7 28.4 48.0
Danish 06 45.9 49.5 38.3 38.6
Dutch 06 33.5 48.8 27.8 44.2
English 07 – 64.1 45.2 49.2
German 06 46.7 60.8 30.4 44.8
Greek 07 – 30.2 13.2 20.2
Hungarian 07 – 61.8 34.7 51.8
Italian 07 – 50.5 52.3 43.3
Japanese 06 57.7 65.4 50.2 50.8
Portuguese 06 54.0 62.3 36.7 50.6
Slovenian 06 50.9 21.0 32.2 18.1
Spanish 06 57.9 67.3 50.6 51.9
Swedish 06 45.0 60.5 50.0 48.2
Turkish 07 – 13.0 35.9 15.7

Average: 50.3∗ 54.7∗ 37.4 40.0

Table 5: Comparison of directed attachment scores
with previously reported results on CoNLL tree-
banks. The column “gil11” contains results reported
by Gillenwater et al (2011) (see the best configura-
tion in Table 7 in their paper). They provided only
results on sentences of up to 10 tokens from CoNLL
2006 treebanks. Results in the column “spi11” are
taken from Spitkovsky et al (2011b), best configu-
ration in Table 6 in their paper. The average score
in the last line is computed across all comparable
results, i.e. for comparison with “gil11” only the
CoNLL’06 results are averaged (∗). Our parser was
not evaluated on Turkish CoNLL’06 data and Chi-
nese data, because we have not them available.

The resulting scores are given in Table 5. We
compare our results with results previously reported
by Gillenwater (2011) and Spitkovsky (2011b), who
used the CoNLL data for evaluation too. Since they
provide results for several configurations of their
parsers, we choose only the best one from each the
paper. We define the best configuration as the one
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with the highest average attachment score across all
the tested languages.

We can see that our parser outperforms the pre-
viously published ones. In one case, it is better for
8 out of 10 data sets, in the other case, it is better
for 14 out of 20 data sets. The average attachment
scores, which are computed only from the results
present for both compared parsers, also confirm the
improvement.

However, it is important to note that we used an
additional source of information, namely large unan-
notated corpora for computing reducibility scores,
while the others used only the CoNLL data.

6.4 Error Analysis

Our main motivation for developing an unsupervised
dependency parser was that we wanted to be able
to parse any language. However, the experiments
show that our parser fails for some languages. In
this section, we try to analyze and explain some of
the most substantial types of errors.

Auxiliary verbs in Slovenian – In the Slovenian
treebank, many verbs are composed of two words:
main verb (marked as Verb-main) and auxiliary
verb (Verb-copula). Our parser choose the aux-
iliary verb as the head and the main verb and all its
dependants become its children. That is why the at-
tachment score is so poor (only 18.1%). In fact, the
induced structure is not so bad. The main verb is
switched with the auxiliary one which causes also
the wrong attachment of all its dependants.

Articles in German – Attachment of about one
half of German articles is wrong. Instead of the ar-
ticle being attached below the appropriate noun, the
noun is attached below the article. It is a similar
problem as the aforementioned Slovenian auxiliary
verbs. The dependency between content and func-
tion word is switched and the dependants of the con-
tent word are attached to the function word. Klein
and Manning (2004) observed a similar behavior in
their experiments with DMV.

Noun phrases in English – The structure of
phrases that consist of more nouns are often induced
badly. This is caused probably by ignoring word
forms. For example, the structure of the sequence
‘NN NN NN’ can be hardly recognized by our parser.

fert. edge dist. subtr. en de cs
(random baseline) 19.8 18.4 26.7

X 8.71 13.7 14.9
X 18.9 20.2 26.5

X 23.6 19.5 25.3
X 28.2 23.7 33.5

X X 21.2 22.9 23.5
X X 19.9 19.7 25.5
X X 7.8 17.5 22.7

X X 24.1 19.5 27.1
X X 25.5 27.5 40.7

X X 31.2 25.2 33.1
X X X 30.7 26.2 22.0
X X X 14.1 18.1 34.6
X X X 36.1 32.2 38.9

X X X 34.8 26.7 42.4
X X X X 46.8 36.5 47.2

Table 6: Ablation analysis. Unlabeled attachment
scores for different combinations of model compo-
nents (fertility model, edge model, distance model
and subtree model). The scores are computed on all
sentences of the development data. Punctuation is
included into the evaluation.

6.5 Ablation Analysis

To investigate the impact of individual components
of the model, we run the parser for all possible com-
ponent combinations. We choose three languages
along the scale of word order freedom: English
(very rigid word order), Czech (relatively free word
order), and German (somewhere in the middle). The
attachment scores are shown in Table 6. If no model
is used for the inference and the sampling algorithm
samples completely random trees, we get the ran-
dom baseline score, which is 19.8% for English13.
From the perspective of the subtree model, which
implements the reducibility feature, we can see that
it is the most useful model here. Alone, it improves
the score for English to 28.2%. If we do not use
it, the score decreases from 46.8% (when all mod-
els are used) to 30.7%. Very important is also the
distance model which eliminates the possibility of
attaching all words to one head word. If we omit

13This relatively high baseline scores are caused by the MST
algorithm, which chooses the most frequent edges from random
trees i.e. the shortest ones.
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it, the score for English falls drastically to 14.1%.
Some combinations of models have their scores far
below the baseline. This is caused by the fact that
some regularities have been found but the structures
are induced differently and thus all attachments are
wrong.

6.6 Induction without Wikipedia Corpus

We have performed also experiments using exclu-
sively the CoNLL data. However, the numbers of
reducible words in CoNLL training set were very
low (50 words at maximum in CoNLL 2006 train-
ing data and 10 words at maximum in CoNLL 2007
training data). This led to completely unreliable re-
ducibility scores and the consequent poor results.

7 Conclusions and Future Work

We have shown that employing the reducibility fea-
ture is useful in unsupervised dependency parsing
task. We extracted the n-gram reducibility scores
from a large corpus, and then made the computation-
ally demanding inference on smaller data using only
these scores. We evaluated our parser on 18 lan-
guages included in CoNLL and for 14 of them, we
achieved higher attachment scores than previously
published results.

The most errors were caused by function words,
which sometimes take over the dependents of adja-
cent content words. This can be caused by the fact
that the reducibility cannot handle function words
correctly, because they must be reduced together
with a content word, not one after another.

In future work, we would like to estimate the
hyperparameters automatically. Furthermore, we
would like to get rid of manually designed PoS tags
and use some kind of unsupervised clusters in order
to have all the annotation process completely unsu-
pervised. We would also like to employ lexicalized
models that should help in situations in which the
PoS tags are too coarse.

Finally, we would like to move towards deeper
syntactic structures, where the tree would be formed
only by content words and the function words would
be treated in a different way.

Software

The source code of our unsupervised dependency
parser including the script for computing reducibil-
ity scores from large corpora is available at
http://ufal.mff.cuni.cz/˜marecek/udp.
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Lecture Notes in Artificial Intelligence, Proceedings of
the 8th International Conference, TSD 2005, volume
3658 of Lecture Notes in Computer Science, pages
140–147, Berlin / Heidelberg. Springer.
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Abstract

In this paper, we show that significant im-
provements in the accuracy of well-known
transition-based parsers can be obtained, with-
out sacrificing efficiency, by enriching the
parsers with simple transitions that act on
buffer nodes.

First, we show how adding a specific tran-
sition to create either a left or right arc of
length one between the first two buffer nodes
produces improvements in the accuracy of
Nivre’s arc-eager projective parser on a num-
ber of datasets from the CoNLL-X shared
task. Then, we show that accuracy can also be
improved by adding transitions involving the
topmost stack node and the second buffer node
(allowing a limited form of non-projectivity).

None of these transitions has a negative im-
pact on the computational complexity of the
algorithm. Although the experiments in this
paper use the arc-eager parser, the approach is
generic enough to be applicable to any stack-
based dependency parser.

1 Introduction

Dependency parsing has become a very active re-
search area in natural language processing in re-
cent years. The dependency representation of syn-
tax simplifies the syntactic parsing task, since no
non-lexical nodes need to be postulated by the
parsers; while being convenient in practice, since
dependency representations directly show the head-
modifier and head-complement relationships which
form the basis of predicate-argument structure. This

has led to the development of various data-driven
dependency parsers, such as those by Yamada and
Matsumoto (2003), Nivre et al. (2004), McDonald
et al. (2005), Martins et al. (2009), Huang and Sagae
(2010) or Tratz and Hovy (2011), which can be
trained directly from annotated data and produce ac-
curate analyses very efficiently.

Most current data-driven dependency parsers can
be classified into two families, commonly called
graph-based and transition-based parsers (Mc-
Donald and Nivre, 2011). Graph-based parsers (Eis-
ner, 1996; McDonald et al., 2005) are based on
global optimization of models that work by scoring
subtrees. On the other hand, transition-based parsers
(Yamada and Matsumoto, 2003; Nivre et al., 2004),
which are the focus of this work, use local training
to make greedy decisions that deterministically se-
lect the next parser state. Among the advantages of
transition-based parsers are the linear time complex-
ity of many of them and the possibility of using rich
feature models (Zhang and Nivre, 2011).

In particular, many transition-based parsers
(Nivre et al., 2004; Attardi, 2006; Sagae and Tsujii,
2008; Nivre, 2009; Huang and Sagae, 2010; Gómez-
Rodrı́guez and Nivre, 2010) are stack-based (Nivre,
2008), meaning that they keep a stack of partially
processed tokens and an input buffer of unread to-
kens. In this paper, we show how the accuracy of
this kind of parsers can be improved, without com-
promising efficiency, by extending their set of avail-
able transitions with buffer transitions. These are
transitions that create a dependency arc involving
some node in the buffer, which would typically be
considered unavailable for linking by these algo-
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rithms. The rationale is that buffer transitions con-
struct some “easy” dependency arcs in advance, be-
fore the involved nodes reach the stack, so that the
classifier’s job when choosing among standard tran-
sitions is simplified.

To test the approach, we use the well-known arc-
eager parser by (Nivre, 2003; Nivre et al., 2004) as
a baseline, showing improvements in accuracy on
most datasets of the CoNLL-X shared task (Buch-
holz and Marsi, 2006). However, the techniques dis-
cussed in this paper are generic and can also be ap-
plied to other stack-based dependency parsers.

The rest of this paper is structured as follows:
Section 2 is an introduction to transition-based
parsers and the arc-eager parsing algorithm. Section
3 presents the first novel contribution of this paper,
projective buffer transitions, and discusses their
empirical results on CoNLL-X datasets. Section 4
does the same for a more complex set of transitions,
non-projective buffer transitions. Finally, Section
5 discusses related work and Section 6 sums up the
conclusions and points out avenues for future work.

2 Preliminaries

We now briefly present some basic definitions for
transition-based dependency parsing; a more thor-
ough explanation can be found in (Nivre, 2008).

2.1 Dependency graphs
Let w = w1 . . . wn be an input string. A depen-
dency graph forw is a directed graphG = (Vw, A);
where Vw = {0, 1, . . . , n} is a set of nodes, and
A ⊆ Vw × L × Vw is a set of labelled arcs. Each
node in Vw encodes the position of a token in w,
where 0 is a dummy node used as artificial root. An
arc (i, l, j) will also be called a dependency link la-
belled l from i to j. We say that i is the syntactic
head of j and, conversely, that j is a dependent of
i. The length of the arc (i, l, j) is the value |j − i|.

Most dependency representations of syntax do not
allow arbitrary dependency graphs. Instead, they re-
quire dependency graphs to be forests, i.e., acyclic
graphs where each node has at most one head. In this
paper, we will work with parsers that assume depen-
dency graphs G = (Vw, A) to satisfy the following
properties:

• Single-head: every node has at most one in-

coming arc (if (i, l, j) ∈ A, then for every
k 6= i, (k, l′, j) 6∈ A).

• Acyclicity: there are no directed cycles in G.

• Node 0 is a root, i.e., there are no arcs of the
form (i, l, 0) in A.

A dependency forest with a single root (i.e., where
all the nodes but one have at least one incoming arc)
is called a tree. Every dependency forest can triv-
ially be represented as a tree by adding arcs from
the dummy root node 0 to every other root node.

For reasons of computational efficiency, many de-
pendency parsers are restricted to work with forests
satisfying an additional restriction called projectiv-
ity. A dependency forest is said to be projective
if the set of nodes reachable by traversing zero or
more arcs from any given node k corresponds to a
continuous substring of the input (i.e., is an interval
{x ∈ Vw | i ≤ x ≤ j}). For trees with a dummy
root node at position 0, this is equivalent to not al-
lowing dependency links to cross when drawn above
the nodes (planarity).

2.2 Transition systems
A transition system is a nondeterministic state ma-
chine that maps input strings to dependency graphs.
In this paper, we will focus on stack-based transi-
tion systems. A stack-based transition system is a
quadruple S = (C, T, cs, Ct) where

• C is a set of parser configurations. Each con-
figuration is of the form c = (σ, β,A) where σ
is a list of nodes of Vw called the stack, β is a
list of nodes of Vw called the buffer, and A is a
set of dependency arcs,

• T is a finite set of transitions, each of which is
a partial function t : C → C,

• cs is an initialization function, mapping a sen-
tence w1 . . . wn to an initial configuration
cs = ([0], [1, . . . , n], ∅),

• Ct is the set of terminal configurations Ct =
(σ, [], A) ∈ C.

Transition systems are nondeterministic devices,
since several transitions may be applicable to the
same configuration. To obtain a deterministic parser
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from a transition system, a classifier is trained to
greedily select the best transition at each state. This
training is typically done by using an oracle, which
is a function o : C → T that selects a single transi-
tion at each configuration, given a tree in the training
set. The classifier is then trained to approximate this
oracle when the target tree is unknown.

2.3 The arc-eager parser
Nivre’s arc-eager dependency parser (Nivre, 2003;
Nivre et al., 2004) is one of the most widely known
and used transition-based parsers (see for example
(Zhang and Clark, 2008; Zhang and Nivre, 2011)).
This parser works by reading the input sentence
from left to right and creating dependency links as
soon as possible. This means that links are created in
a strict left-to-right order, and implies that while left-
ward links are built in a bottom-up fashion, a right-
ward link a → b will be created before the node b
has collected its right dependents.

The arc-eager transition system has the following
four transitions (note that, for convenience, we write
a stack with node i on top as σ|i, and a buffer whose
first node is i as i|β):

• SHIFT : (σ, i|β,A)⇒ (σ|i, β, A).

• REDUCE : (σ|i, β, A) ⇒ (σ, β,A). Precondi-
tion: ∃k, l′ | (k, l′, i) ∈ A.

• LEFT-ARCl : (σ|i, j|β,A) ⇒ (σ, j|β,A ∪
{(j, l, i)}). Preconditions: i 6= 0 and 6 ∃k, l′ |
(k, l′, i) ∈ A (single-head)

• RIGHT-ARCl :
(σ|i, j|β,A)⇒ (σ|i|j, β,A ∪ {(i, l, j)}).

The SHIFT transition reads an input word by re-
moving the first node from the buffer and placing it
on top of the stack. The REDUCE transition pops
the stack, and it can only be executed if the topmost
stack node has already been assigned a head. The
LEFT-ARC transition creates an arc from the first
node in the buffer to the node on top of the stack,
and then pops the stack. It can only be executed if
the node on top of the stack does not already have
a head. Finally, the RIGHT-ARC transition creates
an arc from the top of the stack to the first buffer
node, and then removes the latter from the buffer
and moves it to the stack.

The arc-eager parser has linear time complex-
ity. In principle, it is restricted to projective depen-
dency forests, but it can be used in conjunction with
the pseudo-projective transformation (Nivre et al.,
2006) in order to capture a restricted subset of non-
projective forests. Using this setup, it scored as one
of the top two systems in the CoNLL-X shared task.

3 Projective buffer transitions

In this section, we show that the accuracy of stack-
based transition systems can benefit from adding one
of a pair of new transitions, which we call projective
buffer transitions, to their transition sets.

3.1 The transitions

The two projective buffer transitions are defined as
follows:

• LEFT-BUFFER-ARCl :
(σ, i|j|β,A)⇒ (σ, j|β,A ∪ {(j, l, i)}).

• RIGHT-BUFFER-ARCl :
(σ, i|j|β,A)⇒ (σ, i|β,A ∪ {(i, l, j)}).

The LEFT-BUFFER-ARC transition creates a left-
ward dependency link from the second node to
the first node in the buffer, and then removes the
first node from the buffer. Conversely, the RIGHT-
BUFFER-ARC transition creates a rightward depen-
dency link from the first node to the second node
in the buffer, and then removes the second node.
We call these transitions projective buffer transitions
because, since they act on contiguous buffer nodes,
they can only create projective arcs.

Adding one (or both) of these transitions to a
projective or non-projective stack-based transition
system does not affect its correctness, as long as
this starting system cannot generate configurations
(σ, β,A) where a buffer node has a head in A1: it
cannot affect completeness because we are not re-
moving existing transitions, and therefore any de-
pendency graph that the original system could build

1Most stack-based transition systems in the literature disal-
low such configurations. However, in parsers that allow them
(such as those defined by Gómez-Rodrı́guez and Nivre (2010)),
projective buffer transitions can still be added without affecting
correctness if we impose explicit single-head and acyclicity pre-
conditions on them. We have not included these preconditions
by default for simplicity of presentation.
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will still be obtainable by the augmented one; and it
cannot affect soundness (be it for projective depen-
dency forests or for any superset of them) because
the new transitions can only create projective arcs
and cannot violate the single-head or acyclicity con-
straints, given that a buffer node cannot have a head.

The idea behind projective buffer transitions is to
create dependency arcs of length one (i.e., arcs in-
volving contiguous nodes) in advance of the stan-
dard arc-building transitions that need at least one of
the nodes to get to the stack (LEFT-ARC and RIGHT-
ARC in the case of the arc-eager transition system).

Our hypothesis is that, as it is known that
short-distance dependencies are easier to learn for
transition-based parsers than long-distance ones
(McDonald and Nivre, 2007), handling these short
arcs in advance and removing their dependent nodes
will make it easier for the classifier to learn how
to make decisions involving the standard arc tran-
sitions.

Note that the fact that projective buffer transitions
create arcs of length 1 is not explicit in the defini-
tion of the transitions. For instance, if we add the
LEFT-BUFFER-ARCl transition only to the arc-eager
transition system, LEFT-BUFFER-ARCl will only be
able to create arcs of length 1, since it is easy to see
that the first two buffer nodes are contiguous in all
the accessible configurations. However, if we add
RIGHT-BUFFER-ARCl, this transition will have the
potential to create arcs of length greater than 1: for
example, if two consecutive RIGHT-BUFFER-ARCl

transitions are applied starting from a configuration
(σ, i|i + 1|i + 2|β,A), the second application will
create an arc i→ i+ 2 of length 2.

Although we could have added the length-1 re-
striction to the transition definitions, we have cho-
sen the more generic approach of leaving it to the
oracle instead. While the oracle typically used for
the arc-eager system follows the simple principle of
executing transitions that create an arc as soon as
it has the chance to, adding projective buffer transi-
tions opens up new possibilities: we may now have
several ways of creating an arc, and we have to de-
cide in which cases we train the parser to use one of
the buffer transitions and in which cases we prefer
to train it to ignore the buffer transitions and dele-
gate to the standard ones. Following the hypothe-
sis explained above, our policy has been to train the

parser to use buffer transitions whenever possible for
arcs of length one, and to not use them for arcs of
length larger than one. To test this idea, we also
conducted experiments with the alternative policy
“use buffer transitions whenever possible, regardless
of arc length”: as expected, the obtained accuracies
were (slightly) worse.

The chosen oracle policy is generic and can be
plugged into any stack-based parser: for a given
transition, first check whether it is possible to build a
gold-standard arc of length 1 with a projective buffer
transition.2 If so, choose that transition, and if not,
just delegate to the original parser’s oracle.

3.2 Experiments

To empirically evaluate the effect of projective
buffer transitions on parsing accuracy, we have con-
ducted experiments on eight datasets of the CoNLL-
X shared task (Buchholz and Marsi, 2006): Arabic
(Hajič et al., 2004), Chinese (Chen et al., 2003),
Czech (Hajič et al., 2006), Danish (Kromann, 2003),
German (Brants et al., 2002), Portuguese (Afonso et
al., 2002), Swedish (Nilsson et al., 2005) and Turk-
ish (Oflazer et al., 2003; Atalay et al., 2003).

As our baseline parser, we use the arc-eager pro-
jective transition system by Nivre (2003). Table 1
compares the accuracy obtained by this system alone
with that obtained when the LEFT-BUFFER-ARC

and RIGHT-BUFFER-ARC transitions are added to
it as explained in Section 3.1.

Accuracy is reported in terms of labelled (LAS)
and unlabelled (UAS) attachment score. We used
SVM classifiers from the LIBSVM package (Chang
and Lin, 2001) for all languages except for Chinese,
Czech and German. In these, we used the LIB-
LINEAR package (Fan et al., 2008) for classifica-
tion, since it reduces training time in these larger
datasets. Feature models for all parsers were specif-
ically tuned for each language.3

2In this context, “possible” means that we can create the arc
without losing the possibility of creating other gold-standard
arcs. In the case of RIGHT-BUFFER-ARC, this involves check-
ing that the candidate dependent node has no dependents in the
gold-standard tree (if it has any, we cannot remove it from the
stack or it would not be able to collect its dependents, so we do
not use the buffer transition).

3All the experimental settings and feature models used are
included in the supplementary material and also available at
http://www.grupolys.org/˜cgomezr/exp/.
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NE NE+LBA NE+RBA
Language LAS UAS LAS UAS LAS UAS
Arabic 66.43 77.19 67.78 78.26 63.87 74.63
Chinese 86.46 90.18 82.47 86.14 86.62 90.64
Czech 77.24 83.40 78.70 84.24 78.28 83.94
Danish 84.91 89.80 85.21 90.20 82.53 87.35
German 86.18 88.60 84.31 86.50 86.48 88.90
Portug. 86.60 90.20 86.92 90.58 85.55 89.28
Swedish 83.33 88.83 82.81 88.03 81.66 88.03
Turkish 63.77 74.35 57.42 66.24 64.33 74.73

Table 1: Parsing accuracy (LAS and UAS, excluding punctuation) of Nivre’s arc-eager parser without modification
(NE), with the LEFT-BUFFER-ARC transition added (NE+LBA) and with the RIGHT-BUFFER-ARC transition added
(NE+RBA). Best results for each language are shown in boldface.

As can be seen in Table 1, adding a projective
buffer transition improves the performance of the
parser in seven out of the eight tested languages. The
improvements in LAS are statistically significant at
the .01 level4 in the Arabic and Czech treebanks.

Note that the decision of which buffer transition
to add strongly depends on the dataset. In the
majority of the treebanks, we can see that when
the LEFT-BUFFER-ARC transition improves perfor-
mance the RIGHT-BUFFER-ARC transition harms it,
and vice versa. The exceptions are Czech, where
both transitions are beneficial, and Swedish, where
both are harmful. Therefore, when using projective
buffer transitions in practice, the language and anno-
tation scheme should be taken into account (or tests
should be made) to decide which one to use.

Table 2 hints at the reason for this treebank-
sensitiveness. By analyzing the relative frequency
of leftward and rightward dependency links (and,
in particular, of leftward and rightward links of
length 1) in the different treebanks, we see a rea-
sonably clear tendency: the LEFT-BUFFER-ARC

transition works better in treebanks that contain a
large proportion of rightward arcs of length 1, and
the RIGHT-BUFFER-ARC transition works better in
treebanks with a large proportion of leftward arcs of
length 1. Note that, while this might seem coun-
terintuitive at a first glance, it is coherent with the
hypothesis that we formulated in Section 3.1: the

4Statistical significance was assessed using Dan Bikel’s ran-
domized parsing evaluation comparator: http://www.cis.
upenn.edu/˜dbikel/software.html#comparator

Language L% R% L1% R1% Best PBT
Arabic 12.3 87.7 6.5 55.1 LBA
Chinese 58.4 41.6 35.8 15.1 RBA
Czech 41.4 58.6 22.1 24.9 LBA*
Danish 17.1 82.9 10.9 43.0 LBA
German 39.8 60.2 20.3 19.9 RBA
Portug. 32.6 67.4 22.5 26.9 LBA
Swedish 38.2 61.8 24.1 21.8 LBA*
Turkish 77.8 22.2 47.2 10.4 RBA

Table 2: Analysis of the datasets used in the experiments
in terms of: percentage of leftward and rightward links
(L%, R%), percentage of leftward and rightward links
of length 1 (L1%, R1%), and which projective buffer
transition works better for each dataset according to the
results in Table 1 (LBA = LEFT-BUFFER-ARC, RBA
= RIGHT-BUFFER-ARC). Languages where both tran-
sitions are beneficial (Czech) or harmful (Swedish) are
marked with an asterisk.

advantage of projective buffer transitions is not that
they build arcs more accurately than standard arc-
building transitions (in fact the opposite might be
expected, since they work on nodes while they are
still on the buffer and we have less information about
their surrounding nodes in our feature models), but
that they make it easier for the classifier to decide
among standard transitions. The analysis on Table
2 agrees with that explanation: LEFT-BUFFER-ARC

improves performance in treebanks where it is not
used too often but it can filter out leftward arcs of
length 1, making it easier for the parser to be accu-
rate on rightward arcs of length 1; and the converse
happens for RIGHT-BUFFER-ARC.

312



NE NE+LBA NE+RBA NE+LBA+RBA
Language LA RA LA* RA LBA LA RA* RBA LA* RA* LBA RBA
Arabic 58.28 67.77 42.61 68.65 77.46 55.88 60.63 79.70 37.40 62.28 66.78 75.94
Chinese 85.69 85.79 80.92 84.19 89.00 85.96 84.77 88.01 81.08 79.46 87.72 86.33
Czech 85.73 76.44 80.79 78.34 91.07 86.25 76.62 82.58 79.49 75.98 90.26 81.97
Danish 89.47 83.92 88.65 84.16 91.72 86.27 78.04 92.30 90.23 77.52 88.79 92.10
German 89.15 87.11 83.75 87.23 94.30 89.55 84.38 95.98 79.26 81.60 91.66 90.73
Portuguese 94.77 84.91 90.83 85.11 97.07 93.84 81.86 92.29 88.72 79.86 96.02 89.26
Swedish 87.75 80.74 84.62 81.30 92.83 87.12 74.77 90.73 78.10 72.50 90.86 89.89
Turkish 59.68 74.21 53.02 74.01 72.78 60.23 69.23 73.91 49.34 48.48 65.57 41.94

Table 3: Labelled precision of the arcs built by each transition of Nivre’s arc-eager parser without modification (NE),
with a projective buffer transition added (NE+LBA, NE+RBA) and with both projective buffer transitions added
(NE+LBA+RBA). We mark a standard LEFT-ARC (LA) or RIGHT-ARC (LA) transition with an asterisk (LA*, RA*)
when it is acting only on a “hard” subset of leftward (rightward) arcs, and thus its precision is not directly comparable
to that of (LA, RA). Best results for each language and transition are shown in boldface.

To further test this idea, we computed the la-
belled precision of each individual transition of the
parsers with and without projective buffer transi-
tions, as shown in Table 3. As we can see, projec-
tive buffer transitions achieve better precision than
standard transitions, but this is not surprising since
they act only on “easy” arcs of length 1. There-
fore, this high precision does not mean that they ac-
tually build arcs more accurately than the standard
transitions, since it is not measured on the same set
of arcs. Similarly, adding a projective buffer tran-
sition decreases the precision of its corresponding
standard transition, but this is because the standard
transition is then dealing only with “harder” arcs of
length greather than 1, not because it is making more
errors. A more interesting insight comes from com-
paring transitions that are acting on the same tar-
get set of arcs: we see that, in the languages where
LEFT-BUFFER-ARC is beneficial, the addition of
this transition always improves the precision of the
standard RIGHT-ARC transition; and the converse
happens with RIGHT-BUFFER-ARC with respect to
LEFT-ARC. This further backs the hypothesis that
the filtering of “easy” links achieved by projective
buffer transitions makes it easier for the classifier to
decide among standard transitions.

We also conducted experiments adding both tran-
sitions at the same time (NE+LBA+RBA), but the
results were worse than adding the suitable transi-
tion for each dataset. Table 3 hints at the reason: the
precision of buffer transitions noticeably decreases
when both of them are added at the same time, pre-
sumably because it is difficult for the classifier to

NE+LBA/RBA NE+PP (CoNLL X)

Language LAS UAS LAS UAS
Arabic 67.78 78.26 66.71 77.52
Chinese 86.62 90.64 86.92 90.54
Czech 78.70 84.24 78.42 84.80
Danish 85.21 90.20 84.77 89.80
German 86.48 88.90 85.82 88.76
Portug. 86.92 90.58 87.60 91.22
Swedish 82.81 88.03 84.58 89.50
Turkish 64.33 74.73 65.68 75.82

Table 4: Comparison of the parsing accuracy (LAS
and UAS, excluding punctuation) of Nivre’s arc-eager
parser with projective buffer transitions (NE+LBA/RBA)
and the parser with the pseudo-projective transformation
(Nivre et al., 2006)

decide between both with the restricted feature in-
formation available for buffer nodes.

To further put the obtained results into context,
Table 4 compares the performance of the arc-eager
parser with the projective buffer transition most suit-
able for each dataset with the results obtained by the
parser with the pseudo-projective transformation by
Nivre et al. (2006) in the CoNLL-X shared task, one
of the top two performing systems in that event. The
reader should be aware that the purpose of this ta-
ble is only to provide a broad idea of how our ap-
proach performs with respect to a well-known refer-
ence point, and not to make a detailed comparison,
since the two parsers have not been tuned in homo-
geneous conditions: on the one hand, we had access
to the CoNLL-X test sets which were unavailable
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System Arabic Danish
Nivre et al. (2006) 66.71 84.77
McDonald et al. (2006) 66.91 84.79
Nivre (2009) 67.3 84.7
Gómez-Rodrı́guez and Nivre (2010) N/A 83.81
NE+LBA/RBA 67.78 85.21

Table 5: Comparison of the Arabic and Danish LAS ob-
tained by the arc-eager parser with projective buffer tran-
sitions in comparison to other parsers in the literature that
report results on these datasets.

for the participants in the shared task; on the other
hand, we did not fine-tune the classifier parameters
for each dataset like Nivre et al. (2006), but used de-
fault values for all languages.

As can be seen in the table, even though the
pseudo-projective parser is able to capture non-
projective syntactic phenomena, the algorithm with
projective buffer transitions (which is strictly pro-
jective) outperforms it in four of the eight treebanks,
including non-projective treebanks such as the Ger-
man one.

Furthermore, to our knowledge, our LAS results
for Arabic and Danish are currently the best pub-
lished results for a single-parser system on these
datasets, not only outperforming the systems partic-
ipating in CoNLL-X but also other parsers tested on
these treebanks in more recent years (see Table 5).

Finally, it is worth noting that adding projective
buffer transitions has no negative impact on effi-
ciency, either in terms of computational complex-
ity or of empirical runtime. Since each projective
buffer transition removes a node from the buffer, no
more than n such transitions can be executed for
a sentence of length n, so adding these transitions
cannot increase the complexity of a transition-based
parser. In the particular case of the arc-eager parser,
using projective buffer transitions reduces the aver-
age number of transitions needed to obtain a given
dependency forest, as some nodes can be dispatched
by a single transition rather than being shifted and
later popped from the stack. In practice, we ob-
served that the training and parsing times of the arc-
eager parser with projective buffer transitions were
slightly faster than without them on the Arabic, Chi-
nese, Swedish and Turkish treebanks, and slightly
slower than without them on the other four tree-
banks, so adding these transitions does not seem to

noticeably degrade (or improve) practical efficiency.

4 Non-projective buffer transitions

We now present a second set of transitions that still
follow the idea of early processing of some depen-
dency arcs, as in Section 3; but which are able to
create arcs skipping over a buffer node, so that they
can create some non-projective arcs. For this reason,
we call them non-projective buffer transitions.

4.1 The transitions

The two non-projective buffer transitions are defined
as follows:

• LEFT-NONPROJ-BUFFER-ARCl :
(σ|i, j|k|β,A) ⇒ (σ, j|k|β,A ∪ {(k, l, i)}).
Preconditions: i 6= 0 and 6 ∃m, l′ | (m, l′, i) ∈
A (single-head)

• RIGHT-NONPROJ-BUFFER-ARCl :
(σ|i, j|k|β,A)⇒ (σ|i, j|β,A ∪ {(i, l, k)}).

The LEFT-NONPROJ-BUFFER-ARC transition
creates a leftward arc from the second buffer node
to the node on top of the stack, and then pops the
stack. It can only be executed if the node on top of
the stack does not already have a head. The RIGHT-
NONPROJ-BUFFER-ARC transition creates an arc
from the top of the stack to the second node in the
buffer, and then removes the latter from the buffer.
Note that these transitions are analogous to projec-
tive buffer transitions, and they use the second node
in the buffer in the same way, but they create arcs
involving the node on top of the stack rather than
the first buffer node. This change makes the pre-
condition that checks for a head necessary for the
transition LEFT-NONPROJ-BUFFER-ARC to respect
the single-head constraint, since many stack-based
parsers can generate configurations where the node
on top of the stack has a head.

We call these transitions non-projective buffer
transitions because, as they act on non-contiguous
nodes in the stack and buffer, they allow the creation
of a limited set of non-projective dependency arcs.
This means that, when added to a projective parser,
they will increase its coverage.5 On the other hand,

5They may also increase the coverage of parsers allowing
restricted forms of non-projectivity, but that depends on the par-
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NE NE+LNBA NE+RNBA
Language LAS UAS LAS UAS LAS UAS
Arabic 66.43 77.19 67.13 77.90 67.21 77.92
Chinese 86.46 90.18 87.71 91.39 86.98 90.76
Czech 77.24 83.40 78.88 84.72 78.12 83.78
Danish 84.91 89.80 85.17 90.10 84.25 88.92
German 86.18 88.60 86.96 88.98 85.56 88.30
Portug. 86.60 90.20 86.78 90.34 86.07 89.92
Swedish 83.33 88.83 83.55 89.30 83.17 88.59
Turkish 63.77 74.35 63.04 73.99 65.01 75.70

Table 6: Parsing accuracy (LAS and UAS, excluding punctuation) of Nivre’s arc-eager parser without modifica-
tion (NE), with the LEFT-NONPROJ-BUFFER-ARC transition added (NE+LNBA) and with the RIGHT-NONPROJ-
BUFFER-ARC transition added (NE+RNBA). Best results for each language are shown in boldface.

adding these transitions to a stack-based transition
system does not affect soundness under the same
conditions and for the same reasons explained for
projective buffer transitions in Section 3.1.

Note that the fact that non-projective buffer tran-
sitions are able to create non-projective dependency
arcs does not mean that all the arcs that they build
are non-projective, since an arc on non-contiguous
nodes in the stack and buffer may or may not cross
other arcs. This means that non-projective buffer
transitions serve a dual purpose: not only they
increase coverage, but they also can create some
“easy” dependency links in advance of standard
transitions, just like projective buffer transitions.

Contrary to projective buffer transitions, we do
not impose any arc length restrictions on non-
projective buffer transitions (either as a hard con-
straint in the transitions themselves or as a policy in
the training oracle), since we would like the increase
in coverage to be as large as possible. We wish to
allow the parsers to create non-projective arcs in a
straightforward way and without compromising effi-
ciency. Therefore, to train the parser with these tran-
sitions, we use an oracle that employs them when-
ever possible, and delegates to the original parser’s
oracle otherwise.

4.2 Experiments

We evaluate the impact of non-projective buffer tran-
sitions on parsing accuracy by using the same base-

ticular subset of non-projective structures captured by each such
parser.

line parser, datasets and experimental settings as for
projective buffer transitions in Section 3.2. As can
be seen in Table 6, adding a non-projective buffer
transition to the arc-eager parser improves its per-
formance on all eight datasets. The improvements in
LAS are statistically significant at the .01 level (Dan
Bikel’s comparator) for Chinese, Czech and Turk-
ish. Note that the Chinese treebank is fully projec-
tive, this means that non-projective buffer transitions
are also beneficial when creating projective arcs.

While with projective buffer transitions we ob-
served that each of them was beneficial for about
half of the treebanks, and we related this to the
amount of leftward and rightward links of length 1 in
each; in the case of non-projective buffer transitions
we do not observe this tendency. In this case, LEFT-
NONPROJ-BUFFER-ARC works better than RIGHT-
NONPROJ-BUFFER-ARC in all datasets except for
Turkish and Arabic.

As with the projective transitions, we gathered
data about the individual precision of each of the
transitions. The results were similar to those for
the projective transitions, and show that adding a
non-projective buffer transition improves the preci-
sion of the standard transitions. We also experimen-
tally checked that adding both non-projective buffer
transitions at the same time (NE+LNBA+RNBA)
achieved worse performance than adding only the
most suitable transition for each dataset.

Table 7 compares the performance of the arc-
eager parser with the best non-projective buffer tran-
sition for each dataset with the results obtained by
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NE+LNBA/RNBA NE+PP (CoNLL X)

Language LAS UAS LAS UAS
Arabic 67.21 77.92 66.71 77.52
Chinese 87.71 91.39 86.92 90.54
Czech 78.88 84.72 78.42 84.80
Danish 85.09 89.98 84.77 89.80
German 86.96 88.98 85.82 88.76
Portug. 86.78 90.34 87.60 91.22
Swedish 83.55 89.30 84.58 89.50
Turkish 65.01 75.70 65.68 75.82

Table 7: Comparison of the parsing accuracy (LAS
and UAS, excluding punctuation) of Nivre’s arc-
eager parser with non-projective buffer transitions
(NE+LNBA/RNBA) and the parser with the pseudo-
projective transformation (Nivre et al., 2006).

System PP PR NP NR
NE 80.40 80.76 - -
NE+LNBA/RNBA 80.96 81.33 58.87 15.66
NE+PP (CoNLL-X) 80.71 81.00 50.72 29.57

Table 8: Comparison of the precision and recall for pro-
jective (PP, PR) and non-projective (NP, NR) arcs, av-
eraged over all datasets, obtained by Nivre’s arc-eager
parser with and without non-projective buffer transitions
(NE+LNBA/RNBA, NE) and the parser with the pseudo-
projective transformation (Nivre et al., 2006).

the parser with the pseudo-projective transformation
by Nivre et al. (2006) in the CoNLL-X shared task.
Note that, like the one in Table 4, this should not
be interpreted as a homogeneous comparison. We
can see that the algorithm with non-projective buffer
transitions obtains better LAS in five out of the eight
treebanks. Precision and recall data on projective
and non-projective arcs (Table 8) show that, while
our parser does not capture as many non-projective
arcs as the pseudo-projective transformation (unsur-
prisingly, as it can only build non-projective arcs in
one direction: that of the particular non-projective
buffer transition used for each dataset); it does so
with greater precision and is more accurate than that
algorithm in projective arcs.

Like projective buffer transitions, non-projective
transitions do not increase the computational com-
plexity of stack-based parsers. The observed train-
ing and parsing times for the arc-eager parser with
non-projective buffer transitions showed a small

overhead with respect to the original arc-eager
(7.1% average increase in training time, 17.0% in
parsing time). For comparison, running the arc-
eager parser with the pseudo-projective transforma-
tion (Nivre et al., 2006) on the same machine pro-
duced a 23.5% increase in training time and a 87.5%
increase in parsing time.

5 Related work

The approach of adding an extra transition to a
parser to improve its accuracy has been applied in
the past by Choi and Palmer (2011). In that pa-
per, the LEFT-ARC transition from Nivre’s arc-eager
transition system is added to a list-based parser.
However, the goal of that transition is different
from ours (selecting between projective and non-
projective parsing, rather than building some arcs in
advance) and the approach is specific to one algo-
rithm while ours is generic – for example, the LEFT-
ARC transition cannot be added to the arc-standard
and arc-eager parsers, or to extensions of those like
the ones by Attardi (2006) or Nivre (2009), because
these already have it.

The idea of creating dependency arcs of length 1
in advance to help the classifier has been used by
Cheng et al. (2006). However, their system creates
such arcs in a separate preprocessing step rather than
dynamically by adding a transition to the parser, and
our approach obtains better LAS and UAS results on
all the tested datasets.

The projective buffer transitions presented here
bear some resemblance to the easy-first parser by
Goldberg and Elhadad (2010), which allows cre-
ation of dependency arcs between any pair of con-
tiguous nodes and is based on the idea of “easy” de-
pendency links being created first. However, while
the easy-first parser is an entirely new O(n log(n))
algorithm, our approach is a generic extension for
stack-based parsers that does not increase their com-
plexity (so, for example, applying it to the arc-eager
system as in the experiments in this paper yields
O(n) complexity).

Non-projective transitions that create dependency
arcs between non-contiguous nodes have been used
in the transition-based parser by Attardi (2006).
However, the transitions in that parser do not use
the second buffer node, since they are not intended
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to create some arcs in advance. The non-projective
buffer transitions presented in this paper can also be
added to Attardi’s parser.

6 Discussion

We have presented a set of two transitions, called
projective buffer transitions, and showed that adding
one of them to Nivre’s arc-eager parser improves its
accuracy in seven out of eight tested datasets from
the CoNLL-X shared task. Furthermore, adding one
of a set of non-projective buffer transitions achieves
accuracy improvements in all of the eight datasets.
The obtained improvements are statistically signif-
icant for several of the treebanks, and the parser
with projective buffer transitions surpassed the best
published single-parser LAS results on two of them.
This comes at no cost either on computational com-
plexity or (in the case of projective transitions) on
empirical training and parsing times with respect to
the original parser.

While we have chosen Nivre’s well-known arc-
eager parser as our baseline, we have shown that
these transitions can be added to any stack-based de-
pendency parser, and we are not aware of any spe-
cific property of arc-eager that would make them
work better in practice on this parser than on others.
Therefore, future work will include an evaluation of
the impact of buffer transitions on more transition-
based parsers. Other research directions involve in-
vestigating the set of non-projective arcs allowed
by non-projective buffer transitions, defining dif-
ferent variants of buffer transitions (such as non-
projective buffer transitions that work with nodes lo-
cated deeper in the buffer) or using projective and
non-projective buffer transitions at the same time.
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Abstract

State-of-the-art graph-based parsers use fea-
tures over higher-order dependencies that rely
on decoding algorithms that are slow and
difficult to generalize. On the other hand,
transition-based dependency parsers can eas-
ily utilize such features without increasing the
linear complexity of the shift-reduce system
beyond a constant. In this paper, we attempt to
address this imbalance for graph-based pars-
ing by generalizing the Eisner (1996) algo-
rithm to handle arbitrary features over higher-
order dependencies. The generalization is at
the cost of asymptotic efficiency. To account
for this, cube pruning for decoding is utilized
(Chiang, 2007). For the first time, label tuple
and structural features such as valencies can
be scored efficiently with third-order features
in a graph-based parser. Our parser achieves
the state-of-art unlabeled accuracy of 93.06%
and labeled accuracy of 91.86% on the stan-
dard test set for English, at a faster speed than
a reimplementation of the third-order model of
Koo et al. (2010).

1 Introduction

The trade-off between rich features and exact de-
coding in dependency parsing has been well docu-
mented (McDonald and Nivre, 2007; Nivre and Mc-
Donald, 2008). Graph-based parsers typically trade-
off rich feature scope for exact (or near exact) de-
coding, whereas transition-based parsers make the
opposite trade-off. Recent research on both parsing
paradigms has attempted to address this.

In the transition-based parsing literature, the fo-
cus has been on increasing the search space of the

system at decoding time, as expanding the feature
scope is often trivial and in most cases only leads to
a constant-time increase in parser complexity. The
most common approach is to use beam search (Duan
et al., 2007; Johansson and Nugues, 2007; Titov and
Henderson, 2007; Zhang and Clark, 2008; Zhang
and Nivre, 2011), but more principled dynamic pro-
gramming solutions have been proposed (Huang and
Sagae, 2010). In all cases inference remains approx-
imate, though a larger search space is explored.

In the graph-based parsing literature, the main
thrust of research has been on extending the Eisner
chart-parsing algorithm (Eisner, 1996) to incorpo-
rate higher-order features (McDonald and Pereira,
2006; Carreras, 2007; Koo and Collins, 2010). A
similar line of research investigated the use of inte-
ger linear programming (ILP) formulations of pars-
ing (Riedel and Clarke, 2006; Martins et al., 2009;
Martins et al., 2010). Both solutions allow for exact
inference with higher-order features, but typically at
a high cost in terms of efficiency. Furthermore, spe-
cialized algorithms are required that deeply exploit
the structural properties of the given model. Upgrad-
ing a parser to score new types of higher-order de-
pendencies thus requires significant changes to the
underlying decoding algorithm. This is in stark con-
trast to transition-based systems, which simply re-
quire the definition of new feature extractors.

In this paper, we abandon exact search in graph-
based parsing in favor of freedom in feature scope.
We propose a parsing algorithm that keeps the back-
bone Eisner chart-parsing algorithm for first-order
parsing unchanged. Incorporating higher-order fea-
tures only involves changing the scoring function of
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potential parses in each chart cell by expanding the
signature of each chart item to include all the non-
local context required to compute features. The core
chart-parsing algorithm remains the same regardless
of which features are incorporated. To control com-
plexity we use cube pruning (Chiang, 2007) with the
beam sizek in each cell. Furthermore, dynamic pro-
gramming in the style of Huang and Sagae (2010)
can be done by mergingk-best items that are equiv-
alent in scoring. Thus, our method is an applica-
tion of integrated decoding with a language model
in MT (Chiang, 2007) to dependency parsing, which
has previously been applied to constituent parsing
(Huang, 2008). However, unlike Huang, we only
have one decoding pass and a single trained model,
while Huang’s constituent parser maintains a sep-
arate generative base model from a following dis-
criminative re-ranking model. We draw connections
to related work in Section 6.

Our chart-based approximate search algorithm al-
lows for features on dependencies of an arbitrary or-
der — as well as over non-local structural proper-
ties of the parse trees — to be scored at will. In
this paper, we use first to third-order features of
greater varieties than Koo and Collins (2010). Ad-
ditionally, we look at higher-order dependency arc-
label features, which is novel to graph-based pars-
ing, though commonly exploited in transition-based
parsing (Zhang and Nivre, 2011). This is because
adding label tuple features would introduce a large
constant factor ofO(|L|3), where|L| is the size of
the label setL, into the complexity for exact third-
order parsing. In our formulation, only the top-
ranked labelled arcs would survive in each cell. As
a result, label features can be scored without combi-
natorial explosion. In addition, we explore the use
of valency features counting how many modifiers a
word can have on its left and right side. In the past,
only re-rankers onk-best lists of parses produced by
a simpler model use such features due to the diffi-
culty of incorporating them into search (Hall, 2007).

The final parser with all these features is both ac-
curate and fast. In standard experiments for English,
the unlabeled attachment score (UAS) is93.06%,
and the labeled attachment score (LAS) is91.86%.
The UAS score is state-of-art. The speed of our
parser is220 tokens per second, which is over4
times faster than an exact third-order parser that at-

Figure 1: Example Sentence.

tains UAS of92.81% and comparable to the state-of-
the-art transition-based system of Zhang and Nivre
(2011) that employs beam search.

2 Graph-based Dependency Parsing

Dependency parsers produce directed relationships
betweenheadwords and their syntacticmodifiers.
Each word modifies exactly one head, but can have
any number of modifiers itself. Theroot of a sen-
tence is a designated special symbol which all words
in the sentence directly or indirectly modify. Thus,
the dependency graph for a sentence is constrained
to be a directed tree. The directed syntactic rela-
tionships, aka dependency arcs or dependencies for
short, can often be labeled to indicate their syntactic
role. Figure 1 gives an example dependency tree.

For a sentencex = x1 . . . xn, dependency pars-
ing is the search for the set of head-modifier depen-
dency arcsy∗ such thaty∗ = argmaxy∈Y(x) f(x, y),
wheref is a scoring function. As mentioned before,
y∗ must represent a directed tree.|Y(x)| is then the
set of valid dependency trees forx and grows ex-
ponentially with respect to its length|x|. We fur-
ther defineL as the set of possible arc labels and use
the notation(i

l

−→ j) ∈ y to indicate that there is a
dependency from head wordxi to modifierxj with
label l in dependency treey.

In practice,f(x, y) is factorized into scoring func-
tions on parts of(x, y). For example, in first-
order dependency parsing (McDonald et al., 2005),
f(x, y) is factored by the individual arcs:

y∗ = argmax
y∈Y(x)

f(x, y) = argmax
y∈Y(x)

∑

(i
l

−→j)∈y

f(i
l

−→ j)

The factorization of dependency structures into arcs
enables an efficient dynamic programming algo-
rithm with running timeO(|x|3) (Eisner, 1996), for
the large family of projective dependency structures.

Figure 2 shows the parsing logic for the Eisner
algorithm. It has two types of dynamic program-
ming states:complete itemsand incomplete items.
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Complete items correspond to half-constituents, and
are represented as triangles graphically. Incomplete
items correspond to dependency arcs, and are repre-
sented as trapezoids. The Eisner algorithm is the ba-
sis for the more specialized variants of higher-order
projective dependency parsing.

Second-order sibling models (McDonald and
Pereira, 2006) score adjacent arcs with a common
head. In order to score them efficiently, a new state
corresponding to modifier pairs was introduced to
the chart-parsing algorithm. Due to the careful fac-
torization, the asymptotic complexity of the revised
algorithm remainsO(|x|3). The resulting scoring
function is:

y∗ = argmax
y∈Y(x)

∑

(i
l

−→j,i
l
′

−→k)∈y

f(i
l

−→ j, i
l
′

−→ k)

where (i
l

−→ j, i
l
′

−→ k) ∈ y indicates two adja-
cent head-modifier relationships in dependency tree
y, one fromxi to xj with label l and another from
xi to xk with label l′. Wordsxj andxk are com-
monly referred to assiblings. In order to maintain
cubic parsing complexity, adjacent dependencies are
scored only if the modifiers occur on the same side
in the sentence relative to the head.

Second-order grandchild models (Carreras, 2007)
score adjacent arcs in length-two head-modifier
chains. For example, if wordxi modifies wordxj

with label l, but itself has a dependency to modi-
fier xk with label l′, then we would add a scoring

function f(j
l

−→ i
l
′

−→ k). These are calledgrand-
child models as they can score dependencies be-
tween a word and its modifier’s modifiers, i.e.,xk

is the grandchild ofxj in the above example. The
states in the Eisner algorithm need to be augmented
with the indices to the outermost modifiers in order
to score the outermost grandchildren. The resulting
algorithm becomesO(|x|4).

Finally, third-order models (Koo and Collins,
2010) score arc triples such as three adjacent sib-
ling modifiers, calledtri-siblings, or structures look-
ing at both horizontal contexts and vertical contexts,
e.g., grand-siblingsthat score a word, its modifier
and its adjacent grandchildren. To accommodate
the scorers for these sub-graphs, even more special-
ized dynamic programming states were introduced.
The Koo and Collins (2010) factorization enables

(a) = +

(b) = +

Figure 2: Structures and rules for parsing first-order mod-
els with the (Eisner, 1996) algorithm. This shows only
the construction of right-pointing dependencies and not
the symmetric case of left-pointing dependencies.

the scoring of certain types of third-order dependen-
cies withO(|x|4) decoder run-time complexity.

Each of these higher-order parsing algorithms
makes a clever factorization for the specific model
in consideration to keep complexity as low as possi-
ble. However, this results in a loss of generality.

3 Generalizing Eisner’s Algorithm

In this section, we generalize the Eisner algorithm
without introducing new parsing rules. The general-
ization is straight-forward: expand the dynamic pro-
gramming state to incorporate feature histories. This
is done on top of the two distinct chart items in the
O(|x|3) Eisner chart-parsing algorithm (Figure 2).
The advantage of this approach is that it maintains
the simplicity of the original Eisner algorithm. Un-
fortunately, it can increase the run-time complex-
ity of the algorithm substantially, but we will em-
ploy cube pruning to regain tractability. Because our
higher-order dependency parsing algorithm is based
the Eisner algorithm, it is currently limited to pro-
duce projective trees only.

3.1 Arbitrary n-th-order dependency parsing

We start with the simplest case of sibling models. If
we want to score sibling arcs, at rule(b) in Figure 2,
we can see that the complete item lying between
the head and the modifier (the middle of the three
items) does not contain information about the out-
ermost modifier of the head, which is the previous
dependency constructed and the sibling to the mod-
ifier of the dependency currently being constructed.
This fact suggests that, in order to score modifier
bigrams, the complete item states should be aug-
mented by the outermost modifier. We can aug-
ment the chart items with such information, which
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(a) = +

(b) = +

Figure 3: Structures and rules for parsing models based
on modifier bigrams, with a generalized (Eisner, 1996)
algorithm. Here the dashed arrows indicate additional in-
formation stored in each chart-cell. Specifically the pre-
vious modifier in complete chart items.

is shown in Figure 3. It refines the complete items
by storing the previously constructed dependency to
the outermost modifiers. Note that now the signature
of the complete items is not simply the end-point in-
dexes, but contains the index of the outer modifier.

Using this chart item augmentation it is now pos-
sible to score both first-order arcs as well as second-
order sibling arcs. In fact, by symmetry, the new
dynamic program can also score the leftmost and
rightmost grandchildren of a head-modifier pair, in
rule (a) and rule(b) respectively. By counting the
number of free variables in each parsing rule, we
see that the parsing complexity isO(|x|5), which is
higher than both McDonald and Pereira (2006) and
Carreras (2007). The added complexity comes from
the fact that it is now possible to score a third-order
dependency consisting of the head, the modifier, the
sibling, and the outermost grandchild jointly.

We can go further to augment the complete and
incomplete states with more parsing history. Fig-
ure 4 shows one possible next step of generaliza-
tion. We generalize the states to keep track of the
latest two modifiers of the head. As a result, it be-
comes possible to score tri-siblings involving three
adjacent modifiers and grand-siblings involving two
outermost grandchildren – both of which comprise
the third-order Model 2 of Koo and Collins (2010) –
plus potentially any additional interactions of these
roles. Figure 5 shows another possible generaliza-
tion. We keep modifier chains up to length two in
the complete states. The added history enables the
computation of features for great-grandchildren re-

lationships:(h l

−→ m
l
′

−→ gc
l
′′

−→ ggc).
In general, we can augment the complete and in-

complete states withn variables representing the

(a) = +

(b) = +

Figure 4: Structures and rules for parsing models based
on modifier trigrams in horizontal contexts, with a gener-
alized (Eisner, 1996) algorithm. Here the dashed arrows
indicate the previous two modifiers to the head in each
chart item.

(a) = +

(b) = +

Figure 5: Structures and rules for parsing models based
on modifier trigrams in vertical contexts, with a gener-
alized (Eisner, 1996) algorithm. Here the dashed arrows
indicate the modifier to the head and the modifier’s mod-
ifier, forming a modifier chain of length two.

possible parsing histories and loop over the cross
product of the histories in the innermost loop of Eis-
ner algorithm. The cardinality of the cross product
is |x|n · |x|n. Thus, the complexity of the algo-
rithm augmented byn variables isO(|x|3 · |x|2n) =
O(|x|3+2n), wheren ≥ 0. Note that this complexity
is for unlabeled parsing. A factor of|L| for all or
a subset of the encoded arcs must be multiplied in
when predicting labeled parse structures.

3.2 History-based dependency parsing

The previousn modifiers, either horizontal or ver-
tical, is a potential signature of parsing history. We
can put arbitrary signatures of parsing history into
the chart items so that when we score a new item,
we can draw the distinguishing power of features
based on an arbitrarily deep history. For example,
consider thepositionof a modifier, which is the po-
sition in which it occurs amongst its siblings relative
to the location of the head. We can store the position
of the last modifier into both chart states. In com-
plete states, this signature tells us the position of the
outermost modifier, which is the valency of the head
in the left or right half-constituent.
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In the extreme case, we can use full subtrees as
histories, although the cardinality of the set of his-
tories would quickly become exponential, especially
when one considers label ambiguity. Regardless, the
high complexity associated with this generalization,
even for second or third-order models, requires us to
appeal to approximate search algorithms.

3.3 Advantage of the generalization

The complexity analysis earlier in this section re-
veals the advantage of such a generalization scheme.
It factorizes a dynamic programming state for de-
pendency parsing into two parts: 1) the structural
state, which consists of the boundaries of incom-
plete and complete chart items, and accounts for the
O(|x|3) term in the analysis, and 2) the feature his-
tory, which is a signature of the internal content of a
sub-parse and accounts for theO(|x|2n) term. The
rules of the deductive parsing system – the Eisner al-
gorithm – stay the same as long as the structural rep-
resentation is unchanged. To generalize the parser
to handle richer features, one can simply enrich the
feature signature and the scoring function without
changing the structural state. A natural grouping of
states follows where all sub-parses sharing the same
chart boundaries are grouped together. This group-
ing will enable the cube pruning in Section 4 for ap-
proximate search.

There is another advantage of keeping the Eis-
ner parsing logic unchanged: derivations one-to-one
correspond to dependency parse trees. Augmenting
the complete and incomplete states does not intro-
duce spurious ambiguity. This grouping view is use-
ful for proving this point. Introducing higher order
features in each chart item will cause sub-derivations
to be re-ranked only. As a result, the final Viterbi
parse can differ from the one from the standard Eis-
ners algorithm. But the one-to-one correspondence
still holds.

4 Approximate Search with Cube Pruning

In machine translation decoding, ann-gram lan-
guage model can be incorporated into a translation
model by augmenting the dynamic programming
states for the translation model with the boundary
n − 1 words on the target side. The complexity
for exact search involves a factor of|x|4n−4 in the

hierarchical phrase-based model of Chiang (2007),
where|x| is the input sentence length. The standard
technique is to force a beam sizek on each transla-
tion state so that the possible combinations of lan-
guage model histories is bounded byk2. Further-
more, if the list ofk language model states are sorted
from the lowest cost to the highest cost, we can as-
sume the best combinations will still be among the
combinations of the top items from each list, al-
though the incorporation ofn-gram features breaks
the monotonic property of the underlying semi-ring.

Cube pruning is based on this approximation
(Chiang, 2007). It starts with the combination of the
top items in the lists to be combined. At each step, it
puts the neighbors of the current best combination,
which consists of going one position down in one of
thek-best lists, into a priority queue. The algorithm
stops whenk items have been popped off from the
queue. At the final step, it sorts the popped items
since they can be out-of-order. It reduces the combi-
nation complexity fromO(k2) to O(k · log(k)).

Our history-augmented parsing is analogous to
MT decoding. The possible higher-order histories
can similarly be limited to at mostk in each com-
plete or incomplete item. The core loop of the gener-
alized algorithm which has a complexity ofO(|x|2n)
can similarly be reduced toO(k ·log(k)). Therefore,
the whole parsing algorithm remainsO(|x|3) re-
gardless how deep we look into parsing history. Fig-
ure 6 illustrates the computation. We apply rule(b)
to combine two lists of augmented complete items
and keep the combinations with the highest model
scores. With cube pruning, we only explore cells at
(0, 0), (0, 1), (1, 0), (2, 0), and (1, 1), without the
need to evaluate scoring functions for the remaining
cells in the table. Similar computation happens with
rule (a).

In this example cube pruning does find the high-
est scoring combination, i.e., cell(1, 1). However,
note that the scores are not monotonic in the order in
which we search these cells as non-local features are
used to score the combinations. Thus, cube pruning
may not find the highest scoring combination. This
approximation is at the heart of cube pruning.

4.1 Recombination

The significance of using feature signatures is that
when two combinations result in a state with the
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identical feature signature the one with the highest
score survives. This is the core principle of dynamic
programming. We call itrecombination. It denotes
the same meaning asstate-mergingin Huang and
Sagae (2010) for transition-based parsers.

In cube pruning, with recombination, thek-best
items in each chart cell are locally optimal (in the
pruned search space) over all sub-trees with an
equivalent state for future combinations. The cube
pruning algorithm without recombination degener-
ates to a recursivek-best re-scoring algorithm since
each of thek-best items would be unique by itself
as a sub-tree. It should be noted that by working
on a chart (or a forest, equivalently) the algorithm is
already applying recombination at a coarser level.

In machine translation, due to its large search
space and the abstract nature of ann-gram language
model, it is more common to see many sub-trees
with the same language model feature signature,
making recombination crucial (Chiang, 2007). In
constituent parser reranking (Huang, 2008), recom-
bination is less likely to happen since the rerank-
ing features capture peculiarities of local tree struc-
tures. For dependency parsing, we hypothesize that
the higher-order features are more similar to then-
gram language model features in MT as they tend to
be common features among many sub-trees. But as
the feature set becomes richer, recombination tends
to have a smaller effect. We will discuss the empiri-
cal results on recombination in Section 5.4.

5 Experiments

We define the scoring functionf(x, y) as a linear
classifier between a vector of features and a corre-
sponding weight vector, i.e.,f(x, y) = w · φ(x, y).
The feature functionφ decomposes with respect to
scoring functionf . We train the weights to optimize
the first-best structure. We use the max-loss vari-
ant of the margin infused relaxed algorithm (MIRA)
(Crammer et al., 2006) with a hamming-loss margin
as is common in the dependency parsing literature
(Martins et al., 2009; Martins et al., 2010). MIRA
only requires a first-best decoding algorithm, which
in our case is the approximate chart-based parsing
algorithms defined in Sections 3 and 4. Because our
decoding algorithm is approximate, this may lead to
invalid updates given to the optimizer (Huang and

=

0 : 1 : 2 :

+

0 : f = 2.5 f = 1 f = 2

1 : f = 1.5 f = 3.2 f = 0.5

2 : f = 2.3 f = 3 f = 1.8
...

Figure 6: Combining two lists of complete items with
cube pruning.

Fayong, 2012). However, we found that ignoring or
modifying such updates led to negligible differences
in practice. In all our experiments, we train MIRA
for 8 epochs and use a beam ofk = 5 during de-
coding. Both these values were determined on the
English development data.

5.1 Features

The feature templates we use are drawn from the
past work on graph-based parsing and transition-
based parsing. The base templates for the higher-
order dependencies are close to Koo and Collins
(2010), with the major exception that our features
include label-tuple information. The basic features
include identities, part of speech tags, and labels of
the words in dependency structures. These atomic
features are conjoined with the directions of arcs to
create compositen-gram features. The higher-order
dependency features can be categorized into the fol-
lowing sub-groups, where we useh to indicate the
head,m the modifier,s the modifier’s sibling andgc

a grandchild word in a dependency part.

• (labeled) modifier features:(h
l

−→ m)

• (labeled) sibling features:(h
l

−→ m, h
l
′

−→ s)

• (labeled) outermost grandchild features:

(h
l

−→ m
l
′

−→ gc)

• (labeled) tri-sibling features:

(h
l

−→ m, h
l
′

−→ s, h
l
′′

−→ s2)

• (labeled) grand-sibling features:

(h
l

−→ m
l
′

−→ gc, h
l

−→ m
l
′′

−→ gc2),
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• (labeled) sibling and grandchild conjoined features:

(h
l

−→ m, h
l
′

−→ s, m
l
′′

−→ gc)

The general history features include valencies of
words conjoined with the directions of the dominat-
ing arcs. The positions of the modifiers are also con-
joined with the higher-order dependency features in
the previous list.

The features that are new compared to Koo and
Collins (2010) are the label tuple features, the sib-
ling and grandchild conjoined features, and the va-
lency features. We determine this feature set based
on experiments on the development data for English.
In Section 5.3 we examine the impact of these new
features on parser performance.

5.2 Main Results

Our first set of results are on English dependen-
cies. We used the Penn WSJ Treebank converted to
dependencies with Penn2Malt1 conversion software
specifying Yamada and Matsumoto head rules and
Malt label set. We used the standard splits of this
data: sections 2-21 for training; section 22 for vali-
dation; and section 23 for evaluation. We evaluated
our parsers using standard labeled accuracy scores
(LAS) and unlabeled accuracy scores (UAS) exclud-
ing punctuation. We report run-times in tokens per
second. Part-of-speech tags are predicted as input
using a linear-chain CRF.

Results are given in Table 1. We compare our
method to a state-of-the-art graph-based parser (Koo
and Collins, 2010) as well as a state-of-the-art
transition-based parser that uses a beam (Zhang
and Nivre, 2011) and the dynamic programming
transition-based parser of Huang and Sagae (2010).
Additionally, we compare to our own implementa-
tion of exact first to third-order graph-based parsing
and the transition-based system of Zhang and Nivre
(2011) with varying beam sizes.

There are a number of points to make. First,
approximate decoding with rich features and cube
pruning gives state-of-the-art labeled and unlabeled
parsing accuracies relative to previously reported re-
sults. This includes the best graph-based parsing
results of Koo and Collins (2010), which has near
identical performance, as well as the best beam-
based and dynamic-programming-based transition

1http://w3.msi.vxu.se/∼nivre/research/Penn2Malt.html

Parser UAS LAS Toks/Sec
Huang and Sagae (2010) 92.1- - -
Zhang and Nivre (2011) 92.9- 91.8- -
Zhang and Nivre (reimpl.)(beam=64) 92.73 91.67 760
Zhang and Nivre (reimpl.)(beam=256) 92.75 91.71 190
Koo and Collins (2010) 93.04 - -

1st-order exact (reimpl.) 91.80 90.50 2070
2nd-order exact (reimpl.) 92.40 91.12 1110
3rd-order exact (reimpl.) 92.81 -† 50
this paper 93.06 91.86 220

Table 1: Comparing this work in terms of parsing accu-
racy compared to state-of-the-art baselines on the English
test data. We also report results for a re-implementation
of exact first to third-order graph-based parsing and a re-
implementation of Zhang and Nivre (2011) in order to
compare parser speed.†Our exact third-order implemen-
tation currently only supports unlabeled parsing.

parsers (Huang and Sagae, 2010; Zhang and Nivre,
2011). Second, at a similar toks/sec parser speed,
our method achieves better performance than the
transition-based model of Zhang and Nivre (2011)
with a beam of 256. Finally, compared to an im-
plementation of an exact third-order parser – which
provides us with an apples-to-apples comparison in
terms of features and runtime – approximate decod-
ing with cube pruning is both more accurate and
while being 4-5 times as fast. It is more accurate as
it can easily incorporate more complex features and
it is faster since its asymptotic complexity is lower.
We should point out that our third-order reimple-
mentation is a purely unlabeled parser as we do not
have an implementation of an exact labeled third-
order parser. This likely under estimates its accu-
racy, but also significantly overestimates its speed.

Next, we looked at the impact of our system
on non-English treebanks. Specifically we fo-
cused on two sets of data. The first is the Chi-
nese Treebank converted to dependencies. Here
we use the identical training/validation/evaluation
splits and experimental set-up as Zhang and Nivre
(2011). Additionally, we evaluate our system on
eight other languages from the CoNLL 2006/2007
shared-task (Buchholz and Marsi, 2006; Nivre et
al., 2007). We selected the following four data
sets since they are primarily projective treebanks
(<1.0% non-projective arcs): Bulgarian and Span-
ish from CoNLL 2006 as well as Catalan and Ital-
ian from CoNLL 2007. Currently our method is
restricted to predicting strictly projective trees as it
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uses the Eisner chart parsing algorithm as its back-
bone. We also report results from four additional
CoNLL data sets reported in Rush and Petrov (2012)
in order to directly compare accuracy. These are
German, Japanese, Portuguese and Swedish. For all
data sets we measure UAS and LAS excluding punc-
tuation and use gold tags as input to the parser as is
standard for these data sets.

Results are given in Table 2. Here we compare to
our re-implementations of Zhang and Nivre (2011),
exact first to third-order parsing and Rush and Petrov
(2012) for the data sets in which they reported re-
sults. We again see that approximate decoding with
rich features and cube pruning has higher accu-
racy than transition-based parsing with a large beam.
In particular, for theZH-CTB data set, our system
is currently the best reported result. Furthermore,
our system returns comparable accuracy with exact
third-order parsing, while being significantly faster
and more flexible.

5.3 Ablation studies

In this section, we analyze the contributions from
each of the feature groups. Each row in Table 3 uses
a super set of features than the previous row. All
systems use our proposed generalized higher-order
parser with cube-pruning. I.e., they are all using the
Eisner chart-parsing algorithm with expanded fea-
ture signatures. The only difference between sys-
tems is the set of features used. This allows us to see
the improvement from additional features.

The first row uses no higher-order features. It
is equivalent to the first-order model from Table 1.
The only difference is that it uses thek-best algo-
rithm to find the first-best, so it has additional over-
head compared to the standard Viterbi algorithm.
Each of the following rows gets a higher accuracy
than its previous row by adding more higher or-
der features. Putting in the sibling and grandchild
conjoined features and the valency features yields
a further improvement over the approximation of
Koo and Collins (2010). Thus, the addition of new
higher-order features, including valency, extra third-
order, and label tuple features, results in increased
accuracy. However, this is not without cost as the
run-time in terms of tokens/sec decreases (300 to
220). But this decrease is not asymptotic, as it would
be if one were to exactly search over our final model

Higher-order Features UAS LAS Toks/Sec
none 91.74 90.46 1510
McDonald (2006) features + labels 92.48 91.25 860
Carreras (2007) features + labels 92.85 91.66 540
Koo (2010) features + labels 92.92 91.75 300
all features 93.06 91.86 220

Table 3: Generalized higher-order parsing with cube
pruning using different feature sets.

Beam Recombination UAS LAS Toks/Sec
2 no 92.86 91.63 280
2 yes 92.89 91.65 260
5 no 93.05 91.85 240
5 yes 93.06 91.86 230
10 yes 93.05 91.85 140

Table 4: Showing the effect of better search on accuracy
and speed on the English test data with a fixed model.

with these additional features, e.g., valency would at
least multiply an additionalO(n) factor.

5.4 Impact of Search Errors

Since our decoding algorithm is not exact, it could
return sub-optimal outputs under the current model.
We analyze the effect of search errors on accuracies
in Table 4. We vary the beam size at each cell and
switch the option for signature-based recombination
to make search better or worse to see how much im-
pact it has on the final accuracy.

The results indicate that a relatively small per-cell
beam is good enough. Going from a beam of 2 to
5 increases accuracy notably, but going to a larger
beam size has little effect but at a cost in terms of
efficiency. This suggests that most of the parser am-
biguity is represented in the top-5 feature signatures
at each chart cell. Furthermore, recombination does
help slightly, but more so at smaller beam sizes.

If we keep the beam size constant but enlarge
the feature scope from second-order to third-order,
one would expect more search errors to occur. We
measured this empirically by computing the num-
ber of sentences where the gold tree had a higher
model score than the predicted tree in the English
evaluation data. Indeed, larger feature scopes do
lead to more search errors, but the absolute num-
ber of search errors is usually quite small – there
are only 19 search errors using second-order features
and 32 search errors using third-order plus valency
features out of 2416 English test sentences. Part
of the reason for this is that there are only 12 la-
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Zhang and Nivre Zhang and Nivre Rush 1st-order 2nd-order 3rd-order
(reimpl.) (reimpl.) and exact exact exact

Language (beam=64) (beam=256) Petrov‡ (reimpl.) (reimpl.) (reimpl.) this paper
BG-CONLL 92.22 / 87.87 92.28 / 87.91 91.9- / - 91.98 / 87.13 93.02 / 88.1392.96 / - 93.08 / 88.23
CA-CONLL 93.76 / 87.74 93.83 / 87.85 92.83 / 86.22 93.45 / 87.1994.07 / - 94.00 /88.08
DE-CONLL 89.18 / 86.50 88.94 / 86.58 90.8- / - 89.28 / 86.06 90.87 / 87.7291.29 / - 91.35 / 88.42
ES-CONLL 86.64 / 83.25 86.62 / 83.11 85.35 / 81.53 86.80 / 82.91 87.26 / - 87.48 / 84.05
IT-CONLL 85.51 / 81.12 85.45 / 81.10 84.98 / 80.23 85.46 / 80.66 86.49 / - 86.54 / 82.15
JA-CONLL 92.70 / 91.03 92.76 / 91.09 92.3- / - 93.00 / 91.03 93.20 / 91.2593.36 / - 93.24 /91.45
PT-CONLL 91.32 / 86.98 91.28 / 86.88 91.5- / - 90.36 / 85.77 91.36 / 87.2291.66 / - 91.69 / 87.70
SV-CONLL 90.84 / 85.30 91.00 /85.42 90.1- / - 89.32 / 82.06 90.50 / 83.01 90.32 / - 91.44 / 84.58
ZH-CTB 86.04 / 84.48† 86.14 / 84.57 84.38 / 82.62 86.63 / 84.95 86.77 / - 86.87 / 85.19

AVG 89.80 / 86.03 89.81 / 86.06 89.05 / 84.74 90.14 / 85.89 90.46 / - 90.63 / 86.65

Table 2: UAS/LAS for experiments on non-English treebanks.Numbers in bold are the highest scoring system. Zhang
and Nivre is a reimplementation of Zhang and Nivre (2011) with beams of size 64 and 256. Rush and Petrov are
the UAS results reported in Rush and Petrov (2012). Nth-order exact are implementations of exact 1st-3rd order
dependency parsing.†For reference, Zhang and Nivre (2011) report 86.0/84.4, which is previously the best result
reported on this data set.‡It should be noted that Rush and Petrov (2012) do not jointly optimize labeled and unlabeled
dependency structure, which we found to often help. This, plus extra features, accounts for the differences in UAS.

bels in the Penn2Malt label set, which results in lit-
tle non-structural ambiguity. In contrast, Stanford-
style dependencies contain a much larger set of la-
bels (50) with more fine-grained syntactic distinc-
tions (De Marneffe et al., 2006). Training and test-
ing a model using this dependency representation2

increases the number of search errors of the full
model to 126 out 2416 sentences. But that is still
only 5% of all sentences and significantly smaller
when measured per dependency.

6 Related Work

As mentioned in the introduction, there has been
numerous studies on trying to reconcile the rich-
features versus exact decoding trade-off in depen-
dency parsing. In the transition-based parsing lit-
erature this has included the use of beam search to
increase the search space (Duan et al., 2007; Johans-
son and Nugues, 2007; Titov and Henderson, 2007;
Zhang and Clark, 2008; Zhang and Nivre, 2011).
Huang and Sagae (2010) took a more principled ap-
proach proposing a method combining shift-reduce
parsing with dynamic programming. They showed
how feature signatures can be compiled into dy-

2This model gets 90.4/92.8 LAS/UAS which is comparable
to the UAS of 92.7 reported by Rush and Petrov (2012).

namic programming states and how best-first search
can be used to find the optimal transition sequence.
However, when the feature scope becomes large,
then the state-space and resulting search space can
be either intractable or simply non-practical to ex-
plore. Thus, they resort to an approximate beam
search that still exploring an exponentially-larger
space than greedy or beam-search transition-based
systems. One can view the contribution in this pa-
per as being the complement of the work of Huang
and Sagae (2010) for graph-based systems. Our ap-
proach also uses approximate decoding in order to
exploit arbitrary feature scope, while still exploring
an exponentially-large search space. The primary
difference is how the system is parameterized, over
dependency sub-graphs or transitions. Another criti-
cal difference is that a chart-based algorithm, though
still subject to search errors, is less likely to be hin-
dered by an error made at one word position be-
cause it searches over many parallel alternatives in a
bottom-up search as opposed to a left-to-right pass.

In the graph-based parsing literature, exact pars-
ing algorithms for higher-order features have been
studied extensively (McDonald and Pereira, 2006;
Carreras, 2007; Koo and Collins, 2010), but at a
high computational cost as increasing the order of a
model typically results in an asymptotic increase in

328



running time. ILP formulations of parsing (Riedel
and Clarke, 2006; Martins et al., 2009; Martins et
al., 2010) also allow for exact inference with higher-
order features, but again at a high computational
cost as ILP’s have, in the worst-case, exponential
run-time with respect to the sentence length. Stud-
ies that have abandoned exact inference have fo-
cused on sampling (Nakagawa, 2007), belief prop-
agation (Smith and Eisner, 2008), Lagrangian re-
laxation (Koo et al., 2010; Martins et al., 2011),
and more recently structured prediction cascades
(Weiss and Taskar, 2010; Rush and Petrov, 2012).
However, these approximations themselves are often
computationally expensive, requiring multiple de-
coding/sampling stages in order to produce an out-
put. All the methods above, both exact and approx-
imate, require specialized algorithms for every new
feature that is beyond the scope of the previous fac-
torization. In our method, the same parsing algo-
rithm can be utilized (Eisner’s+ cube pruning) just
with slight different feature signatures.

Our proposed parsing model draws heavily on the
work of Huang (2008). Huang introduced the idea
of “forest rescoring”, which uses cube pruning to
enable the incorporation of non-local features into
a constituency parsing model providing state-of-the
art performance. This paper is the extension of such
ideas to dependency parsing, also giving state-of-
the-art results. An important difference between our
formulation and forest rescoring is that we only have
one decoding pass and a single trained model, while
forest rescoring, as formulated by Huang (2008),
separates a generative base model from a follow-
ing discriminative re-ranking model. Hence, our
formulation is more akin to the one pass decoding
algorithm of Chiang (2007) for integrated decoding
with a language model in machine translation. This
also distinguishes it from previous work on depen-
dency parse re-ranking (Hall, 2007) as we are not
re-ranking/re-scoring the output of a base model but
using a single decoding algorithm and learned model
at training and testing.

This work is largely orthogonal to other attempts
to speed up chart parsing algorithms. This in-
cludes work on coarse-to-fine parsing (Charniak and
Johnson, 2005; Petrov and Klein, 2007; Rush and
Petrov, 2012), chart-cell closing and pruning (Roark
and Hollingshead, 2008; Roark and Hollingshead,

2009), and dynamic beam-width prediction (Boden-
stab et al., 2011). Of particular note, Rush and
Petrov (2012) report run-times far better than our
cube pruning system. At the heart of their system is
a linear time vine-parsing stage that prunes most of
the search space before higher-order parsing. This
effectively makes their final system linear time in
practice as the higher order models have far fewer
parts to consider. One could easily use the same
first-pass pruner in our cube-pruning framework.

In our study we use cube pruning only for de-
coding and rely on inference-based learning algo-
rithms to train model parameters. Gimpel and Smith
(2009) extended cube pruning concepts to partition-
function and marginal calculations, which would en-
able the training of probabilistic graphical models.

Finally, due to its use of the Eisner chart-parsing
algorithm as a backbone, our model is fundamen-
tally limited to predicting projective dependency
structures. Investigating extensions of this work to
the non-projective case is an area of future study.
Work on defining bottom-up chart-parsing algo-
rithms for non-projective dependency trees could
potentially serve as a mechanism to solving this
problem (Gómez-Rodrı́guez et al., 2009; Kuhlmann
and Satta, 2009; Gómez-Rodrı́guez et al., 2010).

7 Conclusion

In this paper we presented a method for general-
ized higher-order dependency parsing. The method
works by augmenting the dynamic programming
signatures of the Eisner chart-parsing algorithm and
then controlling complexity via cube pruning. The
resulting system has the flexibility to incorporate ar-
bitrary feature history while still exploring an ex-
ponential search space efficiently. Empirical results
show that the system gives state-of-the-art accura-
cies across numerous data sets while still maintain-
ing practical parsing speeds – as much as 4-5 times
faster than exact third-order decoding.
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C. Gómez-Rodrı́guez, M. Kuhlmann, G. Satta, and
D. Weir. 2009. Optimal reduction of rule length in lin-
ear context-free rewriting systems. InProc. NAACL.
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Abstract

We consider the problem of inducing
grapheme-to-phoneme mappings for un-
known languages written in a Latin alphabet.
First, we collect a data-set of 107 languages
with known grapheme-phoneme relationships,
along with a short text in each language. We
then cast our task in the framework of super-
vised learning, where each known language
serves as a training example, and predictions
are made on unknown languages. We induce
an undirected graphical model that learns
phonotactic regularities, thus relating textual
patterns to plausible phonemic interpretations
across the entire range of languages. Our
model correctly predicts grapheme-phoneme
pairs with over 88% F1-measure.

1 Introduction

Written language is one of the defining technologies
of human civilization, and has been independently
invented at least three times through the course of
history (Daniels and Bright, 1996). In many ways
written language reflects its more primary spoken
counterpart. Both are subject to some of the same
forces of change, including human migration, cul-
tural influence, and imposition by empire. In other
ways, written language harkens further to the past,
reflecting aspects of languages long since gone from
their spoken forms. In this paper, we argue that this
imperfect relationship between written symbol and
spoken sound can be automatically inferred from
textual patterns. By examining data for over 100
languages, we train a statistical model to automat-

ically relate graphemic patterns in text to phonemic
sequences for never-before-seen languages.

We focus here on the the alphabet, a writing sys-
tem that has come down to us from the Sumerians.
In an idealized alphabetic system, each phoneme
in the language is unambiguously represented by a
single grapheme. In practice of course, this ideal
is never achieved. When existing alphabets are
melded onto new languages, they must be imper-
fectly adapted to a new sound system. In this paper,
we exploit the fact that a single alphabet, that of the
Romans, has been adapted to a very large variety of
languages.

Recent research has demonstrated the effective-
ness of cross-lingual analysis. The joint analysis of
several languages can increase model accuracy, and
enable the development of computational tools for
languages with minimal linguistic resources. Previ-
ous work has focused on settings where just a hand-
ful of languages are available. We treat the task
of grapheme-to-phoneme analysis as a test case for
larger scale multilingual learning, harnessing infor-
mation from dozens of languages.

On a more practical note, accurately relating
graphemes and phonemes to one another is cru-
cial for tasks such as automatic speech recognition
and text-to-speech generation. While pronunciation
dictionaries and transcribed audio are available for
some languages, these resources are entirely lack-
ing for the vast majority of the world’s languages.
Thus, automatic and generic methods for determin-
ing sound-symbol relationships are needed.

Our paper is based on the following line of rea-
soning: that character-level textual patterns mirror
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phonotactic regularities; that phonotactic regulari-
ties are shared across related languages and uni-
versally constrained; and that textual patterns for a
newly observed language may thus reveal its under-
lying phonemics. Our task can be viewed as an easy
case of lost language decipherment – one where the
underlying alphabetic system is widely known.

Nevertheless, the task of grapheme-to-phoneme
prediction is challenging. Characters in the Roman
alphabet can take a wide range of phonemic values
across the world’s languages. For example, depend-
ing on the language, the grapheme “c” can represent
the following phonemes:1

• /k/ (unvoiced velar plosive)

• /c/ (unvoiced palatal plosive)

• /s/ (unvoiced alveolar fricative)

• /|/ (dental click)

• /
>
dZ/ (affricated voiced postalveolar fricative)

• /
>
tS/ (affricated unvoiced postalveolar fricative)

• /
>
ts/ (affricated unvoiced alveolar fricative)

To make matters worse, the same language may
use a single grapheme to ambiguously represent
multiple phonemes. For example, English orthog-
raphy uses “c” to represent both /k/ and /s/. Our
task is thus to select a subset of phonemes for each
language’s graphemes. We cast the subset selec-
tion problem as a set of related binary prediction
problems, one for each possible grapheme-phoneme
pair. Taken together, these predictions yield the
grapheme-phoneme mapping for that language.

We develop a probabilistic undirected graphical
model for this prediction problem, where a large set
of languages serve as training data and a single held-
out language serves as test data. Each training and
test language yields an instance of the graph, bound

1For some brief background on phonetics, see Section 2.
Note that we use the term “phoneme” throughout the paper,
though we also refer to “phonetic” properties. As we are deal-
ing with texts (written in a roughly phonemic writing system),
we have no access to the true contextual phonetic realizations,
and even using IPA symbols to relate symbols across languages
is somewhat theoretically suspect.

together through a shared set of features and param-
eter values to allow cross-lingual learning and gen-
eralization.

In the graph corresponding to a given language,
each node represents a grapheme-phoneme pair
(g : p). The node is labeled with a binary value to
indicate whether grapheme g can represent phoneme
p in the language. In order to allow coupled label-
ings across the various grapheme-phoneme pairs of
the language, we employ a connected graph struc-
ture, with an automatically learned topology shared
across the languages. The node and edge features
are derived from textual co-occurrence statistics for
the graphemes of each language, as well as general
information about the language’s family and region.
Parameters are jointly optimized over the training
languages to maximize the likelihood of the node la-
belings given the observed feature values. See Fig-
ure 1 for a snippet of the model.

We apply our model to a novel data-set consisting
of grapheme-phoneme mappings for 107 languages
with Roman alphabets and short texts. In this set-
ting, we consider each language in turn as the test
language, and train our model on the remaining 106
languages. Our highest performing model achieves
an F1-measure of 88%, yielding perfect predictions
for over 21% of languages. These results compare
quite favorably to several baselines.

Our experiments lead to several conclusions. (i)
Character co-occurence features alone are not suf-
ficient for cross-lingual predictive accuracy in this
task. Instead, we map raw contextual counts to more
linguistically meaningful generalizations to learn ef-
fective cross-lingual patterns. (ii) A connected graph
topology is crucial for learning linguistically co-
herent grapheme-to-phoneme mappings. Without
any edges, our model yields perfect mappings for
only 10% of test languages. By employing struc-
ture learning and including the induced edges, we
more than double the number of test languages with
perfect predictions. (iii) Finally, an analysis of our
grapheme-phoneme predictions shows that they do
not achieve certain global characteristics observed
across true phoneme inventories. In particular, the
level of “feature economy” in our predictions is too
low, suggesting an avenue for future research.
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ph:/ph/ th:/th/

q:/!/

q:/k/
x:/

>
ks/c:/k/

w:/w/

c:/s/

Figure 1: A snippet of our undirected graphical model. The binary-valued nodes represent whether a particular
grapheme-phoneme pair is allowed by the language. Sparse edges are automatically induced to allow joint training
and prediction over related inventory decisions.

2 Background and Related Work

In this section, we provide some background on pho-
netics and phoneme inventories. We also review
prior work on grapheme-to-phoneme prediction and
multilingual modeling.

2.1 Phoneme Inventories

The sounds of the world’s languages are produced
through a wide variety of articulatory mechanisms.
Consonants are sounds produced through a partial
or complete stricture of the vocal tract, and can be
roughly categorized along three independent dimen-
sions: (i) Voicing: whether or not oscillation of the
vocal folds accompanies the sound. For example, /t/
and /d/ differ only in that the latter is voiced. (ii)
Place of Articulation: where in the anatomy of the
vocal tract the stricture is made. For example, /p/ is
a bilabial (the lips touching one another) while /k/
is a velar (tongue touching touching the soft palate).
(iii) Manner of Articulation: the manner in which
the airflow is regulated. For example, /m/ is a nasal
(air flowing through the nostrils), while /p/ is a plo-
sive (obstructed air suddenly released through the
mouth).

In contrast, vowels are voiced sounds produced
with an open vocal tract. They are categorized pri-
marily based on the position of the tongue and lips,
along three dimensions: (i) Roundedness: whether
or not the lips are rounded during production of

the sound; (ii) Height: the vertical position of the
tongue; (iii) Backness: how far forward the tongue
lies.

Linguists have noted several statistical regulari-
ties found in phoneme inventories throughout the
world. Feature economy refers to the idea that lan-
guages tend to minimize the number of differenti-
ating characteristics (e.g. different kinds of voic-
ing, manner, and place) that are used to distinguish
consonant phonemes from one another (Clements,
2003). In other words, once an articulatory feature
is used to mark off one phoneme from another, it will
likely be used again to differentiate other phoneme
pairs in the same language. The principle of Maxi-
mal perceptual contrast refers to the idea that the set
of vowels employed by a language will be located
in phonetic space to maximize their perceptual dis-
tances from one another, thus relieving the percep-
tual burden of the listener (Liljencrants and Lind-
blom, 1972). In an analysis of our results, we will
observe that our model’s predictions do not always
follow these principles.

Finally, researchers have noted that languages
exhibit set patterns in how they sequence their
phonemes (Kenstowicz and Kisseberth, 1979). Cer-
tain sequences are forbidden outright by languages,
while others are avoided or favored. While many
of these patterns are language-specific, others seem
more general, either reflecting anatomical con-
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straints, common language ancestry, or universal as-
pects of the human language system. These phono-
tactic regularities and constraints are mirrored in
graphemic patterns, and as our experiments show,
can be explicitly modeled to achieve high accuracy
in our task.

2.2 Grapheme-to-Phoneme Prediction

Much prior work has gone into developing meth-
ods for accurate grapheme-to-phoneme prediction.
The common assumption underlying this research
has been that some sort of knowledge, usually in the
form of a pronunciation dictionary or phonemically
annotated text, is available for the language at hand.
The focus has been on developing techniques for
dealing with the phonemic ambiguity present both in
annotated and unseen words. For example, Jiampo-
jamarn and Kondrak (Jiampojamarn and Kondrak,
2010) develop a method for aligning pairs of writ-
ten and phonemically transcribed strings; Dwyer
and Kondrak (Dwyer and Kondrak, 2009) develop
a method for accurate letter-to-phoneme conversion
while minimizing the number of training examples;
Reddy and Goldsmith (Reddy and Goldsmith, 2010)
develop an MDL-based approach to finding sub-
word units that align well to phonemes.

A related line of work has grown around the task
of machine transliteration. In this task, the goal is to
automatically transliterate a name in one language
into the written form of another language. Often this
involves some level of phonetic analysis in one or
both languages. Notable recent work in this vein in-
cludes research by Sproat et al (Sproat et al., 2006)
on transliteration between Chinese and English us-
ing comparable corpora, and Ravi and Knight (Ravi
and Knight, 2009) who take a decipherment ap-
proach to this problem.

Our work differs from all previous work on
grapheme-to-phoneme prediction in that (i) we as-
sume no knowledge for our target language beyond
a small unannotated text (and possibly some region
or language family information), and (ii) our goal
is to construct the inventory of mappings between
the language’s letters and its phonemes (the latter
of which we do not know ahead of time). When a
grapheme maps to more than one phoneme, we do
not attempt to disambiguate particular instances of
that grapheme in words.

A final thread of related work is the task of quan-
titatively categorizing writing systems according to
their levels of phonography and logography (Sproat,
2000; Penn and Choma, 2006). As our data-set
consists entirely of Latin-based writing systems, our
work can be viewed as a more fine-grained compu-
tational exploration of the space of writing systems,
with a focus on phonographic systems with the Latin
pedigree.

2.3 Multilingual Analysis

An influential thread of previous multilingual work
starts with the observation that rich linguistic re-
sources exist for some languages but not others.
The idea then is to project linguistic informa-
tion from one language onto others via parallel
data. Yarowsky and his collaborators first devel-
oped this idea and applied it to the problems of
part-of-speech tagging, noun-phrase bracketing, and
morphology induction (Yarowsky and Wicentowski,
2000; Yarowsky et al., 2000; Yarowsky and Ngai,
2001), and other researchers have applied the idea
to syntactic and semantic analysis (Hwa et al., 2005;
Padó and Lapata, 2006) In these cases, the existence
of a bilingual parallel text along with highly accurate
predictions for one of the languages was assumed.

Another line of work assumes the existence of
bilingual parallel texts without the use of any super-
vision (Dagan et al., 1991; Resnik and Yarowsky,
1997). This idea has been developed and applied to
a wide variety tasks, including morphological anal-
ysis (Snyder and Barzilay, 2008a; Snyder and Barzi-
lay, 2008b), part-of-speech induction (Snyder et al.,
2008; Snyder et al., 2009a; Naseem et al., 2009), and
grammar induction (Snyder et al., 2009b; Blunsom
et al., 2009; Burkett et al., 2010). An even more re-
cent line of work does away with the assumption of
parallel texts and performs joint unsupervised induc-
tion for various languages through the use of cou-
pled priors in the context of grammar induction (Co-
hen and Smith, 2009; Berg-Kirkpatrick and Klein,
2010).

In contrast to these previous approaches, the
method we propose does not assume the existence
of any parallel text, but instead assumes that labeled
data exists for a wide variety of languages. In this re-
gard, our work most closely resembles recent work
which trains a universal morphological analyzer us-
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phonemes #lang ent
a /a/ /5/ /A/ /@/ /2/ 106 1.25
c /c/ /

>
dZ/ /k/ /s/ /

>
ts/ /

>
tS/ /|/ 62 2.33

ch /k/ /
>
tS/ /x/ /S/ 39 1.35

e /e/ /i/ /æ/ /@/ /E/ 106 1.82
h /-/ /h/ /x/ /ø/ /H/ 85 1.24
i /i/ /j/ /I/ 106 0.92
j /

>
dZ/ /h/ /j/ /

>
tS/ /x/ /é/ /Z/ 79 2.05

o /o/ /u/ /6/ /0/ 103 1.47
ph /f/ /ph/ 15 0.64
q /k/ /q/ /!/ 32 1.04
r /r/ /ó/ /R/ /ö/ /K/ 95 1.50
th /th/ /T/ 15 0.64
u /u/ /w/ /y/ /1/ /U/ /Y/ 104 0.96
v /b/ /f/ /v/ /w/ /B/ 70 1.18
w /u/ /v/ /w/ 74 0.89
x /

>
ks/ /x/ /{/ /S/ 44 1.31

z /
>
dz/ /s/ /

>
ts/ /z/ /T/ 72 0.93

Table 1: Ambiguous graphemes and the set of phonemes
that they may represent among our set of 107 languages.

ing a structured nearest neighbor approach for 8 lan-
guages (Kim et al., 2011). Our work extends this
idea to a new task and also considers a much larger
set of languages. As our results will indicate, we
found that a nearest neighbor approach was not as
effective as our proposed model-based approach.

3 Data and Features

In this section we discuss the data and features used
in our experiments.

3.1 Data

The data for our experiments comes from three
sources: (i) grapheme-phoneme mappings from an
online encyclopedia, (ii) translations of the Univer-
sal Declaration of Human Rights (UDHR)2, and (iii)
entries from the World Atlas of Language Structures
(WALS) (Haspelmath and Bibiko, 2005).

To start, we downloaded and transcribed im-
age files containing grapheme-phoneme mappings
for several hundred languages from an online en-

2http://www.ohchr.org/en/udhr/pages/introduction.aspx

cyclopedia of writing systems3. We then cross-
referenced the languages with the World Atlas
of Language Structures (WALS) database (Haspel-
math and Bibiko, 2005) as well as the translations
available for the Universal Declaration of Human
Rights (UDHR). Our final set of 107 languages in-
cludes those which appeared consistently in all three
sources and that employ a Latin alphabet. See Fig-
ure 2 for a world map annotated with the locations
listed in the WALS database for these languages, as
well as their language families. As seen from the fig-
ure, these languages cover a wide array of language
families and regions.

We then analyzed the phoneme inventories for the
107 languages. We decided to focus our attention
on graphemes which are widely used across these
languages with a diverse set of phonemic values.
We measured the ambiguity of each grapheme by
calculating the entropy of its phoneme sets across
the languages, and found that 17 graphemes had en-
tropy > 0.5 and appeared in at least 15 languages.
Table 1 lists these graphemes, the set of phonemes
that they can represent, the number of languages in
our data-set which employ them, and the entropy
of their phoneme-sets across these languages. The
data, along with the feature vectors discussed below,
are published as part of this paper.

3.2 Features
The key intuition underlying this work is that
graphemic patterns in text can reveal the phonemes
which they represent. A crucial step in operational-
izing this intuition lies in defining input features that
have cross-lingual predictive value. We divide our
feature set into three categories.

Text Context Features: These features represent
the textual environment of each grapheme in a lan-
guage. For each grapheme g, we consider counts of
graphemes to the immediate left and right of g in the
UDHR text. We define five feature templates, in-
cluding counts of (1) single graphemes to the left of
g, (2) single graphemes to the right of g, (3) pairs of
graphemes to the left of g, (4) pairs of graphemes to
the right of g, and (5) pairs of graphemes surround-
ing g. As our experiments below show, this set of
features on its own performs poorly. It seems that

3http://www.omniglot.com/writing/langalph.htm#latin
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Figure 2: Map and language families of languages in our data-set

these features are too language specific and not ab-
stract enough to yield effective cross-lingual gener-
alization. Our next set of features was designed to
alleviate this problem.

Phonemic Context Features: A perfect feature-
set would depend on the entire set of grapheme-
to-phoneme predictions for a language. In other
words, we would ideally map all the graphemes in
our text to phonemes, and then consider the plau-
sibility of the resulting phoneme sequences. In
practice, of course, this is impossible, as the set
of possible grapheme-to-phoneme mappings is ex-
ponentially large. As an imperfect proxy for this
idea, we made the following observation: for most
Latin graphemes, the most common phonemic value
across languages is the identical IPA symbol of that
grapheme (e.g. the most common phoneme for g is
/g/, the most common phoneme for t is /t/, etc). Us-
ing this observation, we again consider all contexts
in which a grapheme appears, but this time map the
surrounding graphemes to their IPA phoneme equiv-
alents. We then consider various linguistic prop-
erties of these surrounding “phonemes” – whether
they are vowels or consonants, whether they are
voiced or not, their manner and places of articulation
– and create phonetic context features. The process

is illustrated in Figure 3. The intuition here is that
these features can (noisily) capture the phonotactic
context of a grapheme, allowing our model to learn
general phonotactic constraints. As our experiments
below demonstrate, these features proved to be quite
powerful.

Language Family Features: Finally, we consider
features drawn from the WALS database which
capture general information about the language –
specifically, its region (e.g. Europe), its small lan-
guage family (e.g. Germanic), and its large language
family (e.g. Indo-European). These features al-
low our model to capture family and region specific
phonetic biases. For example, African languages
are more likely to use c and q to represents clicks
than are European languages. As we mention be-
low, we also consider conjunctions of all features.
Thus, a language family feature can combine with
a phonetic context feature to represent a family spe-
cific phonotactic constraint. Interestingly, our exper-
iments below show that these features are not needed
for highly accurate prediction.

3.3 Feature Discretization and Filtering

It is well known that many learning techniques per-
form best when continuous features are binned and
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Raw Context Features 
 

L1:k =15 
L1:b=3 
L1:g=7 

 

 
Noisy IPA Conversion 

 
   L1:/k/ =15 

 L1:/b/=3 
 L1:/g/=7 

 
 

 
 
 
 

Phonetic Context Features 
 

L1:velar=22 
L1:bilabial=3 
L1:voiced=10 

L1:unvoiced=15 
L1:consonant=25 

 
 
 

Figure 3: Generating phonetic context features. First, character context features are extracted for each grapheme.
The features drawn here give the counts of the character to the immediate left of the grapheme. Next, the contextual
characters are noisily converted to phones using their IPA notation. Finally, phonetic context features are extracted. In
this case, phones /k/ and /g/ combine to give a “velar” count of 22, while /g/ and /b/ combine to give a “voiced” count
of 10.

converted to binary values (Dougherty et al., 1995).
As a preprocessing step, we therefore discretize and
filter the count-based features outlined above. We
adopt the technique of Recursive Minimal Entropy
Partitioning (Fayyad and Irani, 1993). This tech-
nique recursively partitions feature values so as to
minimize the conditional entropy of the labels. Par-
titioning stops when the gain in label entropy falls
below the number of additional bits in overhead
needed to describe the new feature split. This leads
to a (local) minimum description length discretiza-
tion.

We noticed that most of our raw features (espe-
cially the text features) could not achieve even a sin-
gle split point without increasing description length,
as they were not well correlated with the labels. We
decided to use this heuristic as a feature selection
technique, discarding such features. After this dis-
cretization and filtering, we took the resulting binary
features and added their pairwise conjunctions to the
set. This process was conducted separately for each
leave-one-out scenario, without observation of the
test language labels. Table 2 shows the total number
of features before the discretization/filtering as well
as the typical numbers of features obtained after fil-
tering (the exact numbers depend on the training/test
split).

4 Model

Using the features described above, we develop an
undirected graphical model approach to our predic-

Raw Filtered
# Text Features 28,474 1,848
# Phonemic Features 28,948 7,799
# Family Features 66 32
Total 57,488 9,679

Table 2: Number of features in each category before
and after discretization/filtering. Note that the pair-wise
conjunction features are not included in these counts.

tion task. Corresponding to each training language is
an instance of our undirected graph, labeled with its
true grapheme-phoneme mapping. We learn weights
over our features which optimally relate the input
features of the training languages to their observed
labels. At test-time, the learned weights are used to
predict the labeling of the held-out test language.

More formally, we assume a set of graph nodes
1, ...,m with edges between some pairs of nodes
(i, j). Each node corresponds to a grapheme-
phoneme pair (g : p) and can be labeled with a bi-
nary value. For each training language ℓ, we observe
a text x(ℓ) and a binary labeling of the graph nodes
y(ℓ). For each node i, we also obtain a feature vector
fi(x

(ℓ)), by examining the language’s text and ex-
tracting textual and noisy phonetic patterns (as de-
tailed in the previous section). We obtain similar
feature vectors for edges (i, j): gjk(x

(ℓ)). We then
parameterize the probability of each labeling using
a log-linear form over node and edge factors:4

4The delta function δ(p) evaluates to 1 when predicate p is
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log P
(
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)
=

∑
i

λi ·
[
fi(x

(ℓ)) δ(y
(ℓ)
i = 1)

]
+

∑
j,k

λjk1 ·
[
gjk(x

(ℓ)) δ(y
(ℓ)
j = 1 ∧ y

(ℓ)
k = 1)

]
+

∑
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λjk2 ·
[
gjk(x

(ℓ)) δ(y
(ℓ)
j = 1 ∧ y

(ℓ)
k = 0)

]
+

∑
j,k

λjk3 ·
[
gjk(x

(ℓ)) δ(y
(ℓ)
j = 0 ∧ y

(ℓ)
k = 1)

]
− log Z(x(ℓ), λ)

The first term sums over nodes i in the graph. For
each i, we extract a feature vector fi(x

(ℓ)). If the
label of node i is 1, we take the dot product of the
feature vector and corresponding parameters, other-
wise the term is zeroed out. Likewise for the graph
edges j, k: we extract a feature vector, and depend-
ing on the labels of the two vertices yj and yk, take
a dot product with the relevant parameters. The final
term is a normalization constant to ensure that the
probabilities sum to one over all possible labelings
of the graph.

Before learning our parameters, we first automat-
ically induce the set of edges in our graph, using
the PC graph structure learning algorithm (Spirtes
et al., 2000). This procedure starts with a fully con-
nected undirected graph structure, and iteratively re-
moves edges between nodes that are conditionally
independent given other neighboring nodes in the
graph according to a statistical independence test
over all training languages. In our graphs we have
75 nodes, and thus 2,775 potential edges. Run-
ning the structure learning algorithm on our data
yields sparse graphs, typically consisting of about
50 edges. In each leave-one-out scenario, a single
structure is learned for all languages.

Once the graph structure has been induced, we
learn parameter values by maximizing the L2-
penalized conditional log-likelihood over all train-
ing languages:5

L(λ) =
∑

ℓ

log P
(
y(ℓ)|x(ℓ)

)
− C||λ||2

true, and to 0 when p is false.
5In our experiments, we used an L2 penalty weight of .5

for node features and .1 for edge features. Similar results are
observed for a wide range of values.

The gradient takes the standard form of a difference
between expected and observed feature counts (Laf-
ferty et al., 2001). Expected counts, as well as
predicted assignments at test-time, are computed
using loopy belief propagation (Murphy et al.,
1999). Numerical optimization is performed using
L-BFGS (Liu and Nocedal, 1989).

5 Experiments

In this section, we describe the set of experiments
performed to evaluate the performance of our model.
Besides our primary undirected graphical model, we
also consider several baselines and variants, in or-
der to assess the contribution of our model’s graph
structure as well as the features used. In all cases,
we perform leave-one-out cross-validation over the
107 languages in our data-set.

5.1 Baselines

Our baselines include:

1. A majority baseline, where the most common
binary value is chosen for each grapheme-
phoneme pair,

2. two linear SVM’s, one trained using the dis-
cretized and filtered features described in Sec-
tion 3.2, and the other using the raw continuous
features,

3. a Nearest Neighbor classifier, which chooses
the closest training language for each
grapheme-phoneme pair in the discretized
feature space, and predicts its label, and

4. a variant of our model with no edges between
nodes (essentially reducing to a set of indepen-
dent log-linear classifiers).

5.2 Evaluation

We report our results using three evaluation metrics
of increasing coarseness.

1. Phoneme-level: For individual grapheme-
phoneme pairs (e.g. a:/5/, a:/2/, c:/k/, c:/tS/)
our task consists of a set of binary predic-
tions, and can thus be evaluated in terms of
precision, recall, and F1-measure. We report
micro-averages of these quantities across all
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Phoneme Grapheme Language
Precision Recall F1 Accuracy Accuracy

MAJORITY 80.47 57.47 67.06 55.54 2.8
SVM CONTINUOUS 79.87 64.48 79.87 59.07 3.74
SVM DISCRETE 90.55 78.27 83.97 70.78 8.41
NEAREST NEIGHBOR 85.35 79.43 82.28 67.97 2.8
MODEL: NO EDGES 89.35 82.05 85.54 73.96 10.28
FULL MODEL 91.06 83.98 87.37 78.58 21.5
MODEL: NO FAMILY 92.43 84.67 88.38 80.04 19.63
MODEL: NO TEXT 89.58 81.43 85.31 75.86 15.89
MODEL: NO PHONETIC 86.52 74.19 79.88 69.6 9.35

Table 3: The performance of baselines and variants of our model, evaluated at the phoneme-level (binary predictions),
whole-grapheme accuracy, and whole-language accuracy.

grapheme-phoneme pairs in all leave-one-out
test languages.

2. Grapheme-level: We also report grapheme-
level accuracy. For this metric, we con-
sider each grapheme g and examine its pre-
dicted labels over all its possible phonemes:
(g : p1), (g : p2), ..., (g : pk). If all k binary
predictions are correct, then the grapheme’s
phoneme-set has been correctly predicted. We
report the percentage of all graphemes with
such correct predictions (micro-averaged over
all graphemes in all test language scenarios).

3. Language-level: Finally, we assess language-
wide performance. For this metric, we re-
port the percentage of test languages for which
our model achieves perfect predictions on all
grapheme-phoneme pairs, yielding a perfect
mapping.

5.3 Results
The results for the baselines and our model are
shown in Table 3. The majority baseline yields 67%
F1-measure on the phoneme-level binary prediction
task, with 56% grapheme accuracy, and about 3%
language accuracy.

Using undiscretized raw count features, the SVM
improves phoneme-level performance to about 80%
F1, but fails to provide any improvement on
grapheme or language performance. In contrast, the
SVM using discretized and filtered features achieves
performance gains in all three categories, achieving
71% grapheme accuracy and 8% language accuracy.

The nearest neighbor baseline achieves performance
somewhere in between the two SVM variants.

The unconnected version of our model achieves
similar, though slightly improved performance over
the discretized SVM. Adding the automatically in-
duced edges into our model leads to significant
gains across all three categories. Phoneme-level
F1 reaches 87%, grapheme accuracy hits 79%, and
language accuracy more than doubles, achieving
22%. It is perhaps not surprising that the biggest
relative gains are seen at the language level: by
jointly learning and predicting an entire language’s
grapheme-phoneme inventory, our model ensures
that language-level coherence is maintained.

Recall that three sets of features are used by our
models. (1) language family and region features,
(2) textual context features, and (3) phonetic context
features. We now assess the relative merits of each
set by considering our model’s performance when
the set has been removed. Table 3 shows several
striking results from this experiment. First, it ap-
pears that dropping the region and language family
features actually improves performance. This result
is somewhat surprising, as we expected these fea-
tures to be quite informative. However, it appears
that whatever information they convey is redundant
when considering the text-based feature sets. We
next observe that dropping the textual context fea-
tures leads to a small drop in performance. Finally,
we see that dropping the phonetic context features
seriously degrades our model’s accuracy. Achieving
robust cross-linguistic generalization apparently re-
quires a level of feature abstraction not achieved by

340



character-level context features alone.

6 Global Inventory Analysis

In the previous section we saw that our model
achieves relatively high performance in predicting
grapheme-phoneme relationships for never-before-
seen languages. In this section we analyze the pre-
dicted phoneme inventories and ask whether they
display the statistical properties observed in the
gold-standard mappings.

As outlined in Section 2, consonant phonemes can
be represented by the three articulatory features of
voicing, manner, and place. The principle of fea-
ture economy states that phoneme inventories will
be organized to minimize the number of distinct ar-
ticulatory features used in the language, while max-
imizing the number of resulting phonemes. This
principle has several implications. First, we can
measure the economy index of a consonant system
by computing the ratio of the number of conso-
nantal phonemes to the number of articulatory fea-
tures used in their production: #consonants

#features (Clements,
2003). The higher this value, the more economical
the sound system.

Secondly, for each articulatory dimension we can
calculate the empirical distribution over values ob-
served across the consonants of the language. Since
consonants are produced as combinations of the
three articulatory dimensions, the greatest number
of consonants (for a given set of utilized feature
values) will be produced when the distributions are
close to uniform. Thus, we can measure how eco-
nomical each feature dimension is by computing the
entropy of its distribution over consonants. For ex-
ample, in an economical system, we would expect
roughly half the consonants to be voiced, and half to
be unvoiced.

Table 4 shows the results of this analysis. First,
we notice that the average entropy of voiced vs. un-
voiced consonants is nearly identical in both cases,
close to the optimal value. However, when we ex-
amine the dimensions of place and manner, we no-
tice that the entropy induced by our model is not as
high as that of the true consonant inventories, imply-
ing a suboptimal allocation of consonants. In fact,
when we examine the economy index (ratio of con-
sonants to features), we indeed find that – on aver-
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True 0.9739 2.7355 2.4725 1.6536
Predicted 0.9733 2.6715 2.4163 1.6337

Table 4: Measures of feature economy applied to the pre-
dicted and true consonant inventories (averaged over all
107 languages).

age – our model’s predictions are not as economi-
cal as the gold standard. This analysis suggests that
we might obtain a more powerful predictive model
by taking the principle of feature economy into ac-
count.

7 Conclusions

In this paper, we considered a novel problem: that
of automatically relating written symbols to spo-
ken sounds for an unknown language using a known
writing system – the Latin alphabet. We constructed
a data-set consisting of grapheme-phoneme map-
pings and a short text for over 100 languages. This
data allows us to cast our problem in the supervised
learning framework, where each observed language
serves as a training example, and predictions are
made on a new language. Our model automatically
learns how to relate textual patterns of the unknown
language to plausible phonemic interpretations us-
ing induced phonotactic regularities.
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Abstract
Many linguistic and textual processes involve transduc-
tion of strings. We show how to learn a stochastic trans-
ducer from an unorganized collection of strings (rather
than string pairs). The role of the transducer is to orga-
nize the collection. Our generative model explains simi-
larities among the strings by supposing that some strings
in the collection were not generated ab initio, but were in-
stead derived by transduction from other, “similar” strings
in the collection. Our variational EM learning algorithm
alternately reestimates this phylogeny and the transducer
parameters. The final learned transducer can quickly link
any test name into the final phylogeny, thereby locating
variants of the test name. We find that our method can
effectively find name variants in a corpus of web strings
used to refer to persons inWikipedia, improving over stan-
dard untrained distances such as Jaro-Winkler and Leven-
shtein distance.

1 Introduction

Systematic relationships between pairs of strings
are at the core of problems such as transliteration
(Knight and Graehl, 1998), morphology (Dreyer and
Eisner, 2011), cross-document coreference resolu-
tion (Bagga and Baldwin, 1998), canonicalization
(Culotta et al., 2007), and paraphrasing (Barzilay and
Lee, 2003). Stochastic transducers such as proba-
bilistic finite-state transducers are often used to cap-
ture such relationships. They model a conditional
distribution p(y | x), and are ordinarily trained on
input-output pairs of strings (Dreyer et al., 2008).
In this paper, we are interested in learning from

an unorganized collection of strings, some of which
might have been derived from others by transforma-
tive linguistic processes such as abbreviation, mor-
phological derivation, historical sound or spelling
change, loanword formation, translation, transliter-
ation, editing, or transcription error. We assume that
each string was derived from at most one parent, but
may give rise to any number of children.

The difficulty is that most or all of these parent-
child relationships are unobserved. We must recon-
struct this evolutionary phylogeny. At the same time,
we must fit the parameters of a model of the relevant
linguistic process p(y | x), which says what sort of
children y might plausibly be derived from parent x.
Learning this model of p(y | x) helps us organize the
training collection by reconstructing its phylogeny,
and also permits us to generalize to new forms.
We will focus on the problem of name varia-

tion. We observe a collection of person names—full
names, nicknames, abbreviated or misspelled names,
etc. Some of these names can refer to the same per-
son; we hope to detect this. It would be an unlikely
coincidence if two mentions of John Jacob Jingle-
heimer Schmidt referred to different people, since
this is a long and unusual name. Similarly, John Ja-
cob Jingelhimer Smith andDr. J. J. Jingleheimermay
also be related names for this person. That is, these
names may be derived from one another, via unseen
relationships, although we cannot be sure.
Readers may be reminded of unsupervised clus-

tering, in which “suspiciously similar” points can be
explained as having been generated by the same clus-
ter. Since each name is linked to at most one parent,
our setting resembles single-link clustering—with a
learned, asymmetric distance measure p(y | x).

We will propose a generative process that makes
explicit assumptions about how strings are copied
with mutation. It is assumed to have generated all the
names in the collection, in an unknown order. Given
learned parameters, we can ask the model whether a
name Dr. J. J. Jingelheimer in the collection is more
likely to have been generated from scratch, or derived
from some previous name.

1.1 Related Work
Several previous papers have also considered learn-
ing transducers or other models of word pairs when

344



the pairing between inputs and outputs is not given.
Most commonly, one observes parallel or compa-
rable corpora in two languages, and must recon-
struct a matching from one language’s words to the
other’s before training on the resulting pairs (Schafer,
2006b; Klementiev and Roth, 2006; Haghighi et al.,
2008; Snyder et al., 2010; Sajjad et al., 2011).
Hall and Klein (2010) extend this setting to more

than two languages, where the phylogenetic tree is
known. A given lexeme (abstract word) can be re-
alized in each language by at most one word (string
type), derived from the parent language’s realization
of the same lexeme. The system must match words
that share an underlying lexeme (i.e., cognates), cre-
ating a matching of each language’s vocabulary to its
parent language’s vocabulary. A further challenge is
that the parent words are unobserved ancestral forms.
Similarly, Dreyer and Eisner (2011) organize

words into morphological paradigms of a given
structure. Again words with the same underlying lex-
eme (i.e., morphemes) must be identified. A lexeme
can be realized in each grammatical inflection (such
as “first person plural present”) by exactly one word
type, related to other inflected forms of the same lex-
eme, which as above may be unobserved. Their in-
ference setting is closer to ours because the input is
an unorganized collection of words—input words are
not tagged with their grammatical inflections. This
contrasts with the usual multilingual setting where
each word is tagged with its true language.
In one way, our problem differs significantly from

the above problems. We are interested in random
variation that may occur within a language as well
as across languages. A person name may have un-
boundedly many different variants. This is unlike
the above problems, in which a lexeme has at most
K realizations, where K is the (small) number of
languages or inflections.1 We cannot assign the ob-
served strings to positions in an existing structure
that is shared across all lexemes, such as a given phy-
logenetic tree whose K nodes represent languages,
or a given inflectional grid whose K cells represent
grammatical inflections. Rather, we must organize

1In the above problems, one learns a set ofO(K) orO(K2)
specialized transducers that relate Latin to Italian, singular to
plural, etc. We instead use one global mutation model that ap-
plies to all names—but see footnote 14 on incorporating special-
ized transductions (Latin to Italian) within our mutation model.

them into a idiosyncratic phylogenetic tree whose
nodes are the string types or tokens themselves.
Names and words are not the only non-biological

objects that are copied with mutation. Documents,
database records, bibliographic entries, code, and
images can evolve in the same way. Reconstructing
these relationships has been considered by a number
of papers on authorship attribution, near-duplicate
detection, deduplication, record linkage, and plagia-
rism detection. A few such papers reconstruct a phy-
logeny, as in the case of chain letters (Bennett et
al., 2003), malware (Karim et al., 2005), or images
(Dias et al., 2012). In fact, the last of these uses the
same minimum spanning tree method that we apply
in §5.3. However, these papers do not train a similar-
ity measure as we do. To our knowledge, these two
techniques have not been combined outside biology.
In molecular evolutionary analysis, phylogenetic

techniques have often been combined with estima-
tion of some parametric model of mutation (Tamura
et al., 2011). However, names mutate differently
from biological sequences, and our mutation model
for names (§4, §8) reflects that. We also posit a spe-
cific process (§3) that generates the name phylogeny.

2 An Example

A fragment of a phylogeny for person names is
shown in Figure 1. Our procedure learned this auto-
matically from a collection of name tokens, without
observing any input/output pairs. The nodes of the
phylogeny are the observed name types,2 each one
associated with a count of observed tokens.
Each arrow corresponds to a hypothesized mu-

tation. These mutations reflect linguistic processes
such as misspelling, initialism, nicknaming, translit-
eration, etc. As an exception, however, each ar-
row from the distinguished root node ♦ generates
an initial name for a new entity. The descendants of
this initial name are other names that subsequently
evolved for that entity. Thus, the child subtrees of ♦
give a partition of the name types into entities.
Thanks to the phylogeny, the seemingly disparate

names Ghareeb Nawaz and Muinuddin Chishti are
seen to refer to the same entity. They may be traced
back to their common ancestor Khawaja Gharib-

2We cannot currently hypothesize unobserved intermediate
forms, e.g., common ancestors of similar strings. See §6.2.
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Khawaja Gharibnawaz Muinuddin Hasan Chisty

Khwaja Gharib Nawaz

Khwaja Muin al-Din Chishti

Ghareeb Nawaz

Khwaja Moinuddin Chishti

Khwaja gharibnawaz
Muinuddin Chishti

Thomas Ruggles Pynchon, Jr.

Thomas Ruggles Pynchon Jr.

Thomas R. Pynchon, Jr.

Thomas R. Pynchon Jr.

Thomas R. Pynchon

Thomas Pynchon, Jr.

Thomas Pynchon Jr.

Figure 1: A portion of a spanning tree found by our model.

nawaz Muinuddin Hasan Chisty, from which both
were derived via successive mutations.
Not shown in Figure 1 is our learned family p of

conditional probability distributions, which models
the likely mutations in this corpus. Our EM learn-
ing procedure found p jointly with the phylogeny.
Specifically, it alternated between improving p and
improving the distribution over phylogenies. At the
end, we extracted the single best phylogeny.
Together, the learned p and the phylogeny in Fig-

ure 1 form an explanation of the observed collection
of names. What makes it more probable than other
explanations? Informally, two properties:

• Each node in the tree is plausibly derived from
its parent. More precisely, the product of
the edge probabilities under p is comparatively
high. A different p would have reduced the
probability of the events in this phylogeny. A
different phylogeny would have involved a more
improbable collection of events, such as replac-
ing Chishti with Pynchon, or generating many
unrelated copies of Pynchon directly from ♦.

• In the phylogeny, the parent names tend to be
used often enough that it is plausible for variants
of these names to have emerged. Our model
says that new tokens are derived from previ-
ously generated tokens. Thus—other things
equal—Barack Obama is more plausibly a vari-
ant of Barack Obama, Jr. than of Barack
Obama, Sr. (which has fewer tokens).

3 A Generative Model of Tokens

Our model should reflect the reasons that name vari-
ation exists. A named entity has the form y = (e, w)
where w is a string being used to refer to entity e. A

single entity e may be referred to on different occa-
sions by different name strings w. We suppose that
this is the result of copying the entity with occasional
mutation of its name (as in asexual reproduction).
Thus, we assume the following simple generative

process that produces an ordered sequence of tokens
y1, y2, . . ., where yi = (ei, wi).
• After the first k tokens y1, . . . yk have been gen-

erated, the author responsible for generating yk+1

must choose whom to talk about next. She is likely
to think of someone she has heard about often in the
past. So to make this choice, she selects one of the
previous tokens yi uniformly at random, each having
probability 1/(k + α); or else she selects ♦, with
probability α/(k + α).
• If the author selected a previous token yi, then

with probability 1 − µ she copies it faithfully, so
yk+1 = yi. But with probability µ, she instead draws
a mutated token yk+1 = (ek+1, wk+1) from the mu-
tation model p(· | yi). This preserves the entity
(ek+1 = ei with probability 1), but the new name
wk+1 is a stochastic transduction of wi drawn from
p(· | wi).3 For example, in referring to ei, the author
may shorten and respellwi = Khwaja Gharib Nawaz
into wk+1 = Ghareeb Nawaz (Figure 1).
• If the author selected♦, she must choose a fresh

entity yk+1 = (ek+1, wk+1) to talk about. So she
sets ek+1 to a newly created entity, sampling its name
wk+1 from the distribution p(· | ♦). For example,
wk+1 = Thomas Ruggles Pynchon, Jr. (Figure 1).
Nothing prevents wk+1 from being a name that is al-
ready in use for another entity (i.e., wk+1 may equal
wj for some j ≤ k).

3Straightforward extensions are to allow a variable mutation
rate µ(yi) that depends on properties of yi, and to allow wk+1

to depend on known properties of ei. See footnote 14 for further
discussion of enriched tokens.
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3.1 Relationship to other models

If we ignore the name strings, we can see that the
sequence of entities e1, e2, . . . eN is being generated
from a Chinese restaurant process (CRP) with con-
centration parameter α. To the extent that α is low
(so that � is rarely used), a few randomly chosen en-
tities will dominate the corpus.
The CRP is equivalent to sampling e1, e2, . . . IID

from an unknown distribution that was itself drawn
from a Dirichlet process with concentration α. This
is indeed a standard model of a distribution over en-
tities. For example, Hall et al. (2008) use it to model
venues in bibliographic entries.
From this characterization of the CRP, one can see

that any permutation of this entity sequence would
have the same probability. That is, our distribution
over sequences of entities e is exchangeable.
However, our distribution over sequences of

named entities y = (e, w) is non-exchangeable.
It assigns different probabilities to different order-
ings of the same tokens. This is because our model
posits that later authors are influenced by earlier au-
thors, copying entity names from them with muta-
tion. So ordering is important. The mutation process
is not symmetric—for example, Figure 1 reflects a
tendency to shorten rather than lengthen names.
Non-exchangeability is one way that our present

model differs from (parametric) transformationmod-
els (Eisner, 2002) and (non-parametric) transforma-
tion processes (Andrews and Eisner, 2011). These
too are defined using mutation of strings or other
types. From a transformation process, one can draw
a distribution over types, from which the tokens are
then sampled IID. This results in an exchangeable
sequence of tokens, just as in the Dirichlet process.
We avoid transformation models here for three

reasons. (1) Inference is more expensive. (2) A
transformation process seems less realistic as a
model of authorship. It constructs a distribution over
derivational paths, similar to the paths in Figure 1.
It effectively says that each token is generated by re-
capitulating some previously used path from ♦, but
with some chance of deviating at each step. For an
author to generate a name token this way, she would
have to know the whole derivational history of the
previous name she was adapting. Our present model
instead allows an author simply to select a name she

previously saw and copy or mutate its surface form.
(3) One should presumably prefer to explain a novel
name y as a mutation of a frequent name x, other
things equal (§2). But surprisingly, inference under
the transformation process does not prefer this.4
Another view of our present model comes from

the literature on random graphs (e.g., for modeling
social networks or the link structure of the web). In
a preferential attachment model, a graph’s vertices
are added one by one, and each vertex selects some
previous vertices as its neighbors. Our phylogeny
is a preferential attachment tree, a random directed
graph in which each vertex selects a single previous
vertex as its parent. Specifically, it is a random recur-
sive tree (Smythe and Mahmoud, 1995) whose ver-
tices are the tokens.5 To this simple random topol-
ogy we have added a random labeling process with
mutation. The first α vertices are labeled with ♦.

4 A Mutation Model for Strings

Our model in §3 samples the next token y, when it is
not simply a faithful copy, from p(y | x) or p(y | ♦).
The key step there is to sample the name string wy
from p(wy | wx) or p(wy | ♦).

Our model of these distributions could easily in-
corporate detailed linguistic knowledge of the muta-
tion process (see §8). Here we describe the specific
model that we use in our experiments. Like many
such models, it can be regarded as a stochastic finite-
state string-to-string transducer parameterized by θ.

There is much prior work on stochastic models of
edit distance (Ristad andYianilos, 1998; Bilenko and
Mooney, 2003; Oncina and Sebban, 2006; Schafer,
2006a; Bouchard-Côté et al., 2008; Dreyer et al.,
2008, among others). For the present experiments,
we designed a moderately simple one that employs
(1) conditioning on one character of right context,
(2) latent “edit” and “no-edit” regions to capture the
fact that groups of edits are often made in close prox-
imity, and (3) some simple special handling for the
distribution conditioned on the root p(wy | ♦).

We assume a stochastic mutation process which,
when given an input string wx, edits it from left to

4The very fact that x has been frequently observed demon-
strates that it has often chosen to stop mutating. This implies
that it is likely to choose stop again rather than mutate into y.

5This is not the tree shown in Figure 1, whose vertices are
types rather than tokens.
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right into an output string wy. Then p(wy | wx) is
the total probability of all operation sequences onwx
that would produce wy. This total can be computed
in time O(|wx| · |wy|) by dynamic programming.
Our process has four character-level edit opera-

tions: copy, substitute, insert, delete. It also has a
distinguished no-edit operation that behaves exactly
like copy. At each step, the process first randomly
chooses whether to edit or no-edit, conditioned only
on whether the previous operation was an edit. If it
chooses to edit, it chooses a random edit type with
some probability conditioned on the next input char-
acter. In the case of insert or substitute, it then ran-
domly chooses an output character, conditioned on
the type of edit and the next input character.

It is common to mutate a name by editing con-
tiguous substrings (e.g., words). Contiguous regions
of copying versus editing can be modeled by a low
probability of transitioning between no-edit and edit
regions.6 Note that an edit region may include some
copy edits (or substitute edits that replace a charac-
ter with itself) without leaving the edit region. This
is why we distinguish copy from no-edit.
Input and output strings are augmented with a

trailing eos (“end-of-string”) symbol that is seen by
the single-character lookahead. If the next character
is eos, the only available edit is insert. Alternatively,
if the process selects no-edit, then eos is copied to
the output string and the process terminates.
In the case of p(wy | ♦), the input string is empty,

and both input and output are augmented with a trail-
ing eos′ character that behaves like eos. Then wy
is generated by a sequence of insertions followed by
a copy. These are conditioned as usual on the next
character, here eos′, so the model can learn to insert
more or different characters when the input is ♦.
The parameters θ determining the conditional

probabilities of the different operations and charac-
ters are estimated with backoff smoothing.

5 Inference
The input to inference is a collection of named entity
tokens y. Most are untagged tokens of the form y =
(?, w). In a semi-supervised setting, however, some

6This somewhat resembles the traditional affine gap penalty
in computational biology (Gusfield, 1997), which makes dele-
tions or insertions cheaper if they are consecutive. We instead
make consecutive edits cheaper regardless of the edit type.

of the tokens may be tagged tokens of the form y =
(e, w), whose true entity is known. The entity tags
place a constraint on the phylogeny, since each child
subtree of ♦ must correspond to exactly one entity.

5.1 An unrealistically supervised setting
Suppose we were lucky enough to fully observe the
sequence of named entity tokens yi = (ei, wi) pro-
duced by our generative model. That is, suppose all
tokens were tagged and we knew their ordering.
Yet there would still be something to infer: which

tokens were derived from which previous tokens.
This phylogeny is described by a spanning tree over
the tokens. Let us see how to infer it.
For each potential edge x → y between named

entity tokens, define δ(y | x) to be the probability of
choosing x and copying it (possibly with mutation)
to obtain y. So

δ(yj | ♦) = α p(yj | ♦) (1)
δ(yj | yi) = µ p(yj | yi) + (1− µ)1(yj = yi) (2)

except that if i ≥ j or if ei 6= ej , then δ(yj | yi) = 0
(since yj can only be derived from an earlier token
yi with the same entity).

Now the prior probability of generating y1, . . . yN
with a given phylogenetic tree is easily seen to be a
product over all tree edges,

∏
j δ(yj | pa(yj)) where

pa(yj) is the parent of yj . As a result, it is known
that the following are efficient to compute from the
(N + 1)× (N + 1) matrix of δ values (see §5.3):

(a) the max-probability spanning tree

(b) the total probability of all spanning trees

(c) the marginal probability of each edge, under the
posterior distribution on spanning trees

(a) is our single best guess of the phylogeny. We use
this during evaluation. (b) gives the model likeli-
hood, i.e., the total probability of the observed data
y1, . . . yN . To locally maximize the model likeli-
hood, (c) can serve as the E step of our EM algorithm
(§6) for tuning our mutation model. The M step then
retrains the mutation model’s parameters θ on input-
output pairs wi → wj , weighting each pair by its
edge’s posterior marginal probability (c), since that
is the expected count of a wi → wj mutation. This
computation is iterated.
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5.2 The unsupervised setting

Now we turn to a real setting—fully unsupervised
data. Two issues will force us to use an approximate
inference algorithm. First, we have an untagged cor-
pus: a token’s entity tag e is never observed. Second,
the order of the tokens is not observed, so we do not
know which other tokens are candidate parents.
Our first approximation is to consider only phylo-

genies over types rather than tokens.7 The type phy-
logeny in Figure 1 represents a set of possible token
phylogenies. Each node of Figure 1 represents an
untagged name type y = (?, w). By grouping all ny
tokens of this type into a single node, we mean that
the first token of y was derived by mutation from the
parent node, while each later token of y was derived
by copying an (unspecified) earlier token of y.
A token phylogeny cannot be represented in this

way if two or more tokens of y were created by mu-
tations. In that case, their name strings are equal only
by coincidence. They may have different parents
(perhaps of different entities), whereas the y node in
a type phylogeny can have only one parent.
We argue, however, that these unrepresentable to-

ken phylogenies are comparatively unlikely a poste-
riori and can be reasonably ignored during inference.
The first token of y is necessarily amutation, but later
tokens are much more likely to be copies. The prob-
ability of generating a later token y by copying some
previous token is at least

(1− µ)/(N + α),

while the probability of generating it in some other
way is at most

max(α p(y | ♦), µ max
x∈Y

p(y | x))

where Y is the set of observed types. The second
probability is typically much smaller: an author is
unlikely to invent exactly the observed string y, cer-
tainly from ♦ but even by mutating a similar string
x (especially when the mutation rate µ is small).
How do we evaluate a type phylogeny? Con-

sider the probability of generating untagged tokens

7Working over types improves the quality of our second ap-
proximation, and also speeds up the spanning tree algorithms.
§6 explains how to regard this approximation as variational EM.

y1, . . . yN in that order and respecting the phylogeny:(
N∏
k=1

1

k + α

)∏
y∈Y

g(y | pa(y))

ny−1∏
i=1

i (1− µ)


(3)

where g(y | pa(y)) is a factor for generating the first
token of y from its parent pa(y), defined by

g(y | ♦) = α · p(y | ♦) (4)
g(y | x) = µ · (# tokens of x preceding

first token of y) · p(y | x) (5)

But we do not actually know the token order: by
assumption, our input corpus is only an unordered
bag of tokens. So we must treat the hidden order-
ing like any other hidden variable and maximize the
marginal likelihood, which sums (3) over all possi-
ble orderings (permutations). This sum can be re-
garded as the number of permutations N ! (which is
fixed given the corpus) times the expectation of (3)
for a permutation chosen uniformly at random.
This leads to our second approximation. We ap-

proximate this expectation of the product (3) with a
product of expectations of its individual factors.8 To
find the expectation of (5), observe that the expected
number of tokens of x that precede the first token of
y is nx/(ny+1), since each of the nx tokens of x has
a 1/(ny + 1) chance of falling before all ny tokens
of y. It follows that the approximated probability of
generating all tokens in some order, with our given
type parentage, is proportional to∏

y∈Y
δ(y | pa(y)) (6)

where

δ(y | ♦) = α · p(y | ♦) (7)
δ(y | x) = µ · p(y | x) · nx/(ny + 1) (8)

and the constant of proportionality depends on the
corpus.
The above equations are analogous to those in

§5.1. Again, the approximate posterior probability
of a given type parentage tree is edge-factored—it is
the product of individual edge weights defined by δ.
Thus, we are again eligible to use the spanning tree
algorithms in §5.3 below.

8In general this is an overestimate for each phylogeny.
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Notice that the ratio α/µ controls the preference
for an entity to descend from ♦ versus an existing
entity. Thus, by tuning this ratio, we can control
the number of entities inferred by our method, where
each entity corresponds to one of the child subtrees
of ♦.

Also note that nx in the numerator of (8) means
that y’s parent is more likely to be frequent. Also,
ny +1 in the denominator means that a frequent y is
not as likely to have any parent x 6= ♦, because its
first token probably falls early in the sequence where
there are fewer available parents x 6= ♦.

5.3 Spanning tree algorithms
Define a complete directed graphG over the vertices
Y ∪ {♦}. The weight of an edge x → y is defined
by δ(y | x). The (approximate) posterior probability
of a given phylogeny given our evidence, is propor-
tional to the product of the δ values of its edges.
Formally, let T♦(G) denote the set of spanning

trees of G rooted at ♦, and define the weight of a
particular spanning tree T ∈ T♦(G) to be the prod-
uct of the weights of its edges:

w(T ) =
∏

(x→y)∈T

δ(y | x) (9)

Then the posterior probability of spanning tree T is

pθ(T ) =
w(T )

Z(G)
(10)

where Z(G) =
∑

T∈T♦(G)w(T ) is the partition
function, i.e. the total probability of generating the
dataG via any spanning tree of the formwe consider.
This distribution is determined by the parameters θ
of the transducer pθ, along with the ratio α/µ.

There exist several algorithms to find the sin-
glemaximum-probability spanning tree, notably Tar-
jan’s implementation of the Chu-Liu-Edmonds algo-
rithm, which runs in O(m log n) for a sparse graph
or O(n2) for a dense graph (Tarjan, 1977). Figure 1
shows a spanning tree found by our model using Tar-
jan’s algorithm. Here n is the number of vertices
(in our case, types and �), whilem is the number of
edges (which we can keep small by pruning, §6.1).

6 Training the Transducer with EM
Our inference algorithm assumes that we know the
transducer parameters θ. We now explain how to op-

timize θ to maximize the marginal likelihood of the
training data. This marginal likelihood sums over all
the other latent variables in the model—the spanning
tree, the alignments between strings, and the hidden
token ordering.
The EMprocedure repeats the following until con-

vergence:

E-step: Given θ, compute the posterior marginal
probabilities cxy of all possible phylogeny
edges.

M-step Given all cxy, retrain θ to assign a high
conditional probability to the mutations on the
probable edges.

We actually use a variational EM algorithm: our
E step approximates the true distribution q over all
phylogenies with the closest distribution p that as-
signs positive probability only to type-based phylo-
genies. This distribution is given by (10) and min-
imizes KL(p || q). We argued in section §5.2 that
it should be a good approximation. The posterior
marginal probability of a directed edge from vertex
x to vertex y, according to (10), is

cxy =
∑

T∈T♦(G):(x→y)∈T

pθ(T ) (11)

The probability cxy is a “pseudocount” for the ex-
pected number of mutations from x to y. This is at
most 1 under our assumptions.
Calculating cxy requires summing over all span-

ning trees of G, of which there are nn−2 for a fully
connected graph with n vertices. Fortunately, Tutte
(1984) shows how to compute this sum by the fol-
lowing method, which extends Kirchhoff’s classi-
cal matrix-tree theorem to weighted directed graphs.
This result has previously been employed in non-
projective dependency parsing (Koo et al., 2007;
Smith and Smith, 2007).
Let L ∈ Rn×n denote the Laplacian ofG, namely

L =

{ ∑
x′ δ(y | x′) if x = y

−δ(y | x) if x 6= y
(12)

Tutte’s theorem relates the determinant of the Lapla-
cian to the spanning trees in graph G. In particular,
the cofactor L0,0 is equal to the sum of the weights
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of all directed spanning trees rooted at 0, which (sup-
posing♦ is indexed at 0) yields the partition function
Z(G).
The edge marginals of interest are related to the

log partition function by

cxy =
∂Z(G)

∂δ(y | x)
(13)

which has the closed-form solution

cxy =

{
δ(y | ♦)L−1

yy if x = y

δ(y | x)(L−1
xx − L−1

xy ) if x 6= y
(14)

Thus, the problem of computing edge marginals re-
duces to that of computing a matrix inverse, which
may be done in O(n3) time.
At the M step, we retrain the mutation model pa-

rameters θ to maximize
∑

xy cxy log p(wy | wx).
This is tantamount to maximum conditional likeli-
hood training on a supervised collection of (wx, wy)
pairs that are respectively weighted by cxy.

The M step is nontrivial because the term p(wy |
wx) sums over a hidden alignment between two
strings. It may be performed by an inner loop of EM,
where the E step uses dynamic programming to ef-
ficiently consider all possible alignments, as in (Ris-
tad and Yianilos, 1996). In practice, we have found it
effective to take only a single step of this inner loop.
Such a Generalized EM procedure enjoys the same
convergence properties as EM, but may reach a local
optimum faster (Dempster et al., 1977).

6.1 Pruning the graph

For large graphs, it is essential to prune the number
of edges to avoid considering all n(n − 1) input-
output pairs. To prune the graph, we eliminate all
edges between strings that do not share any common
trigrams (case- and diacritic-insensitive), by setting
their matrix entries to 0. As a result, the graph Lapla-
cian is a sparse matrix, which often allows faster
matrix inversion using preconditioned iterative algo-
rithms. Furthermore, pruned edges do not appear in
any spanning tree, so the E step will find that their
posterior marginal probabilities are 0. This means
that the input-output pairs corresponding to these
edges can be ignored when re-estimating the trans-
ducer parameters in the M step. We found that prun-

ing significantly improves training time with no ap-
preciable loss in performance.9

6.2 Training with unobserved tokens?

A deficiency of our method is that it assumes that
authors of our corpus have only been exposed to pre-
vious tokens in our corpus. In principle, one could
also train with U additional tokens (e, w) where we
observe neither e nor w, for very large U . This is the
“universe of discourse” in which our authors oper-
ate.10 In this case, we would need (expensive) new
algorithms to reconstruct the strings w. However,
this model could infer a more realistic phylogeny by
positing unobserved ancestral or intermediate forms
that relate the observed tokens, as in transformation
models (Eisner, 2002; Andrews and Eisner, 2011).

7 Experimental Evaluation

7.1 Data preparation

Scraping Wikipedia. Wikipedia documents many
variant names for entities. As a result, it has fre-
quently been used as a source for mining name vari-
ations, both within and across languages (Parton et
al., 2008; Cucerzan, 2007). We used Wikipedia to
create a list of name aliases for different entities.
Specifically, we mined English Wikipedia11 for all
redirects: page names that lead directly to another
page. Redirects are created by Wikipedia users for
resolving common name variants to the correct page.
For example, the pages titled Barack Obama Ju-
nior and Barack Hussein Obama automatically redi-
rect to the page titled Barack Obama. This redirec-
tion implies that the first two are name variants of
the third. Collecting all such links within English
Wikipedia yields a large number of aliases for each
page. However, many redirects are for topics other
than individual people, and these would be poor ex-
amples of name variation. In addition, some phrases

9For instance, on a dataset of approximately 6000 distinct
names, pruning reduced the number of outgoing edges at each
vertex to fewer than 100 per vertex.

10Notice that theN observed tokens would be approximately
exchangeable in this setting: they are unlikely to depend on one
another when N � U , and hence their order no longer matters
much. In effect, generating theU hidden tokens constructs a rich
distribution (analogous to a sample from the Dirichlet process)
from which the N observed tokens are then sampled IID.

11Using a Wikipedia dump from February 2, 2011.
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Ho Chi Minh, Ho chi mihn, Ho-Chi Minh, Ho Chih-minh
Guy Fawkes, Guy fawkes, Guy faux, Guy Falks, Guy Faukes, Guy Fawks, Guy foxe, Guy Falkes
Nicholas II of Russia, Nikolai Aleksandrovich Romanov, Nicholas Alexandrovich of Russia, Nicolas II
Bill Gates, Lord Billy, Bill Gates, BillGates, Billy Gates, William Gates III, William H. Gates
William Shakespeare, William shekspere, William shakspeare, Bill Shakespear
Bill Clinton, Billll Clinton, William Jefferson Blythe IV, Bill J. Clinton, William J Clinton

Figure 2: Sample alias lists scraped from Wikipedia. Note that only partial alias lists are shown for space reasons.

that redirect to an entity are descriptions rather than
names. For example, 44th President of the United
States also links to Barack Obama, but it is not a
name variant.

Freebase filtering. To improve data quality we used
Freebase, a structured knowledge base that incorpo-
rates information from Wikipedia. Among its struc-
tured information are entity types, including the type
“person.” We filtered the Wikipedia redirect col-
lection to remove pairs where the target page was
not listed as a person in Freebase. Additionally, to
remove redirects that were not proper names (44th
President of the United States), we applied a series
of rule based filters to remove bad aliases: removing
numerical names, parentheticals after names, quota-
tion marks, and names longer than 5 tokens, since
we found that these long names were rarely person
names (e.g. United States Ambassador to the Eu-
ropean Union, Success Through a Positive Mental
Attitude which links to the author Napoleon Hill.)
While not perfect, these modifications dramatically
improved quality. The result was a list of 78,079 dif-
ferent person entities, each with one or more known
names or aliases. Some typical names are shown in
Figure 2.

Estimating empirical type counts. Our method is
really intended to be run on a corpus of string to-
kens. However, for experimental purposes, we in-
stead use the above dataset of string types because
this allows us to use the “ground truth” given by
the Wikipedia redirects. To synthesize token counts,
empirical token frequencies for each type were esti-
mated from the LDC Gigaword corpus,12 which is
a corpus of newswire text spanning several years.
Wikipedia name types that did not appear in Giga-
word were assigned a “backoff count” of one. Note
that by virtue of the domain, many misspellings will

12LDC Catalog No. LDC2003T05.

not appear; however, edges “popular” names (which
may be canonical names) will be assigned higher
weight.

7.2 Experiments
We begin by evaluating the generalization ability of a
transducer trained using a transformation model. To
do so, we measure log-likelihood on held-out entity
title and alias pairs. We then verify that the general-
ization ability according to log-likelihood translates
into gains for a name matching task. For the experi-
ments in this section, we use α = 0.9 and µ = 0.1.13

Held-out log-likelihood. We construct pairs of en-
tity title (input) and alias (output) names from the
Wikipedia data. For different amounts of supervised
data, we trained the transformation model on the
training set, and plotted the log-likelihood of held-
out test data for the transducer parameters at each it-
eration of EM. The held-out test set is constructed
from a disjoint set of Wikipedia entities, the same
number of entities as in the training set. We used
different corpora of 1000 and 1500 entities for train
and test.

Name matching. For each alias a in a test set (not
seen at training time), we produce a ranking of test
entity titles t according to transducer probabilities
pθ(a | t). A good transducer should assign high
probability to transformations from the correct ti-
tle for the alias. Mean reciprocal rank (MRR) is a
commonly used metric to estimate the quality of a
ranking, which we report in Figure 4. The reported
mean is over all aliases in the test data. In addition to
evaluating the ranking for different initializations of
our transducer, we compare to two baselines: Lev-
enshtein distance and Jaro-Winkler similarity. Jaro-
Winkler is a measure on strings that was specifically
designed for record linkage (Winkler, 1999). The

13We did not find these parameters to be sensitive.
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Figure 3: Learning curves for different initializations of the transducer parameters. Above, “sup=100” (for instance)
means that 100 entities were used as training data to initialize the transducer parameters (constructing pairs between
all title-alias pairs for those Wikpedia entities).
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Figure 4: Mean reciprocal rank (MRR) results for differ-
ent training conditions: “sup10” means that 10 entities
(roughly 40 name pairs) were used as training data for
the transducer; “semi10” means that the “sup10” model
was used as initialization before re-estimating the param-
eters using our model; “unsup” is the transducer trained
using our model without any initial supervision; “sup” is
trained on all 1500 entities in the training set (an upper
bound on performance); “jwink” and “lev” correspond to
Jaro-Winkler and Levenshtein distance baselines.

matching experiments were performed on a corpus
of 1500 entities (with separate corpora of the same
size for training and test).

8 Conclusions and Future Work

We have presented a new unsupervised method for
learning string-to-string transducers. It learns from
a collection of related strings whose relationships are
unknown. The key idea is that some strings are mu-
tations of common strings that occurred earlier. We
compute a distribution over the unknown phyloge-
netic tree that relates these strings, and use it to rees-

timate the transducer parameters via EM.
One direction for future work would be more so-

phisticated transduction models than the one we de-
veloped in §4. For names, this could include learn-
ing common nicknames (nonparametrically); explic-
itly modeling abbreviation processes such as initials;
conditioning on name components such as title and
middle name; and transliterating across languages.14
In other domains, one could model bibliographic en-
try propagation, derivational morphology, or histor-
ical sound change (again using language tags).
Another future direction would be to incorporate

the context of tokens in order to help reconstruct
which tokens are coreferent. For example, we might
extend the generative story to generate a context for
token (e, w) conditioned on e. Combining contex-
tual similarity with string similarity has previously
proved very useful for identifying cognates (Schafer
and Yarowsky, 2002; Schafer, 2006b; Bergsma and
Van Durme, 2011). In our setting it would help to
distinguish people with identical names, as well as
determining whether two people with similar names
are really the same.

14These last two points suggest that the mutation model
should operate not on simple (entity, string) pairs, but on richer
representations in which the name has been parsed into its com-
ponents (Eisenstein et al., 2011), labeled with a language ID,
and perhaps labeled with a phonological pronunciation. These
additional properties of a named entity may be either observed
or latent in training data. For example, if wy and `y denote the
string and language of name y, then define p(y | x) = p(`y |
`x) · p(wy | `y, `x, wx). The second factor captures translitera-
tion from language `x to language `y , e.g., by using §4’s model
with an (`x, `y)-specific parameter setting.
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Abstract

We present results of a novel experiment to in-
vestigate speech production in conversational
data that links speech rate to information den-
sity. We provide the first evidence for an asso-
ciation between syntactic surprisal and word
duration in recorded speech. Using the AMI
corpus which contains transcriptions of focus
group meetings with precise word durations,
we show that word durations correlate with
syntactic surprisal estimated from the incre-
mental Roark parser over and above simpler
measures, such as word duration estimated
from a state-of-the-art text-to-speech system
and word frequencies, and that the syntac-
tic surprisal estimates are better predictors of
word durations than a simpler version of sur-
prisal based on trigram probabilities. This re-
sult supports the uniform information density
(UID) hypothesis and points a way to more re-
alistic artificial speech generation.

1 Introduction

The uniform information density (UID) hypothesis
suggests that speakers try to distribute information
uniformly across their utterances (Frank and Jaeger,
2008). Information density can be measured in
terms of the surprisal incurred at each word, where
surprisal is defined as the negative log-probability
of an event. This paper sets out to test whether UID
holds across different linguistic levels, i.e. whether
speakers adapt word duration during production to
syntactic surprisal, such that words with higher sur-
prisal have longer durations than words with lower
surprisal. We investigate this question in a corpus

of transcribed speech from a mix of native and non-
native English speakers, a population that is a non-
trivial component of the user base for language tech-
nologies developed for English. This data reflects a
casual, uncontrolled conversational environment.

Using linear mixed-effects modeling, we found
that syntactic surprisal as calculated from a top-
down incremental PCFG parser accounts for a sig-
nificant amount of variation in spoken word dura-
tion, using an HMM-trained text-to-speech system
as a baseline. The findings of this paper provide ad-
ditional support the uniform information density hy-
pothesis and furthermore have implications for the
design of text-to-speech systems, which currently
do not take into account higher-level linguistic in-
formation such as syntactic surprisal (or even word
frequencies) for their word duration models.

1.1 Related work

The use of word-level surprisal as a predictor of pro-
cessing difficulty is based on the notion that pro-
cessing difficulty results when a word is encountered
that is unexpected given its preceding context. The
amount of surprisal on a word wi can be formal-
ized as the log of the inverse conditional probabil-
ity of wi given the preceding words in the sentence
w1 . . . wi−1, or − log P (wi|w1...i−1). If this proba-
bility is low, then the word is unexpected, and sur-
prisal is high. Surprisal can be estimated in different
ways, e.g. from word sequences (n-grams) or with
respect to the possible syntactic structures covering
a sentence prefix (see Section 4).

Hale (2001) showed that surprisal calculated from
a probabilistic Earley parser correctly predicts well-
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known processing phenomena that were believed
to emerge from structural ambiguities (e.g., garden
paths) and Levy (2008) further demonstrated the rel-
evance of surprisal to human sentence processing
difficulty on a range of syntactic processing diffi-
culty phenomena.

There is existing work in correlating information-
theoretic measures of linguistic redundancy to the
observed duration of speech units. Aylett and Turk
(2006) demonstrate that the contextual predictability
of a syllable (n-gram log probability) has an inverse
relationship to syllable duration in speech. Their ex-
periments were performed using a carefully articu-
lated speech synthesis training corpus.

This type of work fits into a larger programme of
understanding how speakers schedule utterances to
avoid high variation in the transmission of linguis-
tic information over time, also known as the Uni-
form Information Density (UID) hypothesis (Flo-
rian Jaeger, 2010). Levy and Jaeger (2007) show
that the reduction of optional that-complementizers
in English is related to trigram surprisal; low sur-
prisal predicts a high likelihood of reduction. Flo-
rian Jaeger (2010) shows the same result of in-
creased reduction when the complementizer is more
predictable according to information density calcu-
lated in terms of the main verb’s subcategorization
frequency.

Frank and Jaeger (2008) provide evidence that a
UID account can predict the use of reduced forms
of “be”, “have”, and “not” in English. They use the
surprisal of the candidate word itself as well as sur-
prisals of the word before and after, computing bi-
gram and trigram estimates directly from the corpus
without smoothing or backoff.

Jurafsky et al. (2001) report a corpus study sim-
ilar to ours, showing that words that are more pre-
dictable from context are reduced. As measures
of word predictability, they use bigram and trigram
models, as well as joint probabilities, but not syntac-
tic surprisal.

Within the same theme of utterance duration
vs. information content, Piantadosi et al. (2011)
performed a study using Google-derived n-gram
datasets on the lexica of multiple languages, includ-
ing English, Portuguese, and Czech. For every word
in a given language’s lexicon, they calculated 2-, 3-,
and 4-gram surprisal values using the Google dataset

for every occurrence of the word, and then they
took the mean surprisal for that word over all oc-
currences. The 3-gram surprisal values in particular
were a better predictor of orthographic length than
unigram frequency, providing evidence for the use
of information content and contextual predictability
as improvement over a Zipf’s Law view of commu-
nicative efficiency. This is an n-gram approach to
supporting the UID hypothesis.

However, there is some counter-evidence for the
UID-based view. Kuperman et al. (2007) analyzed
the relationship between linguistic unit predictabil-
ity and syllable duration in read-aloud speech in
Dutch. Dutch makes use of interfix morphemes
-s- and -e(n)- in certain contexts to make com-
pound nouns, preferring a null interfix in most
cases. For example, the Dutch noun kandidaatsex-
amen (“Bachelor’s examination”) is composed of
kandidaat-, -s-, and -examen.

Kuperman et al. find that the greater the pre-
dictability of the interfix from the morphological
context (i.e., the surrounding members of the com-
pound), the longer the duration of the pronuncia-
tion of the interfix. To illustrate, if -s- is more ex-
pected after kandidaat or if kandidaatsexamen is a
frequent compound, we would therefore expect the
-s- to be pronounced longer, given the correlations
they found. Their finding runs counter to a strong
view of UID’s fine-grained control over speech rate,
but it is focused on the morphological level. They
hypothesize that this counter-intuitive result may be
driven by complex paradigmatic constraints in the
choice of morpheme.

Our work, however, focuses on the syntactic level
rather than the paradigmatic. What we seek to an-
swer in our work is the extent to which an infor-
mation density-based analysis can not only be ap-
plied to real speech data in context but also be de-
rived from higher-level syntactic analyses, a com-
bination hitherto little explored. Existing broad-
coverage work on syntactic surprisal has largely fo-
cused on comprehension phenomena, such as Dem-
berg and Keller (2008), Roark et al. (2009), and
Frank (2010). We provide a production study in a
vein similar to that of Kuperman et al., but show that
frequency effects work in the expected direction at
the syntactic level. This in turn expands upon the
view supported by n-gram-based work such as that
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of Piantadosi et al. (2011); Levy and Jaeger (2007);
Jurafsky et al. (2001), showing that information con-
tent above the n-gram level is important in guiding
spoken language production in humans.

1.2 Implications for Potential Applications

Spoken dialogue systems are of increasing eco-
nomic and technological importance in recent times,
particularly as it is now feasible to include this tech-
nology in everything from small consumer devices
to industrial equipment. With this increase in impor-
tance, there is also unsurprisingly growing scientific
emphasis in understanding its usability and safety
characteristics. Recent work (Fang et al., 2009;
Taube-Schiff and Segalowitz, 2005) has shown that
linguistic information presentation has an effect on
user behaviour, but the overall granularity of this be-
haviour is still not well-understood.

Other potential applications exist in any place
where text-to-speech technologies can be applied,
such as in real-time spoken machine translation and
communications systems for the disabled.

In demonstrating that we can observe speakers be-
having in the manner predicted by the UID hypoth-
esis in conversational contexts, we provide evidence
for a finer-level of granularity necessary for control-
ling the rate of information presentation in artificial
systems.

1.3 AMI corpus

The Augmented Multi-Party Interaction (AMI) cor-
pus is a collection of recorded, transcribed con-
versations spanning 100 hours of simulated meet-
ings. The corpus contains a number of data streams
including speech, video, and whiteboard writing.
Transcription of the meetings was performed man-
ually, and the transcripts contain word-level time
bounds that were produced by an automatic speech
recognition system.

The freely-available AMI corpus is one of a very
small number of efforts that contain orthographic
transcriptions that are time-aligned at a word level.
We chose it for the realism of the setting in which
it was recorded; the physical presence of multiple
speakers in an unstructured discussion reflects a po-
tentially high level of noise in which we would be
looking for surprisal correspondences, potentially

increasing the application value of the correspon-
dences we find.

1.4 Organization

The remainder of this paper proceeds as follows. In
section 2, we describe at a high level the procedure
we used to test our hypothesis that parser-derived
surprisal values can partly account for utterance-
duration variation. Then (section 3.2) we discuss the
MARY text-to-speech system, from which we derive
“canonical” word utterance durations. We describe
the way we process and filter the AMI meeting cor-
pus in section 3.1. In section 4, we describe in detail
our predictors, frequency counts, trigram surprisal,
and Roark parser surprisal. Sections 5 and 6 de-
scribe how we use linear mixed effects modeling to
find significant correlations between our predictors
and the response variable, and we finally make some
concluding remarks in section 7.

2 Design

The overall design of our experiment is schemati-
cally depicted in Figure 1. We extract the words
and the word-by-word timings from the AMI corpus,
keeping track of each word’s position in the corpus
by conversation ID, speaker turn, and chronological
order. As we describe in the next section, we filter
the words for anomalies.

After pre-processing, for each word in the cor-
pus, we extract the following predictors: canoni-
cal speech durations from the MARY text-to-speech
system, logarithmic word frequencies, n-gram sur-
prisal, and surprisal values produced by the Roark
(2001a); Roark et al. (2009) parser (see Section 4).
The next sections describe how and from where
these values are obtained1.

Finally, we run mixed effects regression model
analyses (Baayen et al., 2008) with the observed
durations as a response variable and the predictors
mentioned above in order to detect whether syntac-
tic surprisal is a significant positive predictor of spo-
ken word durations above and beyond the more ba-
sic effects of canonical word duration and word fre-
quency.

1We will make this data widely available upon publication.
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Figure 1: Schematic overview of experiment.

3 Experimental materials

3.1 Corpus preparation

The AMI corpus is provided in the NITE XML
Toolkit (NXT) format. We developed a custom inter-
preter to assemble the relevant data streams: words,
meeting IDs, speaker IDs, speaker turns, and ob-
served word durations.

In addition to grouping and re-ordering the infor-
mation found in the original XML corpus, two more
steps were taken to eliminate confounding noise
from the data. Non-words (e.g. “uhm”, “uh-hmm”,
etc.) were filtered out, as were incomplete words or
incorrectly transcribed words (e.g. “recogn”, “some-
thi”, etc); the criterion for rejection was presence in
the English Gigaword corpus with subsequent mi-
nor corrections by hand, e.g., mapping unseen verbs

back into the corpus and correcting obvious com-
mon misspellings.2

Finally, turns that did not make for complete sen-
tences, e.g., utterances that were interrupted in mid-

2A reviewer asks about the extent to which our Gigaword fil-
tering process may remove words we might want to keep but ad-
mit words we want to reject. As Gigaword is mostly newswire
text, we do not expect the latter case to hold often. AMI is
hand-transcribed and uses consistent spellings for non-word in-
terjections (easy to remove), and any spelling mistakes would
have to coincide exactly with a Gigaword mistake.

The other way around (rejecting what should be allowed) is
easier to check, and we find that of 13K word types in AMI,
about 7.2% are rejected for non-appearance in Gigaword, after
filtering for interjections like “mm-hmm”. However, we man-
ually checked them and returned all but 2.9% of word types to
the corpus. These tend to be very low-frequency types. The
manual check suggests that ultimately there would be few false
rejections.
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sentence, were filtered out in order to maximize the
proportion of complete parses in surprisal calcula-
tion.

3.2 Word duration model
In order to investigate whether there is an association
between high/low surprisal and increased/decreased
word duration, one needs to have a baseline mea-
sure of what constitutes the “canonical” duration of
each word—in other words, to account for the fact
that some words have longer pronunciations than
others. As one reviewer notes, one way of estimat-
ing word durations would be to calculate the aver-
age duration of each word in the corpus. However,
this approach would be insensitive to the phonolog-
ical, syllabic and phrasal context that a word oc-
curs in, which can have a large effect on word du-
ration. Therefore, we use word duration estimates
from the state-of-the-art open-source text-to-speech
system MARY (Schröder et al., 2008, version 4.3.1),
with the default voice package included in this ver-
sion (cmu-slt-hsmm).

The cmu-slt-hsmm voice package uses
a Hidden Markov model, trained on the fe-
male US English section of the CMU ARCTIC
database (Kominek and Black, 2003), to predict
prosodic attributes of each individual synthesized
phone, including duration. Training was carried
out using a version of the HTS system (Zen et al.,
2007), modified for using the MARY context
features (Schröder et al., 2008) for estimating the
parameters of the model and for decoding. Those
features include3:

• phonological features of the current and neigh-
boring phonemes

• syllabic and lexical features (e.g. syllable
stress, (estimated) part-of-speech, position of
syllable in word)

• phrasal / sentential features (e.g. sen-
tence/phrase boundaries, neighboring pauses
and punctuation)

For each word in the AMI corpus, we ob-
tained two alternative estimates of word duration:

3For further information about how HMM-based voices for
MARY TTS are trained, see http://mary.opendfki.
de/wiki/HMMVoiceCreation

one version which is independent of a word’s
sentential context, and a second version which
does take into account the sentential context (such
as phrasal/sentential and across-word-boundaries
phonological features) the word occurs in. In other
words, we obtain MARY word duration estimates
in the second version by running individual whole
sentences through MARY, segmented by standard
punctuation marks used in the AMI corpus transcrip-
tions. For each version, we obtained phone dura-
tions using MARY and calculate the total duration of
a word as the sum of the estimated phone durations
for that word. These durations serve as the “canoni-
cal” baselines to which the observed durations of the
words in the AMI corpus are compared.

3.3 Word frequency baselines

In order to account for the effects of simple word
frequency on utterance duration, we extracted two
types of frequency counts. One was taken di-
rectly from the AMI corpus alone. The other was
taken from a 151 million-word (4.3 million full-
paragraph) sample of the English Gigaword cor-
pus. These came from the following newswire
sources: Agence France Press, Associated Press
Worldstream, New York Times Newswire, and the
Xinhua News Agency English Service. These
sources are organized by month-of-year. We se-
lected the subset of Gigaword by randomly select-
ing month-of-year files from those sources with uni-
form probability. Punctuation was stripped from the
beginnings and ends of words before taking the fre-
quency counts.

4 Surprisal models

For predicting the surprisal of utterances in context,
two different types of models were used— n-gram
probabilities models, as well as Roark’s 2001 incre-
mental top-down parser capable of calculating pre-
fix probabilities. We also estimated word frequen-
cies to account for words being spoken more quickly
due to their higher frequency which is independent
of structural surprisal.

The n-gram probabilities models, while being fast
in both training and application, inherently capture
very limited contextual influences on surprisal. The
full-fledged parser, on the other hand, quantifies sur-
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prisal based in the prefix probability of the complete
sentence prefix and captures long-distance effects
by conditioning on c-commanding lexical items as
well as non-local node labels such as parents, grand-
parents and siblings from the left context.

CMU n-grams We used the CMU Statistical Nat-
ural Language Modeling Toolkit to provide a con-
venient way to calculate n-grams probabilities. For
the prediction of surprisal, we calculated 3-gram
models, 4-gram models and 5-gram models with
Witten-Bell smoothing. Different n-gram models
were trained on the full Gigaword corpus, as well
as the AMI corpus.

To avoid overfitting, the AMI text corpus was split
into 10 sub-corpora of equal word counts, preserv-
ing coherence of meetings. N-gram probabilities
were then calculated for each of the sub-corpora us-
ing models trained on the 9 others.

We also produced a trigram model using the text
of chapter 2–21 of the Penn Treebank’s (PTB) un-
derlying Wall Street Journal corpus. This consists
of approximately one million tokens. We generated
this model because it is the underlying training data
for the Roark parser, described below.

Syntactic Surprisal from Roark parser In order
to capture the effect of syntactically expected vs. un-
expected events, we can calculate the syntactic sur-
prisal of each word in a sentence. The syntactic sur-
prisal at word Swi is defined as the difference be-
tween the prefix probability at word wi and the pre-
fix probability at word wi−1. The prefix probability
at word wi is the sum of the probabilities of all trees
T spanning words w1 . . . wi; see also (Levy, 2008;
Demberg and Keller, 2008).

Swi
= log

∑
T

P (T, w1..wi−1)− log
∑
T

P (T, w1..wi)

The top-down incremental Roark parser (Roark,
2001a) has the characteristic that all partial left-to-
right parses are rooted: they form a single tree with
one root. A set of heuristics ensures that rule appli-
cation occurs only through node expansion within
the connected structure.4 The grammar-derived pre-
fix probabilities of a given sentence prefix can there-

4The formulae for the calculation of the prefix probabilities
from the PCFG rules can be found in Roark et al. (2009).
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Figure 2: Top-ranked partial parse of A puppy is to a dog
what a kitten is to a cat., stopping at the second a and
providing the Roark parser surprisal values by word. The
branch with dashed lines and struck-out symbols repre-
sents an analysis abandoned at the appearance of the a.

fore be calculated directly by multiplying the prob-
abilities of all rules used to generate the prefix tree.
The Roark parser shares this characteristic of gener-
ating fully connected structures with Earley parsers
(Earley, 1970) and left corner parsers (Rosenkrantz
and II, 1970).

The Roark parser uses a beam search. As the
amount of probability mass lost has been shown
to be small (Roark, 2001b), the surprisal estimates
can be assumed to be a good approximation. The
beam width of the parser search is controlled by a
“base parsing threshold”, which defines the distance
in terms of natural log-probability between the most
probable parse and the least probable parse within
the beam. For the experiments reported here, the
parsing beam was set to 21 (default setting is 12). A
wider beam also reduces the effects of pruning.

The parser was trained on Wall Street Journal sec-
tions 2–21 and applied to parse the full sentences
of the AMI corpus, collecting predicted surprisal at
each word (see Figure 2 for an example).

The syntactic surprisal can be furthermore be de-
composed into a structural and a lexical part: some-
times, high surprisal might be due to a word be-
ing incompatible with the high-probability syntactic
structures, other times high surprisal might just be
due to a lexical item being unexpected. It is inter-
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esting to evaluate these two aspects of syntactic sur-
prisal separately, and the Roark parser conveniently
outputs both surprisal estimates. Structural surprisal
is estimated from the occurrence counts of the appli-
cation of syntactic rules during the parse discount-
ing the effect of lexical probabilities, while lexical
surprisal is calculated from the probabilities of the
derivational step from the POS-tag to lexical item.

5 Linear mixed effects modelling

In order to test whether surprisal estimates correlate
with speech durations, we use linear mixed effects
models (LME, Pinheiro and Bates (2000)). This
type of model can be thought of as a generalization
of linear regression that allows the inclusion of ran-
dom factors as well as fixed factors.We treat speak-
ers as a random factor, which means that our mod-
els contain an intercept term for each speaker, rep-
resenting the individual differences in speech rates.
Furthermore, we include a random slope for the
predictors (e.g. frequency, canonical duration, sur-
prisal), essentially accounting for idiosyncrasies of
a participant with respect to the predictor, such that
only the part of the variance that is common to all
participants and is attributed to that predictor.

In a first step, we fit a baseline model with all pre-
dictors related to a word’s canonical duration and its
frequency as well as their random slopes to the ob-
served word durations. Models with more than two
random slopes generally did not converge. We there-
fore included in the baseline model only the two best
random slopes (in terms of model fit). We then cal-
culated the residuals of that model, the part of the
observed word durations that cannot be accounted
for through canonical word durations or word fre-
quency.

For each of our predictors of interest (n-gram sur-
prisal, syntactic surprisal), we then fit another lin-
ear mixed-effects model with random slopes to the
residuals of the baseline model. This two-step pro-
cedure allows us to make sure to avoid problems
of collinearity between e.g. surprisal and word fre-
quency or canonical duration. A simpler (but less
conservative) method is to directly add the predic-
tors of interest to the baseline model. Results for
both modelling variants lead to the same conclusions
for our model, so we here report the more conserva-

tive two-step model. We compare models based on
the Akaike Information Criterion (AIC).

6 Results

Our baseline model uses speech durations from the
AMI corpus as the response variable and canoni-
cal duration estimates from the MARY TTS system
and log word frequencies as predictors. We exclude
from the analysis all data points with zero duration
(effectively, punctuation) or a real duration longer
than 2 seconds. Furthermore, we exclude all words
which were never seen in Gigaword and any words
for which syntactic surprisal couldn’t be estimated.
This leaves us with 771,234 out of the 799,997 data
points with positive duration.

MARY duration models As mentioned in the
earlier sections, we have calculated different ver-
sions of the MARY estimated word durations: one
model without the sentential context and one model
with the sentential context. In our regression analy-
ses, we find, as expected, that the model which in-
cludes sentential context achieves a much better fit
with the actually measured word durations from the
AMI corpus (AIC = 32167) than the model without
context (AIC = 70917).

Word frequency estimates We estimated word
frequencies from several different resources, from
the AMI corpus to have a spoken domain frequency
and from Gigaword as a very large resource. We
find that both frequency estimates significantly im-
prove model fit over a model that does not contain
frequency estimates. Including both frequency esti-
mates improves model fit with respect to a model
that includes just one of the predictors (all p <
0.0001).

Furthermore, including into the regression an in-
teraction of estimated word duration and word fre-
quency also significantly increases model fit (p <
0.0001). This means that words which are short and
frequent have longer duration than would be esti-
mated by adding up their length and frequency ef-
fects.

Baseline model Fixed effects of the fitted model
are shown in Table 2. We see a highly significant ef-
fect in the expected direction for both the canonical
duration estimate and word frequency. The positive
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coefficient for MARY CONTEXT means that TTS
duration estimates are positively correlated with the
measured word durations. The negative coefficient
for WORDFREQUENCY means that more frequent
words are spoken faster than less frequent words.
Finally, the negative coefficient for the interaction
between word durations and frequencies means that
the duration estimate for short frequent and long in-
frequent words is less extreme than otherwise pre-
dicted by the main effects of duration and frequency.

Ami Mary Mary Giga PTB AMI AMI Giga
Dur Word Cntxt Freq Freq Freq 3grm 4grm

Mary Word .36 1
Mary Cntxt .42 .72 1
GigaFreq -.35 -.52 -.65 1
PTBFreq -.33 -.48 -.62 .98 1
AMIFreq -.33 -.61 -.57 .65 .62 1
AMI3gram .21 .40 .41 -.41 -.39 -.68 1
Giga4gram .24 .33 .44 -.59 -.59 -.44 .61 1
Srprsl .29 .40 .48 -.71 -.73 -.50 .50 .73

Table 1: Correlations (pearson) of model predictors.

Note though that the predictors are also correlated
(for correlations of the main predictors used in these
analyses, see Table 1), so there is some collinearity
in the below model. Since we are less interested in
the exact coefficients and significance sizes for these
baseline predictors, this does not have to bother us
too much. What is more important, is that we re-
move any collinearity between the baseline predic-
tors and our predictors of interest, i.e. the surprisal
estimates from the ngram models and parser. There-
fore, we run separate regression models for these
predictors on the residuals of the baseline model.

N-gram estimates We estimated 3-gram, 4-gram
and 5-gram models on the AMI corpus (9-fold-

Predictor Coef t-value Sig
INTERCEPT 0.3098 212.11 ***
MARY CONTEXT 0.4987 95.48 ***
AMIWORDFREQUENCY -0.0282 -32.28 ***
GIGAWORDFREQUENCY -0.0275 -62.44 ***
MARY CNTXT:GIGAFREQ -0.0922 -45.41 ***

Table 2: Baseline linear mixed effects model of speech
durations on the AMI corpus data for MARY CONTEXT
(including the sentential context), WORDFREQUENCY
under speaker with random intercept for speaker and ran-
dom slopes under speaker. Predictors are centered.

Predictor Coef t-value Sig
INTERCEPT 0.3099 212.94 ***
MARY CONTEXT 0.4970 94.60 ***
AMIWORDFREQUENCY -0.0279 -31.98 ***
GIGAWORDFREQUENCY -0.0254 -53.68 ***
GIGA4GRAMSURPRISAL 0.0027 11.81 ***
MARY CNTXT:GIGAFREQ -0.0912 -44.87 ***

Table 3: Linear mixed effects model of speech durations
including 4-gram surprisal trained on gigaword as a pre-
dictor.

cross), the Penn Treebank and the Gigaword Cor-
pus. We found that coefficient estimates and signif-
icance levels of the resulting models were compara-
ble. This is not surprising, given that 4-gram and 5-
gram models were backing of to 3-grams or smaller
contexts for more than 95% of cases on the AMI and
PTB corpora (both ca. 1m words), and thus were
correlated at p > .98. On the Gigaword Corpus,
the larger contexts were seen more often (5-grams:
11%, 4-grams: 36%), but still correlation with 3-
grams were high at (p > .96).

N-gram model surprisal estimated on newspaper
texts from PTB or Gigaword were statistically sig-
nificant positive predictors of spoken word durations
beyond simple word frequencies (but PTB ngram
surprisal did not improve fit over models containing
Gigaword frequency estimates). Counter-intuitively
however, ngram models estimated based on the AMI
corpus have a small negative coefficient in models
that already include word frequency as a predictor
– residuals of an AMI-estimated ngram model with
respect to word frequency are very noisy and do not
show a clear correlation anymore with word dura-
tions.

Surprisal Surprisal effects were found to have a
robust significant positive coefficient, meaning that
words with higher surprisal are spoken more slowly /
clearly than expected when taking into account only
canonical word duration and word frequency. Sur-
prisal achieves a better model fit than any of the
n-gram models, based on a comparsion of AICs,
and Surprisal significantly improved model fit over
a model including frequencies and ngram models
based on AMI and Gigaword. Table 4 shows the es-
timate for SURPRISAL on the residuals of the model
in Table 2.
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Predictor Coef t-value Sig
INTERCEPT -0.0154 -23.45 ***
SURPRISAL 0.0024 26.09 ***

Table 4: Linear mixed effects model of surprisal (based
on Roark parser) with random intercept for speaker and
random slope. The response variable is residual word du-
rations from the model shown in Table 3.

Surprisal estimated from the Roark parser also
remains a significant positive predictor when re-
gressed against the residuals of a baseline model in-
cluding both 3-gram surprisal from the AMI corpus
and 4-gram surprisal from the Gigaword corpus. In
order to make really sure that the observed surprisal
effect has indeed to do with syntax and can not be
explained away as a frequency effect, we also cal-
culated frequency estimates for the corpus based on
the Penn Treebank. The significant positive surprisal
effect remains stable, also when run on the residuals
of a model which includes PTB trigrams and PTB
frequencies.

It is difficult from these regression models to in-
tuitively grasp the size of the effect of a particular
predictor on reading times, since one would have to
know the exact range and distribution of each pre-
dictor. To provide some intuition, we calculate the
estimated effect size of Roark surprisal on speech
durations. Per Roark surprisal “unit”, the model es-
timates a 7 msec difference5. The range of Roark
surprisal in our data set is roughly from 0 to 25,
with most values between 2 and 15. For a word
like “thing” which in one instance in the AMI cor-
pus was estimated with a surprisal of 2.179 and in
another instance as 16.277, the estimated difference
in duration between these instances would thus be
104msec, which is certainly an audible difference.
(Full range for Roark surprisal: 174msec, whereas
full range for gigaword 4gram surprisal is 35 msec.)

When analysing the surprisal effect in more detail,
we find that both the syntactic component of sur-
prisal and its lexical component are significant pos-
itive predictors of word durations, as well as the in-
teraction between them, which has a negative slope.
A model with the separate components and their in-

52.4msec for a unit of residualized Roark surprisal, but it
is even less intuitive what that means, hence we calculate with
non-residualized surprisal here.

Predictor Coef t-value Sig
INTERCEPT -0.0219 -18.77 ***
STRUCTSURPRISAL 0.0009 2.71 **
LEXICALSURPRISAL 0.0044 24.00 ***
STRUCT:LEXICAL -0.0004 - 6.83 ***

Table 5: Linear mixed effects model of residual speech
durations wrt. baseline model from Table 3, with random
intercept for speaker and random slope for structural and
lexical component of surprisal, estimated using the Roark
parser.

teraction achieves a better model fit (in AIC and BIC
scores) than a model with only the full surprisal ef-
fect. The detailed model is shown in Table 5.

To summarize, the positive coefficient of surprisal
means that words which carry a lot of information
from a structural point of view are spoken more
slowly than words that carry less such information.
These results thus provide good evidence for our
hypothesis that the predictability of syntactic struc-
ture affects phonetic realization and that speakers
use speech rate to achieve more uniform information
density.

Native vs. non-native speakers Finally, we also
compared effects in our native vs. non-native
speaker populations, see Table 6. Both populations
show the same effects and tell the same story (note
that significance values can’t be compared as the
sample sizes are different). It might be possible to
interpret the findings in the sense that native speak-
ers are more proficient at adapting their speech rate
to (syntactic) complexity to achieve more uniform
information density, given the slightly higher coeffi-
cient and significance for Surprisal for native speak-
ers. Since the effects are statistically significant
for both groups, we don’t want to make too strong
claims about differences between the groups.

7 Conclusions and future work

We have shown evidence in this work that syntac-
tic surprisal effects in transcribed speech data can
be detected through word utterance duration in both
native and non-native speech, and we did so using
a meeting corpus not specifically designed to iso-
late these effects. This result is the potential foun-
dation for futher work in applied, experimental, and
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Native English Non-native
Predictor Coef t-value Sig Coef t-value Sig
INTERCEPT 0.2947 149.74 *** 0.3221 175.38 ***
MARY CONTEXT 0.5304 69.27 *** 0.4699 67.77 ***
AMIWORDFREQUENCY -0.0226 -18.10 *** -0.0321 -28.00 ***
GIGAWORDFREQUENCY -0.0264 -41.19 *** -0.0248 -39.58 ***
GIGAWORD4-GRAMS 0.0018 5.36 *** 0.0033 10.85 ***
MARY CONTEXT:GIGAFREQ -0.0810 -27.20 *** -0.0993 -35.71 ***
SURPRISAL 0.0033 24.21 *** 0.0018 15.09 ***
no of data points 320,592 391,106

*p < 0.05, **p < 0.01, ***p < 0.001

Table 6: Native speakers are possibly slightly better at adapting their speech rate to syntactic surprisal than non-native
speakers. Surprisal value is for model with residuals of other predictors as dependent variable.

theoretical psycholinguistics. It provides additional
direct support for approaches based on the UID hy-
pothesis.

From an applied perspective, the fact that fre-
quency and syntactic surprisal have a significant ef-
fect beyond what a HMM-trained TTS model would
predict for individual words is a case for further
research into incorporating syntactic models into
speech production systems. Our methodology im-
mediately provides a framework for estimating the
word-by-word effect on duration for increased nat-
uralness in TTS output. This is relevant to spo-
ken dialogue systems because it appears that syn-
thesized speech requires a greater level of attention
from the dialogue system users when compared to
the same words delivered in natural speech (Delogu
et al., 1998). Some of this effect may be attributable
to peaks in information density which are caused by
current generation systems not compensating for ar-
eas of high information density through speech rate,
lexical and structural choice.

Furthermore, syntax and semantics have been ob-
served to interact with the mode of speech deliv-
ery. Eye-tracking experiments by Swift et al. (2002)
showed that there was a synthetic vs. natural speech
difference in the time required to pay attention to
an object referred to using definite articles, but not
indefinite articles. Our result points a way towards
a direction for explaining of this phenomenon by
demonstrating that the differences between current-
technology artificial speech and natural speech can
be partially explained through higher-level syntactic

features.
However, further experimentation is required on

other measures of syntactic complexity (e.g. DLT,
Gibson (2000)) as well as other levels of representa-
tion such as the semantic level. From a theoretical
and neuroanatomical perspective, the finding that a
measure of syntactic ambiguity reduction has an ef-
fect on the phonological layer of production has ad-
ditional implications for the organization of the hu-
man language production system.
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Abstract

In this paper we explore the utility of sen-
timent analysis and semantic word classes
for improving why-question answering on a
large-scale web corpus. Our work is moti-
vated by the observation that a why-question
and its answer often follow the pattern that if
something undesirable happens, the reason is
also often something undesirable, and if some-
thing desirable happens, the reason is also of-
ten something desirable. To the best of our
knowledge, this is the first work that intro-
duces sentiment analysis to non-factoid ques-
tion answering. We combine this simple idea
with semantic word classes for ranking an-
swers to why-questions and show that on a set
of 850 why-questions our method gains 15.2%
improvement in precision at the top-1 answer
over a baseline state-of-the-art QA system that
achieved the best performance in a shared task
of Japanese non-factoid QA in NTCIR-6.

1 Introduction

Question Answering (QA) research for factoid ques-
tions has recently achieved great success as demon-
strated by IBM’s Watson at Jeopardy: its accuracy
has been reported to be around 85% on factoid ques-
tions (Ferrucci et al., 2010). Although recent shared
QA tasks (Voorhees, 2004; Peñas et al., 2011; Fuku-
moto et al., 2007) have stimulated the research com-
munity to move beyond factoid QA, comparatively
little attention has been paid to QA for non-factoid
questions such as why questions and how to ques-
tions, and the performance of the state-of-art non-
factoid QA systems reported in the literature (Mu-
rata et al., 2007; Surdeanu et al., 2011; Verberne et

al., 2010) remains considerably lower than that of
factoid QA (i.e., 34% in MRR at top-150 results on
why-questions (Verberne et al., 2010)).

In this paper we explore the utility of sentiment
analysis (Pang et al., 2002; Turney, 2002; Nakagawa
et al., 2010) and semantic word classes for improv-
ing why-question answering (why-QA) on a large-
scale web corpus. The inspiration behind this work
is the observation that why-questions and their an-
swers often have the following tendency:

• if something undesirable happens, the reason is
often also something undesirable, and

• if something desirable happens, its reason is of-
ten also desirable.

Consider the following question Q1, and its an-
swer candidates A1-1 and A1-2.

• Q1: Why does cancer occur?

• A1-1: Carcinogens such as nitrosamine and
benzopyrene may increase the risk of cancer by
altering DNA in cells.

• A1-2: Maintaining a healthy weight may lower
the risk of various types of cancer.

Here A1-1 describes an undesirable event related to
cancer, while A1-2 suggests a desirable action for
its prevention. Our hypothesis suggests that A1-1
is more appropriate for answering Q1. If this hy-
pothesis holds, we can obtain a significant improve-
ment in performance on why-QA tasks by exploiting
the sentiment orientation1 of expressions obtainable

1 In this paper we denote the desirable/undesirable polar-
ity of an expression by the term “sentiment orientation” instead
of “semantic orientation” to avoid confusion with our different
notion of “semantic word classes.”
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by automatic sentiment analysis of questions and an-
swers.

A second observation motivating this work is that
there are often significant associations between the
lexico-semantic classes of words in a question and
those in its answer sentence. For instance, questions
concerning diseases like Q1 often have answers that
include references to specific semantic word classes
such as chemicals (like A1-1), viruses, body parts,
and so on. Capturing such statistical correlations be-
tween diseases and harmful substances may lead to
higher why-QA performance. For this purpose we
use classes of semantically similar words that were
automatically acquired from a large web corpus us-
ing an EM-based clustering method (Kazama and
Torisawa, 2008).

Another issue is that simply introducing the sen-
timent orientation of words or phrases in question
and answer sentences in a naive way is insufficient,
since answer candidate sentences may contain mul-
tiple sentiment expressions with different polarities
in answer candidates (i.e., about 33% of correct an-
swers had such multiple sentiment expressions with
different polarities in our test set). For example, if
A1-2 contained a second sentiment expression with
negative polarity like the example below,

“Trusting a specific food is not effective
for preventing cancer, but maintaining a
healthy weight may help lower the risk of
various types of cancer.”

both A1-1 and A1-2 would contain sentiment ex-
pressions with the same polarity as that of Q1. Thus,
it is difficult to expect that the sentiment orientation
alone will work well for recognizing A1-1 as a cor-
rect answer to Q1. To address this problem, we con-
sider the combination of sentiment polarity and the
contents of sentiment expressions associated with
the polarity in questions and their answer candidates
as well. To deal with the data sparseness problem
arising in using the content of sentiment expressions,
we developed a feature set that combines the polar-
ity and the semantic word classes effectively.

We exploit these two main ideas (concerned with
the sentiment orientation and the semantic classes
described so far) for training a supervised classi-
fier to rank answer candidates to why-questions.
Through a series of experiments on 850 Japanese
why-questions, we showed that the proposed seman-

tic features were effective in identifying correct an-
swers, and our proposed method obtained more than
15% improvement in precision of its top answer
(P@1) over our baseline, which achieved the best
performance in the non-factoid QA task in NTCIR-
6 (Murata et al., 2007). We also show that our
method can potentially perform with high precision
(64.8% in P@1) when answer candidates containing
at least one correct answer are given to our re-ranker.

2 Approach

Our proposed method is composed of answer re-
trieval and answer re-ranking. The first step, an-
swer retrieval, extracts a set of answer candidates to
a why-question from 600 million Japanese Web cor-
pus. The answer retrieval is our implementation of
the state-of-art method that has shown the best per-
formance in the shared task of Japanese non-factoid
QA in NTCIR-6 (Murata et al., 2007; Fukumoto et
al., 2007). The second step, answer re-ranking, is
the focus of this work.

2.1 Answer Retrieval

We use Solr2 to retrieve documents from a 600 mil-
lion Japanese Web page corpus3for a given why-
question. Let a set of content words in a why-
question be T = {t1, · · · , tn}. Two boolean queries
for a why-question, “t1 AND · · · AND tn” and “t1
OR · · · OR tn,” are given to Solr and top-300 doc-
uments for each query are retrieved. Note that re-
trieved documents by each query have different cov-
erage and relevance to a given why-question. To
keep balance between the coverage and relevance of
retrieved documents, we use a set of retrieved doc-
uments by these two queries for obtaining answer
candidates. Each document in the result of docu-
ment retrieval is split into a set of answer candi-
dates consisting of five subsequent sentences4. Sub-
sequent answer candidates can share up to two sen-
tences to avoid errors due to wrong document seg-
mentation.

2 http://lucene.apache.org/solr
3 To the best of our knowledge, few Japanese non-factoid

QA systems in the literature have used such a large-scale cor-
pus.

4 The length of acceptable answer candidates for why-
QA in the literature ranges from one sentence to two para-
graphs (Fukumoto et al., 2007; Murata et al., 2007; Higashinaka
and Isozaki, 2008; Verberne et al., 2007; Verberne et al., 2010).
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Answer candidate ac for question q is ranked
according to scoring function S(q, ac) given in
Eq. (1) (Murata et al., 2007). Murata et al. (2007)’s
method uses text search to look for answer candi-
dates containing terms from the question with ad-
ditional clue terms referring to “reason” or “cause.”
Following the original method we used riyuu (rea-
son), genin (cause) and youin (cause) as clue terms.
The top-20 answer candidates for each question are
passed on to the next step, which is answer re-
ranking. S(q, ac) assigns a score to answer candi-
dates like tf -idf , where 1/dist(t1, t2) functions like
tf and 1/df(t2) is idf for given terms t1 and t2 that
are shared by q and ac.

S(q, ac) = maxt1∈T

∑
t2∈T

φ× log(ts(t1, t2)) (1)

ts(t1, t2) =
N

2× dist(t1, t2)× df(t2)

Here T is a set of terms including nouns, verbs, and
adjectives in question q that appear in answer can-
didate ac. Note that the clue terms are added to T
if they exist in ac. N is the total number of docu-
ments (600 million), dist(t1, t2) represents the dis-
tance (the number of characters) between t1 and t2
in answer candidate ac, df(t) is the document fre-
quency of term t, and φ ∈ {0, 1} is an indicator,
where φ = 1 if ts(t1, t2) > 1, φ = 0 otherwise.

2.2 Answer Re-ranking

Our re-ranker is a supervised classifier (SVMs)
(Vapnik, 1995) that uses three types of feature
sets: features expressing morphological and syn-
tactic analysis of questions and answer candidates,
features representing semantic word classes appear-
ing in questions and answer candidates, and features
from sentiment analysis. All answer candidates of a
question are ranked in a descending order of their
score given by SVMs. We trained and tested the
re-ranker using 10-fold cross validation on a cor-
pus composed of 850 why-questions and their top-
20 answer candidates provided by the answer re-
trieval procedure in Section 2.1. The answer candi-
dates were manually annotated by three human an-
notators (not by the authors). Our corpus construc-
tion method is described in more detail in Section 4.

3 Features for Answer Re-ranking

This section describes our feature sets for answer
re-ranking: features expressing morphological and
syntactic analysis (MSA), features representing se-
mantic word class (SWC), and features indicat-
ing sentiment analysis (SA). MSA, which has been
widely used for re-ranking answers in the literature,
is used to identify associations between questions
and answers at the morpheme, word phrase, and syn-
tactic dependency levels. The other two feature sets
are proposed in this paper. SWC is devised for iden-
tifying semantic word class associations between
questions and answers. SA is used for identify-
ing sentiment orientation associations between ques-
tions and answers as well as expressing the combi-
nation of each sentiment expression and its polarity.
Table 1 summarizes the respective feature sets, each
of which is described in detail below.

3.1 Morphological and Syntactic Analysis
MSA including n-grams of morphemes, words, and
syntactic dependencies has been widely used for re-
ranking answers in non-factoid QA (Higashinaka
and Isozaki, 2008; Surdeanu et al., 2011; Verberne
et al., 2007; Verberne et al., 2010). We use MSA as
a baseline feature set in this work.

We represent all sentences in a question and
its answer candidate in three ways: morphemes,
word phrases (bunsetsu5) and syntactic dependency
chains. These are obtained using a morphological
analyzer6 and a dependency parser7. From each
question and answer candidate we extract n-grams
of morphemes, word phrases, and syntactic depen-
dencies, where n ranges from 1 to 3. Syntactic de-
pendency n-grams are defined as a syntactic depen-
dency chain containing n word phrases. Syntactic
dependency 1-grams coincide with word phrase 1-
grams, so they are ignored.

Table 1 defines four types of MSA (MSA1 to
MSA4). MSA1 is n-gram features from all sen-
tences in a question and its answer candidates and
distinguishes an n-gram feature found in a ques-
tion from that same feature found in answer candi-
dates. MSA2 contains n-grams found in the answer

5 A bunsetsu is a syntactic constituent composed of a content
word and several function words such as post-positions and case
markers. It is the smallest unit of syntactic analysis in Japanese.

6 http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
7 http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP
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MSA1 Morpheme n-grams, word phrase n-grams, and syntactic dependency n-grams in a question and its answer candidate, where n ranges
from 1 to 3. n-grams in a question and those in an answer candidate are distinguished.

MSA2 MSA1’s n-grams in an answer candidate that contain a question term.
MSA3 MSA1’s n-grams that contain a clue term including riyuu (reason), genin (cause) and youin (cause). These n-grams in a question and

those in an answer candidate are distinguished.
MSA4 The ratio of the number of question terms in an answer candidate to the total number of question terms.
SWC1 Word class n-grams in a question and its answer candidate. These n-grams in a question and those in an answer candidate are distin-

guished.
SWC2 SWC1’s n-grams in an answer candidate whose original MSA1’s n-grams contain any question term.

SA@W1 Word polarity n-grams in a question and its answer candidate. These n-grams in a question and those in an answer candidate are
distinguished.

SA@W2 SA@W1’s n-grams in an answer candidate whose original MSA1 n-grams contain any question term.
SA@W3 Joint class-polarity n-grams in a question and its answer candidate. These n-grams in a question and those in an answer candidate are

distinguished.
SA@W4 SA@W3’s n-grams in an answer candidates whose original MSA1 n-grams contain any question term.
SA@P1 The indicator for polarity agreement between sentiment phrases, one in a question and the other in an answer candidate: 1 if any pair of

such sentiment phrases has polarity in agreement, 0 otherwise.
SA@P2 The phrase-polarity, positive or negative, of a pair of sentiment phrases for which the indicator in SA@P1 is 1.
SA@P3 Morpheme n-grams, word phrase n-grams, and syntactic dependency n-grams in sentiment phrases are coupled with their phrase-polarity,

where n ranges from 1 to 3. These n-grams in a question and those in an answer candidate are distinguished.
SA@P4 SA@P3’s n-grams in an answer candidates that contain a question term.
SA@P5 The ratio of the number of question terms in sentences that have sentiment phrases in answer candidates to the total number of question

terms.
SA@P6 Word class n-grams in sentiment phrases are coupled with phrase-polarity. These n-grams in a question and those in an answer candidate

are distinguished.
SA@P7 SA@P6’s n-grams in an answer candidates, whose original MSA1’s n-grams include any question term.
SA@P8 Joint class-polarity n-grams in sentiment phrases of a question and its answer candidate are coupled with phrase-polarity of the sentiment

phrases. These n-grams in a question and those in an answer candidate are distinguished.
SA@P9 SA@P8’s n-grams in an answer candidates, whose original MSA1’s n-grams include any question term.
SA@P10 A pair of SA@P6’s n-grams, one from sentiment phrases in a question and the other from those in an answer candidate, where the two

sentiment phrases should have the same sentiment orientation.

Table 1: Features used in training our re-ranker

candidates that themselves contain a term from the
question (e.g., “types of cancer” in example A1-2).
MSA3 is the n-gram feature that contains one of the
clue terms used for answer retrieval (riyuu (reason),
genin (cause) or youin (cause)). Here too, n-grams
obtained from the questions and answer candidates
are distinguished. Finally, MSA4 is the percentage
of the question terms found in an answer candidate.

3.2 Semantic Word Class

Semantic word classes are sets of semantically simi-
lar words. We construct these semantic word classes
by using the noun clustering algorithm proposed in
Kazama and Torisawa (2008). The algorithm fol-
lows the distributional hypothesis, which states that
semantically similar words tend to appear in simi-
lar contexts (Harris, 1954). By treating syntactic de-
pendency relations between words as “contexts,” the
clustering method defines a probabilistic model of
noun-verb dependencies with hidden classes as:

p(n, v, r) =
∑

c

p(n|c)p(〈v, r〉|c)p(c) (2)

Here, n is a noun, v is a verb or noun on which n de-
pends via a grammatical relation r (post-positions in
Japanese), and c is a hidden class. Dependency rela-
tion frequencies were obtained from our 600-million
page web corpus, and model parameters p(n|c),
p(〈v, r〉|c) and p(c) were estimated using the EM
algorithm (Hofmann, 1999). We successfully clus-
tered 5.5 million nouns into 500 classes. For each
noun n, EM clustering estimates a probability dis-
tribution over hidden variables representing seman-
tic classes. From this distribution we obtained dis-
crete semantic word classes by assigning each noun
n to semantic class c = argmaxc∗ p(c

∗|n). The
resulting classes actually form clean semantic cat-
egories such as chemicals, nutrients, diseases and
conditions, in our examples of Q1 and Q2. The fol-
lowing are the top-10 words (English translation) ac-
cording to p(c|n) for these classes.

chemicals: acetylene, hydrogenation product,
phosphoric monoester, methacrylate, levoglu-
cosan, ammonium salt, halogenated organic
compound, benzonitrile, alkyne, nitrosamine
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nutrients: glucide, carbonhydrate, mineral, salt,
sugar, water, fat, vitamin, nutrients, protein

diseases: pneumonia, neuritis, cancer, oral leuko-
plakia, pachymeningitis, acidosis, encephalitis,
abdominal injury, valvulitis, gingivitis

conditions: proficiency, decrepitude, deficiency,
impurity, abnormalities, floated, crisis, dis-
placement, condition, shortage

Semantic word class (SWC) features are used to
capture associations between semantic classes of
words in the question and those in the answer candi-
dates. For example:

• Q2: Why does rickets (Wdisease) occur in chil-
dren?

• A2: Deficiency (Wcondition) of vitamin D
(Wnutrients) can cause rickets (Wdisease).

Wcondition, Wdisease and Wnutrients represent se-
mantic word classes of conditions, diseases and nu-
trients, respectively. If this question-answer pair is
given to the classifier as a positive training sample,
we expect it to learn that if a disease name appears
in a question then, everything else being equal, an-
swers including nutrient names are more likely to be
correct. Note that in principle the same association
could be learned between word pairs, i.e., rickets and
vitamin D. However, we found that word level asso-
ciations are often too specific, and because of data
sparseness this knowledge cannot easily be general-
ized to unseen questions. This is our main motiva-
tion for introducing broad coverage semantic word
classes into the feature set.

We call the feature set with the word classes SWC
and use two types of SWC, as shown in Table 1. To
obtain the first type (SWC1), we convert all nouns
in the MSA1 n-grams into their respective word
classes, and keep all n-grams that contain at least
one word class. We call these features word class
n-grams. Again, word class n-grams obtained from
questions are distinguished from the ones in answer
candidates. For example, we extract “Wdisease oc-
cur” as a word class 2-gram from Q2.

The second type of SWC, SWC2, represents word
class n-grams in an answer candidate, in which
question terms are replaced by their respective se-
mantic word classes. For example, Wdisease in word
class 2-gram “cause Wdisease” from A2 is the se-
mantic word class of rickets, one of the question

terms. These features capture the correspondence
between semantic word classes in the question and
answer candidates.

3.3 Sentiment Analysis

Sentiment analysis (SA) features are classified into
word-polarity and phrase-polarity features. We use
opinion extraction tool8 and sentiment orientation
lexicon in the tool for these features.

3.3.1 Opinion Extraction Tool
Opinion extraction tool is a software, the im-

plementation of Nakagawa et al. (2010). It ex-
tracts linguistic expressions representing opinions
(henceforth, we call them sentiment phrases) from
a Japanese sentence and then identifies the polarity
of these sentiment phrases using machine learning
techniques. For example, rickets occur in Q2 and
Deficiency of vitamin D can cause rickets in A2 can
be identified as sentiment phrases with a negative
polarity. The tool identifies sentiment phrases and
their polarity by using polarities of words and de-
pendency subtrees as evidence, where these polari-
ties are given in a word polarity dictionary.

In this paper, we use a trained model and a word
polarity dictionary (containing about 35,000 entries)
distributed via the ALAGIN forum9 for our sen-
timent analysis. Table 2 shows the performance
of opinion extraction tool, precision (P), recall (R)
and F-value (F), in this setting (reported in the
Japanese homepage of this tool). In the evaluation of
sentiment-phrase extraction, an extracted sentiment
phrase is determined as correct if its head word is
the same as one in the gold standard. Polarity clas-
sification is evaluated under the condition that all of
the sentiment phrases are correctly extracted.

P R F
Sentiment-phrase extraction 0.602 0.408 0.486
Polarity classification (pos.) 0.873 0.893 0.883
Polarity classification (neg.) 0.866 0.842 0.854
Table 2: The performance of opinion extraction tool

3.3.2 Word Polarity (SA@W)
Polarities of words are identified by simply look-

ing up the word polarity dictionary of opinion ex-

8 Available at http://alaginrc.nict.go.jp/opinion/index_e.html
9 http://www.alagin.jp/index-e.html. Only the members of

the ALAGIN forum can access these resources.
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traction tool. Word polarity features are used
for identifying associations between the polarity of
words in a question and that in a correct answer. For
example:

• Q2: Why does rickets (W−) occur in children?

• A2: Deficiency (W−) of vitamin D can cause
rickets (W−).

Here, W− represents negative word polarities. We
expect our classifier to learn from this question and
answer pair that if a word with negative polarity ap-
pears in a question then its correct answer is likely
to contain a negative polarity word as well.

SA@W1 and SA@W2 in Table 1 are sentiment
analysis features from word polarity n-grams, which
contain at least one word that has word polarities.
We obtain these n-grams by converting all nouns in
MSA1 n-grams into their word polarities through
dictionary lookup. For example, from Q2 in the
above example we extract “W− occur” as a word
polarity 2-gram. SA@W1 is concerned with all
word polarity n-grams in questions and answer can-
didates. For SA@W2, we restrict word polarity
n-grams from SA@W1 to those whose original n-
gram include a question term.

Furthermore, word polarities are coupled with se-
mantic word classes so that our classifier can iden-
tify meaningful combinations of both. For example,
deficiency in A2 can be represented asW−condition by
its respective semantic word class and word polar-
ity, which allows for the representation of undesir-
able conditions. This in turn lets our system learn
meaningful correlations between words expressing
these kind of negative conditions and their connec-
tion to questions asking about diseases. SA@W3
and SA@W4 are features from this combination.
They are defined in the same way as SA@W1 and
SA@W2 except that word polarities are replaced
with the combination of semantic word classes and
word polarities. We call n-grams in SA@W3 and
SA@W4 joint (word) class-polarity n-grams.

3.3.3 Phrase Polarity (SA@P)
Opinion extraction tool is applied to question and

its answer candidate to identify sentiment phrases
and their phrase-polarities. In preliminary tests we
found that sentiment phrases do not help to iden-
tify correct answers if answer sentences including
the sentiment phrases do not have any term from the

question. So we restrict the target sentiment phrases
to those acquired from sentences containing at least
one question term. From these sentiment phrases we
extract three categories of features.

First, SA@P1 and SA@P2 are features concerned
with phrase-polarity agreement between sentiment
phrases in a question and its answer candidate. We
consider all possible pairs of sentiment phrases from
the question and answer. If any such pair agrees
in phrase-polarity, an indicator for the agreement
and its polarity in the agreement become features
SA@P1 and SA@P2, respectively.

Secondly, following the original hypothesis un-
derlying this paper, we assume that sentiment
phrases often represent the core part of the cor-
rect answer (e.g., A2 above) and it is important
to express the content of the sentiment phrases in
features. SA@P3 and SA@P4 were devised for
this purpose. SA@P3 represents this sentiment
phrase contents as n-grams of morphemes, words,
and syntactic dependencies of sentiment phrases,
together with their phrase-polarity. Furthermore,
SA@P4 is the subset of SA@P3 n-grams restricted
to those that include terms found in the question,
and SA@P5 indicates the percentage of sentiment
n-grams from the question that are found in a given
answer candidate.

Finally, features SA@P6 through SA@P9 use se-
mantic word classes to generalize the content fea-
tures mentioned above. These features consist of
word class n-grams and joint class-polarity n-grams
taken from sentiment phrases, together with their
phrase polarity. Similar to the definition of SA@P4,
for SA@P7 and SA@P9 we restrict ourselves to n-
grams containing a question term. SA@P10 repre-
sents the semantic content of two sentiment phrases
with the same sentiment orientation (one from a
question and the other from an answer candidate)
using word class n-grams, together with the phrase-
polarity in agreement.

4 Test Set

We prepared three sets of why-questions (QS1, QS2
and QS3) and used these questions to build two test
sets for our experiments.

Why-questions in QS1 are taken from the
Japanese version of Yahoo! Answers (called Ya-
hoo! Chiebukuro)10. We automatically extracted

10 We used “Yahoo! Chiebukuro Data (2nd edition)” which is
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questions consisting of a single sentence and con-
taining the interrogative naze (why), and our anno-
tators verified that these questions are meaningful
without further context. For example, they discarded
questions like “Why doesn’t the WBC (world box-
ing council) make an objection to the WBC (World
baseball classic)?” (the object of the objection is
unclear) and “Why do minors trade at the auction
even though it is disallowed by the rules” (informa-
tion about which auction is not provided).

Because questions in Yahoo! Answers are aimed
at human readers, users often “set the stage” by giv-
ing lots of background information about their ques-
tion. This often leads to large stylistic differences
between the questions in Yahoo! Answers and those
typically posed to a QA system. We therefore cre-
ated a second set of why-questions, QS2, whose
style should be more appropriate for a QA system
(examples showing these differences are given in the
supplementary materials of this paper). Six human
annotators (not the authors) were asked to create
why-questions in their own words, keeping in mind
that the questions they create are for a QA system. In
addition, the annotators were asked to verify on the
Web that the questions they created ask about some
real event or phenomena. For example, a question
like “Why does Mars appear blue?” is disallowed in
QS2 because “Mars appears blue” is false. Note that
the correct answer to these questions does not have
to be either in our target corpus or in real-world Web
texts. These two sets of why-questions, QS1 and
QS2, are used to build a test set for evaluating our
proposed method.

Finally, QS3 contains why-questions that have at
least one answer in our target corpus (600 million
Japanese Web page corpus). For creating such why-
questions, four human annotators (not the authors)
were given a text passage composed of three contin-
uous sentences and asked to locate the reasons for
some event as described in this passage. Then they
created a why-question for which the description is a
correct answer. Because randomly selected passages
from our target corpus have little chance of generat-
ing good why-questions we extracted passages from
our target corpus that include at least one of the clue
terms used in our answer retrieval step (i.e. riyuu
(reason), genin (cause), or youin (cause)). This set-

provided by Yahoo Japan Corporation and contains 16 million
questions asked from April, 2004 to April 2009.

ting may not necessarily reflect a “real world” dis-
tribution of why-questions, in which ideally a wide
range of people ask questions that may or may not
have an answer in our corpus. However, QS3 al-
lows us to evaluate our method under the idealized
conditions where we have a perfect answer retrieval
module whose answer candidates always contain at
least one correct answer (the source passage used
for creating the why-question). This setting allows
us to estimate the ideal-case performance of our
method. Under these circumstances we found that
our method achieves almost 65% precision in P@1,
which suggests that it can potentially perform with
high precision if the answer candidates given by the
answer retrieval module contain at least one correct
answer. This is the main purpose of QS3. Addition-
ally, we use QS3 for building training data, to check
whether questions that do not reflect the real-world
distribution of why-questions are useful for improv-
ing the system’s performance on “real-world” ques-
tions (see Section 5.1).

In addition, we checked QS1, QS2 and QS3 for
questions having the same topic, to avoid the pos-
sibility that the distribution of questions is biased
towards certain topics. We manually extracted the
questions’ topic words and randomly selected a sin-
gle representative question from all questions with
the same topic. For example, “Why does Twitter
only allow 140 characters?” and “Why is Twitter
so popular?” both have as topic Twitter. In the end
we obtained 250 questions in QS1, 250 questions in
QS2 and 350 questions in QS3.

For evaluation we prepared two test sets, Set1 and
Set2. Set1 contains question-answer pairs whose
questions are taken from QS1 and QS2. In our ex-
periment, we evaluate systems with 10-fold cross
validation on Set1. Set2 has question-answer pairs
whose questions are from QS3. Set2 is mainly used
for estimating estimate the ideal-case performance
of our method with a perfect answer retrieval mod-
ule. Furthermore Set2 is used as additional training
data in evaluating systems with 10-fold cross vali-
dation on Set1. We used our answer retrieval sys-
tem to obtain the top-20 answer candidates for each
question, and all question-answer (candidate) pairs
were checked by three annotators, where their inter-
rater agreement (Fleiss’ kappa) was 0.634, indicat-
ing substantial agreement. Finally, correct answers
to each question were determined by majority vote.
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Q1:二酸化炭素などの温室効果ガスが増えると海面水位が上昇するといわれているのはなぜですか？

(Why does the increase of greenhouse gases such as carbon dioxide in the atmosphere lead to a rise of ocean level?)
A1: .. 化石燃料等の使用が増えるにつれて、温室効果ガスが大気中に大量に放出され、その濃度が増加し、大気中に吸収される熱が
増えたことにより、地球規模での気温上昇が進行しています。これが地球温暖化です。 ... 温暖化による海水膨張と両極の氷解で、海
面が平均９〜８８ｃｍ上昇すると警告しています。
(The burning of fossil fuels contributes to the increase of atmospheric concentrations of greenhouse gases and this makes the atmosphere absorb more
thermal radiation. As a result, Earth’s average surface temperature increases. This is global warming. ... There are warnings that the increase of sea
water and melting of polar ice due to the global warming may cause sea-surface height to rise by 9–88 cm on average.
Q2:ヘモグロビンが不足すると体が酸素不足になるのはなぜですか？

(Why does hemoglobin deficiency cause lack of oxygen in the human body?)
A2:... ヘモグロビンは酸素を体の中に運び、いらなくなった二酸化炭素を持ち帰り、肺から外に出すなど重要な働きをしています。
もし鉄分が不足してヘモグロビンが少ししか作られないと、全身に運ばれる酸素の量が減少し、カラダが酸素不足になります。..
(... Hemoglobin has an important role in the human body of carrying oxygen to the organs and transferring carbon dioxide back to the lungs, to be
dispensed from the organism. If the amount of hemoglobin produced by the body is insufficient due to iron deficiency, the amount of oxygen delivered
throughout the body decreases, causing oxygen deficiency. ... )

Table 3: Correct question-answer pairs in our test set

Table 3 shows a sample of correct question-answer
pairs in our test set. Please see the supplementary
materials of this paper for more examples.

Note that word and phrase polarities are not con-
sidered by the annotators in building our test sets
and these polarities are automatically identified us-
ing a word polarity dictionary and opinion extraction
tool. We confirmed that about 35% of questions and
40% of answer candidates had at least one sentiment
phrase by opinion extraction tool, and about 45% of
questions and 85% of answer candidates contained
at least one word having polarity by a word polarity
dictionary.

5 Experiments

We use TinySVM11 with a linear kernel for training
our re-ranker. Evaluation was done by P@1 (Pre-
cision of the top answer) and MAP (Mean Average
Precision). P@1 measures how many questions have
a correct top answer candidate. MAP, widely used in
evaluation of IR systems, measures the overall qual-
ity of the top-n answer candidates (n=20 in this ex-
periment) using the formula:

MAP =
1

|Q|
∑
q∈Q

∑n
k=1(Prec(k)× rel(k))

|Aq|
(3)

Here Q is a set of why-questions, Aq is a set of cor-
rect answers to why-question q ∈ Q, Prec(k) is the
precision at cut-off k in the top-n answer candidates,
rel(k) is an indicator, 1 if the item at rank k is a cor-
rect answer in Aq, 0 otherwise.

We evaluated all systems using 10-fold cross val-
idation in two ways. In the first setting we per-
formed 10-fold cross validation on Set1. Set1 con-

11 http://chasen.org/∼taku/software/TinySVM/

sists of 10,000 question-answer pairs (500 questions
with their 20 answer candidates), and was parti-
tioned into 10 subsamples such that the questions
in one subsample do not overlap with those of the
other subsamples. 9 subsamples (9,000 question-
answer pairs) were used as training data and the
remaining subsample (1,000 question-answer pairs)
was retained as test data. This experiment is called
CV(Set1). It shows the effect of answer re-ranking
when evaluating our proposed method with train-
ing data built with real world why-questions alone.
In the second setting, we used the same 10 sub-
samples of Set1 as in CV(Set1) and exploited Set2
(composed of 7,000 question-answer pairs) as ad-
ditional training data for 10-fold cross validation.
As a result, in each fold 16,000 question-answer
pairs (9,000 from Set1 and 7,000 from Set2) were
used as training data for re-rankers, and all systems
were evaluated on the remaining 1,000 question-
answer pair subsample from Set1. We call this set-
ting CV(Set1+Set2). It verifies whether training
data that does not necessarily reflect a real-world
distribution of why-questions can improve why-QA
performance on real-world questions.

5.1 Results
Table 4 shows the evaluation results of six different
systems. For each system, we represent the perfor-
mance in P@1 and MAP. B-QA is a system of our
answer retrieval and the other five re-rank top-20 an-
swer candidates using their own re-ranker.
B-QA: our answer retrieval system, our implemen-

tation of Murata et al. (2007).
B-Ranker: a system that has a re-ranker trained

with morphological and syntactic analysis
(MSA) features alone.
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System CV(Set1) CV(Set1+Set2)
P@1 MAP P@1 MAP

B-QA 0.222 (0.368) 0.270 (0.447) 0.222 (0.368) 0.270 (0.447)
B-Ranker 0.256 (0.424) 0.319 (0.528) 0.274 (0.454) 0.323 (0.535)
B-Ranker+CR 0.262 (0.434) 0.319 (0.528) 0.278 (0.460) 0.325 (0.538)
B-Ranker+WN 0.257 (0.425) 0.320 (0.530) 0.275 (0.455) 0.325 (0.538)
Proposed 0.336 (0.56) 0.377 (0.624) 0.374 (0.619) 0.391 (0.647)
UpperBound 0.604 (1) 0.604 (1) 0.604 (1) 0.604 (1)

Table 4: Comparison of systems

B-Ranker+CR: a system has a re-ranker trained
with our MSA features and the causal relation
(CR) features used in Higashinaka and Isozaki
(2008). The CR features include binary fea-
tures indicating whether an answer candidate
contains a causal relation pattern, which causal
relation pattern the answer candidate has, and
whether the question-answer pair contains a
causal relation instance — cause in the answer,
effect in the question). We acquired causal
relation instances from our target corpus us-
ing the method from (De Saeger et al., 2009),
and exploited the top-100,000 causal relation
instances and the patterns that extracted them
for CR features. Note that these CR features
are introduced only for comparing our semantic
features with ones in Higashinaka and Isozaki
(2008) and they are not a part of our method.

B-Ranker+WN: its re-ranker is trained with our
MSA features and the WordNet features in Ver-
berne et al. (2010). The WordNet features in-
clude the percentage of the question terms and
their synonyms in WordNet synsets found in
an answer candidate and the semantic related-
ness score between a question and its answer
candidate, the average of the concept similar-
ity between each question term and all of the
answer terms by WordNet::Similarity (Peder-
sen et al., 2004). We used the Japanese Word-
Net 1.1 (Bond et al., 2009) for these WordNet
features. Note that the Japanese WordNet 1.1
has 93,834 Japanese words linked to 57,238
WordNet synsets, while the English WordNet
3.0 covers 155,287 words linked to 117,659
synsets. Due to this lower coverage, the Word-
Net features in Japanese may have a less power
for finding a correct answer than those in En-
glish used in Verberne et al. (2010).

Proposed: our proposed method. All of the MSA,
SWC and SA features are used for training our

re-ranker.

UpperBound: a system that ranks all n correct an-
swers as the top n results of the 20 answer can-
didates if there are any. This indicates the per-
formance upperbound in this experiment. The
relative performance of each system compared
to UpperBound is shown in parentheses.

The proposed method achieved the best perfor-
mance both in CV(Set1) and CV(Set1+Set2). Our
method shows a significant improvement (11.4–
15.2% in P@1 and 10.7–12.1% in MAP) over our
answer retrieval method, B-QA. Its improvement
over B-Ranker, B-Ranker+CR and B-Ranker+WN
(7.6–10% in P@1 and 5.7–6.6% in MAP) shows
the effectiveness of our proposed feature set over
the features used in previous works. Both B-
Ranker+CR and B-Ranker+WN did not show signif-
icant performance improvement over B-Ranker. At
least in our setting, the causal relation and WordNet
features did not prove effective. The performance
gap between B-Ranker and B-QA (3.4–5.2% in P@1
and 4.9–5.3% in MAP) suggests the effectiveness
of re-ranking. All systems consistently show better
performance in CV(Set1+Set2) than CV(Set1). This
suggests that training data built with why-questions
that does not reflect real-world distribution of why-
questions is useful in training re-rankers.

We investigate the contribution of each type of
features to the performance by removing one fea-
ture set from the all feature sets in training our re-
ranker. In this experiment, we split SA into SA@W
(features expressing words and their polarity) and
SA@P (features expressing phrases and their po-
larity) to investigate their contribution either. The
results are summarized in Table 5.

In Table 5, MSA+SWC+SA represents our pro-
posed method using all feature sets. The perfor-
mance gap between MSA+SWC+SA and the others
confirms that all the features contributed to a higher
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System CV(Set1) CV(Set1+Set2)
P@1 MAP P@1 MAP

SWC+SA 0.302 0.324 0.314 0.332
MSA+SWC 0.308 0.349 0.318 0.358
MSA+SA 0.300 0.352 0.314 0.364
MSA+SWC+SA@W 0.312 0.358 0.325 0.365
MSA+SWC+SA@P 0.323 0.369 0.358 0.384
MSA+SWC+SA 0.336 0.377 0.374 0.391
UpperBound 0.604 0.604 0.604 0.604

Table 5: Evaluation with different combination of feature
sets used in training our re-ranker

performance. The significant performance improve-
ment by SA (features from sentiment analysis) and
SWC (features from semantic word classes) (The
gap between MSA+SWC+SA and MSA+SWC was
2.8–6% and that between MSA+SWC+SA and
MSA+SA was 3.6%–6% in P@1) supports the hy-
pothesis for sentiment analysis and semantic word
classes in this paper.

Though the performance gap between
MSA+SWC+SA and MSA+SWC+SA@P
(1.3%–1.6% in P@1) shows that SA@W is
useful in training our re-ranker, we found that
MSA+SWC+SA@W made only 0.4–0.7% im-
provement over MSA+SWC. We believe that this
is mainly because SA@W and SWC are based on
semantic and sentiment information at the word
level, and these often capture a similar type of
information. For instance, disease names that are
grouped together into one class in SWC are typi-
cally classified as negative in SA@W. Therefore the
similarity in the information provided by SA@W
and SWC causes a classifier trained with both of
these features to obtain only a minor improvement
over a classifier using only one of the features.

To estimate the ideal-case performance of our
proposed method, we made another experiment by
using Set1 as training data for our re-ranker and
Set2 as test data for evaluating our proposed method.
Here, we assume a perfect answer retrieval module
that adds the source passage that was used for gener-
ating the original why-question in Set2 as a correct
answer to the set of existing answer candidates, giv-
ing 21 answer candidates. The performance of our
method in this setting was 64.8% in P@1 and 66.6%
in MAP. This evaluation result suggests that our re-
ranker can potentially perform with high precision
when at least one correct answer in answer candi-
dates is given by the answer retrieval module.

6 Related Work

In the QA literature, Higashinaka and Isozaki
(2008), Verberne et al. (2010), and Surdeanu et al.
(2011) are closest to our work. The first two deal
with why-questions, the last with how-questions.
Similar to our method, they use machine learn-
ing techniques to re-rank answer candidates to non-
factoid questions based on various combinations of
syntactic, semantic and other statistical features such
as the density and frequency of question terms in the
answer candidates and patterns for causal relations
in the answer candidates. Especially for why-QA,
Higashinaka and Isozaki (2008) used causal relation
features and Verberne et al. (2010) exploited Word-
Net features as a kind of semantic features for train-
ing their re-ranker, where we used these features, re-
spectively, for B-Ranker+CR and B-Ranker+WN in
our experiment.

Our work differs from the above approaches in
that we propose semantic word classes and senti-
ment analysis as a new type of semantic features,
and show their usefulness in why-QA. Sentiment
analysis has been used before on the slightly un-
usual task of opinion question answering, where the
system is asked to answer subjective opinion ques-
tions (Stoyanov et al., 2005; Dang, 2008; Li et al.,
2009). To the best of our knowledge though, no pre-
vious work has systematically explored the use of
sentiment analysis in a general QA setting beyond
opinion questions.

7 Conclusion

In this paper, we have explored the utility of senti-
ment analysis and semantic word classes for ranking
answer candidates to why-questions. We proposed a
set of semantic features that exploit sentiment anal-
ysis and semantic word classes obtained from large-
scale noun clustering, and used them to train an an-
swer candidate re-ranker. Through a series of exper-
iments on 850 why-questions, we showed that the
proposed semantic features were effective in identi-
fying correct answers, and our proposed method ob-
tained more than 15% improvement in precision of
its top answer (P@1) over our baseline, a state-of-
the-art IR based QA system. We plan to use new se-
mantic knowledge such as semantic orientation, ex-
citatory or inhibitory, proposed in Hashimoto et al.
(2012) for improving why-QA.
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Abstract

The Linked Data initiative comprises struc-
tured databases in the Semantic-Web data
model RDF. Exploring this heterogeneous
data by structured query languages is tedious
and error-prone even for skilled users. To ease
the task, this paper presents a methodology
for translating natural language questions into
structured SPARQL queries over linked-data
sources.

Our method is based on an integer linear pro-
gram to solve several disambiguation tasks
jointly: the segmentation of questions into
phrases; the mapping of phrases to semantic
entities, classes, and relations; and the con-
struction of SPARQL triple patterns. Our so-
lution harnesses the rich type system provided
by knowledge bases in the web of linked data,
to constrain our semantic-coherence objective
function. We present experiments on both the
question translation and the resulting query
answering.

1 Introduction

1.1 Motivation
Recently, very large, structured, and semantically
rich knowledge bases have become available. Ex-
amples are Yago (Suchanek et al., 2007), DBpe-
dia (Auer et al., 2007), and Freebase (Bollacker et
al., 2008). DBpedia forms the nucleus of the Web of
Linked Data (Heath and Bizer, 2011), which inter-
connects hundreds of RDF data sources with a total
of 30 billion subject-property-object (SPO) triples.

The diversity of linked-data sources and their high
heterogeneity make it difficult for humans to search

and discover relevant information. As linked data
is in RDF format, the standard approach would be
to run structured queries in triple-pattern-based lan-
guages like SPARQL, but only expert programmers
are able to precisely specify their information needs
and cope with the high heterogeneity of the data
(and absence or very high complexity of schema in-
formation). For less initiated users the only option
to query this rich data is by keyword search (e.g.,
via services like sig.ma (Tummarello et al., 2010)).
None of these approaches is satisfactory. Instead, the
by far most convenient approach would be to search
in knowledge bases and the Web of linked data by
means of natural-language questions.

As an example, consider a quiz question like
“Which female actor played in Casablanca and is
married to a writer who was born in Rome?”.
The answer could be found by querying sev-
eral linked data sources together, like the IMDB-
style LinkedMDB movie database and the DB-
pedia knowledge base, exploiting that there are
entity-level sameAs links between these collections.
One can think of different formulations of the
example question, such as “Which actress from
Casablanca is married to a writer from Rome?”. A
possible SPARQL formulation, assuming a user fa-
miliar with the schema of the underlying knowl-
edge base(s), could consist of the following six
triple patterns (joined by shared-variable bind-
ings): ?x hasGender female, ?x isa actor, ?x

actedIn Casablanca (film), ?x marriedTo ?w,
?w isa writer, ?w bornIn Rome. This complex
query, which involves multiple joins, would yield
good results, but it is difficult for the user to come
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up with the precise choices for relations, classes, and
entities. This would require familiarity with the con-
tents of the knowledge base, which no average user
is expected to have. Our goal is to automatically cre-
ate such structured queries by mapping the user’s
question into this representation. Keyword search is
usually not a viable alternative when the information
need involves joining multiple triples to construct
the final result, notwithstanding good attempts like
that of Pound et al. (2010). In the example, the obvi-
ous keyword query “female actress Casablanca mar-
ried writer born Rome” lacks a clear specification of
the relations among the different entities.

1.2 Problem

Given a natural language question qNL and a knowl-
edge base KB, our goal is to translate qNL into a
formal query qFL that captures the information need
expressed by qNL.

We focus on input questions that put the em-
phasis on entities, classes, and relations between
them. We do not consider aggregations (counting,
max/min, etc.) and negations. As a result, we gener-
ate structured queries of the form known as conjunc-
tive queries or select-project-join queries in database
terminology. Our target language is SPARQL 1.0,
where the above focus leads to queries that consist of
multiple triple patterns, that is, conjunctions of SPO
search conditions. We do not use any pre-existing
query templates, but generate queries from scratch
as they involve a variable number of joins with a-
priori unknown join structure.

A major challenge is in the ambiguity of
the phrases occurring in a natural-language ques-
tion. Phrases can denote entities (e.g., the city
of Casablanca or the movie Casablanca), classes
(e.g., actresses, movies, married people), or rela-
tions/properties (e.g., marriedTo between people,
played between people and movies). A priori, we do
not know if a phrase should be mapped to an entity,
a class, or a relation. In fact, some phrases may de-
note any of these three kinds of targets. For example,
a phrase like “wrote score for” in a question about
film music composers, could map to the composer-
film relation wroteSoundtrackForFilm, to the class
of movieSoundtracks (a subclass of music pieces),
or to an entity like the movie “The Score”. Depend-
ing on the choice, we may arrive at a structurally

good query (with triple patterns that can actually
be joined) or at a meaningless and non-executable
query (with disconnected triple patterns). This gen-
eralized disambiguation problem is much more chal-
lenging than the more focused task of named entity
disambiguation (NED). It is also different from gen-
eral word sense disambiguation (WSD), which fo-
cuses on the meaning of individual words (e.g., map-
ping them to WordNet synsets).

1.3 Contribution

In our approach, we introduce new elements towards
making translation of questions into SPARQL triple
patterns more expressive and robust. Most impor-
tantly, we solve the disambiguation and mapping
tasks jointly, by encoding them into a comprehen-
sive integer linear program (ILP): the segmentation
of questions into meaningful phrases, the mapping
of phrases to semantic entities, classes, and rela-
tions, and the construction of SPARQL triple pat-
terns. The ILP harnesses the richness of large knowl-
edge bases like Yago2 (Hoffart et al., 2011b), which
has information not only about entities and relations,
but also about surface names and textual patterns
by which web sources refer to them. For example,
Yago2 knows that “Casablanca” can refer to the city
or the film, and “played in” is a pattern that can de-
note the actedIn relation. In addition, we can lever-
age the rich type system of semantic classes. For ex-
ample, knowing that Casablanca is a film, for trans-
lating “played in” we can focus on relations with a
type signature whose range includes films, as op-
posed to sports teams, for example. Such informa-
tion is encoded in judiciously designed constraints
for the ILP. Although we intensively harness Yago2,
our approach does not depend on a specific choice of
knowledge base or language resource for type infor-
mation and phrase/name dictionaries. Other knowl-
edge bases such as DBpedia can be easily plugged
in.

Based on these ideas, we have developed a frame-
work and system, called DEANNA (DEep Answers
for maNy Naturally Asked questions), that com-
prises a full suite of components for question de-
composition, mapping constituents into the seman-
tic concept space, generating alternative candidate
mappings, and computing a coherent mapping of all
constituents into a set of SPARQL triple patterns that
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can be directly executed on one or more linked data
sources.

2 Background
We use the Yago2 knowledge base, with its rich
type system, as a semantic backbone. Yago2 is com-
posed of instances of binary relations derived from
Wikipedia and WordNet. The instances, called facts,
provide both ontological information and instance
data. Figure 1 shows sample facts from Yago2. Each
fact is composed of semantic items that can be di-
vided into relations, entities, and classes. Entities
and classes together are referred to as concepts.

Subject Predicate Object
film subclassOfproduction
Casablanca (film)type film
“Casablanca” means Casablanca (film)
“Casablanca” means Casablanca, Morocco
Ingrid Bergman actedIn Casablanca (film)

Figure 1: Sample knowledge base

Examples of relations are type, subclassOf, and
actedIn. Each relation has a type signature: classes
for the relation’s domain and range. Classes, such as
person and film group entities. Entities are repre-
sented in canonical form such as Ingrid Bergman

and Casablanca (film). A special type of entities
are literals, such as strings, numbers, and dates.

3 Framework
Given a natural language question, Figure 2 shows
the tasks DEANNA performs to translate a ques-
tion into a structured query. The first three steps
prepare the input for constructing a disambiguation
graph for mapping the phrases in a question onto
entities, classes, and relations, in a coherent man-
ner. The fourth step formulates this generalized dis-
ambiguation problem as an ILP with complex con-
straints and computes the best solution using an
ILP solver. Finally, the fifth and sixth step together
use the disambiguated mapping to construct an exe-
cutable SPARQL query.

A question sentence is a sequence of tokens,
qNL = (t0, t1, ..., tn). A phrase is a contiguous sub-
sequence of tokens (ti, ti+1, ..., ti+l) ⊆ qNL, 0 ≤
i, 0 ≤ l ≤ n. The input question is fed into the fol-
lowing pipeline of six steps:
1. Phrase detection. Phrases are detected that
potentially correspond to semantic items such as

‘Who’, ‘played in’, ‘movie’ and ‘Casablanca’.
2. Phrase mapping to semantic items. This in-
cludes finding that the phrase ‘played in’ can ei-
ther refer to the semantic relation actedIn or to
playedForTeam and that the phrase ‘Casablanca’
can potentially refer to Casablanca (film) or
Casablanca, Morocco. This step merely constructs
a candidate space for the mapping. The actual dis-
ambiguation is addressed by step 4, discussed below.
3. Q-unit generation. Intuitively, a q-unit is a triple
composed of phrases. Their generation and role will
be discussed in detail in the next section.
4. Joint disambiguation, where the ambiguities in
the phrase-to-semantic-item mapping are resolved.
This entails resolving the ambiguity in phrase bor-
ders, and above all, choosing the best fitting can-
didates from the semantic space of entities, classes,
and relations. Here, we determine for our running
example that ‘played in’ refers to the semantic re-
lation actedIn and not to playedForTeam and the
phrase ‘Casablanca’ refers to Casablanca (film)

and not Casablanca, Morocco.
5. Semantic items grouping to form semantic
triples. For example, we determine that the relation
marriedTo connects person referred to by ‘Who’
and writer to form the semantic triple person

marriedTo writer. This is done via q-units.
6. Query generation. For SPARQL queries, seman-
tic triples such as person marriedTo writer have
to be mapped to suitable triple patterns with appro-
priate join conditions expressed through common
variables: ?x type person, ?x marriedTo ?w, and
?w type writer for the example.

3.1 Phrase Detection

A detected phrase p is a pair < Toks, l > where
Toks is a phrase and l is a label, l ∈
{concept, relation}, indicating whether a phrase is
a relation phrase or a concept phrase. Pr is the set of
all detected relation phrases and Pc is the set of all
detected concept phrases.

One special type of detected relation phrase is
the null phrase, where no relation is explicitly men-
tioned, but can be induced. The most prominent ex-
ample of this is the case of adjectives, such as ‘Aus-
tralian movie’, where we know there is a relation
being expressed between ‘Australia’ and ‘movie’.

We use multiple detectors for detecting phrases of
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Figure 2: Architecture of DEANNA.

different types. For concept detection, we use a de-
tector that works against a phrase-concept dictionary
which looks as follows:
{‘Rome’,‘eternal city’} → Rome

{‘Casablanca’} → Casablanca (film)

We experimented with using third-party named en-
tity recognizers but the results were not satisfactory.
This dictionary was mostly constructed as part of
the knowledge base, independently of the question-
to-query translation task in the form of instances of
the means relation in Yago2, an example of which is
shown in Figure 1

For relation detection, we experimented with var-
ious approaches. We mainly rely on a relation detec-
tor based on ReVerb (Fader et al., 2011) with addi-
tional POS tag patterns, in addition to our own which
looks for patterns in dependency parses.

3.2 Phrase Mapping

After phrases are detected, each phrase is mapped
to a set of semantic items. The mapping of concept
phrases also relies on the phrase-concept dictionary.

To map relation phrases, we rely on a corpus of
textual patterns to relation mappings of the form:

{‘play’,‘star in’,‘act’,‘leading role’} → actedIn

{‘married’, ‘spouse’,‘wife’} → marriedTo

Distinct phrase occurrences will map to different
semantic item instances. We discuss why this is im-
portant when we discuss the construction of the dis-
ambiguation graph and variable assignment in the
structured query.

3.3 Dependency Parsing & Q-Unit Generation

Dependency parsing identifies triples of to-
kens, or triploids, 〈trel, targ1, targ2〉, where
trel, targ1, targ2 ∈ qNL are seeds for phrases, with
the triploid acting as a seed for a potential SPARQL
triple pattern. Here, trel is the seed for the relation
phrase, while targ1 and targ2 are seeds for the two
arguments. At this point, there is no attempt to
assign subject/object roles to the arguments.

Triploids are collected by looking for specific de-
pendency patterns in dependency graphs (de Marn-
effe et al., 2006). The most prominent pattern we
look for is a verb and its arguments. Other patterns
include adjectives and their arguments, preposition-
ally modified tokens and objects of prepositions.

By combining triploids with detected phrases, we
obtain q-units. A q-unit is a triple of sets of phrases,
〈{prel ∈ Pr}, {parg1 ∈ Pc}, {parg2 ∈ Pc}〉, where
trel ∈ prel and similarly for arg1 and arg2. Concep-
tually, one can view a q-unit as a placeholder node
with three sets of edges, each connecting the same
q-node to a phrase that corresponds to a relation or
concept phrase in the same q-unit. This notion of
nodes and edges will be made more concrete when
we present our disambiguation graph construction.

3.4 Disambiguation of Phrase Mappings

The core contribution of this paper is a framework
for disambiguating phrases into semantic items –
covering relations, classes, and entities in a unified
manner. This can be seen as a joint task combining
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named entity disambiguation for entities, word sense
disambiguation for classes (common nouns), and re-
lation extraction. The next section presents the dis-
ambiguation framework in detail.

3.5 Query Generation

Once phrases are mapped to unique semantic items,
we proceed to generate queries in two steps. First,
semantic items are grouped into triples. This is done
using the triploids generated earlier. The power of
using a knowledge base is that we have a rich type
system that allows us to tell if two semantic items
are compatible or not. Each relation has a type sig-
nature and we check whether the candidate items are
compatible with the signature.

We did not assign subject/object roles in triploids
and q-units because a natural language relation
phrase might express the inverse of a semantic rela-
tion, e.g., the natural language expression ‘directed
by’ and the relation isDirectorOf with respect to
the movies domain are inverses of each other. There-
fore, we check which assignment of arg1 and arg2
is compatible with the semantic relation. If both ar-
rangements are compatible, then we give preference
to the assignment given by the dependency parsers.

Once semantic items are grouped into triples, it
is an easy task to expand them to SPARQL triple
patterns. This is done by replacing each seman-
tic class with a distinct type-constrained variable.
Note that this is the reason why each distinct phrase
maps to a distinct instance of a semantic class, to
ensure correct variable assignment. This becomes
clear when we consider the question “Which singer
is married to a singer?”, which requires two distinct
variables each constrained to bind to an entity of
type singer.

4 Joint Disambiguation

The goal of the disambiguation step is to compute
a partial mapping of phrases onto semantic items,
such that each phrase is assigned to at most one
semantic item. This step also resolves the phrase-
boundary ambiguity, by enforcing that only non-
overlapping phrases are mapped. As the result of
disambiguating one phrase can influence the map-
ping of other phrases, we consider all phrases jointly
in one big disambiguation task.

In the following, we construct a disambiguation
graph that encodes all possible mappings. We im-
pose a variety of complex constraints (mutual ex-
clusion among overlapping phrases, type constraints
among the selected semantic items, etc.), and define
an objective function that aims to maximize the joint
quality of the mapping. The graph construction it-
self may resemble similar models used in NED (e.g.,
(Milne and Witten, 2008; Kulkarni et al., 2009; Hof-
fart et al., 2011a)). Recall, however, that our task is
more complex because we jointly consider entities,
classes, and relations in the candidate space of pos-
sible mappings. Because of this complication and
to capture our complex constraints, we do not em-
ploy graph algorithms, but model the general disam-
biguation problem as an ILP.

4.1 Disambiguation Graph
Joint disambiguation takes place over a disambigua-
tion graph DG = (V,E), where V = Vs ∪ Vp ∪ Vq

and E = Esim ∪ Ecoh ∪ Eq, where:
• Vs is the set of semantic items, vs ∈ Vs is an

s-node.
• Vp is the set of phrases, vp ∈ Vp is called a p-

node. We denote the set of p-nodes correspond-
ing to relation phrases by Vrp and the set of p-
nodes corresponding to concept phrases by Vrc .
• Vq is a set of placeholder nodes for q–units,

called q-nodes. They represent phrase triples.
• Esim ⊆ Vp × Vs is a set of weighted similarity

edges that capture the strength of the mapping
of a phrase to a semantic item.
• Ecoh ⊆ Vs × Vs is a set of weighted coherence

edges that capture the semantic coherence be-
tween two semantic items. Semantic coherence
is discussed in more detail later in this section.
• Eq ⊆ Vq×Vp×d, where d ∈ {rel, arg1, arg2}

is a q-edge. Each such edge connects a place-
holder q-node to a p-node with a specific role
as a relation, or one of the two arguments. A
q-unit, as presented earlier, can be seen as a q-
node along with its outgoing q-edges.

Figure 3 shows the disambiguation graph for our
running example (excluding coherence edges be-
tween s-nodes).

4.2 Edge Weights
We next describe how the weights on similarity
edges and semantic coherence edges are defined.
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Figure 3: Disambiguation graph for the running example.

4.2.1 Semantic Coherence
Semantic coherence, Cohsem, captures to what

extent two semantic items occur in the same context.
This is different from semantic similarity (Simsem),
which is usually evaluated using the distance be-
tween nodes in a taxonomy (Resnik, 1995). While
we expect Simsem(George Bush, Woody Allen) to
be higher than Simsem(Woody Allen, Terminator)
we would like Cohsem(Woody Allen, Terminator),
both of which are from the entertainment domain, to
be higher than Cohsem(George Bush, Woody Allen).

For Yago2, we characterize an entity e by its in-
links InLinks(e): the set of Yago2 entities whose
corresponding Wikipedia pages link to the entity.

To be able to compare semantic items of different
semantic types (entities, relations, and classes), we
need to extend this to classes and relations. For class
c with entities e, its inlinks are defined as follows:

InLinks(c) =
⋃

e∈c Inlinks(e)

For relations, we only consider those that map en-
tities to entities (e.g. actedIn, produced), for which
we define the set of inlinks as follows:
InLinks(r) =

⋃
(e1,e2)∈r(InLinks(e1) ∩ InLinks(e2))

The intuition behind this is that when the two argu-
ments of an instance of the relation co-occur, then
the relation is being expressed.

We define the semantic coherence (Cohsem) be-
tween two semantic items s1 and s2 as the Jaccard
coefficient of their sets of inlinks.

4.2.2 Similarity Weights
Similarity weights are computed differently for

entities, classes, and relations. For entities, we use a
normalized prior score based on how often a phrase
refers to a certain entity in Wikipedia. For classes,
we use a normalized prior that reflects the number
of members in a class. Finally, for relations, similar-
ity reflects the maximum n-gram similarity between
the phrase and any of the relation’s surface forms.
We use Lucene for indexing and searching the rela-
tion surface forms.

4.3 Disambiguation Graph Processing

The result of disambiguation is a subgraph of the
disambiguation graph, yielding the most coherent
mappings. We employ an ILP to this end. Before
describing our ILP, we state some necessary defini-
tions:

• Triple dimensions: d ∈ {rel, arg1, arg2}
• Tokens: T = {t0, t1, ..., tn}.
• Phrases: P = {p0, p1, ..., pk}.
• Semantic items: S = {s0, s1, ..., sl}.
• Token occurrences: P(t) = {p ∈ P | t ∈ p}.
• Xi ∈ {0, 1} indicates if p-node i is selected.
• Yij ∈ {0, 1} indicates if p-node i maps to s-

node j.
• Zkl ∈ {0, 1} indicates if s-nodes k, l are both

selected so that their coherence edge matters.
• Qmnd ∈ {0, 1} indicates if the q-edge between
q-node m and p-node n for d is selected.
• Cj , Ej and Rj are {0, 1} constants indicating

if s-node j is a class, entity, or relation, resp.
• wij is the weight for a p–s similarity edge.
• vkl is the weight for an s–s semantic coherence

edge.
• trc ∈ {0, 1} indicates if the relation s-node r is

type-compatible with the concept s-node c.

Given the above definitions, our objective func-
tion is

maximize α
∑

i,j wijYij + β
∑

k,l vklZkl+

γ
∑

m,n,dQmnd
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subject to the following constraints:
1. A p-node can be assigned to one s-node at most:∑

j Yij ≤ 1, ∀i

2. If a p-s similarity edge is chosen, then the respec-
tive p-node must be chosen:

Yij ≤ Xi, ∀j

3. If s-nodes k and l are chosen (Zkl = 1), then there
are p-nodes mapping to each of the s-nodes k and l
( Yik = 1 for some i and Yjl = 1 for some j):

Zkl ≤
∑

i Yik and Zkl ≤
∑

j Yjl

4. No token can appear as part of two phrases:∑
i∈P(t)Xi ≤ 1, ∀t ∈ T

5. At most one q-edge is selected for a dimension:∑
nQmnd ≤ 1, ∀m, d

6. If the q-edge mnd is chosen (Qmnd = 1) then
p-node n must be selected:

Qmnd ≤ Xn, ∀m, d

7. Each semantic triple should include a relation:

Er ≥ Qmn′d +Xn′ + Yn′r − 2 ∀m,n′, r, d = rel

8. Each triple should have at least one class:

Cc1 + Cc2 ≥ Qmn′′d1 +Xn′′ + Yn′′′c1+
Qmn′′′d2 +Xn′′′ + Yn′′′c2 − 5,

∀m,n′′, n′′′, r, c1, c2, d1 = arg1, d2 = arg2

This is not invoked for existential questions that
return Boolean answers and are translated to ASK

queries in SPARQL. An example is the question
“Did Tom Cruise act in Top Gun?”, which can be
translated to ASK {Tom Cruise actedIn Top Gun}.
9. Type constraints are respected (through q-edges):

trc1 + trc2 ≥ Qmn′d1 +Xn′ + Yn′r+
Qmn′′d2 +Xn′′ + Yn′′′c1+
Qmn′′′d3 +Xn′′′ + Yn′′′c2 − 7

∀m,n′, n′′, n′′′, r, c1, c2,
d1 = rel, d2 = arg1, d3 = arg2

The above is a sophisticated ILP, and most likely
NP-hard. However, even with ten thousands of vari-
ables it is within the regime of modern ILP solvers.
In our experiments, we used Gurobi (Gur, 2011), and
achieved run-times – typically of a few seconds.

q1

q2

q3

a writer

Casablanca

played in

Who

is married to

was born

Rome

c:writer

r:bornIn

r:Rome

e:Casablanca

r:actedIn

c:person

r:marriedTo

q-nodes p-nodes s-nodes

Figure 4: Computed subgraph for the running example.

Figure 4 shows the resulting subgraph for the dis-
ambiguation graph of Figure 3. Note how common
p-nodes between q-units capture joins.

5 Evaluation

5.1 Datasets

Our experiments are based on two collections of
questions: the QALD-1 task for question answer-
ing over linked data (QAL, 2011) and a collection
of questions used in (Elbassuoni et al., 2011; El-
bassuoni et al., 2009) in the context of the NAGA
project, for informative ranking of SPARQL query
answers (Elbassuoni et al. (2009) evaluated the
SPARQL queries, but the underlying questions are
formulated in natural language.) The NAGA collec-
tion is based on linking data from IMDB with the
Yago2 knowledge base. This is an interesting linked-
data case: IMDB provides data about movies, actors,
directors, and movie plots (in the form of descrip-
tive keywords and phrases); Yago2 adds semantic
types and relational facts for the participating enti-
ties. Yago2 provides nearly 3 million concepts and
100 relations, of which 41 lie within the scope of
our framework.

Typical example questions for these two col-
lections are: “Which software has been published
by Mean Hamster Software?” for QALD-1, and
“Which director has won the Academy Award for
Best director and is married to an actress that has
won the Academy Award for Best Actress?” for
NAGA. For both collections, some questions are
out-of-scope for our setting, because they mention
entities or relations that are not available in the un-
derlying datasets, contain date or time comparisons,
or involve aggregation such as counting. After re-
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moving these questions, our test set consists of 27
QALD-1 training questions out of a total of 50 and
44 NAGA questions, out of a total of 87. We used
the 19 questions from the QALD-1 test set that are
within the scope of our method for tuning the hyper-
parameters (α, β, γ) in the ILP objective function.

5.2 Evaluation Metrics
We evaluated the output of DEANNA at three
stages in the processing pipeline: a) after the dis-
ambiguation of phrases, b) after the generation of
the SPARQL query, and c) after obtaining answers
from the underlying linked-data sources. This way,
we could obtain insights into our building blocks,
in addition to assessing the end-to-end performance.
In particular, we could assess the goodness of the
question-to-query translation independently of the
actual answer quality which may depend on partic-
ularities of the underlying datasets (e.g., slight mis-
matches between query terminology and the names
in the data.)

At each of the three stages, the output was shown
to two human assessors who judged whether an out-
put item was good or not. If the two were in dis-
agreement, then a third person resolved the judg-
ment.

For the disambiguation stage, the judges looked
at each q-node/s-node pair, in the context of the
question and the underlying data schemas, and de-
termined whether the mapping was correct or not
and whether any expected mappings were missing.
For the query-generation stage, the judges looked
at each triple pattern and determined whether the
pattern was meaningful for the question or not and
whether any expected triple pattern was missing.
Note that, because our approach does not use any
query templates, the same question may generate se-
mantically equivalent queries that differ widely in
terms of their structure. Hence, we rely on our eval-
uation metrics that are based on triple patterns, as
there is no gold-standard query for a given ques-
tion. For the query-answering stage, the judges were
asked to identify if the result sets for the generated
queries are satisfactory.

With these assessments, we computed over-
all quality measures by both micro-averaging and
macro-averaging. Micro-averaging aggregates over
all assessed items (e.g., q-node/s-node pairs or triple

patterns) regardless of the questions to which they
belong. Macro-averaging first aggregates the items
for the same question, and then averages the quality
measure over all questions.

For a question q and item set s in one of the stages
of evaluation, let correct(q, s) be the number of cor-
rect items in s, ideal(q) be the size of the ideal item
set and retrieved(q, s) be the number of retrieved
items, we define coverage and precision as follows:

cov(q, s) = correct(q, s)/ideal(q)

prec(q, s) = correct(q, s)/retrieved(q, s).

5.3 Results & Discussion
5.3.1 Disambiguation

Table 1 shows the results for disambiguation in
terms of macro and micro coverage and precision.
For both datasets, coverage is high as few mappings
are missing. We obtain perfect precision for QALD-
1 as no mapping that we generate is incorrect, while
for NAGA we generate few incorrect mappings.

5.3.2 Query Generation
Table 2 shows the same metrics for the generated

triple patterns. The results are similar to those for
disambiguation. Missing or incorrect triple patterns
can be attributed to (i) incorrect mappings in the dis-
ambiguation stage or (ii) incorrect detection of de-
pendencies between phrases despite having the cor-
rect mappings.

5.3.3 Question Answering
Table 3 shows the results for query answering.

Here, we attempt to generate answers to questions
by executing the generated queries over the datasets.
The table shows the number of questions for which
the system successfully generated SPARQL queries
(#queries), and among those, how many resulted
in satisfactory answers as judged by our evalua-
tors (#satisfactory). Answers were considered un-
satisfactory when: 1) the generated SPARQL query
was wrong, 2) the result set was empty due to the
incompleteness of the underlying knowledge base,
or 3) a small fraction of the result set was relevant
to the question. For both sets of questions, most of
the queries that were perceived unsatisfactory were
ones that returned no answers. Table 4 shows a
set of example QALD questions, the corresponding
SPARQL queries and sample answers.
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Benchmark QALD-1 NAGA
covmacro 0.973 0.934
precmacro 1.000 0.934
covmicro 0.963 0.945
precmicro 1.000 0.941

Table 1: Disambiguation

Benchmark QALD-1 NAGA
covmacro 0.975 0.894
precmacro 1.000 0.941
covmicro 0.956 0.847
precmicro 1.000 0.906

Table 2: Query generation

Benchmark QALD-1 NAGA
#questions 27 44
#queries 20 41
#satisfactory 10 15
#relaxed +3 +3

Table 3: Query answering

Question Generated Query Sample Answers
1. Who was the wife of President

Lincoln?
?x marriedTo Abraham Lincoln .

?x type person
Mary Todd Lincoln

2. In which films did Julia Roberts
as well as Richard Gere play?

?x type movie . Richard Gere actedIn ?x .

Julia Roberts actedIn ?x

Runaway Bride

Pretty Woman

3. Which actors were born in
Germany?

?x type actor . ?x bornIn Germany NONE

Table 4: Example questions, the generated SPARQL queries and their answers

Queries that produced no answers, such as the
third query in Table 4 were further relaxed using an
incarnation of the techniques described in (Elbas-
suoni et al., 2009), by retaining the triple patterns
expressing type constraints and relaxing all other
triple patterns. Relaxing a triple pattern was done
by replacing all entities with variables and casting
entity mentions into keywords that are attached to
the relaxed triple pattern. For example, the QALD
question “Which actors were born in Germany?”
was translated into the following SPARQL query:
?x type actor . ?x bornIn Germany which pro-
duced no answers when run over the Yago2 knowl-
edge base since the relation bornIn relates peo-
ple to cities and not countries in Yago2. The
query was then relaxed into: ?x type actor . ?x
bornIn ?z[Germany]. This relaxed (and keyword-
augmented) triple-pattern query was then processed
the same way as triple-pattern queries without any
keywords. The results of such query were then
ranked based on how well they match the keyword
conditions specified in the relaxed query using the
ranking model in (Elbassuoni et al., 2009). Using
this technique, the top ranked results for the relaxed
query were all actors born in German cities as shown
in Table 5.

After relaxation, the judges again assessed the re-
sults of the relaxed queries and determined whether
they were satisfactory or not. The number of addi-
tional queries that obtained satisfactory answers af-
ter relaxation are shown under #relaxed in Table 3.

The evaluation data, in addition to a demonstra-
tion of our system (Yahya et al., 2012), can be found
at http://mpi-inf.mpg.de/yago-naga/deanna/.

6 Related Work
Question answering has a long history in NLP and
IR research. The Web and Wikipedia have proved to
be a valuable resource for answering fact-oriented
questions. State-of-the-art methods (Hirschman and
Gaizauskas, 2001; Kwok et al., 2001; Zheng, 2002;
Katz et al., 2007; Dang et al., 2007; Voorhees, 2003)
cast the user’s question into a keyword query to a
Web search engine (perhaps with phrases for loca-
tion and person names or other proper nouns). Key
to finding good results is to retrieve and rank sen-
tences or short passages that contain all or most key-
words and are likely to yield good answers. Together
with trained classifiers for the question type (and
thus the desired answer type), this methodology per-
forms fairly well for both factoid and list questions.

IBM’s Watson project (Ferrucci et al., 2010)
demonstrated a new kind of deep QA. A key ele-
ment in Watson’s approach is to decompose com-
plex questions into several cues and sub-cues,
with the aim of generating answers from matches
for the various cues (tapping into the Web and
Wikipedia). Knowledge bases like DBpedia (Auer
et al., 2007), Freebase (Bollacker et al., 2008), and
Yago (Suchanek et al., 2007)) are used for both an-
swering parts of questions that can be translated to
structured form (Chu-Carroll et al., 2012) and type-
checking possible answer candidates and thus filter-
ing out spurious results (Kalyanpur et al., 2011).

The recent QALD-1 initiative (QAL, 2011) pro-
posed a benchmark task to translate questions into
SPARQL queries over linked-data sources like DB-
pedia and MusicBrainz. FREyA (Damljanovic et
al., 2011), the best performing system, relies on
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Q: ?x type actor . ?x wasBornIn ?z[Germany]

Martin Lawrence type actor . Martin Lawrence wasBornIn Frankfurt am Main

Robert Schwentke type actor . Robert Schwentke wasBornIn Stuttgart

Willy Millowitsch type actor . Willy Millowitsch wasBornIn Cologne

Jerry Zaks type actor . Jerry Zaks wasBornIn Stuttgart

Table 5: Top-4 results for the QALD question “Which actors were born in Germany?” after relaxation

interaction with the user to interpret the question.
Earlier work on mapping questions into structured
queries includes the work by Frank et al. (2007) and
Unger and Cimiano (2011). Frank et al. (2007) used
lexical-conceptual templates for query generation.
However, this work did not address the crucial issue
of disambiguating the constituents of the question.
In Pythia, Unger and Cimiano (2011) relied on an
ontology-driven grammar for the question language
so that questions could be directly mapped onto the
vocabulary of the underlying ontology. Such gram-
mars are obviously hard to craft for very large, com-
plex, and evolving knowledge bases. Nalix is an at-
tempt to bring question answering to XML data (Li,
Yang, and Jagadish, 2007) by mapping questions to
XQuery expressions, relying on human interaction
to resolve possible ambiguity.

Very recently, Unger et al. (2012) developed a
template-based approach based on Pythia, where
questions are automatically mapped to structured
queries in a two step process. First, a set of query
templates are generated for a question, independent
of the knowledge base, determining the structure of
the query. After that, each template is instantiated
with semantic items from the knowledge base. This
performs reasonably well for the QALD-1 bench-
mark: out of 50 test questions, 34 could be mapped,
and 19 were correctly answered.

Efforts on user-friendly exploration of struc-
tured data include keyword search over relational
databases (Bhalotia et al., 2002) and structured key-
word search (Pound et al., 2010). The latter is a com-
promise between full natural language and struc-
tured queries, where the user provides the structure
and the system takes care of the disambiguation of
keyword phrases.

Our joint disambiguation method was inspired
by recent work on NED (Milne and Witten, 2008;
Kulkarni et al., 2009; Hoffart et al., 2011a) and
WSD (Navigli, 2009). In contrast to this prior work
on related problems, our graph construction and

constraints are more complex, as we address the
joint mapping of arbitrary phrases onto entities,
classes, or relations. Moreover, instead of graph al-
gorithms or factor-graph learning, we use an ILP for
solving the ambiguity problem. This way, we can ac-
commodate expressive constraints, while being able
to disambiguate all phrases in a few seconds.

DEANNA uses dictionaries of names and phrases
for entities, classes, and relations. Spitkovsky and
Chang (2012) recently released a huge dictionary of
pairs of phrases and Wikipedia links, derived from
Google’s Web index. For relations, Nakashole et al.
(2012) released PATTY, a large taxonomy of pat-
terns with semantic types.

7 Conclusions and Future Work

We presented a method for translating natural-
language questions into structured queries. The nov-
elty of this method lies in modeling several map-
ping stages as a joint ILP problem. We harness type
signatures and other information from large-scale
knowledge bases. Although our model, in princi-
ple, leads to high combinatorial complexity, we ob-
served that the Gurobi solver could handle our ju-
diciously designed ILP very efficiently. Our experi-
mental studies showed very high precision and good
coverage of the query translation, and good results
in the actual question answers.

Future work includes relaxing some of the limita-
tions that our current approach still has. First, ques-
tions with aggregations cannot be handled at this
point. Second, queries sometimes return empty an-
swers although they perfectly capture the original
question, but the underlying data sources are incom-
plete or represent the relevant information in an un-
expected manner. We plan to extend our approach of
combining structured data with textual descriptions,
and generate queries that combine structured search
predicates with keyword or phrase matching.
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Abstract

This paper proposes to generate appropriate
answers for opinion questions about prod-
ucts by exploiting the hierarchical organiza-
tion of consumer reviews. The hierarchy orga-
nizes product aspects as nodes following their
parent-child relations. For each aspect, the re-
views and corresponding opinions on this as-
pect are stored. We develop a new framework
for opinion Questions Answering, which en-
ables accurate question analysis and effective
answer generation by making use the hierar-
chy. In particular, we first identify the (ex-
plicit/implicit) product aspects asked in the
questions and their sub-aspects by referring
to the hierarchy. We then retrieve the corre-
sponding review fragments relevant to the as-
pects from the hierarchy. In order to gener-
ate appropriate answers from the review frag-
ments, we develop a multi-criteria optimiza-
tion approach for answer generation by simul-
taneously taking into account review salience,
coherence, diversity, and parent-child rela-
tions among the aspects. We conduct eval-
uations on 11 popular products in four do-
mains. The evaluated corpus contains 70,359
consumer reviews and 220 questions on these
products. Experimental results demonstrate
the effectiveness of our approach.

1 Introduction

With the rapid development of E-commerce, most
retail websites encourage consumers to post reviews
to express their opinions on the products. For exam-
ple, the review “The battery of Nokia N95 is amaz-
ing.” reveals positive opinion on the aspect “bat-

Figure 1: Overview of product opinion-QA framework

tery” of product Nokia N95. An aspect here refers
to a component or an attribute of a certain prod-
uct. Numerous consumer reviews are now available
online, and these reviews contain rich opinionated
information on various aspects of products. They
are naturally a valuable resource for answering opin-
ion questions about products, such as “How do peo-
ple think about the battery of Nokia N95?” Opin-
ion Question Answering (opinion-QA) on products
seeks to uncover consumers’ thinking and feeling
about the products or aspects of products. It is dif-
ferent from traditional factual QA, where the ques-
tions ask for the fact, such as “Where is the capital
of United States?” and the answer is “Washington,
D.C.”

For a product opinionated question, the answer
should not be just a best answer. It should reflect the
opinions of various segments of users, and incorpo-

391



rate both positive and negative viewpoints. Hence
the answer should be a summarization of public
opinions and comments on the product or specific
aspect asked in the question (Jiang et al., 2010).
In addition, it should also include public opinions
and comments on the sub-aspects. Such answers
would help users to understand the inherent reasons
of the opinions on the asked aspect. For exam-
ple, the question “What do people think the cam-
era of Nokia 5800?” asks for public positive and
negative opinions on the aspect “camera” of prod-
uct “Nokia 5800.” The summarization of opinions
on the sub-aspects such as “lens” and “resolution”
would help users better understand that the public
complaints on the aspect “camera” are due to the
poor “lens” and/or low “resolution.” Moreover, the
answer should be presented following the general-
to-specific logic, i.e., from general aspects to spe-
cific sub-aspects. This makes the answer easier to
understand by the users (Ouyang et al., 2009).

Current Opinion-QA methods mainly include
three components, including question analysis that
identifies aspects and opinions asked in the ques-
tions, answer fragment retrieval, and answer gen-
eration which summarizes the retrieved fragments
(Lloret et al., 2011). Although existing methods
show encouraging performance, they are usually not
able to generate satisfactory answers due to the fol-
lowing drawbacks. First, current methods often
identify aspects as the noun phrases in the questions.
However, noun phrases contain noises that are not
aspects. This gives rise to imprecise aspect identifi-
cation. For example, in the question “What reasons
can I persuade my wife that people prefer the battery
of Nokia N95?” noun phrases “wife” and “people”
are not aspects. Moreover, current methods relied
on noun phrases are not able to reveal the implicit
aspects, which are not explicitly asked in the ques-
tions. For example, the question “Is iPhone 4 expen-
sive?” asks about the aspect “price”, but the term
“price” does not appear in the question. Second,
current methods cannot discover sub-aspects of the
asked aspect due to its ignorance of parent-child re-
lations among aspects. Third, the answers generated
by the existing methods do not follow the general-to-
specific logic, leading to difficulty in understanding
the answers.

To overcome these problems, we can resort to

the hierarchical organization of consumer reviews
on products. As illustrated in Figure 2, the hier-
archy organizes product aspects as nodes, follow-
ing their parent-child relations. For each aspect, the
reviews and corresponding opinions on this aspect
are stored. Such hierarchy can naturally facilitate to
identify aspects asked in questions. While explicit
aspects can be recognized by referring to the hier-
archy, implicit aspects can be inferred based on the
associations between sentiment terms and aspects in
the hierarchy (Yu et al., 2011). The sentiment terms
are discovered from the reviews on corresponding
aspects. Moreover, by following the parent-child re-
lations in the hierarchy, sub-aspects of the asked as-
pect can be directly acquired, and the answers can
present aspects from general to specific.

Motivated by the above observations, we propose
to exploit the hierarchical organization of consumer
reviews for product opinion-QA. As illustrated in
Figure 1, our framework first organizes consumer
reviews of a certain product into a hierarchical or-
ganization. The resulting hierarchy is in turn used
to help question analysis and relevant review frag-
ments retrieval. In order to generate appropriate
answers from the retrieved fragments, we develop
a multi-criteria optimization approach by simulta-
neously taking into account review salience, co-
herence, and diversity. The parent-child relations
among aspects are also incorporated into the ap-
proach to ensure the answers be general-to-specific.
We conduct evaluations on 11 popular products in
four domains. The evaluated corpus contains 70,359
consumer reviews and 220 questions on these prod-
ucts. More details of the dataset are discussed in
Section 4. Experimental results to demonstrate the
effectiveness of our approach.

The main contributions of this paper include,

• We propose to exploit the hierarchical organi-
zation of consumer reviews for answering opin-
ion questions on products.

• With the help of the hierarchy, our pro-
posed framework can accurately identify (ex-
plicit/implicit) aspects asked in the questions,
and the corresponding sub-aspects.

• We develop a multi-criteria optimization ap-
proach to generate informative, coherent, di-
verse and general-to-specific answers.
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Figure 2: Hierarchical organization for Nokia N95

The rest of this paper is organized as follows. Sec-
tion 2 introduces the components of hierarchical or-
ganization of reviews, question analysis, and answer
fragment retrieval. Section 3 elaborates the multi-
criteria optimization approach for answer generation
. Section 4 presents experimental details, while Sec-
tion 5 reviews related works. Finally, Section 6 con-
cludes this paper with future works.

2 Hierarchical Organization, Question
Analysis, and Answer Fragment
Retrieval

Let R = {r1, · · · , r|R|} denote a collection of con-
sumer reviews of a certain product. Each review re-
flects consumer opinions on the product and/or prod-
uct aspects. Let q denote an opinion question, which
asks for public opinions on a product or some as-
pects of the product. The task is to retrieve the opin-
ionated review fragments relevant to the asked prod-
uct/product aspects, and summarize these fragments
to form an appropriate answer to question q.

Next, we introduce the components of hierarchi-
cal organization that organizes consumer reviews
into a hierarchy, question analysis which identifies
the products/aspects and opinions asked in the ques-
tions, and answer fragment retrieval that retrieves re-
view fragments relevant to the questions.

2.1 Hierarchical Organization of Reviews

We employ the method proposed by Yu et al. (2011)
to organize consumer reviews of a product into a hi-
erarchical organization. As shown in Figure 2, the
hierarchy organizes product aspects as nodes, fol-
lowing their parent-child relations. In particular, this
method first automatically acquires an initial aspect
hierarchy from the domain knowledge and identifies
aspects commented in the reviews. It then incremen-
tally inserts the identified aspects into appropriate
positions in the initial hierarchy, and finally obtains
an aspect hierarchy that allocates all the newly iden-
tified aspects. The consumer reviews are then orga-
nized to their corresponding aspect nodes in the hi-
erarchy. Sentiment classification is then performed
to determine consumer opinions on the reviews.

The reported performance of Yu et al. (2011)
on aspect identification, aspect hierarchy generation
and sentiment classification are 0.731, 0.705, 0.787
in terms of average F1-measure, respectively.

2.2 Question Analysis and Answer Fragment
Retrieval

Question analysis consists of five sub-tasks: recog-
nizing product asked in the question; identifying as-
pects in the question; classifying opinions that the
question asks for (the asked opinion could be posi-
tive, negative or both); identifying the question type
(e.g. asking for public opinions, or the reason of
the opinions, etc.); and identifying the question form
(i.e. comparative question or single form question).

Recognizing the product: A name entity recog-
nizer 1 is trained to recognize the product name. In
particular, we collect 420 auxiliary questions from
Yahoo!Answer 2, and manually annotate the prod-
uct names (submitted as supplementary material in
Appendix A). A name entity recognizer for product
is learned on these data, with unigrams and POS tags
as features. Given a testing question, the recognizer
predicts each word as B, I, E or O, where B, I, E de-
note the begin, internal, and end of a product name
respectively, and O corresponds to other words.

Identifying aspects: As aforementioned, simply
extracting the noun phrases as aspects would import
noises. Also, some “implicit” aspects do not ex-

1http://nlp.stanford.edu/software/CRF-NER.shtml
2http://answers.yahoo.com
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plicitly appear in the reviews. One simple solution
for these problems can resort to the review hierar-
chy. The hierarchy has organized product aspects,
which can be used to filter the noise noun phrases
for accurately identifying the explicit aspects. For
the implicit aspects, we observe they are usually
modified by some peculiar sentiment terms (Su et
al., 2008). For example, the aspect “size” is often
modified by the sentiment terms such as “large”,
but seldom by the terms such as “expensive.” Thus,
there are some associations between the aspects and
sentiment terms. Such associations can be learned
from the hierarchy and leveraged to infer the im-
plicit aspects (Yu et al., 2011). In order to simul-
taneously identify the (explicit/implicit) aspects, we
adopt a hierarchical classification technique. The
technique simultaneously learns to identify explicit
aspects, and discovers the associations between as-
pects and sentiment terms by multiple classifiers. In
particular, given a testing question, we identify its
aspect by hierarchically classify (Silla et al., 2011) it
into the appropriate aspect node of a particular prod-
uct hierarchy. The classification greedily searches a
path in the hierarchy from top to down. The search
begins at the root node, and stops at the leaf node
or a specific node where the relevance score is lower
than a pre-defined threshold. The relevance score on
each node is determined by a SVM classifier. Mul-
tiple SVM classifiers are learned on the hierarchy,
one distinct classifier for a node. The reviews that
are stored in the node and its child-nodes are used
as training samples. We employ the features of noun
terms, and sentiment terms in the sentiment lexicon
provided by MPQA project (Wilson et al., 2005).

Classifying the opinions: Given a set of testing
questions, we first distinguish the opinion questions
from the factual ones (Yu et al., 2003). Since the
opinion questions often contain one or more senti-
ment terms, we classify them by employing the sen-
timent terms in the sentiment lexicon provided from
MPQA project (Wilson et al., 2005). Subsequently,
we learn a SVM sentiment classifier to determine the
opinion polarity of the opinion questions. In partic-
ular, the reviews and corresponding opinions stored
in the hierarchy are used as training samples, which
are represented by the unigram features.

Identifying the question type: Opinion questions
are often categorized into four types (Ku et al.,

2007),

• Attitude question, asking for public opinion on
a product or product aspect, such as “What do
people think iPhone 3gs?”

• Reason question, asking for the reason of pub-
lic opinion on a product or product aspect, such
as “Why do people like iPhone 3gs?”

• Target question, asking for the object in the
public opinion, such as “Which phone is better
than Nokia N95?”

• Yes/No question, asking for whether a state-
ment is correct, such as “Is Nokia N95 bad?”

We formulate the question type identification as a
multi-class classification problem. A multi-class
SVM classifier 3 is learned for the classification. We
collect 420 auxiliary questions from Yahoo!Answer
and manually annotate their types (submitted as sup-
plementary material in Appendix B). These ques-
tions are used for training, with POS tags and ques-
tion words (i.e. why, what, how, do, is) as features.

Identifying the question form: Question form in-
cludes single and comparative. A question is viewed
as comparative if it contains comparative adjectives
and adverbs (e.g. cheaper, etc.), otherwise as the sin-
gle form (Moghaddam et al., 2011). The POS tags
are exploited to detect comparative adjectives (i.e.
tag “JJR”) and adverbs (i.e. tag “RBR”).

After analyzing the question, we retrieve all re-
view sentences on the asked aspect and all its sub-
aspects from a certain product hierarchy, and choose
the ones relevant to the opinion asked in the ques-
tion. For the single form question, we view the
retrieved sentences as the answer fragments. For
the comparative questions, we select comparative
sentences on the compared products from the re-
trieved sentences, and treat them as the answer frag-
ments. Subsequently, question type is used to define
the template for the answers. In particular, for the
questions asking for reason and attitude, we gener-
ate the answers by summarizing corresponding an-
swer fragments. For questions seeking for a target
as the answer, we output the product names based
on the majority voting of the opinions in the re-
trieved answer fragments. For the yes/no questions,
we first generate the “yes/no” answer based on the

3http://svmlight.joachims.org/svm multiclass.html
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consistency between the asked opinions and the ma-
jor opinions in the answer fragments, and then sum-
marize these fragments to form the answers.

3 Answer Generation

Answer generation aims to generate an appropriate
answer for a given opinion question based on the
retrieved answer fragments, i.e., review sentences.
An answer is essentially a sequence of sentences.
Hence, the task of answer generation is to select sen-
tences from the retrieved answer fragments and or-
der them appropriately. We formulate this task into
a multi-criteria optimization problem. We incorpo-
rate multiple criteria in the answer generation pro-
cess, including answer salience, coherence, and di-
versity. The parent-child relations between aspects
is also incorporated to ensure the answer follow the
general-to-specific logic. In the next subsections, we
will introduce details of the proposed multi-criteria
optimization approach.

3.1 Formulation

We first introduce the multiple criteria and then
present the optimization problem.

Salience is used to measure the representative-
ness of the answer. A good answer should consist
of salient review sentences. Let S denote the set
of retrieved sentences. We define a binary variable
si ∈ {0, 1} to indicate the selection of sentence i
for the answer, i.e. si = 1 (or 0) indicates that si is
selected (or not). Let ωi denote the salience of sen-
tence i. The estimation of ωi will be described in
Section 3.2. The salience score of the answer (i.e.,
a set of sentences) is computed by summing up the
scores of all its constituent sentences, as

∑
i∈S ωisi.

Coherence is used to quantify the readability of
an answer. To make the answer readable, the con-
stituent sentences in the answer should be ordered
properly. That is, the adjacent sentences should
be coherent. We define ei,j ∈ {0, 1} to indicate
whether the sentences i and j are adjacent in the an-
swer; where ei,j = 1 (or 0) means they are (or not)
adjacent. The coherence between two adjacent sen-
tences is measured by cij . The estimation of cij will
be described in Section 3.3. As aforementioned, the
answer is expected to be presented in a general-to-
specific manner, i.e. from general aspects to specific

sub-aspects. We define hi,j in Eq.1 to measure the
general-to-specific coherence of sentences i and j.

hi,j =

{
e
− 1

leveli−levelj ; if leveli ̸= levelj ;
1; otherwise,

(1)

where leveli denotes level position of the aspect
commented in sentence i by referring to the hi-
erarchy, with the root level being 0. The coher-
ence score of the answer is computed by sum-
ming up the scores of all its adjacent sentences as,∑

j∈S
∑

i∈S hi,jci,jei,j .

Diversity. A good answer should diversely cover
all the important information. We introduce a ma-
trix M in Eq.2 to measure the pairwise diversities
among sentences. Mij corresponds to the diversity
between sentences i and j. When sentences i and
j comment on the same aspects, Mij will favor to
select the pair of sentences that discusses on diverse
content (i.e. low similarity). Otherwise, the pair of
sentences commented on different aspects is viewed
to be diverse, and Mij is set as a constant bigger
than one.

Mij =

{
1− similar(i, j) if i, j commented on same aspect
φ otherwise,

(2)

where φ is a constant 4.
Multi-Criteria Optimization We integrate the

above criteria into the multi-criteria optimization
formulation,

max{λ1 ·
∑

i∈S ωisi + λ2 ·
∑

j∈S
∑

i∈S hi,jci,jei,j

+ λ3 ·
∑

j∈S
∑

i∈S siMij ;{
si, ei,j ∈ {0, 1},∀i, j;
λ1 + λ2 + λ3 = 1, 0 ≤ λ1, λ2, λ3 ≤ 1,

(3)
where λ1, λ2, λ3 are the trade-off parameters.

We further incorporate the following constrains
into the optimization framework, so as to derive ap-
propriate answers.

• The length of the answer is up to K,∑
i∈S

lisi ≤ K, (4)

where li is the length of sentence i.
• When sentence i is not selected (i.e. si = 0),

the adjacency between any sentence to i is set
4Empirically set to 10 in the experiment.
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to zero (i.e.
∑

i∈S ei,j =
∑

i∈S ej,i = 0).
When sentence i is selected, there are two sen-
tences adjacent to sentence i in the answer, one
before i and another after i. (i.e.

∑
i∈S ei,j =∑

i∈S ej,i = 1).∑
i∈S

ei,j =
∑

i∈S
ej,i = sj , ∀j. (5)

• In order to avoid falling into a cycle in sentence
selection, we employ the following constraints
(Deshpande et al., 2009).∑

i∈S f0,i = n + 1;∑
i∈S fi,n+1 ≥ 1;∑
i∈S fi,j −

∑
i∈S fj,i = sj , ∀j;

0 ≤ fi,j ≤ (n + 1) · ei,j , ∀i, j,

(6)

where the variable fi,j is an integer to number
the selected adjacent sentences from 1 to n+1,
and the first selected sentence is numbered f0,i

= n + 1. If the last selected sentence obtains a
number fi,n+1 which is bigger then 1, then the
selection has no cycle.

Solution
Given the salience weights ωi|Si=1, and coherence

weights ci,j |Si,j=1, the above multi-criteria optimiza-
tion problem can be solved by Integer Linear Pro-
gramming (Schrijver et al., 1998). The optimal so-
lutions si|Si=1 and ei,j |Si,j=1 indicate the selected sen-
tences and the order of them. In the next subsec-
tions, we will introduce the estimations of ωi|Si=1

and ci,j |Si,j=1.

3.2 Salience Weight Estimation

The salience weight of sentence i is formulated as
ωi =

∑G
g=1 φg(i)/G, where φ(i) denotes the mea-

surement for the importance of sentence i. We de-
fine seven measurements (i.e. G = 7) below.

Helpfulness: Many forum websites provide a
helpfulness score, which is used to rate the quality
of a review. The sentences that come from helpful
reviews are often representative (Mizil et al., 2009).
We compute φ(i) of sentence i by using helpfulness
score from its host review.

Timeliness: The new coming sentence often con-
tains more updated and useful information (Liu et
al., 2008). φ(i) is the post time of sentence i. We
normalize it to [0, 1].

Grammaticality: The grammatical sentence is
often more readable. We employ the method in
Agichtein et al. (2008) to calculate the grammar
score. In particular, φ(i) is calculated by the KL-
divergence between language models of sentence i
to Wikipedia articles.

Position: The first sentence in a review is usu-
ally informative (He et al., 2011). φ(i) is computed
based on the position of the sentence in the review,
i.e. φ(i) = 1/positioni.

Aspect Frequency: The sentence that contains the
frequent aspects is often salient (Nishikawa et al.,
2010). Hence, φ(i) is computed as the sum of the
frequency for aspects in sentence i.

Centroid Distance: As aforementioned, review
sentences are stored in the corresponding aspect
nodes in the hierarchy. The sentence that is close to
the centroid of the reviews stored in an aspect node
is more likely to be salient (Erkan et al., 2004). φ(i)
is computed as the Cosine similarity between sen-
tence i to the corresponding review cluster centroid
based on the unigram features.

Local Density: The sentence would be informa-
tive when it is in the dense part of the aspect node
in the feature space (Scott et al., 1992). We em-
ploy Multivariate Kernel Density Estimation to es-
timate the density. We first represent all the sen-
tences stored in each node into feature vectors, with
unigram as features. The density of a sentence is
then calculated as φ(x) =

∑n
i=1 KH(x− xi)/n,

where x denotes the feature vector of sentence i,
n is the size of sentences stored in the node, and
KH(x) = (2π)−1/2 exp(−1/2(xTx)) represents
the Gaussian kernel.

3.3 Coherence Weight Estimation
The coherence ci,j between sentences i and j is
formulated as ci,j = µ · ψ(i, j), where µ is a
weight vector, and ψ(i, j) denotes the feature func-
tion. ψ(i, j) takes two sentences i and j as input,
and outputs a vector with each dimension indicating
the present/absent of a feature. In order to capture
the sequential relations among sentences, we utilize
features as the Cartesian product over the terms of
N-gram (N=1,2) and POS tags generated from sen-
tences i and j (Lapata et al., 2003).

To learn the weight vector µ, we employ
the Passive-Aggressive algorithm (Crammer et al.,
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2006). It is an online learning algorithm, so that we
can update the weight when more consumer reviews
are available. The algorithm takes up one training
sample and outputs the solution that has the highest
score under the current weight. If the output differs
from training samples, the weight vector is updated
according to Eq.7. Since the consumer reviews often
include multiple sentences, we can directly use the
adjacency of these sentences as training samples. In
particular, we treat the adjacent sentence pairs in the
reviews as training samples (i.e. ci,j = 1).

min
∥∥µi+1 − µi

∥∥{
µi+1 ·Ψ(p,q∗)− µi+1 ·Ψ(p, q̂) ≥ τ(q̂,q∗);

τ(q̂,q∗) = 2·T (q̂,q∗)
m(m−1)/2

,

(7)

where µi is the current weight vector and µi+1 is
the updated vector, q∗ and q̂ are the gold standard
and predicted sequence of sentences, respectively, p
denotes a set of sentences, Ψ(·) is the feature func-
tion on the whole feature space (i.e.

∑
ψ(·)), τ(·, ·)

is a Kendall’s tau lost function (Lapata et al., 2006),
T (·, ·) represents the number of inversion operations
that needs to bring q̂ to q∗, and m denotes the num-
ber of sentences.

4 Evaluations

In this section, we evaluate the effectiveness of the
proposed approach, in terms of question analysis
and answer generation.

4.1 Data Set and Experimental Settings

We employed the product review dataset used in Yu
et al. (2011) as corpus. As illustrated in Table 1, the
dataset contained 70,359 reviews about 11 popular
products in four domains. In addition, we created
220 questions for these products by referring to real
questions in Yahoo!Anwser service. We corrected
the typos and grammar errors for these real ques-
tions. Each product contains 15 opinion questions
and 5 factual questions, respectively. All questions
were shown in Appendix C in supplementary mate-
rial. Three annotators were invited to generate the
gold standard. Each question was labeled by two
annotators. The labels include product name, prod-
uct aspect, opinion, question type and question form.
The average inter-rater agreement in terms of Kappa
statistics is 89%. These annotators were then invited

to read the reviews, and create the ground truth an-
swers by selecting and ordering some review sen-
tences. Such process is time consuming and labor-
intensive. We speed up the annotation process as fol-
lows. We first collected all the review sentences in
the answers generated by three evaluated methods to
be discussed in Section 4.3.1. In addition, we sam-
pled the top-N (N=20) sentences on each asked as-
pect and its sub-aspects respectively, where the sen-
tences were ranked based on their salient weights in
Section 3.2. We then provided such subset of review
sentences to the three annotators, and let them indi-
vidually create an answer of up to 100 words (i.e.
K=100) for each question.

Product Name Domain Review# Sentence#
Canon EOS 450D (Canon EOS) camera 440 628
Fujifilm Finepix AX245W (Fujifilm) camera 541 839
Panasonic Lumix DMC-TZ7 (Panasonic) camera 650 1,546
Apple MacBook Pro (MacBook) laptop 552 4,221
Samsung NC10 (Samsung) laptop 2,712 4,946
Apple iPod Touch 2nd (iPod Touch) MP3 4,567 10,846
Sony NWZ-S639 16GB (Sony NWZ) MP3 341 773
BlackBerry Bold 9700 (BlackBerry) phone 4,070 11,008
iPhone 3GS 16GB (iPhone 3GS) phone 12,418 43,527
Nokia 5800 XpressMusic (Nokia 5800) phone 28,129 75,001
Nokia N95 phone 15,939 44,379

Table 1: Statistics of the product review dataset, # denotes
the number of the reviews/sentences.

We employed precision (P), recall (R) and F1-
measure (F1) as the evaluation metric for question
analysis, and utilized ROUGE (Lin et al., 2003) as
the metric to evaluate the quality of answer gener-
ation. ROUGE is a widely accepted standard for
summarization, which measures the quality of the
summarized answers by counting the overlapping N-
grams between the answers generated by machine
and human, respectively. In the experiment, we
reported the F1-measure of ROUGE-1, ROUGE-2
and ROUGE-SU4, which count the overlapping un-
igrams, bigrams and skip-4 bigrams respectively.
ROUGE-1 can measure informativeness of the an-
swers, while higher order ROUGE-N (N=2,4) cap-
tures the matching of subsequences, which can mea-
sure the fluency and readability of the answers. For
the trade-off parameters, we empirically set λ1 =
0.4, λ2 = 0.3 and λ3 = 0.3.

4.2 Evaluations on Question Analysis
We first evaluated the performance of product recog-
nition, opinion/factual question classification, opin-
ion classification, question type and question form
identification. The experimental results are shown
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in Table 2. The results show that traditional methods
achieve encouraging performance on the aforemen-
tioned tasks.

Evaluated Topics P R F1

Product recognition 0.755 0.618 0.680
Opinion/factual 0.897 0.895 0.893
Opinion classification 0.755 0.745 0.748
Question type 0.800 0.775 0.783
Question form 0.910 0.903 0.905

Table 2: Performance of question analysis.

Methods P R F1

Our method 0.851* 0.763* 0.805*
Balahur’s method 0.825 0.400 0.538

Table 3: Performance of aspect identification for question
analysis. * denotes the results (i.e. P , R, F1) are tested
for statistical significance using T-Test, p-values<0.05.

Methods P R F1

Our method 0.726* 0.643* 0.682*
Su’s method 0.689 0.571 0.625

Table 4: Performance of implicit aspect identification for
question analysis. T-Test, p-values<0.05

We next examined the performance of our ap-
proach on aspect identification. The method pro-
posed by Balahur et al. (2008) was reimplemented
as the baseline, which identifies aspects based on
noun phrase extraction. This method achieved good
performance on the opinion QA task in TAC 2008
and was employed in subsequent works. As demon-
strated in Table 3, our approach significantly outper-
forms Balahur’s method by over 49.4% in terms of
average F1-measure. A probable reason is that Bal-
ahur’s method relies on noun phrases, which may
mis-identify some noise noun phrases as aspects,
while our approach performs hierarchical classifica-
tion based on the hierarchy, which can leverage the
prior knowledge encoded in the hierarchy to filter
out the noise and obtain accurate aspects.

Moreover, we evaluated the effectiveness of our
approach on implicit aspect identification. The 70
implicit aspect questions in our question corpus
were used here. The method proposed by Su et al.
(2008) was reimplemented as the baseline. It identi-
fies implicit aspects by mutual clustering, and it was

Figure 3: Evaluations on multiple optimization criteria
in terms of ROUGE-1, ROUGE-2, and ROUGE-SU4, re-
spectively.

evaluated in Yu et al. (2011). As shown in Table 4,
our approach significantly outperforms Su’s method
by over 9.1% in terms of average F1-measure. The
results show that the hierarchy can help to identify
implicit aspects by exploiting the underlying associ-
ations among sentiment terms and aspects.

Methods ROUGE1 ROUGE2 ROUGE-SU4
Our method 0.364* 0.137* 0.138*
Li’s method 0.127 0.043 0.049
Lloret’s method 0.149 0.058 0.065

Table 5: Performance of answer generation. T-Test, p-
values<0.05.

4.3 Evaluations on Answer Generation
4.3.1 Comparisons to the State-of-the-Arts

We compared our multi-criteria optimization ap-
proach against two state-of-the-arts methods: a) the
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method presented in Li et al. (2009), which selects
some retrieved sentences to generate the answers
based on a graph-based algorithm; b) the method
proposed by Lloret et al. (2011) that forms the an-
swers by re-ranking the retrieved sentences.

As shown in Table 5, our approach outperforms
Li’s method and Lloret’s method by the significant
absolute gains of over 23.7%, and 21.5% respec-
tively, in terms of average ROUGE-1. It improves
the performance over these two methods in terms
of average ROUGE-2 by the absolute gains of over
9.41% and 7.87%, respectively; and in terms of
ROUGE-SU4 by the absolute gains of over 8.86%
and 7.31%, respectively. By analyzing the results,
we find that the improvements come from the use
of the hierarchical organization and the answer gen-
eration algorithm which exploits multiple criteria,
especially the parent-child relation among aspects.
In addition, our approach can generate the answers
by following the general-to-specific logic, while Li’s
and Lloret’s methods fail to do so due to their igno-
rance of parent-child relations among aspects.

4.3.2 Evaluations on the Effectiveness of
Multiple Criteria

We further evaluated the effectiveness of each op-
timization criterion by tuning the trade-off parame-
ters (i.e. λ1, λ2, and λ3). We fixed λ1 as a con-
stant in [0, 1] with 0.1 as an interval, and updated λ2

from 0 to 1 − λ1, λ3 = 1 − λ1 − λ2, correspond-
ingly. The performance change is shown in Figure
3 in terms of ROUGE-1, ROUGE-2, and ROUGE-
SU4, respectively. The best performance is achieved
at λ1 = 0.4, λ2 = 0.3, λ3 = 0.3. We observe the
performance drops dramatically when any parame-
ter (i.e. λ1, λ2, λ3) is close to 0 (i.e. remove any of
the corresponding criterion). Thus, we can conclude
that all the criteria are useful in answer generation.
We also find that the performance change is sharp
when λ1 changes. This indicates that the salience
criterion is crucial for answer generation.

Table 6 shows the exemplar answers generated by
our approach. Each answer first gives the statis-
tic of positive and negative reviews. This helps
user to quickly get an overview of public opin-
ions. The summary of relevant review sentences
is then presented in the answer. The answer di-
versely comments the asked aspect and all its avail-

able sub-aspects following the general-to-specific
logic. Moreover, we feel that the answers are in-
formative and readable.

5 Related Works

In this section, we review existing works related
to the four components of our approach, including
organization of reviews, question analysis, answer
fragment retrieval, and answer generation.

For organization of reviews, Carenini et al. (2006)
proposed to organize the reviews by a hand-crafted
taxonomy, which was not scalable. Yu et al. (2011)
exploited the domain knowledge and consumer re-
views to automatically generate a hierarchy for or-
ganizing consumer reviews.

Question analysis often has to distinguish the
opinion question from the factual one, and find the
key points asked in the questions, such as the prod-
uct aspect and product name. For example, Yu et
al. (2003) proposed to separate opinions from facts
at both document and sentence level, and determine
the polarity on the opinionated sentences in the an-
swer documents. Similarly, Somasundaran et al.
(2007) utilized a SVM classifier to recognize opin-
ionated sentences. The paper argued that the sub-
jective types (i.e. sentiment and arguing) can im-
prove the performance of opinion-QA. Later, Ku et
al. (2007) proposed a two-layered classifier for ques-
tion analysis, and retrieved the answer-fragments by
keyword matching. In particular, they first identified
the opinion questions, and classified them into six
predefined question types, including holder, target,
attitude, reason, majority, and yes/no. These ques-
tion types and corresponding polarity on the ques-
tions were used to filter non-relevant sentences in
the answer fragments. F1-measure was employed as
the evaluation metric.

For the topic of answer generation in opinion-QA,
Li et al. (2009) formulated it as a sentence ranking
task. They argued that the answers should be simul-
taneously relevant to topics and opinions asked in
the questions. They thus designed the graph-based
methods (i.e. PageRank and HITS) to select some
high-ranked sentences to form answers. They first
built a graph on the retrieved sentences, with each
sentence as the node, and the similarity (i.e. Co-
sine similarity) between each sentences pair as the
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Question 1: What reasons do people give for preferring iPhone 3gs?
There are 9,928 opinionated reviews about product “iphone 3gs”, with 5,717 positive and 4,221 negative reviews.
This phone is amazing and I would recommend it to anyone. It looks funky and cool. It is worth the money. It’s great
organiser, simple easy to use software. It is super fast, excellent connection via wifi or 3G. It is able to instantly access email.
It’s amazing and has so many free apps. The design is so simple and global. The hardware is good and reliable. The camera is
a good and colors are vibrant. The touch screen is user friendly and the aesthetics are top notch. Battery is charged quickly,
and power save right after stop using.
Question 2: Does anyone think it is expensive to get a iPhone 3GS?
Yes.
There are 2,645 opinionated reviews on aspect “price” about product “iphone 3gs”, with 889 positive and 1,756 negative
reviews.
Throw the costly phone, apple only knows to sell stupid stuff expensively. Don’t fool yourself with iPhone 3gs, believing that it
costs much by Apple luxurious advertising. Apple is so greedy and it just wants to earn easy & fast money by selling its
techless product expensively. The phone will charge once you insert any sim card. iPhone 3gs is high-priced due to the
capacitive and Apple license. You need to pay every application at the end it costs too much. The network provider will make
up some of the cost of the phone on your call charges.

Table 6: Sample answers of our approach.

weight of the corresponding edge. Given a question,
its similarity to each sentence in the graph was com-
puted. Such similarity was viewed as the relevant
score to the corresponding sentence. The sentences
then were ranked based on three metric, i.e. relevant
score to the query, similarity score obtained from the
graph algorithm over sentences, and degree of opin-
ion matching to the query. Respectively, Lloret et
al. (2011) proposed to form answers by re-ranking
the retrieved sentences based on the metric of word
frequency, non-redundancy and the number of noun
phrases. Their method includes three components,
including information retrieval, opinion mining and
text summarization. Evaluations were conducted on
the TAC 2008 Opinion Summarization track. After-
wards, Moghaddam et al. (2011) developed a system
called AQA to generate answers for questions about
products (i.e. opinion QA on products). It classi-
fies the questions into five types, including target,
attitude, reason, majority and yes/no. As compared
to Ku et al. (2007), the question types of holder
and majority are not included. They argued that
product questions were seldom asked for the hold-
ers, since the holders (i.e. reviewers) were com-
monly shown in the reviews. Also, product ques-
tions mainly asked for majority opinions, and ma-
jority type was thus not considered. The AQA sys-
tem includes five components, including question
analysis, question expansion, high quality review re-
trieval, subjective sentence extraction, and answer
grouping. The answers are generated by aggregat-

ing opinions in the retrieved fragments.

6 Conclusions and Future Works

In this paper, we have developed a new product
opinion-QA framework, which exploits the hierar-
chical organization of consumer reviews on prod-
ucts. With the help of the hierarchical organization,
our framework can accurately identify the aspects
asked in the questions and also discover their sub-
aspects. We have further formulated the answer gen-
eration from retrieved review sentences as a multi-
criteria optimization problem. The multiple criteria
used include answer salience, diversity, and coher-
ence. The parent-child relations between the aspects
are incorporated into the approach to ensure that the
answers follow the general-to-specific logic. The
proposed framework has been evaluated on 11 pop-
ular products in four domains using 220 questions
on the products. Significant performance improve-
ments were obtained. In the future, we will explore
the more sophisticated NLP features to improve the
proposed framework. This will be done by incorpo-
rating more NLP features in salience and coherence
weights estimation.
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Abstract

In statistical machine translation, minimum
error rate training (MERT) is a standard
method for tuning a single weight with regard
to a given development data. However, due to
the diversity and uneven distribution of source
sentences, there are two problems suffered by
this method. First, its performance is highly
dependent on the choice of a development set,
which may lead to an unstable performance
for testing. Second, translations become in-
consistent at the sentence level since tuning is
performed globally on a document level. In
this paper, we propose a novel local training
method to address these two problems. Un-
like a global training method, such as MERT,
in which a single weight is learned and used
for all the input sentences, we perform training
and testing in one step by learning a sentence-
wise weight for each input sentence. We pro-
pose efficient incremental training methods to
put the local training into practice. In NIST
Chinese-to-English translation tasks, our lo-
cal training method significantly outperforms
MERT with the maximal improvements up to
2.0 BLEU points, meanwhile its efficiency is
comparable to that of the global method.

1 Introduction

Och and Ney (2002) introduced the log-linear model
for statistical machine translation (SMT), in which
translation is considered as the following optimiza-
tion problem:

ê(f ;W ) = arg max
e

P(e|f ;W )

= arg max
e

exp
{
W · h(f, e)

}∑
e′ exp

{
W · h(f, e′)

}
= arg max

e

{
W · h(f, e)

}
, (1)

where f and e (e′) are source and target sentences,
respectively. h is a feature vector which is scaled
by a weight W . Parameter estimation is one of
the most important components in SMT, and var-
ious training methods have been proposed to tune
W . Some methods are based on likelihood (Och and
Ney, 2002; Blunsom et al., 2008), error rate (Och,
2003; Zhao and Chen, 2009; Pauls et al., 2009; Gal-
ley and Quirk, 2011), margin (Watanabe et al., 2007;
Chiang et al., 2008) and ranking (Hopkins and May,
2011), and among which minimum error rate train-
ing (MERT) (Och, 2003) is the most popular one.

All these training methods follow the same
pipeline: they train only a single weight on a given
development set, and then use it to translate all the
sentences in a test set. We call them a global train-
ing method. One of its advantages is that it allows us
to train a single weight offline and thereby it is effi-
cient. However, due to the diversity and uneven dis-
tribution of source sentences(Li et al., 2010), there
are some shortcomings in this pipeline.

Firstly, on the document level, the performance of
these methods is dependent on the choice of a devel-
opment set, which may potentially lead to an unsta-
ble translation performance for testing. As referred
in our experiment, the BLEU points on NIST08 are
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 Source  Candidate Translation   

i  if  j  
ij

e  h  score  

1 我 是 学生 。 1 I am students . <2, 1> 0.5 

  2 I was students . <1,1> 0.2 

2 今天 星期 几 ？ 1 week several today ? <1,2> 0.3 

  2 today several weeks . <3,2> 0.1 

 (a) (b)

2 21 2 222,0 ( , ) ( , )h f e h f e   

2 22 2 212,0 ( , ) ( , )h f e h f e  1 11 1 121, 0 ( , ) ( , )h f e h f e  

1 12 1 111,0 ( , ) ( , )h f e h f e   

2 22 2 21( , ) ( , )h f e h f e

1 11 1 12( , ) ( , )h f e h f e

<-2,0>

<-1,0>

<1,0>

<2,0>

0h

1h

. .* *

2 21 2 22( , ) ( , )h f e h f e

1 12 1 11( , ) ( , )h f e h f e

Figure 1: (a). An Example candidate space of dimensionality two. score is a evaluation metric of e. (b). The non-
linearly separable classification problem transformed from (a) via tuning as ranking (Hopkins and May, 2011). Since
score of e11 is greater than that of e12, 〈1, 0〉 corresponds to a possitive example denoted as ”•”, and 〈−1, 0〉 corre-
sponds to a negative example denoted as ”*”. Since the transformed classification problem is not linearly separable,
there does not exist a single weight which can obtain e11 and e21 as translation results meanwhile. However, one can
obtain e11 and e21 with weights: 〈1, 1〉 and 〈−1, 1〉, respectively.

19.04 when the Moses system is tuned on NIST02
by MERT. However, its performance is improved to
21.28 points when tuned on NIST06. The automatic
selection of a development set may partially address
the problem. However it is inefficient since tuning
requires iteratively decoding an entire development
set, which is impractical for an online service.

Secondly, translation becomes inconsistent on the
sentence level (Ma et al., 2011). Global training
method such as MERT tries to optimize the weight
towards the best performance for the whole set, and
it can not necessarily always obtain good translation
for every sentence in the development set. The rea-
son is that different sentences may need different
optimal weights, and MERT can not find a single
weight to satisfy all of the sentences. Figure 1(a)
shows such an example, in which a development set
contains two sentences f1 and f2 with translations e
and feature vectors h. When we tune examples in
Figure 1(a) by MERT, it can be regarded as a non-
linearly separable classification problem illustrated
in Figure 1(b). Therefore, there exists no single
weightW which simultaneously obtains e11 and e21

as translation for f1 and f2 via Equation (1). How-
ever, we can achieve this with two weights: 〈1, 1〉
for f1 and 〈−1, 1〉 for f2.

In this paper, inspired by KNN-SVM (Zhang et
al., 2006), we propose a local training method,
which trains sentence-wise weights instead of a sin-
gle weight, to address the above two problems.
Compared with global training methods, such as

MERT, in which training and testing are separated,
our method works in an online fashion, in which
training is performed during testing. This online
fashion has an advantage in that it can adapt the
weights for each of the test sentences, by dynam-
ically tuning the weights on translation examples
which are similar to these test sentences. Similar
to the method of development set automatical selec-
tion, the local training method may also suffer the
problem of efficiency. To put it into practice, we
propose incremental training methods which avoid
retraining and iterative decoding on a development
set.

Our local training method has two advantages:
firstly, it significantly outperforms MERT, especially
when test set is different from the development set;
secondly, it improves the translation consistency.
Experiments on NIST Chinese-to-English transla-
tion tasks show that our local training method sig-
nificantly gains over MERT, with the maximum im-
provements up to 2.0 BLEU, and its efficiency is
comparable to that of the global training method.

2 Local Training and Testing

The local training method (Bottou and Vapnik,
1992) is widely employed in computer vision
(Zhang et al., 2006; Cheng et al., 2010). Compared
with the global training method which tries to fit
a single weight on the training data, the local one
learns weights based on the local neighborhood in-
formation for each test example. It is superior to
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the global one when the data sets are not evenly
distributed (Bottou and Vapnik, 1992; Zhang et al.,
2006).

Algorithm 1 Naive Local Training Method
Input: T = {ti}Ni=1(test set), K (retrieval size),

Dev(development set), D(retrieval data)
Output: Translation results of T

1: for all sentence ti such that 1 ≤ i ≤ N do
2: Retrieve the training examples Di with size

K for ti from D according to a similarity;
3: Train a local weight W i based on Dev and

Di;
4: Decode ti with W i;
5: end for

Suppose T be a test set, Dev a development set,
and D a retrieval data. The local training in SMT
is described in the Algorithm 1. For each sentence
ti in test set, training examples Di is retrieved from
D using a similarity measure (line 2), a weight W i

is optimized on Dev and Di (line 3)1, and, finally,
ti is decoded with W i for testing (line 4). At the
end of this algorithm, it returns the translation re-
sults for T . Note that weights are adapted for each
test sentence ti in line 3 by utilizing the translation
examples Di which are similar to ti. Thus, our local
training method can be considered as an adaptation
of translation weights.

Algorithm 1 suffers a problem of training effi-
ciency in line 3. It is impractical to train a weight
W i on Dev and Di from scratch for every sen-
tence, since iteratively decodingDev andDi is time
consuming when we apply MERT. To address this
problem, we propose a novel incremental approach
which is based on a two-phase training.

On the first phase, we use a global training
method, like MERT, to tune a baseline weight on
the development set Dev in an offline manner. On
the second phase, we utilize the retrieved examples
to incrementally tune sentence-wise local weights
based on the baseline weight. This method can
not only consider the common characteristics learnt
from the Dev, but also take into account the knowl-

1Usually, the quality of development set Dev is high, since
it is manually produced with multiple references. This is the
main reason why Dev is used as a part of new development set
to train W i.

edge for each individual sentence learnt from sim-
ilar examples during testing. On the phase of in-
cremental training, we perform decoding only once
for retrieved examples Di, though several rounds of
decoding are possible and potentially better if one
does not seriously care about training speed. Fur-
thermore, instead of on-the-fly decoding, we decode
the retrieval data D offline using the parameter from
our baseline weight and its nbest translation candi-
dates are saved with training examples to increase
the training efficiency.

Algorithm 2 Local Training Method Based on In-
cremental Training
Input: T = {ti}Ni=1 (test set), K (retrieval size),

Dev (development set),
D = {〈fs, rs〉}s=Ss=1 (retrieval data),

Output: Translation results of T
1: Run global Training (such as MERT) on Dev to

get a baseline weight Wb; // Phase 1
2: Decode each sentence in D to get
D = {〈fs, cs, rs〉}s=Ss=1 ;

3: for all sentence ti such that 1 ≤ i ≤ N do
4: Retrieve K training examples Di =

{〈f ij , cij , rij〉}
j=K
j=1 for ti from D according to

a similarity;
5: Incrementally train a local weight W i based

on Wb and Di; // Phase 2
6: Decode ti with W i;
7: end for

The two-phase local training algorithm is de-
scribed in Algorithm 2, where cs and rs denote the
translation candidate set and reference set for each
sentence fs in retrieval data, respectively, and K is
the retrieval size. It globally trains a baseline weight
Wb (line 1), and decodes each sentence in retrieval
data D with the weight Wb (line 2). For each sen-
tence ti in test set T , it first retrieves training exam-
ples Di from D (line 4), and then it runs local train-
ing to tune a local weight W i (line 5) and performs
testing with W i for ti (line 6). Please note that the
two-phase training contains global training in line 1
and local training in line 5.

From Algorithm 2, one can see that our method is
effective even if the test set is unknow, for example,
in the scenario of online translation services, since
the global training on development set and decoding
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on retrieval data can be performed offline.
In the next two sections, we will discuss the de-

tails about the similarity metric in line 4 and the in-
cremental training in line 5 of Algorithm 2.

3 Acquiring Training Examples

In line 4 of Algorithm 2, to retrieve training exam-
ples for the sentence ti , we first need a metric to
retrieve similar translation examples. We assume
that the metric satisfy the property: more similar the
test sentence and translation examples are, the better
translation result one obtains when decoding the test
sentence with the weight trained on the translation
examples.

The metric we consider here is derived from
an example-based machine translation. To retrieve
translation examples for a test sentence, (Watanabe
and Sumita, 2003) defined a metric based on the
combination of edit distance and TF-IDF (Manning
and Schütze, 1999) as follows:

dist(f1, f2) = θ × edit-dist(f1, f2)+

(1− θ)× tf-idf(f1, f2), (2)

where θ(0 ≤ θ ≤ 1) is an interpolation weight,
fi(i = 1, 2) is a word sequence and can be also
considered as a document. In this paper, we extract
similar examples from training data. Like example-
based translation in which similar source sentences
have similar translations, we assume that the optimal
translation weights of the similar source sentences
are closer.

4 Incremental Training Based on
Ultraconservative Update

Compared with retraining mode, incremental train-
ing can improve the training efficiency. In the field
of machine learning research, incremental training
has been employed in the work (Cauwenberghs and
Poggio, 2001; Shilton et al., 2005), but there is lit-
tle work for tuning parameters of statistical machine
translation. The biggest difficulty lies in that the fea-
ture vector of a given training example, i.e. transla-
tion example, is unavailable until actually decoding
the example, since the derivation is a latent variable.
In this section, we will investigate the incremental
training methods in SMT scenario.

Following the notations in Algorithm 2, Wb is
the baseline weight, Di = {〈f ij , cij , rij〉}Kj=1 denotes
training examples for ti. For the sake of brevity, we
will drop the index i, Di = {〈fj , cj , rj〉}Kj=1, in the
rest of this paper. Our goal is to find an optimal
weight, denoted by W i, which is a local weight and
used for decoding the sentence ti. Unlike the global
method which performs tuning on the whole devel-
opment set Dev +Di as in Algorithm 1, W i can be
incrementally learned by optimizing onDi based on
Wb. We employ the idea of ultraconservative update
(Crammer and Singer, 2003; Crammer et al., 2006)
to propose two incremental methods for local train-
ing in Algorithm 2 as follows.

Ultraconservative update is an efficient way to
consider the trade-off between the progress made on
development set Dev and the progress made on Di.
It desires that the optimal weight W i is not only
close to the baseline weight Wb, but also achieves
the low loss over the retrieved examples Di. The
idea of ultraconservative update can be formalized
as follows:

min
W

{
d(W,Wb) + λ · Loss(Di,W )

}
, (3)

where d(W,Wb) is a distance metric over a pair
of weights W and Wb. It penalizes the weights
far away from Wb and it is L2 norm in this paper.
Loss(Di,W ) is a loss function of W defined on Di

and it evaluates the performance of W over Di. λ
is a positive hyperparameter. If Di is more similar
to the test sentence ti, the better performance will be
achieved for the larger λ. In particular, ifDi consists
of only a single sentence ti, the best performance
will be obtained when λ goes to infinity.

4.1 Margin Based Ultraconservative Update
MIRA(Crammer and Singer, 2003; Crammer et al.,
2006) is a form of ultraconservative update in (3)
whose Loss is defined as hinge loss based on margin
over the pairwise translation candiates in Di. It tries
to minimize the following quadratic program:

1

2
||W −Wb||2+

λ

K

K∑
j=1

max
1≤n≤|cj |

(
`jn−W ·∆h(fj , ejn)

)
with

∆h(fj , ejn) = h(fj , ej·)− h(fj , ejn), (4)
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where h(fj , e) is the feature vector of candidate e,
ejn is a translation member of fj in cj , ej· is the
oracle one in cj , `jn is a loss between ej· and ejn
and it is the same as referred in (Chiang et al., 2008),
and |cj | denotes the number of members in cj .

Different from (Watanabe et al., 2007; Chiang
et al., 2008) employing the MIRA to globally train
SMT, in this paper, we apply MIRA as one of local
training method for SMT and we call it as margin
based ultraconservative update (MBUU for shortly)
to highlight its advantage of incremental training in
line 5 of Algorithm 2.

Further, there is another difference between
MBUU and MIRA in (Watanabe et al., 2007; Chi-
ang et al., 2008). MBUU is a batch update mode
which updates the weight with all training examples,
but MIRA is an online one which updates with each
example (Watanabe et al., 2007) or part of examples
(Chiang et al., 2008). Therefore, MBUU is more ul-
traconservative.

4.2 Error Rate Based Ultraconservative
Update

Instead of taking into account the margin-based
hinge loss between a pair of translations as the Loss
in (3), we directly optimize the error rate of trans-
lation candidates with respect to their references in
Di. Formally, the objective function of error rate
based ultraconservative update (EBUU) is as fol-
lows:

1

2
‖W −Wb‖2 +

λ

K

K∑
j=1

Error(rj ; ê(fj ;W )), (5)

where ê(fj ;W ) is defined in Equation (1), and
Error(rj , e) is the sentence-wise minus BLEU (Pa-
pineni et al., 2002) of a candidate e with respect to
rj .

Due to the existence of L2 norm in objective
function (5), the optimization algorithm MERT can
not be applied for this question since the exact line
search routine does not hold here. Motivated by
(Och, 2003; Smith and Eisner, 2006), we approxi-
mate the Error in (5) by the expected loss, and then
derive the following function:

1

2
‖W−Wb‖2+

λ

K

K∑
j=1

∑
e

Error(rj ; e)Pα(e|fj ;W ),

(6)

Systems NIST02 NIST05 NIST06 NIST08
Moses 30.39 26.31 25.34 19.07

Moses hier 33.68 26.94 26.28 18.65
In-Hiero 31.24 27.07 26.32 19.03

Table 1: The performance comparison of the baseline In-
Hiero VS Moses and Moses hier.

with

Pα(e|fj ;W ) =
exp[αW · h(fj , e)]∑

e′∈cj
exp[αW · h(fj , e′)]

, (7)

where α > 0 is a real number valued smoother. One
can see that, in the extreme case, for α → ∞, (6)
converges to (5).

We apply the gradient decent method to minimize
the function (6), as it is smooth with respect to λ.
Since the function (6) is non-convex, the solution
obtained by gradient descent method may depend on
the initial point. In this paper, we set the initial point
as Wb in order to achieve a desirable solution.

5 Experiments and Results

5.1 Setting
We conduct our experiments on the Chinese-to-
English translation task. The training data is FBIS
corpus consisting of about 240k sentence pairs. The
development set is NIST02 evaluation data, and the
test datasets are NIST05, NIST06,and NIST08.

We run GIZA++ (Och and Ney, 2000) on the
training corpus in both directions (Koehn et al.,
2003) to obtain the word alignment for each sen-
tence pair. We train a 4-gram language model on
the Xinhua portion of the English Gigaword cor-
pus using the SRILM Toolkits (Stolcke, 2002) with
modified Kneser-Ney smoothing (Chen and Good-
man, 1998). In our experiments the translation per-
formances are measured by case-insensitive BLEU4
metric (Papineni et al., 2002) and we use mteval-
v13a.pl as the evaluation tool. The significance test-
ing is performed by paired bootstrap re-sampling
(Koehn, 2004).

We use an in-house developed hierarchical
phrase-based translation (Chiang, 2005) as our base-
line system, and we denote it as In-Hiero. To ob-
tain satisfactory baseline performance, we tune In-
Hiero system for 5 times using MERT, and then se-
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Methods Steps Seconds
Global method Decoding 2.0
Local method Retrieval +0.6

Local training +0.3

Table 2: The efficiency of the local training and testing
measured by sentence averaged runtime.

Methods NIST05 NIST06 NIST08
Global MERT 27.07 26.32 19.03
Local MBUU 27.75+ 27.88+ 20.84+

EBUU 27.85+ 27.99+ 21.08+

Table 3: The performance comparison of local train-
ing methods (MBUU and EBUU) and a global method
(MERT). NIST05 is the set used to tune λ for MBUU and
EBUU, and NIST06 and NIST08 are test sets. + means
the local method is significantly better than MERT with
p < 0.05.

lect the best-performing one as our baseline for the
following experiments. As Table 1 indicates, our
baseline In-Hiero is comparable to the phrase-based
MT (Moses) and the hierarchical phrase-based MT
(Moses hier) implemented in Moses, an open source
MT toolkit2 (Koehn et al., 2007). Both of these sys-
tems are with default setting. All three systems are
trained by MERT with 100 best candidates.

To compare the local training method in Algo-
rithm 2, we use a standard global training method,
MERT, as the baseline training method. We do not
compare with Algorithm 1, in which retraining is
performed for each input sentence, since retraining
for the whole test set is impractical given that each
sentence-wise retraining may take some hours or
even days. Therefore, we just compare Algorithm
2 with MERT.

5.2 Runtime Results

To run the Algorithm 2, we tune the baseline weight
Wb on NIST02 by MERT3. The retrieval data is set
as the training data, i.e. FBIS corpus, and the re-
trieval size is 100. We translate retrieval data with
Wb to obtain their 100 best translation candidates.
We use the simple linear interpolated TF-IDF met-
ric with θ = 0.1 in Section 3 as the retrieval metric.

2See web: http://www.statmt.org
3Wb is exactly the weight of In-Hiero in Table 1.

NIST05 NIST06 NIST08
NIST02 0.665 0.571 0.506

Table 4: The similarity of development and three test
datasets.

For an efficient tuning, the retrieval process is par-
allelized as follows: the examples are assigned to 4
CPUs so that each CPU accepts a query and returns
its top-100 results, then all these top-100 results are
merged into the final top-100 retrieved examples to-
gether with their translation candidates. In our ex-
periments, we employ the two incremental training
methods, i.e. MBUU and EBUU. Both of the hyper-
parameters λ are tuned on NIST05 and set as 0.018
and 0.06 for MBUU and EBUU, respectively. In
the incremental training step, only one CPU is em-
ployed.

Table 2 depicts that testing each sentence with lo-
cal training method takes 2.9 seconds, which is com-
parable to the testing time 2.0 seconds with global
training method4. This shows that the local method
is efficient. Further, compared to the retrieval, the
local training is not the bottleneck. Actually, if we
use LSH technique (Andoni and Indyk, 2008) in re-
trieval process, the local method can be easily scaled
to a larger training data.

5.3 Results and Analysis

Table 3 shows the main results of our local train-
ing methods. The EBUU training method signifi-
cantly outperforms the MERT baseline, and the im-
provement even achieves up to 2.0 BLEU points on
NIST08. We can also see that EBUU and MBUU are
comparable on these three test sets. Both of these
two local training methods achieve significant im-
provements over the MERT baseline, which proves
the effectiveness of our local training method over
global training method.

Although both local methods MBUU and EBUU
achieved improvements on all the datasets, their
gains on NIST06 and NIST08 are significantly
higher than those achieved on NIST05 test dataset.
We conjecture that, the more different a test set and
a development set are, the more potential improvem-

4The runtime excludes the time of tuning and decoding on D
in Algorithm 2, since both of them can be performanced offline.
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Figure 2: The peformance of EBUU for different λ over
all the test datasets. The horizontal axis denotes the val-
ues of λ in function (6), and the vertical one denotes the
BLEU points.

Metthods Dev NIST08
NIST02 19.03

MERT NIST05 20.06
NIST06 21.28

EBUU NIST02 21.08

Table 5: The comparison of MERT with different de-
velopment datasets and local training method based on
EBUU.

nts local training has for the sentences in this test set.
To test our hypothesis, we measured the similarity
between the development set and a test set by the
average value5 of accumulated TF-IDF scores of de-
velopment dataset and each sentence in test datasets.
Table 4 shows that NIST06 and NIST08 are more
different from NIS02 than NIST05, thus, this is po-
tentially the reason why local training is more effec-
tive on NIST06 and NIST08.

As mentioned in Section 1, the global training
methods such as MERT are highly dependent on de-
velopment sets, which can be seen in Table 5. There-
fore, the translation performance will be degraded if
one chooses a development data which is not close

5Instead of using the similarity between two documents de-
velopment and test datasets, we define the similarity as the av-
erage similarity of the development set and the sentences in test
set. The reason is that it reduces its dependency on the number
of sentences in test dataset, which may cause a bias.

Methods Number Percents
MERT 1735 42.3%
EBUU 1606 39.1%

Table 6: The statistics of sentences with 0.0 sentence-
level BLEU points over three test datasets.

to the test data. We can see that, with the help of the
local training, we still gain much even if we selected
an unsatisfactory development data.

As also mentioned in Section 1, the global meth-
ods do not care about the sentence level perfor-
mance. Table 6 depicts that there are 1735 sentences
with zero BLEU points in all the three test datasets
for MERT. Besides obtaining improvements on doc-
ument level as referred in Table 3, the local training
methods can also achieve consistent improvements
on sentence level and thus can improve the users’
experiences.

The hyperparameters λ in both MBUU (4) and
EBUU (6) has an important influence on transla-
tion performance. Figure 2 shows such influence
for EBUU on the test datasets. We can see that, the
performances on all these datasets improve as λ be-
comes closer to 0.06 from 0, and the performance
continues improving when λ passes over 0.06 on
NIST08 test set, where the performance constantly
improves up to 2.6 BLEU points over baseline. As
mentioned in Section 4, if the retrieved examples are
very similar to the test sentence, the better perfor-
mance will be achieved with the larger λ. There-
fore, it is reasonable that the performances improved
when λ increased from 0 to 0.06. Further, the turn-
ing point appearing at 0.06 proves that the ultra-
conservative update is necessary. We can also see
that the performance on NIST08 consistently im-
proves and achieves the maximum gain when λ ar-
rives at 0.1, but those on both NIST05 and NIST06
achieves the best when it arrives at 0.06. This
phenomenon can also be interpreted in Table 4 as
the lowest similarity between the development and
NIST08 datasets.

Generally, the better performance may be
achieved when more examples are retrieved. Actu-
ally, in Table 7 there seems to be little dependency
between the numbers of examples retrieved and the
translation qualities, although they are positively re-
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Retrieval Size NIST05 NIST06 NIST08
40 27.66 27.81 20.87
70 27.77 27.93 21.08
100 27.85 27.99 21.08

Table 7: The performance comparison by varying re-
trieval size in Algorithm 2 based on EBUU.

Methods NIST05 NIST06 NIST08
MERT 27.07 26.32 19.03
EBUU 27.85 27.99 21.08
Oracle 29.46 29.35 22.09

Table 8: The performance of Oracle of 2-best results
which consist of 1-best resluts of MERT and 1-best
resluts of EBUU.

lated approximately.
Table 8 presents the performance of the oracle

translations selected from the 1-best translation re-
sults of MERT and EBUU. Clearly, there exists more
potential improvement for local training method.

6 Related Work

Several works have proposed discriminative tech-
niques to train log-linear model for SMT. (Och and
Ney, 2002; Blunsom et al., 2008) used maximum
likelihood estimation to learn weights for MT. (Och,
2003; Moore and Quirk, 2008; Zhao and Chen,
2009; Galley and Quirk, 2011) employed an eval-
uation metric as a loss function and directly opti-
mized it. (Watanabe et al., 2007; Chiang et al., 2008;
Hopkins and May, 2011) proposed other optimiza-
tion objectives by introducing a margin-based and
ranking-based indirect loss functions.

All the methods mentioned above train a single
weight for the whole development set, whereas our
local training method learns a weight for each sen-
tence. Further, our translation framework integrates
the training and testing into one unit, instead of treat-
ing them separately. One of the advantages is that it
can adapt the weights for each of the test sentences.

Our method resorts to some translation exam-
ples, which is similar as example-based translation
or translation memory (Watanabe and Sumita, 2003;
He et al., 2010; Ma et al., 2011). Instead of using
translation examples to construct translation rules
for enlarging the decoding space, we employed them

to discriminatively learn local weights.
Similar to (Hildebrand et al., 2005; Lü et al.,

2007), our method also employes IR methods to re-
trieve examples for a given test set. Their methods
utilize the retrieved examples to acquire translation
model and can be seen as the adaptation of trans-
lation model. However, ours uses the retrieved ex-
amples to tune the weights and thus can be consid-
ered as the adaptation of tuning. Furthermore, since
ours does not change the translation model which
needs to run GIZA++ and it incrementally trains lo-
cal weights, our method can be applied for online
translation service.

7 Conclusion and Future Work

This paper proposes a novel local training frame-
work for SMT. It has two characteristics, which
are different from global training methods such as
MERT. First, instead of training only one weight for
document level, it trains a single weight for sentence
level. Second, instead of considering the training
and testing as two separate units, we unify the train-
ing and testing into one unit, which can employ the
information of test sentences and perform sentence-
wise local adaptation of weights.

Local training can not only alleviate the prob-
lem of the development data selection, but also re-
duce the risk of sentence-wise bad translation re-
sults, thus consistently improve the translation per-
formance. Experiments show gains up to 2.0 BLEU
points compared with a MERT baseline. With the
help of incremental training methods, the time in-
curred by local training was negligible and the local
training and testing totally took 2.9 seconds for each
sentence.

In the future work, we will further investigate the
local training method, since there are more room for
improvements as observed in our experiments. We
will test our method on other translation models and
larger training data6.
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Key Laboratory of Intelligent Information Processing
Institute of Computing Technology

Chinese Academy of Sciences
{jiangwenbin, mengfandong, liuqun, lvyajuan}@ict.ac.cn

Abstract

In this paper we first describe the technol-
ogy of automatic annotation transformation,
which is based on the annotation adaptation
algorithm (Jiang et al., 2009). It can auto-
matically transform a human-annotated cor-
pus from one annotation guideline to another.
We then propose two optimization strategies,
iterative training and predict-self reestimation,
to further improve the accuracy of annota-
tion guideline transformation. Experiments on
Chinese word segmentation show that, the it-
erative training strategy together with predict-
self reestimation brings significant improve-
ment over the simple annotation transforma-
tion baseline, and leads to classifiers with sig-
nificantly higher accuracy and several times
faster processing than annotation adaptation
does. On the Penn Chinese Treebank 5.0,
it achieves an F-measure of98.43%, signif-
icantly outperforms previous works although
using a single classifier with only local fea-
tures.

1 Introduction

Annotation guideline adaptation depicts a general
pipeline to integrate the knowledge of corpora with
different underling annotation guidelines (Jiang et
al., 2009). In annotation adaptation two classifiers
are cascaded together, where the classification re-
sults of the lower classifier are used as guiding fea-
tures of the upper classifier, in order to achieve more
accurate classification. This method can automat-
ically adapt the divergence between different an-
notation guidelines and bring improvement to Chi-

nese word segmentation. However, the need of cas-
caded classification decisions makes it less practical
for tasks of high computational complexity such as
parsing, and less efficient to incorporate more than
two annotated corpora.

In this paper, we first describe the algorithm of
automatic annotation transformation. It is based on
the annotation adaptation algorithm, and it focuses
on the automatic transformation (rather than adapta-
tion) of a human-annotated corpus from one annota-
tion guideline to another. First, a classifier is trained
on the corpus with an annotation guideline not de-
sired, it is used to classify the corpus with the an-
notation guideline we want, so as to obtain a corpus
with parallel annotation guidelines. Then a second
classifier is trained on the parallelly annotated cor-
pus to learn the statistical regularity of annotation
transformation, and it is used to process the previous
corpus to transform its annotation guideline to that
of the target corpus. Instead of the online knowl-
edge integration methodology of annotation adapta-
tion, annotation transformation can lead to improved
classification accuracy in an offline manner by using
the transformed corpora as additional training data
for the classifier. This method leads to an enhanced
classifier with much faster processing than the cas-
caded classifiers in annotation adaptation.

We then propose two optimization strategies, iter-
ative training and predict-self reestimation, to fur-
ther improve the accuracy of annotation transfor-
mation. Although the transformation classifiers
can only be trained on corpora with autogenerated
(rather than gold) parallel annotations, an iterative
training procedure can gradually improve the trans-
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formation accuracy by iteratively optimizing the par-
allelly annotated corpora. Both source-to-target and
target-to-source annotation transformations are per-
formed in each training iteration, and the trans-
formed corpora are used to provide better annota-
tions for the parallelly annotated corpora of the next
iteration; then the better parallelly annotated corpora
will result in more accurate transformation classi-
fiers, which will generate better transformed corpora
in the new iteration. The predict-self reestimation
is based on the following hypothesis, a better trans-
formation result should be easier to be transformed
back to the original form. The predict-self heuristic
is also validated by Daumé III (2009) in unsuper-
vised dependency parsing.

Experiments in Chinese word segmentation show
that, the iterative training strategy together with
predict-self reestimation brings significant improve-
ment over the simple annotation transformation
baseline. We perform optimized annotation trans-
formation from the People’s Daily (Yu et al., 2001)
to the Penn Chinese Treebank 5.0 (CTB) (Xue et
al., 2005), in order to improve the word segmenter
with CTB annotation guideline. Compared to anno-
tation adaptation, the optimized annotation transfor-
mation strategy leads to classifiers with significantly
higher accuracy and several times faster processing
on the same data sets. On CTB 5.0, it achieves an F-
measure of98.43%, significantly outperforms pre-
vious works although using a single classifier with
only local features.

The rest of the paper is organized as follows.
Section 2 describes the classification-based Chinese
word segmentation method. Section 3 details the
simple annotation transformation algorithm and the
two optimization methods. After the introduction of
related works in section 4, we give the experimental
results on Chinese word segmentation in section 5.

2 Classification-Based Chinese Word
Segmentation

Chinese word segmentation can be formalized as
the problem of sequence labeling (Xue and Shen,
2003), where each character in the sentence is given
a boundary tag denoting its position in a word. Fol-
lowing Ng and Low (2004), joint word segmenta-
tion and part-of-speech (POS) tagging can also be

Algorithm 1 Perceptron training algorithm.
1: Input : Training examples(xi, yi)
2: ~α← 0
3: for t← 1 .. T do
4: for i← 1 .. N do
5: zi ← argmaxz∈GEN(xi) Φ(xi, z) · ~α
6: if zi 6= yi then
7: ~α← ~α + Φ(xi, yi)−Φ(xi, zi)

8: Output: Parameters~α

solved in a character classification approach by ex-
tending the boundary tags to include POS informa-
tion. For word segmentation we adopt the 4 bound-
ary tags of Ng and Low (2004),b, m, e ands, where
b, m ande mean the beginning, the middle and the
end of a word, ands indicates a single-character
word. The word segmentation result can be gen-
erated by splitting the labeled character sequence
into subsequences of patterns or bm∗e, indicating
single-character words or multi-character words, re-
spectively.

We choose the perceptron algorithm (Collins,
2002) to train the character classifier. It is an online
training algorithm and has been successfully used in
many NLP tasks, including POS tagging (Collins,
2002), parsing (Collins and Roark, 2004) and word
segmentation (Zhang and Clark, 2007; Jiang et al.,
2008; Zhang and Clark, 2010).

The training procedure learns a discriminative
model mapping from the inputsx ∈ X to the outputs
y ∈ Y , whereX is the set of sentences in the train-
ing corpus andY is the set of corresponding labeled
results. We use the functionGEN(x) to enumerate
the candidate results of an inputx, and the function
Φ to map a training example(x, y) ∈ X × Y to a
feature vectorΦ(x, y) ∈ Rd. Given the character
sequencex, the decoder finds the outputF (x) that
maximizes the score function:

F (x) = argmax
y∈GEN(x)

S(y|~α,Φ, x)

= argmax
y∈GEN(x)

Φ(x, y) · ~α
(1)

Where~α ∈ Rd is the parameter vector (that is, the
discriminative model) andΦ(x, y) · ~α is the inner
product ofΦ(x, y) and~α.

Algorithm 1 shows the perceptron algorithm for
tuning the parameter~α. The “averaged parameters”
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Type Feature Templates
Unigram C−2 C−1 C0

C1 C2

Bigram C−2C−1 C−1C0 C0C1

C1C2 C−1C1

Property Pu(C0)
T (C−2)T (C−1)T (C0)T (C1)T (C2)

Table 1: Feature templates for classification-based Chi-
nese segmentation model.

technology (Collins, 2002) is used for better per-
formance. The feature templates for the classifier
is shown in Table 1.C0 denotes the current char-
acter, whileC−i/Ci denote theith character to the
left/right of C0. The functionPu(·) returns true
for a punctuation character andfalsefor others, the
function T (·) classifies a character into four types:
number, date, English letter and others.

3 Iterative and Predict-Self Annotation
Transformation

This section first describes the technology of au-
tomatic annotation transformation, then introduces
the two optimization strategies, iterative training and
predict-self reestimation. Iterative training takes
a global view, it conducts several rounds of bidi-
rectional annotation transformations, and improve
the transformation performance round by round.
Predict-self reestimation takes a local view instead,
it considers each training sentence, and improves the
transformation performance by taking into account
the predication result of the reverse transformation.
The two strategies can be adopted jointly to obtain
better transformation performance.

3.1 Automatic Annotation Transformation

Annotation adaptation can integrate the knowledge
from two corpora with different underling annota-
tion guidelines. First, a classifier (source classi-
fier) is trained on the corpus (source corpus) with
an annotation standard (source annotation) not de-
sired, it is then used to classify the corpus (target
corpus) with the annotation standard (target annota-
tion) we want. Then a second classifier (transforma-
tion classifier1) is trained on the target corpus with

1It is called target classifierin (Jiang et al., 2009). We
think that transformation classifierbetter reflects its role, the

Type Feature Templates
Baseline C−2 C−1 C0

C1 C2

C−2C−1 C−1C0 C0C1

C1C2 C−1C1

Pu(C0)
T (C−2)T (C−1)T (C0)T (C1)T (C2)

Guiding α
C−2 ◦ α C−1 ◦ α C0 ◦ α
C1 ◦ α C2 ◦ α
C−2C−1 ◦ α C−1C0 ◦ α C0C1 ◦ α
C1C2 ◦ α C−1C1 ◦ α
Pu(C0) ◦ α
T (C−2)T (C−1)T (C0)T (C1)T (C2) ◦ α

Table 2: Feature templates for annotation transformation,
whereα is short forα(C0), representing the source an-
notation ofC0.

the source classifier’s classification result as guid-
ing features. In decoding, a raw sentence is first de-
coded by the source classifier, and then inputted into
the transformation classifier together with the anno-
tations given by the source classifier, so as to obtain
an improved classification result.

However, annotation adaptation has a drawback,
it has to cascade two classifiers in decoding to inte-
grate the knowledge in two corpora, thus seriously
degrades the processing speed. This paper describes
a variant of annotation adaptation, name annotation
transformation, aiming at automatic transformation
(rather than adaptation) between annotation stan-
dards of human-annotated corpora. In annotation
transformation, a source classifier and a transforma-
tion classifier are trained in the same way as in an-
notation adaptation. The transformation classifier is
used to process the source corpus, with the classi-
fication label derived from the segmented sentences
as the guiding features, so as to relabel the source
corpus with the target annotation guideline. By inte-
grating the target corpus and the transformed source
corpus for the training of the character classifier, im-
proved classification accuracy can be achieved.

Both the source classifier and the transforma-
tion classifier are trained with the perceptron algo-
rithm. The feature templates used for the source
classifier are the same with those for the baseline

renaming also avoids name confusion in the optimized annota-
tion transformation.
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Algorithm 2 Baseline annotation transformation.
1: function ANNOTRANS(Cs, Ct)
2: Ms ← TRAIN(Cs)
3: Cs

t ← ANNOTATE(Ms, Ct)
4: Ms→t ← TRANSTRAIN(Cs

t , Ct)
5: Ct

s ← TRANSANNOTATE(Ms→t, Cs)
6: Ct

∗
← Ct

s ∪ Ct
7: return Ct

∗

8: function DECODE(M, Φ, x)
9: return argmaxy∈GEN(x) S(y|M,Φ, x)

character classifier. The feature templates for the
transformation classifier are the same with those in
annotation adaptation, as listed in Table 2. Al-
gorithm 2 shows the overall training algorithm
for annotation transformation.Cs and Ct denote
the source corpus and the target corpus;Ms and
Ms→t denote the source classifier and the trans-
formation classifier;Cq

p denotes thep corpus re-
labeled inq annotation guideline, for exampleCt

s

is the source corpus transformed to target annota-
tion guideline; Functions TRAIN and TRANSTRAIN

both invoke the perceptron algorithm, yet with
different feature sets; Functions ANNOTATE and
TRANSANNOTATE call the function DECODE with
different models (source/transformation classifiers),
feature functions (without/with guiding features),
and inputs (raw/source-annotated sentences).

The best training iterations for the functions
TRAIN and TRANSTRAIN are determined on the de-
veloping sets of the source corpus and the target
corpus, respectively. In the algorithm the param-
eters corresponding to developing sets are omitted
for simplicity. Compared to the online knowledge
integration methodology of annotation adaptation,
annotation transformation leads to improved perfor-
mance in an offline manner by integrating corpora
before the training procedure. This manner could
achieve processing several times as fast as the cas-
caded classifiers in annotation adaptation. In the fol-
lowing we will describe the two optimization strate-
gies in details.

3.2 Iterative Training for Annotation
Transformation

The training of annotation transformation is based
on an auto-generated (rather than gold) parallelly an-
notated corpus, where the source annotation is pro-

Algorithm 3 Iterative annotation transformation.
1: function ITERANNOTRANS(Cs, Ct)
2: Ms ← TRAIN(Cs)
3: Cs

t ← ANNOTATE(Ms, Ct)
4: Mt ← TRAIN(Ct)
5: Ct

s ← ANNOTATE(Mt, Cs)
6: repeat
7: Ms→t ← TRANSTRAIN(Cs

t , Ct)
8: Mt→s ← TRANSTRAIN(Ct

s, Cs)
9: Ct

s ← TRANSANNOTATE(Ms→t, Cs)
10: Cs

t ← TRANSANNOTATE(Mt→s, Ct)
11: Ct

∗
← Ct

s ∪ Ct
12: M∗ ← TRAIN(Ct

∗
)

13: until EVAL (M∗) converges
14: return Ct

∗

15: function DECODE(M, Φ, x)
16: return argmaxy∈GEN(x) S(y|M,Φ, x)

vided by the source classifier. Therefore, the perfor-
mance of transformation training is correspondingly
determined by the accuracy of the source classifier.

We propose an iterative training procedure to
gradually improve the transformation accuracy by
iteratively optimizing the parallelly annotated cor-
pora. In each training iteration, both source-to-target
and target-to-source annotation transformations are
performed, and the transformed corpora are used to
provide better annotations for the parallelly anno-
tated corpora of the next iteration. Then in the new
iteration, the better parallelly annotated corpora will
result in more accurate transformation classifiers, so
as to generate better transformed corpora.

Algorithm 3 shows the overall procedure of the
iterative training method. The loop of lines 6-13
iteratively performs source-to-target and target-to-
source annotation transformations. The source an-
notations of the parallelly annotated corpora,Cs

t and
Ct

s, are initialized by applying the source and tar-
get classifiers respectively on the target and source
corpora (lines 2-5). In each training iteration, the
transformation classifiers are trained on the current
parallelly annotated corpora (lines 7-8), they are
used to produce the transformed corpora (lines 9-10)
which provide better annotations for the parallelly
annotated corpora of the next iteration. The itera-
tive training terminates when the performance of the
classifier trained on the merged corpusCt

s ∪ Ct con-
verges.
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The discriminative training of TRANSTRAIN pre-
dicts the target annotations with the guidance of
source annotations. In the first iteration, the trans-
formed corpora generated by the transformation
classifiers are better than the initialized ones gener-
ated by the source and target classifiers, due to the
assistance of the guiding features. In the follow-
ing iterations, the transformed corpora provide bet-
ter annotations for the parallelly annotated corpora
of the subsequent iteration, the transformation ac-
curacy will improve gradually along with optimiza-
tion of the parallelly annotated corpora until conver-
gence.

3.3 Predict-Self Reestimation for Annotation
Transformation

The predict-self hypothesis is implicit in many unsu-
pervised learning approaches, such as Markov ran-
dom field. This methodology has also been success-
fully used by Daumé III (2009) in unsupervised de-
pendency parsing. The basic idea of predict-self is
that, if a prediction is a better candidate for an input,
it can be easier converted back to the original input
by a reverse procedure. If applied to the task of an-
notation transformation, predict-self indicates that a
better transformation candidate following the target
annotation guideline can be easier transformed back
to the original form following the source annotation
guideline.

The most intuitionistic strategy to introduce the
predict-self methodology into annotation transfor-
mation is using a reversed annotation transforma-
tion procedure to filter out unreliable predictions of
the previous transformation. In detail, a source-to-
target annotation transformation is performed on the
source annotated sentence to obtain a prediction that
follows the target annotation guideline, then a sec-
ond, target-to-source transformation is performed
on this prediction result to check whether it can
be transformed back to the previous source annota-
tion. Transformation results failing in this reversal
verification are discarded, so this strategy is named
predict-self filtration.

A more precious strategy can be called predict-
self reestimation. Instead of using the reversed
transformation procedure for filtration, the rees-
timation strategy integrates the scores given by
the source-to-target and target-to-source annotation

transformation models when evaluating the transfor-
mation candidates. By properly tuning the relative
weights of the two transformation directions, bet-
ter transformation performance would be achieved.
The scores of the two transformation models are
weighted integrated in a log-linear manner:

S
+(y|Ms→t,Mt→s,Φ, x)

= (1− λ)× S(y|Ms→t,Φ, x)

+ λ× S(x|Mt→s,Φ, y)

(2)

The weight parameterλ is tuned on the develop-
ing set. To integrating the predict-self reestima-
tion into the iterative transformation training, a re-
versed transformation model is introduced and the
enhanced scoring function above is used when the
function TRANSANNOTATE invokes the function
DECODE.

4 Related Works

Researches focused on the automatic adaptation
between different corpora can be roughly clas-
sified into two kinds, adaptation between differ-
ent domains (with different statistical distribution)
(Blitzer et al., 2006; Daumé III, 2007), and adapta-
tion between different annotation guidelines (Jiang
et al., 2009; Zhu et al., 2011). There are also
some efforts that totally or partially resort to man-
ual transformation rules, to conduct treebank con-
version (Cahill and Mccarthy, 2002; Hockenmaier
and Steedman, 2007; Clark and Curran, 2009), and
word segmentation guideline transformation (Gao
et al., 2004; Mi et al., 2008). This work focuses
on the automatic transformation between annotation
guidelines, and proposes better annotation transfor-
mation technologies to improve the transformation
accuracy and the utilization rate of human-annotated
knowledge.

The iterative training procedure proposed in this
work shares some similarity with the co-training al-
gorithm in parsing (Sarkar, 2001), where the train-
ing procedure lets two different models learn from
each other during parsing the raw text. The key
idea of co-training is utilize the complementarity of
different parsing models to mine additional training
data from raw text, while iterative training for an-
notation transformation emphasizes the iterative op-
timization of the parellelly annotated corpora used
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Partition Sections # of word
CTB
Training 1− 270 0.47M

400− 931
1001− 1151

Developing 301− 325 6.66K
Test 271− 300 7.82K
PD
Training 02− 06 5.86M
Test 01 1.07M

Table 3: Data partitioning for CTB and PD.

to train the transformation models. The predict-
self methodology is implicit in many unsupervised
learning approaches, it has been successfully used
by (Daumé III, 2009) in unsupervised dependency
parsing. We adapt this idea to the scenario of anno-
tation transformation to improve transformation ac-
curacy.

In recent years many works have been devoted to
the word segmentation task. For example, the in-
troduction of global training or complicated features
(Zhang and Clark, 2007; Zhang and Clark, 2010);
the investigation of word structures (Li, 2011);
the strategies of hybrid, joint or stacked modeling
(Nakagawa and Uchimoto, 2007; Kruengkrai et al.,
2009; Wang et al., 2010; Sun, 2011), and the semi-
supervised and unsupervised technologies utilizing
raw text (Zhao and Kit, 2008; Johnson and Gold-
water, 2009; Mochihashi et al., 2009; Hewlett and
Cohen, 2011). We estimate that the annotation trans-
formation technologies can be adopted jointly with
complicated features, system combination and semi-
supervised/unsupervised technologies to further im-
prove segmentation performance.

5 Experiments and Analysis

We perform annotation transformation from Peo-
ple’s Daily (PD) (Yu et al., 2001) to Penn Chi-
nese Treebank 5.0 (CTB) (Xue et al., 2005), follow-
ing the same experimental setting as the annotation
adaptation work (Jiang et al., 2009) for convenience
of comparison. The two corpora are segmented fol-
lowing different segmentation guidelines and differ
largely in quantity of data. CTB is smaller in size
with about0.5M words, while PD is much larger,
containing nearly6M words.

Test on(F1%)
Train on CTB SPD

CTB 97.35 86.65(↓ 10.70)
SPD 91.23(↓ 3.02) 94.25

Table 4: Performance of the perceptron classifiers for
Chinese word segmentation.

Model Time (s) Accuracy (F1%)
Merging 1.33 93.79
Anno. Adapt. 4.39 97.67
Anno. Trans. 1.33 97.69

Baseline 1.21 97.35

Table 5: Comparison of the baseline annotation transfor-
mation, annotation adaptation and a simple corpus merg-
ing strategy.

To approximate more general scenarios of anno-
tation adaptation problems, we extract from PD a
subset which is comparable to CTB in size. We ran-
domly select20, 000 sentences (0.45M words) from
the PD training data as the new training set, and
1000/1000 sentences from the PD test data as the
new test/developing set.2 We name the smaller ver-
sion of PD as SPD. The balanced source corpus and
target corpus also facilitate the investigation of an-
notation transformation.

5.1 Baseline Classifiers for Word Segmentation

We train the baseline perceptron classifiers de-
scribed in section 2 on the training sets of SPD
and CTB, using the developing sets to determine the
best training iterations. The performance measure-
ment indicators for word segmentation is balanced
F-measure,F = 2PR/(P + R), a function of Pre-
cision P and RecallR. whereP is the percentage
of words in segmentation result that are segmented
correctly, andR is the percentage of correctly seg-
mented words in the gold standard words.

Accuracies of the baseline classifiers are listed in
Table 4. We also report the performance of the clas-
sifiers on the test sets of the opposite corpora. Ex-
perimental results are in line with our expectations.
A classifier performs better in its corresponding test
set, and performs significantly worse on a test set
following a different annotation guideline.

2There are many extremely long sentences in original PD
corpus, we split them into normal sentences according to period
punctuations.
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Figure 1: Learning curve of iterative training for annota-
tion transformation.

5.2 Annotation Transformation vs. Annotation
Adaptation

Experiments of annotation transformation are con-
ducted on the direction of SPD-to-CTB. The trans-
formed corpus can be merged into the regular cor-
pus, so as to train an enhanced classifier. As com-
parison, the cascaded model of annotation adapta-
tion (Jiang et al., 2009) is faithfully implemented
(yet using our feature representation) and tested on
the same adaptation direction.

Table 5 shows the performances of the classi-
fiers resulted by the baseline annotation transforma-
tion and annotation adaptation, as well as the clas-
sifier trained on the directly merged corpus. The
time costs for decoding are also listed to facilitate
the comparison of practicality. We find that the sim-
ple corpus merging strategy leads to dramatic de-
crease in accuracy, due to the different and incom-
patible annotation guidelines. The baseline annota-
tion transformation method leads to a classifier with
accuracy increment comparable to that of the anno-
tation adaptation strategy, while consuming only one
third of the decoding time.

5.3 Iterative Training with Predict-Self
Reestimation

We adopt the iterative training strategy to the base-
line annotation transformation model. The CTB de-
veloping set is used to determine the best training
iteration for annotation transformation from SPD to
CTB. After each iteration, we test the performance
of the classifier trained on the merged corpus. Fig-
ure 1 shows the performance curve, with iterations
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Figure 2: Performance of predict-self filtration and
predict-self reestimation.
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Figure 3: Learning curve of iterative training with
predict-self reestimation for annotation transformation.

ranging from1 to 10. The performance of the base-
line annotation transformation model is naturally in-
cluded in the curve (located at iteration1). The
curve shows that the performance of the classifier
trained on the merged corpus consistently improves
from iteration2 to iteration5.

Experimental results of predict-self filtration and
predict-self reestimation are shown in Figure 2.
The curve shows the performance of the predict-self
reestimation according to a series of weight param-
eters, ranging from0 to 1 with step0.05. The point
at λ = 0 shows the performance of the baseline
annotation transformation strategy. The upper hor-
izontal line shows the performance of predict-self
filtration. We find that predict-self filtration brings
slight improvement over the baseline, and predict-
self reestimation outperforms the filtration strategy
whenλ falls in a proper range. An initial analysis
on the experimental results of predict-self filtration

418



Model Time (s) Accuracy (F1%)
SPD→ CTB
Anno. Adapt. 4.39 97.67
Opt. Trans. 1.33 97.97

PD→ CTB
Anno. Adapt. 4.76 98.15
Opt. Trans. 1.37 98.43

Previous Works
(Jiang et al., 2008) 97.85
(Kruengkrai et al., 2009) 97.87
(Zhang and Clark, 2010) 97.79
(Sun, 2011) 98.17

Table 6: The performance of the iterative annotation
transformation with predict-self reestimation compared
with annotation adaptation.

shows that, the filtration discards5% of the train-
ing sentences and these discarded sentences contain
nearly10% of training words. It can be confirmed
that the sentences discarded by predict-self filtra-
tion are much longer and more complicated. With a
properly tuned weight, predict-self reestimation can
make better use of the training data. The best F-
measure improvement achieved over the annotation
transformation baseline is0.3 points, a little worse
than that brought by iterative training.

Figure 3 shows the performance curve of iterative
annotation transformation with predict-self reesti-
mation. We find that the predict-self reestimation
brings improvement to the iterative training at each
iteration. The maximum performance is achieved
at iteration4. The corresponding model is evalu-
ated on the test set of CTB, table 6 shows the ex-
perimental results. Compared to annotation adapta-
tion, the optimized annotation transformation strat-
egy leads to a classifier with significantly higher ac-
curacy and several times faster processing. When
using the whole PD as the source corpus, the final
classifier3 achieves an F-measure of98.43%, sig-
nificantly outperforms previous works although us-
ing a single classifier with only local features. Of
course, the comparison between our system and pre-
vious works without using additional training data
is unfair. This work aim to find another way to im-
prove Chinese word segmentation, which focuses on
the collection of more training data instead of mak-

3The predict-self reestimation ratioλ is fixed after the first
training iteration for efficiency.

ing full use of a certain corpus. We believe that the
performance can be further improved by adopting
the advanced technologies of previous works, such
as complicated features and model combination.

Considering the fact that today some corpora for
word segmentation are really large (usually tens
of thousands of sentences), it is necessary to ob-
tain the latest CTB and investigate whether and
how much does annotation transformation bring im-
provement to a much higher baseline. On the other
hand, it is valuable to conduct experiments with
more source-annotated training data, such as the
SIGHAN dataset, to investigate the trend of im-
provement along with the increment of the addi-
tional annotated sentences. It is also valuable to
evaluate the improved word segmenter on the out-
of-domain datasets. However, currently most cor-
pora for Chinese word segmentation do not explic-
itly distinguish the domains of their data sections, it
makes such evaluations difficult to conduct.

6 Conclusion and Future Works

In this paper, we first describe an annotation trans-
formation algorithm to automatically transform a
human-annotated corpus from one annotation guide-
line to another. Then we propose two optimization
strategies, iterative training and predict-self reesti-
mation, to further improve the accuracy of anno-
tation guideline transformation. On Chinese word
segmentation, the optimized annotation transforma-
tion strategy leads to classifiers with obviously bet-
ter performance and several times faster processing
on the same datasets, compared to annotation adap-
tation. When adopting the whole PD as the source
corpus, the final classifier significantly outperforms
previous works on CTB 5.0, although using a single
classifier with only local features.

As future works, we will investigate the accel-
eration of the iterative training and the weight pa-
rameter tuning, and extend the optimized annotation
transformation strategy to joint Chinese word seg-
mentation and POS tagging, parsing and other NLP
tasks.
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Abstract

Microblog normalisation methods often utilise
complex models and struggle to differenti-
ate between correctly-spelled unknown words
and lexical variants of known words. In this
paper, we propose a method for construct-
ing a dictionary of lexical variants of known
words that facilitates lexical normalisation via
simple string substitution (e.g. tomorrow for
tmrw). We use context information to generate
possible variant and normalisation pairs and
then rank these by string similarity. Highly-
ranked pairs are selected to populate the dic-
tionary. We show that a dictionary-based ap-
proach achieves state-of-the-art performance
for both F-score and word error rate on a stan-
dard dataset. Compared with other methods,
this approach offers a fast, lightweight and
easy-to-use solution, and is thus suitable for
high-volume microblog pre-processing.

1 Lexical Normalisation

A staggering number of short text “microblog” mes-
sages are produced every day through social me-
dia such as Twitter (Twitter, 2011). The immense
volume of real-time, user-generated microblogs that
flows through sites has been shown to have utility
in applications such as disaster detection (Sakaki et
al., 2010), sentiment analysis (Jiang et al., 2011;
González-Ibáñez et al., 2011), and event discovery
(Weng and Lee, 2011; Benson et al., 2011). How-
ever, due to the spontaneous nature of the posts,
microblogs are notoriously noisy, containing many
non-standard forms — e.g., tmrw “tomorrow” and
2day “today” — which degrade the performance of

natural language processing (NLP) tools (Ritter et
al., 2010; Han and Baldwin, 2011). To reduce this
effect, attempts have been made to adapt NLP tools
to microblog data (Gimpel et al., 2011; Foster et al.,
2011; Liu et al., 2011b; Ritter et al., 2011). An al-
ternative approach is to pre-normalise non-standard
lexical variants to their standard orthography (Liu et
al., 2011a; Han and Baldwin, 2011; Xue et al., 2011;
Gouws et al., 2011). For example, se u 2morw!!!
would be normalised to see you tomorrow! The nor-
malisation approach is especially attractive as a pre-
processing step for applications which rely on key-
word match or word frequency statistics. For ex-
ample, earthqu, eathquake, and earthquakeee — all
attested in a Twitter corpus — have the standard
form earthquake; by normalising these types to their
standard form, better coverage can be achieved for
keyword-based methods, and better word frequency
estimates can be obtained.

In this paper, we focus on the task of lexical nor-
malisation of English Twitter messages, in which
out-of-vocabulary (OOV) tokens are normalised to
their in-vocabulary (IV) standard form, i.e., a stan-
dard form that is in a dictionary. Following other re-
cent work on lexical normalisation (Liu et al., 2011a;
Han and Baldwin, 2011; Gouws et al., 2011; Liu et
al., 2012), we specifically focus on one-to-one nor-
malisation in which one OOV token is normalised to
one IV word.

Naturally, not all OOV words in microblogs are
lexical variants of IV words: named entities, e.g.,
are prevalent in microblogs, but not all named en-
tities are included in our dictionary. One chal-
lenge for lexical normalisation is therefore to dis-
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tinguish those OOV tokens that require normalisa-
tion from those that are well-formed. Recent un-
supervised approaches have not attempted to distin-
guish such tokens from other types of OOV tokens
(Cook and Stevenson, 2009; Liu et al., 2011a), lim-
iting their applicability to real-world normalisation
tasks. Other approaches (Han and Baldwin, 2011;
Gouws et al., 2011) have followed a cascaded ap-
proach in which lexical variants are first identified,
and then normalised. However, such two-step ap-
proaches suffer from poor lexical variant identifica-
tion performance, which is propagated to the nor-
malisation step. Motivated by the observation that
most lexical variants have an unambiguous standard
form (especially for longer tokens), and that a lexi-
cal variant and its standard form typically occur in
similar contexts, in this paper we propose methods
for automatically constructing a lexical normalisa-
tion dictionary — a dictionary whose entries consist
of (lexical variant, standard form) pairs — that en-
ables type-based normalisation.

Despite the simplicity of this dictionary-based
normalisation method, we show it to outperform
previously-proposed approaches. This very fast,
lightweight solution is suitable for real-time pro-
cessing of the large volume of streaming microblog
data available from Twitter, and offers a simple solu-
tion to the lexical variant detection problem that hin-
ders other normalisation methods. Furthermore, this
dictionary-based method can be easily integrated
with other more-complex normalisation approaches
(Liu et al., 2011a; Han and Baldwin, 2011; Gouws
et al., 2011) to produce hybrid systems.

After discussing related work in Section 2, we
present an overview of our dictionary-based ap-
proach to normalisation in Section 3. In Sections 4
and 5 we experimentally select the optimised con-
text similarity parameters and string similarity re-
ranking method. We present experimental results on
the unseen test data in Section 6, and offer some con-
cluding remarks in Section 7.

2 Related Work

Given a token t, lexical normalisation is the task
of finding arg maxP (s|t) ∝ arg maxP (t|s)P (s),
where s is the standard form, i.e., an IV word. Stan-
dardly in lexical normalisation, t is assumed to be an

OOV token, relative to a fixed dictionary. In prac-
tice, not all OOV tokens should be normalised; i.e.,
only lexical variants (e.g., tmrw “tomorrow”) should
be normalised and tokens that are OOV but other-
wise not lexical variants (e.g., iPad “iPad”) should
be unchanged. Most work in this area focuses only
on the normalisation task itself, oftentimes assuming
that the task of lexical variant detection has already
been completed.

Various approaches have been proposed to esti-
mate the error model, P (t|s). For example, in work
on spell-checking, Brill and Moore (2000) improve
on a standard edit-distance approach by consider-
ing multi-character edit operations; Toutanova and
Moore (2002) build on this by incorporating phono-
logical information. Li et al. (2006) utilise distri-
butional similarity (Lin, 1998) to correct misspelled
search queries.

In text message normalisation, Choudhury et al.
(2007) model the letter transformations and emis-
sions using a hidden Markov model (Rabiner, 1989).
Cook and Stevenson (2009) and Xue et al. (2011)
propose multiple simple error models, each of which
captures a particular way in which lexical variants
are formed, such as phonetic spelling (e.g., epik
“epic”) or clipping (e.g., walkin “walking”). Never-
theless, optimally weighting the various error mod-
els in these approaches is challenging.

Without pre-categorising lexical variants into dif-
ferent types, Liu et al. (2011a) collect Google
search snippets from carefully-designed queries
from which they then extract noisy lexical variant–
standard form pairs. These pairs are used to train
a conditional random field (Lafferty et al., 2001) to
estimate P (t|s) at the character level. One short-
coming of querying a search engine to obtain train-
ing pairs is it tends to be costly in terms of time and
bandwidth. Here we exploit microblog data directly
to derive (lexical variant, standard form) pairs, in-
stead of relying on external resources. In more-
recent work, Liu et al. (2012) endeavour to improve
the accuracy of top-n normalisation candidates by
integrating human cognitive inference, character-
level transformations and spell checking in their nor-
malisation model. The encouraging results shift the
focus to reranking and promoting the correct nor-
malisation to the top-1 position. However, like much
previous work on lexical normalisation, this work
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assumes perfect lexical variant detection.

Aw et al. (2006) and Kaufmann and Kalita (2010)
consider normalisation as a machine translation task
from lexical variants to standard forms using off-the-
shelf tools. These methods do not assume that lexi-
cal variants have been pre-identified; however, these
methods do rely on large quantities of labelled train-
ing data, which is not available for microblogs.

Recently, Han and Baldwin (2011) and Gouws
et al. (2011) propose two-step unsupervised ap-
proaches to normalisation, in which lexical vari-
ants are first identified, and then normalised. They
approach lexical variant detection by using a con-
text fitness classifier (Han and Baldwin, 2011) or
through dictionary lookup (Gouws et al., 2011).
However, the lexical variant detection of both meth-
ods is rather unreliable, indicating the challenge
of this aspect of normalisation. Both of these
approaches incorporate a relatively small normal-
isation dictionary to capture frequent lexical vari-
ants with high precision. In particular, Gouws et
al. (2011) produce a small normalisation lexicon
based on distributional similarity and string simi-
larity (Lodhi et al., 2002). Our method adopts a
similar strategy using distributional/string similarity,
but instead of constructing a small lexicon for pre-
processing, we build a much wider-coverage nor-
malisation dictionary and opt for a fully lexicon-
based end-to-end normalisation approach. In con-
trast to the normalisation dictionaries of Han and
Baldwin (2011) and Gouws et al. (2011) which fo-
cus on very frequent lexical variants, we focus on
moderate frequency lexical variants of a minimum
character length, which tend to have unambiguous
standard forms; our intention is to produce normali-
sation lexicons that are complementary to those cur-
rently available. Furthermore, we investigate the im-
pact of a variety of contextual and string similarity
measures on the quality of the resulting lexicons.
In summary, our dictionary-based normalisation ap-
proach is a lightweight end-to-end method which
performs both lexical variant detection and normal-
isation, and thus is suitable for practical online pre-
processing, despite its simplicity.

3 A Lexical Normalisation Dictionary

Before discussing our method for creating a normal-
isation dictionary, we first discuss the feasibility of
such an approach.

3.1 Feasibility
Dictionary lookup approaches to normalisation have
been shown to have high precision but low recall
(Han and Baldwin, 2011; Gouws et al., 2011). Fre-
quent (lexical variant, standard form) pairs such as
(u, you) are typically included in the dictionaries
used by such methods, while less-frequent items
such as (g0tta, gotta) are generally omitted. Be-
cause of the degree of lexical creativity and large
number of non-standard forms observed on Twitter,
a wide-coverage normalisation dictionary would be
expensive to construct manually. Based on the as-
sumption that lexical variants occur in similar con-
texts to their standard forms, however, it should
be possible to automatically construct a normalisa-
tion dictionary with wider coverage than is currently
available.

Dictionary lookup is a type-based approach to
normalisation, i.e., every token instance of a given
type will always be normalised in the same way.
However, lexical variants can be ambiguous, e.g., y
corresponds to “you” in yeah, y r right! LOL but
“why” in AM CONFUSED!!! y you did that? Nev-
ertheless, the relative occurrence of ambiguous lex-
ical variants is small (Liu et al., 2011a), and it has
been observed that while shorter variants such as y
are often ambiguous, longer variants tend to be un-
ambiguous. For example bthday and 4eva are un-
likely to have standard forms other than “birthday”
and “forever”, respectively. Therefore, the normali-
sation lexicons we produce will only contain entries
for OOVs with character length greater than a spec-
ified threshold, which are likely to have an unam-
biguous standard form.

3.2 Overview of approach
Our method for constructing a normalisation dictio-
nary is as follows:

Input: Tokenised English tweets

1. Extract (OOV, IV) pairs based on distributional
similarity.
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2. Re-rank the extracted pairs by string similarity.

Output: A list of (OOV, IV) pairs ordered by string
similarity; select the top-n pairs for inclusion in
the normalisation lexicon.

In Step 1, we leverage large volumes of Twitter
data to identify the most distributionally-similar IV
type for each OOV type. The result of this pro-
cess is a set of (OOV, IV) pairs, ranked by dis-
tributional similarity. The extracted pairs will in-
clude (lexical variant, standard form) pairs, such as
(tmrw, tomorrow), but will also contain false posi-
tives such as (Tusday, Sunday) — Tusday is a lexical
variant, but its standard form is not “Sunday” — and
(Youtube, web) — Youtube is an OOV named en-
tity, not a lexical variant. Nevertheless, lexical vari-
ants are typically formed from their standard forms
through regular processes (Thurlow, 2003) — e.g.,
the omission of characters — and from this per-
spective Sunday and web are not plausible standard
forms for Tusday and Youtube, respectively. In Step
2, we therefore capture this intuition to re-rank the
extracted pairs by string similarity. The top-n items
in this re-ranked list then form the normalisation lex-
icon, which is based only on development data.

Although computationally-expensive to build,
this dictionary can be created offline. Once built,
it then offers a very fast approach to normalisation.

We can only reliably compute distributional simi-
larity for types that are moderately frequent in a cor-
pus. Nevertheless, many lexical variants are suffi-
ciently frequent to be able to compute distributional
similarity, and can potentially make their way into
our normalisation lexicon. This approach is not suit-
able for normalising low-frequency lexical variants,
nor is it suitable for shorter lexical variant types
which — as discussed in Section 3.1 — are more
likely to have an ambiguous standard form. Never-
theless, previously-proposed normalisation methods
that can handle such phenomena also rely in part on
a normalisation lexicon. The normalisation lexicons
we create can therefore be easily integrated with pre-
vious approaches to form hybrid normalisation sys-
tems.

4 Contextually-similar Pair Generation

Our objective is to extract contextually-similar
(OOV, IV) pairs from a large-scale collection of mi-

croblog data. Fundamentally, the surrounding words
define the primary context, but there are different
ways of representing context and different similar-
ity measures we can use, which may influence the
quality of generated normalisation pairs.

In representing the context, we experimentally ex-
plore the following factors: (1) context window size
(from 1 to 3 tokens on both sides); (2) n-gram or-
der of the context tokens (unigram, bigram, trigram);
(3) whether context words are indexed for relative
position or not; and (4) whether we use all context
tokens, or only IV words. Because high-accuracy
linguistic processing tools for Twitter are still under
exploration (Liu et al., 2011b; Gimpel et al., 2011;
Ritter et al., 2011; Foster et al., 2011), we do not
consider richer representations of context, for exam-
ple, incorporating information about part-of-speech
tags or syntax. We also experiment with a number
of simple but widely-used geometric and informa-
tion theoretic distance/similarity measures. In par-
ticular, we use Kullback–Leibler (KL) divergence
(Kullback and Leibler, 1951), Jensen–Shannon (JS)
divergence (Lin, 1991), Euclidean distance and Co-
sine distance.

We use a corpus of 10 million English tweets to do
parameter tuning over, and a larger corpus of tweets
in the final candidate ranking. All tweets were col-
lected from September 2010 to January 2011 via
the Twitter API.1 From the raw data we extract
English tweets using a language identification tool
(Lui and Baldwin, 2011), and then apply a simpli-
fied Twitter tokeniser (adapted from O’Connor et al.
(2010)). We use the Aspell dictionary (v6.06)2 to
determine whether a word is IV, and only include
in our normalisation dictionary OOV tokens with
at least 64 occurrences in the corpus and character
length ≥ 4, both of which were determined through
empirical observation. For each OOV word type in
the corpus, we select the most similar IV type to
form (OOV, IV) pairs. To further narrow the search
space, we only consider IV words which are mor-
phophonemically similar to the OOV type, follow-
ing settings in Han and Baldwin (2011).3

1https://dev.twitter.com/docs/
streaming-api/methods

2http://aspell.net/
3We only consider IV words within an edit distance of 2 or a

phonemic edit distance of 1 from the OOV type, and we further
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In order to evaluate the generated pairs, we ran-
domly selected 1000 OOV words from the 10 mil-
lion tweet corpus. We set up an annotation task
on Amazon Mechanical Turk,4 presenting five in-
dependent annotators with each word type (with no
context) and asking for corrections where appropri-
ate. For instance, given tmrw, the annotators would
likely identify it as a non-standard variant of “to-
morrow”. For correct OOV words like iPad, on the
other hand, we would expect them to leave the word
unchanged. If 3 or more of the 5 annotators make
the same suggestion (in the form of either a canoni-
cal spelling or leaving the word unchanged), we in-
clude this in our gold standard for evaluation. In
total, this resulted in 351 lexical variants and 282
correct OOV words, accounting for 63.3% of the
1000 OOV words. These 633 OOV words were used
as (OOV, IV) pairs for parameter tuning. The re-
mainder of the 1000 OOV words were ignored on
the grounds that there was not sufficient consensus
amongst the annotators.5

Contextually-similar pair generation aims to in-
clude as many correct normalisation pairs as pos-
sible. We evaluate the quality of the normalisation
pairs using “Cumulative Gain” (CG):

CG =

N ′∑
i=1

rel′i

Suppose there are N ′ correct generated pairs
(oovi, ivi), each of which is weighted by rel′i, the
frequency of oovi to indicate its relative importance;
for example, (thinkin, thinking) has a higher weight
than (g0tta, gotta) because thinkin is more frequent
than g0tta in our corpus. In this evaluation we don’t
consider the position of normalisation pairs, and nor
do we penalise incorrect pairs. Instead, we push dis-
tinguishing between correct and incorrect pairs into
the downstream re-ranking step in which we incor-
porate string similarity information.

Given the development data and CG, we run an
exhaustive search of parameter combinations over

only consider the top 30% most-frequent of these IV words.
4https://www.mturk.com/mturk/welcome
5Note that the objective of this annotation task is to identify

lexical variants that have agreed-upon standard forms irrespec-
tive of context, as a special case of the more general task of
lexical normalisation (where context may or may not play a sig-
nificant role in the determination of the normalisation).

our development corpus. The five best parameter
combinations are shown in Table 1. We notice the
CG is almost identical for the top combinations. As
a context window size of 3 incurs a heavy process-
ing and memory overhead over a size of 2, we use
the 3rd-best parameter combination for subsequent
experiments, namely: context window of±2 tokens,
token bigrams, positional index, and KL divergence
as our distance measure.

To better understand the sensitivity of the method
to each parameter, we perform a post-hoc parame-
ter analysis relative to a default setting (as under-
lined in Table 2), altering one parameter at a time.
The results in Table 2 show that bigrams outper-
form other n-gram orders by a large margin (note
that the evaluation is based on a log scale), and
information-theoretic measures are superior to the
geometric measures. Furthermore, it also indicates
using the positional indexing better captures context.
However, there is little to distinguish context mod-
elling with just IV words or all tokens. Similarly,
the context window size has relatively little impact
on the overall performance, supporting our earlier
observation from Table 1.

5 Pair Re-ranking by String Similarity

Once the contextually-similar (OOV, IV) pairs are
generated using the selected parameters in Section
4, we further re-rank this set of pairs in an at-
tempt to boost morphophonemically-similar pairs
like (bananaz, bananas), and penalise noisy pairs
like (paninis, beans).

Instead of using the small 10 million tweet cor-
pus, from this step onwards, we use a larger cor-
pus of 80 million English tweets (collected over the
same period as the development corpus) to develop
a larger-scale normalisation dictionary. This is be-
cause once pairs are generated, re-ranking based on
string comparison is much faster. We only include
in the dictionary OOV words with a token frequency
> 15 to include more OOV types than in Section 4,
and again apply a minimum length cutoff of 4 char-
acters.

To measure how well our re-ranking method pro-
motes correct pairs and demotes incorrect pairs (in-
cluding both OOV words that should not be nor-
malised, e.g. (Youtube, web), and incorrect normal-
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Rank Window size n-gram Positional index? Lex. choice Sim/distance measure log(CG)
1 ±3 2 Yes All KL divergence 19.571
2 ±3 2 No All KL divergence 19.562
3 ±2 2 Yes All KL divergence 19.562
4 ±3 2 Yes IVs KL divergence 19.561
5 ±2 2 Yes IVs JS divergence 19.554

Table 1: The five best parameter combinations in the exhaustive search of parameter combinations

Window size n-gram Positional index? Lexical choice Similarity/distance measure
±1 19.325 1 19.328 Yes 19.328 IVs 19.335 KL divergence 19.328
±2 19.327 2 19.571 No 19.263 All 19.328 Euclidean 19.227
±3 19.328 3 19.324 JS divergence 19.311

Cosine 19.170

Table 2: Parameter sensitivity analysis measured as log(CG) for correctly-generated pairs. We tune one parameter at
a time, using the default (underlined) setting for other parameters; the non-exhaustive best-performing setting in each
case is indicated in bold.

isations for lexical variants, e.g. (bcuz, cause)), we
modify our evaluation metric from Section 4 to
evaluate the ranking at different points, using Dis-
counted Cumulative Gain (DCG@N : Jarvelin and
Kekalainen (2002)):

DCG@N = rel1 +
N∑

i=2

reli
log2 (i)

where reli again represents the frequency of the
OOV, but it can be gain (a positive number) or loss
(a negative number), depending on whether the ith
pair is correct or incorrect. Because we also expect
correct pairs to be ranked higher than incorrect pairs,
DCG@N takes both factors into account.

Given the generated pairs and the evaluation met-
ric, we first consider three baselines: no re-ranking
(i.e., the final ranking is that of the contextual simi-
larity scores), and re-rankings of the pairs based on
the frequencies of the OOVs in the Twitter corpus,
and the IV unigram frequencies in the Google Web
1T corpus (Brants and Franz, 2006) to get less-noisy
frequency estimates. We also compared a variety of
re-rankings based on a number of string similarity
measures that have been previously considered in
normalisation work (reviewed in Section 2). We ex-
periment with standard edit distance (Levenshtein,
1966), edit distance over double metaphone codes
(phonetic edit distance: (Philips, 2000)), longest
common subsequence ratio over the consonant edit
distance of the paired words (hereafter, denoted as

consonant edit distance: (Contractor et al., 2010)),
and a string subsequence kernel (Lodhi et al., 2002).

In Figure 1, we present the DCG@N results for
each of our ranking methods at different rank cut-
offs. Ranking by OOV frequency is motivated by
the assumption that lexical variants are frequently
used by social media users. This is confirmed
by our findings that lexical pairs like (goin, going)
and (nite, night) are at the top of the ranking.
However, many proper nouns and named entities
are also used frequently and ranked at the top,
mixed with lexical variants like (Facebook, speech)
and (Youtube, web). In ranking by IV word fre-
quency, we assume the lexical variants are usually
derived from frequently-used IV equivalents, e.g.
(abou, about). However, many less-frequent lexical
variant types have high-frequency (IV) normalisa-
tions. For instance, the highest-frequency IV word
the has more than 40 OOV lexical variants, such as
tthe and thhe. These less-frequent types occupy the
top positions, reducing the cumulative gain. Com-
pared with these two baselines, ranking by default
contextual similarity scores delivers promising re-
sults. It successfully ranks many more intuitive nor-
malisation pairs at the top, such as (2day, today)
and (wknd, weekend), but also ranks some incorrect
pairs highly, such as (needa, gotta).

The string similarity-based methods perform bet-
ter than our baselines in general. Through man-
ual analysis, we found that standard edit dis-
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tance ranking is fairly accurate for lexical vari-
ants with low edit distance to their standard forms,
but fails to identify heavily-altered variants like
(tmrw, tomorrow). Consonant edit distance is simi-
lar to standard edit distance, but places many longer
words at the top of the ranking. Edit distance
over double metaphone codes (phonetic edit dis-
tance) performs particularly well for lexical vari-
ants that include character repetitions — commonly
used for emphasis on Twitter — because such rep-
etitions do not typically alter the phonetic codes.
Compared with the other methods, the string subse-
quence kernel delivers encouraging results. It mea-
sures common character subsequences of length n
between (OOV, IV) pairs. Because it is computa-
tionally expensive to calculate similarity for larger
n, we choose n=2, following Gouws et al. (2011).
As N (the lexicon size cut-off) increases, the per-
formance drops more slowly than the other meth-
ods. Although this method fails to rank heavily-
altered variants such as (4get, forget) highly, it typi-
cally works well for longer words. Given that we fo-
cus on longer OOVs (specifically those longer than
4 characters), this ultimately isn’t a great handicap.

6 Evaluation

Given the re-ranked pairs from Section 5, here we
apply them to a token-level normalisation task us-
ing the normalisation dataset of Han and Baldwin
(2011).

6.1 Metrics

We evaluate using the standard evaluation metrics of
precision (P), recall (R) and F-score (F) as detailed
below. We also consider the false alarm rate (FA)
and word error rate (WER), also as shown below.
FA measures the negative effects of applying nor-
malisation; a good approach to normalisation should
not (incorrectly) normalise tokens that are already
in their standard form and do not require normalisa-
tion.6 WER, like F-score, shows the overall benefits
of normalisation, but unlike F-score, measures how
many token-level edits are required for the output to
be the same as the ground truth data. In general, dic-
tionaries with a high F-score/low WER and low FA

6FA + P ≤ 1 because some lexical variants might be incor-
rectly normalised.

are preferable.

P =
# correctly normalised tokens

# normalised tokens

R =
# correctly normalised tokens

# tokens requiring normalisation

F =
2PR

P + R

FA =
# incorrectly normalised tokens

# normalised tokens

WER =
# token edits needed after normalisation

# all tokens

6.2 Results
We select the three best re-ranking methods, and
best cut-off N for each method, based on the
highest DCG@N value for a given method over
the development data, as presented in Figure 1.
Namely, they are string subsequence kernel (S-dict,
N=40,000), double metaphone edit distance (DM-
dict, N=10,000) and default contextual similarity
without re-ranking (C-dict, N=10,000).7

We evaluate each of the learned dictionaries in Ta-
ble 3. We also compare each dictionary with the
performance of the manually-constructed Internet
slang dictionary (HB-dict) used by Han and Bald-
win (2011), the small automatically-derived dictio-
nary of Gouws et al. (2011) (GHM-dict), and com-
binations of the different dictionaries. In addition,
the contribution of these dictionaries in hybrid nor-
malisation approaches is also presented, in which we
first normalise OOVs using a given dictionary (com-
bined or otherwise), and then apply the normalisa-
tion method of Gouws et al. (2011) based on con-
sonant edit distance (GHM-norm), or the approach
of Han and Baldwin (2011) based on the summation
of many unsupervised approaches (HB-norm), to the
remaining OOVs. Results are shown in Table 3, and
discussed below.

6.2.1 Individual Dictionaries
Overall, the individual dictionaries derived by the

re-ranking methods (DM-dict, S-dict) perform bet-
7We also experimented with combining ranks using Mean

Reciprocal Rank. However, the combined rank didn’t improve
performance on the development data. We plan to explore other
ranking aggregation methods in future work.
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Figure 1: Re-ranking based on different string similarity methods.

ter than that based on contextual similarity (C-dict)
in terms of precision and false alarm rate, indicating
the importance of re-ranking. Even though C-dict
delivers higher recall — indicating that many lexi-
cal variants are correctly normalised — this is offset
by its high false alarm rate, which is particularly un-
desirable in normalisation. Because S-dict has better
performance than DM-dict in terms of both F-score
and WER, and a much lower false alarm rate than
C-dict, subsequent results are presented using S-dict
only.

Both HB-dict and GHM-dict achieve better than
90% precision with moderate recall. Compared to
these methods, S-dict is not competitive in terms of
either precision or recall. This result seems rather
discouraging. However, considering that S-dict is an
automatically-constructed dictionary targeting lexi-
cal variants of varying frequency, it is not surprising
that the precision is worse than that of HB-dict —
which is manually-constructed — and GHM-dict —
which includes entries only for more-frequent OOVs
for which distributional similarity is more accurate.
Additionally, the recall of S-dict is hampered by the

restriction on lexical variant token length of 4 char-
acters.

6.2.2 Combined Dictionaries

Next we look to combining HB-dict, GHM-dict
and S-dict. In combining the dictionaries, a given
OOV word can be listed with different standard
forms in different dictionaries. In such cases we use
the following preferences for dictionaries — moti-
vated by our confidence in the normalisation pairs
of the dictionaries — to resolve conflicts: HB-dict
> GHM-dict > S-dict.

When we combine dictionaries in the second sec-
tion of Table 3, we find that they contain com-
plementary information: in each case the recall
and F-score are higher for the combined dictio-
nary than any of the individual dictionaries. The
combination of HB-dict+GHM-dict produces only
a small improvement in terms of F-score over HB-
dict (the better-performing dictionary) suggesting
that, as claimed, HB-dict and GHM-dict share many
frequent normalisation pairs. HB-dict+S-dict and
GHM-dict+S-dict, on the other hand, improve sub-
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Method Precision Recall F-Score False Alarm Word Error Rate
C-dict 0.474 0.218 0.299 0.298 0.103
DM-dict 0.727 0.106 0.185 0.145 0.102
S-dict 0.700 0.179 0.285 0.162 0.097
HB-dict 0.915 0.435 0.590 0.048 0.066
GHM-dict 0.982 0.319 0.482 0.000 0.076
HB-dict+S-dict 0.840 0.601 0.701 0.090 0.052
GHM-dict+S-dict 0.863 0.498 0.632 0.072 0.061
HB-dict+GHM-dict 0.920 0.465 0.618 0.045 0.063
HB-dict+GHM-dict+S-dict 0.847 0.630 0.723 0.086 0.049
GHM-dict+GHM-norm 0.338 0.578 0.427 0.458 0.135
HB-dict+GHM-dict+S-dict+GHM-norm 0.406 0.715 0.518 0.468 0.124
HB-dict+HB-norm 0.515 0.771 0.618 0.332 0.081
HB-dict+GHM-dict+S-dict+HB-norm 0.527 0.789 0.632 0.332 0.079

Table 3: Normalisation results using our derived dictionaries (contextual similarity (C-dict); double metaphone ren-
dering (DM-dict); string subsequence kernel scores (S-dict)), the dictionary of Gouws et al. (2011) (GHM-dict), the
Internet slang dictionary (HB-dict) from Han and Baldwin (2011), and combinations of these dictionaries. In addition,
we combine the dictionaries with the normalisation method of Gouws et al. (2011) (GHM-norm) and the combined
unsupervised approach of Han and Baldwin (2011) (HB-norm).

stantially over HB-dict and GHM-dict, respectively,
indicating that S-dict contains markedly different
entries to both HB-dict and GHM-dict. The best F-
score and WER are obtained using the combination
of all three dictionaries, HB-dict+GHM-dict+S-dict.
Furthermore, the difference between the results us-
ing HB-dict+GHM-dict+S-dict and HB-dict+GHM-
dict is statistically significant (p < 0.01), based on
the computationally-intensive Monte Carlo method
of Yeh (2000), demonstrating the contribution of S-
dict.

6.2.3 Hybrid Approaches
The methods of Gouws et al. (2011) (i.e.

GHM-dict+GHM-norm) and Han and Baldwin
(2011) (i.e. HB-dict+HB-norm) have lower preci-
sion and higher false alarm rates than the dictionary-
based approaches; this is largely caused by lex-
ical variant detection errors.8 Using all dic-
tionaries in combination with these methods —
HB-dict+GHM-dict+S-dict+GHM-norm and HB-
dict+GHM-dict+S-dict+HB-norm — gives some
improvements, but the false alarm rates remain high.
Despite the limitations of a pure dictionary-based
approach to normalisation — discussed in Section
3.1 — the current best practical approach to normal-

8Here we report results that do not assume perfect detection
of lexical variants, unlike the original published results in each
case.

Error type OOV Standard form
Dict. Gold

(a) plurals playe players player
(b) negation unlike like dislike
(c) possessives anyones anyone anyone’s
(d) correct OOVs iphone phone iphone
(e) test data errors durin during durin
(f) ambiguity siging signing singing

Table 4: Error types in the combined dictionary (HB-
dict+GHM-dict+S-dict)

isation is to use a lexicon, combining hand-built and
automatically-learned normalisation dictionaries.

6.3 Discussion and Error Analysis

We first manually analyse the errors in the combined
dictionary (HB-dict+GHM-dict+S-dict) and give ex-
amples of each error type in Table 4. The most fre-
quent word errors are caused by slight morphologi-
cal variations, including plural forms (a), negations
(b), possessive cases (c), and OOVs that are correct
and do not require normalisation (d). In addition, we
also notice some missing annotations where lexical
variants are skipped by human annotations but cap-
tured by our method (e). Ambiguity (f) definitely
exists in longer OOVs, however, these cases do not
appear to have a strong negative impact on the nor-
malisation performance. An example of a remain-
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Length cut-off (N ) #Variants Precision Recall (≥ N ) Recall (all) False Alarm
≥4 556 0.700 0.381 0.179 0.162
≥5 382 0.814 0.471 0.152 0.122
≥6 254 0.804 0.484 0.104 0.131
≥7 138 0.793 0.471 0.055 0.122

Table 5: S-dict normalisation results broken down according to OOV token length. Recall is presented both over the
subset of instances of length ≥ N in the data (“Recall (≥ N )”), and over the entirety of the dataset (“Recall (all)”);
“#Variants” is the number of token instances of the indicated length in the test dataset.

ing miscellaneous error is bday “birthday”, which is
mis-normalised as day.

To further study the influence of OOV word
length relative to the normalisation performance, we
conduct a fine-grained analysis of the performance
of the derived dictionary (S-dict) in Table 5, bro-
ken down across different OOV word lengths. The
results generally support our hypothesis that our
method works better for longer OOV words. The
derived dictionary is much more reliable for longer
tokens (length 5, 6, and 7 characters) in terms of pre-
cision and false alarm. Although the recall is rela-
tively modest, in the future we intend to improve re-
call by mining more normalisation pairs from larger
collections of microblog data.

7 Conclusions and Future Work

In this paper, we describe a method for automat-
ically constructing a normalisation dictionary that
supports normalisation of microblog text through di-
rect substitution of lexical variants with their stan-
dard forms. After investigating the impact of dif-
ferent distributional and string similarity methods
on the quality of the dictionary, we present ex-
perimental results on a standard dataset showing
that our proposed methods acquire high quality
(lexical variant, standard form) pairs, with reason-
able coverage, and achieve state-of-the-art end-to-
end lexical normalisation performance on a real-
world token-level task. Furthermore, this dictionary-
lookup method combines the detection and normali-
sation of lexical variants into a simple, lightweight
solution which is suitable for processing of high-
volume microblog feeds.

In the future, we intend to improve our dictionary
by leveraging the constantly-growing volume of mi-
croblog data, and considering alternative ways to
combine distributional and string similarity. In addi-

tion to direct evaluation, we also want to explore the
benefits of applying normalisation for downstream
social media text processing applications, e.g. event
detection.
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Abstract

“Grounded” language learning employs train-
ing data in the form of sentences paired with
relevant but ambiguous perceptual contexts.
Börschinger et al. (2011) introduced an ap-
proach to grounded language learning based
on unsupervised PCFG induction. Their ap-
proach works well when each sentence po-
tentially refers to one of a small set of pos-
sible meanings, such as in the sportscasting
task. However, it does not scale to prob-
lems with a large set of potential meanings
for each sentence, such as the navigation in-
struction following task studied by Chen and
Mooney (2011). This paper presents an en-
hancement of the PCFG approach that scales
to such problems with highly-ambiguous su-
pervision. Experimental results on the naviga-
tion task demonstrates the effectiveness of our
approach.

1 Introduction

The ultimate goal of “grounded” language learning
is to develop computational systems that can acquire
language more like a human child. Given only su-
pervision in the form of sentences paired with rel-
evant but ambiguous perceptual contexts, a system
should learn to interpret and/or generate language
describing situations and events in the world. For
example, systems have learned to commentate sim-
ulated robot soccer games by learning from sample
sportscasts (Chen and Mooney, 2008; Liang et al.,
2009; Börschinger et al., 2011), or understand nav-
igation instructions by learning from action traces

produced when following the directions (Chen and
Mooney, 2011; Tellex et al., 2011).

Börschinger et al. (2011) recently introduced an
approach to grounded language learning using un-
supervised induction of probabilistic context free
grammars (PCFGs) to learn from ambiguous con-
textual supervision. Their approach first constructs
a large set of production rules from sentences paired
with descriptions of their ambiguous context, and
then trains the parameters of this grammar using
EM. Parsing a novel sentence with this grammar
gives a parse tree which contains the formal mean-
ing representation (MR) for this sentence. This ap-
proach works quite well on the sportscasting task
originally introduced by Chen and Mooney (2008).
In this task, each sentence in a natural-language
commentary describing activity in a simulated robot
soccer game is paired with the small set of actions
observed within the past 5 seconds, one of which
is usually described by the sentence. Even with this
low level of ambiguity in a constrained domain, their
method constructs a PCFG with about 33,000 pro-
ductions. More fundamentally, their approach is re-
stricted to a finite set of potential meaning represen-
tations, and the grammar size grows at least linearly
with the number of possible MRs, which in turn is
inevitably exponential in the number of objects and
actions in the domain.

The navigation task studied by Chen and Mooney
(2011) provides much more ambiguous supervision.
In this task, each instructional sentence is paired
with a formal landmarks plan (represented as a
large graph) that includes a full description of the
observed actions and world-states that result when
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someone follows this instruction. An instruction
generally refers to a subgraph of this large graph.
Therefore, there are a combinatorial number of pos-
sible meanings to which a given sentence can refer.

Chen and Mooney (2011) circumvent this combi-
natorial problem by never explicitly enumerating the
exponential number of potential meanings for each
sentence. Their system first induces a semantic lex-
icon that maps words and short phrases to formal
representations of actions and objects in the world.
This lexicon is learned by finding words and phrases
whose occurrence highly correlates with specific ob-
served actions and objects in the simulated environ-
ment when executing the corresponding instruction.
This learned lexicon is then used to directly infer
a formal MR for observed instructional sentences
using a greedy covering algorithm. These inferred
MRs are then used to train a supervised semantic
parser capable of mapping novel sentences to their
formal meanings.

We present a novel enhancement of Börschinger
et al.’s PCFG approach that uses Chen and Mooney’s
lexicon learner to avoid a combinatorial explosion in
the number of productions. The learned lexicon is
first used to build a hierarchy of semantic lexemes
(i.e. lexicon entries) called the Lexeme Hierarchy
Graph (LHG) for each ambiguous landmarks plan
in the training data. The intuition behind utilizing
an LHG is that the MR for each lexeme constitutes a
semantic concept that corresponds to some natural-
language (NL) word or phrase. Therefore, the LHG
represents how complex semantic concepts are com-
posed of simpler semantic concepts and ultimately
connected to NL words and phrases. Börschinger
et al.’s approach instead produces NL groundings at
the level of atomic MR constituents, which causes
an explosion in the number of PCFG productions
for complex MR languages. We estimated that
Börschinger et al.’s approach would require more
than 20! (> 1018) productions for our navigation
problem.1 On the other hand, our method, which
uses correspondences from the LHG at the seman-
tic concept level, constructs a more focused PCFG
of tractable size. It then extracts the MR for a novel

1The corpus contains quite a few examples with landmarks
plans containing more than 20 actions. This results in at least
20! permutations representing possible alignments between ac-
tions and NL words.

sentence from the most-probable parse tree for the
resulting PCFG. Our approach can produce a large,
combinatorial number of different MRs for a wide
range of novel sentences by composing relevant MR
components from the resulting parse tree, whereas
Börschinger et al.’s approach is only able to output
MRs that are explicitly included as a nonterminals
in the original learned PCFG.

The remainder of the paper is organized as fol-
lows. Section 2 reviews Börschinger et al.’s PCFG
approach as well as the navigation task and data.
Section 3 describes our enhanced PCFG approach
and Section 4 presents an experimental evaluation
of it. Then, Section 5 discusses the unique aspects
of our approach and Section 6 describes additional
related work. Finally, Section 7 presents future re-
search directions and Section 8 gives our conclu-
sions.

2 Background

2.1 Existing PCFG Approach

Our approach extends that of Börschinger et al.
(2011), which in turn was inspired by a series of
previous techniques (Lu et al., 2008; Liang et al.,
2009; Kim and Mooney, 2010) following the idea
of constructing correspondences between NL and
MR in a single probabilistic generative framework.
Particularly, their approach automatically constructs
a PCFG that generates NL sentences from MRs,
which indicates how atomic MR constituents are
probabilistically related to NL words. The nonter-
minals in the grammar correspond to complete MRs,
MR constituents, and NL phrases. The nontermi-
nal for a composite MR generates each of its MR
constituents, and each atomic MR, x, generates an
NL phrase, Phrasex. Each Phrasex then gener-
ates a sequence of Wordx’s for describing x, and
each Wordx can generate each possible word in the
natural language. This allows the system to learn
the words and phrases used to describe each atomic
MR by properly weighting these rules. Figure 1
shows one possible derivation tree for a sample NL-
MR pair and the PCFG rules that are constructed for
it. Once a set of productions are assembled, their
probabilities are learned using the Inside-Outside al-
gorithm. Computing the most probable parse for a
novel sentence with the trained PCFG provides its
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Figure 1: Derivation tree for the NL/MR pair: THE

PINK GOALIE PASSES THE BALL TO PINK11 /
pass(pink1, pink11). Left side shows PCFG rules
that are added for each stage (full MR to atomic
MRs, and atomic MRs to NL words ).

preferred MR interpretation in the topmost nonter-
minal.

Unfortunately, as discussed earlier, this approach
only works for finite MR languages, and the gram-
mar becomes intractably large even for finite but
complex MRs. It effectively assumes that MRs are
fairly small and includes every possible MR con-
stituent as a nonterminal in the PCFG. This is not
tractable for more complex MRs. Therefore, our ex-
tension incorporates a learned lexicon to constrain
the space of productions, thereby making the size
of the PCFG tractable for complex MRs, and even
giving it the ability to handle infinite MR languages.
Moreover, when processing novel sentences, our ap-
proach can produce a large space of novel MRs that
were not anticipated during training, which is not the
case for Börschinger et al.’s approach.

2.2 Navigation Task and Dataset

We employ the task and data introduced by Chen and
Mooney (2011) whose goal is to interpret and follow
NL navigation instructions in a virtual world. Fig-
ure 2 shows a sample execution path in a particular
virtual world. The challenge is learning to perform
this task by simply observing humans following in-
structions. Formally, given training data of the form
{(e1, a1, w1), . . . , (en, an, wn)}, where ei is an NL
instruction, ai is an observed action sequence, and
wi is the current world state (patterns of floors and
walls, positions of any objects, etc.), we want to pro-
duce the correct actions aj for a novel (ej , wj).

Figure 2: Sample virtual world from Chen and
Mooney (2011) of interconnecting hallways with
different floor and wall patterns and objects indi-
cated by letters (e.g. “H” for hatrack).

Figure 3: Sample instruction with its constructed
landmarks plan, components in bold compose the
correct plan.

In order to learn, their system infers the intended
formal plan pi (the MR for a sentence) which pro-
duced the action sequence ai from the instruction ei.
However, there is a large space of possible plans for
any given action sequence. Chen and Mooney first
construct a formal landmarks plan, ci, for each ai,
which is a graph representing the context of every
action and the world-state encountered during the
execution of the sequence. The correct plan MR,
pi, is assumed to be a subgraph of ci, and this causes
a combinatorial matching problem between ei and
ci in order to learn the correct meaning of ei among
all the possible subgraphs of ci. The landmarks and
correct plans for a sample instruction are shown in
Figure 3, illustrating the complexity of the MRs.

Instead of directly solving the combinatorial cor-
respondence problem, they first learn a semantic lex-
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Figure 4: An overview of Chen and Mooney
(2011)’s system. Our method replaces the plan re-
finement and semantic parser parts.

icon that maps words and short phrases to small sub-
graphs representing their inferred meanings from the
(ei, ci) pairs. The lexicon is learned by evaluating
pairs of n-grams, wj , and MR graphs, mj , and scor-
ing them based on how much more likely mj is a
subgraph of the context ci when w occurs in the
corresponding instruction ei. This process is simi-
lar to other “cross-situational” approaches to learn-
ing word meanings (Siskind, 1996; Thompson and
Mooney, 2003). Then, a plan refinement step esti-
mates pi from ci by greedily selecting high-scoring
lexemes of the form (wj , mj) whose words and
phrases (wj) cover the instruction ei and introduce
components (mj) from the landmarks plan ci. The
refined plans are used to construct supervised train-
ing data (ei, pi) for a supervised semantic-parser
learner. The trained semantic parser can parse a
novel instruction into a formal plan, which is finally
executed for end-to-end evaluation. Figure 4 illus-
trates the overall system.

As this figure indicates, our new PCFG method
replaces the plan refinement and semantic parser
components in their system with a unified model
that both disambiguates the training data and learns
a semantic parser. We use the landmarks plans and
the learned lexicon produced by Chen and Mooney
(2011) as inputs to our system.2

2In our experiments, we used the top 1,000 lexemes learned
by Chen and Mooney (2011).

3 Our PCFG Approach

Like Börschinger et al. (2011), our approach learns
a semantic parser directly from ambiguous su-
pervision, specifically NL instructions paired with
their complete landmarks plans as context. Our
method incorporates the semantic lexemes as build-
ing blocks to find correspondences between NL
words and semantic concepts represented by the lex-
eme MRs, instead of building connections between
NL words and every possible MR constituent as in
Börschinger et al.’s approach. Particularly, we uti-
lize the hierarchical subgraph relationships between
the MRs in the learned semantic lexicon to produce
a smaller, more focused set of PCFG rules.3 The
intuition behind our approach is analogous to the hi-
erarchical relations between nonterminals in syntac-
tic parsing, where higher-level categories such as S,
VP, or NP are further divided into smaller categories
such as V, N, or Det, thereby forming a hierarchi-
cal structure. Inspired by this idea, we introduce a
directed acyclic graph called the Lexeme Hierarchy
Graph (LHG) which represents the hierarchical rela-
tionships between lexeme MRs. Since complex lex-
eme MRs represent complicated semantic concepts
while simple MRs represent simple concepts, it is
natural to construct a hierarchy amongst them. The
LHGs for all of the training examples are used to
construct production rules for the PCFG, which are
then parametrized using EM. Finally, a novel sen-
tence is semantically parsed by computing its most-
probable parse using the trained PCFG, and then its
MR is extracted from the resulting parse tree.

3.1 Constructing a Lexeme Hierarchy Graph

An LHG represents the hierarchy of lexical mean-
ings relevant to a particular training instance by en-
coding the subgraph relations between the MRs of
relevant lexemes. Algorithm 1 describes how an
LHG is constructed for an ambiguous training pair
of a sentence and its corresponding context, (ei, ci).
First, we obtain all relevant lexemes (wi

j , m
i
j) in the

lexicon L, where the MR mi
j is a subgraph of the

context ci (denoted as mi
j ⊂ ci). These lexemes are

3The total number of PCFG rules constructed for our navi-
gation training sets is about 18,000, while Börschinger et al.’s
method produces 33,000 rules for the much simpler sportscast-
ing domain.
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Algorithm 1 LEXEME HIERARCHY GRAPH (LHG)

Input: Training instance (ei, ci), Lexicon L
Output: Lexeme hierarchy graph for (ei, ci)

Find relevant lexemes (wi
1, m

i
1), . . . , (w

i
n, mi

n)
s.t. mi

j ⊂ ci

Create a starting node T ; MR(T )← ci

for all mi
j in the descending order of size do

Create a node T i
j ; MR(T i

j )← mi
j

PLACELEXEME(T i
j ,T )

end for

procedure PLACELEXEME(T ′,T )
for all children Tj of T do

if MR(T ′) ⊂ MR(Tj) then
PLACELEXEME(T ′,Tj)

end if
end for
if T ′ was not placed under any child Tj then

Add T ′ as child of T
end if

end procedure

sorted in descending order based on the number of
nodes in their MRs mi

j . Then, after setting the con-
text ci as the MR of the root node (MR(T ) ← ci),
lexemes are inserted, in order, into the graph to cre-
ate a hierarchy of MRs, where each child’s MR is a
subgraph of the MR of each of its parents. Figure 5
illustrates a sample construction of an LHG for the
following landmarks plan (ci):

Turn(RIGHT),
Verify(side:HATRACK, front:SOFA),
Travel(steps:3),
Verify(at:EASEL)

The initial LHG may contain nodes with too many
children. This is a problem, because when we sub-
sequently extract PCFG rules, we need to add a pro-
duction for every k-permutation of the children of
each node (see Section 3.2). To reduce the branch-
ing factor in the LHG, we introduce pseudo-lexeme
nodes by repeatedly combining the two most similar
children of each node. Pseudocode for the process is
shown in Algorithm 2. The MR for a pseudo-lexeme
is the minimal graph, m′, that is a supergraph of both
of the lexeme MRs that it combines. The pair of

(a) All relevant lexemes are obtained for the training exam-
ple and ordered by the number of nodes in their MR.

(b) Lexeme MR [1] is added as a child of the top node. MR
[2] is a subgraph of [1], so it is added as its child.

(c) MR [3] is not a subgraph of [1] or [2], so it is added as a
child of the root. MR [4] is added under [3], and MR [5] is
recursively filtered down and added under [2].

Figure 5: Sample LHG construction.
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Algorithm 2 ADDING PSEUDO LEXEMES TO LHG
Input: LHG with root T
Output: LHG with pseudo lexemes added
procedure RECONSTRUCTLHG(T )

repeat
((Ti, Tj), m

′) ← pick the most similar
pair (Ti, Tj) of children of T and the minimal ex-
tension m′ s.t. MR(Ti) ⊂ m′, MR(Tj) ⊂ m′,
m′ ⊂ MR(T )

Add child T ′ of T ; MR(T ′)← m′

Move Ti and Tj to be children of T ′

until There are no more pairs to combine
for all non-leaf children Tk of T do

RECONSTRUCTLHG(Tk)
end for

end procedure

most similar children, (mi, mj), is determined by
measuring the fraction of the nodes in mi and mj

that overlap with their minimum extension m′ and
is calculated as follows:

Sim(mi, mj , m
′) =

|mi|+ |mj |
2 |m′|

where |m| is the number of nodes in the MR m.
Adding pseudo-lexemes also has another advan-
tage. They can be considered to be higher-level
semantic concepts composed of two or more sub-
concepts. These higher-level concepts will likely
occur in other training examples as well, which al-
lows for more flexible interpretations. For example,
assuming the rule A → BCD is constructed from
an LHG, we will introduce a pseudo lexeme E and
build two rules A→ BE and E → CD. It is likely
that E also occurs in another rule constructed from
other training examples such as E → FG. This
increases the model’s expressive power by support-
ing additional derivations such as A→∗ BFG, pro-
viding more flexibility when parsing novel NL sen-
tences.

3.2 Composing PCFG Rules

The next step composes PCFG rules from the LHGs
and is summarized in Figure 6. We basically fol-
low the scheme of Börschinger et al. (2011), but
instead of generating NL words from each atomic
MR, words are generated from each lexeme MR,

Figure 6: Summary of the rule generation process.
NLs refer to the set of NL words in the corpus. Lex-
eme rules come from the schemata of Börschinger
et al. (2011), and allow every lexeme MR to gener-
ate one or more NL words. Note that pseudo-lexeme
nodes do not produce NL words.

and smaller lexeme MRs are generated from more
complex ones as given by the LHGs. A nonterminal
Sm is generated for the MR, m, of each LHG node.
Then, for every LHG node, T , with MR, m, we add
rules of the form Sm → Smi ...Smj , where the RHS
is some k-permutation of the nonterminals for the
MRs of the children of node T . Börschinger et al.
assume that every atomic MR generates at least one
NL word. However, since we do not know which
subgraph of the overall context (i.e. ci, the MR of the
root node) conveys the intended plan and is therefore
expressed in the NL instruction, we must allow each
ordered subset of the children of a node (i.e. each
k-permutation) to be a possible generation.

The rest of the process more closely follows
Börschinger et al.’s. Every MR, m, of a lexeme
node4 generates a rule Sm → Phrasem, and ev-
ery Phrasem generates a sequence of NL words, in-
cluding one or more “content words” (Wordm) for
expressing m and zero or more “extraneous” words
(Word∅). While Börschinger et al. have Wordm

generate all possible NL words (each of which are

4We exclude pseudo-lexeme nodes in this process, because
they should only generate words through generating lexemes.
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subsequently weighted by EM training), in our ap-
proach, each Wordm only produces the NL phrase
associated with m in the lexicon, or individual words
that appear in this phrase. The words not covered
by Wordm also can be generated by Word∅ which
has rules for every word. Phm and PhXm ensure
that Phrasem produces at least one Wordm, where
PhXm indicates that one or more Wordm’s have
already been generated, and Phm indicates that no
Wordm has yet been generated.

3.3 Parsing Novel NL Sentences
To learn the parameters of the resulting PCFG, we
use the Inside-Outside algorithm.5 Then, the stan-
dard probabilistic CKY algorithm is used to produce
the most probable parse for novel NL sentences (Ju-
rafsky and Martin, 2000).

Börschinger et al. (2011) simply read the MR, m,
for a sentence off the top Sm nonterminal of the
most probable parse tree. However, in our approach,
the correct MR is constructed by properly compos-
ing the appropriate subset of lexeme MRs from the
most-probable parse tree. This allows the system to
produce a wide variety of novel MRs for novel sen-
tences, as long as the correct MR is a subgraph of the
complete context (ci) for at least one of the training
sentences.

First, the parse tree is pruned to remove all sub-
trees starting with Phrasex nodes. This leaves a
tree consisting of the Root and a set of Sm nodes.
The pruned subtrees only concern generating NL
words and phrases from the selected MRs. The re-
maining tree shows which MR constituents were se-
lected from the available context, from which the
sentence is then generated. Each leaf in the pruned
tree represents an MR constituent that was used to
generate a phrase in the sentence. These are the con-
stituents we want to assemble and compose into a
final MR for the sentence.

Algorithm 3 describes the procedure for extract-
ing the final MR from the pruned parse tree. Fig-
ure 7 graphically depicts a sample trace of this algo-
rithm. The algorithm recursively traverses the parse
tree. When a leaf-node is reached, it marks all of the
nodes in its MR. After traversing all of its children,

5We used the implementation available at http://web.
science.mq.edu.au/˜mjohnson/Software.htm
which was also used by Börschinger et al. (2011).

Algorithm 3 CONSTRUCT PARSED MR RESULT

Input: Parse tree T for input NL, e, with all
Phrasex subtrees removed.
Output: Semantic parse MR, m, for e
procedure OBTAINPARSEDOUTPUT(T )

if T is a leaf then
return MR(T ) with all its nodes marked

end if
for all children Ti of T do

mi ← OBTAINPARSEDOUTPUT(Ti)
Mark the nodes in MR(T ) corresponding

to the marked nodes in mi

end for
if T is not the root then

return MR(T )
end if
return MR(T ) with unmarked nodes removed

end procedure

a node in the MR for the current parse-tree node is
marked iff its corresponding node in any of the chil-
dren’s MRs were marked. The final output is the MR
constructed by removing all of the unmarked nodes
from the MR for the root node.

4 Experimental Evaluation

For evaluation, we used the same data and method-
ology as Chen and Mooney (2011). Please see their
paper for more details.

4.1 Data

We used the English instructions and follower data
collected by MacMahon et al. (2006).6 This data
contains 706 route instructions for three virtual
worlds. The instructions were produced by six in-
structors for 126 unique starting and ending loca-
tion pairs spread evenly across the three worlds, and
there were 1 to 15 human followers for each instruc-
tion who executed an average of 10.4 actions per in-
struction. Each instruction is a paragraph consist-
ing of an average of 5.0 sentences, each contain-
ing an average of 7.8 words. Chen and Mooney
constructed the additional single-sentence corpus by
matching each sentence with the majority of human

6Available at http://www.cs.utexas.edu/users/
ml/clamp/navigation/
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(a) Pruned parse tree showing only MRs for Sm

nodes
(b) Leaf nodes have all their elements marked

(c) Upper level nodes are marked according to leaf-
node markings

(d) Removing all unmarked elements for the root
node leads to the final MR output

Figure 7: Sample construction of MR output from pruned parse tree.

followers’ actions. We use this single-sentence ver-
sion for training, but use both the single-sentence
and the original paragraph version for testing. Each
sentence was manually annotated with a “gold stan-
dard” execution plan, which is used for evaluation
but not for training.

4.2 Methodology and Results
Experiments were conducted using “leave one envi-
ronment out” cross-validation, training on two envi-
ronments and testing on the third, averaging over all
three test environments. We perform direct compar-
ison to the best results of Chen and Mooney (2011)
(referred to as CM). A Wilcoxon signed-rank test
is performed for statistical significance, and ‘∗’ de-
notes significant differences (p < .01) in the tables.

Semantic Parsing Results
We first evaluated how well our system learns to

map novel NL sentences for new test environments
into their correct MRs. Partial semantic-parsing ac-
curacy (Chen and Mooney, 2011) is calculated by

Precision Recall F1
Our system 87.58 ∗65.41 ∗74.81
CM ∗90.22 55.10 68.37

Table 1: Test accuracy for semantic parsing.
‘∗’ denotes difference is statistically significant.

comparing the system’s MR output to the hand-
annotated gold standard. Accuracy is measured in
terms of precision, recall, and F1 for individual MR
constituents (thereby awarding partial credit for ap-
proximately correct MRs).

Table 1 demonstrates that our method outper-
forms CM by 6 points in F1. Our PCFG-based ap-
proach is able to probabilistically disambiguate the
training data as well as simultaneously learn a sta-
tistical semantic parser within a single framework.
This results in better overall performance compared
to CM, since they lose potentially useful informa-
tion, particularly during the refinement stage, due to
the separate disjoint components of the system.
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Single-sentence Paragraph
Our system ∗57.22% ∗20.17%
CM 54.40% 16.18%

Table 2: Successful plan execution rates for novel
test data. ‘∗’ means statistical significance.

Navigation Plan Execution Results
Next, we test the end-to-end system by execut-

ing the parsed navigation plans for test instructions
in novel environments to see if they reach the ex-
act desired destinations in the environment. Table
2 shows the successful end-to-end navigation-task
completion rate for both single-sentences and com-
plete paragraph instructions.

Again, our system outperforms CM’s best results
since more accurate semantic parsing produces more
successful plans. However, the difference in per-
formance is smaller than that observed for semantic
parsing. This is because the redundancy in the hu-
man generated instructions allows an incorrect se-
mantic parse to be successful, as long as the errors
do not affect its ability to guide the system to the
correct destination.

5 Discussion

Our approach improves on Börschinger et al.
(2011)’s method in the following ways:

• The building blocks for associating NL and MR
are semantic lexemes instead of atomic MR con-
stituents. This prevents the number of constructed
PCFG rules from becoming intractably large as hap-
pens with Börschinger et al.’s approach. As previ-
ously mentioned, lexeme MRs are intuitively anal-
ogous to syntactic categories in that complex lex-
eme MRs represent complicated semantic concepts
whereas higher-level syntactic categories such as S,
VP, or NP represent complex syntactic structures.

• Our approach has the ability to produce previ-
ously unseen MRs, whereas Börschinger et al. can
only generate an MR if it is explicitly included in
the PCFG rules constructed from the training data.
Even though our MR parse is restricted to be a sub-
graph of some training context, ci, our model allows
for exponentially many combinations.

In addition, our approach can produce a wider
range of MR outputs than Chen and Mooney

(2011)’s even though we use their semantic lexi-
con as input. Their system deterministically builds a
supervised training set by greedily selecting high-
scoring lexemes, thus implicitly including only
high-scoring lexemes during training. On the other
hand, our probabilistic approach also considers rela-
tively low-scoring but useful lexemes, thereby utiliz-
ing more semantic concepts in the lexicon. In partic-
ular, this explains why our approach obtains higher
recall in the evaluation of semantic parsing.

Even though we have demonstrated our approach
on the specific task of following navigation in-
structions, it is straightforward to apply it to other
language-grounding tasks where NL sentences po-
tentially refer to some subset of states, events, or ac-
tions in the world, as long as this overall context can
be represented as a semantic graph or logical form.
Since the semantic lexicon is an input to our system,
other approaches to lexicon learning are also easily
incorporated.

6 Related Work

Most work on learning semantic parsers that map
natural-language sentences to formal representa-
tions of their meaning have relied upon totally su-
pervised training data consisting of NL/MR pairs
(Zelle and Mooney, 1996; Zettlemoyer and Collins,
2005; Kate and Mooney, 2006; Wong and Mooney,
2007; Zettlemoyer and Collins, 2007; Lu et al.,
2008; Zettlemoyer and Collins, 2009). Several re-
cent approaches have investigated grounded learn-
ing from ambiguous supervision extracted from per-
ceptual context. A number of approaches (Kate and
Mooney, 2007; Chen and Mooney, 2008; Chen et al.,
2010; Kim and Mooney, 2010; Börschinger et al.,
2011) assume training data consisting of a set of sen-
tences each associated with a small set of MRs, one
of which is usually the correct meaning of the sen-
tence. Many of these approaches (Kate and Mooney,
2007; Chen and Mooney, 2008; Chen et al., 2010)
disambiguate the data and match NL sentences to
their correct MR by iteratively retraining a super-
vised semantic parser. Kim and Mooney (2010)
proposed a generative semantic parsing model that
first chooses which MRs to describe and then gen-
erates a hybrid tree structure (Lu et al., 2008) con-
taining both the MR and NL sentence. They train
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this model on ambiguous data using EM. As pre-
viously discussed, Börschinger et al. (2011) use a
PCFG generative model and also train it on ambigu-
ous data using EM. Liang et al. (2009) assume each
sentence maps to one or more semantic records (i.e.
MRs) and trains a hierarchical semi-Markov genera-
tive model using EM, and then finds a Viterbi align-
ment between NL words and records and their con-
stituents. Several recent projects (Branavan et al.,
2009; Vogel and Jurafsky, 2010) use NL instructions
to guide reinforcement learning from independent
exploration with delayed rewards. These systems do
not even need the ambiguous supervision obtained
from observing humans follow instructions; how-
ever, they do not learn semantic parsers that map
sentences to complex, structural representations of
their meaning.

Interpreting and executing NL navigation instruc-
tions is our primary task, and several other recent
projects have studied related problems. Shimizu and
Haas (2009) present a system that parses natural lan-
guage instructions into actions. However, they limit
the number of possible actions to only 15 and treat
the problem as a sequence labeling problem that is
solved using a CRF with supervised training. Ma-
tuszek et al. (2010) developed a system that learns to
map NL instructions to executable commands for a
robot navigating in an environment constructed by a
laser range finder. However, their approach has limi-
tations of ignoring any objects or other landmarks in
the environment to which the instructions can refer.
There are several recent projects (Vogel and Juraf-
sky, 2010; Kollar et al., 2010; Tellex et al., 2011)
which learn to follow instructions in more linguisti-
cally complex environments. However, they assume
predefined spatial words, direct matching between
NL words and the names of objects and other land-
marks in the MR, and/or an existing syntactic parser.
By contrast, our work does not assume any prior lin-
guistic knowledge, syntactic, lexical, or semantic,
and must learn the mapping between NL words and
phrases and the MR terms describing landmarks.

7 Future Work

In the future, we would like to develop a better lex-
icon learner since our PCFG approach critically re-
lies on the quality of the learned lexicon. Particu-

larly, we would like to investigate how syntactic in-
formation (such as part-of-speech tags induced us-
ing unsupervised learning) could be used to improve
semantic-lexicon learning. For example, some of the
current lexicon entries violate the general constraint
that nouns usually refer to objects and verbs to ac-
tions. Ideally, the lexicon learner would be able to
induce and then utilize this sort of relationship be-
tween syntax and semantics.

In addition, we want to investigate the use of dis-
criminative reranking (Collins, 2000), which has
proven effective in various other NLP tasks. We
would expect the final MR output to improve if a
discriminative model, which uses additional global
features, is used to rerank the top-k parses produced
by our generative PCFG model.

8 Conclusions

We have presented a novel method for learning a
semantic parser given only highly ambiguous su-
pervision. Our model enhances Börschinger et
al. (2011)’s approach to reducing the problem of
grounded learning of semantic parsers to PCFG in-
duction. We use a learned semantic lexicon to aid
the construction of a smaller and more focused set
of PCFG productions. This allows the approach
to scale to complex MR languages that define a
large (potentially infinite) space of representations
for capturing the meaning of sentences. By contrast,
the previous PCFG approach requires a finite MR
language and its grammar grows intractably large
for even moderately complex MR languages. In ad-
dition, our algorithm for composing MRs from the
final parse tree provides the flexibility to produce a
wide range of novel MRs that were not seen during
training. Evaluations on a previous corpus of nav-
igational instructions for virtual environments has
demonstrated the effectiveness of our method com-
pared to a recent competing system.
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Abstract

A forced derivation tree (FDT) of a sentence
pair {f, e} denotes a derivation tree that can
translate f into its accurate target translation
e. In this paper, we present an approach that
leverages structured knowledge contained in
FDTs to train component models for statistical
machine translation (SMT) systems. We first
describe how to generate different FDTs for
each sentence pair in training corpus, and then
present how to infer the optimal FDTs based
on their derivation and alignment qualities. As
the first step in this line of research, we verify
the effectiveness of our approach in a BTG-
based phrasal system, and propose four FDT-
based component models. Experiments are
carried out on large scale English-to-Japanese
and Chinese-to-English translation tasks, and
significant improvements are reported on both
translation quality and alignment quality.

1 Introduction

Most of today’s SMT systems depends heavily on
parallel corpora aligned at the word-level to train
their different component models. However, such
annotations do have their drawbacks in training.

On one hand, word links predicted by automatic
aligners such as GIZA++ (Och and Ney, 2004) often
contain errors. This problem gets even worse on lan-
guage pairs that differ substantially in word orders,
such as English and Japanese/Korean/German. The
descent of the word alignment quality will lead to
inaccurate component models straightforwardly.

On the other hand, several component models
are designed to supervise the decoding procedures,

which usually rely on training examples extracted
from word-aligned sentence pairs, such as distortion
models (Tillman, 2004; Xiong et al., 2006; Galley
and Manning, 2008) and sequence models (Banchs
et al., 2005; Quirk and Menezes, 2006; Vaswani et
al., 2011). Ideally, training examples of models are
expected to match most of the situations that could
be met in decoding procedures. But actually, plain
structures of word alignments are too coarse to pro-
vide enough knowledge to ensure this expectation.

This paper presents an FDT-based model training
approach to SMT systems by leveraging structured
knowledge contained in FDTs. An FDT of a sen-
tence pair {f, e} denotes a derivation tree that can
translate f into its accurate target translation e. The
principle advantage of this work is two-fold. First,
using alignments induced from the 1-best FDTs of
all sentence pairs, the overall alignment quality of
training corpus can be improved. Second, compar-
ing to word alignments, FDTs can provide richer
structured knowledge for various component models
to extract training instances. Our FDT-based mod-
el training approach performs via three steps: (1)
generation, where an FDT space composed of dif-
ferent FDTs is generated for each sentence pair in
training corpus by the forced decoding technique;
(2) inference, where the optimal FDTs are extract-
ed from the FDT space of each sentence pair based
on both derivation and alignment qualities measured
by a memory-based re-ranking model; (3) training,
where various component models are trained based
on the optimal FDTs extracted in the inference step.

Our FDT-based model training approach can be
adapted to SMT systems with arbitrary paradigms.
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As the first step in this line of research, our approach
is verified in a phrase-based SMT system on both
English-to-Japanese and Chinese-to-English transla-
tion tasks . Significant improvements are reported
on both translation quality (up to 1.31 BLEU) and
word alignment quality (up to 3.15 F-score).

2 Forced Derivation Tree for SMT

A forced derivation tree (FDT) of a sentence pair
{f, e} can be defined as a pair G =< D,A >:

• D denotes a derivation that can translate f into
e accurately, using a set of translation rules.

• A denotes a set of word links (i, j) indicating
that ei ∈ e aligns to fj ∈ f .

In this section, we first describe how to gener-
ate FDTs for each sentence pair in training corpus,
which is denoted as the generation step, and then
present how to select the optimal FDT for each sen-
tence pair, which is denoted as the inference step.
We leave a real application of FDTs to the model
training in a phrase-based SMT system in Section 3.

2.1 Generation

We first describe how to generate multiple FDTs for
each sentence pair in training corpus C based on the
forced decoding (FD) technique, which performs via
the following four steps:

1. Train component models needed for a specific
SMT paradigm M based on training corpus C;

2. Perform MERT on the development data set to
obtain a set of optimized feature weights;

3. For each {f, e} ∈ C, translate f into accurate e
based onM, component models trained in step
1, and feature weights optimized in step 2;

4. For each {f, e} ∈ C, output the hypergraph
(Huang and Chiang, 2005) H(f, e) generated
in step 3 as its FDT space.

In step 3: (1) all partial hypotheses that do not match
any sequence in e will be discarded; (2) derivations
covering identical source and target words but with
different alignments will be kept as different partial
candidates, as they can produce different FDTs for

the same sentence pair. For each {f, e}, the proba-
bility of each G ∈ H(f, e) is computed as:

p(G|H(f, e)) =
exp{ψ(G)}∑

G′∈H(f,e) exp{ψ(G′)}
(1)

where ψ(G) is the FD model score assigned to G.
For each sentence pair, different alignment candi-

dates can be induced from its different forced deriva-
tion trees generated in the generation step, because
FD can use phrase pairs with different internal word
links extracted from other sentence pairs to recon-
struct the given sentence pair, which could lead to
better word alignment candidates.

2.2 Inference
Given an FDT spaceH(f, e), we propose a memory-
based re-ranking model (MRM), which selects the
best FDT Ĝ as follows:

Ĝ = argmax
G∈H(f,e)

exp{
∑

i λihi(G)}∑
G′∈H(f,e) exp{

∑
i λihi(G′)}

= argmax
G∈H(f,e)

∑
i

λihi(G) (2)

where hi(G) is feature function and λi is its feature
weight. Here, memory means the whole translation
history that happened in the generation step will be
used as the evidence to help us compute features.

From the definition we can see that the quality of
an FDT directly relates to two aspects: its derivation
D and alignments A. So two kinds of features are
used to measure the overall quality of each FDT.

(I) The features in the first category measure the
derivation quality of each FDT, including:

• h(ē|f̄), source-to-target translation probability
of a translation rule r = {f̄ , ē}.

h(ē|f̄) =

∑
{f,e}∈C fracH(f,e)(f̄ , ē)∑

{f,e}∈C
∑

ē′ fracH(f,e)(f̄ , ē
′)

(3)

fracH(f,e)(f̄ , ē) denotes the fractional count of
r used in generating H(f, e):

fracH(f,e)(f̄ , ē) =
∑

G∈H(f,e)

1r(G)p(G|H(f, e))

1r(G) is an indicator function that equals 1
when r is used in G and 0 otherwise. In prac-
tice, we use pH(f,e)(r) of r to approximate
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fracH(f,e)(f̄ , ē) when the size of H(f, e) is too
large to enumerate all FDTs:

pH(f,e)(r) =
ω(r)O(head(r))

∏
v∈tail(r) I(v)

Z(f)

where ω(r) is the weight of translation rule r
in the FDT space H(f, e), Z is a normalization
factor that equals to the inside probability of
the root node in H(f, e), I(v) and O(v) are
the standard inside and outside probabilities of
a node v inH(f, e), head(r) and tail(r) are the
head node and a set of tail nodes of a translation
rule r in H(f, e) respectively.

• h(f̄ |ē), target-to-source translation probability
of a translation rule r = {f̄ , ē}.

h(f̄ |ē) =

∑
{f,e}∈C fracH(f,e)(f̄ , ē)∑

{f,e}∈C
∑

f̄ ′ fracH(f,e)(f̄
′, ē)

(4)

• h#(r), smoothed usage count for translation
rule r = {f̄ , ē} in the whole generation step.

h#(r) =
1

1 + e{−
∑

{f,e}∈C fracH(f,e)(f̄ ,ē)}
(5)

In this paper, the sigmoid function is used to
make sure that the feature values of different
translation rules are in a proper value range.

• hr(G), number of translation rules used in G.

• hd(G), structure-based score of G. For FDTs
generated by phrase-based paradigms, it can be
computed by distortion models; while for FDTs
generated by syntax-based paradigms, it can be
computed by either parsing models or syntactic
LMs (Charniak et al., 2003).

The overfitting issue in the generation step can be
alleviated by leveraging memory-based features in
the inference step. h#(r) is used to penalize those
long translation rules which tend to occur in only a
few training sentences and are used few times in FD,
hr(G) adjust our MRM to prefer FDTs consisting of
more translation rules, hd(G) is used to select FDTs
with better parse tree-like structures, which can be
induced from their derivations directly.

(II) The features in the second category measure
the alignment quality of each FDT, including:

• word pair translation probabilities trained from
IBM models (Brown et al., 1993);

• log-likelihood ratio (Moore, 2005);

• conditional link probability (Moore, 2005);

• count of unlinked words;

• counts of inversion and concatenation.

Many alignment-inspired features can be used in
MRM. This paper only uses those commonly-used
ones that have already been proved useful in many
previous work (Moore, 2005; Moore et al., 2006;
Fraser and Marcu, 2006; Liu et al., 2010).

Following the common practice in SMT research,
the MERT algorithm (Och, 2003) is used to tune fea-
ture weights in MRM. Due to the fact that all FDTs
of each sentence pair share identical translation, we
cannot use BLEU as the error criterion any more.
Instead, alignment F-score is used as the alterna-
tive. We will show in Section 5 that after the in-
ference step, alignment quality can be improved by
replacing original alignments of each sentence pair
with alignments induced from its 1-best FDT. Future
work could experiment with other error criterions,
such as reordering-based loss functions (Birch et al.,
2010; Talbot et al., 2011; Birch and Osborne, 2011)
or span F1 (DeNero and Uszkoreit, 2011).

3 Training in Phrase-based SMT

As the first step in this line of research, we explore
the usage of FDT-based model training method in
a phrase-based SMT system (Xiong et al., 2006),
which employs Bracketing Transduction Grammar
(BTG) (Wu, 1997) to parse parallel sentences. The
reason of choosing this system is due to the promi-
nent advantages of BTG, such as the simplicity of
the grammar and the good coverage of syntactic di-
versities between different language pairs. We first
describe more details of FDTs under BTG. Then,
four FDT-based component models are presented.

3.1 BTG-based FDT
Given a sentence pair f = {f0, ..., fJ} and e =
{e0, ..., eI} in training corpus, its FDT G generat-
ed based on BTG is a binary tree, which is presented
by a set of terminal translation states T and a set of
non-terminal translation states N , where:
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Figure 1: S = {f̄[i,j), ē[i′,j′), Ā,m,m′,R} is denoted
by the dark-shaded rectangle pair. It can be split into two
child translation states, Sl, which is denoted by the light-
shaded rectangle pair, and Sr, which is denoted by the
white rectangle pair. Dash lines within rectangle pairs
denote their internal alignments and solid lines with rows
denote BTG rules. (a) uses [·] to combine two translation
states, while (b) uses ⟨·⟩. Both Sl and Sr belong to T ∪N .

• each terminal translation state S ∈ T is a 3-
tuple {f̄[i,j), ē[i′,j′), Ā}, in which f̄[i,j) denotes
the word sequence that covers the source span
[i, j) of f , ē[i′,j′) denotes the target translation
of f̄[i,j), which is the word sequence that covers
the target span [i′, j′) of e at the same time, Ā is
a set of word links that aligns f̄[i,j) and ē[i′,j′).

• each non-terminal translation state S ∈ N is a
5-tuple {f̄[i,j), ē[i′,j′), Ā,m,m′,R}1. The first
3 elements have the same meanings as in T ,
while m and m′ denote two split points that di-
vide S into two child translation states, Sl and
Sr, R denotes a BTG rule, which is either a [·]
operation or a ⟨·⟩ operation2. The relationship
between Sl, Sr and S is illustrated in Figure 1.

All terminal translation states of the sentence pair
{f, e} are disjoint but cover f[0,J+1) and e[0,I+1) at
the same time, where J = |f | and I = |e|, and
all non-terminal translation states correspond to the
partial decoding states generated during decoding.

3.2 FDT-based Translation Model
First, an FDT-based translation model (FDT-TM) is
presented for our BTG-based system.

1We sometimes omit m, m′ and R for a simplicity reason.
2A [·] operation combines the translations of two consecu-

tive source spans [i, m) and [m, j) in a monotonic way; while
a ⟨·⟩ operation combines them in an inverted way.

Given sentence pairs in training corpus with their
corresponding FDT spaces, we train FDT-TM in t-
wo different ways: (1) The first only uses the 1-best
FDT of each sentence pair. Based on each align-
ment A induced from each 1-best FDT G, all possi-
ble bilingual phrases are extracted. Then, the max-
imum likelihood estimation (MLE) is used to com-
pute probabilities and generate an FDT-TM. (2) The
second uses the n-best FDTs of each sentence pair,
which is motivated by several studies (Venugopal et
al., 2008; Liu et al., 2009). For each sentence pair
{f, e}, we first induce n alignments {A1, ...,An}
from the top n FDTs Ω = {G1, ...,Gn} ⊂ H(f, e).
Each Ak is annotated with the posterior probability
of its corresponding FDT Gk as follows:

p(Ak|Gk) =
exp{

∑
i λihi(Gk)}∑

Gk′∈Ω exp{
∑

i λihi(Gk′)}
(6)

where
∑

i λihi(Gk) is the model score assigned to
Gk by MRM. Then, all possible bilingual phrases
are extracted from the expanded training corpus built
using n-best alignments for each sentence pair. The
count of each phrase pair is now computed as the
sum of posterior probabilities, instead of the sum of
absolute frequencies. Last, MLE is used to compute
probabilities and generate an FDT-TM.

3.3 FDT-based Distortion Model
In Xiong’s BTG system, training instances of the
distortion model (DM) are pruned based on heuris-
tic rules, aiming to keep the training size acceptable.
But this will cause the examples remained cannot
cover all reordering cases that could be met in real
decoding procedures. To overcome this drawback,
we propose an FDT-based DM (FDT-DM).

Given the 1-best FDT G of a sentence pair {f, e},
all non-terminal translation states {S1, ...,SK} are
first extracted. For each Sk, we split it into two
child translation states Skl and Skr. A training in-
stance can be then obtained, using the BTG opera-
tionR ∈ Sk as its class label and boundary words of
two translation blocks (f̄Skl

, ēSkl
) and (f̄Skr

, ēSkr
)

contained in Skl and Skr as its features. Last, the
FDT-DM is trained based on all training instances
by a MaxEnt toolkit, which can cover both local and
global reordering situations due to its training in-
stance extraction mechanism. Figure 2 shows an ex-
ample of extracting training instances from an FDT.
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Figure 2: An example of extracting training instances
from an FDT, where solid lines with rows denote BTG
operations and dash lines denote alignments. Two in-
stances can be extracted from this FDT, where 0 and 1
denote a [·] operation and a ⟨·⟩ operation respectively. In
DM training, the number (0 or 1) in each instance is used
as a label, while boundary words are extracted from each
instance’s two phrase pairs and used as lexical features.

3.4 FDT-based Source Language Model
We next propose an FDT-based source language
model (FDT-SLM).

Given the 1-best FDT G of a sentence pair {f, e},
we first extract a reordered source word sequence
f ′ = {f ′0, ..., f ′J} from G, based on the order of ter-
minal translation states in G which covers the target
translation e from left to right. This procedure can
be illustrated by Algorithm 1. Then, all reordered
source sentences of training corpus are used to train
a source LM. During decoding, each time when a
new hypothesis is generated, we obtain its reordered
source word sequence as well, compute a LM score
based on FDT-SLM and use it as a new feature:

hSLM (f ′) =

J∏
k=1

p(f ′k|f ′k−n+1, ..., f
′
k−1) (7)

3.5 FDT-based Rule Sequence Model
The last contribution in this section is an FDT-based
rule sequence model (FDT-RSM).

Given the 1-best FDT G of a sentence pair {f, e},
we first extract a sequence of translation rule appli-
cations {r1, ..., rK} based on Algorithm 2, where

Algorithm 1: Sequence Extraction in FDT-SLM

1 let f ′ = ∅;
2 let S̄ = {S1′ , ...,SK′} represents an ordered

sequence of terminal translation states whose
target phrases cover e from left to right orderly;

3 foreach S ∈ S̄ in the left-to-right order do
4 extract f̄[i,j) from S;
5 append f̄[i,j) to f ′;
6 append a blank space to f ′;
7 end
8 return f ′ as a reordered source word sequence.

rk = (f̄[i,j), ē[i′,j′)) denotes the kth phrase pair. Fig-
ure 3 gives an example of extracting a rule sequence
from an FDT. An FDT-RSM is trained based on all
rule sequences extracted from training corpus. Dur-
ing decoding, each time when a new hypothesis is
generated, we compute an FDT-RSM score based on
its rule sequence and use it as a new feature:

hRSM (f, e) =

K∏
k=1

p(rk|rk−n+1, ..., rk−1) (8)

Algorithm 2: Sequence Extraction in FDT-RSM

1 let r′ = ∅;
2 let S̄ = {S1′ , ...,SK′} represents an ordered

sequence of terminal translation states whose
target phrases cover e from left to right orderly;

3 foreach S ∈ S̄ in the left-to-right order do
4 extract a phrase pair (f̄[i,j), ē[i′,j′)) from S;
5 add rk = (f̄[i,j), ē[i′,j′)) to r′;
6 end
7 return r′ as a rule sequence.

The main difference between FDT-SLM and
FDT-RSM is that the former is trained based on
monolingual n-grams; while the latter is trained
based on bilingual phrases. Although these two
models are trained and computed in an LM style,
they are used as reordering features, because they
help SMT decoder find better decoding sequences.

Of course, the usage of FDTs need not be limit-
ed to the BTG-based system, and we consider using
FDTs generated by SCFG-based systems or tradi-
tional left-to-right phrase-based systems in future.
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Figure 3: An example of extracting a rule sequence from
an FDT. In order to generate the correct target translation,
the desired rule sequence should be r2 ⇒ r3 ⇒ r1.

4 Related Work

4.1 Forced Decoding/Alignment
Schwartz (2008) used forced decoding to leverage
multilingual corpus to improve translation quality;
Shen et al. (2008) used forced alignment to train
a better phrase segmentation model; Wuebker et al.
(2010) used forced alignment to re-estimate trans-
lation probabilities using a leaving-one-out strategy.
We consider the usage of FD in Section 2.1 to be
a direct extension of these approaches, but one that
generates FDTs for parallel data rather than focusing
on phrase segmentation or probability estimation.

4.2 Pre-reordering
Pre-reordering (PRO) techniques (Collins et al.,
2005; Xu et al., 2009; Genzel et al., 2010; Lee et
al., 2010) used features from syntactic parse trees
to reorder source sentences at training and transla-
tion time. A parser is often indispensable to provide
syntactic information for such methods. Recently,
DeNero and Uszkoreit (2011) proposed an approach
that induced parse trees automatically from word-
aligned training corpus to perform PRO for a phrase-
based SMT system, instead of relying on treebanks.
First, binary parse trees are induced from word-
aligned training corpus. Based on them, a monolin-
gual parsing model and a tree reordering model are
trained to pre-reorder source words into the target-
language-like order. Their work is distinct from ours

because it focused on inducing sentence structures
for the PRO task, but mirrors ours in demonstrating
that there is a potential role for structure-based train-
ing corpus in SMT model training.

4.3 Distortion Models

Lexicalized distortion models (Tillman, 2004; Zens
and Ney, 2006; Xiong et al., 2006; Galley and Man-
ning, 2008;) are widely used in phrase-based SMT
systems. Training instances of these models are ex-
tracted from word-aligned sentence pairs. Due to ef-
ficiency reasons, only parts of all instances are kept
and used in DM training, which cannot cover all pos-
sible reordering situations that could be met in de-
coding. In FDT-DM, by contrast, training instances
are extracted from FDTs. Such instances take both
local and global reordering cases into consideration.

4.4 Sequence Models

Feng et al. (2010) proposed an SLM in a phrase-
based SMT system. They used it as a reordering
feature in the sense that it helped the decoder to find
correct decoding sequences. The difference between
their model and our FDT-SLM is that, in their work,
the reordered source sequences are extracted based
on word alignments only; while in our FDT-SLM,
such sequences are obtained based on FDTs.

Quirk and Menezes (2006) proposed a Minimal
Translation Unit (MTU) -based sequence model and
used it in their treelet system; Vaswani et al. (2011)
proposed a rule Markov model to capture dependen-
cies between minimal rules for a top-down tree-to-
string system. The key difference between FDT-
RSM and previous work is that the rule sequences
are extracted from FDTs, and no parser is needed.

5 Experiments

5.1 Data and Metric

Experiments are carried out on English-to-Japanese
(E-J) and Chinese-to-English (C-E) MT tasks.

For E-J task, bilingual data used contains 13.3M
sentence pairs after pre-processing. The Japanese
side of bilingual data is used to train a 4-gram LM.
The development set (dev) which contains 2,000
sentences is used to optimize the log-linear SMT
model. Two test sets are used for evaluation, which
contain 5,000 sentences (test-1) and 999 sentences
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(test-2) respectively. In all evaluation data sets, each
source sentence has only one reference translation.

For C-E task, bilingual data used contains 0.5M
sentence pairs with high translation quality, includ-
ing LDC2003E07, LDC2003E14, LDC2005T06,
LDC2005T10, LDC2005E83, LDC2006E26, LD-
C2006E34, LDC2006E85 and LDC2006E92. A 5-
gram LM is trained on the Xinhua portion of LDC
English Gigaword Version 3.0. NIST 2004 (MT04)
data set is used as dev set, and evaluation results
are measured on NIST 2005 (MT05) and NIST 2008
(MT08) data sets. In all evaluation data sets, each
source sentence has four reference translations.

Default word alignments for both SMT tasks are
performed by GIZA++ with the intersect-diag-grow
refinement. Translation quality is measured in terms
of case-insensitive BLEU (Papineni et al., 2002) and
reported in percentage numbers.

5.2 Baseline System
The phrase-based SMT system proposed by Xiong
et al. (2006) is used as the baseline system, with a
MaxEnt principle-based lexicalized reordering mod-
el integrated, which is used to handle reorderings in
decoding. The maximum lengths for the source and
target phrases are 5 and 7 on E-J task, and 3 and 5
on C-E task. The beam size is set to 20.

5.3 Translation Quality on E-J Task
We first evaluate the effectiveness of our FDT-based
model training approach on E-J translation task, and
present evaluation results in Table 1, in which BTG
denotes the performance of the baseline system.

FDT-TM denotes the improved system that uses
FDT-TM proposed in Section 3.2 instead of original
phrase table. As described in Section 3.2, we tried
different sizes of n-best FDTs to induce alignments
for phrase extraction and found the optimal choice
is 5. Besides, in order to make full use of the train-
ing corpus, for those sentence pairs that are failed in
FD, we just use their original word alignments to ex-
tract bilingual phrases. We can see from Table 1 that
FDT-TM outperforms the BTG system significantly.

FDT-DM denotes the improved system that us-
es FDT-DM proposed in Section 3.3 instead of o-
riginal distortion model. Comparing to baseline D-
M which has length limitation on training instances,
training examples of FDT-DM are extracted from 1-

best FDTs without any restriction. This makes our
new DM can cover both local and global reordering
situations that might be met in decoding procedures.
We can see from Table 1 that using FDT-DM, sig-
nificant improvements can be achieved.

FDT-SLM denotes the improved system that uses
FDT-SLM proposed in Section 3.4 as an addition-
al feature, in which the maximum n-gram order is
4. However, from Table 1 we notice that with FDT-
SLM integrated, only 0.2 BLEU improvements can
be obtained. We analyze decoding-logs and find that
the reordered source sequences of n-best translation-
s are very similar, which, we think, can explain why
improvements of using this model are so limited.

FDT-RSM denotes the improved system that us-
es FDT-RSM proposed in Section 3.5 as an addi-
tional feature. The maximum order of this model
is 3. From Table 1 we can see that FDT-RSM out-
performs BTG significantly, with up to 0.48 BLEU
improvements. Comparing to FDT-SLM, FDT-RSM
performs slightly better as well. We think it is due
to the fact that bilingual phrases can provide more
discriminative power than monolingual n-grams do.

Last, all these four FDT-based models (FDT-TM,
FDT-DM, FDT-SLM and FDT-RSM) are put togeth-
er to form an improved system that is denoted as
FDT-ALL. It can provide an averaged 1.2 BLEU im-
provements on these three evaluation data sets.

BLEU dev test-1 test-2
BTG 20.60 20.27 13.15

FDT-TM 21.21 20.71(+0.44) 13.98(+0.83)
FDT-DM 21.13 20.79(+0.52) 14.25(+1.10)
FDT-SLM 20.84 20.50(+0.23) 13.36(+0.21)
FDT-RSM 21.07 20.75(+0.48) 13.59(+0.44)
FDT-ALL 21.83 21.34(+1.07) 14.46(+1.31)

PRO 21.89 21.81 14.69

Table 1: FDT-based model training on E-J task.

Pre-reordering (PRO) is often used on language
pairs, e.g. English and Japanese, with very different
word orders. So we compare our method with PRO
as well. We re-implement the PRO method proposed
by Genzel (2010) and show its results in Table 1. On
dev and test-2, FDT-ALL performs comparable to
PRO, with no syntactic information needed at all.
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5.4 Translation Quality on C-E Task

We then evaluate the effectiveness of our FDT-based
model training approach on C-E translation task, and
present evaluation results in Table 2, from which we
can see significant improvements as well.

BLEU MT03 MT05 MT08
BTG 38.73 38.01 23.78

FDT-TM 39.14 38.31(+0.30) 24.30(+0.52)
FDT-DM 39.27 38.56(+0.55) 24.50(+0.72)
FDT-SLM 38.97 38.22(+0.21) 24.04(+0.26)
FDT-RSM 39.06 38.33(+0.32) 24.13(+0.35)
FDT-ALL 39.59 38.72(+0.71) 24.67(+0.89)

Table 2: FDT-based model training on C-E task

Comparing to numbers in Table 1, the gains com-
ing from the first two FDT-based models become s-
mall on C-E task. This might be due to the fact that
the word alignment quality in C-E task is more reli-
able than that in E-J task for TM and DM training.

5.5 Effect on Alignment Quality

We compare the qualities of alignments predicted by
GIZA++ and alignments induced from 1-best FDTs.

For E-J task, 575 English-Japanese sentence pairs
are manually annotated with word alignments. 382
sentence pairs are used as the dev set, and the other
193 sentence pairs are used as the test set. For C-E
task, 491 Chinese-English sentence pairs are manu-
ally annotated with word alignments. 250 sentence
pairs are used as the dev set, and the other 241 sen-
tence pairs are used as the test set. Both Japanese
and Chinese sentences are adapted to our own word
segmentation standards respectively. Table 3 shows
the comparison results. Comparing to C-E language
pair (S-V-O), E-J language pair (S-O-V) has much
lower F-scores, due to its very different word order.

F-score from GIZA++ from 1-best FDTs
devEJ 54.75% 57.93%(+3.18%)
testEJ 55.32% 58.47%(+3.15%)
devCE 81.32% 83.37%(+2.05%)
testCE 80.61% 82.51%(+1.90%)

Table 3: Comparison of alignment qualities predicted by
GIZA++ and induced from 1-best FDTs.

From Table 3 we can see that the F-score im-
proves on all language pairs when using alignments
induced from 1-best FDTs, rather than GIZA++.

5.6 Effect on Classification Accuracy
In the BTG system, the MaxEnt model is used as a
binary classifier to predict reordering operations of
neighbor translation blocks. As the baseline DM and
our FDT-DM have different mechanisms on training
instance extraction procedures, we compare the clas-
sification accuracies of these two DMs in Table 4 to
show the effect of different training instances. The
MaxEnt toolkit (Zhang, 2004) is used to optimize
feature weights using the l-BFGS method (Byrd et
al., 1995). We set the iteration number to 200 and
Gaussian prior to 1 for avoiding overfitting. Table
4 shows that when using training instances extract-
ed from FDTs, classification accuracy of reorderings
improves on both E-J and C-E tasks. This is because
FDTs can provide more deterministic and structured
knowledge for training instance extraction, which
can cover both local and global reordering cases.

baseline DM FDT-based DM
E-J 93.67% 95.60%(+1.93%)
C-E 95.85% 97.52%(+1.67%)

Table 4: Comparison of classification accuracies of DMs
based on instances extracted by different mechanisms.

6 Conclusions

In this paper, we have presented an FDT-based mod-
el training approach to SMT. As the first step in this
research direction, we have verified our method on a
phrase-based SMT system, and proposed four FDT-
based component models. Experiments on both E-J
and C-E tasks have demonstrated the effectiveness
of our approach. Summing up, comparing to plain
word alignments, FDTs provide richer structured
knowledge for more accurate SMT model training.
Several potential research topics can be explored in
future. For example, FDTs can be used in a pre-
reordering framework. This is feasible in the sense
that FDTs can provide both tree-like structures and
reordering information. We also plan to adapt our
FDT-based model training approach to SCFG-based
and traditional left-to-right phrase-based systems.
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Abstract

Distant supervision for relation extraction
(RE) – gathering training data by aligning a
database of facts with text – is an efficient ap-
proach to scale RE to thousands of different
relations. However, this introduces a challeng-
ing learning scenario where the relation ex-
pressed by a pair of entities found in a sen-
tence is unknown. For example, a sentence
containing Balzac and France may express
BornIn or Died, an unknown relation, or no re-
lation at all. Because of this, traditional super-
vised learning, which assumes that each ex-
ample is explicitly mapped to a label, is not
appropriate. We propose a novel approach
to multi-instance multi-label learning for RE,
which jointly models all the instances of a pair
of entities in text and all their labels using
a graphical model with latent variables. Our
model performs competitively on two difficult
domains.

1 Introduction
Information extraction (IE), defined as the task of
extracting structured information (e.g., events, bi-
nary relations, etc.) from free text, has received re-
newed interest in the “big data” era, when petabytes
of natural-language text containing thousands of dif-
ferent structure types are readily available. How-
ever, traditional supervised methods are unlikely to
scale in this context, as training data is either lim-
ited or nonexistent for most of these structures. One
of the most promising approaches to IE that ad-
dresses this limitation is distant supervision, which
generates training data automatically by aligning a

DB =

(
BornIn(Barack Obama, United States)

EmployedBy(Barack Obama, United States)

)
Sentence Latent Label
Barack Obama is the 44th and current President
of the United States.

EmployedBy

Obama was born in the United States just as he
has always said.

BornIn

United States President Barack Obama meets
with Chinese Vice President Xi Jinping today.

EmployedBy

Obama ran for the United States Senate in 2004. –

Figure 1: Training sentences generated through distant
supervision for a database containing two facts.

database of facts with text (Craven and Kumlien,
1999; Bunescu and Mooney, 2007).

In this paper we focus on distant supervision for
relation extraction (RE), a subproblem of IE that ad-
dresses the extraction of labeled relations between
two named entities. Figure 1 shows a simple exam-
ple for a RE domain with two labels. Distant super-
vision introduces two modeling challenges, which
we highlight in the table. The first challenge is
that some training examples obtained through this
heuristic are not valid, e.g., the last sentence in Fig-
ure 1 is not a correct example for any of the known
labels for the tuple. The percentage of such false
positives can be quite high. For example, Riedel
et al. (2010) report up to 31% of false positives in
a corpus that matches Freebase relations with New
York Times articles. The second challenge is that
the same pair of entities may have multiple labels
and it is unclear which label is instantiated by any
textual mention of the given tuple. For example, in
Figure 1, the tuple (Barack Obama, United States)
has two valid labels: BornIn and EmployedBy, each
(latently) instantiated in different sentences. In the
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instance
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instance

label
instance

label

...
object

Figure 2: Overview of multi-instance multi-label learn-
ing. To contrast, in traditional supervised learning there
is one instance and one label per object. For relation ex-
traction the object is a tuple of two named entities. Each
mention of this tuple in text generates a different instance.

Riedel corpus, 7.5% of the entity tuples in the train-
ing partition have more than one label.

We summarize this multi-instance multi-label
(MIML) learning problem in Figure 2. In this pa-
per we propose a novel graphical model, which we
called MIML-RE, that targets MIML learning for re-
lation extraction. Our work makes the following
contributions:

(a) To our knowledge, MIML-RE is the first RE ap-
proach that jointly models both multiple instances
(by modeling the latent labels assigned to instances)
and multiple labels (by providing a simple method to
capture dependencies between labels). For example,
our model learns that certain labels tend to be gener-
ated jointly while others cannot be jointly assigned
to the same tuple.

(b) We show that MIML-RE performs competitively
on two difficult domains.

2 Related Work
Distant supervision for IE was introduced by Craven
and Kumlien (1999), who focused on the ex-
traction of binary relations between proteins and
cells/tissues/diseases/drugs using the Yeast Protein
Database as a source of distant supervision. Since
then, the approach grew in popularity (Bunescu and
Mooney, 2007; Bellare and McCallum, 2007; Wu
and Weld, 2007; Mintz et al., 2009; Riedel et al.,
2010; Hoffmann et al., 2011; Nguyen and Moschitti,
2011; Sun et al., 2011; Surdeanu et al., 2011a).
However, most of these approaches make one or
more approximations in learning. For example,
most proposals heuristically transform distant super-
vision to traditional supervised learning (i.e., single-
instance single-label) (Bellare and McCallum, 2007;
Wu and Weld, 2007; Mintz et al., 2009; Nguyen
and Moschitti, 2011; Sun et al., 2011; Surdeanu

et al., 2011a). Bunescu and Mooney (2007) and
Riedel et al. (2010) model distant supervision for
relation extraction as a multi-instance single-label
problem, which allows multiple mentions for the
same tuple but disallows more than one label per ob-
ject. Our work is closest to Hoffmann et al. (2011).
They address the same problem we do (binary rela-
tion extraction) with a MIML model, but they make
two approximations. First, they use a deterministic
model that aggregates latent instance labels into a
set of labels for the corresponding tuple by OR-ing
the classification results. We use instead an object-
level classifier that is trained jointly with the clas-
sifier that assigns latent labels to instances and can
capture dependencies between labels. Second, they
use a Perceptron-style additive parameter update ap-
proach, whereas we train in a Bayesian framework.
We show in Section 5 that these approximations gen-
erally have a negative impact on performance.

MIML learning has been used in fields other than
natural language processing. For example, Zhou
and Zhang (2007) use MIML for scene classifica-
tion. In this problem, each image may be assigned
multiple labels corresponding to the different scenes
captured. Furthermore, each image contains a set of
patches, which forms the bag of instances assigned
to the given object (image). Zhou and Zhang pro-
pose two algorithms that reduce the MIML problem
to a more traditional supervised learning task. In
one algorithm, for example, they convert the task to
a multi-instance single-label problem by creating a
separate bag for each label. Due to this, the pro-
posed approach cannot model inter-label dependen-
cies. Moreover, the authors make a series of approx-
imations, e.g., they assume that each instance in a
bag shares the bag’s overall label. We instead model
all these issues explicitly in our approach.

In general, our approach belongs to the category
of models that learn in the presence of incomplete or
incorrect labels. There has been interest among ma-
chine learning researchers in the general problem of
noisy data, especially in the area of instance-based
learning. Brodley and Friedl (1999) summarize
past approaches and present a simple, all-purpose
method to filter out incorrect data before training.
While potentially applicable to our problem, this ap-
proach is completely general and cannot incorporate
our domain-specific knowledge about how the noisy
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data is generated.

3 Distant Supervision for Relation Extraction
Here we focus on distant supervision for the ex-
traction of relations between two entities. We de-
fine a relation as the construct r(e1, e2), where r is
the relation name, e.g., BornIn in Figure 1, and e1

and e2 are two entity names, e.g., Barack Obama
and United States. Note that there are entity tu-
ples (e1, e2) that participate in multiple relations,
r1, . . . , ri. In other words, the tuple (e1, e2) is the
object illustrated in Figure 2 and the different rela-
tion names are the labels. We define an entity men-
tion as a sequence of text tokens that matches the
corresponding entity name in some text, and relation
mention (for a given relation r(e1, e2)) as a pair of
entity mentions of e1 and e2 in the same sentence.
Relation mentions thus correspond to the instances
in Figure 2.1 As the latter definition indicates, we
focus on the extraction of relations expressed in a
single sentence. Furthermore, we assume that entity
mentions are extracted by a different process, such
as a named entity recognizer.

We define the task of relation extraction as a func-
tion that takes as input a document collection (C), a
set of entity mentions extracted from C (E), a set of
known relation labels (L) and an extraction model,
and outputs a set of relations (R) such that any of the
relations extracted is supported by at least one sen-
tence in C. To train the extraction model, we use a
database of relations (D) that are instantiated at least
once in C. Using distant supervision, D is aligned
with sentences in C, producing relation mentions for
all relations in D.

4 Model
Our model assumes that each relation mention in-
volving an entity pair has exactly one label, but al-
lows the pair to exhibit multiple labels across differ-
ent mentions. Since we do not know the actual re-
lation label of a mention in the distantly supervised
setting, we model it using a latent variable z that
can take one of the k pre-specified relation labels
as well as an additional NIL label, if no relation is
expressed by the corresponding mention. We model
the multiple relation labels an entity pair can assume

1For this reason, we use relation mention and relation in-
stance interchangeably in this paper.

. . .

. . . . . .

. . .

Figure 3: MIML model plate diagram. We unrolled the
y plate to emphasize that it is a collection of binary clas-
sifiers (one per relation label), whereas the z classifier is
multi-class. Each z and yj classifier has an additional
prior parameter, which is omitted here for clarity.

using a multi-label classifier that takes as input the
latent relation types of the all the mentions involving
that pair. The two-layer hierarchical model is shown
graphically in Figure 3, and is described more for-
mally below. The model includes one multi-class
classifier (for z) and a set of binary classifiers (for
each yj). The z classifier assigns latent labels from
L to individual relation mentions or NIL if no rela-
tion is expressed by the mention. Each yj classifier
decides if relation j holds for the given entity tu-
ple, using the mention-level classifications as input.
Specifically, in the figure:

• n is the number of distinct entity tuples in D;

• Mi is the set of mentions for the ith entity pair;

• x is a sentence and z is the latent relation clas-
sification for that sentence;

• wz is the weight vector for the multi-class
mention-level classifier;

• k is the number of known relation labels in L;

• yj is the top-level classification decision for the
entity pair as to whether the jth relation holds;

• wj is the weight vector for the binary top-level
classifier for the jth relation.

Additionally, we define Pi (Ni) as the set of all
known positive (negative) relation labels for the ith
entity tuple. In this paper, we construct Ni as L\Pi,
but, in general, other scenarios are possible. For
example, both Sun et al. (2011) and Surdeanu et
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al. (2011a) proposed models where Ni for the ith tu-
ple (e1, e2) is defined as: {rj | rj(e1, ek) ∈ D, ek 6=
e2, rj /∈ Pi}, which is a subset of L\Pi. That is, en-
tity e2 is considered a negative example for relation
rj (in the context of entity e1) only if rj exists in the
training data with a different value.

The addition of the object-level layer (for y) is an
important contribution of this work. This layer can
capture information that cannot be modeled by the
mention-level classifier. For example, it can learn
that two relation labels (e.g., BornIn and SpouseOf)
cannot be generated jointly for the same entity tu-
ple. So, if the z classifier outputs both these la-
bels for different mentions of the same tuple, the y
layer can cancel one of them. Furthermore, the y
classifiers can learn when two labels tend to appear
jointly, e.g., CapitalOf and Contained between two
locations, and use this occurrence as positive rein-
forcement for these labels. We discuss the features
that implement these ideas in Section 5.

4.1 Training

We train the proposed model using hard discrimina-
tive Expectation Maximization (EM). In the Expec-
tation (E) step we assign latent mention labels us-
ing the current model (i.e., the mention and relation
level classifiers). In the Maximization (M) step we
retrain the model to maximize the log likelihood of
the data using the current latent assignments.

In the equations that follow, we refer to
w1, . . . ,wk collectively as wy for compactness.
The vector zi contains the latent mention-level clas-
sifications for the ith entity pair, while yi represents
the corresponding set of gold-standard labels (that
is, y

(r)
i = 1 if r ∈ Pi, and y

(r)
i = 0 for r ∈ Ni.)

Using these notations, the log-likelihood of the data
is given by:

LL(wy,wz) =

n∑
i=1

log p(yi|xi,wy,wz)

=

n∑
i=1

log
∑
zi

p(yi, zi|xi,wy,wz)

The joint probability in the inner summation can be
broken up into simpler parts:

p(yi, zi|xi,wy,wz)

= p(zi|xi,wz)p(yi|zi,wy)

=
∏

m∈Mi

p(z
(m)
i |x(m)

i ,wz)
∏

r∈Pi∪Ni

p(y
(r)
i |zi,w

(r)
y )

where the last step follows from conditional inde-
pendence. Thus the log-likelihood for this problem
is not convex (it includes a sum of products). How-
ever, we can still use EM, but the optimization fo-
cuses on maximizing the lower bound of the log-
likelihood, i.e., we maximize the above joint proba-
bility for each entity pair in the database. Rewriting
this probability in log space, we obtain:

log p(yi, zi|xi,wy,wz) (1)

=
∑

m∈Mi

log p(z
(m)
i |x(m)

i ,wz)+∑
r∈Pi∪Ni

log p(y
(r)
i |zi,w

(r)
y )

The algorithm proceeds as follows.
E-step: In this step we infer the mention-level
classifications zi for each entity tuple, given all its
mentions, the gold labels yi, and current model, i.e.,
wz and wy weights. Formally, we seek to find:

zi
∗ = arg max

z
p(z|yi,xi,wy,wz)

However it is computationally intractable to con-
sider all vectors z as there is an exponential num-
ber of possible assignments, so we approximate and
consider each mention separately. Concretely,

p(z
(m)
i |yi,xi,wy,wz)

∝ p(yi, z
(m)
i |xi,wy,wz)

≈ p(z
(m)
i |x(m)

i ,wz)p(yi|z′i,wy)

= p(z
(m)
i |x(m)

i ,wz)
∏

r∈Pi∪Ni

p(y
(r)
i |z

′
i,w

(r)
y )

where z′i contains the previously inferred mention
labels for group i, with the exception of compo-
nent m whose label is replaced by z

(m)
i . So for

i = 1, . . . , n, and for each m ∈Mi we calculate:

z
(m)∗
i = arg max

z
p(z|x(m)

i ,wz)× (2)∏
r∈Pi∪Ni

p(y
(r)
i |z

′
i,w

(r)
y )
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Intuitively, the above equation indicates that men-
tion labels are chosen to maximize: (a) the prob-
abilities assigned by the mention-level model; (b)
the probability that the correct relation labels are as-
signed to the corresponding tuple; and (c) the prob-
ability that the labels known to be incorrect are not
assigned to the tuple. For example, if a particular
mention label receives a high mention-level proba-
bility but it is known to be a negative label for that
tuple, it will receive a low overall score.

M-step: In this step we find wy,wz that maxi-
mize the lower bound of the log-likelihood, i.e., the
probability in equation (1), given the current assign-
ments for zi. From equation (1) it is clear that this
can be maximized separately with respect to wy and
wz. Intuitively, this step amounts to learning the
weights for the mention-level classifier (wz) and the
weights for each of the k top-level classifiers (wy).
The updates are given by:

w∗z = arg max
w

n∑
i=1

∑
m∈Mi

log p(z
(m)∗
i |x(m)

i ,w) (3)

w
(r)∗
y = arg max

w

∑
1≤i≤n s.t. r∈Pi∪Ni

log p(y
(r)
i |z

∗
i ,w) (4)

Note that these are standard updates for logistic re-
gression. We obtained these weights using k + 1
logistic classifiers: one multi-class classifier for wz

and k binary classifiers for each relation label r ∈ L.
We implemented all using the L2-regularized logis-
tic regression from the publicly-downloadable Stan-
ford CoreNLP package.2 The main difference be-
tween the classifiers is how features are generated:
the mention-level classifier computes its features
based on xi, whereas the relation-level classifiers
generate features based on the current assignments
for zi and the corresponding relation label r. We
discuss the actual features used in our experiments
in Section 5.

4.2 Inference
Given an entity tuple, we obtain its relation labels as
follows. We first classify its mentions:

z
(m)∗
i = arg max

z
p(z|x(m)

i ,wz) (5)

2nlp.stanford.edu/software/corenlp.shtml

then decide on the final relation labels using the top-
level classifiers:

y
(r)∗
i = arg max

y∈{0,1}
p(y|z∗i ,w

(r)
y ) (6)

4.3 Implementation Details

We discuss next several details that are crucial for
the correct implementation of the above model.

Initialization: Since EM is not guaranteed to con-
verge at the global maximum of the observed data
likelihood, it is important to provide it with good
starting values. In our context, the initial values are
labels assigned to zi, which are required to compute
equation (2) in the first iteration (z′i). We generate
these values using a local logistic regression classi-
fier that uses the same features as the mention-level
classifier in the joint model but treats each relation
mention independently. We train this classifier using
“traditional” distant supervision: for each relation in
the databaseD we assume that all the corresponding
mentions are positive examples for the correspond-
ing label (Mintz et al., 2009). Note that this heuris-
tic repeats relation mentions with different labels for
the tuples that participate in multiple relations. For
example, all the relation mentions in Figure 1 will
yield datums with both the EmployedBy and BornIn
labels. Despite this limitation, we found that this is
a better initialization heuristic than random assign-
ment.

For the second part of equation (2), we initial-
ize the relation-level classifier with a model that
replicates the at least one heuristic of Hoffmann et
al. (2011). Each w

(r)
y model has a single feature with

a high positive weight that is triggered when label r
is assigned to any of the mentions in z∗i .

Avoiding overfitting: A naı̈ve implementation of
our approach leads to an unrealistic training scenario
where the z classifier generates predictions (in equa-
tion (2)) for the same datums it has seen in training
in the previous iteration. To avoid this overfitting
problem we used cross validation: we divided the
training tuples in K distinct folds and trained K dif-
ferent mention-level classifiers. Each classifier out-
puts p(z|x(m)

i ,wz) for tuples in a given fold during
the E-step (equation (2)) and is trained (equation (3))
using tuples from all other folds.
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At testing time, we compute p(z|x(m)
i ,wz) in

equation (5) as the average of the probabilities of
the above set of mention classifiers:

p(z|x(m)
i ,wz) =

∑K
j=1 p(z|x(m)

i ,wj
z)

K

where wj
z are the weights of the mention classifier

responsible for fold j. We found that this simple
bagging model performs slightly better in practice
(a couple of tenths of a percent) than training a sin-
gle mention classifier on the latent mention labels
generated in the last training iteration.

Inference during training: During the inference
process in the E-step, the algorithm incrementally
“flips” mention labels based on equation (2), for
each group of mentions Mi. Thus, z′i changes as the
algorithm progresses, which may impact the label
assigned to the remaining mentions in that group. To
avoid any potential bias introduced by the arbitrary
order of mentions as seen in the data, we randomize
each group Mi before we inspect its mentions.

5 Experimental Results

5.1 Data
We evaluate our algorithm on two corpora. The first
was developed by Riedel et al. (2010) by aligning
Freebase3 relations with the New York Times (NYT)
corpus. They used the Stanford named entity recog-
nizer (Finkel et al., 2005) to find entity mentions in
text and constructed relation mentions only between
entity mentions in the same sentence.

Riedel et al. (2010) observes that evaluating on
this corpus underestimates true extraction accuracy
because Freebase is incomplete. Thus, some re-
lations extracted during testing will be incorrectly
marked as wrong, simply because Freebase has no
information on them. To mitigate this issue, Riedel
et al. (2010) and Hoffman et al. (2011) perform a
second evaluation where they compute the accuracy
of labels assigned to a set of relation mentions that
they manually annotated. To avoid any potential an-
notation biases, we instead evaluate on a second cor-
pus that has comprehensive annotations generated
by experts for all test relations.

We constructed this second dataset using mainly
resources distributed for the 2010 and 2011 KBP

3freebase.com

shared tasks (Ji et al., 2010; Ji et al., 2011). We gen-
erated training relations from the knowledge base
provided by the task organizers, which is a subset
of the English Wikipedia infoboxes from a 2008
snapshot. Similarly to the corpus of Riedel et al.,
these infoboxes contain open-domain relations be-
tween named entities, but with a different focus.
For example, more than half of the relations in
the evaluation data are alternate names of organi-
zations or persons (e.g., org:alternate names) or re-
lations associated with employment and member-
ship (e.g., per:employee of) (Ji et al., 2011). We
aligned these relations against a document collec-
tion that merges two distinct sources: (a) the col-
lection provided by the shared task, which contains
approximately 1.5 million documents from a vari-
ety of sources, including newswire, blogs and tele-
phone conversation transcripts; and (b) a complete
snapshot of the English Wikipedia from June 2010.
During training, for each entity tuple (e1, e2), we
retrieved up to 50 sentences that contain both en-
tity mentions.4 We used Stanford’s CoreNLP pack-
age to find entity mentions in text and, similarly to
Riedel et al. (2010), we construct relation mention
candidates only between entity mentions in the same
sentence. We analyzed a set of over 2,000 relation
mentions and we found that 39% of the mentions
where e1 is an organization name and 36% of men-
tions where e1 is a person name do not express the
corresponding relation.

At evaluation time, the KBP shared task requires
the extraction of all relations r(e1, e2) given a query
that contains only the first entity e1. To accommo-
date this setup, we adjusted our sentence extraction
component to use just e1 as the retrieval query and
we kept up to 50 sentences that contain a mention
of the input entity for each evaluation query. For
tuning and testing we used the 200 queries from the
2010 and 2011 evaluations. We randomly selected
40 queries for development and used the remaining
160 for the formal evaluation.

To address the large number of negative examples
in training, Riedel et al. subsampled them randomly
with a retention probability of 10%. For the KBP
corpus, we followed the same strategy, but we used

4Sentences were ranked using the similarity between their
parent document and the query that concatenates the two entity
names. We used the default Lucene similarity measure.
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# of gold # of gold % of gold entity tuples % of gold entity tuples % of mentions that
relations relations with more than one label with multiple mentions in text do not express # of relation labels

in training in testing in training in training their relation
Riedel 4,700 1,950 7.5% 46.4% up to 31% 51
KBP 183,062 3,334 2.8% 65.1% up to 39% 41

Table 1: Statistics about the two corpora used in this paper. Some of the numbers for the Riedel dataset is from (Riedel
et al., 2010; Hoffmann et al., 2011).

a subsampling probability of 5% because this led to
the best results in development for all models.

Table 1 provides additional statistics about the
two corpora. The table indicates that having mul-
tiple mentions for an entity tuple is a very common
phenomenon in both corpora, and that having mul-
tiple labels per tuple is more common in the Riedel
dataset than KBP (7.5% vs. 2.8%).

5.2 Features

Our model requires two sets of features: one for the
mention classifier (z) and one for the relation clas-
sifier (y). In the Riedel dataset, we used the same
features as Riedel et al. (2010) and Hoffmann et
al. (2011) for the mention classifier. In the KBP
dataset, we used a feature set that was developed in
our previous work (Surdeanu et al., 2011b). These
features can be grouped in three classes: (a) features
that model the two entities, such as their head words;
(b) features that model the syntactic context of the
relation mention, such as the dependency path be-
tween the two entity mentions; and (c) features that
model the surface context, such as the sequence of
part of speech tags between the two entity mentions.
We used these features for all the models evaluated
on the KBP dataset.5

For the relation-level classifier, we developed two
feature groups. The first models Hoffmann et al.’s
at least one heuristic using a single feature, which
is set to true if at least one mention in zi has the la-
bel r, which is modeled by the current relation clas-
sifier. The second group models the dependencies
between relation labels. This is implemented by a
set of |L| − 1 features, where feature j is instan-
tiated whenever the label modeled (r) is predicted
jointly with another label rj (rj ∈ L, rj 6= r) in zi.
These features learn both positive and negative re-
inforcements between labels. For example, if labels

5To avoid an excessive number of features in the KBP exper-
iments, we removed features seen less than five times in train-
ing.

r1 and r2 tend to be generated jointly, the feature for
the corresponding dependency will receive a posi-
tive weight in the models for r1 and r2. Similarly, if
r1 and r2 cannot be generated jointly, the model will
assign a negative weight to feature 2 in r1’s classi-
fier and to feature 1 in r2’s classifier. Note that this
feature is asymmetric, i.e., feature 1 in r2’s classi-
fier may have a different value than feature 2 in r1’s
classifier, depending on the accuracy of the individ-
ual predictions for r1 and r2.

5.3 Baselines
We compare our approach against three models:

Mintz++ – This is the model used to initialize the
mention-level classifier in our model. As discussed
in Section 4.3, this model follows the “traditional”
distant supervision heuristic, similarly to (Mintz et
al., 2009). However, our implementation has several
advantages over the original model: (a) we model
each relation mention independently, whereas Mintz
et al. collapsed all the mentions of the same entity
tuple into a single datum; (b) we allow multi-label
outputs for a given entity tuple at prediction time
by OR-ing the predictions for the individual rela-
tion mentions corresponding to the tuple (similarly
to (Hoffmann et al., 2011))6; and (c) we use the
simple bagging strategy described in Section 4.3 to
combine multiple models. Empirically, we observed
that these changes yield a significant improvement
over the original proposal. For this reason, we con-
sider this model a strong baseline on its own.

Riedel – This is the “at-least-once” model reported
in (Riedel et al., 2010), which had the best perfor-
mance in that work. This approach models the task
as a multi-instance single-label problem. Note that
this is the only model shown here that does not allow
multi-label outputs for an entity tuple.

6We also allow multiple labels per tuple at training time,
in which case we replicate the corresponding datum for each
label. However, this did not improve performance significantly
compared to selecting a single label per datum during training.
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Hoffmann – This is the “MultiR” model, which per-
formed the best in (Hoffmann et al., 2011). This
models RE as a MIML problem, but learns using
a Perceptron algorithm and uses a deterministic “at
least one” decision instead of a relation classifier.
We used Hoffman’s publicly released code7 for the
experiments on the Riedel dataset and our own im-
plementation for the KBP experiments.8

5.4 Results

We tuned all models using three-fold cross valida-
tion for the Riedel dataset and using the develop-
ment queries for the KBP dataset. MIML-RE has
two parameters that require tuning: the number of
EM epochs (T ) and the number of folds for the men-
tion classifiers (K).9 The values obtained after tun-
ing are T = 15, K = 5 for the Riedel dataset and
T = 8, K = 3 for KBP. Similarly, we tuned the
number of epochs for the Hoffmann model on the
KBP dataset, obtaining an optimal value of 20.

On the Riedel dataset we evaluate all models us-
ing standard precision and recall measures. For the
KBP evaluation we used the official KBP scorer,10

with two changes: (a) we score with the parame-
ter anydoc set to true, which configures the scorer
to accept relation mentions as correct regardless of
their supporting document; and (b) we score only
on the subset of gold relations that have at least one
mention in our sentences. The first decision is neces-
sary because the gold KBP answers contain support-
ing documents only from the corpus provided by the
organizers but we retrieve candidate answers from
multiple collections. The second is required because
the focus of this work is not on sentence retrieval but
on RE, which should be evaluated in isolation.11

Similarly to previous work, we report preci-
sion/recall curves in Figure 4. We evaluate two
variants of MIML-RE: one that includes all the
features for the y model, and another (MIML-RE

7cs.washington.edu/homes/raphaelh/mr/
8The decision to reimplement the Hoffmann model was a

practical one, driven by incompatibilities between their imple-
mentation and our KBP framework.

9We could also tune the prior parameters for both our model
and Mintz++, but we found in early experiments that the default
value of 1 yields the best scores for all priors.

10nlp.cs.qc.cuny.edu/kbp/2011/scoring.html
11Due to these changes, the scores reported in this paper are

not directly comparable with the shared task scores.

At-Least-One) which has only the at least one
feature. For all the Bayesian models implemented
here, we sorted the predicted relations by the noisy-
or score of the top predictions for their mentions.
Formally, we rank a relation r predicted for group i,
i.e., r ∈ y∗i , using:

noisyOri(r) = 1−
∏

m∈Mi

(1− s
(m)
i (r))

where s
(m)
i (r) = p(r|x(m)

i ,wz) if r = z
(m)∗
i or 0 oth-

erwise. The noisy-or formula performs well for
ranking because it integrates model confidence (the
higher the probabilities, the higher the score) and re-
dundancy (the more mentions are predicted with a
label, the higher that label’s score). Note that the
above ranking score does not include the probability
of the relation classifier (equation (6)) for MIML-RE.
While we use equation (6) to generate y∗i , we found
that the corresponding probabilities are too coarse
to provide a good ranking score. This is caused by
the fact that our relation-level classifier works with
a small number of (noisy) features. Lastly, for our
implementation of the Hoffmann et al. model, we
used their ranking heuristic (sorting predictions by
the maximum extraction score for that relation).

6 Discussion

Figure 4 indicates that MIML-RE generally outper-
forms the current state of the art. In the Riedel
dataset, MIML-RE has higher overall recall than the
Riedel et al. model, and, for the same recall point,
MIML-RE’s precision is between 2 and 15 points
higher. For most of the curve, our model obtains
better precision for the same recall point than the
Hoffmann model, which currently has the best re-
ported results on this dataset. The difference is as
high as 5 precision points around the middle of the
curve. The Hoffmann model performs better close to
the extremities of the curve (low/high recall). Nev-
ertheless, we argue that our model is more stable
than Hoffmann’s: MIML-RE yields a smoother pre-
cision/recall curve, without most of the depressions
seen in the Hoffmann results. In the KBP dataset,
MIML-RE performs consistently better than our im-
plementation of Hoffmann’s model, with higher pre-
cision values for the same recall point, and much
higher overall recall. We believe that these dif-
ferences are caused by our Bayesian framework,
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Figure 4: Results in the Riedel dataset (top) and the KBP dataset (bottom). The Hoffmann scores in the KBP dataset
were generated using our implementation. The other Hoffmann and Riedel results were taken from their papers.

which provides a more formal implementation of the
MIML problem.

Figure 4 also indicates that MIML-RE yields a con-
sistent improvement over Mintz++ (with the excep-
tion of a few points in the low-recall portion of the
KBP curves). The difference in precision for the
same recall point is as high as 25 precision points in
the Riedel dataset and up to 5 points in KBP. Over-
all, the best F1 score of MIML-RE is slightly over 1
point higher than the best F1 score of Mintz++ in
the Riedel dataset and 3 points higher in KBP. Con-
sidering that Mintz++ is a strong baseline and we
evaluate on two challenging domains, we consider
these results proof that the correct modeling of the
MIML scenario is beneficial.

Lastly, Figure 4 shows that MIML-RE outper-
forms its variant without label-dependency fea-
tures (MIML-RE At-Least-One) in the higher-
recall part of the curve in the Riedel dataset. The im-
provement is approximately 1 F1 point throughout
the last segment of the curve. The overall increase
in F1 was found to be significant (p = 0.0296) in a
one-sided, paired t-test over randomly sampled test
data. We see a smaller improvement in KBP (con-
centrated around the middle of the curve), likely be-
cause the number of entity tuples with multiple la-
bels in training is small (see Table 1). Neverthe-
less, this exercise shows that, when dependencies
between labels exist in a dataset, modeling them,
which can be trivially done in MIML-RE, is useful.
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P R F1
Hoffmann (our implementation) 48.6 29.8 37.0
Mintz++ 43.8 36.8 40.0
MIML-RE 64.8 31.6 42.6
MIML-RE At-Least-One 56.1 32.5 41.1

Table 2: Results at the highest F1 point in the preci-
sion/recall curve on the dataset that contains groups with
at least 10 mentions.

In a similar vein, we tested the models previ-
ously described on a subset of the Riedel evalua-
tion dataset that only includes groups with at least
10 mentions. This corpus contains approximately
2% of the groups from the original testing partition,
out of which 90 tuples have at least one known label
and 1410 groups serve as negative examples.

For conciseness, we do not include the entire
precision/recall curves for this experiment, but sum-
marize them in Table 2, which lists the performance
peak (highest F1 score) for each of the models
investigated. The table shows that MIML-RE obtains
the highest F1 score overall, 1.5 points higher than
MIML-RE At-Least-One and 2.6 points higher
than Mintz++. More importantly, for approximately
the same recall point, MIML-RE obtains a precision
that is over 8 percentage points higher than that of
MIML-RE At-Least-One. A post-hoc inspection
of the results indicates that, indeed, MIML-RE suc-
cessfully eliminates undesired labels when two
(or more) incompatible labels are jointly assigned
to the same tuple. Take for example the tuple
(Mexico City, Mexico), for which the correct re-
lation is /location/administrative division/country.
MIML-RE At-Least-One incorrectly predicts
the additional /location/location/contains relation,
while MIML-RE does not make this prediction
because it recognizes that these two labels are in-
compatible in general: one location cannot both be
within another location and contain it. Indeed, ex-
amining the weights assigned to label-dependency
features in MIML-RE, we see that the model has
assigned a large negative weight to the depen-
dency feature between /location/location/contains
and /location/administrative division/country
for the /location/location/contains class. We
also observe positive dependencies between la-
bels. For example, MIML-RE learns that the
relations /people/person/place lived and /peo-

ple/person/place of birth tend to co-occur and
assigns a positive weight to this dependency feature
for the corresponding classes.

These results strongly suggest that when all as-
pects of the MIML scenario are present, our model
can successfully capture them and make use of the
additional structure to improve performance.

7 Conclusion

In this paper we showed that distant supervision
for RE, which generates training data by aligning a
database of facts with text, poses a distinct multi-
instance multi-label learning scenario. In this set-
ting, each entity pair to be modeled typically has
multiple instances in the text and may have multiple
labels in the database. This is considerably differ-
ent from traditional supervised learning, where each
instance has a single, explicit label.

We argued that this MIML scenario should be
formally addressed. We proposed, to our knowl-
edge, the first approach that models all aspects of the
MIML setting, i.e., the latent assignment of labels to
instances and dependencies between labels assigned
to the same entity pair.

We evaluated our model on two challenging do-
mains and obtained state-of-the-art results on both.
Our model performs well even when not all aspects
of the MIML scenario are common, and as seen in
the discussion, shows significant improvement when
evaluated on entity pairs with many labels or men-
tions. When all aspects of the MIML scenario are
present, our model is well-equipped to handle them.

The code and data used in the experiments re-
ported in this paper are available at: http://nlp.
stanford.edu/software/mimlre.shtml.
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Abstract

This paper present a new readability formula
for French as a foreign language (FFL), which
relies on 46 textual features representative of
the lexical, syntactic, and semantic levels as
well as some of the specificities of the FFL
context. We report comparisons between sev-
eral techniques for feature selection and var-
ious learning algorithms. Our best model,
based on support vector machines (SVM), sig-
nificantly outperforms previous FFL formulas.
We also found that semantic features behave
poorly in our case, in contrast with some pre-
vious readability studies on English as a first
language.

1 Introduction

Whether in a first language (L1) or a second and for-
eign language (L2), learning to read has been and re-
mains one of the major concerns of education. When
a teacher wants to improve his/her students’ reading
skills, he/she uses reading exercises, whether there
are guided or independent. For this practice to be
efficient, it is necessary that the texts suit the level
of students (O’Connor et al., 2002). This condition
is sometimes difficult to meet for teachers wishing
to get off the beaten tracks by not using texts from
levelled textbooks or readers.

In this context, readability formulas have long
been used to help teachers faster select texts for their
students. These formulas are reproducible meth-
ods that aim at matching readers and texts relative
to their reading difficulty level. The Flesch (1948)
and Dale and Chall (1948) formulas are probably

the best-known examples of those. They are typical
of classic formulas, the first major methodological
paradigm developed in the field during the 40’s and
50’s. They were kept as parsimonious as possible,
using linear regression to combined two, or some-
times, three surface features, such as word mean
length, sentence mean length, or proportion of out-
of-simple-vocabulary words.

Later, some scholars (Kintsch and Vipond, 1979;
Redish and Selzer, 1985) argued that the classic for-
mulas suffer from several shortcomings. These for-
mulas only take into account superficial features, ig-
noring other important aspects contributing to text
difficulty, such as coherence, content density, infer-
ence load, etc. They also omit the interactive as-
pect of the reading process. In the 80’s, a second
paradigm, inspired by structuro-cognitivist theories,
intended to overcome these issues. It focused on
higher textual dimensions, such as inference load
(Kintsch and Vipond, 1979; Kemper, 1983), den-
sity of concepts (Kintsch and Vipond, 1979), or
macrostructure (Meyer, 1982). However, these at-
tempts did not achieve better results than the clas-
sic approach, even though they used more principled
and more complex features.

Recently, a third paradigm, referred to as the “AI
readability” by François (2011a), has emerged in the
field. Studies that are part of this current share three
key features: the use of a large number of texts as-
sessed by experts (coming from textbooks, simpli-
fied newspapers or web resources) as training data ;
the use of NPL-enable features able to capture a
wider range of readability factors, and the combi-
nation of those features through a machine learning
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algorithm. Since the work of Si and Callan (2001),
this paradigm have spawn several studies for English
(Collins-Thompson and Callan, 2005; Heilman et
al., 2008; Schwarm and Ostendorf, 2005; Feng et
al., 2010).

However, for French, the field is far from being so
thriving. To our knowledge, only two “AI readabil-
ity” have been designed so far for French L1 and
only one for French as a foreign language (FFL)
(see Section 2). This paper reports some experi-
ments aimed at designing a more efficient readabil-
ity model for FFL. In Section 2, it is further argue
why a new formula was necessary for FFL. Section
3 covers the various methodological steps required
to devise the model, whose results are reported in
Section 4. Finally, Section 5 discusses some inter-
esting insights gained by this work.

2 Readability models for French

Readability of French never enjoyed a large suc-
cess: while readability studies on English dates back
to the 20’s, it is only in 1957 that the French-
speaking world discovered it through the work of
Conquet (1957). Since then, only a few studies fo-
cused on the topic.

The two first French L1 formulas were adap-
tations of the Flesch formula (Kandel and Moles,
1958; de Landsheere, 1963). It is only with
Henry (1975) that French got a model fitting the
particularities of the language. Henry used cloze
tests to assess the level of 60 texts from primary and
secondary school textbooks and trained three for-
mulas on this corpus. It is worth mentioning that
Henry’s formulas have been applied to FFL by Cor-
naire (1988). During the same time, Richaudeau
explored a different path, as a representative of the
structuro-cognitivist paradigm. He used the num-
ber of words recalled by a subject after he/she has
just read a sentence as a device to measure under-
standing and provided an “efficiency formula” of
texts (Richaudeau, 1979). Although more modern
in its conception, Richaudeau’s hard-to-implement
formula did not achieve the same recognition in the
French speaking world as Henry’s.

After those two major efforts, few works fol-
lowed. It is worth mentioning two more authors:
Mesnager (1989), who designed a classic formula

for children that draw inspiration from the Dale and
Chall (1948) formula and Daoust et al. (1996), who
developed SATO-CALIBRAGE, a program assessing
text difficulty from the first to the eleventh grade.
It can be considered as the first “AI formula” for
French L1, since it made use of NLP-enabled fea-
tures. It is also the last formula published for French
L1, if we except the adaptation of the model by
Collins-Thompson and Callan (2004) to French.

As regards to French L2, the literature is even
sparser. Tharp (1939) published a first formula tak-
ing into account one particularity of the L2 context:
the cognates. Those are words sharing a similar
form and meaning across two languages and hav-
ing a facilitating effect in reading. This idea was re-
cently replicated by Uitdenbogerd (2005), who com-
bined a syntactic feature, the mean number of words
per sentence, with the number of cognates per 100
words in her formula. Although taking into account
this effect of the L1 on L2 reading is very interest-
ing, these two studies are confined to a limited audi-
ence: English speakers learning French. As regards
a more generic approach, François (2009) recently
published an “AI formula” for FFL, based on lo-
gistic regression and ten features. Among those, he
stressed the use of verbal tense information as a way
to improve performance. However, the set of fea-
tures he experimented remains limited (about 20).

From all this, it seems clear that FFL readability
needs to be addressed more thoroughly, especially if
we are willing to get a generic model, able to make
predictions for L2 readers with any L1 background.
The rest of this paper describes one such attempt.

3 Design of the formula

The design of an “AI readability” formula involves
the same three steps as a classification problem.
First, one need to gather a gold-standard corpus
large enough to reliably train the parameters of a
learning algorithm, as described in Section 3.1. The
next step, covered in Section 3.2, consists in defin-
ing a set of predictors, that is to say, linguistic char-
acteristics of the texts that will be used to predict the
difficulty level of new texts. Finally, the best sub-
set of these predictors is combined within a learning
algorithm to obtain the best model possible. Experi-
ments at this level are reported in Section 3.3.
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3.1 The corpus

A gold-standard for readability consists in texts la-
belled according to their difficulty. For this, it is first
necessary to choose a difficulty scale used for the la-
bels (for English L1, it is usually the 12 grade levels
scale), that also constrains the output of the formula.
Then, each text have to be assessed with a method
able to measure the reading comprehension level of
the target population.

Regarding the scale, an obvious choice for
the foreign language context was the begin-
ner/intermediate/advanced continuum, recently re-
defined in the Common European Framework of
Reference for Languages (CEFR) (Council of Eu-
rope, 2001) as the six following levels: A1 (Break-
through); A2 (Waystage); B1 (Threshold); B2 (Van-
tage); C1 (Effective Operational Proficiency) and C2
(Mastery). This scale has now become the reference
for foreign language education, at least in Europe.

Assessing the reading difficulty of texts with re-
spect to a target population of readers was a more
challenging issue. Several techniques have been
used in the literature, the most important of which
are comprehension tests, cloze tests and expert
judgements. They all postulate a given population of
readers, although relying on expert judgements save
the need for a sample of subjects to take a test. In
this case, texts comes from textbooks whose content
difficulty have been assessed by the publishers.

This last criterion is now mainstream in “AI read-
ability”, since it is very practical and facilitates the
creation of a large corpus, but it has its own short-
comings. Studies such as van Oosten et al. (2011)
found that expert agreement on a same corpus of
texts might be insufficient for a classification task.

For this study, we nevertheless relied on expert
judgements, since we needed a large amount of la-
belled texts to ensure a robust statistical learning.
We selected 28 FFL textbooks, published after 2001
and designed for adults or adolescents learning FFL
for general purposes. From those, we extracted
2,160 texts related to a reading comprehension task
and assigned to each of them the same level as the
textbook it came from.

As it was expected from van Oosten et al. (2011)’s
study, differences in the publishers’ conception of
difficulty led to an heterogeneous labelling between

textbooks. This heterogeneity was detected in three
of the six levels (A1, A2, and B1) using ANOVA
based on two classic readability features as inde-
pendent variables: the mean number of words per
sentence and the mean number of letters per word.
A subsequent qualitative analysis revealed that most
of the heterogeneity was coming from textbooks fol-
lowing the new didactic approach recommended by
the CEFR: the task-oriented approach, which fo-
cuses more on the task than the text when labelling
the overall reading activity. Therefore, we decided
to remove those type of textbooks from our corpus,
which amounted to 5 books and 249 texts. The re-
maining 1,852 excerpts were kept for our experi-
ments. Their distribution is displayed in Table 1 as
regard to the number of texts and tokens.

3.2 The predictors
In a second step, every text of the corpus was rep-
resented as a numeric vector of 406 features, each
of them representing a linguistic dimension of the
text as a single number. Their implementation drew
on two different sources of inspiration: the existing
predictors in the English and French literature and
the psycholinguistic literature on the reading pro-
cess. The complete set was classified in four fam-
ilies, depending on the kind of information each one
is supposed to represent. These families were: “lex-
ical”, “syntactic”, “semantic”, and “specific to FFL
context”. Each of them was further divided in sub-
families, described in the rest of the section 1.

3.2.1 Lexical Features
Lexical features have been shown to be the most

important level of information in many readability
studies (Chall and Dale, 1995; Lorge, 1944). It is
then not surprising that a wide range of lexical pre-
dictors have been developed in the literature. Our
own set comprised the following subfamilies:

Statistics of lexical frequencies: frequencies of
words in a text are a good indicator of the text’s over-
all difficulty (Stenner, 1996). They are usually sum-
marized via the mean, but we also tested the median,
the interquartile range, as well as the 75th and 90th

percentiles.
1Space restrictions did not enable us to formally defined

each variable used in this study. The reader may consult
François (2011b) for a more comprehensive description.
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A1 A2 B1 B2 C1 C2 Total
430(58.561) 380(75.779) 552(176.973) 198(71.701) 184(92.327) 108(35.202) 1, 852(510; 543)

Table 1: Distribution of the number of texts and tokens per level in our corpus.

We used Lexique3 (New et al., 2007) as our fre-
quency database. It is a lexicon including about
50,000 lemmas and 125,000 inflected forms whose
frequencies were obtained from movie subtitles.
Since French has a rich morphology, we considered
the probabilities of both lemma and inflected forms.
Moreover, following an idea from Elley (1969), we
also computed the above mentioned statistics for
given POS words, such as content word, nouns,
verbs, etc.

Percentage of words not in a reference list: part
of the Dale and Chall (1948)’s formula, this feature
is one of the most famous in readability. For our
experiments, two word lists for FFL were used: the
well-known – but already dated – Gougenheim et
al. (1964)’s list and a second one that was found at
the end of one FFL textbook: Alter Ego (Berthet et
al., 2006). Different sizes were also experimented
for both lists.

Word length: mean word length is another classic
feature in readability (Flesch, 1948; Smith, 1961).
We used various statistics based on the number of
letters per word (mean, median, percentiles, etc.).

N-grams models: Si and Callan (2001) shown
that n-grams models can successfully be applied to
readability. We then used both a simple unigram ap-
proach based on the frequencies from Lexique3, and
a more complex bigram model trained on two dif-
ferent corpora: the Google n-grams (Michel et al.,
2011) and a corpus of newspaper articles from Le
Soir amounting to 5, 000, 000 words 2. Both were
normalized according the length n of the text as fol-
lows:

P (text) =
1

n

n∑
i=1

logP (wi|h) (1)

where wi is the ith word and h a limited history of
length 0 (unigram) or 1 (bigram).

2Smoothing algorithms used were respectively the simple
Good-Turing algorithm (Gale and Sampson, 1995) for unigrams
and linear interpolation (Chen and Goodman, 1999) for the bi-
grams.

Lexical diversity: the repetition effect is another
factor known to affect the reading process (Bowers,
2000). It has been mainly implemented through the
classic type-token ratio (TTR) that suffers from be-
ing dependent on the text length. This is why we
defined a normalized TTR, which is the mean score
of several TTRs, computed on text’s fragments of
equal length. This way, long texts were made com-
parable with short ones.

Orthographic neighborhood: we finally sug-
gested a new lexical variable, based on the fact that
some characteristics of the orthographic neighbors 3

of a word are known to impact the reading of this
word (Andrews, 1997). Thirteen predictors were
implemented to account for the number or the fre-
quency of the orthographic neighbors of all words in
a text.

3.2.2 Syntactic features
The syntactic level of information is another tradi-

tional area of investigation in readability. Although
most of the scholars in the field agree that it does not
lead to such efficient predictors as the lexical level,
they have noticed it can be combined with the latter
to improve performance of readability formulas. We
therefore investigated the following subfamilies:

Sentence length: the traditional approach to syn-
tactic difficulty relied on the number of words per
sentence. We have approached it through various
statistics such as the mean, the median, or several
percentiles.

Part of speech ratios: Bormuth (1966) demon-
strated the good predictive power of some POS ra-
tios in a text. We computed 156 ratios based on
TreeTagger’s POS (Schmid, 1994). They operated
as proxies for the syntactic complexity of sentences,
since we did not use features based on a parser 4.

3The orthographic neighbors of a word X have been defined
by Coltheart (1978) as all the words of the same length as X and
varying from it only by one letter (eg. FIST and GIST).

4This choice was motivated as follows. Bormuth (1966),
who performed a manual annotation of the syntactic structures
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Verbs: although the tense and moods found in a
text have been hardly considered in the field, Car-
reiras et al. (1997) suggested that verbal aspects are
important while building a mental representation of
a text and therefore impact its understanding. They
help the reader to distinguish between major and
minor elements associated with events described by
these verbs. We therefore replicated and enhanced
the feature set proposed by François (2009), consid-
ering either binary indicators or proportions of the
use of tenses or moods in a text.

3.2.3 Semantic features

The importance of semantic and cognitive
factors have been particularly stressed by the
structuro-cognitivist paradigm, although Miller and
Kintsch (1980), as well as Kemper (1983), eventu-
ally admitted not being able to demonstrate the supe-
riority of those new predictors over traditional ones.
More recent work also reported limited evidence of
this alleged superiority (Pitler and Nenkova, 2008;
Feng et al., 2010). In order to clarify as much as
possible the situation for FFL, we implemented the
following features:

Personnalization level: Dale and Tyler (1934)
suggested that informal texts should be easier to read
and that informality might be assessed through the
type of personal pronouns found in a text. On this as-
sumption, 13 variables were defined to take into ac-
count various personal pronouns proportions in the
text.

Conceptual density: Kintsch et al. (1975) showed
that the number of propositions as well as the num-
ber of different arguments in a sentence influence
its reading time. Following Kintsch’s propositional
model, we used Densidées (Lee et al., 2010) to cap-
ture conceptual complexity. It is a program able to
estimate the mean number of propositions per word
in a text using 35 rules relying on lexical and POS
clues.

in its corpus, noticed that features based on parse trees were
less efficient than classic ones, such as sentence length or part
of speech ratios. Therefore, it seemed unlikely that the infor-
mation collected by means of syntactic parsers, which are still
committing a significant number of errors, at least for French,
would belie these findings.

Lexical cohesion : the level of cohesion in a text
was measured as the average cosine of all pair of
adjacent sentences in the text. Each sentence was
represented by a numeric weighted vector (based on
words) and projected in a vector space. As sug-
gested by Foltz and al. (1998), two methods were
used to define the vector space and weight every
word: the tf-idf (term frequency-inverse document
frequency) and the latent semantic analysis (LSA).
The first approach, called “word overlap”, corre-
sponds to the “noun overlap” defined by Graesser et
al. (2004, 199), except that all type of POS are taken
into account. For LSA, we applied a singular value
decomposition (SVD), and after comparing various
sizes with a cross-validation procedure, we retained
a small 15-dimensional space.

3.2.4 Features specific to FFL
Apart from the effect of cognates (Uitdenbogerd,

2005; Tharp, 1939), few features specific to the L2
context were previously investigated. It is probably
because such an approach requires to train a model
for each pair of language of interest and gather suit-
able data for evaluation. Since our study intended to
design a generic model, we focused on specific pre-
dictors affecting L2 reading, whatever the learner’s
mother tongue is:

Multi-word expressions (MWE): MWEs are ac-
knowledged to cause problems to L2 learners for
production (Bahns and Eldaw, 1993). However, the
effect of MWE on the reception side remains un-
clear, especially for beginners. Ozasa et al. (2007)
tested the mean of the absolute frequency of all
MWEs in a text as an indication of its difficulty,
but it appeared non significant. In a latter experi-
ment involving a larger set of MWE-based predic-
tors, François and Watrin (2011) detected a signifi-
cant, but limited effect. We therefore replicated this
set, which includes variables based on the frequen-
cies of MWE, their syntactic structure, their number
or their length. Frequencies were estimated on the
same corpora as the bigram model described above
(Google and Le Soir).

Type of text: Finally, we defined five simple vari-
ables aiming at identifying dialogues, such as pres-
ence of commas, ratio of punctuation, etc. as sug-
gested by Henry (1975). This focus on dialogue was

470



Level of information Tag Description of the variable ρ

Lexical

PA-Alterego Proportion of absent words from a list of easy words 0.653

X90FFFC 90th percentile of inflected forms for content words only −0.643

ML3 Unigram model based on lemmas −0.553

NLM Mean number of letters per word 0.483

TTR Type-token ratio based on lemma 0.283

MedNeigh+Freq Median number of more frequent neighbor for words −0.233

Syntactic

NMP Mean number of words per sentence 0.623

NWS90 Length (in words) of the 90th percentile sentence 0.613

LSDaoust Percentage of sentences longer than 30 words (Daoust et al., 1996) 0.563

PPres Presence of at least one present participle in the text 0.443

PRO.PRE Ratio of pronouns on prepositions −0.353

PPres-C Proportion of present participle among verbs 0.413

PPasse Presence of at least one past participle 0.393

Impf Presence of at least one imperfect 0.273

Subp Presence of at least one subjunctive present 0.273

Cond Presence of at least one conditional 0.233

Imperatif Presence of at least one imperative 0.02
Subi Presence of at least one subjunctive imperfect 0.05

Semantic avLocalLsa-Lem Average intersentential cohesion measured via LSA 0.633

PP1P2 Percentage of P1 and P2 personal pronouns −0.333

Specific NAColl Proportion of MWE having the structure NOUN ADJ 0.293

BINGUI Presence of commas 0.463

Table 2: Spearman correlation for some predictors in our set with difficulty. A positive correlation means that the
difficulty of texts increases with the value of the predictor. Signification levels are the following 1 :< 0.05; 2 :< 0.01;
and 3 : < 0.001.

explained by their extensive use in foreign language
teaching, especially in the first levels. Furthermore,
even for L1, various scholars stressed the fact that
dialogues are often written in a simpler style and
have a more mundane content (Dolch, 1948; Flesch,
1948).

3.3 The algorithms

The last step in the development of our formula was
to select the most informative subset of features and
combine them in a state-of-the-art machine learn-
ing algorithm. The algorithms originally consid-
ered were six: multinomial and ordinal logistic re-
gression (respectively MLR and OLR), classifica-
tion trees, bagging, boosting (both based on decision
trees) and support vector machine (SVM). However,
since the logistic models and the SVM clearly out-
performed the others three, we will reported only
about those in the next section.

4 Results

The experiments based on this methodology were
twofold. First, we assessed the predictive power
of each of the 406 features, considered in a bivari-
ate relationship with difficulty. Second, we selected
various subsets of features for training models and

compared their performance. The two next sections
summarize the main findings obtained during these
two steps.

4.1 The efficiency of predictors

Spearman correlation was used to assess the effi-
ciency of each predictor, to better account for non-
linear relationships with the criterion. Values for
some variables among the four families are reported
in Table 2. In accordance with the literature, it ap-
peared that the best family of predictors were the
lexical one, followed by the syntactic one. On the
contrary, semantic and specific to FFL features did
not perform so well, with the exception of the LSA-
based feature (avLocalLsa-Lem).

Of all predictors, the best was surprisingly PA-
Alterego, a list-based variable inspired by Dale and
Chall (1948), but adapted to the FFL context, since
the list of easy words used came from a FFL text-
book (Alter Ego 1). This suggests that, although the
predictive power of “specific to FFL” features was
low, specialization to the FFL context was beneficial
at other levels.
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4.2 The models

Once the best single predictors were identified, it
was possible to combine several of them in a read-
ability model for comparison. This required some
corpus preparation. Since preliminary experiments
showed that the equal prior probabilities are required
to ensure a unbiased training, the whole corpus was
resampled to get the same number of texts per level
(108), which amounted to a total of 648 texts. We
then split this smaller corpus into two sets. 240 texts
were kept for development purposes, mainly feature
selection and estimation of the meta-parameters γ
and C for the SVM. The remaining 408 texts were
used for evaluating performance of our readability
models.

4.2.1 Selection of the features
Several ways of selecting the smallest “best” sub-

set of features were compared, given that some
variables are partly redundant when combined to-
gether. The first method was based on the
structuro-cognitivist assumption that readability for-
mulas should include other features than just lexico-
syntactical ones, in order to maximize variety of in-
formation. Therefore, we tried an “expert” selec-
tion, keeping either the best feature among each of
the four families (set Exp1), or the two best features
(set Exp2) 5.

These “expert” approaches were compared to an
automatic selection, using either a stepwise proce-
dure 6 for logistic regression (OLR and MLR) or
a built-in regularization (Bishop, 2006, 10) for the
SVM, based on the 46 best predictors inside each
subfamily.

For the sake of comparison, we also defined two
other sets: one that corresponds to a random clas-
sification (the empty subset), and a baseline, based
on two classics predictors (number of letters per
word and number of words per sentence), which
aimed to mimic classic formulas such as those of

5For the syntactic level, since the two best variables be-
longed to the same subfamily (see Section 3.2) and were too
highly intercorrelated, the 90th percentile of the sentence length
(NWS90) was replaced by the best feature from another subfam-
ily: the presence of at least one present participle (PPres).

6In order to suppress as much random effects as possible, the
selection process was repeated 100 times via a bootstrapping
.632 procedure (Tufféry, 2007, 396-371) and only the features
selected at least 50 times out of 100 were kept.

Flesch (1948) or Dale and Chall (1948). A summary
of the features included in each subset is available in
Table 3.

4.2.2 Evaluation of the models
The next step then consisted in training logistic

and SVM models for each of the above subsets.
Their performances, reported in Table 4, were as-
sessed using five measures: the multiple correlation
ratio (R), the accuracy (acc), the adjacent accuracy 7

(adjacc), the root mean square error (rmse) and the
mean absolute error (mae). It should be noted that
each of these measures was estimated through a ten-
fold cross-validation procedure, which allowed us to
compare performances of different models with a T-
test.

The comparison between the models was per-
formed in two steps. First, we computed T-tests
based on adjacc to compare the models based on
a same set of features (either Exp1, Exp2, or Auto).
This allowed us to pick up the best classifier for each
set. In a second step, these three best models were
compared the same way, which resulted in the se-
lection of the very best classifier. The decision of
adopting the adjacent accuracy as a criterion instead
of the accuracy was motivated by our conviction that
our system should rather avoid serious errors (i.e.
larger than one level) than be more accurate, while
sometimes generating terrible mistakes. However, it
appeared that both metrics were mostly consistent.

The performance of the different models are dis-
played in Table 4. It is first interesting to note that
the baseline (based on SVM) already gives interest-
ing results. It reaches a classification accuracy of
34%, which is about twice the random. As regards
the first model (Exp1), based on RLM and including
four predictors, it outperforms the baseline by 5%, a
difference close to significance (t(9) = 1.77; p =
0.055). Therefore, combining variables from sev-
eral families seems to improve performance over the
“classic” baseline, limited to lexico-syntactic fea-
tures.

This finding is reinforced by the SVM model
from Exp2, which includes eight features. It per-
forms significantly better than the baseline (t(9) =

7Heilman et al. (2008) defined it as “the proportion of pre-
dictions that were within one level of the human assigned label
for the given text”.
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Model name Classifieur Set of features
Exp1 OLR, MLR and SVM PA-Alterego + NMP + avLocalLsa-Lem + BINGUI
Exp2 OLR, MLR and SVM PA-Alterego + X90FFFC + NMP + PPres + avLocalLsa-Lem + PP1P2 + BINGUI + NAColl
Auto-OLR OLR PA-Alterego + NMP + PPres + ML3

Auto-MLR MLR PA-Alterego + Cond + Imperatif + Impf + PPasse + PPres + Subi + Subp
+ BINGUI + TTR + NWS90 + LSDaoust + MedNeigh+Freq

Auto-SVM SVM all the 46 variables

Table 3: Results from the two selection process: expert and automatic. Description of the features can be found in
Table 2.

Model Classifier Parameters R acc adjacc rmse mae
Random / / / 16.6 44.4 / /
Baseline SVM γ = 0.05;C = 25 0.62 34.0 68.2 1.51 1.06
Exp1 RLM / 0.70 39.4 74.2 1.34 0.97
Exp2 SVM γ = 0.002;C = 75 0.73 40.8 77.9 1.28 0.94
Auto-OLR OLR / 0.71 39.6 76.1 1.33 0.96
Auto SVM γ = 0.004;C = 5 0.73 49.1 79.6 1.27 0.90

Table 4: Evaluation measures for the best difficulty model from each feature set (Exp1, Exp2 and Auto), along with
values for a random classification, and the “classic” baseline.

2.36; p = 0.02), with an accuracy gain of 7%. How-
ever, to that point, it was not clear whether this supe-
riority was indeed a consequence of maximizing the
kind of information brought to the model or merely
the result of the increased number of predictor.

We thus performed another experiment to address
this issue. The model Exp1 was compared with
Auto-OLR, the best ordinal logistic model obtained
through the stepwise selection (see Tables 4 and
3), and previously discarded as a result of the T-
test comparisons. Like Exp1, it also contains four
predictors, but they are all lexical or syntactic fea-
tures. Therefore, this model does not maximize the
type of information. Surprisingly, we observed that
Auto-OLR obtained similar and even slightly bet-
ter performance than Exp1 (+2% for both acc and
adjacc). Thus, the claim that maximizing the source
of information should yield better models did not
stand on our data.

Finally, our best performing model was based on
the Auto feature set and SVM. Its accuracy was in-
creased by 8% in comparison with the Exp2 model,
which is clearly a significant improvement (t(9) =
2.61; p = 0.01), and outperformed the baseline by
15%. As mentioned previously, this model includes
46 features coming from our four families. It is
worth mentioning that the quality of the predictions
is not the same across the levels, as shown in Ta-
ble 5. They are more accurate for classes situated
at both ends of the difficulty scale, namely A1, C1

and C2. For A1, this is explained because texts for
beginners are more typical, having very short sen-
tences and simple words. However, the case of C1
and C2 classes is more surprising and might be due
to some specificities of the learning algorithm.

A1 A2 B1 B2 C1 C2
Adj. acc. 100% 71% 67% 71% 86% 83%

Table 5: Adjacent accuracy per level, computed on one
of the 10 folds. Its adjacent accuracy was 79%, which is
very similar to the average value of the model.

We also assessed the specific contribution of each
family of features in two ways: on one hand, we
trained a model including only the features from this
family; on the other hand, we trained a model in-
cluding all features except those from this family.
Results for the four families are displayed at Table 6.

It appeared that the lexical family was the most
accurate set of predictors (40.5%) and yielded the
highest loss in performance when set aside, espe-
cially for adjacent accuracy. In fact, this was the
only set whose absence significantly impacted ad-
jacent accuracy, suggesting that the other type of
predictors can only improve the accuracy of predic-
tions, but are not able to reduce the amount of crit-
ical mistakes. The second best family was, expect-
edly, the syntactic one. Its accuracy closely match
that of the lexical set, although more severe mistakes
were made, as shown by the drop in adjacent accu-
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racy. Finally, our two other families was clearly in-
ferior, but they still improved slightly the accuracy
of our model, although not the adjacent accuracy.

Family only All except family
Acc. Adj. acc. Acc. Adj. acc.

Lexical 40.5 75.6 41.1 73.5
Syntactic 39.3 69.5 43.2 78.4
Semantic 28.8 61.5 47.8 79.2
FFL 24.9 58.5 47.8 79.6

Table 6: Accuracy and adjacent accuracy (in percentage)
for models either using only one family of predictors, or
including all 46 features except those of one family.

4.2.3 Comparaison with previous work
Comparisons with other FFL models are difficult

to provide: not only there are few formulas available
for FFL, but some of these focus on a different au-
dience, making comparability low. This is why we
were able to compare our results with only two pre-
vious models.

The first of them is a classic readability formula
by Kandel and Moles (1958), which is an adaptation
of the Flesch (1948) formula for French:

Y = 207− 1.015lp− 0.736lm (2)

where Y is a readability score ranging from 100
(easiest) to 0 (harder); lp is the average number of
words per sentence and lm is the average number
of syllables per 100 words. Although it was not de-
signed for FFL, we considered it, since it is one of
the most well-known formula for French and the two
features combined are very general. Their predic-
tive power should not vary much in both contexts, as
shown by Greenfield (2004) for English. We evalu-
ated it on the same test corpus as our SVM model
and obtained really lower values : a R of 0.55 and
an accuracy of 33%.

The second model was that of François (2009),
which is based on a multinomial logistic regression
including ten features: a unigram model similar to
ML3, the number of letters per word, the number of
words per sentence, and binary variables indicating
the presence of a past participle, present participle,
imperfect, infinitive, conditional, future and present
subjunctive tenses in the text. To our knowledge,
this model is the best current generic model avail-
able for FFL. On our data, it yielded an accuracy of

41% and an adjacent accuracy of 72.7%, both esti-
mated through a 10-fold cross-validation procedure.
Therefore, our new approach achieved an accuracy
gain of 8% over this state-of-the-art model, which
was considered as a significant difference (t(9) =
3.72; p = 0.002).

Apart of those two studies, Uitdenbogerd (2005)
also developed recently a FFL formula. However, as
explained previously, this work focused on a spe-
cific category of L2 readers, the English-speakers
learning FFL, which resulted in a different problem.
She reported a higher R than us (0.87 against 0.73).
However, this value might be the training one and
was estimated on a small amount of novel begin-
nings. It is therefore likely that our model generalize
better, especially across genres and L2 readers with
different L1 backgrounds.

5 Discussion and conclusion

In this paper, we introduced a new “AI readability”
formula for FFL, able to predict the level of texts
according to the largely-spread CEFR scale. Our
model is based on a SVM classifier and combines 46
features corresponding to several levels of linguis-
tic information. Among those, we suggested some
new features: the normalized TTR and the set of
variables based on several characteristics of words’
neighbors. Comparing our approach with two pre-
viously published formulas, our model significantly
outperformed both these works. Therefore, it repre-
sent a robust generic solution for FFL readers will-
ing to find various kind of texts that suit their lin-
guistic abilities.

Besides the creation of a new FFL readability
formula, this study produced two valuable insights.
First, we showed that maximizing the type of lin-
guistic information might not be the best path to go,
since a model based on four lexico-syntactic fea-
tures yielded predictions as accurate as those of a
model relying on our Exp1 set of variables. How-
ever, this finding might be partly accounted by the
lower predictive power of the features from the se-
mantic and specific-to-FFL family, with the notable
exception of the LSA-based predictor (avLocalLsa-
Lem), which is the third best predictor when consid-
ered alone.

This leads us to our second finding, relative to the
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set of semantic features. Yet their importance was
largely praised in the structuro-cognitivist paradigm
and in most of the recent works, our experiments
cast serious doubts about their efficiency, at least in
a L2 context. Not only the expert models, to which
we imposed the presence of one or two semantic pre-
dictors, did not perform the best, but none of the
features from our semantic set was retained during
the automatic selection of the variables for the lo-
gistic models. On the contrary, in some subsets,
the LSA-based feature was sometimes considered as
collinear with the other variables. Finally and fore-
most, we showed that dropping the semantic features
did not impact significantly the performance of our
best model.

With reservations one may have because of the
limited number of semantic predictors in our set,
these results however raise some concerns about
whether the information coming from semantic vari-
ables is really different from that carried by lexico-
syntactic features. Our results clearly show that
this may not be the case. This conclusion con-
tradicts the assumptions of the structuro-cognitivist
paradigm, but corroborates Chall and Dale (1995)’s
view that the information carried by semantic pre-
dictors is largely correlated with that of lexico-
syntactical ones.

Further investigation on this issue would defi-
nitely be worthwhile, since several facts could ex-
plain these contradictory findings. First, it might be
that semantic and lexical predictors are correlated
because the methods used for the parameterization
of the semantic factors heavily relie on lexical infor-
mation. This is the case for the LSA, as well as for
the propositional approach of the content density.

Alternatively, this difference with other work in
L1 could be due to the L2 context. Chall and
Dale (1995) explained that the lexicon and the syn-
tax are more important for children learning to read
than for more advanced readers, who then become
more sensitive to organisationnal aspects. From the
threshold hypothesis (Alderson, 1984), we know
that before reaching a sufficient level of proficiency,
L2 learners struggle mostly with the lexicon and
the syntactic structures. This might explain why
lexico-syntactic predictors were so predominant in
our experiments. Some further experiments are thus
needed to investigate which of these facts better ac-

count for our findings on the semantic features.
A last avenue of research worth mentioning would

be to develop the family of specific-to-FFL predic-
tors, to determine whether taking into account the
impact of a given L1 language on the readability of
L2 texts would increase performance over a generic
model enough so that tuning efforts are worthwhile.
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Abstract

We introduce gap inheritance, a new struc-
tural property on trees, which provides a way
to quantify the degree to which intervals of de-
scendants can be nested. Based on this prop-
erty, two new classes of trees are derived that
provide a closer approximation to the set of
plausible natural language dependency trees
than some alternative classes of trees: unlike
projective trees, a word can have descendants
in more than one interval; unlike spanning
trees, these intervals cannot be nested in ar-
bitrary ways. The 1-Inherit class of trees has
exactly the same empirical coverage of natural
language sentences as the class of mildly non-
projective trees, yet the optimal scoring tree
can be found in an order of magnitude less
time. Gap-minding trees (the second class)
have the property that all edges into an interval
of descendants come from the same node, and
thus an algorithm which uses only single in-
tervals can produce trees in which a node has
descendants in multiple intervals.

1 Introduction

Dependency parsers vary in what space of possi-
ble tree structures they search over when parsing
a sentence. One commonly used space is the set
of projective trees, in which every node’s descen-
dants form a contiguous interval in the input sen-
tence. Finding the optimal tree in the set of projec-
tive trees can be done efficiently (Eisner, 2000), even
when the score of a tree depends on higher order fac-
tors (McDonald and Pereira, 2006; Carreras, 2007;
Koo and Collins, 2010). However, the projectivity
assumption is too strict for all natural language de-
pendency trees; for example, only 63.6% of Dutch

sentences from the CoNLL-X training set are pro-
jective (Table 1).

At the other end of the spectrum, some parsers
search over all spanning trees, a class of structures
much larger than the set of plausible linguistic struc-
tures. The maximum scoring directed spanning tree
can be found efficiently when the score of a tree de-
pends only on edge-based factors (McDonald et al.,
2005b). However, it is NP-hard to extend MST to in-
clude sibling or grandparent factors (McDonald and
Pereira, 2006; McDonald and Satta, 2007). MST-
based non-projective parsers that use higher order
factors (Martins et al., 2009; Koo et al., 2010), uti-
lize different techniques than the basic MST algo-
rithm. In addition, learning is done over a relaxation
of the problem, so the inference procedures at train-
ing and at test time are not identical.

We propose two new classes of trees between pro-
jective trees and the set of all spanning trees. These
two classes provide a closer approximation to the set
of plausible natural language dependency trees: un-
like projective trees, a word can have descendants in
more than one interval; unlike spanning trees, these
intervals cannot be nested in arbitrary ways. We in-
troduce gap inheritance, a new structural property
on trees, which provides a way to quantify the de-
gree to which these intervals can be nested. Differ-
ent levels of gap inheritance define each of these two
classes (Section 3).

The 1-Inherit class of trees (Section 4) has exactly
the same empirical coverage (Table 1) of natural lan-
guage sentences as the class of mildly non-projective
trees (Bodirsky et al., 2005), yet the optimal scoring
tree can be found in an order of magnitude less time
(Section 4.1).

Gap-minding trees (the second class) have the
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property that all edges into an interval of descen-
dants come from the same node. Non-contiguous
intervals are therefore decoupled given this single
node, and thus an algorithm which uses only single
intervals (as in projective parsing) can produce trees
in which a node has descendants in multiple inter-
vals (as in mildly non-projective parsing (Gómez-
Rodrı́guez et al., 2011)). A procedure for finding
the optimal scoring tree in this space is given in Sec-
tion 5, which can be searched in yet another order of
magnitude faster than the 1-Inherit class.

Unlike the class of spanning trees, it is still
tractable to find the optimal tree in these new spaces
when higher order factors are included. An exten-
sion which finds the optimal scoring gap-minding
tree with scores over pairs of adjacent edges (grand-
parent scoring) is given in Section 6. These gap-
minding algorithms have been implemented in prac-
tice and empirical results are presented in Section 7.

2 Preliminaries

In this section, we review some relevant defini-
tions from previous work that characterize degrees
of non-projectivity. We also review how well
these definitions cover empirical data from six lan-
guages: Arabic, Czech, Danish, Dutch, Portuguese,
and Swedish. These are the six languages whose
CoNLL-X shared task data are either available open
source1 or from the LDC2.

A dependency tree is a rooted, directed spanning
tree that represents a set of dependencies between
words in a sentence.3 The tree has one artificial root
node and vertices that correspond to the words in an
input sentence w1, w2,...,wn. There is an edge from
h to m if m depends on (or modifies) h.

Definition 1. The projection of a node is the set of
words in the subtree rooted at it (including itself).

A tree is projective if, for every node in the tree,
that node’s projection forms a contiguous interval in
the input sentence order.

A tree is non-projective if the above does not hold,
i.e., there exists at least one word whose descendants

1http://ilk.uvt.nl/conll/free_data.html
2LDC catalogue numbers LDC2006E01 and LDC2006E02
3Trees are a reasonable assumption for most, but not all,

linguistic structures. Parasitic gaps are an example in which
a word perhaps should have multiple parents.

do not form a contiguous interval.

Definition 2. A gap of a node v is a non-empty, max-
imal interval that does not contain any words in the
projection of v but lies between words that are in
the projection of v. The gap degree of a node is
the number of gaps it has. The gap degree of a tree
is the maximum of the gap degrees of its vertices.
(Bodirsky et al., 2005)

Note that a projective tree will have gap degree 0.
Two subtrees interleave if there are vertices l1, r1

from one subtree and l2, r2 from the other such that
l1 < l2 < r1 < r2.

Definition 3. A tree is well-nested if no two disjoint
subtrees interleave (Bodirsky et al., 2005).

Definition 4. A mildly non-projective tree has gap
degree at most one and is well-nested.

Mildly non-projective trees are of both theoret-
ical and practical interest, as they correspond to
derivations in Lexicalized Tree Adjoining Grammar
(Bodirsky et al., 2005) and cover the overwhelming
majority of sentences found in treebanks for Czech
and Danish (Kuhlmann and Nivre, 2006).

Table 1 shows the proportion of mildly non-
projective sentences for Arabic, Czech, Danish,
Dutch, Portuguese, and Swedish, ranging from
95.4% of Portuguese sentences to 99.9% of Ara-
bic sentences.4 This definition covers a substan-
tially larger set of sentences than projectivity does
— an assumption of projectivity covers only 63.6%
(Dutch) to 90.2% (Swedish) of examples (Table 1).

3 Gap Inheritance

Empirically, natural language sentences seem to be
mostly mildly non-projective trees, but mildly non-
projective trees are quite expensive to parse (O(n7)
(Gómez-Rodrı́guez et al., 2011)). The parsing com-
plexity comes from the fact that the definition al-
lows two non-contiguous intervals of a projection to
be tightly coupled, with an unbounded number of
edges passing back and forth between the two inter-
vals; however, this type of structure seems unusual

4While some of the treebank structures are ill-nested or have
a larger gap degree because of annotation decisions, some lin-
guistic constructions in German and Czech are ill-nested or
require at least two gaps under any reasonable representation
(Chen-Main and Joshi, 2010; Chen-Main and Joshi, 2012).
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Arabic Czech Danish Dutch Portuguese Swedish Parsing
Mildly non-proj 1458 (99.9) 72321 (99.5) 5175 (99.7) 12896 (96.6) 8650 (95.4) 10955 (99.2) O(n7)

Mild+1-Inherit 1458 (99.9) 72321 (99.5) 5175 (99.7) 12896 (96.6) 8650 (95.4) 10955 (99.2) O(n6)

Mild+0-Inherit 1394 (95.5) 70695 (97.2) 4985 (96.1) 12068 (90.4) 8481 (93.5) 10787 (97.7) O(n5)

Projective 1297 (88.8) 55872 (76.8) 4379 (84.4) 8484 (63.6) 7353 (81.1) 9963 (90.2) O(n3)

# Sentences 1460 72703 5190 13349 9071 11042

Table 1: The number of sentences from the CoNLL-X training sets whose parse trees fall into each of the above
classes. The two new classes of structures, Mild+0-Inherit and Mild+1-Inherit, have more coverage of empirical data
than projective structures, yet can be parsed faster than mildly non-projective structures. Parsing times assume an edge-
based factorization with no pruning of edges. The corresponding algorithms for Mild+1-Inherit and Mild+0-Inherit
are in Sections 4 and 5.

for natural language. We therefore investigate if we
can define further structural properties that are both
appropriate for describing natural language trees and
which admit more efficient parsing algorithms.

Let us first consider an example of a tree which
both has gap degree at most one and satisfies well-
nestedness, yet appears to be an unrealistic struc-
ture for a natural language syntactic tree. Consider
a tree which is rooted at node xn+2, which has one
child, node xn+1, whose projection is [x1, xn+1] ∪
[xn+3, x2n+2], with n children (x1, ..., xn), and each
child xi has a child at x2n−i+3. This tree is well-
nested, has gap degree 1, but all n of xn+1’s children
have edges into the other projection interval.

We introduce a further structural restriction in this
section, and show that trees satisfying our new prop-
erty can be parsed more efficiently with no drop in
empirical coverage.

Definition 5. A child is gap inheriting if its parent
has gap degree 1 and it has descendants on both
sides of its parent’s gap. The inheritance degree of
a node is the number of its children which inherit its
gap. The inheritance degree of a tree is the maximum
inheritance degree over all its nodes.

Figure 1 gives examples of trees with varying de-
grees of gap inheritance. Each projection of a node
with a gap is shown with two matching rectangles. If
a child has a projection rectangle nested inside each
of the parent’s projection rectangles, then that child
inherits the parent’s gap. Figure 1(a) shows a mildly
projective tree (with inheritance degree 2), with both
node 2 and node 11 inheriting their parent (node 3)’s
gap (note that both the dashed and dotted rectangles
each show up inside both of the solid rectangles).
Figure 1(b) shows a tree with inheritance degree 1:

there is now only one pair of rectangles (the dot-
ted ones) which show up in both of the solid ones.
Figure 1(c) shows a tree with inheritance degree 0:
while there are gaps, each set of matching rectangles
is contained within a single rectangle (projection in-
terval) of its parent, i.e., the two dashed rectangles
of node 2’s projection are contained within the left
interval of node 3; the two dotted rectangles of node
12’s projection are contained within the right inter-
val of node 3, etc.

We now ask:

1. How often does gap inheritance occur in the
parses of natural language sentences found in
treebanks?

2. Furthermore, how often are there multiple gap
inheriting children of the same node (inheri-
tance degree at least two)?

Table 1 shows what proportion of mildly non-
projective trees have the added property of gap in-
heritance degree 0 (Mild+0-Inherit) or have gap in-
heritance degree 1 (Mild+1-Inherit). Over all six
languages, there are no examples of multiple gap
inheritance — Mild+1-Inherit has exactly the same
empirical coverage as the unrestricted set of mildly
non-projective trees.

4 Mild+1-Inherit Trees

There are some reasons from syntactic theory why
we might expect at most one child to inherit its par-
ent’s gap. Traditional Government and Binding the-
ories of syntax (Chomsky, 1981) assume that there
is an underlying projective (phrase structure) tree,
and that gaps primarily arise through movement of

480



6

2

3

4

1 5 7
11 12

139

8

10

(a) Mildly Non-Projective: The projec-
tions (set of descendants) of both node 2
(the dashed red rectangles) and node 11
(dotted magenta) appear in both of node
3’s intervals (the solid blue rectangles).
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(b) Mild+1-Inherit: Only node 2 inherits
node 3’s gap: the dashed red rectangles
appear in each of the two solid blue rect-
angles.
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(c) Mild+0-Inherit: Even though node 3
has children with gaps (node 2 and node
12), neither of them inherit node 3’s gap.
There are several nodes with gaps, but
every node with a gap is properly con-
tained within just one of its parent’s in-
tervals.

Figure 1: Rectangles that match in color and style indicate the two projection intervals of a node, separated by a gap.
In all three trees, node 3’s two projection intervals are shown in the two solid blue rectangles. The number of children
which inherit its gap vary, however; in 1(a), two children have descendants within both sides; in 1(b) only one child
has descendants on both sides; in 1(c), none of its children do.

subtrees (constituents). One of the fundamental as-
sumptions of syntactic theory is that movement is
upward in the phrase structure tree.5

Consider one movement operation and its effect
on the gap degree of all other nodes in the tree: (a) it
should have no effect on the gap degree of the nodes
in the subtree itself, (b) it can create a gap for an an-
cestor node if it moves out of its projection interval,
and (c) it can create a gap for a non-ancestor node
if it moves in to its projection interval. Now con-
sider which cases can lead to gap inheritance: in case
(b), there is a single path from the ancestor to the
root of the subtree, so the parent of the subtree will
have no gap inheritance and any higher ancestors
will have a single child inherit the gap created by this
movement. In case (c), it is possible for there to be
multiple children that inherit this newly created gap
if multiple children had descendents on both sides.
However, the assumption of upward movement in
the phrase structure tree should rule out movement
into the projection interval of a non-ancestor. There-
fore, under these syntactic assumptions, we would
expect at most one child to inherit a parent’s gap.

5The Proper Binding Condition (Fiengo, 1977) asserts that a
moved element leaves behind a trace (unpronounced element),
which must be c-commanded (Reinhart, 1976) by the corre-
sponding pronounced material in its final location. Informally,
c-commanded means that the first node is descended from the
lowest ancestor of the other that has more than one child.

4.1 Parsing Mild+1-Inherit Trees

Finding the optimal Mild+1-Inherit tree can be done
by bottom-up constructing the tree for each node and
its descendants. We can maintain subtrees with two
intervals (two endpoints each) and one root (O(n5)
space). Consider the most complicated possible
case: a parent that has a gap, a (single) child which
inherits the gap, and additional children. An exam-
ple of this is seen with the parent node 3 in Figure
1(b).

This subtree can be constructed by first starting
with the child spanning the gap, updating its root
index to be the parent, and then expanding the inter-
val indices to the left and right to include the other
children. In each case, only one index needs to be
updated at a time, so the optimal tree can be found
in O(n6) time. In the Figure 1(b) example, the sub-
tree rooted at 3 would be built by starting with the
intervals [1, 2] ∪ [12, 13] rooted at 2, first adding the
edge from 2 to 3 (so the root is updated to 3), then
adding an edge from 3 to 4 to extend the left inter-
val to [1, 5], and then adding an edge from 3 to 11 to
extend the right interval to [8, 13]. The subtree cor-
responds to the completed item [1, 5]∪ [8, 13] rooted
at 3.

This procedure corresponds to Gómez-Rodrı́guez
et al. (2011)’s O(n7) algorithm for parsing mildly
non-projective structures if the most expensive step
(Combine Shrinking Gap Centre) is dropped; this
step would only ever be needed if a parent node has
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more than one child inheriting its gap.
This is also similar in spirit to the algorithm de-

scribed in Satta and Schuler (1998) for parsing a
restricted version of TAG, in which there are some
limitations on adjunction operations into the spines
of trees.6 That algorithm has similar steps and items,
with the root portion of the item replaced with a
node in a phrase structure tree (which may be a non-
terminal).

5 Gap-minding Trees

The algorithm in the previous section used O(n5)
space and O(n6) time. While more efficient than
parsing in the space of mildly projective trees, this
is still probably not practically implementable. Part
of the difficulty lies in the fact that gap inheritance
causes the two non-contiguous projection intervals
to be coupled.

Definition 6. A tree is called gap-minding7 if it has
gap degree at most one, is well-nested, and has gap
inheritance degree 0.

Gap-minding trees still have good empirical cov-
erage (between 90.4% for Dutch and 97.7% for
Swedish). We now turn to the parsing of gap-
minding trees and show how a few consequences of
its definition allow us to use items ranging over only
one interval.

In Figure 1(c), notice how each rectangle has
edges incoming from exactly one node. This is not
unique to this example; all projection intervals in a
gap-minding tree have incoming edges from exactly
one node outside the interval.

Claim 1. Within a gap-minding tree, consider any
node n with a gap (i.e., n’s projection forms two
non-contiguous intervals [xi, xj ] ∪ [xk, xl]). Let p
be the parent of n.

1. For each of the intervals of n’s projection:

(a) If the interval contains n, the only edge
incoming to that interval is from p to n.

6That algorithm has a running time of O(Gn5), where as
written G would likely add a factor of n2 with bilexical selec-
tional preferences; this can be lowered to n using the same tech-
nique as in Eisner and Satta (2000) for non-restricted TAG.

7The terminology is a nod to the London Underground but
imagines parents admonishing children to mind the gap.

(b) If the interval does not contain n, all edges
incoming to that interval come from n.

2. For the gap interval ([xj+1, xk−1]):

(a) If the interval contains p, then the only
edge incoming is from p’s parent to p

(b) If the interval does not contain p, then all
edges incoming to that interval come from
p.

As a consequence of the above, [xi, xj ] ∪ {n} forms
a gap-minding tree rooted at n, [xk, xl] ∪ {n}
also forms a gap-minding tree rooted at n, and
[xj+1, xk−1] ∪ {p} forms a gap-minding tree rooted
at p.

Proof. (Part 1): Assume there was a directed edge
(x, y) such that y is inside a projection interval of n
and x is not inside the same interval, and x 6= y 6= n.
y is a descendant of n since it is contained in n’s pro-
jection. Since there is a directed edge from x to y,
x is y’s parent, and thus x must also be a descen-
dant of n and therefore in another of n’s projection
intervals. Since x and y are in different intervals,
then whichever child of n that x and y are descended
from would have inherited n’s gap, leading to a con-
tradiction.

(Part 2): First, suppose there existed a set of nodes
in n’s gap which were not descended from p. Then
p has a gap over these nodes. (p clearly has descen-
dants on each side of the gap, because all descen-
dants of n are also descendants of p). n, p’s child,
would then have descendants on both sides of p’s
gap, which would violate the property of no gap in-
heritance. It is also not possible for there to be edges
incoming from other descendants of p outside the
gap, as that would imply another child of p being
ill-nested with respect to n.

From the above, we can build gap-minding trees
using only single intervals, potentially with a sin-
gle node outside of the interval. Our objective is
to find the maximum scoring gap-minding tree, in
which the score of a tree is the sum of the scores of
its edges. Let Score(p,x) indicate the score of the
directed edge from p to x.

Therefore, the main type of sub-problems we will
use are:
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1. C[i, j,p]: The maximum score of any gap-
minding tree, rooted at p, with vertices [i, j] ∪
{p} (p may or may not be within [i, j]).

This improves our space requirement, but not nec-
essarily the time requirement. For example, if we
built up the subtree in Figure 1(c) by concatenating
the three intervals [1, 5] rooted at 3, [6, 7] rooted at 6,
and [8, 13] rooted at 3, and add the edge 6 → 3, we
would still need 6 indices to describe this operation
(the four interval endpoints and the two roots), and
so we have not yet improved the running time over
the Inherit-1 case.

By part 2, we can concatenate one interval of a
child with its gap, knowing that the gap is entirely
descended from the child’s parent, and forget the
concatenation split point between the parent’s other
descendants and this side of the child. This allows us
to substitute all operations involving 6 indices with
two operations involving just 5 indices. For exam-
ple, in Figure 1(c), we could first merge [6, 7] rooted
at 6 with [8, 13] rooted at 3 to create an interval
[6, 13] and say that it is descended from 6, with the
rightmost side descended from its child 3. That step
required 5 indices. The following step would merge
this concatenated interval ([6, 13] rooted at 6 and 3)
with [1, 5] rooted at 3. This step also requires only 5
indices.

Our helper subtype we make use of is then:

2. D[i, j,p,x,b]: The maximum score of any set
of two gap-minding trees, one rooted at p, one
rooted at x, with vertices [i, j] ∪ {p, x} (x /∈
[i, j], p may or may not be in [i, j]), such that
for some k, vertices [i, k] are in the tree rooted
at p if b = true (and at x if b = false), and
vertices [k +1, j] are in the tree rooted at x (p).

Consider an optimum scoring gap-minding tree T
rooted at p with vertices V = [i, j] ∪ {p} and edges
E, where E 6= ∅. The form of the dynamic program
may depend on whether:

• p is within (i, j) (I) or external to [i, j] (E)8

8In the discussion we will assume that p 6= i and p 6= j,
since any optimum solution with V = [i, j] ∪ {i} and a root
at i will be equivalent to V = [i + 1, j] ∪ {i} rooted at i (and
similarly for p = j).

We can exhaustively enumerate all possibilities for
T by considering all valid combinations of the fol-
lowing binary cases:

• p has a single child (S) or multiple children (M)

• i and j are descended from the same child of p
(C) or different children of p (D)

Note that case (S/D) is not possible: i and j cannot
be descended from different children of p if p has
only a single child. We therefore need to find the
maximum scoring tree over the three cases of S/C,
M/C, and M/D.

Claim 2. Let T be the optimum scoring gap-
minding tree rooted at p with vertices V = [i, j] ∪
{p}. Then T and its score are derived from one of
the following:

S/C If p has a single child x in T , then if p ∈ (i, j)
(I), T ’s score is Score(p,x)+C[i,p−1,x]+
C[p + 1, j,x]; if p /∈ [i, j] (E), T ’s score is
Score(p,x) + C[i, j,x].

M/C If p has multiple children in T and i and j
are descended from the same child x in T , then
there is a split point k such that T ’s score is:
Score(p,x)+C[i,k,x]+D[k + 1, j,p,x,T]
if x is on the left side of its own gap, and
T ’s score is: Score(p,x) + C[k, j,x] +
D[i,k− 1,p,x,F] if x is on the right side.

M/D If p has multiple children in T and i and j
are descended from different children in T , then
there is a split point k such that T ’s score is
C[i,k,p] + C[k + 1, j,p].

T has the maximum score over each of the above
cases, for all valid choices of x and k.

Proof. Case S/C: If p has exactly one child x,
then the tree can be decomposed into the edge
from p to x and the subtree rooted at x. If p
is outside the interval, then the maximum scor-
ing such tree is clearly Score(p,x) + C[i, j,x].
If p is inside, then x has a gap across p, and
so using Claim 1, the maximum scoring tree
rooted at p with a single child x has score of
Score(p,x) + C[i,p− 1,x] + C[p + 1, j,x].

Case M/C: If there are multiple children and the
endpoints are descended from the same child x, then
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the child x has to have gap degree 1. x itself is on
either the left or right side of its gap. For the mo-
ment, assume x is in the left interval. By Claim 1,
we can split up the score of the tree as the score of
the edge from p to x (Score(p,x)), the score of the
subtree corresponding to the projection of x to the
left of its gap (C[i,k,x]), and the score of the sub-
trees rooted at p with its remaining children and the
subtree rooted at x corresponding to the right side
of x’s projection (D[k + 1, j,p,x,T]). The case in
which x is on the right side of its gap is symmetric.

Case M/D: If there are multiple children and the
endpoints are descended from different children of
p, then there must exist a split point k that parti-
tions the children of p into two non-empty sets, such
that each child’s projection is either entirely on the
left or entirely on the right of the split point. We
show one such split point to demonstrate that there
always exists at least one. Let x be the child of p
that i is descended from, and let xl and xr be x’s
leftmost and right descendants, respectively.9 Con-
sider all the children of p (whose projections taken
together partition [i, j] − {p}). No child can have
descendants both to the left of xr and to the right
of xr, because otherwise that child and x would be
ill-nested. Therefore we can split up the interval at
xr to have two gap-minding trees, both rooted at p.
The score of T is then the sum of the scores of the
best subtree rooted at p over [i, k] (C[i,k,p]) and
the score of the best subtree rooted at p over [k+1, j]
(C[k + 1, j,p]).

The above cases cover all non-empty gap-
minding trees, so the maximum will be found.

Using Claim 2 to Devise an Algorithm The above
claim showed that any problem of type C can be
decomposed into subproblems of types C and D.
From the definition of D, any problem of type D can
clearly be decomposed into two problems of type C
— simply split the interval at the split point known
to exist and assign p or x as the roots for each side
of the interval, as prescribed by the boolean b:

D(i, j,p,x,T) = maxkC[i,k,p] + C[k + 1, j,x]

D(i, j,p,x,F) = maxkC[i,k,x] + C[k + 1, j,p]

9Note that xl = i by construction, and xr 6= j (because the
endpoints are descended from different children).

Algorithm 1 makes direct use of the above claims.
Note that in every gap-minding tree referred to
in the cases above, all vertices that were not the
root formed a single interval. Algorithm 1 builds
up trees in increasing sizes of [i, j] ∪ {p}. The
tree in C[i, j,p] corresponds to the maximum of
four subroutines: SingleChild (S/C), EndpointsDiff
(M/D), EndsFromLeftChild (M/C), and EndsFrom-
RightChild (M/C). The D subproblems are filled in
with the subroutine Max2Subtrees, which uses the
above discussion. The maximum score of any gap-
minding tree is then found in C[1,n,0], and the tree
itself can be found using backpointers.

5.1 Runtime analysis

If the input is assumed to be the complete graph (any
word can have any other word as its parent), then
the above algorithm takes O(n5) time. The most
expensive steps are M/C, which take O(n2) time to
fill in each of the O(n3) C cells. and solving a D
subproblem, which takes O(n) time on each of the
O(n4) possible such problems.
Pruning: In practice, the set of edges considered
(m) is not necessarily O(n2). Many edges can be
ruled out beforehand, either based on the distance
in the sentence between the two words (Eisner and
Smith, 2010), the predictions of a local ranker (Mar-
tins et al., 2009), or the marginals computed from a
simpler parsing model (Carreras et al., 2008).

If we choose a pruning strategy such that each
word has at most k potential parents (incoming
edges), then the running time drops to O(kn4). The
five indices in an M/C step were: i, j, k, p, and x.
As there must be an edge from p to x, and x only has
k possible parents, there are now only O(kn4) valid
such combinations. Similarly, each D subproblem
(which ranges over i, j, k, p, x) may only come into
existence because of an edge from p to x, so again
the runtime of these such steps drops to O(kn4).

6 Extension to Grandparent
Factorizations

The ability to define slightly non-local features has
been shown to improve parsing performance. In this
section, we assume a grandparent-factored model,
where the score of a tree is now the sum over scores
of (g, p, c) triples, where (g, p) and (p, c) are both
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directed edges in the tree. Let Score(g,p, c) indi-
cate the score of this grandparent-parent-child triple.
We now show how to extend the above algorithm
to find the maximum scoring gap-minding tree with
grandparent scoring.

Our two subproblems are now C[i, j,p,g] and
D[i, j,p,x,b,g]; each subproblem has been aug-
mented with an additional grandparent index g,
which has the meaning that g is p’s parent. Note that
g must be outside of the interval [i, j] (if it were not,
a cycle would be introduced). Edge scores are now
computed over (g, p, x) triples. In particular, claim
2 is modified:

Claim 3. Let T be the optimum scoring gap-
minding tree rooted at p with vertices V = [i, j] ∪
{p}, where p ∈ (i, j) (I), with a grandparent index
g (g /∈ V ). Then T and its score are derived from
one of the following:

S/C If p has a single child x in T , then if
p ∈ (i, j) (I), T ’s score is Score(g,p,x) +
C[i,p−1,x,p]+C[p + 1, j,x,p]; if p /∈ [i, j]
(E), T ’s score is Score(g,p,x)+C[i, j,x,p].

M/C If p has multiple children in T and i
and j are descended from the same child
x in T , then there is a split point k
such that T ’s score is: Score(g,p,x) +
C[i,k,x,p] + D[k + 1, j,p,x,T,g] if x is
on the left side of its own gap, and T ’s
score is: Score(g,p,x) + C[k, j,x,p] +
D[i,k− 1,p,x,F,g] if x is on the right side.

M/D If p has multiple children in T and i and j
are descended from different children in T , then
there is a split point k such that T ’s score is
C[i,k,p,g] + C[k + 1, j,p,g].

T has the maximum score over each of the above
cases, for all valid choices of x and k.

Note that for subproblems rooted at p, g is the
grandparent index, while for subproblems rooted at
x, p is the updated grandparent index. The D sub-
problems with the grandparent index are shown be-
low:

D(i, j,p,x,T,g) = maxkC[i,k,p,g] + C[k + 1, j,x,p]

D(i, j,p,x,F,g) = maxkC[i,k,x,p] + C[k + 1, j,p,g]

We have added another index which ranges over
n, so without pruning, we have now increased the
running time to O(n6). However, every step now in-
cludes both a g and a p (and often an x), so there is
at least one implied edge in every step. If pruning
is done in such a way that each word has at most k
parents, then each word’s set of grandparent and par-
ent possibilities is at most k2. To run all of the S/C
steps, we therefore need O(k2n3) time; for all of the
M/C steps, O(k2n4) time; for all of the M/D steps,
O(kn4); for all of the D subproblems, O(k2n4). The
overall running time is therefore O(k2n4), and we
have shown that when edges are sufficiently pruned,
grandparent factors add only an extra factor of k, and
not a full extra factor of n.

7 Experiments

The space of projective trees is strictly contained
within the space of gap-minding trees which is
strictly contained within spanning trees. Which
space is most appropriate for natural language pars-
ing may depend on the particular language and the
type and frequencies of non-projective structures
found in it. In this section we compare the parsing
accuracy across languages for a parser which uses
either the Eisner algorithm (projective), MST (span-
ning trees), or MaxGapMindingTree (gap-minding
trees) as its decoder for both training and inference.

We implemented both the basic gap-minding al-
gorithm and the gap-minding algorithm with grand-
parent scoring as extensions to MSTParser10. MST-
Parser (McDonald et al., 2005b; McDonald et al.,
2005a) uses the Margin Infused Relaxed Algo-
rithm (Crammer and Singer, 2003) for discrimina-
tive training. Training requires a decoder which
produces the highest scoring tree (in the space of
valid trees) under the current model weights. This
same decoder is then used to produce parses at test
time. MSTParser comes packaged with the Eis-
ner algorithm (for projective trees) and MST (for
spanning trees). MSTParser also includes two sec-
ond order models: one of which is a projective de-
coder that also scores siblings (Proj+Sib) and the
other of which produces non-projective trees by re-
arranging edges after producing a projective tree
(Proj+Sib+Rearr). We add a further decoder with

10http://sourceforge.net/projects/mstparser/
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the algorithm presented here for gap minding trees,
and plan to make the extension publicly available.
The gap-minding decoder has both an edge-factored
implementation and a version which scores grand-
parents as well.11

The gap-minding algorithm is much more effi-
cient when edges have been pruned so that each
word has at most k potential parents. We use the
weights from the trained MST models combined
with the Matrix Tree Theorem (Smith and Smith,
2007; Koo et al., 2007; McDonald and Satta, 2007)
to produce marginal probabilities of each edge. We
wanted to be able to both achieve the running time
bound and yet take advantage of the fact that the
size of the set of reasonable parent choices is vari-
able. We therefore use a hybrid pruning strategy:
each word’s set of potential parents is the smaller of
a) the top k parents (we chose k = 10) or b) the set
of parents whose probabilities are above a thresh-
old (we chose th = .001). The running time for
the gap-minding algorithm is then O(kn4); with the
grandparent features the gap-minding running time
is O(k2n4).

The training and test sets for the six languages
come from the CoNLL-X shared task.12 We train
the gap-minding algorithm on sentences of length
at most 10013 (the vast majority of sentences). The
projective and MST models are trained on all sen-
tences and are run without any pruning. The Czech
training set is much larger than the others and so for
Czech only the first 10,000 training sentences were
used. Testing is on the full test set, with no length
restrictions.

The results are shown in Table 2. The first three
lines show the first order gap-minding decoder com-
pared with the first order projective and MST de-

11The grandparent features used were identical to the fea-
tures provided within MSTParser for the second-order sibling
parsers, with one exception — many features are conjoined with
a direction indicator, which in the projective case has only two
possibilities. We replaced this two-way distinction with a six-
way distinction of the six possible orders of the grandparent,
parent, and child.

12MSTParser produces labeled dependencies on CoNLL for-
matted input. We replace all labels in the training set with a
single dummy label to produce unlabeled dependency trees.

13Because of long training times, the gap-minding with
grandparent models for Portuguese and Swedish were trained
on only sentences up to 50 words.

Ar Cz Da Du Pt Sw
Proj. 78.0 80.0 88.2 79.8 87.4 86.9
MST 78.0 80.4 88.1 84.6 86.7 86.2
Gap-Mind 77.6 80.8 88.6 83.9 86.8 86.0
Proj+Sib 78.2 80.0 88.9 81.1 87.5 88.1

+Rearr 78.5 81.3 89.3 85.4 88.2 87.7
GM+Grand 78.3 82.1 89.1 84.6 87.7 88.5

Table 2: Unlabeled Attachment Scores on the CoNLL-X
shared task test set.

coders. The gap-minding decoder does better than
the projective decoder on Czech, Danish, and Dutch,
the three languages with the most non-projectivity,
even though it was at a competitive disadvantage in
terms of both pruning and (on languages with very
long sentences) training data. The gap-minding de-
coder with grandparent features is better than the
projective decoder with sibling features on all six
of the languages. On some languages, the local
search decoder with siblings has the absolute high-
est accuracy in Table 2; on other languages (Czech
and Swedish) the gap-minding+grandparents has the
highest accuracy. While not directly comparable be-
cause of the difference in features, the promising
performance of the gap-minding+grandparents de-
coder shows that the space of gap-minding trees is
larger than the space of projective trees, yet unlike
spanning trees, it is tractable to find the best tree with
higher order features. It would be interesting to ex-
tend the gap-minding algorithm to include siblings
as well.

8 Conclusion

Gap inheritance, a structural property on trees, has
implications both for natural language syntax and
for natural language parsing. We have shown that
the mildly non-projective trees present in natural
language treebanks all have zero or one children in-
herit each parent’s gap. We also showed that the as-
sumption of 1 gap inheritance removes a factor of
n from parsing time, and the further assumption of
0 gap inheritance removes yet another factor of n.
The space of gap-minding trees provides a closer fit
to naturally occurring linguistic structures than the
space of projective trees, and unlike spanning trees,
the inclusion of higher order factors does not sub-
stantially increase the difficulty of finding the maxi-
mum scoring tree in that space.
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Algorithm 1: MaxGapMindingTree
Init: ∀i∈[1,n]C[i, i, i] = 0
for size = 0 to n− 1 do

for i = 1 to n− size do
j = i + size
/* Endpoint parents */
if size > 0 then

C[i, j, i] = C[i + 1, j, i]
C[i, j, j] = C[i, j − 1, j]

/* Interior parents */
for p = i + 1 to j − 1 do

C[i, j, p] = max (SingleChild(i,j,p),
EndpointsDiff(i,j,p),
EndsFromLeftChild(i,j,p),
EndsFromRightChild(i,j,p))

/* Exterior parents */
forall the p ∈ [0, i− 1] ∪ [j + 1, n] do

C[i, j, p] = max (SingleChild(i,j,p),
EndpointsDiff(i,j,p),
EndsFromLeftChild(i,j,p),
EndsFromRightChild(i,j,p))

/* Helper subproblems */
for p ∈ [0, n] do

forall the x ∈ PosChild[p] ∧ x /∈ [i, j] do
if p 6= j then

D[i, j, p, x, T ] = Max2Subtrees(i, j, p, x, T )
if p 6= i then

D[i, j, p, x, F ] = Max2Subtrees(i, j, p, x, F )
Final answer: C[1, n, 0]

Function SingleChild(i,j,p)
X = PosChild[p] ∩ [i, j]
/* Interior p */
if p > i ∧ p < j then

return maxx∈X C[i, p− 1, x]
+C[p + 1, j, x] + Score(p, x)

/* Exterior p */
else

return maxx∈X C[i, j, x] + Score(p, x)

Function EndpointsDiff(i,j,p)
return maxk∈[i,j−1] C[i, k, p] + C[k + 1, j, p]

Function EndsFromLeftChild(i,j,p)
/* Interior p */
if p > i ∧ p < j then

X = PosChild[p] ∩ [i, p− 1]
forall the x ∈ X ∧ x < p do

K[x] = [x, p− 1]
/* Exterior p */
else

X = PosChild[p] ∩ [i, j]
forall the x ∈ X do

K = [x, j − 2]
return maxx∈X,k∈K[x] C[i, k, x]

+Score(p, x) + D[k + 1, j, p, x, T ]

Function EndsFromRightChild(i,j,p)
/* Interior p */
if p > i ∧ p < j then

X = PosChild[p] ∩ [p + 1, j]
forall the x ∈ X ∧ x > p do

K[x] = [p + 1, x]
/* Exterior p */
else

X = PosChild[p] ∩ [i, j]
forall the x ∈ X do

K[x] = [i + 2, x]
return maxx∈X,k∈K[x] C[k, j, x]

+Score(p, x) + D[i, k − 1, p, x, F ]

Function Max2Subtrees(i,j,p,x,pOnLeft)
/* Interior p */
if p ≥ i ∧ p ≤ j then

if pOnLeft then
K = [p, j − 1]
return maxk∈K C[i, k, p] + C[k + 1, j, x]

else
K = [i, p− 1]
return maxk∈K C[i, k, x] + C[k + 1, j, p]

/* Exterior p */
else

K = [i, j − 1]}
if pOnLeft then

return maxk∈K C[i, k, p] + C[k + 1, j, x]
else

return maxk∈K C[i, k, x] + C[k + 1, j, p]
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Abstract

We introduce a novel coreference resolution
system that models entities and events jointly.
Our iterative method cautiously constructs
clusters of entity and event mentions using lin-
ear regression to model cluster merge opera-
tions. As clusters are built, information flows
between entity and event clusters through fea-
tures that model semantic role dependencies.
Our system handles nominal and verbal events
as well as entities, and our joint formulation
allows information from event coreference to
help entity coreference, and vice versa. In a
cross-document domain with comparable doc-
uments, joint coreference resolution performs
significantly better (over 3 CoNLL F1 points)
than two strong baselines that resolve entities
and events separately.

1 Introduction

Most coreference resolution systems focus on enti-
ties and tacitly assume a correspondence between
entities and noun phrases (NPs). Focusing on NPs
is a way to restrict the challenging problem of coref-
erence resolution, but misses coreference relations
like the one between hanged and his suicide in (1),
and between placed and put in (2).

1. (a) One of the key suspected Mafia bosses ar-
rested yesterday has hanged himself.

(b) Police said Lo Presti had hanged himself.
(c) His suicide appeared to be related to clan feuds.

2. (a) The New Orleans Saints placed Reggie Bush
on the injured list on Wednesday.

(b) Saints put Bush on I.R.

As (1c) shows, NPs can also refer to events, and
so corefer with phrases other than NPs (Webber,
1988). By being anchored in spatio-temporal dimen-
sions, events represent the most frequent referent of
verbal elements. In addition to time and location,
events are characterized by their participants or ar-
guments, which often correspond with discourse en-
tities. This two-way feedback between events and
their arguments (or entities) is the core of our ap-
proach. Since arguments play a key role in describ-
ing an event, knowing that two arguments corefer
is useful for finding coreference relations between
events, and knowing that two events corefer is use-
ful for finding coreference relations between enti-
ties. In (1), the coreference relation between One
of the key suspected Mafia bosses arrested yesterday
and Lo Presti can be found by knowing that their
predicates (i.e., has hanged and had hanged) core-
fer. On the other hand, the coreference relations be-
tween the arguments Saints and Bush in (2) helps
to determine the coreference relation between their
predicates placed and put.

In this paper, we take a holistic approach to coref-
erence. We annotate a corpus with cross-document
coreference relations for nominal and verbal men-
tions. We focus on both intra and inter-document
coreference because this scenario is at the same time
more challenging and more relevant to real-world
applications such as news aggregation. We use this
corpus to train a model that jointly addresses refer-
ences to both entities and events across documents.
The contributions of this work are the following:

• We introduce a novel approach for entity and
event coreference resolution. At the core of
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our approach is an iterative algorithm that cau-
tiously constructs clusters of entity and event
mentions using linear regression to model clus-
ter merge operations. Importantly, our model
allows information to flow between clusters of
both types through features that model context
using semantic role dependencies.

• We annotate and release a new corpus with
coreference relations between both entities and
events across documents. The relations anno-
tated are both intra and inter-document, which
more accurately models real-world scenarios.

• We evaluate our cross-document coreference
resolution system on this corpus and show that
our joint approach significantly outperforms
two strong baselines that resolve entities and
events separately.

2 Related Work

Entity coreference resolution is a well studied prob-
lem with many successful techniques for identify-
ing mention clusters (Ponzetto and Strube, 2006;
Haghighi and Klein, 2009; Stoyanov et al., 2009;
Haghighi and Klein, 2010; Raghunathan et al., 2010;
Rahman and Ng, 2011, inter alia). Most of these
techniques focus on matching compatible noun pairs
using various syntactic and semantic features, with
efforts targeted toward improving features and clus-
tering models.

Prior work showed that models that jointly resolve
mentions across multiple entities result in better per-
formance than simply resolving mentions in a pair-
wise fashion (Denis and Baldridge, 2007; Poon and
Domingos, 2008; Wick et al., 2008; Lee et al., 2011,
inter alia). A natural extension is to perform coref-
erence jointly across both entities and events. Yet
there has been little attempt in this direction.

We know of only limited work that incorporates
event-related information in entity coreference, typ-
ically by incorporating the verbs in context as fea-
tures. For instance, Haghighi and Klein (2010) in-
clude the governor of the head of nominal mentions
as features in their model. Rahman and Ng (2011)
also used event-related information by looking at
which semantic role the entity mentions can have
and the verb pairs of their predicates. We confirm

that such features are useful but also show that the
complementary features for verbal mentions lead to
even better performance, especially when event and
entity clusters are jointly modeled.

Compared to the extensive work on entity coref-
erence, the related problem of event coreference re-
mains relatively under-explored, with minimal work
on how entity and event coreference can be con-
sidered jointly on an open domain. Early work on
event coreference for MUC (Humphreys et al., 1997;
Bagga and Baldwin, 1999) focused on scenario-
specific events. More recently, there have been
approaches that looked at event coreference for
wider domains. Chen and Ji (2009) proposed us-
ing spectral graph clustering to cluster events. Be-
jan and Harabagiu (2010) proposed a nonparamet-
ric Bayesian model for open-domain event resolu-
tion. However, most of this prior work focused only
on event coreference, whereas we address both en-
tities and events with a single model. Humphreys
et al. (1997) considered entities as well as events,
but due to the lack of a corpus annotated with event
coreference, their approach was only evaluated im-
plicitly in the MUC-6 template filling task. To our
knowledge, the only previous work that considered
entity and event coreference resolution jointly is
He (2007), but limited to the medical domain and
focused on just five semantic categories.

3 Architecture

Following the intuition introduced in Section 1, our
approach iteratively builds clusters of event and en-
tity mentions jointly. As more information becomes
available (e.g., finding out that two verbal mentions
have arguments that belong to the same entity clus-
ter), the features of both entity and event mentions
are re-generated, which prompts future clustering
operations. Our model follows a cautious (or “baby
steps”) approach, which we previously showed to be
successful for entity coreference resolution (Raghu-
nathan et al., 2010; Lee et al., 2011). However,
unlike our previous work, which used deterministic
rules, in this paper we learn a coreference resolution
model using linear regression. Algorithm 1 summa-
rizes the flow of the proposed algorithm. We detail
its steps next. We describe the training procedure in
Section 4 and the features used in Section 5.
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Algorithm 1: Joint Coreference Resolution
input : set of documents D
input : coreference model Θ
// clusters of mentions:

E= {}1
// clusters of documents:

C = clusterDocuments(D)2
foreach document cluster c in C do3

// all mentions in one doc cluster:

M = extractMentions(c)4
// singleton mention clusters:

E ′ = buildSingletonClusters(M)5
// high-precision deterministic sieves:

E ′ = applyHighPrecisionSieves(E ′)6
// iterative event/entity coreference:

while ∃ e1, e2 ∈ E ′s.t. score(e1, e2,Θ) > 0.5 do7
(e1, e2) = arg max e1,e2∈E′ score(e1, e2,Θ)8
E ′ = merge(e1, e2, E ′)9

// pronoun sieve:

E ′ = applyPronounSieve(E ′)10
// append to global output:

E = E + E ′11

output : E

3.1 Document Clustering

Our approach starts with several steps that reduce
the search space for the actual coreference resolution
task. The first is document clustering, which clusters
the set of input documents (D) into a set of docu-
ment clusters (C). In the subsequent steps we only
cluster mentions that appear in the same document
cluster. We found this to be very useful in practice
because, in addition to reducing the search space, it
provides a word sense disambiguation mechanism
based on corpus-wide topics. For example, with-
out document clustering, our algorithm may decide
to cluster two mentions of the verb hit, but know-
ing that one belongs to a cluster containing earth-
quake reports and the other to a cluster with reports
on criminal activities, this decision can be avoided.1

Any non-parametric clustering algorithm can be
used in this step. In this paper, we used the algo-
rithm proposed by Surdeanu et al. (2005). This algo-
rithm is an Expectation Maximization (EM) variant
where the initial points (and the number of clusters)
are selected from the clusters generated by a hierar-
chical agglomerative clustering algorithm using ge-

1Since different mentions of the verb say in the same topic
might refer to different events, they are only merged if they have
coreferent arguments.

ometric heuristics. This algorithm performs well on
our data. For example, in the training dataset, only
two topics (handling different earthquake events) are
incorrectly merged into the same cluster.

3.2 Mention Extraction

In this step (4 in Algorithm 1) we extract nominal,
pronominal, and verbal mentions. We extract nom-
inal and pronominal mentions using the mention
identification component in the publicly download-
able Stanford coreference resolution system (Raghu-
nathan et al., 2010; Lee et al., 2011). We consider
as verbal mentions all words whose part of speech
starts with VB, with the exception of some auxil-
iary/copulative verbs (have, be and seem). For each
of the identified mentions we build a singleton clus-
ter (step 5 in Algorithm 1).

Crucially, we do not make a formal distinction be-
tween entity and event mentions. This distinction is
not trivial to implement (e.g., is the noun earthquake
an entity or an event mention?) and an imperfect
classification would negatively affect the following
coreference resolution. Instead, we simply classify
mentions into verbal or nominal, and use this dis-
tinction later during feature generation (Section 5).
To compare event nouns (e.g., development) with
verbal mentions, the “derivationally related form”
relation in WordNet is used.

3.3 High-precision Entity Resolution Sieves

To further reduce the problem’s search space, in
step 6 of Algorithm 1 we apply a set of high-
precision filters from the Stanford coreference res-
olution system. This system is a collection of deter-
ministic models (or “sieves”) for entity coreference
resolution that incorporate lexical, syntactic, seman-
tic, and discourse information. These sieves are ap-
plied from higher to lower precision. As clusters are
built, information such as mention gender and num-
ber is propagated across mentions in the same clus-
ter, which helps subsequent decisions. The Stanford
system obtained the highest score at the CoNLL-
2011 shared task on English coreference resolution.

For this step, we selected all the sieves from the
Stanford system with the exception of the pronoun
resolution sieve. All the remaining sieves (listed
in Table 1) have high precision because they em-
ploy linguistic heuristics with little ambiguity, e.g.,
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High-precision sieves

Discourse processing sieve
Exact string match sieve
Relaxed string match sieve
Precise constructs sieve (e.g., appositives)
Strict head match sieves
Proper head noun match sieve
Relaxed head matching sieve

Table 1: Deterministic sieves in step 6 of Algorithm 1.

one sieve clusters together two entity mentions only
when they have the same head word. Note that all
these heuristics were designed for within-document
coreference. They work well in our context be-
cause we apply them in individual document clus-
ters, where the one-sense-per-discourse principle
still holds (Yarowsky, 1995).

Importantly, these sieves do not address verbal
mentions. That is, all verbal mentions are still in sin-
gleton clusters after this step. Furthermore, none of
these sieves use features that facilitate the joint reso-
lution of nominal and verbal mentions (e.g., features
from semantic role frames). All these limitations are
addressed next.

3.4 Iterative Entity/Event Resolution

In this stage (steps 7 – 9 in Algorithm 1), we con-
struct entity and event clusters using a cautious or
“baby steps” approach. We use a single linear re-
gressor (Θ) to model cluster merge operations be-
tween both verbal and nominal clusters. Intuitively,
the linear regressor models the quality of the merge
operation, i.e., a score larger than 0.5 indicates that
more than half of the mention pairs introduced by
this merge are correct. We discuss the training pro-
cedure that yields this scoring function in Section 4.
In each iteration, we perform the merge operation
that has the highest score. Once two clusters are
merged (step 9) we regenerate all the mention fea-
tures to reflect the current clusters. We stop when no
merging operation with an overall benefit is found.

This iterative procedure is the core of our joint
coreference resolution approach. This algorithm
transparently merges both entity and event men-
tions and, importantly, allows information to flow
between clusters of both types as merge operations
take place. For example, assume that during iter-
ation i we merge the two hanged verbs in the first

example in Section 1 (because they have the same
lemma). Because of this merge, in iteration i+ 1 the
nominal mentions Lo Presti and One of the key sus-
pected Mafia bosses have the same semantic role for
verbs assigned to the same cluster. This is a strong
hint that these two nominal mentions belong to the
same cluster. Indeed, the feature that models this
structure received one of the highest weights in our
linear regression model (see Section 7).

3.5 Pronoun Sieve
Our approach concludes with the pronominal coref-
erence resolution sieve from the Stanford system.
This sieve is necessary because our current reso-
lution algorithm ignores mention ordering and dis-
tance (i.e., in step 7 we compare all clusters regard-
less of where their mentions appear in the text). As
previous work has proved, the structure of the text is
crucial for pronominal coreference (Hobbs, 1978).
For this reason, we handle pronouns outside of the
main algorithm block.

4 Training the Cluster Merging Model

Two observations drove our choice of model and
training algorithm. First, modeling the merge op-
eration as a classification task is not ideal, because
only a few of the resulting clusters are entirely cor-
rect or incorrect. In practice, most of the clusters
will contain some mention pairs that are correct and
some that are not. Second, generating training data
for the merging model is not trivial: a brute force
approach that looks at all the possible combinations
is exponential in the number of mentions. This is
both impractical and unnecessary, as some of these
combinations are unlikely to be seen in practice.

We address these observations with Algorithm 2.
The algorithm uses gold coreference labels to train a
linear regressor that models the quality of the clus-
ters produced by merge operations. We define the
quality score q of a new cluster as the percentage of
new mention pairs (i.e., not present in either one of
the clusters to be merged) that are correct:

q =
linkscorrect

linkscorrect + linksincorrect
(1)

where links(in)correct is the number of newly intro-
duced (in)correct pairwise mention links when two
clusters are merged.
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Algorithm 2: Training Procedure
input : set of documents D
input : correct mention clusters G
C = clusterDocuments(D)1
// linear regression coreference model:

Θ = assignInitialWeights(C,G)2
// repeat for T epochs:

for t = 1 to T do3
// training data for linear regressor:

Γ = {}4
foreach document cluster c in C do5
M = extractMentions(c)6
E = buildSingletonClusters(M)7
E = applyHighPrecisionSieves(E)8
// gather training examples

// as clusters are built:

while ∃ e1, e2 ∈ Es.t. sco(e1, e2,Θ) > 0.5 do9
forall e′1, e′2 ∈ E do10

q = qualityOfMerge(e′1, e
′
2,G)11

Γ = append(e′1, e
′
2, q,Γ)12

(e1, e2) = arg max e1,e2∈E sco(e1, e2,Θ)13
E = merge(e1, e2, E)14

// train using data from last epoch:

Θ′ = trainLinearRegressor(Γ)15
// interpolate with older model:

Θ = λΘ + (1− λ)Θ′16

output : Θ

We address the potential explosion in training data
size by considering only merge operations that are
likely to be inspected by the algorithm as it runs.
To achieve this, Algorithm 2 repeatedly runs the ac-
tual clustering algorithm (as given by the current
model Θ) over the training dataset (steps 5 – 14).2

When the algorithm iteratively constructs its clus-
ters (steps 9 – 14), we generate training data from
all possible cluster pairs available during a particular
iteration (steps 10 – 12). For each pair, we compute
its score using Equation 1 (step 11) and add it to the
training corpus Γ (step 12). Note that this avoids in-
specting many of the possible cluster combinations:
once a cluster is built (e.g., during the previous iter-
ations or by the deterministic sieves in step 8), we
do not generate training data from its members, but
rather treat it as an atomic unit. On the other hand,
our approach generates more training data than on-
line learning, which trains using only the actual de-
cisions taken during inference in each iteration (i.e.,

2We skip the pronoun sieve here because it does not affect
the decisions taken during the iterative resolution steps.

the pair (e1, e2) in step 13).
After each epoch we have a new training cor-

pus Γ, which we use to train the new linear regres-
sion model Θ’ (step 15), which is then interpolated
with the old one (step 16).

Our training procedure is similar in spirit to trans-
formation based learning (TBL) (Brill, 1995). Sim-
ilarly to TBL, our approach repeatedly applies the
model over the training data and attempts to mini-
mize the error rate of the current model. However,
while TBL learns rules that directly minimize the
current error rate, our approach achieves this indi-
rectly, by incorporating the reduction in error rate in
the score of the generated datums. This allows us
to fit a linear regression to this task, which, as dis-
cussed before, is a better model for this task.

Just like any hill-climbing algorithm, our ap-
proach has the risk of converging to a local max-
imum. To mitigate this risk, we do not initialize
our model Θ with random weights, but rather use
hints from the deterministic sieves. This procedure
(listed in step 2) runs the high-precision sieves in-
troduced in Section 3.3 and, just like the data gen-
eration loop in Algorithm 2, creates training exam-
ples from the clusters available after every merge
operation. Since these deterministic models address
only nominal clusters, at the end we generate train-
ing data for events by inspecting all the pairs of sin-
gleton verbal clusters. Using this data, we train the
initial linear regression model.

We trained our model using L2 regularized linear
regression with a regularization coefficient of 1.0.
We did not tune the regularization coefficient. We
ran the training algorithm for 10 epochs, although
we observed minimal changes after three epochs.
We tuned the interpolation weight (λ) to a value
of 0.7 using our development corpus.

5 Features

We list in Table 2 the features used by the lin-
ear regression model. As the table indicates, our
feature set relies heavily on semantic roles, which
were extracted using the SwiRL semantic role la-
beling (SRL) system (Surdeanu et al., 2007).3 Be-
cause SwiRL addresses only verbal predicates, we
extended it to handle nominal predicates. In this

3http://www.surdeanu.name/mihai/swirl/
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Feature Name
Applies to
Entities (E)
or Events (V)

Description and Example

Entity Heads E

Cosine similarity of the head-word vectors of two clusters. The head-word vector
stores the head words of all mentions in a cluster and their frequencies. For example,
the vector for the three-mention cluster {Barack Obama, President Obama, US
president}, is {Obama:2, president:1}.

Event Lemmas V
Cosine similarity of the lemma vectors of two clusters. For example, the lemma
vector for the cluster {murdered, murders, hitting} is {murder:2, hit:1}.

Links between
Synonyms E, V

The percentage of newly-introduced mention links after the merge that are WordNet
synonyms (Fellbaum, 1998). For example, when merging the following two clus-
ters, {hit, strike} and {strike, join, say}, two out of the six new links are between
words that belong to the same WordNet synset: (hit – strike) and (strike – strike).

Number of Coreferent
Arguments or
Predicates

E, V

The total number of shared arguments and predicates between mentions in the
two clusters. We use the cluster IDs of the corresponding arguments/predicates
to check for identity. For example, when comparing the event clusters {bought}
and {acquired}, extracted from the sentences [AMD]Arg0 bought [ATI]Arg1 and
[AMD]Arg0 acquired [ATI]Arg1, the value of this feature is 2 because the two men-
tions share one Arg0 and one Arg1 argument (assuming that the clusters {AMD,
AMD} and {ATI, ATI} were previously created). For entity clusters, this feature
counts the number of coreferent predicates. In addition to PropBank-style roles, for
event mentions we also include the closest left and right entity mentions in order to
capture any arguments missed by the SRL system.

Coreferent Arguments
in a Specific Role? E, V

Indicator feature set to 1 if the two clusters have at least one coreferent argument in
a given role. We generate one variant of this feature for each argument label, e.g.,
Arg0, Arg1, etc. For example, the value of this feature for Arg0 for the clusters
{bought} and {acquired} in the above example is 1.

Coreferent Predicate in
a Specific Role? E

Indicator feature set to 1 if the two clusters have at least one coreferent predicate for
a given role. For example, for the clusters {the man} and {the person}, extracted
from the sentences helped [the man]Arg1 and helped [the person]Arg1, the value of
this feature is 1 if the two helped verbs were previously clustered together.

2nd Order Similarity of
Mention Words

E

Cosine similarity of vectors containing words that are distributionally similar to
words in the cluster mentions. We built these vectors by extracting the top-ten
most-similar words in Dekang Lin’s similarity thesaurus (Lin, 1998) for all the
nouns/adjectives/verbs in a cluster. For example, for the singleton cluster {a new
home}, we construct this vector by expanding new and home to: {new:1, original:1,
old:1, existing:1, current:1, unique:1, modern:1, different:1, special:1, major:1,
small:1, home:1, house:1, apartment:1, building:1, hotel:1, residence:1, office:1,
mansion:1, school:1, restaurant:1, hospital:1 }.

Number; Animacy;
Gender; NE Label

E
Cosine similarity of number, gender, animacy, and NE label vectors. For example,
the number and gender vectors for the two-mention cluster {systems, a pen} are
Number = {singular:1, plural:1}, Gender = {neutral:2}.

Table 2: List of features used when comparing two clusters. If any of the two clusters contains a verbal mention we
consider the merge an operation between event (V) clusters; otherwise it is a merge between entity (E) clusters. We
append to all entity features the suffix Proper or Common based on the type of the head word of the first mention in
each of the two clusters. We use the suffix Proper only if both head words are proper nouns.

paper we used a single heuristic: the possessor of
a nominal event’s predicate is marked as its Arg0,

e.g., Logan is the Arg0 to run in Logan’s run.4

4A principled solution to this problem is to use an SRL sys-
tem for nominal predicates trained using NomBank (Meyers et
al., 2004). We will address this in future work.
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We extracted named entity labels using the named
entity recognizer from the Stanford CoreNLP suite.

6 Evaluation

6.1 Corpus

The training and test data sets were derived from
the EventCorefBank (ECB) corpus5 created by Be-
jan and Harabagiu (2010) to study event coreference
since standard corpora such as OntoNotes (Pradhan
et al., 2007) contain a small number of annotated
event clusters. The ECB corpus consists of 482 doc-
uments from Google News clustered into 43 topics,
where a topic is described as a seminal event. The
reason for including comparable documents was to
increase the number of cross-document coreference
relations. Bejan and Harabagiu (2010) only anno-
tated a selection of events.

For the purpose of our study, we extended the
original corpus in two directions: (i) fully anno-
tated sentences, and (ii) entity coreference relations.
In addition, we removed relations other than coref-
erence (e.g., subevent, purpose, related, etc.) that
had been originally annotated. We revised and com-
pleted the original annotation by annotating every
entity and event in the sentences that were (partially)
annotated. The annotation was performed by four
experts, using the Callisto annotation tool.6 The
annotation guidelines and the generated corpus are
available here.7

Our annotation of the ECB corpus followed the
OntoNotes (Pradhan et al., 2007) standard for coref-
erence annotation, with a few extensions to handle
events. For nouns, we annotated full NPs (with all
modifiers), excluding appositive phrases and nomi-
nal predicates. Only premodifiers that were proper
nouns or possessive phrases were annotated. For
events, we annotated the semantic head of the verb
phrase. We extended the OntoNotes guidelines by
also annotating singletons (but we do not score
them; see below), and by including all events men-
tions (not only those mentioned at least once with an
NP). This required us to be specific with respect to:

5http://faculty.washington.edu/bejan/
data/ECB1.0.tar.gz

6http://callisto.mitre.org
7http://nlp.stanford.edu/pubs/

jcoref-corpus.zip

Training Dev Test Total

# Topics 12 3 28 43
# Documents 112 39 331 482
# Entities 459 46 563 1068
# Entity Mentions 1723 259 3465 5447
# Events 300 30 444 774
# Event Mentions 751 140 1642 2533

Table 3: Corpus statistics.

〈ENTITY COREFID=“26”〉 A publicist 〈/ENTITY〉 〈EVENT
COREFID=“4”〉 says 〈/EVENT〉 〈ENTITY COREFID=“23”〉
Tara Reid 〈/ENTITY〉 has 〈EVENT COREFID=“3”〉 checked
〈/EVENT〉 〈ENTITY COREFID=“23”〉 herself 〈/ENTITY〉 〈EVENT
COREFID=“3*”〉 into 〈/EVENT〉 〈ENTITY COREFID=“28”〉 rehab
〈/ENTITY〉.

Figure 1: Annotation example.

Light verbs Verbs such as give and make followed
by a noun (e.g., make an offer) were not anno-
tated, but the noun was.

Phrasal verbs We annotated the verb together with
the preposition or adverb (e.g., check in).

Idioms They were annotated with all their elements
(e.g., booze it up).

The first topic was annotated by all four anno-
tators as burn-in. Afterwards, annotation disagree-
ments were resolved between all annotators and the
next three topics were annotated again by all four an-
notators to measure agreement. Following Passon-
neau (2004), we computed an inter-annotator agree-
ment of α = 0.55 (Krippendorff, 2004) on these
three topics, indicating moderate agreement among
the annotators. Given the complexity of the task, we
consider this to be a good score. For example, the
average of the CoNLL F1 between any two annota-
tors is 73.58, which is much higher than the system
scores reported in the literature.

After annotating the four topics, disagreements
were resolved again and all the documents in the
four topics were corrected to match the consensus.
The rest of the corpus was split between the four an-
notators, and each document was annotated by a sin-
gle annotator. Figure 1 shows an example. Table 3
shows the corpus statistics, including the training,
development (dev) and test set splits. The dev topics
were used for tuning the interpolation parameter λ
from Section 4.
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MUC B3 CEAF-φ4 BLANC
System R P F1 R P F1 R P F1 R P F1 CoNLL F1

Baseline 1
Wo/ SRL

Entity 47.4 72.3 57.2 44.1 82.7 57.5 42.5 21.9 28.9 60.1 78.3 64.8 47.9
Event 56.0 56.8 56.4 59.8 71.9 65.3 32.2 31.6 31.9 63.5 68.8 65.7 51.2
Both 49.9 75.4 60.0 44.9 83.9 58.5 46.2 23.3 31.0 60.9 81.2 66.1 49.8

Baseline 2
With SRL

Entity 52.7 73.0 61.2 48.6 80.8 60.7 41.8 24.1 30.6 63.4 78.4 68.2 50.8
Event 59.2 57.0 58.1 62.3 70.8 66.3 31.5 33.2 32.3 65.4 68.0 66.6 52.2
Both 54.5 76.4 63.7 48.7 82.6 61.3 46.3 25.5 32.9 63.9 81.1 69.2 52.6

This paper
Entity 60.7 70.6 65.2 55.5 74.9 63.7 39.3 29.5 33.7 66.9 79.6 71.5 54.2
Event 62.7 62.8 62.7 62.5 73.9 67.7 34.0 33.9 33.9 67.6 78.5 71.7 54.8
Both 61.2 75.9 67.8 53.9 79.0 64.1 45.2 30.0 35.8 67.1 82.2 72.3 55.9

Table 4: Performance of the two baselines and our model. We report scores for entity clusters, event clusters and the
complete task using five metrics.

6.2 Evaluation

We use five coreference evaluation metrics widely
used in the literature:

MUC (Vilain et al., 1995) Link-based metric which
measures how many predicted and gold clus-
ters need to be merged to cover the gold and
predicted clusters, respectively.

B3 (Bagga and Baldwin, 1998) Mention-based
metric which measures the proportion of over-
lap between predicted and gold clusters for a
given mention.

CEAF (Luo, 2005) Entity-based metric that, unlike
B3, enforces a one-to-one alignment between
gold and predicted clusters. We employ the
entity-based version of CEAF.

BLANC (Recasens and Hovy, 2011) Metric based
on the Rand index (Rand, 1971) that consid-
ers both coreference and non-coreference links
to address the imbalance between singleton and
coreferent mentions.

CoNLL F1 Average of MUC, B3, and CEAF-φ4.
This was the official metric in the CoNLL-2011
shared task (Pradhan et al., 2011).

We followed the CoNLL-2011 evaluation methodol-
ogy, that is, we removed all singleton clusters, and
apposition/copular relations before scoring.

We evaluated the systems on three different set-
tings: only on entity clusters, only on event clus-
ters, and on the complete task, i.e., both entities and
events. Note that the gold corpus separates clusters
into entity and event clusters (see Table 3), but our

system does not make this distinction at runtime.
In order to compute the entity-only and event-only
scores in Table 4, we implemented the following
procedure: (a) when scoring entity clusters, we re-
moved all mentions that were found to be coreferent
with at least one gold event mention and not coref-
erent with any gold entity mentions; and (b) we per-
formed the opposite action when scoring event clus-
ters. This procedure is necessary because our men-
tion identification component is not perfect, i.e., it
generates mentions that do not exist in the gold an-
notation. Furthermore, this procedure is conserva-
tive with respect to the clustering errors of our sys-
tem, e.g., all spurious mentions that our system in-
cludes in a cluster with a gold entity mention are
considered for the entity score, regardless of their
gold type (event or entity).

6.3 Results

Table 4 compares the performance of our system
against two strong baselines that resolve entities and
events separately. Baseline 1 uses a modified Stan-
ford coreference resolution system after our doc-
ument clustering and mention identification steps.
Because the original Stanford system implements
only entity coreference, we extended it with an extra
sieve that implements lemma matching for events.
This additional sieve merges two verbal clusters
(i.e., clusters that contain at least one verbal men-
tion) or a verbal and a nominal cluster when at least
two lemmas of mention head words are the same be-
tween clusters, e.g., helped and the help.

The second baseline adds two more sieves to
Baseline 1. Both these sieves model entity and event
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contextual information using semantic roles. The
first sieve merges two nominal clusters when two
mentions in the respective clusters have the same
head words and two mentions (possibly with dif-
ferent heads) modify with the same role label two
predicates that have the same lemma. For exam-
ple, this sieve merges the clusters {Obama, the pres-
ident} (seen in the text [Obama]Arg0 attended and
[the president]Arg1 was elected) and {Obama} (seen
in the text [Obama]Arg1 was elected), because they
share a mention with the same head word (Obama)
and two mentions modify with the same role (Arg1)
predicates with the same lemma (elect). The sec-
ond sieve implements the complementary action for
event clusters. That is, it merges two verbal clusters
when at least two mentions have the same lemma
and at least two mentions have semantic arguments
with the same role label and the same lemma.

7 Discussion

The first block in Table 4 indicates that lemma
matching is a strong baseline for event resolution.
Most of the event scores for Baseline 1 are actually
higher than the corresponding entity scores, which
were obtained using the highest ranked system at the
CoNLL-2011 shared task (Lee et al., 2011). Adding
contextual information using semantic roles (Base-
line 2) helps both entities and events. The CoNLL
F1 for Baseline 2 increases almost 3 points for enti-
ties and 1 point for events. This demonstrates that
local syntactico-semantic context is important for
coreference resolution even in a cross-document set-
ting and that the current state-of-the-art in SRL can
model this context accurately.

The best scores (almost unanimously) are ob-
tained by the model proposed in this paper, which
scores 3.4 CoNLL F1 points higher than Baseline 2
for entities, and 2.6 points higher for events. For the
complete task, our approach scores 3.3 CoNLL F1
points higher than Baseline 2, and 6.1 points higher
than Baseline 1. This demonstrates that a holistic
approach to coreference resolution improves the res-
olution of both entities and events more than models
that address aspects of the task separately. To fur-
ther understand our experiments, we listed the top
five entity/event features with the highest weights in
our model in Table 5. The table indicates that six out
of the ten features serve the purpose of passing infor-

Entity Feature Weight

Entity Heads – Proper 1.10
Coreferent Predicate for ArgM-LOC – Common 0.45

Entity Heads – Common 0.36
Coreferent Predicate for Arg0 – Proper 0.29

Coreferent Predicate for Arg2 – Common 0.28

Event Feature Weight

Event Lemmas 0.45
Coreferent Argument for Arg1 0.19

Links between Synonym 0.16
Coreferent Argument for Arg2 0.13

Number of Coreferent Arguments 0.07

Table 5: Top five features with the highest weights.

mation between entity and event clusters. For exam-
ple, the “Coreferent Argument for Arg1” feature is
triggered when two event clusters have Arg1 argu-
ments that already belong to the same entity cluster.
This allows information from previous entity coref-
erence operations to impact future merges of event
clusters. This is the crux of our iterative approach to
joint coreference resolution.

Finally, we performed an error analysis by man-
ually evaluating 100 errors. We distinguished nine
major types of errors. Their ratios together with a
description and an example are given in Table 6.

This work demonstrates that an approach that
jointly models entities and events is better for cross-
document coreference resolution. However, our
model can be improved. For example, document
clustering and coreference resolution can be solved
jointly, which we expect would improve both tasks.
Furthermore, our iterative coreference resolution
procedure (Algorithm 1) could be modified to ac-
count for mention ordering and distance, which
would allow us to include pronominal resolution in
our joint model, rather than addressing it with a sep-
arate deterministic sieve.

8 Conclusion

We have presented a holistic model for cross-
document coreference resolution that jointly solves
references to events and entities by handling both
nominal and verbal mentions. Our joint resolution
algorithm allows event coreference to help improve
entity coreference, and vice versa. In addition, our
iterative procedure, based on a linear regressor that
models the quality of cluster merges, allows each
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Error Type (Ratio)
Description
Example

Pronoun resolution
(36%)

The pronoun is incorrectly resolved by the pronominal sieve of the Stanford deterministic entity
system. These errors include (only a small number of) event pronouns.
He said Timmons aimed and missed his target.

Semantics beyond
role frames
(20%)

The semantics of the coreference relation cannot be captured by role frames or WordNet.
Israeli forces on Tuesday killed at least 40 people . . . The Israeli army said the UN school in the
Jabaliya refugee camp was hit . . . and that the dead included a number of Hamas militants.

Arguments of
nominal events
(17%)

The arguments of two nominal events are not detected and thus not coreferred.
The attack on the school has caused widespread shock across Israel . . . while Israeli forces on
Tuesday killed at least 40 people during an attack on a United Nations-run school in Gaza.

Cascaded errors
(7%)

Entities or events are not coreferred due to errors in a previous merge iteration in the same
semantic frame. In the example below, we failed to link the two die verbs, which leads to the
listed entity error.
An Australian climber who survived two nights stuck on Mount Cook after seeing his brother
die . . . Dr Mark Vinar, 43, is presumed dead . . .

Initial high-precision
sieves
(6%)

An error made by the initial high-precision entity resolution sieves is propagated to our model.
Timmons told police he fired when he thought he saw someone in the other group reach for
a gun . . . 15-year-old Timmons was at the scene of the shooting and had a gun.

Phrasal verbs
(6%)

The meaning of a phrasal verb is not captured.
A relative unknown will take over the title role of Doctor Who . . . But the casting of Smith is
a stroke of genius.

Linear regression
(4%)

Recall error made by the regression model when the features are otherwise correct.
The Interior Department on Thursday issued “revised” regulations . . . Interior Secretary Dirk
Kempthorne announced major changes . . .

Mention detection
(3%)

The mention detection module detects a spurious mention.
Police have arrested a man . . . in the parking lot crosswalk at Sam’s Club in Bloomington.

SRL
(1%)

The SRL system fails to label the semantic role. In this example, jail is detected as the ArgM-
MNR of hanged instead of ArgM-LOC.
A Mafia boss in Palermo hanged himself in jail.

Table 6: Error analysis. Mentions to be resolved are in bold face, correct antecedents are in italics, and our system’s
predictions are underlined.

merging state to benefit from the previous merged
entity and event mentions. This approach allows us
to start with a set of high-precision coreference rela-
tions and gradually add new ones to increase recall.

The experimental evaluation shows that our coref-
erence algorithm gives markedly better F1 for both
entities and events, outperforming two strong base-
lines that handle entities and events separately, mea-
sured by all the standard measures: MUC, B3,
CEAF-φ4, BLANC and the official CoNLL-2011
metric. This is noteworthy since each measure has
been shown to place primary emphasis in evaluating
a different aspect of the coreference resolution task.

Our system is tailored for cross-document coref-
erence resolution on a corpus that contains news ar-
ticles that repeatedly report on a smaller number of
topics. This makes it particularly suitable for real-

world applications such as multi-document summa-
rization and cross-document information extraction.
We also release our labeled corpus to facilitate ex-
tensions and comparisons to our work.
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Abstract

In this paper, we propose a novel decoding al-
gorithm for discriminative joint Chinese word
segmentation, part-of-speech (POS) tagging,
and parsing. Previous work often used a
pipeline method – Chinese word segmentation
followed by POS tagging and parsing, which
suffers from error propagation and is unable
to leverage information in later modules for
earlier components. In our approach, we train
the three individual models separately during
training, and incorporate them together in a u-
nified framework during decoding. We extend
the CYK parsing algorithm so that it can deal
with word segmentation and POS tagging fea-
tures. As far as we know, this is the first work
on joint Chinese word segmentation, POS tag-
ging and parsing. Our experimental result-
s on Chinese Tree Bank 5 corpus show that
our approach outperforms the state-of-the-art
pipeline system.

1 Introduction

For Asian languages such as Japanese and Chi-
nese that do not contain explicitly marked word
boundaries, word segmentation is an important first
step for many subsequent language processing tasks,
such as POS tagging, parsing, semantic role label-
ing, and various applications. Previous studies for
POS tagging and syntax parsing on these languages
sometimes assume that gold standard word segmen-
tation information is provided, which is not the re-
al scenario. In a fully automatic system, a pipeline
approach is often adopted, where raw sentences are

first segmented into word sequences, then POS tag-
ging and parsing are performed. This kind of ap-
proach suffers from error propagation. For exam-
ple, word segmentation errors will result in tagging
and parsing errors. Additionally, early modules can-
not use information from subsequent modules. In-
tuitively a joint model that performs the three tasks
together should help the system make the best deci-
sions.

In this paper, we propose a unified model for joint
Chinese word segmentation, POS tagging, and pars-
ing. Three sub-models are independently trained
using the state-of-the-art methods. We do not use
the joint inference algorithm for training because of
the high complexity caused by the large amount of
parameters. We use linear chain Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001) to train the
word segmentation model and POS tagging model,
and averaged perceptron (Collins, 2002) to learn the
parsing model. During decoding, parameters of each
sub-model are scaled to represent its importance in
the joint model. Our decoding algorithm is an exten-
sion of CYK parsing. Initially, weights of all possi-
ble words together with their POS tags are calcu-
lated. When searching the parse tree, the word and
POS tagging features are dynamically generated and
the transition information of POS tagging is consid-
ered in the span merge operation.

Experiments are conducted on Chinese Tree Bank
(CTB) 5 dataset, which is widely used for Chinese
word segmentation, POS tagging and parsing. We
compare our proposed joint model with the pipeline
system, both built using the state-of-the-art sub-
models. We also propose an evaluation metric to
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calculate the bracket scores for parsing in the face of
word segmentation errors. Our experimental results
show that the joint model significantly outperform-
s the pipeline method based on the state-of-the-art
sub-models.

2 Related Work

There is very limited previous work on joint Chinese
word segmentation, POS tagging, and parsing. Pre-
vious joint models mainly focus on word segmenta-
tion and POS tagging task, such as the virtual nodes
method (Qian et al., 2010), cascaded linear model
(Jiang et al., 2008a), perceptron (Zhang and Clark,
2008), sub-word based stacked learning (Sun, 2011),
reranking (Jiang et al., 2008b). These joint models
showed about 0.2 − 1% F-score improvement over
the pipeline method. Recently, joint tagging and de-
pendency parsing has been studied as well (Li et al.,
2011; Lee et al., 2011).

Previous research has showed that word segmen-
tation has a great impact on parsing accuracy in
the pipeline method (Harper and Huang, 2009). In
(Jiang et al., 2009), additional data was used to im-
prove Chinese word segmentation, which resulted
in significant improvement on the parsing task us-
ing the pipeline framework. Joint segmentation and
parsing was also investigated for Arabic (Green and
Manning, 2010). A study that is closely related to
ours is (Goldberg and Tsarfaty, 2008), where a s-
ingle generative model was proposed for joint mor-
phological segmentation and syntactic parsing for
Hebrew. Different from that work, we use a discrim-
inative model, which benefits from large amounts of
features and is easier to deal with unknown words.
Another main difference is that, besides segmenta-
tion and parsing, we also incorporate the POS tag-
ging model into the CYK parsing framework.

3 Methods

For a given Chinese sentence, our task is to gener-
ate the word sequence, its POS tag sequence, and
the parse tree (constituent parsing). A joint model
is expected to make more optimal decisions than a
pipeline approach; however, such a model will be
too complex and it is difficult to estimate model pa-
rameters. Therefore we do not perform joint infer-
ence for training. Instead, we develop three individ-

ual models independently during training and per-
form joint decoding using them. In this section, we
first describe the three sub-models and then the joint
decoding algorithm.

3.1 Word Segmentation Model
Methods for Chinese word segmentation can be
broadly categorized into character based and word
based models. Previous studies showed that
character-based models are more effective to detect
out-of-vocabulary words while word-based model-
s are more accurate to predict in-vocabulary words
(Zhang et al., 2006). Here, we use order-0 semi-
Markov model (Sarawagi and Cohen, 2004) to take
advantages of both approaches.

More specifically, given a sentence x =
c1, c2, . . . , cl (where ci is the ith Chinese character,
l is the sentence length), the character-based mod-
el assigns each character with a word boundary tag.
Here we use the BCDIES tag set, which achieved
the best official performance (Zhao and Kit, 2008):
B, C, D, E denote the first, second, third, and last
character of a multi-character word respectively, I
denotes the other characters, and S denotes the s-
ingle character word. We use the same character-
based feature templates as in the best official system,
shown in Table 1 (1.1-1.3), including character un-
igram and bigram features, and transition features.
Linear chain CRFs are used for training.

Feature templates in the word-based model are
shown in Table 1 (1.4-1.6), including word features,
sub-word features, and character bigrams within
words. The word feature is activated if a predicted
word w is in the vocabulary (i.e., appears in train-
ing data). Subword(w) is the longest in-vocabulary
word within w. To use word features, we adopt a K-
best reranking approach. The top K candidate seg-
mentation results for each training sample are gen-
erated using the character-based model, and the gold
segmentation is added if it is not in the candidate set.
We use the Maximum Entropy (ME) model to learn
the weights of word features such that the probabil-
ity of the gold candidate is maximal.

A problem arises when combining the two mod-
els and using it in joint segmentation and parsing,
since the linear chain used in the character-based
model is incompatible with CYK parsing model and
the word-based model due to the transition informa-
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Character Level Feature Templates
(1.1) ci−2yi, ci−1yi, ciyi, ci+1yi, ci+2yi

(1.2) ci−1ciyi, cici+1yi, ci−1ci+1yi

(1.3) yi−1yi

Word Level Feature Templates
(1.4) word w
(1.5) subword(w)
(1.6) character bigrams within w

Table 1: Feature templates for word segmentation. ci is
the ith character in the sentence, yi is its label, w is a
predicted word.

tion. Thus, we slightly modify the linear chain CRF-
s by fixing the weights of transition features during
training and testing. That is, weights of impossible
transition features (e.g., B→B) are set to −∞, and
weights of the other transition features (e.g., E→B)
are set to 0. In this way, the transition feature could
be neglected in testing for two reasons. First, all ille-
gal label assignments are prohibited in prediction, s-
ince their weights are −∞; second, because weights
of legal transition features are 0, they do not affec-
t the prediction at all. In the following, transition
features are excluded.

Now we can use order-0 semi Markov model as
the hybrid model. We define the score of a word as
the sum of the weights of all the features within the
word. Formally, the score of a multi-character word
w = ci, . . . , cj is defined as:

scoreseg(x, i, j) = θCRF · fCRF (x, yi = B) + . . .

+θCRF · fCRF (x, yj = E) + θME · fME(x, i, j)

≡ θsegfseg(x, i, j) (1)

where fCRF and fME are the feature vectors in the
character and word based models respectively, and
θCRF , θME are their corresponding weight vectors.
For simplicity, we denote θseg = θCRF⊕ME , fseg =
fCRF⊕ME , where θCRF⊕ME means the concatena-
tion of θCRF and θME . Scores for single character
words are defined similarly. These word scores will
be used in the joint segmentation and parsing task
Section 3.4.

3.2 POS Tagging Model
Though syntax parsing model can directly predict
the POS tag itself, we choose not to use this, but use
an independent POS tagger for two reasons. First,

there is a large amount of data with labeled POS tags
but no syntax annotations, such as the People’s Daily
corpus and SIGHAN bakeoff corpora (Jin and Chen,
2008). Such data can only be used to train POS tag-
gers, but not for training the parsing model. Often
using a larger training set will result in a better POS
tagger. Second, the state-of-the-art POS tagging sys-
tems are often trained by sequence labeling models,
not parsing models.

(2.1) wi−2ti, wi−1ti, witi, wi+1ti, wi+2ti
(2.2) wi−2wi−1ti, wi−1witi, wiwi+1ti,

wi+1wi+2ti wi−1wi+1ti
(2.3) c1(wi)ti, c2(wi)ti, c3(wi)ti, c−2(wi)ti

c−1(wi)ti
(2.4) c1(wi)c2(wi)ti, c−2(wi)c−1(wi)ti
(2.5) l(wi)ti
(2.5) ti−1ti

Table 2: Feature templates for POS tagging. wi is the
ith word in the sentence, ti is its POS tag. For a word w,
cj(w) is its jth character, c−j(w) is the last jth character,
and l(w) is its length.

The POS tagging problem is to assign a POS tag
t ∈ T to each word in a sentence. We also use lin-
ear chain CRFs for POS tagging. Feature templates
shown in Table 2 are the same as those in (Qian
et al., 2010), which have been shown effective on
CTB corpus. Three feature sets are considered: (i)
word level features, including surrounding word uni-
grams, bigrams, and word length; (ii) character level
features, such as the first and last characters in the
words; (iii) transition features.

3.3 Parsing Model

We choose discriminative models for parsing since it
is easy to handle unknown words by simply adding
character level features. Online structured learn-
ing algorithms were demonstrated to be effective for
training, such as stochastic optimization (Finkel et
al., 2008). In this study, we use averaged perceptron
algorithm for parameter estimation since it is easier
to implement and has competitive performance.

A Context Free Grammar (CFG) consists of (i) a
set of terminals; (ii) a set of nonterminals {Nk}; (i-
ii) a designated start symbol ROOT; and (iv) a set of
rules, {r = N i → ζj}, where ζj is a sequence of
terminals and nonterminals. In the parsing task, ter-
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Figure 1: Parse tree binarization

minals are the words, and nonterminals are the POS
tags and phrase types. In this paper, nonterminal is
named state for short. A parse tree T of sentence
x can be factorized into several one-level subtrees,
each corresponding to a rule r.

In practice, binarization of rules is necessary to
obtain cubic parsing time. That is, the right hand
side of each rule should contain no more than 2 s-
tates. We used right branching binarization, as il-
lustrated in Figure 1. We did not use parent anno-
tation, since we found it degraded the performance
in our experiments (shown in Section 4). We used
the same preprocessing step as (Harper and Huang,
2009), collapsing all the allowed nonterminal-yield
unary chains to single unary rules. Therefore, all s-
pans in the binarized trees contain no more than one
unary rules. To facilitate decoding, we unify the for-
m of spans so that each span contains exactly one u-
nary rule. This is done by adding identity unary rules
(N → N ) to spans that have no unary rule. These
identity unary rules will be removed in evaluation.
Hence, there are two states of a span: the top state
N and the bottom state N that correspond to the left
and right hand of the unary rule runary = N → N
respectively, as shown in Figure 2.

Table 3 lists the feature templates we use for pars-
ing. There are 4 feature sets: (i) bottom state fea-
tures fbottom(i, j,x, N i,j), which depend on the bot-
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NT

Figure 2: Unary rule normalization. Nonterminal-yield
unary chains are collapsed to single unary rules. Identity
unary rules are added to spans that have no unary rule.

tom states; (ii) top state features ftop(i, j,x, N i,j);
(iii) unary rule features funary(i, j,x, runary

i,j ), which
extract the transition information from bottom s-
tates to top states; (iv) binary rule features
fbinary(i, j, k,x, rbinary

i,j,k = N i,j → N i,k−1 + Nk,r),
where N i,k−1, Nk,r are the top states of the left and
right children.

The score function for a sentence x with parse tree
T is defined as:

score(x, T ) =∑
N i,j∈T

θbottom · fbottom(i, j,x, N i,j)

+
∑

N i,j∈T

θtop · ftop(i, j,x, N i,j)

+
∑

runary
i,j ∈T

θunary · funary(i, j,x, runary
i,j )

+
∑

rbinary
i,j,k ∈T

θbinary · fbinary(i, j,x, rbinary
i,j,k )

where θbottom, θtop, θunary, θbinary are the weight
vectors of the four feature sets.

Given the training corpus {(xi, T̃i)}, the learning
task is to estimate the weight vectors so that for each
sentence xi, the gold standard tree T̃i achieves the
maximal score among all the possible trees. The per-
ceptron algorithm is guaranteed to find the solution
if it exists.

3.4 Joint Decoding

The three models described above are separately
trained to make parameter estimation feasible as
well as optimize each individual component. In test-
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(3.1) Binary rule templates
N → N l + Nr

Xl Xm−1Xr lenllenr Xl Xm Xr lenl lenr

Xl Xm−1 Xr wordm−1(ROOT) Xl + Xm Xr wordm(ROOT)
(3.2) Unary rule templates

N → N

(3.3) Bottom state templates
Xllen Xrlen
Xl−2Xl−1 Xr+1len Xl−1 Xr+1 Xr+2len
wllwlrXllen wllwlrXrlen XlXrwlllen XlXrwlrlen
wordlwordrXlXrlen wordlwordrXlXr

Xl−1Xl(LEAF) Xl+1Xl(LEAF) Xlwordl(LEAF) Xlwll(LEAF)
Xl+aXr+blen wordl+awordr+b −1 ≤ a, b ≤ 1

(3.3) Top state templates
Xl−1Xl(LEAF) Xl+1Xl(LEAF) Xlwordl(LEAF) Xlwll(LEAF)
Xl+aXr+blen wordl+awordr+b −1 ≤ a, b ≤ 1

Table 3: Feature templates for parsing, where X can be word, first and last character of word, first and last character
bigram of word, POS tag. Xl+a/Xr−a denotes the first/last ath X in the span, while Xl−a/Xr+a denotes the ath X
left/right to span. Xm is the first X of right child, and Xm−1 is the last X of the left child. len, lenl, lenr denote the
length of the span, left child and right child respectively. wl is the length of word. ROOT/LEAF means the template
can only generate the features for the root/initial span.

ing, we perform joint decoding to combine informa-
tion from the three models. Parameters of word seg-
mentation (θseg), POS tagging (θpos), and parsing
models (θparse = θbottom⊕top⊕ unary⊕bianry) are s-
caled by three positive hyper-parameters α, β, and
γ respectively, which control their contribution in
the joint model. If α >> β >> γ, then the join-
t model is equivalent to a pipeline model, in which
there is no feedback from downstream models to up-
stream ones. For well tuned hyper-parameters, we
expect that segmentation and POS tagging results
can be improved by parsing information. The hyper-
parameters are tuned on development data. In the
following sections, for simplicity we drop α, β, γ,
and just use θseg, θpos, θparse to represent the scaled
parameters.

The basic idea of our decoding algorithm is to ex-
tend the CYK parsing algorithm so that it can deal
with transition features in POS tagging and segmen-
tation scores in word segmentation.

3.4.1 Algorithm
The joint decoding algorithm is shown in Algo-

rithm 1. Given a sentence x = c1, . . . , cl, Line 0
calculates the scores of all possible words in the sen-
tence using Eq(1). There are l(l + 1)/2 word candi-
dates in total.

Surrounding words are important features for

POS tagging and parsing; however, they are un-
available because segmentation is incomplete before
parsing. Therefore, we adopt pseudo surrounding
features by simply fixing the context words as the s-
ingle most likely ones. Given a word candidate wi,j

from ci to cj , its previous word s′ is the rightmost
one in the best word sequence of c1, . . . , ci−1, which
can be obtained by dynamic programming. Recur-
sively, the second word left to wi,j is the previous
word of s′. The next word of wi,j is defined similar-
ly. In Line 1, we use bidirectional Viterbi decoding
to obtain all the surrounding words. In the forward
direction, the algorithm starts from the first charac-
ter boundary to the last, and finds the best previous
word for the ith character boundary bi. In the back-
ward direction, the algorithm starts from right to left,
and finds the best next word of each bi.

In Line 2, for each word candidate, we can calcu-
late the score of each POS tag using state features in
the POS tagging model, since the context words are
available now. The score function of word wi,j with
POS tag t is:

scoreseg⊕pos(x, i, j, t) =

scoreseg(x, i, j) + θpos · fpos(x, wi,j , t) (2)

In Line 3, POS tags of surrounding words can
be obtained similarly using bidirectional decoding.
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Algorithm 1 Joint Word Segmentation, POS tagging, and Parsing Algorithm
Input: Sentence x = c1, . . . , cl, beam size B, scaled word segmentation model, POS tagging model and
parsing model.
Output: Word sequence, POS tag sequence, and parse tree
0: ∀0 ≤ i ≤ j ≤ l − 1, calculate scoreseg(x, i, j) using Equation (1)
1: For each character boundary bi, 0 ≤ i ≤ l, get the best previous and next words of bi using bidirectional

Viterbi decoding
2: ∀0 ≤ i ≤ j ≤ l − 1, t ∈ T , calculate scoreseg⊕pos(x, i, j, t) using Equation (2)
3: ∀bi, 0 ≤ i ≤ l, t ∈ T , get the best POS tags of words left/right to bi using bidirectional viterbi

decoding.
4: For each word candidate wi,j , 0 ≤ i ≤ j ≤ l − 1
5: For each bottom state N , POS tag t ∈ T � step 1 (Line 5-7): get bottom states
6: scorebottom(x, i, j, wi,j , t, N) = scoreseg⊕pos(x, i, j, t) + θbottom · fbottom(x, i, j, wi,j , t, N)
7: Keep B best scorebottom.
8: For each top state N � step 2 (Line 8-9): get top states
9: scoretop(x, i, j, wi,j , t, N) = maxN {scorebottom(x, i, j, wi,j , t, N) + θtop · ftop(x, i, j, wi,j , t, N)

+θunary · funary(x, i, j, wi,j , t, N → N)
}

10: for i = 0, . . . , l − 1 do
11: for width = 1, . . . , l − 1 do
12: j = i + width
13: for k = i + 1, . . . , j do
14: scorebottom(x, i, j,w, t, N) = maxl,r

{
scoretop(x, i, k − 1,wl, tl, N l) + scoretop(x, k, j,wr, tr, Nr)

+θbinary · fbinary(x, i, j, k,w, t, N → Nr + Nr) + θpos · fpos(t
last
l → tfirst

r )
+θbottomfbottom(x, i, j,w, t, N)}

15: Keep B best scorebottom � step 1 (Line 14-15): get bottom states
16: For each top state N � step 2 (Line 16-17): get top states
17: scoretop(x, i, j,w, t, N) = maxN {scorebottom(x, i, j,w, t, N)

+θunary · funary(x, i, j,w, t, N → N)
}

18: end for
19: end for
20: end for

Line 0 1 2 3 6 9 14 15 Total Bound(w.r.t. l)
Complexity l2 l2 |T |l2 |T |2l2 |T |Ml2 BMl2 l3MB2 BMl2 l3MB2

Table 4: Complexity Analysis of Algorithm 1.

That is, for wi,j with POS tag t, we use Viterbi algo-
rithm to search the optimal POS tags of its left and
right words.

In Lines 4-9, each word was initialized as a basic
span. A span structure in the joint model is a 6-tuple:
S(i, j,w, t, N, N), where i, j are the boundary in-
dices, w, t are the word sequence and POS sequence
within the span respectively, and N,N are the bot-
tom and top states. There are two types of surround-
ing n-grams: one is inside the span, for example, the
first word of a span, which can be obtained from w;
the other is outside the span, for example, the pre-
vious word of a span, which is obtained from the

pseudo context information. The score of a basic s-
pan depends on its corresponding word and POS pair
score, and the weights of the active state and unary
features.

To avoid enumerating the combination of the bot-
tom and top states, initialization for each span is di-
vided into 2 steps. In the first step, the score of ev-
ery bottom state is calculated using bottom state fea-
tures, and only the B best states are maintained (see
Line 6-7). In the second step, top state features and
unary rule features are used to get the score of each
top state (Line 9), and only the top B states are pre-
served.
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Similarly, there are two steps in the merge opera-
tion: S(i, j,w, t, N, N) = Sl(i, k,wl, tl, Nl, Nl) +

Sr(k + 1, j,wr, tr, Nr, Nr). The score of the bot-
tom state N is calculated using binary features
fbinary(x, i, j, k,w, t, N → N r +N r), bottom state
features fbottom(x, i, j,w, t, N), and POS tag transi-
tion features that depend on the boundary POS tags
of Sl and Sr. See Line 14 of Algorithm 1, where
tlast
l and tfirst

r are the POS tags of the last word in
the left child span and the first word in the right child
span respectively.

3.4.2 Complexity analysis
Given a sentence of length l, the complexity for

each line of Algorithm 1 is listed in Table 4, where
|T | is the size of POS tag set, M is the number of
states, and B is the beam size.

4 Experiments

4.1 Data
For comparison with other systems, we use the CT-
B5 corpus, which has been studied for Chinese word
segmentation, POS tagging and parsing. We use the
standard train/develop/test split of the data. Details
are shown in Table 5.

CTB files # sent. # words
Training 1-270 18089 493,939

400-1151
Develop 301-325 350 6,821

Test 271-300 348 8,008

Table 5: Training, development, and test data of CTB 5.

4.2 Evaluation Metric
We evaluate system performance on the individual
tasks, as well as the joint tasks.1 For word segmen-
tation, three metrics are used for evaluation: pre-
cision (P), recall (R), and F-score (F) defined by
2PR/(P+R). Precision is the percentage of correct
words in the system output. Recall is the percent-
age of words in gold standard annotations that are
correctly predicted. For parsing, we use the stan-
dard parseval evaluation metrics: bracketing preci-
sion, recall and F-score.

1Note that the joint task refers to automatic segmentation
and tagging/parsing. It can be achieved using a pipeline system
or our joint decoding method.

For joint word segmentation and POS tagging, a
word is correctly predicted if both the boundaries
and the POS tag are correctly identified. For joint
segmentation, POS tagging, and parsing task, when
calculating the bracket scores using existing parseval
tools, we need to consider possible word segmenta-
tion errors. To do this, we add the word boundary
information in states – a bracket is correct only if
its boundaries, label and word segmentation are all
correct. One example is shown in Figure 3. Notice
that identity unary rules are removed during evalua-
tion. The basic spans are characters, not words, be-
cause the number of words in reference and predic-
tion may be different. POS tags are removed since
they do not affect the bracket scores. If the segmen-
tation is perfect, then the bracket scores of the mod-
ified tree are exactly the same as the original tree.
This is similar to evaluating parsing performance on
speech transcripts with automatic sentence segmen-
tation (Roark et al., 2006).

! " # $ %

NP(0,2,5)

!" #$%

Shanghai office

NP

NR NN - - - - -

Shanghai office

Figure 3: Boundary information is added to states to cal-
culate the bracket scores in the face of word segmentation
errors. Left: the original parse tree, Right: the converted
parse tree. The numbers in the brackets are the indices of
the character boundaries based on word segmentation.

4.3 Parameter Estimation

We train three submodels using the gold features,
that is, POS tagger is trained using the perfect seg-
mentation, and parser is trained using perfect seg-
mentation and POS tags. Some studies reported
that better performance may be achieved by train-
ing subsequent models using representative output
of the preceding models (Che et al., 2009). Hence
for comparison we trained another parser using auto-
matically generated POS tags obtained from 10-fold
cross validation, but did not find significant differ-
ence between these two parsers when testing on the
perfectly segmented development dataset. Therefore
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we use the parser trained with perfect POS tags for
the joint task.

Three hyper-parameters, α, β, and γ, are tuned
on development data using a heuristic search. Pa-
rameters that achieved the best joint parsing result
are selected. In the search, we fixed γ = 1 and
varied α, β. First, we set β = 1, and enumerate
α = 1

4 , 1
2 , 1, 2, . . . , and choose the best α∗. Then,

we set α = α∗ and vary β = 1
4 , 1

2 , 1, 2, . . . , and
select the best β∗.

Table 6 lists the parameters we used for training
the submodels, as well as the hyper-parameters for
joint decoding.

Model Parameter Value
Character based Gaussian prior 0.01
word segmentor # Feature 3,875,802
Word based Gaussian prior 0.01
word segmentor # Feature 312,533
POS tagger Gaussian prior 0.1

# Feature 48,608,802
Parser Iteration Number 10

# Feature 49,369,843
Hyper-parameter α 4
Hyper-parameter β 0.5

Joint Hyper-parameter γ 1
Beam Size B 20

Table 6: Parameters used in our system.

4.4 Experimental Results
In this section we first show that our sub-models are
better than or comparable to state-of-the-art systems,
and then the joint model is superior to the pipeline
approach.

4.4.1 Evaluating Sub-models
Table 7 shows word segmentation results using

our word segmentation submodel, in comparison to
a few state-of-the-art systems. For our segmentor,
we show results for two variants: one removes tran-
sition features as described in Section 3.1, the other
uses CRFs to learn the weights of transition features.
We can see that our system is competitive with al-
l the others except Sun’s that used additional idiom
resources. Our two word segmentors have similar
performance. Since the one without transition fea-
tures can be naturally integrated into the joint sys-
tem, we use it in the following joint tasks.

System P R F
(Jiang et al., 2008b) - - 97.74
(Jiang et al., 2008a) - - 97.85

(Kruengkrai et al., 2009) 97.46 98.29 97.87
(Zhang and Clark, 2010) - - 97.78
(Zhang and Clark, 2011) - - 97.78

(Sun, 2011) - - 98.17
Ours (w/o transition features) 97.45 98.24 97.85
Ours (with transition features) 97.44 98.23 97.84

Table 7: Word segmentation results.

For the POS tagging only task that takes gold s-
tandard word segmentation as input, we have two
systems. One uses the linear chain CRFs as de-
scribed in Section 3.2, the other is obtained using the
parser described in Section 3.3 – the parser gener-
ates POS tag hypotheses when POS tag features are
not used. The POS tagging accuracy is 95.53% and
95.10% using these two methods respectively. The
better performance from the former system may be
because the local label dependency is more helpful
for POS tagging than the long distance dependencies
that might be noisy. This result also confirms our
choice of using an independent POS tagger for the
sub-model, rather than relying on a parser for POS
tagging. However, since there are no reported results
for this setup, we demonstrate the competence of our
POS tagger using the joint word segmentation and
POS tagging task. Table 8 shows the performance of
a few systems along with ours, all using the pipeline
approach where automatic segmentation is followed
by POS tagging. We can see that our POS tagger is
comparable to the others.

System P R F
(Jiang et al., 2008b) - - 93.37
(Jiang et al., 2008a) - - 93.41

(Kruengkrai et al., 2009) 93.28 94.07 93.67
(Zhang and Clark, 2010) - - 93.67
(Zhang and Clark, 2011) - - 93.67

(Sun, 2011) - - 94.02
Ours (pipeline) 93.10 93.96 93.53

Table 8: Results for the joint word segmentation and POS
tagging task.

For parsing, Table 9 presents the parsing result
on gold standard segmented sentence. Notice that
the result of (Harper and Huang, 2009; Zhang and
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Clark, 2011) are not directly comparable to ours, as
they used a different data split. The best published
system result on CTB5 is Petrov and Klein’s, which
used PCFG with latent Variables. Our system per-
forms better mainly because it benefits from a large
amount of features.

System LP LR F
(Petrov and Klein, 2007) 84.8 81.9 83.3

(Jiang et al., 2009) - - 82.35
(Harper and Huang, 2009)* 83.22 82.84 83.03
(Zhang and Clark, 2011)* 78.6 78.0 78.3

Ours 84.57 83.68 84.13
Ours (w/ parent annotation) 83.35 82.73 83.04
Ours (no POS tag feature) 83.49 82.97 83.23

Table 9: Parsing results using gold standard word seg-
mentation.

For our parser, besides the model described in
Section 3.3, we tried two variations: one does not
use the automatic POS tag features, the other one is
learned on the parent annotated training data. The
results in Table 9 show that there is a performance
degradation when using parent annotation. This may
be due to the introduction of a large number of s-
tates, resulting in sparse features. We also notice
that with the help of the POS tag information, even
automatically generated, the parser gained 0.9% im-
provement in F-score. This demonstrates the advan-
tage of using a better independent POS tagger and
incorporating it in parsing.

Finally Table 10 shows the results for the three
tasks using our joint decoding method in compari-
son to the pipeline method. We can see that the joint
model outperforms the pipeline one. This is mainly
because of a better parsing module as well as join-
t decoding. In the table we also include results of
(Jiang et al., 2009), which is the only reported join-
t parsing result we found using the same data split
on CTB5. They achieved 80.28% parsing F-score
using automatic word segmentation. Their adapted
system Jiang09+ leveraged additional corpus to im-
prove Chinese word segmentation, resulting in an F-
score of 81.07%. Our system has better performance
than these.

System Task P R F
Jiang09 Parse - - 80.28

Jiang09+ Parse - - 81.07
Ours Seg. 97.45 98.24 97.85

Pipeline POS 93.10 93.96 93.53
Parse 81.87 81.65 81.76

Ours Seg. 97.56 98.36 97.96
Joint POS 93.43 94.20 93.81

Parse 83.03 82.66 82.85

Table 10: Results for the joint segmentation, tagging, and
parsing task using pipeline and joint models.

4.5 Error Analysis

We compared the results from the pipeline and our
joint decoding systems in order to understand the
impact of the joint model on word segmentation and
POS tagging. We notice that the joint model tend to
generate more words than the pipeline model. For
example, “巴尔一行” is one word in the pipeline
model, but correctly segmented as two words “巴
尔/一行” in the joint model. This tendency of seg-
mentation also makes it fail to recognize some long
words, especially OOV words. For example, “事
实上” is segmented as “事实/上”. In the data set,
we find that, the joint model corrected 10 missing
boundaries over the pipeline method, and introduced
3 false positive segmentation errors.

For the analysis of POS tags, we only examined
the words that are correctly segmented by both the
pipeline and the joint models. Table 11 shows the
increase and decrease of error patterns of the joint
model over the pipeline POS tagger. An error pat-
tern “X → Y” means that the word whose true tag is
‘X’ is assigned a tag ‘Y’. All the patterns are ranked
in descending order of the reduction/increase of the
error number. We can see that the joint model has a
clear advantage in the disambiguation of {VV, NN}
and {DEG, DEC}, which results in the overall im-
proved performance. In contrast, the joint method
performs worse on ambiguous POS pairs such as
{NN, NR}. This observation is similar to those re-
ported by (Li et al., 2011; Hatori et al., 2011).

5 Conclusion

In this paper, we proposed a new algorithm for joint
Chinese word segmentation, POS tagging, and pars-
ing. Our algorithm is an extension of the CYK
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error pattern # ↓ error pattern # ↑
NN→ VV 47 19 NN→ NR 15 12
VV→ NN 42 13 NR→ NN 7 5

DEG→ DEC 23 10 JJ→ P 1 4
NN→ JJ 29 8 NN→ DT 2 4

DEC→ DEG 11 4 P→ VV 3 2
JJ→ NN 12 4 AD→ NN 1 2

Table 11: POS tagging error patterns. # means the error
number of the corresponding pattern made by the pipeline
tagging model. ↓ and ↑ mean the error number reduced
or increased by the joint model.

parsing method. The sub-models are independently
trained for the three tasks to reduce model complex-
ity and optimize individual sub-models. Our exper-
iments demonstrate the advantage of the joint mod-
els. In the future work, we will compare this joint
model to the pipeline approach that uses multiple
candidates or soft decisions in the early modules.
We will also investigate methods for joint learning
as well as ways to speed up the joint decoding algo-
rithm.
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Abstract

In this paper, we propose a novel translation
model (TM) based cross-lingual data selec-
tion model for language model (LM) adapta-
tion in statistical machine translation (SMT),
from word models to phrase models. Given
a source sentence in the translation task, this
model directly estimates the probability that
a sentence in the target LM training corpus
is similar. Compared with the traditional ap-
proaches which utilize the first pass translation
hypotheses, cross-lingual data selection mod-
el avoids the problem of noisy proliferation.
Furthermore, phrase TM based cross-lingual
data selection model is more effective than
the traditional approaches based on bag-of-
words models and word-based TM, because
it captures contextual information in model-
ing the selection of phrase as a whole. Ex-
periments conducted on large-scale data set-
s demonstrate that our approach significantly
outperforms the state-of-the-art approaches on
both LM perplexity and SMT performance.

1 Introduction

Language model (LM) plays a critical role in sta-
tistical machine translation (SMT). It seems to be
a universal truth that LM performance can always
be improved by using more training data (Brants et
al., 2007), but only if the training data is reason-
ably well-matched with the desired output (Moore
and Lewis, 2010). It is also obvious that among the
large training data the topics or domains of discus-
sion will change (Eck et al., 2004), which causes the
mismatch problems with the translation task. For

this reason, most researchers preferred to select sim-
ilar training data from the large training corpus in the
past few years (Eck et al., 2004; Zhao et al., 2004;
Kim, 2005; Masskey and Sethy, 2010; Axelrod et
al., 2011). This would empirically provide more ac-
curate lexical probabilities, and thus better match the
translation task at hand (Axelrod et al., 2011).

Many previous data selection approaches for LM
adaptation in SMT depend on the first pass transla-
tion hypotheses (Eck et al., 2004; Zhao et al., 2004;
Kim, 2005; Masskey and Sethy, 2010), they selec-
t the sentences which are similar to the translation
hypotheses. These schemes are overall limited by
the quality of the translation hypotheses (Tam et al.,
2007 and 2008), and better initial translation hy-
potheses lead to better selected sentences (Zhao et
al., 2004). However, while SMT has achieved a
great deal of development in recent years, the trans-
lation hypotheses are still far from perfect (Wei and
Pal, 2010), which have many noisy data. The noisy
translation hypotheses mislead data selection pro-
cess (Xu et al., 2001; Tam et al., 2006 and 2007;
Wei and Pal, 2010), and thus take noisy data into the
selected training data, which causes noisy prolifera-
tion and degrades the performance of adapted LM.

Furthermore, traditional approaches for LM adap-
tation are based on bag-of-words models and con-
sidered to be context independent, despite of their
state-of-the-art performance, such as TF-IDF (Eck et
al., 2004; Zhao et al., 2004; Hildebrand et al., 2005;
Kim, 2005; Foster and Kuhn, 2007), centroid simi-
larity (Masskey and Sethy, 2010), and cross-lingual
similarity (CLS) (Ananthakrishnan et al., 2011a).
They all perform at the word level, exact only ter-
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m matching schemes, and do not take into account
any contextual information when modeling the se-
lection by single words in isolation, which degrade
the quality of selected sentences.

In this paper, we argue that it is beneficial to mod-
el the data selection based on the source transla-
tion task directly and capture the contextual infor-
mation for LM adaptation. To this end, we propose
a more principled translation model (TM) based
cross-lingual data selection model for LM adapta-
tion, from word models to phrase models. We as-
sume that the data selection should be performed
by the cross-lingual model and at the phrase lev-
el. Given a source sentence in the translation task,
this model directly estimates the probability before
translation that a sentence in the target LM train-
ing corpus is similar. Therefore, it does not require
the translation task to be pre-translation as in mono-
lingual adaptation, and can address the problem of
noisy proliferation.

To the best of our knowledge, this is the first
extensive and empirical study of using phrase T-
M based cross-lingual data selection for LM adap-
tation. This model learns the transform probabili-
ty of a multi-term phrase in a source sentence giv-
en a phrase in the target sentence of LM training
corpus. Compared with bag-of-words models and
word-based TM that account for selecting single
words in isolation, this model performs at the phrase
level and captures some contextual information in
modeling the selection of phrase as a whole, thus it
is potentially more effective. More precise data se-
lection can be determined for phrases than for word-
s. In this model, we propose a linear ranking model
framework to further improve the performance, re-
ferred to the linear discriminant function (Duda et
al., 2001; Collins, 2002; Gao et al., 2005) in pattern
classification and information retrieval (IR), where
different models are incorporated as features, as we
will show in our experiments.

Unlike the general TM in SMT, we explore the
use of TextRank algorithm (Mihalcea et al., 2004)
to identify and eliminate unimportant words (e.g.,
non-topical words, common words) for corpus pre-
processing, and construct TM by important words.
This reduces the average number of words in cross-
lingual data selection model, thus improving the ef-
ficiency. Moreover, TextRank utilizes the contex-

t information of words to assign term weights (Lee
et al., 2008), which makes phrase TM based cross-
lingual data selection model play its advantage of
capturing the contextual information, thus further
improving the performance.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the related work of
LM adaptation. Section 3 presents the framework
of cross-lingual data selection for LM adaptation.
Section 4 describes our proposed TM based cross-
lingual data selection model: from word models to
phrase models. In section 5 we present large-scale
experiments and analyses, and followed by conclu-
sions and future work in section 6.

2 Related Work

TF-IDF and cosine similarity have been widely used
for LM adaptation (Eck et al., 2004; Zhao et al.,
2004; Hildebrand et al., 2005; Kim, 2005; Foster
and Kuhn, 2007). Masskey and Sethy (2010) se-
lected the auxiliary data by computing centroid sim-
ilarity score to the centroid of the in-domain data.
The main idea of these methods is to select the sen-
tences which are similar to the first pass translation
hypotheses or in-domain corpus from the large LM
training corpus, and estimate the bias LM for SMT
system to improve the translation quality.

Tam et al. (2007 and 2008) proposed a bilingual-
LSA model for LM adaptation. They integrated
the LSA marginal into the target generic LM using
marginal adaptation which minimizes the Kullback-
Leibler divergence between the adapted LM and the
generic LM. Ananthakrishnan et al. (2011a) pro-
posed CLS to bias the count and probability of cor-
responding n-gram through weighting the LM train-
ing corpus. However, these two cross-lingual ap-
proaches focus on modify LM itself, which are d-
ifferent from data selection method for LM adap-
tation. In our comparable experiments, we apply
CLS for the first time to the task of cross-lingual
data selection for LM adaptation. Due to lack of
smoothing measure for sparse vector representation
in CLS, the similarity computation is not accurate
which degrades the performance of adapted LM. To
avoid this, we add smoothing measure like TF-IDF,
called CLSs, as we will discuss in the experiments.

Snover et al. (2008) used a word TM based CLIR
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system (Xu et al., 2001) to select a subset of tar-
get documents comparable to the source document
for adapting LM. Because of the data sparseness in
the document state and it operated at the document
level, this model selected large quantities of irrele-
vant text, which may degrade the adapted LM (Eck
et al., 2004; Ananthakrishnan et al., 2011b). In our
word TM based cross-lingual data selection model,
we operate at the sentence level and add the smooth-
ing mechanism by integrating with the background
word frequency model, and these can significantly
improve the performance. Axelrod et al. (2011)
proposed a bilingual cross-entropy difference to se-
lect data from parallel corpus for domain adaptation
which captures the contextual information slightly,
and outperformed monolingual cross-entropy differ-
ence (Moore and Lewis, 2010), which first shows the
advantage of bilingual data selection. However, its
performance depends on the parallel in-domain cor-
pus which is usually hard to find, and its application
is assumed to be limited.

3 Cross-Lingual Data Selection for
Language Model Adaptation

Our LM adaptation is an unsupervised similar train-
ing data selection guided by TM based cross-lingual
data selection model. For the source sentences in
the translation task, we estimate a new LM, the bias
LM, from the corresponding target LM training sen-
tences which are selected as the similar sentences.
Since the size of the selected sentences is small, the
corresponding bias LM is specific and more effec-
tive, giving high probabilities to those phrases that
occur in the desired output translations.

Following the work of (Zhao et al., 2004; Snover
et al., 2008), the generic LM Pg(wi|h) and the bias
LM Pb(wi|h) are combined using linear interpola-
tion as the adapted LM Pa(wi|h), which is shown to
improve the performance over individual model,

Pa(wi|h) = µPg(wi|h) + (1− µ)Pb(wi|h) (1)

where the interpolation factor µ can be simply esti-
mated using the Powell Search algorithm (Press et
al., 1992) via cross-validation.

Our work focuses on TM based cross-lingual data
selection model, from word model to phrase models,
and the quality of this model is crucial to the perfor-
mance of adapted LM.

4 Translation Model for Cross-Lingual
Data Selection (CLTM)

Let Q = q1, . . . ,qj be a source sentence in the
translation task and S = w1, . . . ,wi be a sentence
in the general target LM training corpus, thus cross-
lingual data selection model can be framed proba-
bilistically as maximizing the P (S|Q) . By Bayes’
rule,

P (S|Q) =
P (S)P (Q|S)

P (Q)
(2)

where the prior probability P (S) can be viewed as
uniform, and the P (Q) is constant across all sen-
tences. Therefore, selecting a sentence to maximize
P (S|Q) is equivalent to selecting a sentence that
maximizes P (Q|S).

4.1 Word-Based Translation Model for
Cross-Lingual Data Selection (CLWTM)

4.1.1 Cross-Lingual Sentence Selection Model
Following the work of (Xu et al., 2001; Snover et al.,
2008), CLWTM can be described as

P (Q|S) =
∏
q∈Q

P (q|S) (3)

P (q|S) = αP (q|Cq)+ (1−α)
∑
w∈S

P (q|w)P (w|S)

(4)
where α is the interpolation weight empirically set
as a constant1, P (q|w) is the word-based TM which
is estimated by IBM Model 1 (Brown et al., 1993)
from the parallel corpus, P (q|Cq) and P (w|S) are
the un-smoothed background and sentence model,
respectively, estimated using maximum likelihood
estimation (MLE) as

P (q|Cq) =
freq(q, Cq)

|Cq|
(5)

P (w|S) =
freq(w, S)

|S|
(6)

where Cq refers to the translation task, freq(q, Cq)
refers to the number of times q occurs in Cq,
freq(w, S) refers to the number of times w occurs
in S, and |Cq| and |S| are the sizes of the translation
task and the current target sentence, respectively.

1As in Xu et al. (2001), a value of 0.3 was used for α.
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4.1.2 Ranking Candidate Sentences
Because of the data sparseness in the sentence state
which degrades the model, Equation (6) does not
perform well in our data selection experiments. In-
spired by the work of (Berger et al., 1999) in IR, we
make the following smoothing mechanism:

P (q|S) = αP (q|Cq)+(1−α)
∑
w∈S

P (q|w)Ps(w|S)

(7)
Ps(w|S) = βP (w|Cs) + (1− β)P (w|S) (8)

P (w|Cs) =
freq(w,Cs)

|Cs|
(9)

where P (w|Cs) is the un-smoothed background
model, estimated using MLE as Equation (5), Cs

refers to the LM training corpus and |Cs| refers to
its size. Here, β is interpolation weight; notice that
letting β = 0 in Equation (8) reduces the model to
the un-smoothed model in Equation (4).

4.2 Phrase-Based Translation Model for
Cross-Lingual Data Selection (CLPTM)

4.2.1 Cross-Lingual Sentence Selection Model
The phrase-based TM (Koehn et al., 2003; Och and
Ney, 2004) has shown superior performance com-
pared to the word-based TM. In this paper, the
goal of phrase-based TM is to transfer S into Q.
Rather than transferring single words in isolation,
the phrase model transfers one sequence of word-
s into another sequence of words, thus incorporat-
ing contextual information. Inspired by the work
of web search (Gao et al., 2010) and question re-
trieval in community question answer (Q&A) (Zhou
et al., 2011), we assume the following generative
process: first the sentence S is broken into K non-
empty word sequences w1, . . . ,wk, then each is
transferred into a new non-empty word sequences
q1, . . . ,qk, and finally these phrases are permutat-
ed and concatenated to form the sentence Q, where
q and w denote the phrases or consecutive sequence
of words.

To formulate this generative process, let U denote
the segmentation of S into K phrases w1, . . . ,wk,
and let V denote the K phrases q1, . . . ,qk, we refer
to these (wi,qi) pairs as bi-phrases. Finally, let M
denote a permutation ofK elements representing the
final ranking step.

Next we place a probability distribution over
rewrite pairs. Let B(S,Q) denote the set of U ,
V , M triples that transfer S into Q. Here we as-
sume a uniform probability over segmentations, so
the phrase-based selection probability can be formu-
lated as

P (Q|S) ∝
∑

(U,V,M)∈
B(S,Q)

P (V |S,U) · P (M |S,U, V )

(10)
Then, we use the maximum approximation to the

sum:

P (Q|S) ≈ max
(U,V,M)∈
B(S,Q)

P (V |S,U) · P (M |S,U, V )

(11)
Although we have defined a generative model for

transferring S into Q, our goal is to calculate the
ranking score function over existing Q and S. How-
ever, this model can not be used directly for sen-
tence ranking becauseQ and S are often of different
lengths, the length of S is almost 1.5 times to that of
Q in our corpus, leaving many words in S unaligned
to any word in Q. This is another key difference be-
tween our task and SMT. As pointed out by the pre-
vious work (Berger and Lafferty, 1999; Gao et al.,
2010; Zhou et al., 2011), sentence-query selection
requires a distillation of the sentence, while selec-
tion of natural language tolerates little being thrown
away. Thus we restrict our attention to those key sen-
tence words that form the distillation of S, do not
consider the unaligned words in S, and assume that
Q is transfered only from the key sentence words.

In this paper, the key sentence words are identi-
fied via word alignment. Let A = a1 . . . aJ be the
”hidden” word alignment, which describes a map-
ping from a term position j in Q to a word position
aj in S. We assume that the positions of the key
sentence words are determined by the Viterbi align-
ment Â, which can be obtained using IBM Model 1
(Brown et al., 1993) as follows:

Â = arg max
A

P (Q,A|S)

= arg max
A

{
P (J |I)

J∏
j=1

P (qj |waj )
}

=
[
arg max

aj

P (qj |waj )
]J

j=1
(12)
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Given Â, when scoring a given Q/S pair, we re-
strict our attention to those U , V , M triples that are
consistent with Â, which we denote as B(S,Q, Â).
Here, consistency requires that if two words are
aligned in Â, then they must appear in the same bi-
phrase (wi,qi). Once the word alignment is fixed,
the final permutation is uniquely determined, so we
can safely discard that factor. Then Equation (11)
can be written as

P (Q|S) ≈ max
(U,V,M)∈
B(S,Q,Â)

P (V |S,U) (13)

For the sole remaining factor P (V |S,U), we
assume that a segmented queried question V =
q1, . . . ,qk is generated from left to right by transfer-
ring each phrase w1, . . . ,wk independently, as fol-
lows:

P (V |S,U) =
K∏

k=1

P (qk|wk) (14)

where P (qk|wk) is a phrase translation probability
computed from the parallel corpus, which can be es-
timated in two ways (Koehn et al., 2003; Och and
Ney, 2004): relative frequency and lexical weight-
ing, and has two format: phrase translation proba-
bility and lexical weight probability.

In order to find the maximum probability assign-
ment P (Q|S) efficiently, we use a dynamic pro-
gramming approach, somewhat similar to the mono-
tone decoding algorithm described in the work (Och,
2002). We consider quantity aj as the maximal
probability of the most likely sequence of phrases
in S covering the first j words in Q, therefore the
probability can be calculated using the following re-
cursion:

step (1). Initialization:

α0 = 1 (15)

step (2). Induction:

αj =
∑

j′<j,q=qj′+1...qj

{
αj′P (q|wq)

}
(16)

step (3). Total:

P (Q|S) = αJ (17)

4.2.2 Ranking Candidate Sentences
However, directly using the phrase-based TM, com-
puted in Equations (15) to (17), to rank the candi-
date sentences does not perform well. Inspired by
the linear discriminant function (Duda et al., 2001;
Collins, 2002; Gao et al., 2005) in pattern classifi-
cation and IR, we therefore propose a linear rank-
ing model framework for cross-lingual data selec-
tion model in which different models are incorporat-
ed as features.

We consider the linear ranking model as follows:

Score(Q,S) = λT ·H(Q,S)

=
N∑

n=1

λnhn(Q,S) (18)

where the model has a set of N features, and each
feature is an arbitrary function that maps (Q|S) to a
real value, i.e., H(Q,S) ∈ R. λn for n = 1 . . . N
is the corresponding parameters of each feature,
and we optimize these parameters using the Pow-
ell Search algorithm (Press et al., 1992) via cross-
validation.

The used features in the linear ranking model are
as follows:
• Phrase translation feature (PT):
hPT (Q,S,A) = logP (Q|S), where P (Q|S)
is computed using Equations (15) to (17), and
P (qk|wk) is phrase translation probability.
• Inverted phrase translation feature (IPT):
hIPT (S,Q,A) = logP (S|Q), where P (S|Q)
is computed using Equations (15) to (17), and
P (wk|qk) is inverted phrase translation proba-
bility.
• Lexical weight feature (LW): hLW (Q,S,A) =

logP (Q|S), where P (Q|S) is computed using
Equations (15) to (17), and P (qk|wk) is lexical
weight probability.
• Inverted lexical weight feature (ILW):
hILW (S,Q,A) = logP (S|Q), where
P (S|Q) is computed using Equations (15) to
(17), and P (wk|qk) is inverted lexical weight
probability.
• Unaligned word penalty feature (UWP):
hUWP (Q,S,A), which is defined as the ratio
between the number of unaligned terms and
the total number of terms in Q.
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• Word-based translation feature (WT):
hWT (Q,S,A) = logP (Q|S), where P (Q|S)
is the word-based TM defined by Equations (3)
and (7).

4.3 Eliminating Unimportant Words (EUW)

To improve the efficiency of cross-lingual data se-
lection process, we consider the translation task, the
LM training corpus and the parallel corpus in our
task are constructed by the key words or importan-
t words, and thus construct TM by the key words
or important words, which is another key difference
between our task and SMT. We identify and elimi-
nate unimportant words, somewhat similar to Q&A
retrieval (Lee et al., 2008; Zhou et al., 2011). Thus,
the average number of words (the total word number
inQ and S) in cross-lingual sentence selection mod-
el would be minimized naturally, and the efficiency
of cross-lingual data selection would be improved.

In this paper, we adopt a variant of TextRank
algorithm (Mihalcea and Tarau, 2004), a graph-
based ranking model for key word extraction which
achieves state-of-the-art accuracy. It identifies and
eliminates unimportant words from the corpus, and
assumes that a word is unimportant if it holds a rela-
tively low significance in the corpus. Compared with
the traditional approaches, such as TF-IDF, Tex-
tRank utilizes the context information of words to
assign term weights (Lee et al., 2008), so it further
improves the performance of CLPTM, as we will
show in the experiments.

Following the work of (Lee et al., 2008), the rank-
ing algorithm proceeds as follows. First, all the
words in a given document are added as vertices in
a graph. Then edges are added between words (ver-
tices) if the words co-occur in a fixed-sized window.
The number of co-occurrences becomes the weight
of an edge. When the graph is constructed, the score
of each vertex is initialized as 1, and the PageRank
based ranking algorithm is run on the graph itera-
tively until convergence. The TextRank score Rk

wi,D

of a word wi in document D at kth iteration is de-
fined as follows:

Rk
wi,D = (1−d)+d·

∑
∀j:(i,j)∈G

ei,j∑
∀l:(j,l)∈G ej,l

Rk−1
wj ,D

(19)
where d is a damping factor usually set as a constan-

t2, and ei,j is an edge weight between wi and wj .
In our experiments, we manually set the propor-

tion to be removed as 25%, that is to say, 75% of
total words in the documents would be remained as
the important words.

5 Experiments

We measure the utility of our proposed LM adap-
tation approach in two ways: (a) comparing refer-
ence translations based perplexity of adapted LMs
with the generic LM, and (b) comparing SMT per-
formance of adapted LMs with the generic LM.

5.1 Corpus and Tasks

We conduct experiments on two Chinese-to-English
translation tasks: IWSLT-07 (dialogue domain) and
NIST-06 (news domain).

IWSLT-07. The bilingual training corpus comes
from BTEC3 and CJK4 corpus, which contain-
s 3.82K sentence pairs with 3.0M/3.1M Chi-
nese/English words. The LM training corpus is from
the English side of the parallel data (BTEC, CJK,
and CWMT20085), which consists of 1.34M sen-
tences and 15.2M English words. The test set is
IWSLT-07 test set which consists of 489 sentences,
and the development set is IWSLT-05 test set which
consists of 506 sentences.

NIST-06. The bilingual training corpus comes
from Linguistic Data Consortium (LDC)6, which
consists of 3.4M sentence pairs with 64M/70M Chi-
nese/English words. The LM training corpus is from
the English side of the parallel data as well as the
English Gigaword corpus7, which consists of 11.3M
sentences. The test set is 2006 NIST MT Evaluation
test set which consists of 1664 sentences, and the de-
velopment set is 2005 NIST MT Evaluation test set
which consists of 1084 sentences.

2As in Lee et al. (2008), a value of 0.85 was used for d.
3Basic Traveling Expression Corpus
4China-Japan-Korea
5The 4th China Workshop on Machine Translation
6LDC2002E18, LDC2002T01, LDC2003E07, LD-

C2003E14, LDC2003T17, LDC2004T07, LDC2004T08,
LDC2005T06, LDC2005T10, LDC2005T34, LDC2006T04,
LDC2007T09

7LDC2007T07
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(a)IWSLT-07 (b)NIST-06
Figure 1: English reference translations based perplexity of adapted LMs vs. the size of selected training data with
different approaches on two development sets.

5.2 Perplexity Analysis

We randomly divide the development set into five
subsets and conduct 5-fold cross-validation experi-
ments. In each trial, we tune the parameter µ in E-
quation (1) and parameter λ in Equation (18) with
four of five subsets and then apply it to one re-
maining subset. The experiments reported below are
those averaged over the five trials.

We estimate the generic 4-gram LM with the en-
tire LM training corpus as the baseline. Then, we se-
lect the top-N sentences which are similar to the de-
velopment set, estimate the bias 4-gram LMs (with
n-gram cutoffs tuned as above) with these selected
sentences, and interpolate with the generic 4-gram
LM as the adapted LMs. All the LMs are estimated
by the SRILM toolkit (Stolcke, 2002). Perplexity is
a metric of LM performance, and the lower perplexi-
ty value indicates the better performance. Therefore,
we estimate the perplexity of adapted LMs accord-
ing to English reference translations.

Figure 1 shows the perplexity of adapted LMs vs.
the size of selected data. In this paper, we choose
TF-IDF as the foundation of our solution since TF-
IDF has gained the state-of-the-art performance for
LM adaptation (Eck et al., 2004; Hildebrand et al.,
2005; Kim, 2005; Foster and Kuhn, 2007). CLS
refers to the cross-lingual similarity of (Ananthakr-
ishnan et al., 2011a), and CLSs is our proposed im-
proved algorithm on CLS with optimization mea-
sure like TF-IDF. CLWTM(β = 0) refers to S-
nover et al. (2008), which is the un-smooth ver-

Task Method Perplexity Reduction

IWSLT-07

Baseline 524.1 –
TF-IDF 471.4 10.06%
CLS 475.7 9.23%
CLSs 468.9 10.53%
CLWTM(β = 0) 463.5 11.56%
CLWTM 451.5 13.85%
CLPTM(l = 4) 435.3 16.94%

NIST-06

Baseline 398.3 –
TF-IDF 346.2 13.08%
CLS 351.6 11.72%
CLSs 340.9 14.41%
CLWTM(β = 0) 341.1 14.36%
CLWTM 332.7 16.47%
CLPTM(l = 4) 319.2 19.86%

Table 1: English reference translations based perplexi-
ty of adapted LMs with different approaches on two test
sets, with the top 8K sentences on IWSLT-07 and top 16K
sentences on NIST-06, respectively.

sion of our proposed CLWTM in the document s-
tate. CLPTM(l = 4) is our proposed CLPTM with
a maximum phrase length of four, and we score the
target sentences by the highest scoring Q/S pair.

The results in Figure 1 indicate that English ref-
erence translations based perplexity of adapted LMs
decreases consistently with increase of the size of
selected top-N sentences, and increases consistent-
ly after a certain size in all approaches. Therefore,
proper size of similar sentences with the transla-
tion task makes the adapted LM perform well, but
if too many noisy data are taken into the selected
sentences, the performance becomes worse. Similar
observations have been done by (Eck et al., 2004;
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Task # Method BLEU

IWSLT-07

1 Baseline 33.60
2 TF-IDF 34.14
3 CLS 34.08
4 CLSs 34.18
5 CLWTM(β = 0) 34.22
6 CLWTM 34.30
7 CLPTM(l = 4) 34.49

NIST-06

8 Baseline 29.15
9 TF-IDF 29.78

10 CLS 29.73
11 CLSs 29.84
12 CLWTM(β = 0) 29.87
13 CLWTM 29.93
14 CLPTM(l = 4) 30.17

Table 2: Comparison of SMT performance (p < 0.05)
with different approaches for LM adaptation on two test
sets.

Axelrod et al., 2011). Furthermore, it is comforting
that our approaches (CLWTM and CLPTM(l = 4))
performs better and are more stable than other ap-
proaches.

According to the perplexity results in Figure 1,
we select the top 8K sentences on IWSLT-07 and
top 16K sentences on NIST-06 which are similar to
the test set for adapting LM, respectively. Table 1
shows English reference translations based perplex-
ity of adapted LMs on two test sets. Our approach-
es have significantly reduction in perplexity com-
pared with other approaches, and the results indicate
that adapted LMs are significantly better predictors
of the corresponding translation task at hand than
the generic LM. We use these adapted LMs for next
translation experiments to show the detailed perfor-
mance of selected training data for LM adaptation.

5.3 Translation Experiments

We carry out translation experiments on the test set
by hierarchical phrase-based (HPB) SMT (Chiang,
2005 and 2007) system to demonstrate the utility of
LM adaptation on improving SMT performance by
BLEU score (Papineni et al., 2002). The generic LM
and adapted LMs are estimated as above in perplexi-
ty analysis experiments. We use minimum error rate
training (Och, 2003) to tune the feature weights of
HPB for maximum BLEU score on the development
set with serval groups of different start weights.

Table 2 shows the main translation results on two

Task Translation Hypotheses BLEU

IWSLT-07 First Pass 34.14
Second Pass 34.31

NIST-06 First Pass 29.78
Second Pass 29.91

Table 3: The impact of noisy data in the translation hy-
potheses on the performance of LM adaptation.

test sets, and the improvements are statistically sig-
nificant at the 95% confidence interval with respect
to the baseline. From the comparison results, we get
some clear trends:

(1) Cross-lingual data selection model outper-
forms the traditional approaches which utilize the
first pass translation hypotheses (row 4 vs. row2;
row 11 vs. row 9), but the detailed impact of noisy
data in the translation hypotheses on data selection
will be shown in the next section (section 5.4).

(2) CLWTM significantly outperforms CLSs (row
6 vs. row 4; row 13 vs. row 11), we suspect that
word-based TM makes more accurate cross-lingual
data selection model than single cross-lingual pro-
jection (Ananthakrishnan et al., 2011a).

(3) Compared with (Snover et al., 2008), adding
the smoothing mechanism in the sentence state for
CLWTM significantly improves the performance
(row 6 vs. row 5; row 13 vs. row 12).

(4) Phrase-based TM (CLPTM) significantly out-
performs the state-of-the-art approaches based on
bag-of-words models and word-based TM (row 7 vs.
row 2, row 4, row 5 and row 6; row 14 vs. row 9,
row 11, row 12 and row 13).

5.4 Impact of Noisy Data in the Translation
Hypotheses

The experiment results in Table 2 indicate the sec-
ond pass translation hypotheses (row 2 and row 9)
made by TF-IDF are better than the first pass trans-
lation hypotheses (row 1 and row 8), so we consid-
er that these translations have less noisy data. Thus,
they were considered as the new translation hypothe-
ses (the second pass) to select the similar sentences
for LM adaptation by TF-IDF.

Table 3 shows the impact of noisy data in the
translation hypotheses on the performance of adapt-
ed LMs. The observed improvement suggests that
better initial translations which have less noisy data
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Task Phrase Length BLEU

IWSLT-07

l = 1 34.33
l = 2 34.44
l = 3 34.49
l = 4 34.49

NIST-06

l = 1 29.97
l = 2 30.07
l = 3 30.14
l = 4 30.17

Table 4: The impact of phrase length in CLPTM on the
performance of LM adaptation, and the maximum phrase
length is four.

lead to better adapted LMs, and thereby better sec-
ond iteration translations. Therefore, it is advisable
to use cross-lingual data selection for LM adaptation
in SMT, which can address the problem of noisy pro-
liferation.

5.5 Impact of Phrase Length

The results in Table 4 show that longer phrases do
yield some visible improvement up to the maximum
length of four. This may suggest that some proper-
ties captured by longer phrases are also captured by
other features. The performances when the phrase
length is 1 are better than that of single word-based
TM (row 6 and row 13 in Table 2), this suspec-
t that the features in our linear ranking model are
useful. However, it will be instructive to explore the
methods of preserving the improvement generated
by longer phrase when more features are incorporat-
ed in the future work.

5.6 Impact of Eliminating Unimportant Words

Table 5 shows the results of EUW by TextRank al-
gorithm on the performance of CLTM for LM adap-
tation. Initial represents that we do not eliminate
unimportant words. Average number represents the
average number of words (the total word number in
Q and S) in cross-lingual data selection model. The
average number is reduced when unimportant words
are eliminated, from 19 to 12 on IWSLT-07 and from
37 to 24 on NIST-06, respectively. This makes the
cross-lingual data selection process become more
efficient. In CLWTM, the performance with EUW
is basically the same with that of the initial state; but
in CLPTM, EUW outperforms the initial state be-
cause TextRank algorithm utilizes the context infor-

Task Method
Average

BLEU

Number CLWTM
CLPTM
(l = 4)

IWSLT-07
Initial 19 34.31 34.47
EUW 12 34.30 34.49

NIST-06
Initial 37 29.91 30.12
EUW 24 29.93 30.17

Table 5: The impact of eliminating unimportant words
by TextRank algorithm on the performance of CLTM for
LM adaptation.

mation of words when assigning term weights, thus
makeing CLPTM play its advantage of capturing the
contextual information.

6 Conclusions and Future Work

In this paper, we propose a novel TM based cross-
lingual data selection model for LM adaptation in
SMT, from word models to phrase models, and aims
to find the LM training corpus which are similar to
the translation task at hand. Unlike the general TM
in SMT, we explore the use of TextRank algorithm
to identify and eliminate unimportant words for cor-
pus preprocessing, and construct TM by importan-
t words. Compared with the traditional approach-
es which utilize the first pass translation hypothe-
ses, cross-lingual data selection avoids the prob-
lem of noisy proliferation. Furthermore, phrase T-
M based cross-lingual data selection is more effec-
tive than the traditional approaches based on bag-
of-words models and word-based TM, because it
captures contextual information in modeling the s-
election of phrase as a whole. Large-scale exper-
iments are conducted on LM perplexity and SMT
performance, and the results demonstrate that our
approach solves the two aforementioned disadvan-
tages and significantly outperforms the state-of-the-
art methods for LM adaptation.

There are some ways in which this research could
be continued in the future. First, we will utilize our
approach to mine large-scale corpora by distributed
infrastructure system, and investigate the use of our
approach for other domains, such as speech transla-
tion system. Second, the significant improvement of
LM adaptation based on cross-lingual data selection
is exciting, so it will be instructive to explore oth-
er knowledge based cross-lingual data selection for
LM adaptation, such as latent semantic model.
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Abstract

Open Information Extraction (IE) systems ex-
tract relational tuples from text, without re-
quiring a pre-specified vocabulary, by iden-
tifying relation phrases and associated argu-
ments in arbitrary sentences. However, state-
of-the-art Open IE systems such as REVERB
and WOE share two important weaknesses –
(1) they extract only relations that are medi-
ated by verbs, and (2) they ignore context,
thus extracting tuples that are not asserted as
factual. This paper presents OLLIE, a sub-
stantially improved Open IE system that ad-
dresses both these limitations. First, OLLIE
achieves high yield by extracting relations me-
diated by nouns, adjectives, and more. Sec-
ond, a context-analysis step increases preci-
sion by including contextual information from
the sentence in the extractions. OLLIE obtains
2.7 times the area under precision-yield curve
(AUC) compared to REVERB and 1.9 times
the AUC of WOEparse.

1 Introduction

While traditional Information Extraction (IE)
(ARPA, 1991; ARPA, 1998) focused on identifying
and extracting specific relations of interest, there
has been great interest in scaling IE to a broader
set of relations and to far larger corpora (Banko et
al., 2007; Hoffmann et al., 2010; Mintz et al., 2009;
Carlson et al., 2010; Fader et al., 2011). However,
the requirement of having pre-specified relations of
interest is a significant obstacle. Imagine an intel-
ligence analyst who recently acquired a terrorist’s
laptop or a news reader who wishes to keep abreast
of important events. The substantial endeavor in

1. “After winning the Superbowl, the Saints are now
the top dogs of the NFL.”

O: (the Saints; win; the Superbowl)
2. “There are plenty of taxis available at Bali airport.”

O: (taxis; be available at; Bali airport)
3. “Microsoft co-founder Bill Gates spoke at ...”

O: (Bill Gates; be co-founder of; Microsoft)
4. “Early astronomers believed that the earth is the

center of the universe.”
R: (the earth; be the center of; the universe)
W: (the earth; be; the center of the universe)
O: ((the earth; be the center of; the universe)

AttributedTo believe; Early astronomers)
5. “If he wins five key states, Romney will be elected

President.”
R,W: (Romney; will be elected; President)
O: ((Romney; will be elected; President)

ClausalModifier if; he wins five key states)

Figure 1: OLLIE (O) has a wider syntactic range and finds
extractions for the first three sentences where REVERB
(R) and WOEparse (W) find none. For sentences #4,5,
REVERB and WOEparse have an incorrect extraction by
ignoring the context that OLLIE explicitly represents.

analyzing their corpus is the discovery of important
relations, which are likely not pre-specified. Open
IE (Banko et al., 2007) is the state-of-the-art
approach for such scenarios.

However, the state-of-the-art Open IE systems,
REVERB (Fader et al., 2011; Etzioni et al., 2011)
and WOEparse (Wu and Weld, 2010) suffer from two
key drawbacks. Firstly, they handle a limited sub-
set of sentence constructions for expressing relation-
ships. Both extract only relations that are mediated
by verbs, and REVERB further restricts this to a sub-
set of verbal patterns. This misses important infor-
mation mediated via other syntactic entities such as
nouns and adjectives, as well as a wider range of
verbal structures (examples #1-3 in Figure 1).
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Secondly, REVERB and WOEparse perform only
a local analysis of a sentence, so they often extract
relations that are not asserted as factual in the sen-
tence (examples #4,5). This often occurs when the
relation is within a belief, attribution, hypothetical
or other conditional context.

In this paper we present OLLIE (Open Language
Learning for Information Extraction), 1 our novel
Open IE system that overcomes the limitations of
previous Open IE by (1) expanding the syntactic
scope of relation phrases to cover a much larger
number of relation expressions, and (2) expand-
ing the Open IE representation to allow additional
context information such as attribution and clausal
modifiers. OLLIE extractions obtain a dramatically
higher yield at higher or comparable precision rela-
tive to existing systems.

The outline of the paper is as follows. First, we
provide background on Open IE and how it relates
to Semantic Role Labeling (SRL). Section 3 de-
scribes the syntactic scope expansion component,
which is based on a novel approach that learns open
pattern templates. These are relation-independent
dependency parse-tree patterns that are automati-
cally learned using a novel bootstrapped training set.
Section 4 discusses the context analysis component,
which is based on supervised training with linguistic
and lexical features.

Section 5 compares OLLIE with REVERB and
WOEparse on a dataset from three domains: News,
Wikipedia, and a Biology textbook. We find that
OLLIE obtains 2.7 times the area in precision-yield
curves (AUC) as REVERB and 1.9 times the AUC
as WOEparse. Moreover, for specific relations com-
monly mediated by nouns (e.g., ‘is the president
of’) OLLIE obtains two order of magnitude higher
yield. We also compare OLLIE to a state-of-the-art
SRL system (Johansson and Nugues, 2008) on an
IE-related end task and find that they both have com-
parable performance at argument identification and
have complimentary strengths in sentence analysis.
In Section 6 we discuss related work on pattern-
based relation extraction.

2 Background

Open IE systems extract tuples consisting of argu-
ment phrases from the input sentence and a phrase

1Available for download at http://openie.cs.washington.edu

from the sentence that expresses a relation between
the arguments, in the format (arg1; rel; arg2). This is
done without a pre-specified set of relations and with
no domain-specific knowledge engineering. We
compare OLLIE to two state-of-the-art Open IE sys-
tems: (1) REVERB (Fader et al., 2011), which
uses shallow syntactic processing to identify rela-
tion phrases that begin with a verb and occur be-
tween the argument phrases;2 (2) WOEparse (Wu
and Weld, 2010), which uses bootstrapping from en-
tries in Wikipedia info-boxes to learn extraction pat-
terns in dependency parses. Like REVERB, the
relation phrases begin with verbs, but can handle
long-range dependencies and relation phrases that
do not come between the arguments. Unlike RE-
VERB, WOE does not include nouns within the re-
lation phrases (e.g., cannot represent ‘is the presi-
dent of’ relation phrase). Both systems ignore con-
text around the extracted relations that may indi-
cate whether it is a supposition or conditionally true
rather than asserted as factual (see #4-5 in Figure 1).

The task of Semantic role labeling is to identify
arguments of verbs in a sentence, and then to clas-
sify the arguments by mapping the verb to a se-
mantic frame and mapping the argument phrases to
roles in that frame, such as agent, patient, instru-
ment, or benefactive. SRL systems can also identify
and classify arguments of relations that are mediated
by nouns when trained on NomBank annotations.
Where SRL begins with a verb or noun and then
looks for arguments that play roles with respect to
that verb or noun, Open IE looks for a phrase that ex-
presses a relation between a pair of arguments. That
phrase is often more than simply a single verb, such
as the phrase ‘plays a role in’, or ‘is the CEO of’.

3 Relational Extraction in OLLIE

Figure 2 illustrates OLLIE’s architecture for learning
and applying binary extraction patterns. First, it uses
a set of high precision seed tuples from REVERB to
bootstrap a large training set. Second, it learns open
pattern templates over this training set. Next, OLLIE

applies these pattern templates at extraction time.
This section describes these three steps in detail. Fi-
nally, OLLIE analyzes the context around the tuple
(Section 4) to add information (attribution, clausal
modifiers) and a confidence function.

2Available for download at http://reverb.cs.washington.edu/
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Figure 2: System architecture: OLLIE begins with seed
tuples from REVERB, uses them to build a bootstrap
training set, and learns open pattern templates. These are
applied to individual sentences at extraction time.

3.1 Constructing a Bootstrapping Set

Our goal is to automatically create a large training
set, which encapsulates the multitudes of ways in
which information is expressed in text. The key ob-
servation is that almost every relation can also be ex-
pressed via a REVERB-style verb-based expression.
So, bootstrapping sentences based on REVERB’s tu-
ples will likely capture all relation expressions.

We start with over 110,000 seed tuples – these are
high confidence REVERB extractions from a large
Web corpus (ClueWeb)3 that are asserted at least
twice and contain only proper nouns in the argu-
ments. These restrictions reduce ambiguity while
still covering a broad range of relations. For ex-
ample, a seed tuple may be (Paul Annacone; is the
coach of; Federer) that REVERB extracts from the
sentence “Paul Annacone is the coach of Federer.”

For each seed tuple, we retrieve all sentences in a
Web corpus that contains all content words in the
tuple. We obtain a total of 18 million sentences.
For our example, we will retrieve all sentences that
contain ‘Federer’, ‘Paul’, ‘Annacone’ and some syn-
tactic variation of ‘coach’. We may find sentences
like “Now coached by Annacone, Federer is win-
ning more titles than ever.”

Our bootstrapping hypothesis assumes that all
these sentences express the information of the orig-
inal seed tuple. This hypothesis is not always true.
As an example, for a seed tuple (Boyle; is born in;
Ireland) we may retrieve a sentence “Felix G. Whar-
ton was born in Donegal, in the northwest of Ireland,
a county where the Boyles did their schooling.”

3http://lemurproject.org/clueweb09.php/

To reduce bootstrapping errors we enforce addi-
tional dependency restrictions on the sentences. We
only allow sentences where the content words from
arguments and relation can be linked to each other
via a linear path of size four in the dependency parse.
To implement this restriction, we only use the sub-
set of content words that are headwords in the parse
tree. In the above sentence ‘Ireland’, ‘Boyle’ and
‘born’ connect via a dependency path of length six,
and hence this sentence is rejected from the training
set. This reduces our set to 4 million (seed tuple,
sentence) pairs.

In our implementation, we use Malt Dependency
Parser (Nivre and Nilsson, 2004) for dependency
parsing, since it is fast and hence, easily applica-
ble to a large corpus of sentences. We post-process
the parses using Stanford’s CCprocessed algorithm,
which compacts the parse structure for easier extrac-
tion (de Marneffe et al., 2006).

We randomly sampled 100 sentences from our
bootstrapping set and found that 90 of them sat-
isfy our bootstrapping hypothesis (64 without de-
pendency constraints). We find this quality to be sat-
isfactory for our needs of learning general patterns.

Bootstrapped data has been previously used to
generate positive training data for IE (Hoffmann et
al., 2010; Mintz et al., 2009). However, previous
systems retrieved sentences that only matched the
two arguments, which is error-prone, since multiple
relations can hold between a pair of entities (e.g.,
Bill Gates is the CEO of, a co-founder of, and has a
high stake in Microsoft).

Alternatively, researchers have developed sophis-
ticated probabilistic models to alleviate the effect
of noisy data (Riedel et al., 2010; Hoffmann et al.,
2011). In our case, by enforcing that a sentence ad-
ditionally contains some syntactic form of the rela-
tion content words, our bootstrapping set is naturally
much cleaner.

Moreover, this form of bootstrapping is better
suited for Open IE’s needs, as we will use this data
to generalize to other unseen relations. Since the
relation words in the sentence and seed match, we
can learn general pattern templates that may apply
to other relations too. We discuss this process next.

3.2 Open Pattern Learning
OLLIE’s next step is to learn general patterns that
encode various ways of expressing relations. OL-
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Extraction Template Open Pattern
1. (arg1; be {rel} {prep}; arg2) {arg1} ↑nsubjpass↑ {rel:postag=VBN} ↓{prep ∗}↓ {arg2}
2. (arg1; {rel}; arg2) {arg1} ↑nsubj↑ {rel:postag=VBD} ↓dobj↓ {arg2}
3. (arg1; be {rel} by; arg2) {arg1} ↑nsubjpass↑ {rel:postag=VBN} ↓agent↓ {arg2}
4. (arg1; be {rel} of; arg2) {rel:postag=NN;type=Person} ↑nn↑ {arg1} ↓nn↓ {arg2}
5. (arg1; be {rel} {prep}; arg2) {arg1} ↑nsubjpass↑ {slot:postag=VBN;lex ∈announce|name|choose...}

↓dobj↓ {rel:postag=NN} ↓{prep ∗}↓ {arg2}

Figure 3: Sample open pattern templates. Notice that some patterns (1-3) are purely syntactic, and others are seman-
tic/lexically constrained (in bold font). A dependency parse that matches pattern #1 is shown in Figure 4.

LIE learns open pattern templates – a mapping from
a dependency path to an open extraction, i.e., one
that identifies both the arguments and the exact
(REVERB-style) relation phrase. Figure 3 gives ex-
amples of high-frequency pattern templates learned
by OLLIE. Note that some of the dependency
paths are completely unlexicalized (#1-3), whereas
in other cases some nodes have lexical or semantic
restrictions (#4, 5).

Open pattern templates encode the ways in
which a relation (in the first column) may
be expressed in a sentence (second column).
For example, a relation (Godse; kill; Gandhi)
may be expressed with a dependency path (#2)
{Godse}↑nsubj↑{kill:postag=VBD}↓dobj↓{Gandhi}.

To learn the pattern templates, we first extract the
dependency path connecting the arguments and re-
lation words for each seed tuple and the associated
sentence. We annotate the relation node in the path
with the exact relation word (as a lexical constraint)
and the POS (postag constraint). We create a re-
lation template from the seed tuple by normalizing
‘is’/‘was’/‘will be’ to ‘be’, and replacing the rela-
tion content word with {rel}.4

If the dependency path has a node that is not part
of the seed tuple, we call it a slot node. Intuitively,
if slot words do not negate the tuple they can be
skipped over. As an example, ‘hired’ is a slot word
for the tuple (Annacone; is the coach of; Federer) in
the sentence “Federer hired Annacone as a coach”.
We associate postag and lexical constraints with the
slot node as well. (see #5 in Figure 3).

Next, we perform several syntactic checks on
each candidate pattern. These checks are the con-
straints that we found to hold in very general pat-
terns, which we can safely generalize to other un-
seen relations. The checks are: (1) There are no slot

4Our current implementation only allows a single relation
content word; extending to multiple words is straightforward –
the templates will require rel1, rel2,. . .

nodes in the path. (2) The relation node is in the
middle of arg1 and arg2. (3) The preposition edge
(if any) in the pattern matches the preposition in the
relation. (4) The path has no nn or amod edges.

If the checks hold true we accept it as a purely
syntactic pattern with no lexical constraints. Oth-
ers are semantic/lexical patterns and require further
constraints to be reliable as extraction patterns.

3.2.1 Purely Syntactic Patterns
For syntactic patterns, we aggressively general-

ize to unseen relations and prepositions. We remove
all lexical restrictions from the relation nodes. We
convert all preposition edges to an abstract {prep ∗}
edge. We also replace the specific prepositions in
extraction templates with {prep}.

As an example, consider the sentences, “Michael
Webb appeared on Oprah...” and “...when Alexan-
der the Great advanced to Babylon.” and associ-
ated seed tuples (Michael Webb; appear on; Oprah)
and (Alexander; advance to; Babylon). Both these
data points return the same open pattern after gen-
eralization: “{arg1} ↑nsubj↑ {rel:postag=VBD}
↓{prep ∗}↓ {arg2}” with the extraction template
(arg1, {rel} {prep}, arg2). Other examples of syn-
tactic pattern templates are #1-3 in Figure 3.

3.2.2 Semantic/Lexical Patterns
Patterns that do not satisfy the checks are not as

general as those that do, but are still important. Con-
structions like “Microsoft co-founder Bill Gates...”
work for some relation words (e.g., founder, CEO,
director, president, etc.) but would not work for
other nouns; for instance, from “Chicago Symphony
Orchestra” we should not conclude that (Orchestra;
is the Symphony of; Chicago).

Similarly, we may conclude (Annacone; is the
coach of; Federer) from the sentence “Federer hired
Annacone as a coach.”, but this depends on the se-
mantics of the slot word, ‘hired’. If we replaced
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‘hired’ by ‘fired’ or ‘considered’ then the extraction
would be false.

To enable such patterns we retain the lexical con-
straints on the relation words and slot words.5 We
collect all patterns together based only on the syn-
tactic restrictions and convert the lexical constraint
into a list of words with which the pattern was seen.
Example #5 in Figure 3 shows one such lexical list.

Can we generalize these lexically-annotated pat-
terns further? Our insight is that we can generalize
a list of lexical items to other similar words. For
example, if we see a list like {CEO, director, presi-
dent, founder}, then we should be able to generalize
to ‘chairman’ or ‘minister’.

Several ways to compute semantically similar
words have been suggested in the literature like
Wordnet-based, distributional similarity, etc. (e.g.,
(Resnik, 1996; Dagan et al., 1999; Ritter et al.,
2010)). For our proof of concept, we use a simple
overlap metric with two important Wordnet classes
– Person and Location. We generalize to these types
when our list has a high overlap (> 75%) with hy-
ponyms of these classes. If not, we simply retain the
original lexical list without generalization. Example
#4 in Figure 3 is a type-generalized pattern.

We combine all syntactic and semantic patterns
and sort in descending order based on frequency of
occurrence in the training set. This imposes a natural
ranking on the patterns – more frequent patterns are
likely to give higher precision extractions.

3.3 Pattern Matching for Extraction
We now describe how these open patterns are used
to extract binary relations from a new sentence. We
first match the open patterns with the dependency
parse of the sentence and identify the base nodes for
arguments and relations. We then expand these to
convey all the information relevant to the extraction.

As an example, consider the sentence: “I learned
that the 2012 Sasquatch music festival is scheduled
for May 25th until May 28th.” Figure 4 illustrates the
dependency parse. To apply pattern #1 from Figure
3 we first match arg1 to ‘festival’, rel to ‘scheduled’
and arg2 to ‘25th’ with prep ‘for’. However, (festi-
val, be scheduled for, 25th) is not a very meaningful
extraction. We need to expand this further.

5For highest precision extractions, we may also need seman-
tic constraints on the arguments. In this work, we increase our
yield by ignoring the argument-type constraints.

learned_VBD 

I_PRP scheduled_VBN 

that_IN festival_NN is_VBZ 25th_NNP 28th_NNP 

the_DET Sasquatch_NNP music_NN May_NNP_11 May_NNP_14 2012_CD 

nsubj ccomp 

complm 

nsubjpass 
auxpass 

prep_for 

prep_until 

det num nn nn nn nn 

Figure 4: A sample dependency parse. The col-
ored/greyed nodes represent all words that are extracted
from the pattern {arg1} ↑nsubjpass↑ {rel:postag=VBN}
↓{prep ∗}↓ {arg2}. The extraction is (the 2012
Sasquatch Music Festival; is scheduled for; May 25th).

For the arguments we expand on amod, nn, det,
neg, prep of, num, quantmod edges to build the
noun-phrase. When the base noun is not a proper
noun, we also expand on rcmod, infmod, partmod,
ref, prepc of edges, since these are relative clauses
that convey important information. For relation
phrases, we expand on advmod, mod, aux, auxpass,
cop, prt edges. We also include dobj and iobj in the
case that they are not in an argument. After identi-
fying the words in arg/relation we choose their order
as in the original sentence. For example, these rules
will result in the extraction (the Sasquatch music fes-
tival; be scheduled for; May 25th).

3.4 Comparison with WOEparse

OLLIE’s algorithm is similar to that of WOEparse

– both systems follow the basic structure of boot-
strap learning of patterns based on dependency parse
paths. However, there are three significant differ-
ences. WOE uses Wikipedia-based bootstrapping,
finding a sentence in a Wikipedia article that con-
tains the infobox values. Since WOE does not have
access to a seed relation phrase, it heuristically as-
signs all intervening words between the arguments
in the parse as the relation phrase. This often results
in under-specified or nonsensical relation phrases.
For example, from the sentence “David Miscavige
learned that after Tom Cruise divorced Mimi Rogers,
he was pursuing Nicole Kidman.” WOE’s heuristics
will extract the relation divorced was pursuing be-
tween ‘Tom Cruise’ and ‘Nicole Kidman’. OLLIE,
in contrast, produces well-formed relation phrases
by basing its templates on REVERB relation phrases.

Secondly, WOE does not assign semantic/lexical
restrictions to its patterns, and thus, has lower preci-
sion due to aggressive syntactic generalization. Fi-
nally, WOE is designed to have verb-mediated rela-
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tion phrases that do not include nouns, thus missing
important relations such as ‘is the president of’. In
our experiments (see Figure 5) we find WOEparse to
have lower precision and yield than OLLIE.

4 Context Analysis in OLLIE

We now turn to the context analysis component,
which handles the problem of extractions that are not
asserted as factual in the text. In some cases, OLLIE

can handle this by extending the tuple representation
with an extra field that turns an otherwise incorrect
tuple into a correct one. In other cases, there is no re-
liable way to salvage the extraction, and OLLIE can
avoid an error by giving the tuple a low confidence.

Cases where OLLIE extends the tuple representa-
tion include conditional truth and attribution. Con-
sider sentence #4 in Figure 1. It is not asserting that
the earth is the center of the universe. OLLIE adds
an AttributedTo field, which makes the final extrac-
tion valid (see OLLIE extraction in Figure 1). This
field indicates who said, suggested, believes, hopes,
or doubts the information in the main extraction.

Another case is when the extraction is only condi-
tionally true. Sentence #5 in Figure 1 does not assert
as factual that (Romney; will be elected; President),
so it is an incorrect extraction. However, adding
a condition (“if he wins five states”) can turn this
into a correct extraction. We extend OLLIE to have
a ClausalModifier field when there is a dependent
clause that modifies the main extraction.

Our approach for extracting these additional fields
makes use of the dependency parse structure. We
find that attributions are marked by a ccomp (clausal
complement) edge. For example, in the parse of sen-
tence #4 there is a ccomp edge between ‘believe’
and ‘center’. Our algorithm first checks for the pres-
ence of a ccomp edge to the relation node. However,
not all ccomp edges are attributions. We match the
context verb (e.g., ‘believe’) with a list of commu-
nication and cognition verbs from VerbNet (Schuler,
2006) to detect attributions. The context verb and its
subject then populate the AttributedTo field.

Similarly, the clausal modifiers are marked by ad-
vcl (adverbial clause) edge. We filter these lexically,
and add a ClausalModifier field when the first word
of the clause matches a list of 16 terms created using
a training set: {if, when, although, because, ...}.

OLLIE has high precision for AttributedTo and

ClausalModifier fields, nearly 98% on a develop-
ment set, however, these two fields do not cover all
the cases where an extraction is not asserted as fac-
tual. To handle others, we train OLLIE’s confidence
function to reduce the confidence of an extraction if
its context indicates it is likely to be non-factual.

We use a supervised logistic regression classifier
for the confidence function. Features include the
frequency of the extraction pattern, the presence of
AttributedTo or ClausalModifier fields, and the po-
sition of certain words in the extraction’s context,
such as function words or the communication and
cognition verbs used for the AttributedTo field. For
example, one highly predictive feature tests whether
or not the word ‘if’ comes before the extraction
when no ClausalModifier fields are attached. Our
training set was 1000 extractions drawn evenly from
Wikipedia, News, and Biology sentences.

5 Experiments

Our experiments evaluate three main questions. (1)
How does OLLIE’s performance compare with exis-
ting state-of-the-art open extractors? (2) What are
the contributions of the different sub-components
within OLLIE? (3) How do OLLIE’s extractions com-
pare with semantic role labeling argument identifi-
cation?

5.1 Comparison of Open IE Systems

Since Open IE is designed to handle a variety of
domains, we create a dataset of 300 random sen-
tences from three sources: News, Wikipedia and Bi-
ology textbook. The News and Wikipedia test sets
are a random subset of Wu and Weld’s test set for
WOEparse. We ran three systems, OLLIE, REVERB

and WOEparse on this dataset resulting in a total of
1,945 extractions from all three systems. Two an-
notators tagged the extractions as correct if the sen-
tence asserted or implied that the relation was true.
Inter-annotator agreement was 0.96, and we retained
the subset of extractions on which the two annotators
agree for further analysis.

All systems associate a confidence value with an
extraction – ranking with these confidence values
generates a precision-yield curve for this dataset.
Figure 5 reports the curves for the three systems.

We find that OLLIE has a higher performance, ow-
ing primarily to its higher yield at comparable preci-
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Figure 5: Comparison of different Open IE systems. OL-
LIE achieves substantially larger area under the curve
than other Open IE systems.

sion. OLLIE finds 4.4 times more correct extractions
than REVERB and 4.8 times more than WOEparse at
a precision of about 0.75. Overall, OLLIE has 2.7
times larger area under the curve than REVERB and
1.9 times larger than WOEparse.6 We use the Boot-
strap test (Cohen, 1995) to find that OLLIE’s better
performance compared to the two systems is highly
statistically significant.

We perform further analysis to understand the rea-
sons behind the high yield from OLLIE. We find that
40% of the OLLIE extractions that REVERB misses
are due to OLLIE’s use of parsers – REVERB misses
those because its shallow syntactic analysis cannot
skip over the intervening clauses or prepositional
phrases between the relation phrase and the argu-
ments. About 30% of the additional yield is those
extractions where the relation is not between its ar-
guments (see instance #1 in Figure 1). The rest are
due to other causes such as OLLIE’s ability to handle
relationships mediated by nouns and adjectives, or
REVERB’s shallow syntactic analysis, etc. In con-
trast, OLLIE misses very few extractions returned by
REVERB, mostly due to parser errors.

We find that WOEparse misses extractions found
by OLLIE for a variety of reasons. The primary
cause is that WOEparse does not include nouns in re-
lation phrases. It also misses some verb-based pat-
terns, probably due to training noise. In other cases,
WOEparse misses extractions due to ill-formed rela-
tion phrases (as in the example of Section 3.4: ‘di-
vorced was pursuing’ instead of the correct relation
‘was pursuing’).

While the bulk of OLLIE’s extractions in our test
6Evaluating recall is difficult at this scale – however, since

yield is proportional to recall, the area differences also hold for
the equivalent precision-recall curves.

Relation OLLIE REVERB incr.
is capital of 8,566 146 59x

is president of 21,306 1,970 11x
is professor at 8,334 400 21x
is scientist of 730 5 146x

Figure 6: OLLIE finds many more correct extractions for
relations that are typically expressed by noun phrases –
up to 146 times that of REVERB. WOEparse outputs no
instances of these, because it does not allow nouns in the
relation. These results are at point of maximum yield
(with comparable precisions around 0.66).

set were verb-mediated, our intuition suggests that
there exist many relationships that are most natu-
rally expressed via noun phrases. To demonstrate
this effect, we chose four such relations – is capi-
tal of, is president of, is professor at, and is scientist
of. We ran our systems on 100 million random sen-
tences from the ClueWeb corpus. Figure 6 reports
the yields of these four relations.7

OLLIE found up to 146 times as many extrac-
tions for these relations than REVERB. Because
WOEparse does not include nouns in relation phrases,
it is unable to extract any instance of these relations.
We examine a sample of the extractions to verify that
noun-mediated extractions are the main reason for
this large yield boost over REVERB (73% of OLLIE

extractions were noun-mediated). High-frequency
noun patterns like “Obama, the president of the US”,
“Obama, the US president”, “US President Obama”
far outnumber sentences of the form “Obama is the
president of the US”. These relations are seldom the
primary information in a sentence, and are typically
mentioned in passing in noun phrases that express
the relation.

For some applications, noun-mediated relations
are important, as they associate people with work
places and job titles. Overall, we think of the results
in Figure 6 as a “best case analysis” that illustrates
the dramatic increase in yield for certain relations,
due to syntactic scope expansion in Open IE.

5.2 Analysis of OLLIE

We perform two control experiments to understand
the value of semantic/lexical restrictions in pattern
learning and precision boost due to context analysis
component.

7We multiply the total number of extractions with precision
on a sample for that relation to estimate the yield.
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Figure 7: Results on the subset of extractions from pat-
terns with semantic/lexical restrictions. Ablation study
on patterns with semantic/lexical restrictions. These pat-
terns without restrictions (OLLIE[syn]) result in low pre-
cision. Type generalization improves yield compared to
patterns with only lexical constraints (OLLIE[lex]).

Are semantic restrictions important for open pat-
tern learning? How much does type generalization
help? To answer these questions we compare three
systems – OLLIE without semantic or lexical restric-
tions (OLLIE[syn]), OLLIE with lexical restrictions
but no type generalization (OLLIE[lex]) and the full
system (OLLIE). We restrict this experiment to the
patterns where OLLIE adds semantic/lexical restric-
tions, rather than dilute the result with patterns that
would be unchanged by these variants.

Figure 7 shows the results of this experiment on
our dataset from three domains. As the curves
show, OLLIE was correct to add lexical/semantic
constraints to these patterns – precision is quite low
without the restrictions. This matches our intuition,
since these are not completely general patterns and
generalizing to all unseen relations results in a large
number of errors. OLLIE[lex] performs well though
at lower yield. The type generalization helps the
yield somewhat, without hurting the precision. We
believe that a more data-driven type generalization
that uses distributional similarity (e.g., (Ritter et al.,
2010)) may help much more. Also, notice that over-
all precision numbers are lower, since these are the
more difficult relations to extract reliably. We con-
clude that lexical/semantic restrictions are valuable
for good performance of OLLIE.

We also compare our full system to a version that
does not use the context analysis of Section 4. Fig-
ure 8 compares OLLIE to a version (OLLIE[pat]) that
does not add the AttributedTo and ClausalModifier
fields, and, instead of context-sensitive confidence
function, uses the pattern frequency in the training

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 100 200 300 400 500 600 

OLLIE 

OLLIE[pat] 

Yield 

Pr
ec

is
io

n 

Figure 8: Context analysis increases precision, raising the
area under the curve by 19%.

set as a ranking function. 10% of the sentences have
an OLLIE extraction with ClausalModifier and 6%
have AttributedTo fields. Adding ClausalModifier
corrects errors for 21% of extractions that have a
ClausalModifier and does not introduce any new er-
rors. Adding AttributedTo corrects errors for 55%
of the extractions with AttributedTo and introduces
an error for 3% of the extractions. Overall, we find
that OLLIE gives a significant boost to precision over
OLLIE[pat] and obtains 19% additional AUC.

Finally, we analyze the errors made by OLLIE.
Unsurprisingly, because of OLLIE’s heavy reliance
on the parsers, parser errors account for a large part
of OLLIE’s errors (32%). 18% of the errors are due
to aggressive generalization of a pattern to all un-
seen relations and 12% due to incorrect application
of lexically annotated patterns. About 14% of the er-
rors are due to important context missed by OLLIE.
Another 12% of the errors are because of the limita-
tions of binary representation, which misses impor-
tant information that can only be expressed in n-ary
tuples.

We believe that as parsers become more robust
OLLIE’s performance will improve even further. The
presence of context-related errors suggests that there
is more to investigate in context analysis. Finally, in
the future we wish to extend the representation to
include n-ary extractions.

5.3 Comparison with SRL
Our final evaluation suggests answers to two im-
portant questions. First, how does a state-of-the-art
Open IE system do in terms of absolute recall? Sec-
ond, how do Open IE systems compare against state-
of-the-art SRL systems?

SRL, as discussed in Section 2, has a very dif-
ferent goal – analyzing verbs and nouns to identify
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their arguments, then mapping the verb or noun to
a semantic frame and determining the role that each
argument plays in that frame. These verbs and nouns
need not make the full relation phrase, although, re-
cent work has shown that they may be converted
to Open IE style extractions with additional post-
processing (Christensen et al., 2011).

While a direct comparison between OLLIE and
a full SRL system is problematic, we can compare
performance of OLLIE and the argument identifica-
tion step of an SRL system. We set each system the
following task – “based on a sentence, find all noun-
pairs that have an asserted relationship.” This task is
permissive for both systems, as it does not require
finding an exact relation phrase or argument bound-
ary, or determining the argument roles in a relation.

We create a gold standard by tagging a random
50 sentences of our test set to identify all pairs of
NPs that have an asserted relation. We only counted
relation expressed by a verb or noun in the text, and
did not include relations expressed simply with “of”
or apostrophe-s. Where a verb mediates between an
argument and multiple NPs, we represent this as a
binary relation for all pairs of NPs.

For example the sentence, “Macromolecules
translocated through the phloem include proteins
and various types of RNA that enter the sieve tubes
through plasmodesmata.” has five binary relations.

arg1: arg2: relation term
Macromolecules phloem translocated
Macromolecules proteins include
Macromolecules types of RNA include
types of RNA sieve tubes enter
types of RNA plasmodesmata enter

We find an average of 4.0 verb-mediated relations
and 0.3 noun-mediated relations per sentence. Eval-
uating OLLIE against this gold standard helps to an-
swer the question of absolute recall: what percent-
age of binary relations expressed in a sentence can
our systems identify.

For comparison, we use a state-of-the-art SRL
system from Lund University (Johansson and
Nugues, 2008), which is trained on PropBank
(Martha and Palmer, 2002) for its verb-frames and
NomBank (Meyers et al., 2004) for noun-frames.
The PropBank version of the system won the very
competitive 2008 CONLL SRL evaluation.

We conduct this experiment by manually compar-

LUND OLLIE union
Verb relations 0.58 (0.69) 0.49 (0.55) 0.71 (0.83)
Noun relations 0.07 (0.33) 0.13 (0.13) 0.20 (0.33)
All relations 0.54 (0.67) 0.47 (0.52) 0.67 (0.80)

Figure 9: Recall of LUND and OLLIE on binary relations.
In parentheses is recall with oracle co-reference. Both
systems identify approximately half of all argument pairs,
but have lower recall on noun-mediated relations.

ing the outputs of LUND and OLLIE against the gold
standard. For each pair of NPs in the gold standard
we determine whether the systems find a relation
with that pair of NPs as arguments. Recall is based
on the percentage of NP pairs where the head nouns
matches head nouns of two different arguments in an
extraction or semantic frame. If the argument value
is conjunctive, we count a match against the head
noun of each item in the list. We also count cases
where system output would match the gold standard,
given perfect co-reference.

Figure 9 shows the recall for OLLIE and LUND,
with recall based on oracle co-referential matches
in parentheses. Our analysis shows strong recall
for both systems for verb-mediated relations: LUND

finding about two thirds of the argument pairs and
OLLIE finding over half. Both systems have low
recall for noun-mediated relations, with most of
LUND’s recall requiring co-reference. We observe
that a union of the two systems raises recall to
0.71 for verb-mediated relations and 0.83 with co-
reference, demonstrating that each system is identi-
fying argument pairs that the other missed.

It is not surprising that OLLIE has recall of ap-
proximately 0.5, since it is tuned for high precision
extraction, and avoids less reliable extractions from
constructions such as reduced relative clauses and
gerunds, or from noun-mediated relations with long-
range dependencies. In contrast, SRL is tuned to
identify the argument structure for nearly all verbs
and nouns in a sentence. The missing recall from
SRL is primarily where it does not identify both ar-
guments of a binary relation, or where the correct
argument is buried in a long argument phrase, but is
not its head noun.

It is surprising that LUND, trained on Nom-
Bank, identifies so few noun-mediated argument
pairs without co-reference. An example will make
this clear. For the sentence, “Clarcor, a maker of
packaging and filtration products, said ...”, the tar-

531



get relation is between Clarcor and the products it
makes. LUND identifies a frame maker.01 in which
argument A0 has head noun ‘maker’ and A1 is a PP
headed by ‘products’, missing the actual name of the
maker without co-reference post-processing. OLLIE

finds the extraction (Clarcor; be a maker of; packag-
ing and filtration products) where the heads of both
arguments matched those of the target. In another
example, LUND identifies “his” and “brother” as the
arguments of the frame brother.01, rather than the
actual names of the two brothers.

We can draw several conclusions from this exper-
iment. First, nouns, although less frequently mediat-
ing relations, are much harder and both systems are
failing significantly on those – OLLIE is somewhat
better. Two, neither systems dominates the other;
in fact, recall is increased significantly by a union
of the two. Three, and probably most importantly,
significant information is still being missed by both
systems, and more research is warranted.

6 Related Work

There is a long history of bootstrapping and pat-
tern learning approaches in traditional informa-
tion extraction, e.g., DIPRE (Brin, 1998), Snow-
Ball (Agichtein and Gravano, 2000), Espresso (Pan-
tel and Pennacchiotti, 2006), PORE (Wang et al.,
2007), SOFIE (Suchanek et al., 2009), NELL (Carl-
son et al., 2010), and PROSPERA (Nakashole et
al., 2011). All these approaches first bootstrap data
based on seed instances of a relation (or seed data
from existing resources such as Wikipedia) and then
learn lexical or lexico-POS patterns to create an ex-
tractor. Other approaches have extended these to
learning patterns based on full syntactic analysis of
a sentence (Bunescu and Mooney, 2005; Suchanek
et al., 2006; Zhao and Grishman, 2005).

OLLIE has significant differences from the previ-
ous work in pattern learning. First, and most impor-
tantly, these previous systems learn an extractor for
each relation of interest, whereas OLLIE is an open
extractor. OLLIE’s strength is its ability to gener-
alize from one relation to many other relations that
are expressed in similar forms. This happens both
via syntactic generalization and type generalization
of relation words (sections 3.2.1 and 3.2.2). This ca-
pability is essential as many relations in the test set
are not even seen in the training set – in early exper-

iments we found that non-generalized pattern learn-
ing (equivalent to traditional IE) had significantly
less yield at a slightly higher precision.

Secondly, previous systems begin with seeds that
consist of a pair of entities, whereas we also in-
clude the content words from REVERB relations in
our training seeds. This results in a much higher
precision bootstrapping set and high rule preci-
sion while still allowing morphological variants that
cover noun-mediated relations. A third difference is
in the scale of the training – REVERB yields millions
of training seeds, where previous systems had orders
of magnitude less. This enables OLLIE to learn pat-
terns with greater coverage.

The closest to our work is the pattern learning
based open extractor WOEparse. Section 3.4 de-
tails the differences between the two extractors. An-
other extractor, StatSnowBall (Zhu et al., 2009), has
an Open IE version, which learns general but shal-
low patterns. Preemptive IE (Shinyama and Sekine,
2006) is a paradigm related to Open IE that first
groups documents based on pairwise vector cluster-
ing, then applies additional clustering to group en-
tities based on document clusters. The clustering
steps make it difficult for it to scale to large corpora.

7 Conclusions

Our work describes OLLIE, a novel Open IE ex-
tractor that makes two significant advances over
the existing Open IE systems. First, it expands
the syntactic scope of Open IE systems by identi-
fying relationships mediated by nouns and adjec-
tives. Our experiments found that for some rela-
tions this increases the number of correct extrac-
tions by two orders of magnitude. Second, by an-
alyzing the context around an extraction, OLLIE is
able to identify cases where the relation is not as-
serted as factual, but is hypothetical or conditionally
true. OLLIE increases precision by reducing con-
fidence in those extractions or by associating addi-
tional context in the extractions, in the form of at-
tribution and clausal modifiers. Overall, OLLIE ob-
tains 1.9 to 2.7 times more area under precision-
yield curves compared to existing state-of-the-art
open extractors. OLLIE is available for download at
http://openie.cs.washington.edu.
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Abstract

Topic models are increasingly being used for
text analysis tasks, often times replacing ear-
lier semantic techniques such as latent seman-
tic analysis. In this paper, we develop a novel
adaptive topic model with the ability to adapt
topics from both the previous segment and the
parent document. For this proposed model, a
Gibbs sampler is developed for doing poste-
rior inference. Experimental results show that
with topic adaptation, our model significantly
improves over existing approaches in terms of
perplexity, and is able to uncover clear se-
quential structure on, for example, Herman
Melville’s book “Moby Dick”.

1 Introduction

Natural language text usually consists of topically
structured and coherent components, such as groups
of sentences that form paragraphs and groups of
paragraphs that form sections. Topical coherence in
documents facilitates readers’ comprehension, and
reflects the author’s intended structure. Capturing
this structural topical dependency should lead to im-
proved topic modelling. It also seems reasonable
to propose that text analysis tasks that involve the
structure of a document, for instance, summarisation
and segmentation, should also be improved by topic
models that better model that structure.

Recently, topic models are increasingly being
used for text analysis tasks such as summarisa-

∗This work was partially done when Du was at College of
Engineering & Computer Science, the Australian National Uni-
versity when working together with Buntine and Jin there.

tion (Arora and Ravindran, 2008) and segmenta-
tion (Misra et al., 2011; Eisenstein and Barzilay,
2008), often times replacing earlier semantic tech-
niques such as latent semantic analysis (Deerwester
et al., 1990). Topic models can be improved by bet-
ter modelling the semantic aspects of text, for in-
stance integrating collocations into the model (John-
son, 2010; Hardisty et al., 2010) or encouraging top-
ics to be more semantically coherent (Newman et
al., 2011) based on lexical coherence models (New-
man et al., 2010), modelling the structural aspects
of documents, for instance modelling a document
as a set of segments (Du et al., 2010; Wang et al.,
2011; Chen et al., 2009), or improving the under-
lying statistical methods (Teh et al., 2006; Wallach
et al., 2009). Topic models, like statistical parsing
methods, are using more sophisticated latent vari-
able methods in order to model different aspects of
these problems.

In this paper, we are interested in developing a
new topic model which can take into account the
structural topic dependency by following the higher
level document subject structure, but we hope to re-
tain the general flavour of topic models, where com-
ponents (e.g., sentences) can be a mixture of topics.
Thus we need to depart from the earlier HMM style
models, see, e.g., (Blei and Moreno, 2001; Gruber
et al., 2007). Inspired by the idea that documents
usually exhibits internal structure (e.g., (Wang et al.,
2011)), in which semantically related units are clus-
tered together to form semantically structural seg-
ments, we treat documents as sequences of segments
(e.g., sentences, paragraphs, sections, or chapters).
In this way, we can model the topic correlation be-
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Figure 1: Different structural relationships for topics of
sections in a 4-part document, hierarchical (H), sequen-
tial (S), both (B) or mixed (M).

tween the segments in a “bag of segments” fashion,
i.e., beyond the “bag of words” assumption, and re-
veal how topics evolve among segments.

Indeed, we were impressed by the improvement
in perplexity obtained by the segmented topic model
(STM) (Du et al., 2010), so we considered the prob-
lem of whether one can add sequence information
into a structured topic model as well. Figure 1 illus-
trates the type of structural information being con-
sidered, where the vectors are some representation
of the content. STM is represented by the hierar-
chical model. A strictly sequential model would
seem unrealistic for some documents, for instance
books. A topic model using the strictly sequential
model was developed (Du et al., 2012) but it report-
edly performs halfway between STM and LDA. In
this paper, we develop an adaptive topic model to
go beyond a strictly sequential model while allow
some hierarchical influence. There are two possible
hybrids, one called “mixed” has distinct breaks in
the sequence, while the other called “both” overlays
both sequence and hierarchy and there could be rel-
ative strengths associated with the arrows. We em-
ploy the “both” hybrid but use the relative strengths
to adaptively allow it to approximate the “mixed”
hybrid.

Research in Machine Learning and Natural Lan-
guage Processing has attempted to model various
topical dependencies. Some work considers struc-
ture within the sentence level by mixing hidden
Markov models (HMMs) and topics on a word by
word basis: the aspect HMM (Blei and Moreno,
2001) and the HMM-LDA model (Griffiths et al.,
2005) that models both short-range syntactic depen-
dencies and longer semantic dependencies. These

models operate at a finer level than we are consider-
ing at a segment (like paragraph or section) level. To
make a tool like the HMM work at higher levels, one
needs to make stronger assumptions, for instance as-
signing each sentence a single topic and then topic
specific word models can be used: the hidden topic
Markov model (Gruber et al., 2007) that models the
transitional topic structure; a global model based on
the generalised Mallows model (Chen et al., 2009),
and a HMM based content model (Barzilay and
Lee, 2004). Researchers have also considered time-
series of topics: various kinds of dynamic topic
models, following early work of (Blei and Lafferty,
2006), represent a collection as a sequence of sub-
collections in epochs. Here, one is modelling the
collections over broad epochs, not the structure of a
single document that our model considers.

This paper is organised as follows. We first
present background theory in Section 2. Then the
new model is presented in Section 3, followed by
Gibbs sampling theory and algorithm in Sections 4
and 5 respectively. Experiments are reported in Sec-
tion 6 with a conclusion in Section 7.

2 Background

The basic topic model is first presented in Sec-
tion 2.1, as a point of departure. In seeking to de-
velop a general sequential topic model, we hope
to go beyond a strictly sequential model and allow
some hierarchical influence. This, however, presents
two challenges: modelling and statistical inference.
Hierarchical inference (and thus sequential infer-
ence) over probability vectors can be handled us-
ing the theory of hierarchical Poisson-Dirichlet pro-
cesses (PDPs). This is presented in Section 2.2.

2.1 The LDA model

The benchmark model for topic modelling is latent
Dirichlet allocation (LDA) (Blei et al., 2003), a la-
tent variable model of documents. Documents are
indexed by i, and words ~w are observed data. The
latent variables are ~µi (the topic distribution for a
document) and ~z (the topic assignments for observed
words), and the model parameter of ~φk’s (word dis-
tributions). These notation are later extended in Ta-
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ble 1. The generative model is as follows:

~φk ∼ DirichletW (~γ) ∀ k
~µi ∼ DirichletK (~α) ∀ i
zi,l ∼ DiscreteK (~µi) ∀ i, l

wi,l ∼ DiscreteK
(
~φzi,l

)
∀ i, l .

DirichletK(·) is a K-dimensional Dirichlet distribu-
tion. The hyper-parameter ~γ is a Dirichlet prior on
word distributions (i.e., a Dirichlet smoothing on the
multinomial parameter ~φk (Blei et al., 2003)) and the
Dirichlet prior ~α on topic distributions.

2.2 Hierarchical PDPs
A discrete probability vector ~µ of finite dimension
K is sampled from some distribution Fτ (~µ0) with
a parameter set, say τ , and is also dependent on
a parent probability vector ~µ0 also of finite dimen-
sion K. Then a sample of size N is taken ac-
cording to the probability vector ~µ, represented as
~z ∈ {1, ...,K}N . This data is collected into counts
~n = (n1, ..., nK) where nk is the number of data in
~z with value k and

∑
k nk = N . This situation is

represented as follows:

~µ ∼ Fτ (~µ0); ~zi ∼ DiscreteK(~µ) for i = 1, ..., N .

Commonly in topic modelling, the Dirichlet distri-
bution is used for discrete probability vectors. In
this case Fτ (~µ0) ≡ DirichletK(b~µ0), τ ≡ (K, b)
where b is the concentration parameter. Bayesian
analysis yields a marginalised likelihood, after inte-
grating out ~µ, of

p
(
~z
∣∣τ, ~µ0,Dirichlet

)
=

Beta (~n+ b~µ0)

Beta (b~µ0)
, (1)

where Beta(·) is the vector valued function normal-
ising the Dirichlet distribution. A problem here is
that p(~z|b, ~µ0) is an intractable function of ~µ0.

Dirichlet processes and Poisson-Dirichlet pro-
cesses alleviate this problem by using an auxiliary
variable trick (Robert and Casella, 2004). That is,
we introduce an auxiliary variable over which we
also sample but do not need to record. The auxiliary
variable is the table count1 which is a tk for each nk

1Based on the Chinese Restaurant analogy (Teh et al., 2006),
each table has a dish, a data value, while data, the customer, is
assigned to tables, and multiple tables can serve the same dish.

and it represents the number of “tables” over which
the nk “customers” are spread out. Thus the follow-
ing constraints hold:

0 ≤ tk ≤ nk and tk = 0 iff nk = 0 . (2)

When the distribution over probability vectors fol-
lows a Poisson-Dirichlet process which has two pa-
rameters τ ≡ (a, b) and the parent distribution ~µ0,
then Fτ (~µ0) ≡ PDP(a, b, ~µ0). Here a is the dis-
count parameter, b the concentration parameter and
~µ0 the base measure. In this case Bayesian analysis
yields an augmented marginalised likelihood (Bun-
tine and Hutter, 2012), after integrating out ~µ, of

p
(
~z,~t
∣∣τ, ~µ0,PDP

)
=

(b|a)T
(b)N

∏
k

Snk
tk,a

(µ0,k)
tk (3)

where T =
∑

k tk, (x|y)N =
∏N−1
n=0 (x + ny) de-

notes the Pochhammer symbol, (x)N = (x|1)N , and
SNM,a is a generalized Stirling number that is readily
tabulated (Buntine and Hutter, 2012).

There are two fundamental things to notice about
Equation (3). Positively, the term in ~µ0 takes the
form of a multinomial likelihood, so we can prop-
agate it up and perform inference on ~µ0 unen-
cumbered by the functional mess of Equation (1).
Thus Poisson-Dirichlet processes allow one to do
Bayesian reasoning on hierarchies of probability
vectors (Teh, 2006; Teh et al., 2006). Negatively,
however, one needs to sample the auxiliary vari-
ables ~t leading to some problems: The range of tk,
{0, ..., nk}, is broad. Also, contributions from in-
dividual data zi have been lost so the mixing of the
MCMC can sometimes be slow. We confirmed these
problems on our first implementation of the Adap-
tive Topic Model presented next in Section 3.

A further improvement on PDP sampling is
achieved in (Chen et al., 2011), where another aux-
iliary variable is introduced, a so-called table in-
dicator, that for each datum zi indicates whether
it is the “head of its table” (recall the nk data are
spread over tk tables, each table has one and only
one “head”). Let ri = 1 if zi is the “head of its
table,” and zero otherwise. According to this “ta-
ble” logic, the number of tables for nk must be the
number of data zi that are also head of table, so
tk =

∑N
i=1 1zi=k1ri=1. Moreover, given this def-

inition, the first constraint of Equation (2) on tk is
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automatically satisfied. Finally, with tk tables then
there must be exactly tk heads of table, and we are
indifferent about which data are heads of table, thus

p
(
~z, ~r
∣∣τ, ~µ0,PDP

)
= p

(
~z,~t
∣∣τ, ~µ0,PDP

)∏
k

(
nk
tk

)−1

.

(4)
When using this marginalised likelihood in a Gibbs
sampler, the zi themselves are usually latent so also
sampled, and we develop a blocked Gibbs sampler
for (zi, ri). Since ~r only appears indirectly through
the table counts ~t, one does not need to store the ~r,
instead just resamples an ri when needed according
to the proportion tw/nw where zi = w.

3 The proposed Adaptive Topic Model

In this section an adaptive topic model (AdaTM) is
developed, a fully structured topic model, by using
a PDP to simultaneously model the hierarchical and
the sequential topic structures. Documents are as-
sumed to be broken into a sequence of segments.
Topic distributions are used to mimic the subjects of
documents and subtopics of their segments. The no-
tations and terminologies used in the following sec-
tions are given in Table 1.

In AdaTM, the two topic structures are captured
by drawing topic distributions from the PDPs with
two base distributions as follows. The document
topic distribution ~µi and the jth segment topic dis-

Table 1: List of notation for AdaTM

K number of topics
I number of documents
Ji number of segments in document i
Li,j number of words in document i, segment j
W number of words in dictionary
~µi document topic probabilities for document i
~α K-dimensional prior for each ~µi

~νi,j segment topic probabilities for document i and
segment j

ρi,j mixture weight associating with the link be-
tween ~νi.j and ~νi,j−1

~Φ word probability vectors as a K ×W matrix
~φk word probability vector for topic k, entries in Φ

~γ W -dimensional prior for each ~φk

wi,j,l word in document i, segment j, position l
zi,j,l topic for word wi,j,l

w

L

z

I

K

α

μ

ν

γ

φ

1
ν

2

1

w
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ν
J

w
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J

。。。

λ

Figure 2: The adaptive topic model: ~µ is the document
topic distribution, ~ν1, ~ν2, . . . , ~νJ are the segment topic
distributions, and ~ρ is a set of the mixture weights.

tribution ~νi,j are linearly combined to give a base
distribution for the (j + 1)th segment’s topic dis-
tribution ~νi,j+1. The topic distribution of the first
segment, i.e., ~νi,1, is drawn directly with the base
distribution ~µi. Call this generative process topic
adaptation. The graphical representation of AdaTM
is shown in Figure 2, and clearly shows the combi-
nation of sequence and hierarchy for the topic prob-
abilities. Note the linear combination at each node
~νi,j is weighted with latent proportions ρi,j .

The resultant model for AdaTM is:

~φk ∼ DirichletW (~γ) ∀ k
~µi ∼ DirichletK (~α) ∀ i
ρi,j ∼ Beta(λS , λT ) ∀ i, j
~νi,j ∼ PDP (ρi,j~νi,j−1 + (1− ρi,j)~µi, a, b)
zi,j,l ∼ DiscreteK (~νi,j) ∀ i, j, l

wi,j,l ∼ DiscreteK
(
~φzi,j,l

)
∀ i, j, l .

For notational convenience, let ~νi,0 = ~µi. Assume
the dimensionality of the Dirichlet distribution (i.e.,
the number of topics) is known and fixed, and word
probabilities are parameterised with aK×W matrix
~Φ = (~φ1, ..., ~φK).

4 Gibbs Sampling Formulation

Given observations and model parameters, comput-
ing the posterior distribution of latent variables is in-
feasible for AdaTM due to the intractable computa-
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Table 2: List of statistics for AdaTM

Mi,k,w the total number of words in document i with
dictionary index w and being assigned to topic
k

Mk,w total Mi,k,w for document i, i.e.,
∑

iMi,k,w

~Mk vector of W values Mk,w

ni,j,k topic count in document i segment j for topic k
Ni,j topic total in document i segment j, i.e.,∑K

k=1 ni,j,k

ti,j,k table count in the CPR for document i and para-
graph j, for topic k that is inherited back to
paragraph j − 1 and ~µi,j−1.

si,j,k table count in the CPR for document i and para-
graph j, for topic k that is inherited back to the
document and ~µi.

Ti,j total table count in the CRP for document i and
segment j, equal to

∑K
k=1 ti,j,k.

Si,j total table count in the CRP for document i and
segment j, equal to

∑K
k=1 si,j,k.

~ti,j table count vector of ti,j,k’s for segment j.
~si,j table count vector of si,j,k’s for segment j.

tion of marginal probabilities. Therefore, we have to
use approximate inference techniques. This section
proposes a blocked Gibbs sampling algorithm based
on methods from Chen et al. (2011). Table 2 lists
all statistics needed in the algorithm. Note for easier
understanding, terminologies of the Chinese Restau-
rant Process (Teh et al., 2006) will be used, i.e., cus-
tomers, dishes and restaurants, correspond to words,
topics and segments respectively.

The first major complication, over the use of the
hierarchical PDP and Equation (3) and the table in-
dicator trick of Equation (4), is handling the lin-
ear combination of ρi,j~νi,j−1 + (1 − ρi,j)~µi used
in the PDPs. We manage this as follows: First,
Equation (3) shows that a contribution of the form
(µ0,k)

tk results. In our case, this becomes∏
k

(ρi,jνi,j−1,k + (1− ρi,j)µi,k)t
′
i,j,k

where t′i,j,k is the corresponding introduced auxil-
iary variable the table count which is involved with
constraints on ni,j,k+ti,j+1,k, from Equation (2). To
deal with this power of a sum, we break the counts
t′i,j,k into two parts, those that contribute to ~νi,j−1

and those that contribute to ~µi. We call these parts
ti,j,k and si,j,k respectively. The product can then be

expanded and ρi,j integrated out. This yields:

Beta (Si,j + λS , Ti,j + λT )
∏
k

ν
ti,j,k

i,j−1,kµ
si,j,k

i,k .

The powers νti,j,k

i,j−1,k and µsi,j,k

i,k can then be pushed
up to the next nodes in the PDP/Dirichlet hierarchy.
Note the standard constraints and table indicators are
also needed here.

The precise form of the table indicators needs to
be considered as well since there is a hierarchy for
them, and this is the second major complication in
the model. As discussed in Chen et al. (2011), table
indicators are not required to be recorded, instead,
randomly sampled in Gibbs cycles. The table indi-
cators when known can be used to reconstruct the
table counts ti,j,k and si,j,k, and are reconstructed
by sampling from them. For now, denote the table
indicators as ui,j,l for word wi,j,l.

To complete a formulation suitable for Gibbs
sampling, we first compute the marginal distribu-
tion of the observations ~w1:I,1:J (words), the topic
assignments ~z1:I,1:J and the table indicators ~u1:I,1:J .
The Dirichlet integral is used to integrate out the
document topic distributions ~µ1:I and the topic-
by-words matrix ~Φ, and the joint posterior dis-
tribution computed for a PDP is used to recur-
sively marginalise out the segment topic distribu-
tions ~ν1:I,1:J . With these variables marginalised out,
we derive the following marginal distribution

p(~z1:I,1:J , ~w1:I,1:J , ~u1:I,1:J

∣∣ ~α,~γ, a, b) = (5)

I∏
i=1

BetaK
(
~α+

∑Ji
j=1 ~si,j

)
BetaK (~α)

K∏
k=1

BetaW
(
~γ + ~Mk

)
BetaW (~γ)

I∏
i=1

Ji∏
j=1

Beta (Si,j + λS , Ti,j + λT )
(b|a)Ti,j+Si,j

(b)Ni,j+Ti,j+1

I∏
i=1

Ji∏
j=1

K∏
k=1

(
(ni,j,k + ti,j+1,k)

(ti,j,k + si,j,k)

)−1

S
ni,j,k+ti,j+1,k

ti,j,k+si,j,k,a
.

And the following constraints apply:

ti,j,k + si,j,k ≤ ni,j,k + ti,j+1,k, (6)

ti,j,k + si,j,k = 0 iff ni,j,k + ti,j+1,k = 0 . (7)

The first constraint falls out naturally when table in-
dicators are used. For convenience of the formulas,
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set ti,Ji+1,k = 0 (there is no Ji + 1 segment) and
ti,1,k = 0 (the first segment only uses ~µi).

Now let us consider again the table indicators
ui,j,l for word wi,j,l. If this word is in topic k at doc-
ument i and segment j, then it contributes a count to
ni,j,k. It also indicates if it contributes a new table,
or a count to t′i,j,k for the PDP at this node. How-
ever, as we discussed above, this then contributes to
either ti,j,k or si,j,k. If it contributes to ti,j,k, then
it recurses up to contribute a data count to the PDP
for document i segment j − 1. Thus it also needs a
table indicator at that node. Consequently, the table
indicator ui,j,l for word wi,j,l must specify whether
it contributes a table to all PDP nodes reachable by
it in the graph.

We define ui,j,l specifically as ui,j,l = (u1, u2)
such that u1 ∈ [−1, 0, 1] and u2 ∈ [1, · · · , j],
where u2 indicates segment denoted by node νj
up to which wi,j,l contributes a table. Given u2,
u1 = −1 denotes wi,j,l contributes a table count to
si,u2,k and ti,j′,k for u2 < j′ ≤ j; u1 = 0 denotes
wi,j,l does not contribute a table to node u2, but con-
tributes a table count to ti,j′,k for u2 < j′ ≤ j; and
u1 = 1 denotes wi,j,l contributes a table count to
each ti,j′,k for u2 ≤ j′ ≤ j.

Now, we are ready to compute the conditional
probabilities for jointly sampling topics and table in-
dicators from the model posterior of Equation (5).

5 Gibbs Sampling Algorithm

The Gibbs sampler iterates over words, doing a
blocked sample of (zi,j,l, ui,j,l). The first task is to
reconstruct ui,j,l since it is not stored. Since the pos-
terior of Equation (5) does not explicitly mention
the ui,j,l’s, they occur indirectly through the table
counts, and we can randomly reconstruct them by
sampling them uniformly from the space of possi-
bilities. Following this, we then remove the values
(zi,j,l, ui,j,l) from the full set of statistics. Finally,
we block sample new values for (zi,j,l, ui,j,l) and
add them to the statistics. The new ui,j,l is subse-
quently forgotten and the zi,j,l recorded.

Reconstructing table indicator ui,j,l: We start at
the node indexed i, j. If si,j,k+ti,j,k = 1 and ni,j,k+
ti,j+1,k > 1 then no tables can be removed since
there is only one table but several customers at the
table. Thus ui,j,l = (u1, u2) = (0, j) and there is no

sampling. Otherwise, by symmetry arguments, we
sample u1 via

p(u1 = −1, 0, 1|u2 = j, zi,j,l = k) ∝
(si,j,k, ti,j,k, ni,j,k + ti,j+1,k − si,j,k − ti,j,k) ,

since there are ni,j,k+ti,j+1,k data distributed across
the three possibilities. If after sampling u1 = −1,
the data contributes a table count up to ~µi and so
ui,j,l = (u1, u2) = (−1, j). If u1 = 0, the ui,j,l =
(u1, u2) = (0, j). Otherwise, the data contributes a
table count up to the parent PDP for ~νi,j−1 and we
recurse, repeating the sampling process at the parent
node. Note, however, that the table indicator (0, j′)
for j′ < j is equivalent to the table indicator (1, j′+
1) as far as statistics is concerned.

Block sampling (zi,j,l, ui,j,l): The full set of pos-
sibilities are, for each possible topic zi,j,l = k:

• no tables are created, so ui,j,l = (0, j),

• tables are created contributing a table count all
the way up to node j′ (≤ j) but stop at j′ and
do not subsequently contribute a count to ~µi, so
ui,j,l = (1, j′),

• tables are created contributing a table count all
the way up to node j′ ≤ j but stop at j′ and
also subsequently contribute a count to ~µi, so
ui,j,l = (−1, j′).

These three possibilities lead to detailed but fairly
straight forward changes to the posterior of Equa-
tion (5). Thus a full blocked sampler for (zi,j,l, ui,j,l)
can be constructed.

Estimates: learnt values of ~µi, ~νi,j , ~φk are needed
for evaluation, perplexity calculations, etc. These
are estimated by taking averages after the Gibbs
sampler has burnt in, using the standard posterior
means for Dirichlets and Poisson-Dirichlets.

6 Experiments

In the experimental work, we have three objectives:
(1) to explore the setting of hyper-parameters, (2) to
compare the model with the earlier sequential LDA
(SeqLDA) of (Du et al., 2012), STM of (Du et al.,
2010) and standard LDA, and (3) to view the results
in detail on a number of characteristic problems.
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Table 3: Datasets

#docs #segs #words vocab
Pat-A 500 51,748 2,146,464 16,573
Pat-B 397 9,123 417,631 7,663
Pat-G06 500 11,938 655,694 6,844
Pat-H 500 11,662 562,439 10,114
Pat-F 140 3,181 166,091 4,674
Prince-C 1 26 10,588 3,292
Prince-P 1 192 10.588 3,292
Moby Dick 1 135 88,802 16,223

6.1 Datasets

For general testing, five patent datasets are ran-
domly selected from U.S. patents granted in 2009
and 2010. Patents in Pat-A are selected from in-
ternational patent class (IPC) “A”, which is about
“HUMAN NECESSITIES”; those in Pat-B are se-
lected from class “B60” about “VEHICLES IN
GENERAL”; those in Pat-H are selected from
class “H” about “ELECTRICITY”; those in Pat-
F are selected from class “F” about “MECHAN-
ICAL ENGINEERING; LIGHTING; HEATING;
WEAPONS; BLASTING”; and those in Pat-G are
selected from class “G06” about “COMPUTING;
CALCULATING; COUNTING”. All the patents in
these five datasets are split into paragraphs that are
taken as segments, and the sequence of paragraphs
in each patent is reserved in order to maintain the
original layout. All the stop words, the top 10 com-
mon words, the uncommon words (i.e., words in less
than five patents) and numbers have been removed.

Two books used for more detailed investigation
are “The Prince” by Niccolò Machiavelli and “Moby
Dick” by Herman Melville. They are split into chap-
ters and/or paragraphs which are treated as seg-
ments, and only stop-words are removed. Table 3
shows in detail the statistics of these datasets after
preprocessing.

6.2 Design

Perplexity, a standard measure of dictionary-based
compressibility, is used for comparison. When re-
porting test perplexities, the held-out perplexity
measure (Rosen-Zvi et al., 2004) is used to evaluate
the generalisation capability to the unseen data. This
is known to be unbiased. To compute the held-out
perplexity, 20% of patents in each data set was ran-
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Figure 3: Analysis of parameters of Poisson-Dirichlet
process. (a) shows how perplexity changes with b; (b)
shows how it changes with a.
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Figure 4: Analysis of the two parameters for Beta distri-
bution. (a) how perplexity changes with λS ; (b) how it
changes with λT .

domly held out from training to be used for testing.
For this, 1000 Gibbs cycles were done for burn-in
followed by 500 cycles with a lag for 100 for pa-
rameter estimation.

We implemented all the four models, e.g., LDA,
STM, SeqTM and AdaTM in C, and ran them on a
desktop with Intel Core i5 CPU (2.8GHz×4), even
though our code is not multi-threaded. Perplexity
calculations, data input and handling, etc., were the
same for all algorithms. We note that the current
AdaTM implementation is an order of magnitude
slower than regular LDA per major Gibbs cycle.

6.3 Hyper-parameters in AdaTM
Experiments on the impact of the hyper-parameters
on the patent data sets were as follows: First, fixing
K = 50, the Beta parameters λT = 1 and λS = 1,
optimise symmetric α, and do two variations fix-a:
a = 0.0, trying b = 1, 5, 10, 25, ..., 300, and fix-b:
b = 10, trying a = 0.1, 0.2, ..., 0.9. Second, fix-λT
(fix-λS): fix a = 0.2 and λT (λS) = 1, optimise
b and α, change λS(λT ) = 0.1, 1, 10, 50, 100, 200.
Figures 3 and 4 show the corresponding plots. Fig-
ure 3(b) and Figure 4(a) show that varying the val-
ues of a and λS does not significantly change the
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Figure 5: Perplexity comparisons.

perplexity. In contrast, Figure 3(a) shows different
b values significantly change perplexity. Therefore,
we sought to optimise b. The experiment of fixing
λS = 1 and changing λT shows a small λT is pre-
ferred.

6.4 Perplexity Comparison

Perplexity comparisons were done with the default
settings a = 0.2, α = 0.1, γ = 0.01, λS = 1,
λT = 1 and b optimised automatically using the
scheme from (Du et al., 2012). Figure 5 shows
the results on these five patent datasets for differ-
ent numbers of topics. LDA D is LDA run on whole
patents, and LDA P is LDA run on the paragraphs
within patents. Table 4 gives the p-values of a one-
tail paired t-test for AdaTM versus the others, where
lower p-value indicates AdaTM has statistically sig-
nificant lower perplexity. From this we can see that
AdaTM is statistically significantly better than Se-
qLDA and LDA, and somewhat better than STM.

In addition, we ran another set of experiments
by randomly shuffling the order of paragraphs in
each patent several times before running AdaTM.
Then, we calculate the difference between perplex-
ities with and without random shuffle. Figure 5(f)
shows the plot of differences in each data sets. The
positive difference means randomly shuffling the or-
der of paragraphs indeed increases the perplexity.

It can further prove that there does exist sequential
topic structure in patents, which confirms the finding
in (Du et al., 2012).

6.5 Topic Evolution Comparisons

All the comparison experiments reported in this sec-
tion are run with 20 topics, the upper limit for easy
visualisation, and without optimising any parame-
ters. The Dirichlet Priors are fixed as αk = 0.1
and γw = 0.01. For AdaTM, SeqLDA, and STM,
a = 0.0 and b = 100 for “The Prince” and b = 200
for “Moby Dick”. These settings have proven ro-
bust in experiments. To align the topics so visual-
isations match, the sequential models are initialised
using an LDA model built at the chapter level. More-
over, all the models are run at both the chapter and
the paragraph level. With the common initialisation,
both paragraph level and chapter level models can

Table 4: P-values for one-tail paired t-test on the five
patent datasets.

AdaTM
Pat-G Pat-A Pat-F Pat-H Pat-B

LDA D .0001 .0001 .0002 .0001 .0001
LDA P .0041 .0030 .0022 .0071 .0096

SeqLDA .0029 .0047 .0003 .0012 .0023
STM .0220 .0066 .0210 .0629 .0853
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(a) Evolution of paragraph topics for LDA

(b) Topic alignment of LDA versus AdaTM top-
ics for chapters

Figure 6: Analysis on “The Prince”.

be aligned.
To visualise topic evolution, we use a plot with

one colour per topic displayed over the sequence.
Figure 6(a) shows this for LDA run on paragraphs
of “The Prince”. The proportion of 20 topics is the
Y-axis, spread across the unit interval. The para-
graphs run along the X-axis, so the topic evolution
is clearly displayed. One can see there is no se-
quential structure in this derived by the LDA model,
and similar plots result from “Moby Dick” for LDA.
Figure 6(b) shows the alignment of topics between
the initialising model (LDA+chapters) and AdaTM
run on chapters. Each point in the matrix gives the
Hellinger distance between the corresponding top-
ics, color coded. The plots for the other models,
chapters or paragraphs, are similar so plots like Fig-
ure 6(a) for the other models can be meaningfully
compared.

Figure 7 then shows the corresponding evolution
plots for AdaTM and SeqLDA on chapters and para-
graphs. The contrast of these with LDA is stark.
The large improvement in perplexity for AdaTM
(see Section 6.4) along with no change in lexi-
cal coherence (see Section 6.2) means that the se-

(a) AdaTM on chapters

(b) AdaTM on paragraphs

(c) SeqLDA on chapters

(d) SeqLDA on paragraphs

Figure 7: Topic Evolution on “The Prince”.

quential information is actually beneficial statisti-
cally. Note that SeqLDA, while exhibiting slightly
stronger sequential structure than AdaTM in these
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(a) LDA on chapters

(b) STM on Chapters

(c) AdaTM on Chapters

Figure 8: Topic Evolution on “Moby Dick”.

figures has significantly worse test perplexity, so its
sequential affect is too strong and harming results.
Also, note that some topics have different time se-
quence profiles between AdaTM and SeqLDA. In-
deed, inspection of the top words for each show
these topics differ somewhat. So while the LDA
to AdaTM/SeqLDA topic correspondences are quite
good due to the use of LDA initialisation, the cor-
respondences between AdaTM and SeqLDA have
degraded. We see that AdaTM has nearly as good
sequential characteristics as SeqLDA. Furthermore,
segment topic distribution νi,j of SeqLDA are grad-
ually deviating from the document topic distribution

µi, which is not the case for AdaTM.
Results for “Moby Dick” on chapters are com-

parable. Figure 8 shows similar topic evolution
plots for LDA, STM and AdaTM. In contrast, the
AdaTM topic evolutions are much clearer for the
less frequent topics, as shown in Figure 8(c). Var-
ious parts of this are readily interpreted from the
storyline. Here we briefly discuss topics by their
colour: black: Captain Peleg and the business of
signing on; yellow: inns, housing, bed; mauve:
Queequeg; azure: (around chapters 60-80) details
of whales aqua: (peaks at 8, 82, 88) pulpit, schools
and mythology of whaling.

We see that AdaTM can be used to understand the
topics with regards to the sequential structure of a
book. In contrast, the sequential nature for LDA and
STM is lost in the noise. It can be very interesting to
apply the proposed topic models to some text anal-
ysis tasks, such as topic segmentation, summarisa-
tion, and semantic title evaluation, which are subject
to our future work.

7 Conclusion

A model for adaptive sequential topic modelling has
been developed to improve over a simple exchange-
able segments model STM (Du et al., 2010) and a
naive sequential model SeqLDA (Du et al., 2012) in
terms of perplexity and its confirmed ability to un-
cover sequential structure in the topics. One could
extract meaningful topics from a book like Herman
Melville’s “Moby Dick” and concurrently gain their
sequential profile. The current Gibbs sampler is
slower than regular LDA, so future work is to speed
up the algorithm.
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Abstract

In this paper we address the problem of
modeling compositional meaning for phrases
and sentences using distributional methods.
We experiment with several possible com-
binations of representation and composition,
exhibiting varying degrees of sophistication.
Some are shallow while others operate over
syntactic structure, rely on parameter learn-
ing, or require access to very large corpora.
We find that shallow approaches are as good
as more computationally intensive alternatives
with regards to two particular tests: (1) phrase
similarity and (2) paraphrase detection. The
sizes of the involved training corpora and the
generated vectors are not as important as the
fit between the meaning representation and
compositional method.

1 Introduction

Distributional models of semantics have seen con-
siderable success at simulating a wide range of be-
havioral data in tasks involving semantic cognition
and also in practical applications. For example, they
have been used to model judgments of semantic sim-
ilarity (McDonald, 2000) and association (Denhire
and Lemaire, 2004; Griffiths et al., 2007) and have
been shown to achieve human level performance
on synonymy tests (Landauer and Dumais, 1997;
Griffiths et al., 2007) such as those included in the
Test of English as a Foreign Language (TOEFL).
This ability has been put to practical use in numer-
ous natural language processing tasks such as au-
tomatic thesaurus extraction (Grefenstette, 1994),

word sense discrimination (Schütze, 1998), lan-
guage modeling (Bellegarda, 2000), and the iden-
tification of analogical relations (Turney, 2006).

While much research has been directed at the
most effective ways of constructing representations
for individual words, there has been far less con-
sensus regarding the representation of larger con-
structions such as phrases and sentences. The prob-
lem has received some attention in the connection-
ist literature, particularly in response to criticisms of
the ability of connectionist representations to handle
complex structures (Smolensky, 1990; Plate, 1995).
More recently, several proposals have been put for-
ward for computing the meaning of word combina-
tions in vector spaces. This renewed interest is partly
due to the popularity of distributional methods and
their application potential to tasks that require an un-
derstanding of larger phrases or complete sentences.

For example, Mitchell and Lapata (2010) intro-
duce a general framework for studying vector com-
position, which they formulate as a function f of
two vectors u and v. Different composition mod-
els arise, depending on how f is chosen. Assuming
that composition is a linear function of the Cartesian
product of u and v allows to specify additive mod-
els which are by far the most common method of
vector combination in the literature (Landauer and
Dumais, 1997; Foltz et al., 1998; Kintsch, 2001).
Alternatively, assuming that composition is a linear
function of the tensor product of u and v, gives rise
to models based on multiplication.

One of the most sophisticated proposals for se-
mantic composition is that of Clark et al. (2008) and
the more recent implementation of Grefenstette and
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Sadrzadeh (2011a). Using techniques from logic,
category theory, and quantum information they de-
velop a compositional distributional semantics that
brings type-logical and distributional vector space
models together. In their framework, words belong
to different type-based categories and different cate-
gories exist in different dimensional spaces. The cat-
egory of a word is decided by the number and type of
adjoints (arguments) it can take and the composition
of a sentence results in a vector which exists in sen-
tential space. Verbs, adjectives and adverbs act as re-
lational functions, are represented by matrices, and
modify the properties of nouns, that are represented
by vectors (see also Baroni and Zamparelli (2010)
for a proposal similar in spirit). Clarke (2012) intro-
duces context-theoretic semantics, a general frame-
work for combining vector representations, based on
a mathematical theory of meaning as context, and
shows that it can be used to describe a variety of
models including that of Clark et al. (2008).

Socher et al. (2011a) and Socher et al. (2011b)
present a framework based on recursive neural net-
works that learns vector space representations for
multi-word phrases and sentences. The network is
given a list of word vectors as input and a binary
tree representing their syntactic structure. Then, it
computes an n-dimensional representation p of two
n-dimensional children and the process is repeated
at every parent node until a representation for a full
tree is constructed. Parent representations are com-
puted essentially by concatenating the representa-
tions of their children. During training, the model
tries to minimize the reconstruction errors between
the n-dimensional parent vectors and those repre-
senting their children. This model can also compute
compositional representations when the tree struc-
ture is not given, e.g., by greedily inferring a binary
tree.

Although the type of function used for vector
composition has attracted much attention, relatively
less emphasis has been placed on the basic distri-
butional representations on which the composition
functions operate. In this paper, we examine three
types of distributional representation of increasing
sophistication and their effect on semantic composi-
tion. These include a simple semantic space, where
a word’s vector represents its co-occurrence with
neighboring words (Mitchell and Lapata, 2010),

a syntax-aware space based on weighted distribu-
tional tuples that encode typed co-occurrence rela-
tions among words (Baroni and Lenci, 2010), and
word embeddings computed with a neural language
model (Bengio, 2001; Collobert and Weston, 2008).
Word embeddings are distributed representations,
low-dimensional and real-valued. Each dimension
of the embedding represents a latent feature of the
word, hopefully capturing useful syntactic and se-
mantic properties.

Using these representations, we construct several
compositional models, based on addition, multipli-
cation, and recursive neural networks. We assess
the effectiveness of these models using two evalua-
tion protocols. The first one involves modeling sim-
ilarity judgments for short phrases gathered in hu-
man experiments (Mitchell and Lapata, 2010). The
second one is paraphrase detection, i.e., the task of
examining two sentences and determining whether
they have the same meaning (Socher et al., 2011a).
We find that shallow approaches are as good as
more computationally intensive alternatives. They
achieve considerable semantic expressivity without
any learning, sophisticated linguistic processing, or
access to very large corpora.

Our contributions in this work are three-fold: an
empirical comparison of a broad range of composi-
tional models, some of which are introduced here for
the first time; the use of an evaluation methodology
that takes into account the full spectrum of compo-
sitionality from phrases to sentences; and the em-
pirical finding that relatively simple compositional
models can be used to perform competitively on the
paraphrase detection and phrase similarity tasks.

2 Modeling

The elementary objects that we operate on are vec-
tors associated with words. We instantiate these
word representations following three distinct seman-
tic space models which we describe in Section 2.1
below. Analogously, in Section 2.2 we consider
three methods of vector composition, i.e., how a
phrase or a sentence can be represented as a vector
using the vectors of its constituent words. Combin-
ing different vector representations and composition
methods gives rise to several compositional models
whose performance we evaluate in Sections 3 and 4.
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2.1 Word Representations

For all of our experiments we employ column vec-
tors from a Cartesian, finitely-dimensional space.
The dimensionality will depend on the source of
the vectors involved. Similarly, the component val-
ues inside each source’s vectors are not to be inter-
preted in the same manner. Nonetheless, they have
in common that they originate from distributive cor-
pus statistics.

Co-occurence-based Semantic Space Word
meaning is commonly represented in a high-
dimensional space, where each component corre-
sponds to some contextual element in which the
word is found. The contextual elements can be
words themselves, or larger linguistic units such as
sentences or documents, or even more complex lin-
guistic representations such as the argument slots of
predicates. A semantic space that is often employed
in studying compositionality across a variety of
tasks (Mitchell and Lapata, 2010; Grefenstette and
Sadrzadeh, 2011a) uses a context window of five
words on either side of the target word, and 2,000
vector dimensions. These are the common context
words in the British National Corpus (BNC), a
corpus of about 100 million tokens. Their values
are set to the ratio of the probability of the context
word given the target word to the probability of the
context word overall.

More formally, let us consider the BNC as a set of
sentences:

BNC = {Sen(BNC)
1 , ...,Sen(BNC)

nBNC } (1)

where the i-th sentence is a sequence of words
Seni = (w(i)

1 , ...,w(i)
ni ) from the BNC’s vocabulary

VocBNC. Then f reqw is the amount of times
that each word w ∈ VocBNC appears in the BNC.
Mitchell and Lapata (2010) collect the M most
frequent non-stoplist words in the set ctxttop =
{w(top)

1 , ...,w(top)
M } and let them consitute the word

vectors’ dimensions. Each dimension’s value is ob-
tained from a co-occurrence count:

coCountw[ j] =
nBNC

∑
i=1

ni

∑
t=1

(2)

|{k ∈ [t−5; t +5] |w(i)
t = w, w(i)

k = w(top)
j }|

for w∈VocBNC and j = 1, ...,M. Using these counts,
they define word vectors component-wise.

wdVec(rp)
w [ j] =

p(w(top)
j |w)

p(w(top)
j )

= (3)

coCountw[ j]
f reqw

× totalCount
f req

w(top)
j

for j = 1, ...,M, where totalCount is the total num-
ber of words in the BNC.

This space is relatively simple, it has few param-
eters, requires no preprocessing other than tokeniza-
tion and involves no syntactic information or param-
eter learning. Despite its simplicity, it is a good start-
ing point for studying representations for composi-
tional models as a baseline against which to evaluate
more elaborate models.

Neural Language Model Another perhaps less
well-known approach to meaning representation is
to represent words as continuous vectors of param-
eters. Such word vectors can be obtained with an
unsupervised neural language model (NLM, Bengio
(2001); Collobert and Weston (2008)) which jointly
learns an embedding of words into a vector space
and uses these vectors to predict how likely a word
is, given its context.

We induced word embeddings with Collobert
and Weston (2008)’s neural language model. The
model is discriminative and non-probabilistic. Each
word i ∈ D (the vocabulary) is embedded into a
d-dimensional space using a lookup table LTW (·):

LTW (i) = Wi (4)

where W ∈ Rd×|D| is a matrix of parameters to be
learned. Wi ∈ Rd is the i-th column of W and d is
the word vector size to be chosen by the user. The
parameters W are automatically trained during the
learning process using backpropagation.

Specifically, at each training update, the model
reads an n-gram x = (w1, . . . ,wn) from the cor-
pus. The n-gram is paired with a corrupted n-gram
x̃ = (w1, . . . , w̃n) where w̃n 6= wn is chosen uniformly
from the vocabulary. The model concatenates the
learned embeddings of the n words and predicts a
score for the n-gram sequence using the learned em-
beddings as features. The training criterion is that
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n-grams that are present in the training corpus must
have a score at least some margin higher than the
corrupted n-grams. The model learns via gradient
descent over the neural network parameters and the
embedding lookup table. Word vectors are stored in
a word embedding matrix which captures syntactic
and semantic information from co-occurrence statis-
tics. As these representations are learned, albeit in
an unsupervised manner, one would hope that they
capture word meanings more succinctly, compared
to the simpler distributional representations that are
merely based on co-occurrence.

We trained the neural language model on the
BNC. We optimized the model’s parameters on a
word similarity task using 4% of the BNC as de-
velopment data. Specifically, we used WordSim353,
a benchmark dataset (Finkelstein et al., 2001), con-
sisting of relatedness judgments (on a scale of 0
to 10) for 353 word pairs. We experimented with
vectors of varying dimensionality (ranging from 50
to 200, with a step size of 50). The size of the target
word’s context window was 2, 3 and 4 in turn. The
rate at which embeddings were learned ranged from
3.4× 10−10 to 6.7× 10−10 to 10−9. We ran each
training process for 1.1×108 to 2.7×108 iterations
(ca. 2 days). We obtained the best results with 50
dimensions, a context window of size 4, and a em-
bedding learning rate of 10−9. The NLM with these
parameters was then trained for 1.51×109 iterations
(ca. 2 weeks).

Figure 1 illustrates a two-dimensional projection
of the embeddings for the 500 most common words
in the BNC. We only show two out of the actual
50 dimensions involved, but one can already begin
to see clusterings of a syntactic and semantic na-
ture. In one corner, for example, we encounter a
grouping of possessive pronouns together with the
possessive clitic ’s. The singular ones my, her and
his are closely positioned, as are the plural ones our,
your and their. Also, there is a clustering of socio-
political terms, such as international, country, na-
tional, government, and council.

Distributional Memory Tensor Baroni and Lenci
(2010) present Distributional Memory, a general-
ized framework for distributional semantics from
which several special-purpose models can be de-
rived. In their framework distributional information

Figure 1: A two-dimensional projection of the word em-
beddings we trained on the BNC using Turian et al.’s
(2010) implementation of the NLM. Two small sections
have been blown up to a legible scale. They show exam-
ples of syntactic and semantic clustering, respectively.

word w link l co-word v value c

1950s-n of essence-n 2.4880
1950s-n during bring-v 16.4636
Anyone-n nmod reaction-n 1.2161
American-n coord-1 athlete-n 5.6485
American-j nmod wasp-n 3.4945
American-n such as-1 country-n 14.4269
American-n sbj tr build-v 23.1014

Table 1: Example entries in Baroni and Lenci (2010)’s
tensor

is extracted from the corpus once, in the form of a
set of weighted word-link-word tuples arranged into
a third-order tensor. Different matrices are then gen-
erated from the tensor, and their rows and columns
give rise to different semantic spaces appropriate for
capturing different semantic problems. In this way,
the same distributional information can be shared
across tasks such as word similarity or analogical
learning.

More formally, Baroni and Lenci (2010) con-
struct a 3-dimensional tensor T assigning a value c
to instances of word pairs w,v and a connecting
link-word l. This representation operates over a
dependency-parsed corpus and the scores c are ob-
tained via counting the occurrences of tuples, and
weighting the raw counts by mutual information.
Table 1 presents examples of tensor entries. These
were taken from a distributional memory tensor1

1Available at http://clic.cimec.unitn.it/dm/.
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frequency link l co-word v

17059 obj include-v
16713 obj use-v
16573 obj call-v
16475 obj see-v
15962 obj make-v
15707 nmod-1 other-j
15554 nmod-1 new-j
15224 obj find-v
15221 nmod-1 more-j
14715 nmod-1 first-j
14348 obj give-v

Table 2: The 11 most frequent contexts in Baroni and
Lenci (2010)’s tensor (v and j represent verbs and adjec-
tives, respectively).

that Baroni and Lenci obtained via preprocessing
several corpora: the web-derived ukWac corpus of
about 1.915 billion words, a mid-2009 dump of
the English Wikipedia containing about 820 million
words, and the BNC.

Extracting a 3-dimensional tensor from the BNC
alone would create very sparse representations.
We therefore extract so-called word-fibres, essen-
tially projections onto a lower-dimensional sub-
space, from the same tensor Baroni and Lenci (2010)
collectively derived from the 3 billion word corpus
just described (henceforth 3-BWC). We view the
3-dimensional tensor

T = {(w(T )
1 , l(T )

1 ,v(T )
1 ,c(T )

1 ), ...} (5)

as a mapping which assigns each target word w a
non-zero value c, given the context (l,v). All word-
context combinations not listed in T are implicitly
assigned a zero value.

Now we consider two possible approaches for
obtaining vectors, depending on their application.
First, we let the D most frequent contexts

ctxtD = {(l1,v1), ...,(lD,vD)} (6)

constitute the D dimensions that each word vec-
tor will have. Table 2 shows the 11 contexts (l,v)
that appear most frequently in T . Thus, each target
word’s vector is defined component-wise as:

wdVecw[ j] =
{

c, if (w, l j,v j,c) ∈ T
0, otherwise

(7)

for j = 1, ...,D. This approach is used when a fixed
vector dimensionality is necessary.

A more dynamic approach is possible when very
few words w1, ...,wn are involved in a test. Their
representations can then have a denser format, that
is, with no zero-valued components. For this we
identify the set of contexts common to the words in-
volved,

ctxtdyn = {(l(dyn)
1 ,v(dyn)

1 ),(l(dyn)
2 ,v(dyn)

2 ), ...} (8)

= {(l,v) |(wi, l,v,c) ∈ T,c ∈ R, i = 1, ...,n}

Each context (l,v) again constitutes a vector dimen-
sion. The dimensionality varies strongly depend-
ing on the selection of words, but if n does not ex-
ceed 4, the dimensionality |ctxtdyn| will typically be
substantial enough. In this approach, each word’s
vector consists of the values c found along with that
word and its context in the tensor.

wdVecwi [ j] = c, (9)

where (wi, l
(dyn)
j ,v(dyn)

j ,c)∈ T , for j = 1, ..., |ctxtdyn|.

2.2 Composition Methods
In our experiments we compose word vectors to cre-
ate representations for phrase vectors and sentence
vectors. The phrases we are interested in consist of
two words each: an adjective and a noun like black
hair, a compound noun made up of two nouns such
as oil industry, or a verbal phrase with a transitive
verb and an object noun, e.g., pour tea.

Conceiving of a phrase phr = (w1,w2) as a binary
tuple of words, we obtain its vector from its words’
vectors either by addition:

phrVec(w1,w2) = wdVecw1 +wdVecw2 (10)

or by point-wise multiplication:

phrVec(w1,w2) = wdVecw1�wdVecw2 (11)

In the same way we acquire a vector senVeci rep-
resenting a sentence Seni = (w(i)

1 , ...,w(i)
ni ) from the

vectors for w1, ...,wni . We simply sum the existing
word vectors, that is, vectors obtained via the respec-
tive corpus for words that are not on our stoplist:

senVec(+)
i [ j] = ∑

k=1,...,ni
wdVecwk exists

wdVecwk [ j] (12)
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And do the same with point-wise multiplication:

senVec(�)
i [ j] = ∏

k=1,...,ni
wdVecwk exists

wdVecwk [ j] (13)

The multiplication model in (13) can be seen as an
instantiation of the categorical compositional frame-
work put forward by Clark et al. (2008). In fact,
a variety of multiplication-based models can be de-
rived from this framework; and comparisons against
component-wise multiplication on phrase similar-
ity tasks yield comparable results (Grefenstette
and Sadrzadeh, 2011a; Grefenstette and Sadrzadeh,
2011b). We thus opt for the model (13) as an exam-
ple of compositional models based on multiplication
due to its good performance across a variety of tasks,
including language modeling and prediction of read-
ing difficulty (Mitchell, 2011).

Our third method, for creating phrase and sen-
tence vectors alike, is the application of Socher et
al. (2011a)’s model. They use the Stanford parser
(Klein and Manning, 2003) to create a binary parse
tree for each input phrase or sentence. This tree is
then used as the basis for a deep recursive autoen-
coder (RAE). The aim is to construct a vector rep-
resentation for the tree’s root bottom-up where the
leaves contain word vectors. The latter can in the-
ory be provided by any type of semantic space, how-
ever Socher et al. use word embeddings provided by
the neural language model (Collobert and Weston,
2008).

Given the binary tree input structure, the model
computes parent representations p from their chil-
dren (c1,c2) using a standard neural network layer:

p = f (W (1)[c1;c2]+b(1)), (14)

where [c1;c2] is the concatenation of the two chil-
dren, f is an element-wise activation function such
as tanh, b is a bias term, and W ∈ Rn×2n is an en-
coding matrix that we want to learn during training.
One way of assessing how well p represents its di-
rect children is to decode their vectors in a recon-
struction layer:

[c′1;c′2] = f (W (2)p+b(2)) (15)

During training, the goal is to minimize the re-
construction errors of all input pairs at nontermi-
nal nodes p in a given parse tree by computing the

square of the Euclidean distance between the origi-
nal input and its reconstruction:

Erec([c1;c2]) =
1
2
|[c1;c2]− [c′1;c′2]|2 (16)

Socher et al. (2011a) extend the standard re-
cursive autoencoder sketched above in two ways.
Firstly, they present an unfolding autoencoder that
tries to reconstruct all leaf nodes underneath each
node rather than only its direct children. And sec-
ondly, instead of transforming the two children di-
rectly into a parent p, they introduce another hidden
layer inbetween.

We obtained three compositional models per rep-
resentation resulting in nine compositional mod-
els overall. Plugging different representations into
the additive and multiplicative models is relatively
straightforward. The RAE can also be used with
arbitrary word vectors. Socher et al. (2011a) ob-
tain best results with 100-dimensional vectors which
we also used in our experiments. NLM vectors
were trained with this dimensionality on the BNC
for 7.9× 108 iterations (with window size 4 and an
embedding learning rate of 10−9). We constructed
a simple distributional space with M = 100 dimen-
sions, i.e., those connected to the 100 most frequent
co-occurrence words. In the case of vectors obtained
from Baroni and Lenci (2010)’s DM tensor, we dif-
ferentiated between phrases and sentences, due to
the disparate amount of words contained in them
(see Section 2.1). To represent phrases, we used
vectors of dynamic dimensionality, since these form
a richer and denser representation. The sentences
considered in Section 4 are too large for this ap-
proach and all word vectors must be members of
the same vector space. Hence, these sentence vec-
tors have fixed dimensionality D = 100, consisting
of the “most significant” 100 dimensions, i.e., those
reflecting the 100 most frequent contexts.

3 Experiment 1: Phrase Similarity

Our first experiment focused on modeling similarity
judgments for short phrases gathered in human ex-
periments. Distributional representations of individ-
ual words are commonly evaluated on tasks based
on their ability to model semantic similarity rela-
tions, e.g., synonymy or priming. Thus, it seems
appropriate to evaluate phrase representations in a

551



dim. c.m. Adj-N N-N V-Obj
2000 + 0.37 0.38 0.28SDS
2000 � 0.48 0.50 0.35

(BNC)
100 RAE 0.31 0.30 0.28
vary + 0.37 0.30 0.29DM
vary � 0.21 0.37 0.33

(3-BWC)
100 RAE 0.25 0.26 0.09
50 + 0.28 0.26 0.24NLM
50 � 0.26 0.22 0.18

(BNC)
100 RAE 0.19 0.24 0.28

Table 3: Correlation coefficients of model predictions
with subject similarity ratings (Spearman’s ρ); columns
show dimensionality: fixed or varying (see Section 2.1),
composition method: + is additive vector composition,
� is component-wise multiplicative vector composition,
RAE is Socher et al. (2011a)’s recursive auto-encoder.

similar manner. Specifically, we used the dataset
from Mitchell and Lapata (2010) which contains
similarity judgments for adjective-noun, noun-noun
and verb-object phrases, respectively.2 Each item is
a phrase pair phr1, phr2 which has a human rating
from 1 (very low similarity) to 7 (very high similar-
ity).

Using the composition models described above,
we compute the cosine similarity of phr1 and phr2:

phrSimphr1,phr2 =
phrVecphr1 · phrVecphr2

|phrVecphr1 |× |phrVecphr2 |
(17)

Model similarities were evaluated against the human
similarity ratings using Spearman’s ρ correlation co-
efficient.

Table 3 summarizes the performance of the vari-
ous models on the phrase similarity dataset. Rows
in the table correspond to different vector repre-
sentations: the simple distributional semantic space
(SDS) from Mitchell and Lapata (2010), Baroni and
Lenci’s (2010) distributional memory tensor (DM)
and the neural language model (NLM), for each
phrase combination: adjective noun (Adj-N), noun-
noun (N-N) and verb object (V-Obj). For each
phrase type we report results for each compositional
model, namely additive (+), multiplicative (�) and
recursive autoencoder (RAE). The table also shows

2The dataset is publicly available from http:
//homepages.inf.ed.ac.uk/s0453356/share

the dimensionality of the input vectors next to the
vector representation.

As can be seen, for SDS the best performing
model is multiplication, as it is mostly for DM. With
regard to NLM, vector addition yields overall better
results. In general, neither DM or NLM in any com-
positional configuration are able to outperform SDS
with multiplication. All models in Table 3 are sig-
nificantly correlated with the human similarity judg-
ments (p < 0.01). Spearman’s ρ differences of 0.3
or more are significant at the 0.01 level, using a t-
test (Cohen and Cohen, 1983).

4 Experiment 2: Paraphrase Detection

Although the phrase similarity task gives a fairly
direct insight into semantic similarity and compo-
sitional representations, it is somewhat limited in
scope as it only considers two-word constructions
rather than naturally occurring sentences. Ideally,
we would like to augment our evaluation with a task
which is based on large quantities of natural data and
for which vector composition has practical conse-
quences. For these reasons, we used the Microsoft
Research Paraphrase Corpus (MSRPC) introduced
by Dolan et al. (2004). The corpus consists of sen-
tence pairs Seni1 ,Seni2 and labels indicating whether
they are in a paraphrase relationship or not. The vec-
tor representations obtained from our various com-
positional models were used as features for the para-
phrase classification task.

The MSRPC dataset contains 5,801 sentence
pairs, we used the standard split of 4,076 training
pairs (67.5% of which are paraphrases) and 1,725
test pairs (66.5% of which are paraphrases). In order
to judge whether two sentences have the same mean-
ing we employ Fan et al. (2008)’s liblinear classifier.
For each of our three vector sources and three differ-
ent compositional methods, we create the following
features: (a) a vector representing the pair of input
sentences either via concatenation (“con”) or sub-
traction (“sub”); (b) a vector encoding which words
appear therein (“enc”); and (c) a vector made up of
the following four other pieces of information: the
cosine similarity of the sentence vectors, the length
of Seni1 , the length of Seni2 , and the unigram overlap
among the two sentences.

In order to encode which words appear in
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NLM DM SDS
(BNC) (3-BWC) (BNC)

+ 69.04 73.51 72.93
(con, other) (other) (other)

� 67.83 67.54 73.04
(sub, other) (other) (other)

RAE 70.26 68.29 69.10
(con, other) (sub, other) (con, other)

Table 4: Paraphrase classification accuracy in %. In-
cluded features are in parentheses: “con” is sentence vec-
tor concatenation, “sub” is sentence vector subtraction,
“other” stands for 4 other features (see Section 4)

each sentence and how often, we define a vec-
tor wdCounti for sentence Seni and enumerate all
words occuring in the MSRPC:

VocMSRPC = {w(MSRPC)
1 , ...,w(MSRPC)

nMSRPC } (18)

giving the word count vectors nMSRPC dimensions.
Thus the k-th component of wdCounti is the fre-
quency with which the word w(MSRPC)

k appears in
Seni = (w(i)

1 , ...,w(i)
ni ):

wdCounti[k] = |{ j ∈ [1;ni] |w
(MSRPC)
k = w(i)

j }| (19)

for k = 1, ...,nMSRPC. Even though nMSRPC may be
large, the computer files storing our feature vectors
do not explode in size because wdCount contains
many zeros and the classifier allows a sparse nota-
tion of (non-zero) feature values.

Regarding the last four features, we measured the
similarity between sentences the same way as we did
with phrases in section 3.

senSimi1,i2 =
senVeci1 · senVeci2

|senVeci1 |× |senVeci2 |
(20)

Note that this is the cosine of the angle between
senVeci1 and senVeci2 . This enables us to observe
the similarity or dissimilarity of two sentences inde-
pendent of their sentence length. Even though each
contained word increases or decreases the norm of
the resulting sentence vector, this does not distort
the overall similarity value, due to normalization.

The lengths of Seni1 and Seni2 are simply the
number of words they contain. The unigram over-
lap feature value may be viewed as the cardinal-

NLM DM SDS
(BNC) (3-BWC) (BNC)

+ 81.00 82.16 80.76
(con, other) (other) (other)

� 80.41 80.18 82.33
(sub, other) (other) (other)

RAE 81.28 80.43 80.68
(con, other) (sub, other) (con, other)

Table 5: Paraphrase classification F1-score in %. The
involved features are exactly the same as in Table 4.

ity of the intersection of each sentence’s multiset-
bag-of-words. The latter is encoded in the already-
introduced wdCount vectors. Therefore,

uniOverlapi1,i2 =
nMSRPC

∑
k=1

min
s=1,2
{wdCountis [k]} (21)

In order to establish which features work best for
each representation and composition method, we ex-
haustively explored all combinations on a develop-
ment set (20% of the original MSRPC training set).
Tables 4 (accuracy) and 5 (F1) show our results on
the test set with the best feature combinations for
each model (shown in parentheses). Each row cor-
responds to a different type of composition and each
column to a different word representation model.

As can be seen, the distributional memory (DM)
is the best performing representation for the addi-
tive composition model. The neural language model
(NLM) gives best results for the recursive autoen-
coder (RAE), although the other two representations
come close. And finally the simple distributional
semantic space (SDS) works best with multiplica-
tion. Also note that the best performing models,
namely DM with addition and SDS with multipli-
cation, use a basic feature space consisting only of
the cosine similarity of the composed sentence vec-
tors, the length of the two sentences involved, and
their unigram word overlap.

Although our intention was to use the paraphrase
detection task as a test-bed for evaluating composi-
tional models rather than achieving state-of-the-art
results, Table 6 compares our approach against pre-
vious work on the same task and dataset. Initial re-
search concentrated on individual words rather than
sentential representations. Several approaches used
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Model Acc. F1
Baseline 66.5 79.9
Mihalcea et al. (2006) 70.3 81.3
Rus et al. (2008) 70.6 80.5
Qiu et al. (2006) 72.0 81.6
Islam and Inkpen (2007) 72.6 81.3
Mitchell and Lapata (2010) (�) 73.0 82.3
Baroni and Lenci (2010) (+) 73.5 82.2
Fernando and Stevenson (2008) 74.1 82.4
Wan et al. (2006) 75.6 83.0
Das and Smith (2009) 76.1 82.7
Socher et al. (2011a) 76.8 83.6

Table 6: Overview of results on the MSRCP (test corpus).
Accuracy differences of 3.3 or more are significant at the
0.01 level (using the χ2 statistic).

WordNet in conjunction with distributional similar-
ity in an attempt to detect meaning conveyed by syn-
onymous words (Islam and Inkpen, 2007; Mihalcea
et al., 2006; Fernando and Stevenson, 2008). More
recently, the addition of syntactic features based
on dependency parse trees (Wan et al., 2006; Das
and Smith, 2009) has been shown to substantially
boost performance. The model of Das and Smith
(2009), for example, uses quasi-synchronous depen-
dency grammar to model the structure of the sen-
tences involved in the comparison and their corre-
spondences. Socher et al. (2011a) obtain an accu-
racy that is higher than previously published results.
This model is more sophisticated than the one we
used in our experiments (see Table 4 and 5). Rather
than using the output of the RAE as features for the
classifier, it applies dynamic pooling, a procedure
that takes a similarity matrix as input (e.g., created
by sentences with differing lengths) and maps it to
a matrix of fixed size that represents more faithfully
the global similarity structure.3

Overall, we observe that our own models do as
well as some of the models that employ WordNet
and more sophisticated syntactic features. With re-
gard to F1, we are comparable with Das and Smith
(2009) and Socher et al. (2011a) without using elab-
orate features, or any additional manipulations over
and above the output of the composition functions

3Without dynamic pooling, their model yields an accuracy
of 74.2.

which if added could increase performance.

5 Discussion

In this paper we systematically compared three types
of distributional representation and their effect on
semantic composition. Our comparisons involved
a simple distributional semantic space (Mitchell
and Lapata, 2010), word embeddings computed
with a neural language model (Collobert and We-
ston, 2008) and a representation based on weighted
word-link-word tuples arranged into a third-order
tensor (Baroni and Lenci, 2010). These represen-
tations vary in many respects: the amount of pre-
processing and linguistic information involved (the
third-order tensor computes semantic representa-
tions over parsed corpora), whether the semantic
space is the by-product of a learning process (in the
neural language model the parameters of the lookup
table must be learned), and data requirements (the
third-order tensor involves processing billions of
words). These representations served as input to
three composition methods involving addition, mul-
tiplication and a deep recursive autoencoder. Again
these methods differ in terms of how they imple-
ment compositionality: addition and multiplication
are commutative and associative operations and thus
ignore word order and, more generally, syntactic
structure. In contrast, the recursive autoencoder is
syntax-aware as it operates over a parse tree. How-
ever, the composed representations must be learned
with a neural network.

We evaluated nine models on the complementary
tasks of phrase similarity and paraphrase detection.
The former task simplifies the challenge of find-
ing an adequate method of composition and places
more emphasis on the representation, whereas the
latter poses, in a sense, the ultimate challenge for
composition models. It involves entire sentences
exhibiting varied syntactic constructions and in the
limit involves genuine natural language undertand-
ing. Across both tasks our results deliver a consis-
tent message: simple is best. Despite being in the-
ory more expressive, the representations obtained by
the neural language model and the third-order ten-
sor cannot match the simple semantic space on the
phrase similarity task. In this task syntax-oblivious
composition models are superior to the more sophis-
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ticated recursive autoencoder. The latter performs
better on the paraphrase detection task when its out-
put is fed to a classifier. The simple semantic space
may not take word order or sentence structure into
account, but nevertheless achieves considerable se-
mantic expressivity: it is on par with the third-order
tensor without having access to as much data (3 bil-
lion words) or a syntactically parsed corpus.

What do these findings tell us about the future of
compositional models for distributional semantics?
The problem of finding the right methods of vec-
tor composition cannot be pursued independent of
the choice of lexical representation. Having tested
many model combinations, we argue that in a good
model of distributive semantics representation and
composition must go hand in hand, i.e., they must
be mutually learned.
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Abstract 

Most existing systems solved the phrase 
chunking task with the sequence labeling 
approaches, in which the chunk candidates 
cannot be treated as a whole during parsing 
process so that the chunk-level features 
cannot be exploited in a natural way. In this 
paper, we formulate phrase chunking as a 
joint segmentation and labeling task. We 
propose an efficient dynamic programming 
algorithm with pruning for decoding, 
which allows the direct use of the features 
describing the internal characteristics of 
chunk and the features capturing the 
correlations between adjacent chunks. A 
relaxed, online maximum margin training 
algorithm is used for learning. Within this 
framework, we explored  a variety of 
effective feature representations for 
Chinese phrase chunking. The 
experimental results show that the use of 
chunk-level features can lead to significant 
performance improvement, and that our 
approach achieves state-of-the-art 
performance. In particular, our approach is 
much better at recognizing long and 
complicated phrases. 

1 Introduction 

Phrase chunking is a Natural Language Processing 
task that consists in dividing a text into 
syntactically correlated parts of words. Theses 
phrases are non-overlapping, i.e., a word can only 
be a member of one chunk (Abney, 1991). 
Generally speaking, there are two phrase chunking 
tasks, including text chunking (shallow parsing), 

and noun phrase (NP) chunking. Phrase chunking 
provides a key feature that helps on more 
elaborated NLP tasks such as parsing, semantic 
role tagging and information extraction.  
    There is a wide range of research work on 
phrase chunking based on machine learning 
approaches. However, most of the previous work 
reduced phrase chunking to sequence labeling 
problems either by using the classification models, 
such as SVM (Kudo and Matsumoto, 2001), 
Winnow and voted-perceptrons (Zhang et al., 2002; 
Collins, 2002), or by using the sequence labeling 
models, such as Hidden Markov Models (HMMs) 
(Molina and Pla, 2002) and Conditional Random 
Fields (CRFs) (Sha and Pereira, 2003). When 
applying the sequence labeling approaches to 
phrase chunking, there exist two major problems. 
Firstly, these models cannot treat globally a 
sequence of continuous words as a chunk 
candidate, and thus cannot inspect the internal 
structure of the candidate, which is an important 
aspect of information in modeling phrase chunking. 
In particular, it makes impossible the use of local 
indicator function features of the type "the chunk 
consists of POS tag sequence p1...,pk". For example, 
the Chinese NP " 农 业 /NN(agriculture) 生 产

/NN(production) 和/CC(and) 农村/NN(rural) 经济

/NN(economic) 发 展 /NN(development)" seems 
relatively difficult to be correctly recognized by a 
sequence labeling approach due to its length. But if 
we can treat the sequence of words as a whole and 
describe the formation pattern of POS tags of this 
chunk with a regular expression-like form 
"[NN]+[CC][NN]+", then it is more likely to be 
correctly recognized, since this pattern might better 
express the characteristics of its constituents. As 
another example, consider the recognition of 
special terms. In Chinese corpus, there exists a 
kind of NPs called special terms, such as "『 生命
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(Life) 禁 区 (Forbidden Zone) 』 ", which are 
bracketed with the particular punctuations like "
『 , 』 , 「 , 」 , 《 , 》". When recognizing the 
special terms, it is difficult for the sequence 
labeling approaches to guarantee the matching of 
particular punctuations appearing at the starting 
and ending positions of a chunk. For instance, the 
chunk candidate "『 生命(Life) 禁区(Forbidden 
Zone)” is considered to be an invalid chunk. But 
it is easy to check this kind of punctuation 
matching in a single chunk by introducing a chunk-
level feature. 

Secondly, the sequence labeling models cannot 
capture the correlations between adjacent chunks, 
which should be informative for the identification 
of chunk boundaries and types. In particular, we 
find that some headwords in the sentence are 
expected to have a stronger dependency relation 
with their preceding headwords in preceding 
chunks than with their immediately preceding 
words within the same chunk. For example, in the 
following sentence: 
" [双方/PN(Bilateral)]_NP [经贸/NN(economic 
and trade) 关系/NN(relations)]_NP [正/AD(just) 
稳步/AD(steadily) 发展/VV(develop)]_VP " 
if we can find the three headwords "双方", "关系" 
and "发展" located in the three adjacent chunks 
with some head-finding rules, then the headword 
dependency expressed by headword bigrams or 
trigrams should be helpful to recognize these 
chunks in this sentence.  

In summary, the inherent deficiency in applying 
the sequence labeling approaches to phrase 
chunking is that the chunk-level features one 
would expect to be very informative cannot be 
exploited in a natural way.  

In this paper, we formulate phrase chunking as a 
joint segmentation and labeling problem, which 
offers advantages over previous learning methods 
by providing a natural formulation to exploit the 
features describing the internal structure of a chunk 
and the features capturing the correlations between 
the adjacent chunks.  

Within this framework, we explored  a variety of 
effective feature representations for Chinese phrase 
chunking. The experimental results on Chinese 
chunking corpus as well as English chunking 
corpus show that the use of chunk-level features 
can lead to significant performance improvement, 

and that our approach performs better than other 
approaches based on the sequence labeling models. 

2 Related Work 

In recent years, many chunking systems based on 
machine learning approaches have been presented. 
Some approaches rely on k-order generative 
probabilistic models, such as HMMs (Molina and 
Pla, 2002). However, HMMs learn a generative 
model over input sequence and labeled sequence 
pairs. It has difficulties in modeling multiple non-
independent features of the observation sequence. 
To accommodate multiple overlapping features on 
observations, some other approaches view the 
phrase chunking as a sequence of classification 
problems, including support vector machines 
(SVMs) (Kudo and Matsumoto 2001) and a variety 
of other classifiers (Zhang et al., 2002). Since these 
classifiers cannot trade off decisions at different 
positions against each other, the best classifier 
based shallow parsers are forced to resort to 
heuristic combinations of multiple classifiers. 
Recently, CRFs were widely employed for phrase 
chunking, and presented comparable or better 
performance than other state-of-the-art models 
(Sha and Pereira 2003; McDonald et al. 2005). 
Further, Sun et al. (2008) used the latent-dynamic 
conditional random fields (LDCRF) to explicitly 
learn the hidden substructure of shallow phrases, 
achieving state-of-the-art performance over the 
NP-chunking task on the CoNLL data. 

Some similar approaches based on classifiers or 
sequence labeling models were also used for 
Chinese chunking (Li et al., 2003; Tan et al., 2004; 
Tan et al., 2005). Chen et al. (2006) conducted an 
empirical study of Chinese chunking on a corpus, 
which was extracted from UPENN Chinese 
Treebank-4 (CTB4). They compared the 
performances of the state-of-the-art machine 
learning models for Chinese chunking, and 
proposed some Tag-Extension and novel voting 
methods to improve performance.  

In this paper, we model phrase chunking with a 
joint segmentation and labeling approach, which 
offer advantages over previous learning methods 
by explicitly incorporating the internal structural 
feature and the correlations between the adjacent 
chunks. To some extent, our model is similar to 
Semi-Markov Conditional Random Fields (called a 
Semi-CRF), in which the segmentation and 
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labeling can also be done directly (Sarawagi and 
Cohen, 2004). However, Semi-CRF just models 
label dependency, and it cannot capture more 
correlations between adjacent chunks, as is done in 
our approach. The limitation of Semi-CRF leads to 
its relatively low performance.   

3 Problem Formulation 

3.1 Chunk Types 

Unlike English chunking, there is not a 
benchmarking corpus for Chinese chunking. We 
follow the studies in (Chen et al. 2006) so that a 
more direct comparison with state-of-the-art 
systems for Chinese chunking would be possible. 
There are 12 types of chunks: ADJP, ADVP, CLP, 
DNP, DP, DVP, LCP, LST, NP, PP, QP and VP in 
the chunking corpus (Xue et al., 2000). The 
training and test corpus can be extracted from 
CTB4 with a public tool, as depicted in (Chen et al. 
2006). 

3.2 Sequence Labeling Approaches to Phrase 
Chunking 

The standard approach to phrase chunking is to use 
tagging techniques with a BIO tag set. Words in 
the input text are tagged with one of B for the 
beginning of a contiguous segment, I for the inside 
of a contiguous segment, or O for outside a 
segment. For instance, the sentence (word 
segmented and POS tagged) "他/NR(He) 到达

/VV(reached) 北 京 /NR(Beijing) 机 场

/NN(airport) 。/PU" will be tagged as follows: 

Example 1: 
S1: [NP 他][VP 到达][NP 北京/机场][O 。] 
S2: 他/B-NP 到达/B-VP 北京/B-NP 机场/I-
NP 。/O 
Here S1 denotes that the sentence is tagged with 
chunk types, and S2 denotes that the sentence is 
tagged with chunk tags based on the BIO-based 
model. With the data representation like the S2, the 
problem of phrase chunking can be reduced to a 
sequence labeling task. 

3.3 Phrase Chunking via a Joint 
Segmentation and Labeling Approach 

To tackle the problems with the sequence labeling 
approaches to phrase chunking, we formulate it as 
a joint problem, which maps a Chinese sentence x 

with segmented words and POS tags to an output y 
with tagged chunk types, like the S1 in Example 1. 
The joint model considers all possible chunk 
boundaries and corresponding chunk types in the 
sentence, and chooses the overall best output. This 
kind of parser reads the input sentences from left to 
right, predicts whether current segment of 
continuous words is some type of chunk. After one 
chunk is found, parser move on and search for next 
possible chunk. 

Given a sentence x, let y denote an output tagged 
with chunk types, and GEN a function that 
enumerates a set of segmentation and labeling 
candidates GEN(x) for x. A parser is to solve the 
following “argmax” problem: 
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where F  and f  are global and local feature maps 
and w is the parameter vector to learn. The inner 
product 

[1.. ]( )T
iw yf⋅  can be seen as the confidence 

score of whether yi is a chunk. The parser takes into 
account confidence score of each chunk, by using 
the sum of local scores as its criteria. Markov 
assumption is necessary for computation, so f  is 
usually defined on a limited history. 

The main advantage of the joint segmentation 
and labeling approach to phrase chunking is to 
allow for integrating both the internal structural 
features and the correlations between the adjacent 
chunks for prediction. The two basic components 
of our model are decoding and learning algorithms, 
which are described in the following sections. 

4 Decoding 

The inference technique is one of the most 
important components for a joint segmentation and 
labeling model. In this section, we propose a 
dynamic programming algorithm with pruning to 
efficiently produce the optimal output. 

4.1 Algorithm Description 

Given an input sentence x, the decoding algorithm 
searches for the highest-scored output with 
recognized chunks. The search space of combined 
candidates in the joint segmentation and labeling 
task is very large, which is an exponential growth 

(1)
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in the number of possible candidates with 
increasing sentence size. The rate of growth is 
O(2nTn) for the joint system, where n is the length 
of the sentence and T is the number of chunk types. 
It is natural to use some greedy heuristic search 
algorithms for inference in some similar joint 
problems (Zhang and Clark, 2008; Zhang and 
Clark, 2010). However, the greedy heuristic search 
algorithms only explore a fraction of the whole 
space (even with beam search) as opposed to 
dynamic programming. Additionally, a specific 
advantage of the dynamic programming algorithm 
is that constraints required in a valid prediction 
sequence can be handled in a principled way. We 
show that dynamic programming is in fact possible 
for this joint problem, by introducing some 
effective pruning schemes. 
   To make the inference tractable, we first make a 
first-order Markov assumption on the features used 
in our model. In other words, we assume that the 
chunk ci and the corresponding label ti are only 
associated with the preceding chunk ci-1 and the 
label ti-1. Suppose that the input sentence has n 
words and the constant M is the maximum chunk 
length in the training corpus. Let V(b,e,t) denote 
the highest-scored segmentation and labeling with 
the last chunk starting at word index b, ending at 
word index e and the last chunk type being t. One 
way to find the highest-scored segmentation and 
labeling for the input sentence is to first calculate 
the V(b,n-1,t) for all possible start position b∈(n-
M)..n-1, and all possible chunk type t, respectively, 
and then pick the highest-scored one from these 
candidates. In order to compute V(b,n-1,t), the last 
chunk needs to be combined with all possible 
different segmentations of words (b-M)..b-1 and all 
possible different chunk types so that the highest-
scored can be selected. According to the principle 
of optimality, the highest-scored among the 
segmentations of words (b-M)..b-1 and all possible 
chunk types with the last chunk being word b¢ ..b-
1 and the last chunk type being t ¢  will also give 
the highest score when combined with the word 
b..n-1 and tag t. In this way, the search task is 
reduced recursively into smaller subproblems, 
where in the base case the subproblems V(0,e,t) for 
e∈0..M-1, and each possible chunk type t, are 
solved in straightforward manner. And the final 
highest-scored segmentation and labeling can be 

found by solving all subproblems in a bottom-up 
fashion. 
   The pseudo code for this algorithm is shown in 
Figure 1. It works by filling an n by n by T table 
chart, where n is the number of words in the input 
sentence sent, and T is the number of chunk types. 
chart[b,e,t] records the value of subproblem 
V(b,e,t). chart[0, e, t] can be computed directly for 
e = 0..M-1 and for chunk type t=1..T. The final 
output is the best among chart[b,n-1,t], with b= 
n-M..n-1, and t=1..T.  

Inputs: sentence sent (word segmented and POS 
tagged) 
Variables:  
word index b for the start of chunk; 
word index e for the end of chunk; 
word index p for the start of the previous chunk. 
chunk type index t for the current chunk; 
chunk type index t ¢  for the previous chunk; 
Initialization: 
for e = 0.. M-1: 
   for t =1..T: 
     chart[0,e,t] ←single chunk sent[0,e] and type t 
Algorithm: 
for e = 0..n-1: 
  for b = (e-M)..e: 
    for t =1..T: 
       chart[b,e,t]←the highest scored segmentation            
               and labeling among those derived by 
               combining chart[p,b-1, t ¢ ] with sent[b,e] 
               and chunk type t, for p = (b-M)..b-1, 
                t ¢ =1..T. 
Outputs: the highest scored segmentation and 
labeling among chart[b,n-1,t], for b=n-M..n-1, t 
=1..T. 

Figure 1: A dynamic-programming algorithm for 
phrase chunking. 

4.2 Pruning 

The time complexity of the above algorithm is 
O(M2T2n), where M is the maximum chunk size. It 
is linear in the length of sentence. However, the 
constant in the O is relatively large. In practice, the 
search space contains a large number of invalid 
partial candidates, which make the algorithm slow. 
In this section we describe three partial output 
pruning schemes which are helpful in speeding up 
the algorithm. 
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Firstly, we collect chunk type transition 
information between chunk types by observing 
every pair of adjacent chunks in the training corpus, 
and record a chunk type transition matrix. For 
example, from the Chinese Treebank that we used 
for our experiments, a transition from chunk type 
ADJP to ADVP does not occur in the training 
corpus, the corresponding matrix element is set to 
false, true otherwise. During decoding, the chunk 
type transition information is used to prune 
unlikely combinations between current chunk and 
the preceding chunk by their chunk types. 

Secondly, a POS tag dictionary is used to record 
POS tags associated with each chunk type. 
Specifically, for each chunk type, we record all 
POS tags appearing in this type of chunk in the 
training corpus. During decoding, a segment of 
continuous words that contains only allowed POS 
tags according to the POS tag dictionary will be 
considered to be a valid chunk candidate. 

Finally, the system records the maximum 
number of words for each type of chunk in the 
training corpus. For example, in the Chinese 
Treebank, most types of chunks have one to three 
words. The few chunk types that are seen with 
length bigger than ten are NP, QP and ADJP. 
During decoding, the chunk candidate whose 
length is greater than the maximum chunk length 
associated with its chunk type will be discarded. 

For the above pruning schemes, development 
tests show that it improves the speed significantly, 
while having a very small negative influence on 
the accuracy. 

5 Learning 

5.1 Discriminative Online Training 

By defining features, a candidate output y is 
mapped into a global feature vector, in which each 
dimension represents the count of a particular 
feature in the sentence. The learning task is to set 
the parameter values w using the training examples 
as evidence. 
   Online learning is an attractive method for the 
joint model since it quickly converges within a few 
iterations (McDonald, 2006). We focus on an 
online learning algorithm called MIRA, which is a 
relaxed, online maximum margin training 
algorithm with the desired accuracy and scalability 
properties (Crammer, 2004). Furthermore, MIRA 

is very flexible with respect to the loss function. 
Any loss function on the output is compatible with 
MIRA since it does not require the loss to factor 
according to the output, which enables our model 
to be optimized with respect to evaluation metrics 
directly. Figure 2 outlines the generic online 
learning algorithm (McDonald, 2006) used in our 
framework. 

MIRA updates the parameter vector w with two 
constraints: (1) the positive example must have a 
higher score by a given margin, and (2) the change 
to w should be minimal. This second constraint is 
to reduce fluctuations in w. In particular, we use a 
generalized version of MIRA (Crammer et al., 
2005; McDonald, 2006) that can incorporate k-best 
decoding in the update procedure.  

Input: Training set 
1{( , )}T

t t tS x y ==  

1: w(0) = 0; v = 0; i = 0 
2: for iter = 1 to N do 
3:    for t = 1 to T do 
4:       w(i+1) = update w(i) according to (xt, yt) 
5:       v = v + w(i+1) 
6:       i = i + 1 
7:    end for 
8: end for 
9: w = v/(N × T) 
Output: weight vector w 

Figure 2: Generic Online Learning Algorithm 

In each iteration, MIRA updates the weight 
vector w by keeping the norm of the change in the 
weight vector as small as possible. Within this 
framework, we can formulate the optimization 
problem as follows (McDonald, 2006): 
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where ( )( ; )i
k tbest x w  represents a set of top k-best 

outputs for xt given the weight vector w(i). In our 
implementation, the top k-best outputs are obtained 
with a straightforward k-best extension to the 
decoding algorithm in section 4.1. The above 
quadratic programming (QP) problem can be 
solved using Hildreth’s algorithm (Yair Censor, 
1997). Replacing Eq. (2) into line 4 of the 
algorithm in Figure 2, we obtain k-best MIRA. 

As shown in (McDonald, 2006), parameter 
averaging can effectively avoid overfitting. The 
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final weight vector w is the average of the weight 
vectors after each iteration. 

5.2 Loss Function 

For the joint segmentation and labeling task, there 
are two alternative loss functions: 0-1 loss and F1 
loss. 0-1 loss gives credit only when the entire 
output sequence is correct: there is no notion of 
partially correct solutions. The most common loss 
function for joint segmentation and labeling 
problems is F1 measure over chunks. This is the 
geometric mean of precision and recall over the 
(properly-labeled) chunk identification task, 
defined as follows. 

2 | |
ˆ( , ) 1

| | | |
F y y

L y y
y y

¢Ç-
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where the cardinality of y is simply the number of 
chunks identified. The cardinality of the 
intersection is the number of chunks in common. 
As can be seen in the definition, one is penalized 
both for identifying too many chunks (penalty in 
the denominator) and for identifying too few 
(penalty in the numerator).  

In our experiments, we will compare the 
performance of the systems with different loss 
functions. 

5.3 Features 

Table 1 shows the feature templates for the joint 
segmentation and labeling model. In the row for 
feature templates, c, t, w and p are used to 
represent a chunk, a chunk type, a word and a POS 
tag, respectively. And c0 and c−1 represent the 
current chunk and the previous chunk respectively. 
Similarly, w−1, w0 and w1 represent the previous 
word, the current word and the next word, 
respectively.  

Although it is slightly less natural to do so, part 
of the features used in the sequence labeling 
models can also be represented in our approach. 
Therefore the features employed in our model can 
be divided into three types: the features similar to 
those used in the sequence labeling models (called 
SL-type features), the features describing internal 
structure of a chunk (called Internal-type features), 
and the features capturing the correlations between 
the adjacent chunks (called Correlation-type 
features). 

Firstly, some features associated with a single 
label (here refers to label "B" and "I") used in the 

sequence labeling models are also represented in 
our model. In Table 1, templates 1-4 are SL-type 
features, where label(w) denotes the label 
indicating the position of the word w in the current 
chunk; len(c) denotes the length of chunk c. For 
example, given an NP chunk "北京(Beijing) 机场
(Airport)", which includes two words, the value of 
label("北京") is "B" and the value of label("机场") 
is "I". Bigram(w) denotes the word bigrams formed 
by combining the word to the left of w and the one 
to the right of w. And the same meaning is for 
biPOS(w). Template specitermMatch(c) is used to 
check the punctuation matching within chunk c for 
the special terms, as illustrated in section 1. 

Secondly, in our model, we have a chance to 
treat the chunk candidate as a whole during 
decoding, which means that we can employ more 
expressive features in our model than in the 
sequence labeling models. In Table 1, templates 5-
13 concern the Internal-type features, where 
start_word(c) and end_word(c) represent the first 
word and the last word of chunk c, respectively. 
Similarly, start_POS(c) and end_POS(c) represent 
the POS tags associated with the first word and the 
last word of chunk c, respectively. These features 
aim at expressing the formation patterns of the 
current chunk with respect to words and POS tags. 
Template internalWords(c) denotes the 
concatenation of words in chunk c, while 
internalPOSs(c) denotes the sequence of POS tags 
in chunk c using regular expression-like form, as 
illustrated in section 1.  

Finally, in Table 1, templates 14-28 concern the 
Correlation-type features, where head(c) denotes 
the headword extracted from chunk c, and 
headPOS(c) denotes the POS tag associated with 
the headword in chunk c. These features take into 
account various aspects of correlations between 
adjacent chunks. For example, we extracted the 
headwords located in adjacent chunks to form 
headword bigrams to express semantic dependency 
between adjacent chunks. To find the headword 
within every chunk, we referred to the head-
finding rules from (Bikel, 2004), and made a 
simple modification to them.  For instance, the 
head-finding rule for NP in (Bikel, 2004) is as 
follows:  

(NP (r NP NN NT NR QP) (r))  
Since the phrases are non-overlapping in our task, 
we simply remove the overlapping phrase tags NP 
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and QP from the rule, and then the rule is modified 
as follows:  

    (NP (r NN NT NR) (r))   
Additionally, the different bigrams formed by 

combining the first word (or POS) and last word 
(or POS) located in two adjacent chunks can also 
capture some correlations between adjacent chunks, 
and templates 17-22 are designed to express this 
kind of bigram information. 

ID Feature template 
1 wlabel(w) t0  

for all w in c0 
2 bigram (w) label(w)t0  

for all w in c0 
3 biPOS(w) label(w)t0  

for all w in c0 
4 w-1w1label(w0) t0 ,  where len(c0)=1 
5 start_word(c0)t0 
6 start_POS(c0)t0 
7 end_word(c0)t0 
8 end_POS(c0)t0 
9 wend_word (c0) t0 

 where 0 0_ ( )w c  and w end word cÎ ¹  

10 pend_POS (c0) t0 
 where 

0 0_ ( )p c  and p end POS cÎ ¹  

11 internalPOSs(c0) t0 
12 internalWords(c0) t0 
13 specitermMatch(c0) 
14 t-1t0 
15 head(c-1)t-1head(c0)t0 
16 headPOS(c-1)t-1headPOS(c0)t0 
17 end_word(c-1)t-1start_word(c0)t0 
18 end_POS(c-1)t-1start_POS(c0)t0 
19 end_word(c-1)t-1end_word(c0)t0 
20 end_POS(c-1)t-1end_POS(c0)t0 
21 start_word(c-1)t-1start_word(c0)t0 
22 start_POS(c-1)t-1start_POS(c0)t0 
23 end_word(c-1)t0 
24 end_POS(c-1)t0 
25 t-1t0start_word(c0) 
26 t-1t0start_POS(c0) 
27 internalWords(c-1) t-1 internalWords(c0) t0

28 internalPOSs(c-1) t-1 internalPOSs(c0) t0 

Table 1: Feature templates. 

6 Experiments 

6.1 Data Sets and Evaluation 

Following previous studies on Chinese chunking in 
(Chen et al., 2006), our experiments were 
performed on the CTB4 dataset. The dataset 
consists of 838 files. In the experiments, we used 
the first 728 files (FID from chtb 001.fid to chtb 
899.fid) as training data, and the other 110 files 
(FID from chtb 900.fid to chtb 1078.fid) as testing 
data. The training set consists of 9878 sentences, 
and the test set consists of 5920 sentences. The 
standard evaluation metrics for this task are 
precision p (the fraction of output chunks matching 
the reference chunks), recall r (the fraction of 
reference chunks returned), and the F-measure 
given by F = 2pr/(p + r). 

Our model has two tunable parameters: the 
number of training iterations N; the number of top 
k-best outputs. Since we were interested in finding 
an effective feature representation at chunk-level 
for phrase chunking, we fixed N = 10 and k = 5 for 
all experiments. In the following experiments, our 
model has roughly comparable training time to the 
sequence labeling approach based on CRFs. 

6.2 Chinese NP chunking 

NP is the most important phrase in Chinese 
chunking and about 47% phrases in the CTB4 
Corpus are NPs. In this section, we present the 
results of our approach to NP recognition.  

Table 2 shows the results of the two systems 
using the same feature representations as defined 
in Table 1, but using different loss functions for 
learning. As shown, learning with F1 loss can 
improve the F-score by 0.34% over learning with 
0-1 loss. It is reasonable that the model optimized 
with respect to evaluation metrics directly can 
achieve higher performance. 

Loss Function Precision Recall F1 
0-1 loss 91.39 90.93 91.16 
F1 loss 92.03 90.98 91.50 

Table 2: Experimental results on Chinese NP 
chunking. 

6.3 Chinese Text Chunking 

There are 12 different types of phrases in the 
chunking corpus. Table 3 shows the results from 
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two different systems with different loss functions 
for learning. Observing the results in Table 3, we 
can see that learning with F1 loss can improve the 
F-score by 0.36% over learning with 0-1 loss, 
similar to the case in NP recognition. More 

specifically, learning with F1 loss provides much 
better results for ADJP, ADVP, DVP, NP and VP, 
respectively. And it yields equivalent or 
comparable results to 0-1 loss in other categories.

 
 F1 loss 0-1 loss 

precision recall F1 precision recall F1 

ADJP 87.86 87.09 87.47 86.74 86.55 86.64 

ADVP 90.66 78.73 84.27 91.91 76.68 83.61 

CLP 0.00 0.00 0.00 1.32 5.88 2.15 

DNP 99.42 99.93 99.68 99.42 99.95 99.69 

DP 99.46 99.76 99.61 99.46 99.76 99.61 

DVP 99.61 99.61 99.61 99.22 99.61 99.42 

LCP 99.74 99.96 99.85 99.74 99.93 99.84 

LST 87.50 52.50 65.63 87.50 52.50 65.63 

NP 91.87 91.01 91.44 91.34 90.52 90.93 

PP 99.57 99.77 99.67 99.57 99.77 99.67 

QP 96.45 96.64 96.55 96.45 97.07 96.76 

VP 90.14 90.39 90.26 89.92 89.79 89.85 

ALL 92.54 91.68 92.11 92.30 91.20 91.75 

Table 3: Experimental results on Chinese text chunking. 

6.4 Comparison with Other Models 

Chen et al. (2006) compared the performance of 
the state-of-the-art machine learning models for 
Chinese chunking, and found that the SVMs 
approach yields higher accuracy than respective 
CRFs, Transformation-based Learning (TBL) 
(Megyesi, 2002), and Memory-based Learning 
(MBL) (Sang, 2002) approaches.  

In this section, we give a comparison and 
analysis between our model and other state-of-the-
art machine learning models for Chinese NP 
chunking and text chunking tasks. Performance of 
our model and some of the best results from the 
state-of-the-art systems are summarized in Table 4. 
Row "Voting" refers to the phrase-based voting 
methods based on four basic systems, which are 
respectively SVMs, CRFs, TBL and MBL, as 
depicted in (Chen et al., 2006). Observing the 
results in Table 4, we can see that for both NP 
chunking and text chunking tasks, our model 
achieves significant performance improvement 
over those state-of-the-art systems in terms of the 
F1-score, even for the voting methods. For text 

chunking task, our approach improves performance 
by 0.65% over SVMs, and 0.43% over the voting 
method, respectively. 

 Method F1 

NP 
chunking 

CRFs 89.72 
SVMs 90.62 
Voting 91.13 
Ours 91.50 

Text 
chunking 

CRFs 90.74 
SVMs 91.46 
Voting 91.68 
Ours 92.11 

Table 4: Comparisons of chunking performance for 
Chinese NP chunking and text chunking. 

In particular, for NP chunking task, the F1-score 
of our approach is improved by 0.88% in 
comparison with SVMs, the best single system. 
Further, we investigated the likely cause for 
performance improvement by comparing the 
recognized results from our system and SVMs 
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respectively. We first sorted NPs by their length, 
and then calculated the F1-scores associated with 
different lengths for the two systems respectively. 
Figure 3 shows the comparison of F1-scores of the 
two systems by the chunk length. In the Chinese 
chunking corpus, the max NP length is 27, and 
the mean NP length is 1.5. Among all NPs, the 
NPs with the length 1 account for 81.22%. For the 
NPs with the length 1, our system gives slight 
improvement by 0.28% over SVMs. From the 
figure, we can see that the performance gap grows 
rapidly with the increase of the chunk length. In 
particular, the gap between the two systems is 
27.73% when the length hits 4. But the gap begins 
to become smaller with further growth of the 
chunk length. The reasons may include the 
following two aspects. First, the number of NPs 
with the greater length is relatively small in the 
corpus. Second, the NPs with greater length in 
Chinese corpus often exhibit some typical rules.  
For example, an NP with length 8 is given as 
follows. 
 "棉花/NN(cotton) 、/PU 油料/NN(oil) 、/PU 药
材/NN(drug) 、/PU 蔬菜/NN(vegetable) 等/ETC 
(et al)".  

The NP consists of a sequence of nouns simply 
separated by a punctuation "、". So it is also easy 
to be recognized by the sequence labeling 
approach based on SVMs. In summary, the above 
investigation indicates that our system is better at 
recognizing the long and complicated phrases 
compared with the sequence labeling approaches. 
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Figure 3: Comparison of F1-scores of NP 
recognition on Chinese corpus by the chunk length. 

6.5 Impact of Different Types of Features 

Our phrase chunking model is highly dependent 
upon chunk-level information. To establish the 
impact of each type of feature (SL-type, Internal-
type, Correlation-type), we look at the 

improvement in F1-score brought about by adding 
each type of features. Table 5 shows the accuracy 
with various features added to the model.  

First consider the effect of the SL-type features. 
If we use only the SL-type features, the system 
achieves slightly lower performance than CRFs or 
SVMs, as shown in Table 4. Since the SL-type 
features consist of the features associated with 
single label, not including the features associated 
with label bigrams. Then, adding the Internal-type 
features to the system results in significant 
performance improvement on NP chunking and on 
text chunking, achieving 2.53% and 1.37%, 
respectively. Further, if Correlation-type features 
are used, the F1-scores on NP chunking and on text 
chunking are improved by 1.01% and 0.66%, 
respectively. The results show a significant impact 
due to the use of Internal-type features and 
Correlation-type features for both NP chunking 
and text chunking. 

Task Type Feature Type F1 

NP chunking 
SL-type 87.96 
+Internal-type 90.49 
+Correlation-type 91.50 

Text chunking
SL-type 90.08 
+Internal-type 91.45 
+Correlation-type 92.11 

Table 5: Test F1-scores for different types of 
features on Chinese corpus. 

6.6 Performance on Other Languages 

We mainly focused on Chinese chunking in this 
paper. However, our approach is generally 
applicable to other languages including English, 
except that the definition of feature templates may 
be language-specific. To validate this point, we 
evaluated our system on the CoNLL 2000 data set, 
a public benchmarking corpus for English 
chunking (Sang and Buchholz 2000). The training 
set consists of 8936 sentences, and the test set 
consists of 2012 sentences. 

We conducted both the NP-chunking and text 
chunking experiments on this data set with our 
approach, using the same feature templates as in 
Chinese chunking task excluding template 13. To 
find the headword within every chunk, we referred 
to the head-finding rules from (Collins, 1999), and 
made a simple modification to them in a similar 
way as in Chinese. As we can see from Table 6, 
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our model is able to achieve better performance 
compared with state-of-the-art systems. Table 6 
also shows state-of-the-art performance for both 
NP-chunking and text chunking tasks. LDCRF's 
results presented in (Sun et al., 2008) are the state-
of-the-art for the NP chunking task, and SVM's 
results presented in (Wu et al., 2006) are the state-
of-the-art for the text chunking task. 

Moreover, the performance should be further 
improved if some additional features tailored for 
English chunking are employed in our model. For 
example, we can introduce an orthographic feature 
type called Token feature and the affix feature into 
the model, as used in  (Wu et al., 2006). 

 Method Precision Recall F1 
NP 

chunking 
Ours 94.79 94.65 94.72

LDCRF 94.65 94.03 94.34
Text 

chunking 
Ours 94.31 94.12 94.22

SVMs 94.12 94.13 94.12

Table 6: Performance on English corpus. 

7 Conclusions and Future Work 

In this paper we have presented a novel approach 
to phrase chunking by formulating it as a joint 
segmentation and labeling problem. One important 
advantage of our approach is that it provides a 
natural formulation to exploit chunk-level features. 
The experimental results on both Chinese chunking 
and English chunking tasks show that the use of 
chunk-level features can lead to significant 
performance improvement and that our approach 
outperforms the best in the literature. 

Future work mainly includes the following two 
aspects. Firstly, we will explore applying external 
information, such as semantic knowledge, to 
represent the chunk-level features, and then 
incorporate them into our model to improve the 
performance. Secondly, we plan to apply our 
approach to other joint segmentation and labeling 
tasks, such as clause identification and named 
entity recognition. 
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Abstract

We present a novel beam-search decoder for
grammatical error correction. The decoder
iteratively generates new hypothesis correc-
tions from current hypotheses and scores them
based on features of grammatical correctness
and fluency. These features include scores
from discriminative classifiers for specific er-
ror categories, such as articles and preposi-
tions. Unlike all previous approaches, our
method is able to perform correction of whole
sentences with multiple and interacting er-
rors while still taking advantage of powerful
existing classifier approaches. Our decoder
achieves an F1 correction score significantly
higher than all previous published scores on
the Helping Our Own (HOO) shared task data
set.

1 Introduction

Grammatical error correction is an important prob-
lem in natural language processing (NLP) that has
attracted an increasing amount of interest over
the last few years. Grammatical error correction
promises to provide instantaneous accurate feedback
to language learners, e.g., learners of English as a
Second Language (ESL).

The dominant paradigm that underlies most er-
ror correction systems to date is multi-class clas-
sification. A classifier is trained to predict a word
from a confusion set of possible correction choices,
given some feature representation of the surround-
ing sentence context. During testing, the classifier
predicts the most likely correction for each test in-
stance. If the prediction differs from the observed

word used by the writer and the classifier is suffi-
ciently confident in its prediction, the observed word
is replaced by the prediction. Although considerable
progress has been made, the classification approach
suffers from some serious shortcomings. Each clas-
sifier corrects a single word for a specific error cat-
egory individually. This ignores dependencies be-
tween the words in a sentence. Also, by conditioning
on the surrounding context, the classifier implicitly
assumes that the surrounding context is free of gram-
matical errors, which is often not the case. Finally,
the classifier typically has to commit to a single one-
best prediction and is not able to change its deci-
sion later or explore multiple corrections. Instead of
correcting each word individually, we would like to
perform global inference over corrections of whole
sentences which can contain multiple and interact-
ing errors.

An alternative paradigm is to view error correc-
tion as a statistical machine translation (SMT) prob-
lem from “bad” to “good” English. While this ap-
proach can naturally correct whole sentences, a stan-
dard SMT system cannot easily incorporate mod-
els for specific grammatical errors. It also suffers
from the paucity of error-annotated training data for
grammar correction. As a result, applying a stan-
dard SMT system to error correction does not pro-
duce good results, as we show in this work.

In this work, we present a novel beam-search de-
coder for grammatical error correction that com-
bines the advantages of the classification approach
and the SMT approach. Starting from the origi-
nal input sentence, the decoder performs an itera-
tive search over possible sentence-level hypotheses
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to find the best sentence-level correction. In each
iteration, a set of proposers generates new hypothe-
ses by making incremental changes to the hypothe-
ses found so far. A set of experts scores the new
hypotheses on criteria of grammatical correctness.
These experts include discriminative classifiers for
specific error categories, such as articles and prepo-
sitions. The decoder model calculates the overall hy-
pothesis score for each hypothesis as a linear com-
bination of the expert scores. The weights of the de-
coder model are discriminatively trained on a devel-
opment set of error-annotated sentences. The high-
est scoring hypotheses are kept in the search beam
for the next iteration. This search procedure contin-
ues until the beam is empty or the maximum number
of iterations has been reached. The highest scoring
hypothesis is returned as the sentence-level correc-
tion. We evaluate our proposed decoder in the con-
text of the Helping Our Own (HOO) shared task on
grammatical error correction (Dale and Kilgarriff,
2011). Our decoder achieves an F1 score of 25.48%
which improves upon the current state of the art.

The remainder of this paper is organized as fol-
lows. The next section gives an overview of related
work. Section 3 describes the proposed beam-search
decoder. Sections 4 and 5 describe the experimental
setup and results, respectively. Section 6 provides
further discussion. Section 7 concludes the paper.

2 Related Work

In this section, we summarize related work in gram-
matical error correction. For a more detailed review,
the readers can refer to (Leacock et al., 2010).

The classification approach to error correction has
mainly focused on correcting article and preposition
errors (Knight and Chander, 1994; Han et al., 2006;
Chodorow et al., 2007; Tetreault and Chodorow,
2008; Gamon, 2010; Dahlmeier and Ng, 2011b; Ro-
zovskaya and Roth, 2011). The advantage of the
classification approach is that it can make use of
powerful machine learning algorithms in connection
with arbitrary features from the sentence context.
Typical features include surrounding N-grams, part-
of-speech (POS) tags, chunks, etc. In fact, a consid-
erable amount of research effort has been invested in
finding better features.

The SMT approach to error corrections has re-

ceived comparatively less attention. Brockett et
al. (2006) use an SMT system to correct errors in-
volving mass noun errors. Because no large anno-
tated learner corpus was available, the training data
was created artificially from non-learner text. Lee
and Seneff (2006) describe a lattice-based correc-
tion system with a domain-specific grammar for spo-
ken utterances from the flight domain. The work in
(Désilets and Hermet, 2009) uses simple round-trip
translation with a standard SMT system to correct
grammatical errors. Dahlmeier and Ng (2011a) cor-
rect collocation errors using phrase-based SMT and
paraphrases induced from the writer’s native lan-
guage. Park and Levy (2011) propose a noisy chan-
nel model for error correction. While their motiva-
tion to correct whole sentences is similar to ours,
their proposed generative method differs substan-
tially from our discriminative decoder. Park and
Levy’s model does not allow the use of discrim-
inative expert classifiers as our decoder does, but
instead relies on a bigram language model to find
grammatical corrections. Indeed, they point out that
the language model often fails to distinguish gram-
matical and ungrammatical sentences.

To the best of our knowledge, our work is the first
discriminatively trained decoder for whole-sentence
grammatical error correction.

3 Decoder

In this section, we describe the proposed beam-
search decoder and its components.

The task of the decoder is to find the best hypoth-
esis (i.e., the best corrected sentence) for a given in-
put sentence. To accomplish this, the decoder needs
to be able to perform two tasks: generating new
hypotheses from current ones, and discriminating
good hypotheses from bad ones. This is achieved
by two groups of modules which we call proposers
and experts, respectively. Proposers take a hypothe-
sis and generate a set of new hypotheses, where each
new hypothesis is the result of making an incremen-
tal change to the current hypothesis. Experts score
hypotheses on particular aspects of grammaticality.
This can be a general language model score, or the
output of classifiers for particular error categories,
for example for article and preposition usage. The
overall score for a hypothesis is a linear combina-
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tion of the expert scores. Note that in our decoder,
each hypothesis corresponds to a complete sentence.
This makes it easy to apply syntactic processing,
like POS tagging, chunking, and dependency pars-
ing, which provides necessary features for the expert
models. The highest scoring hypotheses are kept in
the search beam for the next iteration. The search
ends when the beam is empty or the maximum num-
ber of iterations has been reached. The highest scor-
ing hypothesis found during the search is returned as
the sentence-level correction. The modular design
of the decoder makes it easy to extend the model
to new error categories by adding specific proposers
and experts without having to change the decoding
algorithm.

3.1 Proposers

The proposers generate new hypotheses, given a hy-
pothesis. Because the number of possible hypothe-
ses grows exponentially with the sentence length,
enumerating all possible hypotheses is infeasible.
Instead, each proposer only makes a small incre-
mental change to the hypothesis in each iteration. A
change corresponds to a correction of a single word
or phrase. We experiment with the following pro-
posers in this work. Additional proposers for other
error categories can easily be added to the decoder.

• Spelling Generate a set of new hypotheses, by
replacing a misspelled word with each correc-
tion proposed by a spellchecker.

• Articles For each noun phrase (NP), generate
two new hypotheses by changing the observed
article. Possible article choices are a/an, the,
and the empty article ε.

• Prepositions For each prepositional
phrase (PP), generate a set of new hy-
potheses by changing the observed preposition.
For each preposition, we define a confusion set
of possible corrections.

• Punctuation insertion Insert commas, peri-
ods, and hyphens based on a set of simple rules.

• Noun number For each noun, change its num-
ber from singular to plural or vice versa.

3.2 Experts

The experts score hypotheses on particular aspects
of grammaticality to help the decoder to discrim-
inate grammatical hypotheses from ungrammatical
ones. We employ two types of expert models. The
first type of expert model is a standard N-gram lan-
guage model. The language model expert is not spe-
cialized for any particular type of error. The second
type of experts is based on linear classifiers and is
specialized for particular error categories. We use
the following classifier experts in our work. The fea-
tures for the classifier expert models include features
from N-grams, part-of-speech (POS) tags, chunks,
web-scale N-gram counts, and dependency parse
trees. Additional experts can easily be added to the
decoder.

• Article expert Predict the correct article for a
noun phrase.

• Preposition expert Predict the correct preposi-
tion for a prepositional phrase.

• Noun number expert Predict whether a noun
should be in the singular or plural form.

The outputs of the experts are used as hypothesis
features in the decoder, as described in the next sec-
tion.

3.3 Hypothesis Features

Each hypothesis is associated with a vector of real-
valued features which are indicators of grammatical-
ity and are computed from the output of the expert
models. We call these features hypothesis features
to distinguish them from the features of the expert
classifiers. The simplest hypothesis feature is the
log probability of the hypothesis under the N-gram
language model expert. To avoid a bias towards
shorter hypotheses, we normalize the probability by
the length of the hypothesis:

scorelm =
1
|h|

log Pr(h), (1)

where h is a hypothesis sentence and |h| is the hy-
pothesis length in tokens.

For the classifier-based experts, we define two
types of features. The first is the average score of
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the hypothesis under the expert model:

scoreavg =
1
n

n∑
i=1

(
uT f(xh

i , yh
i )

)
, (2)

where u is the expert classifier weight vector, xh
i and

yh
i are the feature vector and the observed class, re-

spectively, for the i-th instance extracted from the
hypothesis h (e.g., the i-th NP in the hypothesis
for the article expert), and f is a feature map that
computes the expert classifier features. The average
score reflects how much the expert model “likes” the
hypothesis. The second expert score, which we call
delta score, is the maximum difference between the
highest scoring class and the observed class in any
instance from the hypothesis:

scoredelta = max
i,y

(
uT f(xh

i , y)− uT f(xh
i , yh

i )
)

.

(3)
Generally speaking, the delta score measures how
much the model “disagrees” with the hypothesis.

Finally, each hypothesis has a number of correc-
tion count features that keep track of how many cor-
rections have been made to the hypothesis so far. For
example, there is a feature that counts how often the
article correction ε → the has been applied. We also
add aggregated correction count features for each
error category, e.g., how many article corrections
have been applied in total. The correction count fea-
tures allow the decoder to learn a bias against over-
correcting sentences and to learn which types of cor-
rections are more likely and which are less likely.

3.4 Decoder Model
The hypothesis features described in the previous
subsection are combined to compute the score of a
hypothesis according to the following linear model:

s = wT fE(h), (4)

where w is the decoder model weight vector and
fE is a feature map that computes the hypothesis
features described above, given a set of experts E.
The weight vector w is tuned on a development set
of error-annotated sentences using the PRO ranking
optimization algorithm (Hopkins and May, 2011).1

1We also experimented with the MERT algorithm (Och,
2003) but found that PRO achieved better results.

PRO performs decoder parameter tuning through a
pair-wise ranking approach. The algorithm starts by
sampling hypothesis pairs from the N-best list of the
decoder. The metric score for each hypothesis in-
duces a ranking of the two hypotheses in each pair.
The task of finding a weight vector that correctly
ranks hypotheses can then be reduced to a simple bi-
nary classification task. In this work, we use PRO to
optimize the F1 correction score, which is defined in
Section 4.2. PRO requires a sentence-level score for
each hypothesis. As F1 score is not decomposable,
we optimize sentence-level F1 score which serves
as an approximation of the corpus-level F1 score.
Similarly, Hopkins and May optimize a sentence-
level BLEU approximation (Lin and Och, 2004) in-
stead of the corpus-level BLEU score (Papineni et
al., 2002). We observed that optimizing sentence-
level F1 score worked well in practice in our experi-
ments.

3.5 Decoder Search

Given a set of proposers, experts, and a tuned de-
coder model, the decoder can be used to correct
new unseen sentences. This is done by performing
a search over possible hypothesis candidates. The
decoder starts with the input sentence as the initial
hypothesis, i.e., assuming that all words are correct.
It then performs a beam search over the space of
possible hypotheses to find the best hypothesis cor-
rection ĥ for an input sentence e. The search pro-
ceeds in iterations until the beam is empty or the
maximum number of iterations has been reached. In
each iteration, the decoder takes each hypothesis in
the beam and generates new hypothesis candidates
using all the available proposers. The hypotheses
are evaluated by the expert models that compute the
hypothesis features and finally scored using the de-
coder model. As the search space grows exponen-
tially, it is infeasible to perform exhaustive search.
Therefore, we prune the search space by only ac-
cepting the most promising hypotheses to the pool
of hypotheses for future consideration. If a hypothe-
sis has a higher score than the best hypothesis found
in previous iterations, it is definitely added to the
pool. Otherwise, we use a simulated annealing strat-
egy where hypotheses with a lower score can still be
accepted with a certain probability which depends
on the difference between the hypothesis score and

571



hand→ hands

In→ For

On→ About

hands→ hand

In→ At

In→ Into

On→ By

In→ Of

In→ At

In→ For

the→ an In→ On

the→ an

In→ For

ε→ an

In→ At

On→ To

In→With

the→ ε

In→With

ε→ the

In→With

To the other
hand ..

score = 6.32

About the other
hand ..

score = 9.71

For other hands ..
score = 7.00

On an other hand
..

score = 2.48

On other hand ..
score = 4.94

...At other hands ..
score = 5.34

At the other
hands ..

score = 6.05

For the other
hands ..

score = 9.05

With the other
hands ..

score = 5.25

In the other hand , they might be right
score = 11.69

...

...

In other hands , they might be right .
score = 9.10

Into the other
hand ..

score = 5.47

For the other
hand ..

score = 10.75

At the other
hand ..

score = 9.40

In an other hand
..

score = 3.96

In the other hands , they might be right .
score = 9.63

In an other ..
score = -1.58

On the other hand , they might be right
score = 15.36

Of the other
hand ..

score = 8.94

In other hand ..
score = 8.29

...

With other hands ..
score = 6.31

By the other
hand ..

score = 5.80

With the other
hand ..

score = 8.69

Figure 1: Example of a search tree produced by the beam-search decoder for the input In other hands, they might be
right. The highest scoring hypothesis found is On the other hand, they might be right. Some hypotheses are omitted
due to space constraints.

the score of the best hypothesis and the “tempera-
ture” of the system. We lower the temperature after
each iteration according to an exponential cooling
schedule. Hypotheses that have been explored be-
fore are not considered again to avoid cycles in the
search. From all hypotheses in the pool, we select
the top k hypotheses and add them to the beam for
the next search iteration. The decoding algorithm
is shown in Algorithm 1. The decoder can be con-
sidered an anytime algorithm (Russell and Norvig,
2010), as it has a current best hypothesis correction
available at any point of the search, while gradually
improving the result by searching for better hypothe-
ses. An example of a search tree produced by our
decoder is shown in Figure 1.

The decoding algorithm shares some similarities
with the beam-search algorithm frequently used in
SMT. There is however a difference between SMT
decoding and grammar correction decoding that is
worth pointing out. In SMT decoding, every input
word needs to be translated exactly once. In con-
trast, in grammar correction decoding, the majority
of the words typically do not need any correction
(in the HOO data, for example, there are on aver-
age 6 errors per 100 words). On the other hand,
some words might require multiple corrections, for
example spelling correction followed by noun num-

ber correction. Errors can also be inter-dependent,
where correcting one word makes it necessary to
change another word, for example to preserve agree-
ment. Our decoding algorithm has the option to cor-
rect some words multiple times, while leaving other
words unchanged.

4 Experiments

We evaluate our decoder in the context of the HOO
shared task on grammatical error correction. The
goal of the task is to automatically correct errors in
academic papers from NLP. The readers can refer to
the overview paper (Dale and Kilgarriff, 2011) for
details. We compare our proposed method with two
baselines: a phrase-based SMT system (described in
Section 4.3) and a pipeline of classifiers (described
in Section 4.4).

4.1 Data

We split the HOO development data into an equal
sized training (HOO-TRAIN) and tuning (HOO-
TUNE) set. The official HOO test data (HOO-TEST)
is used for evaluation. In the HOO shared task, par-
ticipants were allowed to raise objections regarding
the gold-standard annotations (corrections) of the
test data after the test data was released. As a result,
the gold-standard annotations could be biased in fa-
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Algorithm 1 The beam-search decoding algorithm. e:
original sentence, w: decoder weight vector, P : set of
proposers, E: set of experts, k: beam width, M : maxi-
mum number of iterations, T, c: initial temperature and
cooling schedule for simulated annealing (0 < c < 1).
procedure decode(e, w, P , E, k, M )
1: beam← {e}
2: previous← {e}
3: hbest ← e
4: sbest ← wT fE(hbest)
5: i← 0
6: while beam 6= ∅ ∧ i < M do
7: pool← {}
8: for all h ∈ beam do
9: for all p ∈ P do

10: for all h′ ∈ p.propose(h) do
11: if h′ ∈ previous then
12: continue
13: previous← previous ∪ {h′}
14: sh′ ← wT fE(h′)
15: if accept(sh′ , sbest, T ) then
16: pool← pool ∪ {(h′, sh′)}
17: beam← ∅
18: for all (h, sh) ∈ nbest(pool, k) do
19: beam← beam ∪ {h}
20: if sh > sbest then
21: hbest ← h
22: sbest ← sh

23: T ← T × c
24: i← i + 1
25: return hbest

procedure accept(sh, sbest, T )
1: δ ← sh − sbest

2: if δ > 0 then
3: return true
4: if exp( δ

T
) > random() then

5: return true else return false

vor of specific systems participating in the shared
task. We obtain both the original and the final offi-
cial gold-standard annotations and report evaluation
results on both annotations.

We use the ACL Anthology2 as training data for
the expert models. We crawl all non-OCR docu-
ments from the anthology, except those documents
that overlap with the HOO data. Section headers,
references, etc. are automatically removed. The
Web 1T 5-gram corpus (Brants and Franz, 2006) is
used for language modeling and collecting web N-
gram counts. Table 1 gives an overview of the data
sets.

2http://www.aclweb.org/anthology-new/

Data Set Sentences Tokens
HOO-TRAIN 467 11,373
HOO-TUNE 472 11,435
HOO-TEST 722 18,790
ACL-ANTHOLOGY 943,965 22,465,690

Table 1: Overview of the data sets.

4.2 Evaluation

We evaluate performance by computing precision,
recall, and F1 correction score without bonus as de-
fined in the official HOO report (Dale and Kilgar-
riff, 2011)3. F1 correction score is simply the F1

measure (van Rijsbergen, 1979) between the correc-
tions (called edits in HOO) proposed by a system
and the gold-standard corrections. Let {e1, . . . , en}
be a set of test sentences and let {g1, . . . ,gn} be
the set of gold-standard edits for the sentences. Let
{h1, . . . ,hn} be the set of corrected sentences out-
put by a system. One difficulty in the evaluation is
that the set of system edits {d1, . . . ,dn} between
the test sentences and the system outputs is ambigu-
ous. For example, assume that the original test sen-
tence is The data is similar with test set., the system
output is The data is similar to the test set., and the
gold-standard edits are two corrections with → to,
ε → the that change with to to and insert the be-
fore test set. The official HOO scorer however ex-
tracts a single system edit with → to the for this
instance. As the extracted system edit is different
from the gold-standard edits, the system would be
considered wrong, although it proposes the exact
same corrected sentence as the gold standard ed-
its. This problem has also been recognized by the
HOO shared task organizers (see (Dale and Kilgar-
riff, 2011), Section 5).

Our MaxMatch (M2) scorer (Dahlmeier and Ng,
2012) overcomes this problem through an efficient
algorithm that computes the set of system edits
which has the maximum overlap with the gold-
standard edits. We use the M2 scorer as the main
evaluation metric in our experiments. Additionally,
we also report results with the official HOO scorer.
Once the set of system edits is extracted, precision,
recall, and F1 measure are computed as follows.

3“Without bonus” means that a system does not receive extra
credit for not making corrections that are considered optional in
the gold standard.
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P =
∑n

i=1 |di ∩ gi|∑n
i=1 |di|

(5)

R =
∑n

i=1 |di ∩ gi|∑n
i=1 |gi|

(6)

F1 = 2× P ×R

P + R
(7)

We note that the M2 scorer and the HOO scorer ad-
here to the same score definition and only differ in
the way the system edits are computed. For statisti-
cal significance testing, we use sign-test with boot-
strap re-sampling (Koehn, 2004) with 1,000 sam-
ples.

4.3 SMT Baseline
We build a baseline error correction system, using
the MOSES SMT system (Koehn et al., 2007). Word
alignments are created automatically on “good-bad”
parallel text from HOO-TRAIN using GIZA++ (Och
and Ney, 2003), followed by phrase extraction us-
ing the standard heuristic (Koehn et al., 2003). The
maximum phrase length is 5. Parameter tuning is
done on the HOO-TUNE data with the PRO al-
gorithm (Hopkins and May, 2011) implemented in
MOSES. The optimization objective is sentence-
level BLEU (Lin and Och, 2004). We note that the
objective function is not the same as the final evalu-
ation F1 score. Also, the training and tuning data are
small by SMT standards. The aim for the SMT base-
line is not to achieve a state-of-the-art system, but to
serve as the simplest possible baseline that uses only
off-the-shelf software.

4.4 Pipeline Baseline
The second baseline system is a pipeline of
classifier-based and rule-based correction steps.
Each step takes sentence segmented plain text as in-
put, corrects one particular error category, and feeds
the corrected text into the next step. No search or
global inference is applied. The correction steps are:

1. Spelling errors

2. Article errors

3. Preposition errors

4. Punctuation errors

5. Noun number errors

We use the following tools for syntactic process-
ing: OpenNLP4 for POS tagging, YamCha (Kudo
and Matsumoto, 2003) for constituent chunking, and
the MALT parser (Nivre et al., 2007) for depen-
dency parsing. For language modeling, we use Ran-
dLM (Talbot and Osborne, 2007).

For spelling correction, we use GNU Aspell5.
Words that contain upper-case characters inside the
word or are shorter than four characters are excluded
from spell checking. The spelling dictionary is aug-
mented with all words that appear at least 10 times
in the ACL-ANTHOLOGY data set.

Article correction is cast as a multi-class clas-
sification problem. As the learning algorithm,
we choose multi-class confidence-weighted (CW)
learning (Crammer et al., 2009) which has been
shown to perform well for NLP problems with high
dimensional and sparse feature spaces. The possi-
ble classes are the articles a, the, and the empty ar-
ticle ε. The article an is normalized as a and re-
stored later using a rule-based heuristic. We con-
sider all NPs that are not pronouns and do not have a
non-article determiner, e.g., this, that. The classifier
is trained on over 5 million instances from ACL-
ANTHOLOGY. We use a combination of features
proposed by (Rozovskaya et al., 2011) (which in-
clude lexical and POS N-grams, lexical head words,
etc.), web-scale N-gram count features from the
Web 1T 5-gram corpus following (Bergsma et al.,
2009), and dependency head and child features.
During testing, a correction is proposed if the pre-
dicted article is different from the observed article
used by the writer, and the difference between the
confidence score for the predicted article and the
confidence score for the observed article is larger
than a threshold. Threshold parameters are tuned
via a grid-search on the HOO-TUNE data. We tune
a separate threshold value for each class.

Preposition correction and noun number correc-
tion are analogous to article correction. They differ
only in terms of the classes and the features. For
preposition correction, the classes are 36 frequent
English prepositions6. The features are surrounding

4http://opennlp.sourceforge.net
5http://aspell.net
6about, along, among, around, as, at, beside, besides, be-

tween, by, down, during, except, for, from, in, inside, into, of,
off, on, onto, outside, over, through, to, toward, towards, under,
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lexical N-grams, web-scale N-gram counts, and de-
pendency features following (Tetreault et al., 2010).
The preposition classifier is trained on 1 million
training examples from the ACL-ANTHOLOGY. For
noun number correction, the classes are singular
and plural. The features are lexical N-grams, web-
scale N-gram counts, dependency features, the noun
lemma, and a binary countability feature. The noun
number classifier is trained on over 5 million exam-
ples from ACL-ANTHOLOGY. During testing, the
singular or plural word surface form is generated us-
ing WordNet (Fellbaum, 1998) and simple heuris-
tics. Punctuation correction is done using a set of
simple rules developed on the HOO development
data.

At the end of every correction step, all proposed
corrections are filtered using a 5-gram language
model from the Web 1T 5-gram corpus and only
corrections that strictly increase the normalized lan-
guage model score of the sentence are applied.

4.5 Decoder

We experiment with different decoder configura-
tions with different proposers and expert models.
In the simplest configuration, the decoder only has
the spelling proposer and the language model ex-
pert. We then add the article proposer and expert,
the preposition proposer and expert, the punctua-
tion proposer, and finally the noun number proposer
and expert. We refer to the final configuration with
all proposers and experts as the full decoder model.
Note that error categories are corrected jointly and
not in sequential steps as in the pipeline.

To make the results directly comparable to the
pipeline, the decoder uses the same resources as the
pipeline. As the expert models, we use a 5-gram
language model from the Web 1T 5-gram corpus
with the Berkeley LM (Pauls and Klein, 2011)7 in
the decoder and the CW-classifiers described in the
last section. The spelling proposer uses the same
spellchecker as the pipeline, and the punctuation
proposer uses the same rules as the pipeline. The
beam width and the maximum number of iterations
are set to 10. In earlier experiments, we found that
larger values had no effect on the result. The simu-

underneath, until, up, upon, with, within, without
7Berkeley LM is written in Java and was easier to integrate

into our Java-based decoder than RandLM.

lated annealing temperature T is initialized to 10 and
the exponential cooling schedule c is set to 0.9. The
decoder weight vector is initialized as follows. The
weight for the language model score and the weights
for the classifier expert average scores are initialized
to 1.0, and the weights for the classifier expert delta
scores are initialized to −1.0. The weights for the
correction count features are initialized to zero. For
PRO optimization, we use the HOO-TUNE data and
the default PRO parameters from (Hopkins and May,
2011): we sample 5,000 hypothesis pairs from the
N-best list (N = 100) for every input sentence and
keep the top 50 sample pairs with the highest dif-
ference in F1 measure. The weights are optimized
using MegaM (Daumé III, 2004) and interpolated
with the previous weight vector with an interpola-
tion parameter of 0.1. We normalize feature val-
ues to avoid having features on a larger scale dom-
inate features on a smaller scale. We linearly scale
all hypothesis features to a unit interval [0, 1]. The
minimum and maximum values for each feature are
estimated from the development data. We use an
early stopping criterion that terminates PRO if the
objective function on the tuning data drops. To bal-
ance the skewed data where samples without errors
greatly outnumber samples with errors, we give a
higher weight to sample pairs where the decoder
proposed a valid correction. We found a weight of
20 to work well, based on initial experiments on
the HOO-TUNE data. We keep all these parameters
fixed for all experiments.

5 Results

The complete results of our experiments are shown
in Table 2. Each row contains the results for one
error correction system. Each system is scored on
the original and official gold-standard annotations,
both with the M2 scorer and the official HOO scorer.
This results in four sets of precision, recall, and F1

scores for each system. The best published result
to date on this data set is the UI Run1 system from
the HOO shared task. We include their system as a
reference point.

We make the following observations. First, the
scores on the official gold-standard annotations are
higher compared to the original gold-standard an-
notations. We note that the gap between the two
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System Original gold-standard Official gold-standard
M2 scorer HOO scorer M2 scorer HOO scorer

P R F1 P R F1 P R F1 P R F1

UI Run1 40.86 11.21 17.59 38.13 10.42 16.37 54.61 14.57 23.00 50.72 13.34 21.12
P R F1 P R F1 P R F1 P R F1

SMT 9.84 7.77 8.68 15.25 5.31 7.87 23.35 7.38 11.21 15.82 5.30 7.93
Pipeline P R F1 P R F1 P R F1 P R F1

Spelling 50.00 0.79 1.55 40.00 0.64 1.25 50.00 0.76 1.49 40.00 0.61 1.20
+ Articles 30.86 10.23 15.36 28.04 9.55 14.25 34.42 10.97 16.64 31.78 10.41 15.68
+ Prepositions 27.44 11.90 16.60 24.82 11.15 15.38 30.54 12.77 18.01 27.90 12.04 16.82
+ Punctuation 28.91 14.55 19.36 † 26.57 13.91 18.25 † 32.88 15.99 21.51 30.63 15.41 20.50
+ Noun number 28.77 16.13 20.67 † 24.68 14.22 18.04 † 32.34 17.50 22.71 28.36 15.71 20.22
Decoder P R F1 P R F1 P R F1 P R F1

Spelling 36.84 0.69 1.35 22.22 0.41 0.80 36.84 0.66 1.30 22.22 0.42 0.83
+ Articles 19.84 12.59 15.40 17.99 12.00 14.39 22.45 13.72 17.03 ∗ 20.70 13.27 16.16
+ Prepositions 22.62 14.26 17.49 ∗ 19.30 12.95 15.50 24.84 15.14 18.81 ∗ 21.36 13.78 16.74
+ Punctuation 24.27 18.09 20.73 ∗† 20.40 16.24 18.08 27.13 19.58 22.75 ∗ 23.07 17.65 19.99
+ Noun number 30.28 19.17 23.48 ∗† 24.29 16.24 19.46 ∗† 33.59 20.53 25.48 ∗† 27.30 17.55 21.36 ∗

Table 2: Experimental results on HOO-TEST. Precision, recall, and F1 score are shown in percent. The best F1 score
for each system is highlighted in bold. Statistically significant improvements (p < 0.01) over the pipeline baseline are
marked with an asterisk (∗). Statistically significant improvements over the UI Run1 system are marked with a dagger
(†). All improvements of the pipeline and the decoder over the SMT baseline are statistically significant.

annotations is the largest for the UI Run1 system
which confirms the suspected bias of the official
gold-standard annotations in favor of participating
systems. Second, the scores computed with the M2

scorer are higher than the scores computed with the
official HOO scorer. With more error categories and
more ambiguity in the edits segmentation, the gap
between the scorers widens. In the case of the full
pipeline and decoder model, the HOO scorer even
shows a decrease in F1 score when the score actu-
ally goes up as shown by the M2 scorer. We there-
fore focus on the scores of the M2 scorer from now
on. The SMT baseline achieves 8.68% and 11.21%
F1 on the original and official gold standard, respec-
tively. Although the worst system in our experi-
ments, it would still have claimed the third place
in the HOO shared task. One problem is certainly
the small amount of training data. Another reason is
that the phrase-based model is unaware of syntactic
structure and cannot express correction rules of the
form NP → the NP . Instead, it has to have seen
the exact correction rule, e.g., house → the house,
in the training data. As a result, the model does not
generalize well. The pipeline achieves state-of-the-
art results. Each additional correction step improves
the score. Our proposed decoder achieves the best

result. When only a few error categories are cor-
rected, the pipeline and the decoder are close to each
other. When more error categories are added, the
gap between the pipeline and the decoder becomes
larger. The full decoder model achieves an F1 score
of 23.48% and 25.48% on the original and official
gold standard, respectively, which is statistically sig-
nificantly better than both the pipeline system and
the UI Run1 system.

6 Discussion

As pointed out in Section 3.5, the majority of sen-
tences require zero or few corrections. Therefore,
the depth of the search tree is typically small. In our
experiments, the average depth of the search tree is
only 1.9 (i.e., 0.9 corrections per sentence) on the
test set. Usually, the search depth will be one larger
than the number of corrections made, since the de-
coder will explore the next level of the search tree
before deciding that none of the new hypotheses are
better than the current best one. On the other hand,
there are many possible hypotheses that can be pro-
posed for any sentence. The breadth of the search
tree is therefore quite large. In our experiments, the
decoder explored on average 99 hypotheses per sen-
tence on the test set.
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PRO iteration P R F1

1 14.13 20.17 16.62
2 19.71 20.85 20.27
3 23.12 21.03 22.02
4 24.35 20.85 22.47
5 25.53 20.51 22.75
6 26.27 20.34 22.93
7 27.25 20.68 23.52
8 26.73 19.83 22.77

Table 3: PRO tuning of the full decoder model on HOO-
TUNE

Feature Weight
a→ the -1.3660
a→ ε 0.5253
the→ a -0.9997
the→ ε 0.0532
ε→ a 0.0694
ε→ the -0.0529

Table 4: Example of PRO-tuned weights for article cor-
rection count features for the full decoder model.

We found that PRO tuning is very important to
achieve good performance for our decoder. Most
importantly, PRO tunes the correction count features
that bias the decoder against over-correcting sen-
tences thus improving precision. But PRO is also
able to improve recall during tuning. Table 3 shows
the trajectory of the performance for the full decoder
model during PRO tuning on HOO-TUNE. After
PRO tuning has converged, we inspect the learned
weight vector and observe some interpretable pat-
terns learned by PRO. First, the language model
score and all classifier expert average scores receive
positive weights, while all classifier expert delta
scores receive negative weights, in line with our ini-
tial intuition described in Section 3.3. Second, most
correction count features receive negative weights,
thus acting as a bias against correction if it is not
necessary. Finally, the correction count features re-
veal which corrections are more likely and which are
less likely. For example, article replacement errors
are less common in the HOO-TUNE data than arti-
cle insertions or deletions. The weights learned for
the article correction count features shown in Table 4
reflect this.

Although our decoder achieves state-of-the-art re-
sults, there remain many error categories which the
decoder currently cannot correct. This includes, for

example, verb form errors (Much research (have →
has) been put into . . . ) and lexical choice errors (The
(concerned → relevant) relation . . . ). We believe
that our decoder provides a promising framework to
build grammatical error correction systems that in-
clude these types of errors in the future.

7 Conclusion

We have presented a novel beam-search decoder for
grammatical error correction. The model performs
end-to-end correction of whole sentences with mul-
tiple, interacting errors, is discriminatively trained,
and incorporates existing classifier-based models for
error correction. Our decoder achieves an F1 correc-
tion score of 25.48% on the HOO shared task which
outperforms the current state of the art on this data
set.
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Abstract

Evidence-based medicine is an approach
whereby clinical decisions are supported by
the best available findings gained from scien-
tific research. This requires efficient access
to such evidence. To this end, abstracts in
evidence-based medicine can be labeled using
a set of predefined medical categories, the so-
called PICO criteria. This paper presents an
approach to automatically annotate sentences
in medical abstracts with these labels. Since
both structural and sequential information are
important for this classification task, we use
kLog, a new language for statistical relational
learning with kernels. Our results show a clear
improvement with respect to state-of-the-art
systems.

1 Introduction

Evidence-based medicine (EBM) or evidence-based
practice (EBP) combines clinical expertise, the pref-
erences and values of the patient and the best
available evidence to make good patient care deci-
sions. Clinical research findings are systematically
reviewed, appraised and used to improve the patient
care, for which efficient access to such evidence is
required. In order to facilitate the search process,
medical documents are labeled using a set of prede-
fined medical categories, the PICO criteria. PICO is
an acronym for the mnemonic concepts that are used
to construct queries when searching for scientific ev-
idence in the EBM process. The need to automatize
the annotation process has initiated research into au-
tomatic approaches to annotate sentences in medical
documents with the PICO labels.

As indicated by Kim et al. (2011), both the struc-
tural information of the words in the sentence, and
that of the sentences in the document are important
features for this task. Furthermore, sequential infor-
mation can leverage the dependencies between dif-
ferent sentences in the text. Therefore we propose an
approach using kLog (Frasconi et al., 2012) to tackle
this problem. kLog is a new language for statistical
relational learning with kernels, that is embedded in
Prolog, and builds upon and links together concepts
from database theory, logic programming and learn-
ing from interpretations. Learning from interpreta-
tions is a logical and relational learning setting (De
Raedt et al., 2008) in which the examples are inter-
pretations, that is, sets of tuples that are true in the
examples. In a sense, each example can be viewed
as a small relational database. kLog is able to trans-
form relational into graph-based representations and
apply kernel methods to extract an extended high-
dimensional feature space.

The choice for kLog was motivated by previous
results (Verbeke et al., 2012), where we showed that
a statistical relational learning approach using kLog
is able to process the contextual aspects of language
improving on state-of-the-art results for hedge cue
detection. However, the current task adds two levels
of complexity. First, next to the relations between
the words in the sentence, now also the relations be-
tween the sentences in the document become impor-
tant. In the proposed approach, we first generate a
feature space with kLog that captures the intrasen-
tential properties and relations. Hereafter, these fea-
tures serve as input for a structured output support
vector machine that can handle sequence tagging
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(Tsochantaridis et al., 2004), in order to take the
intersentential features into account. Second, since
there are more than two categories, and each sen-
tence can have multiple labels, the problem is now a
multiclass multilabel classification task.

The main contribution of this paper is that we
show that kLog’s relational nature and its ability
to declaratively specify and use background knowl-
edge is beneficial for natural language learning prob-
lems. This is shown on the NICTA-PIBOSO corpus,
for which we present results that indicate a clear im-
provement on the state-of-the-art.

The remainder of this paper is organized as fol-
lows. In Section 2, we outline earlier work that is
related to the research presented here. Section 3 de-
scribes the methodology of our method. We present
a thorough evaluation of our method in Section
4. The last section draws conclusions and presents
some ideas for future work.

2 Related Work

EBM is an approach to clinical problem-solving
based on “systematically finding, appraising, and us-
ing contemporaneous research findings as the ba-
sis for clinical decisions” (Rosenberg and Donald,
1995). The evidence-based process consists of four
steps: (1) Formulating a question from a patient’s
problem; (2) Searching the literature for relevant
clinical articles; (3) Evaluating the evidence; And
(4) implementing useful findings in clinical prac-
tice. Given the amounts of medical publications
available in databases such as PubMed, automating
step 2 is crucial to help doctors in their practice.
Efforts in this direction from the NLP community
have so far focused on corpus annotation (Demner-
Fushman and Lin, 2007; Kim et al., 2011), text cate-
gorization (Davis-Desmond and Mollá, 2012), sum-
marization (Mollá and Santiago-Martı́nez, 2011),
and question-anwering (Niuet al., 2003; Demner-
Fushman and Lin, 2007).

The existing corpora are usually annotated with
the PICO mnemonic (Armstrong, 1999) concepts,
that are used to build queries when searching for
literature for EBM purposes. The PICO concepts
are: primary Problem (P) or population, main Inter-
vention (I), main intervention Comparison (C), and

Outcome of intervention (O). PICO helps determin-
ing what terms are important in a query and there-
fore it helps building the query, which is sent to the
search repositories. Once the documents are found,
they need to be read by a person who eliminates ir-
relevant documents.

The first attempt to classify PICO concepts is pre-
sented in Demner-Fushman and Lin (2007), who
apply a rule-based approach to identify sentences
where PICO concepts occur and a supervised ap-
proach to classify sentences that contain an Out-
come. The features used by this classifier are n-
grams, position, and semantic information from the
parser used to process the data. The system is trained
on 275 abstracts manually annotated. The accura-
cies reported range from 80% for Population, 86%
for Problem, 80% for Intervention, and, from 64%
to 95% for Outcome depending on the test set of ab-
stracts.

Kim et al. (2011) perform a similar classification
task in two steps. First a classifier identifies the sen-
tences that contain PICO concepts, and then another
classifier assigns PICO tags to the sentences found
to be relevant by the previous classifier. The sys-
tem is based on a CRF algorithm and is trained on
the NICTA-PIBOSO corpus. This dataset contains
1,000 medical abstracts manually annotated with an
extension of the PICO tagset, for which the defini-
tions are listed in Table 1. The annotation is per-
formed at sentence level and one sentence may have
more than one tag. An example of an annotated
abstract from the corpus can be found in the sup-
plementary material. The features used by the al-
gorithm include features derived from the context,
semantic relations, structure and sequencing of the
text. The system is evaluated for 5-way and 6-way
classification and results are provided apart from
structured and unstructured abstracts. The F-scores
for structured abstracts is 89.32% for 5-way classifi-
cation and 80.88% for 6-way classification, whereas
for unstructured abstracts it is 71.54% for 5-way
classification and 64.66% for 6-way classification.

Chung (2009) uses CRF to classify PICO con-
cepts by combining them with general categories as-
sociated with rhetorical roles: Aim, Method, Results
and Conclusion. Her system is tested on corpora of
abstracts of randomized control trials. First struc-
tured abstracts with headings labeled with PICO
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Background Material that informs and may place the current study in perspective, e.g. work that preceded the
current; information about disease prevalence; etc.

Population The group of individual persons, objects or items comprising the study’s sample, or from which
the sample was taken for statistical measurement

Intervention The act of interfering with a condition to modify it or with a process to change its course (includes
prevention)

Outcome The sentence(s) that best summarizes the consequences of an intervention
Study Design The type of study that is described in the abstract
Other Any sentence not falling into one of the other categories and presumed to provide little help with

clinical decision making, i.e. non-key or irrelevant sentences

Table 1: Definitions of the semantic tags used as annotation categories (taken from Kim et al. (2011)).

concepts are used. A sentence level classification
task is performed, assigning only one rhetorical role
per sentence. The F-scores obtained range from 0.93
to 0.98. Then another sentence level classification
task is performed to automatically assign the labels
Intervention, Participant and Outcome Measures to
sentences in unstructured and structured abstracts
without headings. F-scores of up to 0.83 and 0.84
are obtained for Intervention and Outcome Measure
sentences.

Other work aimed at identifying rhetorical zones
in biomedical articles. In this case areas of text are
classified in terms of the rhetorical categories In-
troduction, Methods, Results and Discussion (IM-
RAD) (Agarwal and Yu, 2009) or richer categories,
such as problem-setting or insight (Mizuta et al.,
2006).

There exists a wide range of statistical relational
learning systems (Getoor and Taskar, 2007; De
Raedt et al., 2008), and many of these systems
are in principle useful for natural language process-
ing. The most popular formalism today is Markov
Logic, which has already been used for natural lan-
guage processing tasks such as semantic role label-
ing (Riedel and Meza-Ruiz, 2008) and coreference
resolution (Poon and Domingos, 2008). With re-
spect to Markov Logic, two distinguishing features
of kLog are that 1) it employs kernel based meth-
ods grounded in statistical learning theory, and 2) it
employs a Prolog like language for defining and us-
ing background knowledge. As Prolog is a program-
ming language, this is more flexible that the formal-
ism used by Markov Logic.

3 Methodology

In learning from examples, or interpretations (De
Raedt et al., 2008), the instances are sampled iden-
tically and independently from some unknown but
fixed distribution. They can be represented as pairs
z = (x, y), in which x represents the inputs and y
the outputs. An example interpretation can be found
in Figure 3, where the hasCategory relation repre-
sents y in this case, since it is the target relation we
want to predict. The inputs x are formed by all other
facts. The task is now to learn a function h : X → Y
that maps the inputs to the outputs. Sentences may
have multiple labels. Hence this is a structured out-
put task where the output is a sequence of sets of
labels attached to the sentences in a given document.

kLog is the new statistical relational language for
learning with kernels that we use to tackle the PICO
categories classification task. The novelty of kLog
is that, based on the regular, linguistic features, it
allows to define an extended high-dimensional fea-
ture space that is also able to take relational features
into account in a principled manner. Furthermore,
its declarative approach offers a flexible and inter-
pretable way to construct features.

The choice of kLog is motivated by our previous
results (Verbeke et al., 2012), where we showed that
the relational representation of the domain as used
by kLog is able to take the contextual aspects of lan-
guage into account. Whereas there we only used
the relations at the sentence level, the current task
adds a new level of complexity, since the identifica-
tion of PICO categories in abstracts also requires to
take into account various relations between the sen-
tences of an abstract. The general workflow of our
approach is depicted in Figure 1, which will be de-

581



Database
(Fig. 3)

Extensionalized 
database

Graph
(Fig. 4)

Kernel matrix/
feature vectors

Statistical 
learner

Raw data
(sentence)

Feature extraction
(lemma, POS,…)

Declarative feature 
construction Graphicalization Feature 

generation

Graph kernel 
(NSPDK)kLog

Figure 1: General kLog workflow.

scribed step by step in the following paragraphs.

Preprocessing The sentences have been prepro-
cessed with a named entity tagger and a dependency
parser.

Named entity tagging has been performed with
the BiogaphTA named entity module, which
matches token sequences with entries in the UMLS
database1. UMLS integrates over 2 million names
for some 900,000 concepts from more than 60 fami-
lies of biomedical vocabularies (Bodenreider, 2004).
The tagger matches sequences with a length of max-
imum 4 tokens. This covers 66.2% of the UMLS
entries. By using UMLS, different token sequences
referring to the same concept can be mapped to
the same concept identifier (CID). The BiographTA
named entity tagger has been evaluated on the
BioInfer corpus (Pyysalo et al., 2007) obtaining a
72.02 F1 score.

Dependency parsing has been performed with the
GENIA dependency parser GDep (Sagae and Tsu-
jii, 2007), which uses a best-first probabilistic shift-
reduce algorithm based on the LR algorithm (Knuth,
1965) and extended by the pseudo-projective pars-
ing technique. This parser is a version of the KSDep
dependency parser trained on the GENIA Treebank
for parsing biomedical text. KSDep was evaluated
in the CoNLL Shared Task 2007 obtaining a La-
beled Attachment Score of 89.01% for the English
dataset. GDEP outputs the lemmas, chunks, Genia
named entities and dependency relations of the to-
kens in a sentence.

This information can be represented as an
Entity/Relationship (E/R) diagram, a modeling
paradigm that is frequently used in database theory
(Garcia-Molina et al., 2008). The E/R-model for the

1From UMLS only the MRCONSO.RRF and MRSTY.RRF
files are used.

problem under consideration is shown in Figure 2,
which provides an abstract representation of the ex-
amples, i.e. medical abstracts in this case. We will
show later how this abstract representation can be
unrolled for each example, resulting in a graph; cf.
also Figure 4 for our example sentence. This rela-
tional database representation will serve as the input
for kLog.

w

depHead

next

wordID

depRel

lemma

POS-tag

chunktag

wordString

NEGenia

NEUMLS

sentence hasWord

class

sentID

hasCategory

nextS

Figure 2: E/R-diagram modeling the sentence identifica-
tion task.

The entities are the words and sentences in the
abstract. They are represented by the rectangles in
the E/R-model. Each entity can have a number of
properties attached to it, depicted by the ovals and
has a unique identifier (underlined properties). As
in database theory, each entity corresponds with a
tuple, or fact, in the database.

Figure 3 shows a part of an example interpretation
z. For example, w(w4 1,‘Surgical’,‘Surgical’,b-
np,jj,‘O’,‘O’) specifies a word entity, with w4 1 as
identifier and the other arguments as properties. As
indicated before, as lexical information we take the
token string itself, its lemma, the part-of-speech tag
and the chunk tag into account. We also include
some semantic information, namely two binary val-
ues indicating if the word is a (biological) named
entity. sentence(s4,4) represents a sentence entity,
with its index in the abstract as a property.

Furthermore, the E/R-diagram also contains a
number of relationships, which are represented by
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sentence(s4,4)
hasCategory(s4,‘background’)
w(w4_1,‘Surgical’,‘Surgical’,b-np,
jj,‘O’,‘O’) hasWord(s4,w4_1)
dh(w4_1,w4_2,nmod)
nextW(w4_2,w4_1)
w(w4_2,‘excision’,‘excision’,i-np,
nn,‘O’,‘O’) hasWord(s4,w4_2)
dh(w4_2,w4_5,sub)
nextW(w4_3,w4_2)
w(w4_3,‘of’,‘of’,b-pp,in,’O’,’O’)
hasWord(s4,w4_3)
dh(w4_3,w4_2,nmod)
nextW(w4_4,w4_3)
w(w4_4,‘CNV’,‘CNV’,b-np,nn,
‘B-protein’,‘O’) hasWord(s4,w4_4)
dh(w4_4,w4_3,pmod)
nextW(w4_5,w4_4)
...

Figure 3: Part of an example interpretation z, represent-
ing the example sentence in Figure 4.

the diamonds. They are linked to the entities that
participate in the relationship, or stand alone if they
characterize general properties of the interpretation.
An example relation is nextW(w4 2,w4 1), which
indicates the sequence of the words in the sentence.
dh(w4 1,w4 2,nmod) specifies that word w4 1 is
a noun modifier of word w4 2, and thus serves to
incorporate the dependency relationships between
the words. hasCategory(s4,‘background’) signi-
fies that sentence s4 is a sentence describing back-
ground information. This relation is the target re-
lation that we want to predict for this task and will
not be taken into account as a feature, but is listed in
the database and only used during the training of the
model.

Since the previously described entities and rela-
tionships are listed explicitly in the database, these
are called extensional relations, in contrast to the in-
tensional relations, as we will describe next.

Declarative feature construction A strength of
kLog is that it is also capable of constructing fea-
tures declaratively, by using intensional relations.
This enables one to encode additional background
knowledge based on a small set of preprocessed fea-

tures, which renders experimentation very flexible
and makes the results more interpretable. It further-
more allows one to limit the required features to the
core discriminative ones. These intensional features
are defined through definite clauses, and is done us-
ing an extension of the declarative programming lan-
guage Prolog. The following features were used.
We make a distinction between the features used for
structured and unstructured abstracts.

For structured abstracts, four intensional relations
were defined. The relation lemmaRoot(S,L) is
specified as:

lemmaRoot(S,L) ←
hasWord(S, I),
w(I,_,L,_,_,_,_),
dh(I,_,root).

For each sentence, it only selects the lemmas
of the root word in the dependency tree, which
markedly limits the number of word features used.
The following relations are related to, and try to
capture the document structure imposed by the sec-
tion headers present in the structured abstracts.
hasHeaderWord(S,X) identifies whether a sen-
tence is a header of a section. In order to realize this,
it selects the words of a sentence that count more
than four characters (to discard short names of bio-
logical entities), which all need to be uppercase.

hasHeaderWord(S,X) ←
w(W,X,_,_,_,_,_),
hasWord(S,W),
(atom(X) -> name(X,C) ; C = X),
length(C,Len),
Len > 4,
all_upper(C).

Also the sentences below a certain section header
need to be marked as belonging to this sec-
tion, which is done by the relation hasSection-
Header(S,X).

hasSectionHeader(S,X) ←
nextS(S1,S),
hasHeaderWord(S1,X).

hasSectionHeader(S,X) ←
nextS(S1,S),
not isHeaderSentence(S),
once(hasSectionHeader(S1,X)).
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For the unstructured abstracts, also the lemma-
Root relation is used, but next to the lemma, now
also the part-of-speech tag of the root word is taken
into account. Since the unstructured abstracts lack
section headers, other features were needed to dis-
tinguish between the different sections, for which
the relation prevLemmaRoot proved to be very in-
formative. It adds the lemma of the root word in the
previous sentence as a property to the current sen-
tence under consideration.

prevLemmaRoot(S,L) ←
nextS(S1,S),
lemmaRoot(S1,L,_).

The intensional predicates are grounded. This is
a proces similar to materialization in databases, that
is, the atoms implied by the background knowledge
and the facts in the example are all computed using
Prolog’s deduction mechanism. This leads to the
extensionalized database, in which both the exten-
sional as well as the grounded intensional predicates
are listed.

Graphicalization and feature generation In the
third step, the interpretations are graphicalized, i.e.
transformed into graphs. Since the facts that form
the interpretation still conform to the E/R-diagram,
this can be interpreted as unfolding the E/R-diagram
over the data. An example illustrating this process
is given in Figure 4. Each interpretation is converted
into a bipartite graph, for which there is a vertex for
every ground atom of every E-relation, one for every
ground atom of every R-relation, and an undirected
edge {e, r} if an entity e participates in relationship
r.

The obtained graphs can then be used in the next
step for feature generation. This is done by means
of a graph kernel κ, which calculates the similar-
ity between two graphicalized interpretations. Any
graph kernel that allows fast computations on large
graphs and has a flexible bias to enable heteroge-
neous features can in theory be applied. In the cur-
rent implementation, an extension of the Neighbor-
hood Subgraph Pairwise Distance Kernel (NSPDK)
(Costa and De Grave, 2010) is used.

NSPDK is a decomposition kernel (Haussler,
1999), in which pairs of subgraphs are compared
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Figure 4: Graphicalization Gz of interpretation z.

to each other in order to calculate the similarity be-
tween two graphs. These subgraphs can be seen as
circles in the graph, and are defined by three hyper-
parameters. First of all, there is the center of the
subgraph, the kernel point, which can be any entity
or relation in the graph. The entities and relations
to be taken into account as kernel points are marked
beforehand as a subset of the intensional and exten-
sional domain relations. The radius r determines
the size of the subgraphs and defines which entities
or relations around the kernel point are taken into ac-
count. Each entity or relation that is within a number
of r edges away from the kernel point is considered
to be part of the subgraph. The third hyperparam-
eter, the distance d, determines how far apart from
each other the kernel points can be. Each subgraph
around a kernel point that is within a distance d or
less from the current kernel point will be considered.
This is captured by the relation Rr,d(Av, Bu, G) be-
tween two rooted subgraphs Av, Bu and a graph G,
which selects all pairs of neighborhood graphs of ra-
dius r whose roots are at distance d in a given graph
G.

The kernel κr,d(G,G
′) between graphs G and G′

on the relation Rr,d is then defined as:

κr,d(G,G
′) =

∑
Av , Bu ∈ R−1

r,d(G)

A′
v′ , B

′
u′ ∈ R−1

r,d(G′)

δ(Av, A
′
v′)δ(Bu, B

′
u′)

(1)
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For efficiency reasons, an upper bound is imposed
on the radius and distance parameters, which leads
to the following kernel definition:

Kr∗,d∗(G,G
′) =

r∗∑
r=0

d∗∑
d=0

κr,d(G,G
′) (2)

We hereby limit the sum of the κr,d kernels for all
increasing values of the radius and distance parame-
ter up to a maximum given value of r∗, respectively
d∗.

The result of this graphicalization and feature
generation process is an extended, high-dimensional
feature space, which serves as input for the statisti-
cal learner in the next step.

Learning The constructed feature space contains
one feature vector per sentence. This implies that
the sequence information of the sentences at the doc-
ument level is not taken into account yet. Since the
order of the sentences in the abstract is a valuable
feature for this prediction problem, a learner that
reflects this in the learning process is needed, al-
though in principle any statistical learner can be used
on the feature space constructed by kLog. There-
fore we opted for SVM-HMM2 (Tsochantaridis et
al., 2004), which is an implementation of structural
support vector machines for sequence tagging. In
contrast to a conventional Hidden Markov Model,
SVM-HMM is able to take these entire feature vec-
tors as observations, and not just atomic tokens.

In our case, the instances to be tagged are formed
by the sentences for which feature vectors were cre-
ated in the previous step. The qid is a special fea-
ture that is used in the structured SVM to restrict
the generation of constraints. Since every document
needs to be represented as a sequence of sentences,
in SVM-HMM, the qid’s are used to obtain the doc-
ument structure. The order of the HMM was set
to 2, which means that the two previous sentences
were considered for collective classification. The
cost value was set to 500, and was determined via
cross-validation. For epsilon, the default value, 0.5,
was kept, since this mainly only influences the run-
ning time and memory consumption during training.

2http://www.cs.cornell.edu/people/tj/
svm_light/svm_hmm.html

All S U
Nb. Abstracts 1000 376 624
Nb. Sentences 10379 4774 5605
- Background 2557 669 1888
- Intervention 690 313 377
- Outcome 4523 2240 2283
- Population 812 369 443
- Study Design 233 149 84
- Other 1564 1034 530

Table 2: Number of abstracts and sentences for Struc-
tured (S) and Unstructured (U) abstract sets, including
number of sentences per class (taken from (Kim et al.,
2011)).

4 Evaluation

We evaluate the performance of kLog against a base-
line system and a memory-based tagger (Daelemans
and van den Bosch, 2005). The results are also com-
pared against those from Kim et al. (2011), which is
the state-of-the-art system for this task.

4.1 Datasets

We perform our experiments on the NICTA-
PIBOSO dataset from Kim et al. (2011) (kindly pro-
vided by the authors). It contains 1,000 abstracts of
which 500 were retrieved from MEDLINE by query-
ing for diverse aspects in the traumatic brain injury
and spinal cord injury domain. The dataset consists
of two types of abstracts. If the abstract contains
section headings (e.g. Background, Methodology,
Results, etc.), it is considered to be structured. This
information can be used as a feature in the model.
The other abstracts are regarded unstructured.

The definitions of the semantic tags used as an-
notations categories are a variation on the PICO tag
set, with the addition of two additional categories
(see Table 1 in Section 2). Each sentence can be an-
notated with multiple classes. This renders the task
a multiclass multilabel classification problem. The
statistics on this dataset can be found in Table 2.

In order to apply the same evaluation setting as
Kim et al. (2011), we used the dataset from Demner-
Fushman et al. (2005) as external dataset. It con-
sists of 100 sentences of which 51 are structured.
Because the semantic tag set used for annotation
slightly differs from the one presented in Table 1,
and to make our results comparable, we will use the
same mapping as used in Kim et al. (2011).
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4.2 Baseline and benchmarks

We compare the kLog system to three other systems:
a baseline system, a memory-based system, and the
scores reported by Kim et al. (2011).

The memory-based system that we use is based
on the memory-based tagger MBT3 (Daelemans and
van den Bosch, 2005). This machine learner is orig-
inally designed for part-of-speech tagging. It pro-
cesses data on a sentence basis by carrying out se-
quential tagging, viz. the class label or other features
from previously tagged tokens can be used when
classifying a new token. In our setup, the sentences
of an abstract are taken as the processing unit and
the collection of all sentences in an abstract is taken
as one sequence.

The features that are used to label a sentence are
the class labels of four previous sentences, the am-
bitags of the following two sentences, the lemma of
the dependency root of the sentence, the position of
the sentence in the abstract, the lemma of the root
of the previous sentence, and section information.
For each root lemma, all possible class labels, as ob-
served in the training data, are concatenated into one
ambitag. These tags are stored in a list. An am-
bitag for a sentence is retrieved by looking up the
root lemma in this list. The position of the sentence
is expressed by a number. Section information is ob-
tained by looking for a previous sentence that con-
sists of only one token in uppercase. Finally, basic
lemmatization is carried out by removing a final S.
All other settings of MBT are the default settings
and no feature optimization nor feature selection has
been carried out to prevent overfitting.

When a class label contains multiple labels, like
e.g. population and study design, these labels are
concatenated in an alphabetically sorted manner.
This method of working reduces the multilabel prob-
lem to a problem with many different labels, i.e. the
label powerset method of Tsoumakas et al. (2010).

The baseline system is exactly the same as
the memory-based system except that no machine
learner is included. The most frequent class label in
the training data, i.e. Outcome, is assigned to each
instance. The memory-based system enables us to
compare kLog against a basic machine learning ap-
proach, using few features. The majority baseline

3http://ilk.uvt.nl/mbt [16 March 2012]

system enables us to compare the memory-based
system and kLog against a baseline in which no in-
formation about the observations is used.

4.3 Parametrization

From the kernel definition it might be clear that
the kLog hyperparameters, namely the distance d
and radius r, can have a strong influence on the
results. This requires a deliberate choice during
parametrization. From a linguistic perspective, the
use of unigrams and bigrams is justifiable, since
most phrases that reveal clues on the structure of the
abstract (e.g. evaluation measures, methodolody, fu-
ture work) can be expressed with single or pairs of
words. This is reflected by a distance and radius both
set to 1, which enables to take all possible combina-
tions of consecutive words into account and captures
the relational information attached to the word in fo-
cus, i.e. the current kernel point. This is confirmed
by cross-validation on other settings for the hyper-
parameters.

Since kLog generates a feature vector, only the
sequence information at word level is taken into ac-
count by kLog. Since we use a sequence labeling
approach as statistical learner, i.e. SVM-HMM, at
the level of the abstract this information is however
implicitly taken into account during learning. For
SVM-HMM, only the cost parameter C, which reg-
ulates the trade-off between the slack and the mag-
nitude of the weight-vector, and ε, that specifies the
precision to which constraints are required to be sat-
isfied by the solution, were optimized by means of
cross-validation. For the other parameters, the de-
fault values were used.

4.4 Results

Experiments are run on structured and unstructured
abstracts separately. On the NICTA-PIBOSO cor-
pus, we performed 10-fold cross-validation. Over
all folds, all labels, i.e. the parts of the multilabels,
are compared in a binary way between gold standard
and prediction. Summing all true positives, false
positives, and false negatives over all folds leads to
micro-averaged F-scores. This was done for two dif-
ferent settings. In one setting, CV/6-way, we com-
bined the labeling of the sentences with the identifi-
cation of irrelevant information, by adding the Other
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label as an extra class in the classification. The re-
sults are listed in Table 3.

CV/6-way MBT Kim et al. kLog
Label S U S U S U
Background 71.0 61.3 81.84 68.46 86.19 76.90
Intervention 24.3 6.4 20.25 12.68 26.05 16.14
Outcome 87.9 70.4 92.32 72.94 92.99 77.69
Population 50.6 15.9 56.25 39.80 35.62 21.58
Study Design 45.9 13.10 43.95 4.40 45.5 6.67
Other 86.1 20.9 69.98 24.28 87.98 24.42

Table 3: F-scores per class for structured (S) and unstruc-
tured (U) abstracts.

For this setting, kLog is able to outperform both
MBT and the system of Kim et al. (2011), for both
structured and unstructured abstracts on all classes
except Population. From Table 4, where the micro-
average F-scores over all classes and for all settings
are listed, it can be observed that kLog performs up
to 3.73% better than MBT over structured abstracts,
and 9.67% better over unstructured ones.

Although to a lesser extent for the structured ab-
stracts, the same pattern can be observed for the
CV/5-way setting, where we tried to classify the sen-
tences only, without considering the irrelevant ones.
The per-class results for this setting are shown in Ta-
ble 5. Now the scores for Population are comparable
to the other systems, due to which we assume these
sentences are similar in structure to the ones labeled
with Other.

For the external corpus, the results are listed in Ta-
ble 6. Although kLog performs comparably for the
individual classes Background and Intervention, its
overall performance is worse on the structured ab-
stracts. In case of the unstructured abstracts, kLog
performs better on the majority of the individual
classes and in overall performance for the 5-way set-
ting, and comparable for the 4-way setting.

Baseline MBT kLog
Method S U S U S U
CV/6-way 43.90 41.87 80.56 57.47 84.29 67.14
CV/5-way 61.79 46.66 86.96 64.37 87.67 72.95
Ext/5-way 66.18 6.76 36.34 11.56 20.50 14.00
Ext/4-way 30.11 27.23 67.29 55.96 50.40 50.50

Table 4: Micro-averaged F1-score obtained for structured
(S) and unstructured (U) abstracts, both for 10-fold cross-
validation (CV) and on the external corpus (Ext).

CV/5-way MBT Kim et al. kLog
Label S U S U S U
Background 87.1 64.9 87.92 70.67 91.45 80.06
Intervention 48.0 6.9 48.08 21.39 45.58 22.65
Outcome 95.8 75.9 96.03 80.51 96.21 83.04
Population 70.9 21.4 63.88 43.15 63.96 23.32
Study Design 50.0 7.4 47.44 8.6 48.08 4.50

Table 5: F-scores per class for 5-way classification over
structured (S) and unstructured (U) abstracts.

MBT Kim et al. kLog
Label S U S U S U

Ext/5-way
Background 58.9 15.7 56.18 15.67 58.30 29.10
Intervention 21.5 13.8 15.38 28.57 40.00 34.30
Outcome 29.3 17.8 81.34 60.45 27.80 24.10
Population 10.7 17.8 35.62 28.07 5.60 28.60
Other 40.7 3.5 46.32 15.77 11.40 8.50

Ext/4-way
Background 90.4 67.5 77.27 37.5 65 68.6
Intervention 29 23.1 28.17 8.33 28.1 32.3
Outcome 74.1 74.6 90.5 78.77 72.4 72.7
Population 48.7 23.8 42.86 28.57 11.8 15.4

Table 6: F-scores per class for 5-way and 4-way classifi-
cation over structured (S) and unstructured (U) abstracts
on the external corpus.

As a general observation, it is important to note
that there is a high variability between the different
labels. Due to kLog’s ability to take the structured
input into account, we assume a correlation between
the sentence structure of the label and the predic-
tion quality. We intend to perform an extensive error
analysis, in order to detect patterns which may allow
us to incorporate additional declarative background
knowledge into our model.

5 Conclusions

We presented a statistical relational learning ap-
proach for the automatic identification of PICO cat-
egories in medical abstracts. To this extent, we used
kLog, a new framework for logical and relational
learning with kernels. Due to its graphical approach,
it is able to exploit the full relational representation,
that is often inherent in language structure. Since
contextual features are often essential and relations
are prevalent, the aim of this paper was to show
that statistical relational learning in general, and the
graph kernel-based approach of kLog in particular,
is specifically suited for problems in natural lan-
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guage learning.
In future work, we intend to explore additional

ways to incorporate background knowledge in a
declarative way, since it renders the language learn-
ing problem more intuitive and gives a better under-
standing of feature contribution. Furthermore, we
also want to investigate the use of SRL approaches
for high-relational domains, and make a clear com-
parison with related techniques.
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Abstract

In this paper, we explore the classification of
emotions in songs, using the music and the
lyrics representation of the songs. We intro-
duce a novel corpus of music and lyrics, con-
sisting of 100 songs annotated for emotions.
We show that textual and musical features can
both be successfully used for emotion recog-
nition in songs. Moreover, through compar-
ative experiments, we show that the joint use
of lyrics and music brings significant improve-
ments over each of the individual textual and
musical classifiers, with error rate reductions
of up to 31%.

1 Introduction

Language and music are peculiar characteristics of
human beings. The capability of producing and
enjoying language and music appears in every hu-
man society, regardless of the richness of its culture
(Nettl, 2000).

Importantly, language and music complement
each other in many different ways. For instance,
looking at music and language in terms of fea-
tures, we can observe that music organizes pitch
and rhythm in ways that language does not, and it
lacks the specificity of language in terms of seman-
tic meaning. On the other hand, language is built
from categories that are absent in music (e.g., nouns
and verbs), whereas music seems to have a deeper
power over our emotions than does ordinary speech.

Composers, musicians, and researchers in poetry
and literature alike have been long fascinated by the
combination of language and music, even since the

time of the earliest written records of music encoun-
tered in musical settings for poetry. Despite this in-
terest, and despite the long history of the interaction
between music and lyrics, there is only little work
that explicitly focuses on the connection between
music and lyrics.

In this paper, we focus on the connection between
the musical and linguistic representations in popu-
lar songs, and their role in the expression ofaffect.
We introduce a novel corpus of lyrics and music, an-
notated for emotions at line level, and explore the
automatic recognition of emotions using both tex-
tual and musical features. Through comparative ex-
periments, we show that emotion recognition can be
performed using either textual or musical features,
and that the joint use of lyrics and music can im-
prove significantly over classifiers that use only one
dimension at a time. We believe our results demon-
strate the promise of using joint music-lyric models
for song processing.

2 Related Work

The literature on music analysis is noticeably large,
and there are several studies concerning the music’s
power over emotions (Juslin and Sloboda, 2001),
thinking (Rauscher et al., 1993), or physical effort
(Karageorghis and Priest, 2008).

In particular, there has been significant research
in music and psychology focusing on the idea of a
parallel between affective cues in music and speech
(Sundberg, 1982; Scherer, 1995). For instance,
(Scherer, 2004) investigated the types of emotions
that can be induced by music, their mechanisms, and
how they can be empirically measured. (Juslin and
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Laukka, 2003) conducted a comprehensive review
of vocal expressions and music performance, find-
ing substantial overlap in the cues used to convey
basic emotions in speech and music.

The work most closely related to ours is the com-
bination of audio and lyrics for emotion classifica-
tion in songs, as thoroughly surveyed in (Kim et al.,
2010). Although several methods have been pro-
posed, including a combination of textual features
and beats per minute and MPEG descriptors (Yang
and Lee, 2004); individual audio and text classifiers
for arousal and valence, followed by a combination
through meta-learning (Yang et al., 2008); and the
use of crowdsourcing labeling from Last.fm to col-
lect large datasets of songs annotated for emotions
(Laurier et al., 2008; Hu et al., 2009), all this pre-
vious work was done at song level, and most of
it focused on valence-arousal classifications. None
of the previous methods considered the fine-grained
classification of emotions at line level, as we do, and
none of them considered the six Ekman emotions
used in our work.

Other related work consists of the development
of tools for music accessing, filtering, classification,
and retrieval, focusing primarily on music in digital
format such as MIDI. For instance, the task of music
retrieval and music recommendation has received a
lot of attention from both the arts and the computer
science communities (see for instance (Orio, 2006)
for an introduction to this task). There are also sev-
eral works on MIDI analysis. Among them, partic-
ularly relevant to our research is the work by (Das
et al., 2000), who described an analysis of predom-
inant up-down motion types within music, through
extraction of the kinematic variables of music veloc-
ity and acceleration from MIDI data streams. (Catal-
tepe et al., 2007) addressed music genre classifica-
tion (e.g., classic, jazz, pop) using MIDI and au-
dio features, while (Wang et al., 2004) automati-
cally aligned acoustic musical signals with their cor-
responding textual lyrics. MIDI files are typically
organized into one or more parallel “tracks” for in-
dependent recording and editing. A reliable system
to identify the MIDI track containing themelody1

is very relevant for music information retrieval, and
1A melody can be defined as a “cantabile” sequence of

notes, usually the sequence that a listener can remember after
hearing a song.

there are several approaches that have been proposed
to address this issue (Rizo et al., 2006; Velusamy et
al., 2007).

Another related study concerned with the interac-
tion of lyrics and music using an annotated corpus is
found in (O’Hara, 2011), who presented preliminary
research that checks whether the expressive meaning
of a particular harmony or harmonic sequence could
be deduced from the lyrics it accompanies, by us-
ing harmonically annotated chords from the Usenet
group alt.guitar.tab.

Finally, in natural language processing, there are
a few studies that mainly exploited the lyrics com-
ponent of the songs, while generally ignoring the
musical component. For instance, (Mahedero et al.,
2005) dealt with language identification, structure
extraction, and thematic categorization for lyrics.
(Xia et al., 2008) addressed the task of sentiment
classification in lyrics, recognizing positive and neg-
ative moods in a large dataset of Chinese pop songs,
while (Yang and Lee, 2009) approached the problem
of emotion identification in lyrics, classifying songs
from allmusic.com using a set of 23 emotions.

3 A Corpus of Music and Lyrics
Annotated for Emotions

To enable our exploration of emotions in songs, we
compiled a corpus of 100 popular songs (e.g.,Danc-
ing Queenby ABBA, Hotel California by Eagles,
Let it Be by The Beatles). Popular songs exert a
lot of power on people, both at an individual level
as well as on groups, mainly because of the mes-
sage and emotions they convey. Songs can lift our
moods, make us dance, or move us to tears. Songs
are able to embody deep feelings, usually through a
combined effect of both music and lyrics.

The corpus is built starting with the MIDI tracks
of each song, by extracting the parallel alignment
of melody and lyrics. Given the non-homogeneous
quality of the MIDI files available on the Web, we
asked a professional MIDI provider for high quality
MIDI files produced for singers and musicians. The
MIDI files, which were purchased from the provider,
contain also lyrics that are synchronized with the
notes. In these MIDI files, the melody channel is un-
equivocally decided by the provider, making it easier
to extract the music and the corresponding lyrics.
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MIDI format. MIDI is an industry-standard pro-
tocol that enables electronic musical instruments,
computers, and other electronic equipment to com-
municate and synchronize with each other. Unlike
analog devices, MIDI does not transmit an audio
signal: it sends event messages about musical no-
tation, pitch, and intensity, control signals for pa-
rameters such as volume, vibrato, and panning, and
cues and clock signals to set the tempo. As an elec-
tronic protocol, it is notable for its widespread adop-
tion throughout the music industry.

MIDI files are typically created using computer-
based sequencing software that organizes MIDI
messages into one or more parallel “tracks” for in-
dependent recording, editing, and playback. In most
sequencers, each track is assigned to a specific MIDI
channel, which can be then associated to specific in-
strument patches. MIDI files can also contain lyrics,
which can be displayed in synchrony with the music.

Starting with the MIDI tracks of a song, we ex-
tract and explicitly encode the following features.
At the song level, the key of the song (e.g., G ma-
jor, C minor). At the line level, we represent the
raising, which is the musical interval (in half-steps)
between the first note in the line and the most impor-
tant note (i.e., the note in the line with the longest
duration). Finally, at the note level, we encode the
time code of the note with respect to the beginning
of the song; the note aligned with the corresponding
syllable; the degree of the note with relation to the
key of the song; and the duration of the note.

Table 1 shows statistics on the corpus. An exam-
ple from the corpus, consisting of the first two lines
from the Beatles’ songA hard day’s night, is illus-
trated in Figure 3.

SONGS 100
SONGS IN “ MAJOR” KEY 59
SONGS IN “ MINOR” KEY 41
L INES 4,976
ALIGNED SYLLABLES / NOTES 34,045

Table 1: Some statistics of the corpus

Emotion Annotations with Mechanical Turk. In
order to explore the classification of emotions in
songs, we needed a gold standard consisting of man-
ual emotion annotations of the songs. Following

previous work on emotion annotation of text (Alm
et al., 2005; Strapparava and Mihalcea, 2007), to
annotate the emotions in songs we use the six ba-
sic emotions proposed by (Ekman, 1993):ANGER,
DISGUST, FEAR, JOY, SADNESS, SURPRISE. To col-
lect the annotations, we use the Amazon Mechanical
Turk service, which was previously found to pro-
duce reliable annotations with a quality comparable
to those generated by experts (Snow et al., 2008).

The annotations are collected at line level, with a
separate annotation for each of the six emotions. We
collect numerical annotations using a scale between
0 and 10, with 0 corresponding to the absence of an
emotion, and 10 corresponding to the highest inten-
sity. Each HIT (i.e., annotation session) contains an
entire song, with a number of lines ranging from 14
to 110, for an average of 50 lines per song.

The annotators were instructed to: (1) Score the
emotions from the writer perspective, not their own
perspective; (2) Read and interpret each line in con-
text; i.e., they were asked to read and understand
the entire song before producing any annotations;
(3) Produce the six emotion annotations independent
from each other, accounting for the fact that a line
could contain none, one, or multiple emotions. In
addition to the lyrics, the song was also available
online, so they could listen to it in case they were
not familiar with it. The annotators were also given
three different examples to illustrate the annotation.

While the use of crowdsourcing for data annota-
tion can result in a large number of annotations in
a very short amount of time, it also has the draw-
back of potential spamming that can interfere with
the quality of the annotations. To address this aspect,
we used two different techniques to prevent spam.
First, in each song we inserted a “checkpoint” at a
random position in the song – a fake line that reads
“Please enter 7 for each of the six emotions.” Those
annotators who did not follow this concrete instruc-
tion were deemed as spammers who produce anno-
tations without reading the content of the song, and
thus removed. Second, for each remaining annota-
tor, we calculated the Pearson correlation between
her emotion scores and the average emotion scores
of all the other annotators. Those annotators with a
correlation with the average of the other annotators
below 0.4 were also removed, thus leaving only the
reliable annotators in the pool.
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<token time=5760 orig−note=D’ degree=5 duration=810>HARD </token>

<song filename=AHARDDAY.m2a>
<key time=0>G major</key>
<line pvers=1 raising=3 anger=1.5 disgust=0.7 sadness=2.5 surprise=0.8 > 

</line>
<line pvers=2 raising=5 anger=3.5 disgust=2 sadness=1.2 surprise=0.2 > 

</line>

<token time=5040 orig−note=B degree=3 duration=210>IT</token>
<token time=5050 orig−note=B degree=3 duration=210>’S </token>
<token time=5280 orig−note=C’ degree=4 duration=210>BEEN </token>
<token time=5520 orig−note=B degree=3 duration=210>A </token>

<token time=6720 orig−note=D’ degree=5 duration=570>DAY</token>
<token time=6730 orig−note=D’ degree=5 duration=570>’S </token>
<token time=7440 orig−note=D’ degree=5 duration=690>NIGHT</token>

<token time=8880 orig−note=C’ degree=4 duration=212>AND </token>
<token time=9120 orig−note=D’ degree=5 duration=210>I</token>
<token time=9130 orig−note=D’ degree=5 duration=210>’VE </token>

<token time=9600 orig−note=D’ degree=5 duration=210>WOR</token>
<token time=9840 orig−note=F’ degree=7− duration=930>KING </token>
<token time=10800 orig−note=D’ degree=5 duration=210>LI</token>
<token time=11040 orig−note=C’ degree=4 duration=210>KE </token>
<token time=11050 orig−note=C’ degree=4 duration=210>A </token>
<token time=11280 orig−note=D’ degree=5 duration=330>D</token>
<token time=11640 orig−note=C’ degree=4 duration=90>O</token>
<token time=11760 orig−note=B degree=3 duration=330>G</token>

<token time=9360 orig−note=C’ degree=4 duration=210>BEEN </token>

Figure 1: Two lines of a song in the corpus:It-’s been a hard day-’s night, And I-’ve been wor-king li-kea d-o-g

For each song, we start by asking for ten annota-
tions. After spam removal, we were left with about
two-five annotations per song. The final annotations
are produced by averaging the emotions scores pro-
duced by the reliable annotators. Figure 3 shows
an example of the emotion scores produced for two
lines. The overall correlation between the remain-
ing reliable annotators was calculated as 0.73, which
represents a strong correlation.

For each of the six emotions, Table 2 shows the
number of lines that had that emotion present (i.e.,
the score of the emotion was different from 0), as
well as the average score for that emotion over all
4,976 lines in the corpus. Perhaps not surprisingly,
the emotions that are dominant in the corpus areJOY

andSADNESS– which are the emotions that are of-
ten invoked by people as the reason behind a song.

Note that the emotions do not exclude each other:
i.e., a line that is labeled as containingJOY may also
contain a certain amount ofSADNESS, which is the
reason for the high percentage of songs containing
both JOY and SADNESS. The emotional load for
the overlapping emotions is however very different.
For instance, the lines that have aJOY score of 5
or higher have an averageSADNESSscore of 0.34.
Conversely, the lines with aSADNESSscore of 5 or

Number
Emotion lines Average

ANGER 2,516 0.95
DISGUST 2,461 0.71
FEAR 2,719 0.77
JOY 3,890 3.24
SADNESS 3,840 2.27
SURPRISE 2,982 0.83

Table 2: Emotions in the corpus of 100 songs: number
of lines including a certain emotion, and average emotion
score computed over all the 4,976 lines.

higher have aJOY score of 0.22.

4 Experiments and Evaluations

Through our experiments, we seek to determine the
extent to which we can automatically determine the
emotional load of each line in a song, for each of the
six emotion dimensions.

We use two main classes of features: textual fea-
tures, which build upon the textual representation of
the lyrics; and musical features, which rely on the
musical notation associated with the songs. We run
three sets of experiments. The first one is intended to
determine the usefulness of the textual features for
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emotion classification. The second set specifically
focuses on the musical features. Finally, the last set
of experiments makes joint use of textual and musi-
cal features.

The experiments are run using linear regression,2

and the results are evaluated by measuring the Pear-
son correlation between the classifier predictions
and the gold standard. For each experiment, a ten-
fold cross validation is run on the entire dataset.3

4.1 Textual Features

First, we attempt to identify the emotions in a line
by relying exclusively on the features that can be de-
rived from the lyrics of the song. We decided to fo-
cus on those features that were successfully used in
the past for emotion classification (Strapparava and
Mihalcea, 2008). Specifically, we use: (1) unigram
features obtained from a bag-of-words representa-
tion, which are the features typically used by corpus-
based methods; and (2) lexicon features, indicating
the appartenance of a word to a semantic class de-
fined in manually crafted lexicons, which are often
used by knowledge-based methods.

Unigrams. We use a bag-of-words representation
of the lyrics to derive unigram counts, which are
then used as input features. First, we build a vo-
cabulary consisting of all the words, including stop-
words, occurring in the lyrics of the training set. We
then remove those words that have a frequency be-
low 10 (value determined empirically on a small de-
velopment set). The remaining words represent the
unigram features, which are then associated with a
value corresponding to the frequency of the unigram
inside each line. Note that we also attempted to use
higher order n-grams (bigrams and trigrams), but
evaluations on a small development dataset did not
show any improvements over the unigram model,
and thus all the experiments are run using unigrams.

Semantic Classes.We also derive and use coarse
textual features, by using mappings between words
and semantic classes. Specifically, we use the Lin-

2We use the Weka machine learning toolkit.
3There is no clear way to determine a baseline for these

experiments. A simple baseline that we calculated, which as-
sumed by default an emotional score equal to the average of the
scores on the training data, and measured the correlation be-
tween these default scores and the gold standard, consistently
led to correlations close to 0 (0.0081-0.0221).

guistic Inquiry and Word Count (LIWC) and Word-
Net Affect (WA) to derive coarse textual features.
LIWC was developed as a resource for psycholin-
guistic analysis (Pennebaker and Francis, 1999;
Pennebaker and King, 1999). The 2001 version of
LIWC includes about 2,200 words and word stems
grouped into about 70 broad categories relevant to
psychological processes (e.g., emotion, cognition).
WA (Strapparava and Valitutti, 2004) is a resource
that was created starting with WordNet, by annotat-
ing synsets with several emotions. It uses several re-
sources for affective information, including the emo-
tion classification of Ortony (Ortony et al., 1987).
From WA, we extract the words corresponding to
the six basic emotions used in our experiments. For
each semantic class, we infer a feature indicating the
number of words in a line belonging to that class.

Table 3 shows the Pearson correlations obtained
for each of the six emotions, when using only uni-
grams, only semantic classes, or both.

Semantic All
Emotion Unigrams Classes Textual

ANGER 0.5525 0.3044 0.5658
DISGUST 0.4246 0.2394 0.4322
FEAR 0.3744 0.2443 0.4041
JOY 0.5636 0.3659 0.5769
SADNESS 0.5291 0.3006 0.5418
SURPRISE 0.3214 0.2153 0.3392
AVERAGE 0.4609 0.2783 0.4766

Table 3: Evaluations using textual features: unigrams,
semantic classes, and all the textual features.

4.2 Musical Features.

In a second set of experiments, we explore the role
played by the musical features. While the musical
notation of a song offers several characteristics that
could be potentially useful for our classification ex-
periments (e.g., notes, measures, dynamics, tempo),
in these initial experiments we decided to focus on
two main features, namely the notes and the key.

Notes. A note is a sign used in the musical nota-
tion associated with a song, to represent the relative
duration and pitch of a sound. In traditional mu-
sic theory, the notes are represented using the first
seven letters of the alphabet (C-D-E-F-G-A-B), al-
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though other notations can also be used. Notes can
be modified by “accidentals” – a sharp or a flat sym-
bol that can change the note by half a tone. A written
note can also have associated a value, which refers
to its duration (e.g., whole note; eighth note). Simi-
lar to the unigram features, for each note, we record
a feature indicating the frequency of that note inside
a line.

Key. The key of a song refers to the harmony or
“pitch class” used for a song, e.g.,C major, or F#.
Sometime the termminoror majorcan be appended
to a key, to indicate a minor or a major scale. For
instance, a song in “the key of C minor” means that
the song is harmonically centered on the note C, and
it makes use of the minor scale whose first note is C.
The key system is the structural foundation of most
of the Western music. We use a simple feature that
reflects the key of the song. Note that with a few ex-
ceptions, when more than one key is used in a song,
all the lines in a song will have the same key.

Table 4 shows the results obtained in these clas-
sification experiments, when using only the notes as
features, only the key, or both.

All
Emotion Notes Key Musical

ANGER 0.2453 0.4083 0.4405
DISGUST 0.1485 0.2922 0.3199
FEAR 0.1361 0.2203 0.2450
JOY 0.1533 0.3835 0.4001
SADNESS 0.1738 0.3502 0.3762
SURPRISE 0.0983 0.2241 0.2412
AVERAGE 0.1592 0.3131 0.3371

Table 4: Evaluations using musical features: notes, key,
and all the musical features.

4.3 Joint Textual and Musical Features.

To explore the usefulness of the joint lyrics and mu-
sic representation, we also run a set of experiments
that use all the textual and musical features. Table 5
shows the Pearson correlations obtained when us-
ing all the features. To facilitate the comparison,
the table also includes the results obtained with the
textual-only and musical-only features (reported in
Tables 3 and 4).

All All Textual &
Emotion Textual Musical Musical

ANGER 0.5658 0.4405 0.6679
DISGUST 0.4322 0.3199 0.5068
FEAR 0.4041 0.2450 0.4384
JOY 0.5769 0.4001 0.6456
SADNESS 0.5418 0.3762 0.6193
SURPRISE 0.3392 0.2412 0.3855
AVERAGE 0.4766 0.3371 0.5439

Table 5: Evaluations using both textual and musical fea-
tures.

5 Discussion

One clear conclusion can be drawn from these ex-
periments: the textual and musical features are both
useful for the classification of emotions in songs,
and, more importantly, their joint use leads to the
highest classification results. Specifically, the joint
model gives an error rate reduction of 12.9% with
respect to the classifier that uses only textual fea-
tures, and 31.2% with respect to the classifier that
uses only musical features. This supports the idea
that lyrics and music represent orthogonal dimen-
sions for the classification of emotions in songs.

Among the six emotions considered, the largest
improvements are observed forJOY, SADNESS, and
ANGER. This was somehow expected for the first
two emotions, since they appear to be dominant in
the corpus (see Table 2), but comes as a surprise
for ANGER, which is less dominant. Further explo-
rations are needed to determine the reason for this
effect.

Looking at the features considered, textual fea-
tures appear to be the most useful. Nonetheless,
the addition of the musical features brings clear im-
provements, as shown in the last column from the
same table.

Additionally, we made several further analyses of
the results, as described below.

Feature ablation. To determine the role played by
each of the feature groups we consider, we run an
ablation study where we remove one feature group
at a time from the complete set of features and mea-
sure the accuracy of the resulting classifier. Table 6
shows the feature ablation results. Note that feature
ablation can also be done in the reverse direction, by
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All features, excluding
All Semantic Semantic Classes

Emotion Features Unigrams Classes Notes Key and Notes

ANGER 0.6679 0.4996 0.5525 0.6573 0.6068 0.6542
DISGUST 0.5068 0.3831 0.4246 0.5013 0.4439 0.4814
FEAR 0.4384 0.3130 0.3744 0.4313 0.4150 0.4114
JOY 0.6456 0.5141 0.5636 0.6432 0.5829 0.6274
SADNESS 0.6193 0.4586 0.5291 0.6176 0.5540 0.6029
SURPRISE 0.3855 0.3083 0.3214 0.3824 0.3421 0.3721
AVERAGE 0.5439 0.4127 0.4609 0.5388 0.4908 0.5249

Table 6: Ablation studies excluding one feature group at a time.

Textual and
Emotion Baseline Textual Musical Musical

ANGER 89.27% 91.14% 89.63% 92.40%
DISGUST 93.85% 94.67% 93.85% 94.77%
FEAR 93.58% 93.87% 93.58% 93.87%
JOY 50.26% 70.92% 61.95% 75.64%
SADNESS 67.40% 75.84% 70.65% 79.42%
SURPRISE 94.83% 94.83% 94.83% 94.83%
AVERAGE 81.53% 86.87% 84.08% 88.49%

Table 7: Evaluations using a coarse-grained binary classification.

keeping only one group of features at a time; the re-
sults obtained with the individual feature groups are
already reported in Tables 3 and 4.

The ablation studies confirm the findings from our
earlier experiments: while the unigrams and the keys
are the most predictive features, the semantic classes
and the notes are also contributing to the final clas-
sification even if to a lesser extent. To measure the
effect of these groups of somehow weaker features
(semantic classes and notes), we also perform an ab-
lation experiment where we remove both these fea-
ture groups from the feature set. The results are re-
ported in the last column of Table 6.

Coarse-grained classification. As an additional
evaluation, we transform the task into a binary clas-
sification by using a threshold empirically set at 3.
Thus, to generate the coarse binary annotations, if
the score of an emotion is below 3, we record it as
“negative” (i.e., the emotion is absent), whereas if
the score is equal to or above 3, we record it as “pos-
itive” (i.e., the emotion is present).

For the classification, we use Support Vector Ma-

chines (SVM), which are binary classifiers that seek
to find the hyperplane that best separates a set of pos-
itive examples from a set of negative examples, with
maximum margin (Vapnik, 1995). Applications of
SVM classifiers to text categorization led to some of
the best results reported in the literature (Joachims,
1998).

Table 7 shows the results obtained for each of the
six emotions, and for the three major settings that
we considered: textual features only, musical fea-
tures only, and a classifier that jointly uses the tex-
tual and the musical features. As before, the classi-
fication accuracy for each experiment is reported as
the average of the accuracies obtained during a ten-
fold cross-validation on the corpus. The table also
shows a baseline, computed as the average of the
accuracies obtained when using the most frequent
class observed on the training data for each fold.

As seen from the table, on average, the joint use of
textual and musical features is also beneficial for this
binary coarser-grained classification. Perhaps not
surprisingly, the effect of the classifier is stronger for
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1,000 news headlines 4,976 song lines
Best result (Strapparava Joint Text

Emotion SEMEVAL ’07 and Mihalcea, 08) and Music

ANGER 0.3233 0.1978 0.6679
DISGUST 0.1855 0.1354 0.5068
FEAR 0.4492 0.2956 0.4384
JOY 0.2611 0.1381 0.6456
SADNESS 0.4098 0.1601 0.6193
SURPRISE 0.1671 0.1235 0.3855
AVERAGE 0.2993 0.1750 0.5439

Table 8: Results obtained in previous work on emotion classification.

those emotions that are dominant in the corpus, i.e.,
JOY andSADNESS(see Table 2). The improvement
obtained with the classifiers is much smaller for the
other emotions (or even absent, e.g., forSURPRISE),
which is also explained by their high baseline of over
90%.

Comparison to previous work. There is no pre-
vious research that has considered the joint use of
lyrics and songs representations for emotion classifi-
cation at line level, and thus we cannot draw a direct
comparison with other work on emotion classifica-
tion in songs.

Nonetheless, as a point of reference, we consider
the previous work done on emotion classification of
texts. Table 8 shows the results obtained in previ-
ous work for the recognition of emotions in a corpus
consisting of 1,000 news headlines (Strapparava and
Mihalcea, 2007) annotated for the same six emo-
tions. Specifically, the table shows the best over-
all correlation results obtained by the three emotion
recognition systems in the SEMEVAL task on Affec-
tive Text (Strapparava and Mihalcea, 2007): (Chau-
martin, 2007; Kozareva et al., 2007; Katz et al.,
2007). The table also shows the best results obtained
in follow up work carried out on the same dataset
(Strapparava and Mihalcea, 2008).

Except for one emotion (FEAR), the correlation
figures we obtain are significantly higher than those
reported in previous work. As mentioned before,
however, a direct comparison cannot be made, since
the earlier work used a different, smaller dataset.
Moreover, our corpus of songs is likely to be more
emotionally loaded than the news titles used in pre-
vious work.

6 Conclusions

Popular songs express universally understood mean-
ings and embody experiences and feelings shared by
many, usually through a combined effect of both mu-
sic and lyrics. In this paper, we introduced a novel
corpus of music and lyrics, annotated for emotions at
line level, and we used this corpus to explore the au-
tomatic recognition of emotions in songs. Through
experiments carried out on the dataset of 100 songs,
we showed that emotion recognition can be per-
formed using either textual or musical features, and
that the joint use of lyrics and music can improve
significantly over classifiers that use only one di-
mension at a time.

The dataset introduced in this paper is available
by request from the authors of the paper.
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Abstract

This study presents a novel method that
measures English language learners’ syntac-
tic competence towards improving automated
speech scoring systems. In contrast to most
previous studies which focus on the length of
production units such as the mean length of
clauses, we focused on capturing the differ-
ences in the distribution of morpho-syntactic
features or grammatical expressions across
proficiency. We estimated the syntactic com-
petence through the use of corpus-based NLP
techniques. Assuming that the range and so-
phistication of grammatical expressions can
be captured by the distribution of Part-of-
Speech (POS) tags, vector space models of
POS tags were constructed. We use a large
corpus of English learners’ responses that are
classified into four proficiency levels by hu-
man raters. Our proposed feature measures
the similarity of a given response with the
most proficient group and is then estimates the
learner’s syntactic competence level.

Widely outperforming the state-of-the-art
measures of syntactic complexity, our method
attained a significant correlation with human-
rated scores. The correlation between human-
rated scores and features based on manual
transcription was 0.43 and the same based on
ASR-hypothesis was slightly lower, 0.42. An
important advantage of our method is its ro-
bustness against speech recognition errors not
to mention the simplicity of feature genera-
tion that captures a reasonable set of learner-
specific syntactic errors.

1 Introduction

This study provides a novel method that measures
ESL (English as a second language) learners’ com-
petence in grammar usage (syntactic competence).
Being interdisciplinary in nature, it shows how to
combine the core findings in the ESL literature with
various empirical NLP techniques for the purpose of
automated scoring.

Grammar usage is one of the dimensions of lan-
guage ability that is assessed during non-native pro-
ficiency level testing in a foreign language. Overall
proficiency in the target language can be assessed
by testing the abilities in various areas including flu-
ency, pronunciation, and intonation; grammar and
vocabulary; and discourse structure. Testing rubrics
for human raters contain descriptors used for the
subjective assessment of several of these features.
With the recent move towards the objective assess-
ment of language ability (spoken and written), it is
imperative that we develop methods for quantifying
these abilities and measuring them automatically.

Ortega (2003) indicated that “the range of forms
that surface in language production and the degree
of sophistication of such forms” were two impor-
tant areas in grammar usage and called the combina-
tion of these two areas “syntactic complexity.” Fea-
tures that measure syntactic complexity have been
frequently studied in ESL literature and have been
found to be highly correlated with students’ profi-
ciency levels in writing.

Studies in automated speech scoring have focused
on fluency (Cucchiarini et al., 2000; Cucchiarini et
al., 2002), pronunciation (Witt and Young, 1997;
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Witt, 1999; Franco et al., 1997; Neumeyer et al.,
2000), and intonation (Zechner et al., 2009), and rel-
atively fewer studies have been conducted on gram-
mar usage. More recently, Lu (2010), Chen and
Yoon (2011) and Chen and Zechner (2011) have
measured syntactic competence in speech scoring.
Chen and Yoon (2011) estimated the complexity of
sentences based on the average length of the clauses
or sentences. In addition to these length measures,
Lu (2010) and Chen and Zechner (2011) measured
the parse-tree based features such as the mean depth
of parsing tree levels. However, these studies found
that these measures did not show satisfactory empir-
ical performance in automatic speech scoring (Chen
and Yoon, 2011; Chen and Zechner, 2011) when the
features were calculated from the output of a speech
recognition engine.

This study considers new features that measure
syntactic complexity and is novel in two important
ways. First, in contrast to most features that in-
fer syntactic complexity based upon the length of
the unit, we directly measure students’ sophistica-
tion and range in grammar usage. Second, instead
of rating a student’s response using a scale based on
native speech production, our experiments compare
it with a similar body of learners’ speech. Elicit-
ing native speakers’ data and rating it for grammar
usage (supervised approach) can be arbitrary, since
there can be a very wide range of possible grammat-
ical structures that native speakers utilize. Instead,
we proceed in a semi-supervised fashion. A large
amount of learners’ spoken responses were collected
and classified into four groups according to their
proficiency level. We then sought to find how dis-
tinct the proficiency classes were based on the distri-
bution of POS tags. Given a student’s response, we
calculated the similarity with a sample of responses
for each score level based on the proportion and dis-
tribution of Part-of-Speech using NLP techniques.

POS tag distribution has been used in various
tasks such as text genre classification (Feldman et
al., 2009); in a language testing context, it has been
used in grammatical error detection (Chodorow and
Leacock, 2000; Tetreault and Chodorow, 2008) and
essay scoring. Recently, Roark et al. (2011) ex-
plored POS tag distribution to capture the differ-
ences in syntactic complexity between healthy sub-
jects and subjects with mild cognitive impairment,

but no other research has used POS tag distribution
in measuring syntactic complexity, to the best of au-
thors’ knowledge.

An assessment of ESL learners’ syntactic compe-
tence should consider the structure of sentences as a
whole - a task which may not be captured by the sim-
plistic POS tag distribution. However, studies of Lu
(2010) and Chen and Zechner (2011) showed that
more complex syntactic features are unreliable in
ASR-based scoring system. Furthermore, we show
that POS unigrams or bigrams indeed capture a rea-
sonable portion of learners’ range and sophistication
of grammar usage in our discussion in Section 7.

This paper will proceed as follows: we will re-
view related work in Section 2 and present the
method to calculate syntactic complexity in Section
3. Data and experiment setup will be explained in
Section 4 and Section 5. The results will be pre-
sented in Section 6. Finally, in Section 7, we discuss
the levels of syntactic competence that are captured
using our proposed measure.

2 Related Work

Second Language Acquisition (SLA) researchers
have developed many quantitative measures to es-
timate the level of acquisition of syntactic compe-
tence. Bardovi-Harlig and Bofman (1989) classi-
fied these measures into two groups. The first group
is related to the acquisition of specific morphosyn-
tactic features or grammatical expressions. Tests of
negations or relative clauses - whether these expres-
sions occurred in the test responses without errors -
fell into this group (hereafter, the expression-based
group). The second group is related to the length of
the clause or the relationship between clauses and
hence not tied to particular structures (hereafter, the
length-based group). Examples of the second group
measures include the average length of clause unit
and dependent clauses per sentence unit.

These syntactic measures have been extensively
studied in ESL writing. Ortega (2003) synthesized
25 research studies which employed syntactic mea-
sures on ESL writing and reported a significant re-
lationship between the proposed features and writ-
ing proficiency. He reported that a subset of features
such as the mean length of the clause unit increased
with students’ proficiency. More recently, Lu (2010)
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has conducted a more systematic study using an au-
tomated system. He applied 14 syntactic measures
to a large database of Chinese learners’ writing sam-
ples and found that syntactic measures were strong
predictors of students’ writing proficiency.

Studies in the area of automated speech scor-
ing have only recently begun to actively investi-
gate the usefulness of syntactic measures for scoring
spontaneous speech (Chen et al., 2010; Bernstein
et al., 2010). These have identified clause bound-
aries (identified from manual annotations and au-
tomatically) and obtained length-based features. In
addition to these conventional syntactic complexity
features, Lu (2009) implemented an automated sys-
tem that calculates the revised Developmental Level
(D-Level) Scale (Covington et al., 2006) using nat-
ural language processing (NLP) techniques. The
original D-Level Scale was proposed by Rosenberg
and Abbeduto (1987) based primarily on observa-
tions of child language acquisition. They classified
children’s grammatical acquisition into 7 different
groups according to the presence of certain types of
complex sentences. The revised D-Level Scale clas-
sified sentences into the eight levels according to the
presence of particular grammatical expressions. For
instance, level 0 is comprised of simple sentences,
while level 5 is comprised of sentences joined by
subordinating conjunction or nonfinite clauses in an
adjunct position. The D-Level Scale has been less
studied in the speech scoring. To our knowledge,
Chen and Zechner (2011) is the only study that ap-
plied the D-Level analyzer to ESL learners’ spoken
responses.

In contrast to ESL writing, applying syntactic
complexity features, both conventional length-based
features and D-Level features, presents serious ob-
stacles for speaking. First, the length of the spo-
ken responses are typically shorter than written re-
sponses. Most measures are based on sentence or
sentence-like units, and in speaking tests that elicit
only a few sentences the measures are less reli-
able. Chen and Yoon (2011) observed a marked
decrease in correlation between syntactic measures
and proficiency as response length decreased. In
addition, speech recognition errors only worsen the
situation. Chen and Zechner (2011) showed that
the significant correlation between syntactic mea-
sures and speech proficiency (correlation coefficient

= 0.49) became insignificant when they were applied
to the speech recognition word hypotheses. Errors
in speech recognition seriously influenced the mea-
sures and decreased the performance. Due to these
problems, the existing syntactic measures do not
seem reliable enough for being used in automated
speech proficiency scoring.

In this study, we propose novel syntactic measures
which are relatively robust against speech recogni-
tion errors and are reliable in short responses. In
contrast to recent studies focusing on length-based
features, we focus on capturing differences in the
distribution of morphosyntactic features or gram-
matical expressions across proficiency levels. We in-
vestigate the distribution of a broader class of gram-
matical forms through the use of corpus-based NLP
techniques.

3 Method

Many previous studies, that assess syntactic com-
plexity based on the distribution of morpho-
syntactic features and grammatical expressions, lim-
ited their experiments to a few grammatical expres-
sions. Covington et al. (2006) and Lu (2009) cov-
ered all sentence types, but their approaches were
based on expert observation (supervised rubrics),
and descriptions of each level were brief and ab-
stract. It is important to develop a more detailed and
refined scale, but developing scales in a supervised
way is difficult due to the subjectivity and the com-
plexity of structures involved.

In order to overcome this problem, we employed
NLP technology and a corpus-based approach. We
hypothesize that the level of acquired grammatical
forms is signaled by the distribution of the POS tags,
and the differences in grammatical proficiency re-
sult in differences in POS tag distribution. Based on
this assumption, we collected large amount of ESL
learners’ spoken responses and classified them into
four groups according to their proficiency levels.
The syntactic competence was estimated based on
the similarity between the test responses and learn-
ers’ corpus.

A POS-based vector space model (VSM), in
which the response belonging to separate profi-
ciency levels were converted to vectors and the sim-
ilarity between vectors were calculated using cosine
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similarity measure and tf-idf weighting, was em-
ployed. Such a score-category-based VSM has been
used in automated essay scoring. Attali and Burstein
(2006) to assess the lexical content of an essay by
comparing the words in the test essay with the words
in a sample essays from each score category. We
extend this to assessment of grammar usage using
vectors of POS tags.

Proficient speakers use complicated grammati-
cal expressions, while beginners use simple expres-
sions and sentences with frequent grammatical er-
rors. POS tags (or sequences) capturing these ex-
pressions may be seen in corresponding proportions
in each score group. These distributional differences
are captured by inverse-document frequency.

In addition, we identify frequent POS tag se-
quences as those having high mutual information
and include them in our experiments. Temple (2000)
pointed out that the proficient learners are charac-
terized by increased automaticity in speech produc-
tion. These speakers tend to memorize frequently
used multi-word sequences as a chunk and retrieve
the whole chunk as a single unit. The degree of auto-
maticity can be captured by the frequent occurrence
of POS sequences with high mutual information.

We quantify the usefulness of the generated fea-
tures for the purpose of automatic scoring by first
considering its correlation with the human scores.
We then compare the performance of our features
with those in Lu (2011), where the features are a
collection of measures of syntactic complexity that
have shown promising directions in previous stud-
ies.

4 Data

Two different sets of data were used in this study:
the AEST 48K dataset and AEST balanced dataset.
Both were collections of responses from the AEST,
a high-stakes test of English proficiency and had
no overlaps. The AEST assessment consists of 6
items in which speakers are prompted to provide re-
sponses lasting between 45 and 60 seconds per item.
In summary, approximately 3 minutes of speech is
collected per speaker.

Among the 6 items, two items are tasks that ask
examinees to provide information or opinions on fa-
miliar topics based on their personal experience or

background knowledge. The four remaining items
are integrated tasks that include other language skills
such as listening and reading. All items extract
spontaneous, unconstrained natural speech. The
size, purpose, and speakers’ native language infor-
mation for each dataset is summarized in Table 1.

Each response was rated by trained human raters
using a 4-point scoring scale, where 1 indicates
a low speaking proficiency and 4 indicates a high
speaking proficiency. In order to evaluate the relia-
bility of the human ratings, the data should be scored
by two raters. Since none of the AEST balanced
data was double scored the inter-rater agreement ra-
tio was estimated using a large (41K) double-scored
dataset using the same scoring guidelines and scor-
ing process. The Pearson correlation coefficient was
0.63 suggesting a reasonable inter-rater agreement.
The distribution of the scores for this data can be
found in Table 2.

We used the AEST 48K dataset as the training
data and the AEST balanced dataset as the evalua-
tion data.

5 Experiments

5.1 Overview

Our experimental procedure is as follows. All tran-
scriptions were tagged using the POS tagger de-
scribed in Section 5.3 and POS tag sequences were
extracted. Next, the POS-based VSMs (one for
each score class) were created using the AEST 48K
dataset. Finally, for a given test response in the
AEST balanced dataset, similarity features were
generated.

A score-class-specific POS-based VSM was cre-
ated using POS tags generated from the manual tran-
scriptions. For evaluation, two different types of
transcriptions (manual transcription and word hy-
potheses from the speech recognizer described in
Section 5.2) were used in order to investigate the in-
fluence of speech recognition errors in the feature
performance.

5.2 Speech recognition

An HMM recognizer was trained on AEST 48K
dataset - approximately 733 hours of non-native
speech collected from 7872 speakers. A gender in-
dependent triphone acoustic model and combination
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Corpus name Purpose Number of
speakers

Number of
responses

Native languages Size
(Hrs)

AEST 48K
data

ASR training and
POS model train-
ing

7872 47227 China (20%), Korea (19%),
Japanese (7%), India (7%), oth-
ers (46%)

733

AEST bal-
anced data

Feature develop-
ment and evalua-
tion

480 2880 Korean (15%), Chinese (14%),
Japanese (7%), Spanish (9%),
Others (55%)

44

Table 1: Data size and speakers native languages

Corpus name Size Score1 Score2 Score3 Score4
AEST 48K data Number of files 1953 16834 23106 5334

(%) 4 36 49 11
AEST balanced data Number of files 141 1133 1266 340

(%) 5 40 45 12

Table 2: Proficiency scores and data sizes

of bigram, trigram, and four-gram language models
were used. The word error rate (WER) on the held-
out test dataset was 27%.

5.3 POS tagger

POS tags were generated using the POS tagger im-
plemented in the OpenNLP toolkit. It was trained
on the Switchboard (SWBD) corpus. This POS tag-
ger was trained on about 528K word/tag pairs and
achieved a tagging accuracy of 96.3% on a test set
of 379K words. The Penn POS tag set was used in
the tagger.

5.4 Unit generation using mutual information

POS bigrams with high mutual information were se-
lected and used as a single unit. First, all POS bi-
grams which occurred less than 50 times were fil-
tered out. Next, the remaining POS tag bigrams
were sorted by their mutual information scores, and
two different sets (top50 and top110) were selected.
The selected POS pairs were transformed into com-
pound tags. As a result, we generated three sets
of POS units by this process: the original POS set
without the compound unit (Base), the original set
and an additional 50 compound units (Base+mi50),
and the original set and an additional 110 units
(Base+mi110).

Finally, unigram, bigram and trigram were gener-
ated for each set separately. The size of total terms
in each condition was presented in table 3.

Base Base+mi50 Base+mi110
Unigram 42 93 151
Bigram 1366 4284 9691
Trigram 21918 54856 135430

Table 3: Number of terms used in VSMs

5.5 Building VSMs

For each ngram, three sets of VSMs were built us-
ing three sets of tags as terms, yielding a total of
nine VSMs. The results were based on the individ-
ual model and we did not combine any models.

5.6 Cosine similarity-based features

The cosine similarity has been frequently used in
the information retrieval field to identify the relevant
documents for the given query. This measures the
similarity between a given query and a document by
measuring the cosine of the angle between vectors in
a high-dimensional space, whereby each term in the
query and documents corresponding to a unique di-
mension. If a document is relevant to the query, then
it shares many terms resulting in a small angle. In
this study, the term was a single or compound POS
tag (unigram,bigram or trigram) weighted by its tf-
idf, and the document was the response.

First, the inverse document frequency was calcu-
lated from the training data, and each response was
treated as a document. Next, responses in the same
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Unigram Bigram Trigram
Base Base

+mi50
Base
+mi110

Base Base
+mi50

Base
+mi110

Base Base
+mi50

Base
+mi110

Trans-
cription

0.301** 0.297** 0.329** 0.427** 0.361** 0.366** 0.402** 0.322** 0.295**

ASR 0.246** 0.272** 0.304** 0.415** 0.348** 0.347** 0.373** 0.311** 0.282**

Table 4: Pearson correlation coefficients between ngram-based features and expert proficiency scores
** Correlation is significant at the 0.01 level

score group were concatenated, and a single vector
was generated for each score group. A total of 4
vectors were generated using training data. For each
test response, a similarity score was calculated as
follows:

cos(~q, ~dj) =

nP
i=1

qidji

nP
i=1

qi
2

nP
i=1

di
2

qi ≡ tf(ti, ~q)× log
(

N
df(ti)

)
dji ≡ tf(ti, ~dj)× log

(
N

df(ti)

)
where ~q is a vector of the test response,
~dj is a vector of the scoreGroupj ,
n is the total number of POS tags,
tf(ti, ~q) is the term frequency of POS tag ti in the
test response,
tf(ti, ~dj) is the term frequency of POS tag ti in the
scoreGroupj ,
N is the total number of training responses,
df(ti) is the document frequency of POS tag ti in
the total training responses

Finally, a total of 4 cos scores (one per score
group) were generated. Among these four values,
the cos4, the similarity score to the responses in the
score group 4, was selected as a feature with the fol-
lowing intuition. cos4 measures the similarity of a
given test response to the representative vector of
score class 4; the larger the value, the closer it would
be to score class 4.

6 Results

6.1 Correlation
Table 4 shows correlations between cosine similarity
features and proficiency scores rated by experts.

The bigram-based features outperformed both
unigram-based and trigram-based features. In par-
ticular, the similarities using the base tag set with
bigrams achieved the best performance. By adding
the mutual information-based compound units to the
original POS tag sets, the performance of features
improved in the unigram models. However, there
was no performance gain in either bigram or tri-
gram models; on the contrary, there was a large
drop in performance. Unigrams have good coverage
but limited power in distinguishing different score
levels. On the other hand, trigrams have opposite
characteristics. Bigrams seem to strike a balance
in both coverage and complexity (from among the
three considered here) and may thus have resulted in
the best performace.

The performance of ASR-based features were
comparable to that of transcription-based features.
The best performing feature among ASR-based-
features were from the bigram and base set, with
correlations nearly the same as the best performing
one among the transcription-based-features. See-
ing how close the correlations were in the case of
transcription-based and ASR-hypothesis based fea-
ture extraction, we conclude that the proposed mea-
sure is robust to ASR errors.

6.2 Comparison with other Measures of
Syntactic Complexity

We compared the performance of our features with
the features of syntactic complexity proposed in (Lu,
2011). Towards this, the clause boundaries of the
ASR hypotheses, were automatically detected using
the automated clause boundary detection method1.

1The automated clause boundary detection method in this
study was a Maximum Entropy Model based on word bigrams,
POS tag bigrams, and pause features. The method achieved an
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The utterances were then parsed using the Stanford
Parser, and a total of 22 features including both
length-related features and parse-tree based features
were generated using (Lu, 2011). Finally, we calcu-
lated Pearson correlation coefficients between these
features and human proficiency scores.

Study Feature Correlation
Current study bigram based cos4 0.41**

(Lu, 2011) DCC 0.14**

Table 5: Comparison between (Lu, 2011) and this study
** Correlation is significant at the 0.01 level

As indicated in Table 5, the best performing fea-
ture was mean number of dependent clauses per
clause (DCC) and the correlation r was 0.14. No
features other than DCC achieved statistically sig-
nificant correlation. Our best performing feature (bi-
gram based cos4) widely outperformed the best of
Lu (2011)’s features (correlations approximately 0.3
apart).

A logical explanation for the poor performance of
Lu (2011)’s features is that the features are gener-
ated using multi-stage automated process, and the
errors in each process contributes the low feature
performance. For instance, the errors in the auto-
mated clause boundary detection may result in a se-
rious drop in the performance. With the spoken re-
sponses being particularly short (a typical response
in the data set had 10 clauses on average), even one
error in clause boundary detection can seriously af-
fect the reliability of features.

7 Discussion

While the measure of syntactic competence that we
study here is an abstraction of the overall syntactic
competence, without consideration of specific con-
structions, we analyzed the results further with the
intention of casting light on the level of details of
syntactic competence that can be explained using
our measure. Furthermore, this section will show
that bigram POS sequences can yield significant in-
formation on the range and sophistication of gram-
mar usage in the specific assessment context (spon-

F-score of 0.60 on the non-native speakers’ ASR hypotheses.
A detailed description of the method is presented in (Chen and
Zechner, 2011)

taneous speech comprised of only declarative sen-
tences).

ESL speakers with high proficiency scores are ex-
pected to use more complicated grammatical expres-
sions that result in a high proportion of POS tags
related to these expressions in that score group. The
distribution of POS tags was analyzed in detail in or-
der to investigate whether there were systematic dis-
tributional changes according to proficiency levels.
Owing to space constraints, we restrict our discus-
sion to the analysis using unigrams (base and com-
pund). For each score group, the POS tags were
sorted based on the frequencies in training data, and
the rank orders were calculated. The more frequent
the POS tag, the higher its rank.

A total of 150 POS tags, including the original
POS tag set and top 110 compound tags, were clas-
sified into 5 classes:

• Absence-of-low-proficiency (ABS): Group of
POS tags that appear in all score groups except
the lowest proficiency group;

• Increase (INC): Group of POS tags whose
ranks increase consistently as proficiency in-
creases;

• Decrease (DEC): Group of POS tags whose
ranks decrease consistently as proficiency in-
creases;

• Constant (CON): Group of POS tags whose
ranks remain same despite change in profi-
ciency;

• Mix: Group of POS tags of with no consistent
pattern in the ranks.

Table 6 presents the number of POS tags in each
class.

ABS INC DEC CON Mix
14 37 33 18 48

Table 6: Tag distribution and proficiency scores

The ‘ABS’ class mostly consists of ‘WP’ and
‘WDT’; more than 50% of tags in this class are re-
lated to these two tags. ‘WP’ is a Wh-pronoun while
‘WDT’ is a Wh-determiner. Since most sentences in
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our data are declarative sentences, ‘Wh’ phrase sig-
nals the use of relative clause. Therefore, the lack
of these tags strongly support the hypothesis that the
speakers in score group 1 showed incompetence in
the use of relative clauses or their use in limited sit-
uations.

The ‘INC’ class can be sub-classified into three
groups: verb, comparative, and relative clause. Verb
group is includes the infinitive (TO VB), passive
(VB VBN, VBD VBN, VBN, VBN IN, VBN RP),
and gerund forms (VBG, VBG RP, VBG TO). Next,
the comparative group encompasses comparative
constructions. Finally, the relative clause group sig-
nals the presence of relative clauses. The increased
proportion of these tags reflects the use of more
complicated tense forms and modal forms as well
as more frequent use of relative clauses. It supports
the hypothesis that speakers with higher proficiency
scores tend to use more complicated grammatical
expressions.

The ‘DEC’ class can be sub-classified into five
groups: noun, simple tense verb, GW and UH,
non-compound, and comparative. The noun group
is comprised of many noun or proper noun-related
expressions, and their high proportions are consis-
tent with the tendency that less proficient speakers
use nouns more frequently. Secondly, the simple
tense verb group is comprised of the base form (VB)
and simple present and past forms(PRP VBD, VB,
VBD TO, VBP TO, VBZ). The expressions in these
groups are simpler than those in ‘Increase’ group.

The ‘UH’ tag is for interjection and filler words
such as ‘uh’ and ‘um’, while the ‘GW’ tag is for
word-fragments. These two spontaneous speech
phenomena are strongly related to fluency, and it
signals problems in speech production. Frequent
occurrences of these two tags are evidence of fre-
quent planning problems and their inclusion in the
‘DEC’ class suggests that instances of speech plan-
ning problems decrease with increased proficiency.

Tags in the non-compound group, such as ‘DT’,
‘MD’, ‘RBS’, and ‘TO’, have related compound
tags. The non-compound tags are associated with
the expressions that do not co-occur with strongly
related words, and they tend to be related to errors.
For instance, the non-compound ‘MD’ tag signals
that there is an expression that a modal verb is not
followed by ‘VB’ (base form) and as seen in the ex-

amples, ‘the project may can change’ and ‘the others
must can not be good’, they are related to grammat-
ical errors.

Finally, the comparative group includes
‘RBR JJR’. The decrease of ‘RBR JJR’ is re-
lated to the correct acquisition of the comparative
form. ‘RBR’ is for comparative adverbs and ‘JJR’ is
for comparative adjectives, and the combination of
two tags is strongly related to double-marked errors
such as ‘more easier’. In the intermediate stage in
the acquisition of comparative form, learners tend
to use the double-marked form. The compound tags
correctly capture this erroneous stage.

The ‘Decrease’ class also includes three Wh-
related tags (WDT NN, WDT VBP, WRB), but the
proportion is much smaller than the ‘Increase’ class.

The above analysis shows that the combination of
original and compound POS tags correctly capture
systematic changes in the grammatical expressions
according to changes in proficiency levels.

The robust performance of our proposed mea-
sure to speech recognition errors may be better ap-
preciated in the context of similar studies. Com-
pared with the state-of-the art measures of syntac-
tic complexity proposed in Lu (2011) our features
achieve significantly better performance especially
when generated from ASR hypotheses. It is to
be noted that the performance drop between the
transcription-based feature and the ASR hypothesis-
based feature was marginal.

8 Conclusions

In this paper, we presented features that measure
syntactic competence for the automated speech scor-
ing. The features measured the range and sophisti-
cation of grammatical expressions based on POS tag
distributions. A corpus with a large number of learn-
ers’ responses was collected and classified into four
groups according to proficiency levels. The syntac-
tic competence of the test response was estimated by
identifying the most similar group from the learners’
corpus. Furthermore, speech recognition errors only
resulted in a minor performance drop. The robust-
ness against speech recognition errors is an impor-
tant advantage of our method.
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Abstract 

This paper presents an integrated, end-to-end 

approach to online spelling correction for text 

input. Online spelling correction refers to the 

spelling correction as you type, as opposed to 

post-editing. The online scenario is 

particularly important for languages that 

routinely use transliteration-based text input 

methods, such as Chinese and Japanese, 

because the desired target characters cannot 

be input at all unless they are in the list of 

candidates provided by an input method, and 

spelling errors prevent them from appearing 

in the list. For example, a user might type 

suesheng by mistake to mean xuesheng 学生 

'student' in Chinese; existing input methods 

fail to convert this misspelled input to the 

desired target Chinese characters. In this 

paper, we propose a unified approach to the 

problem of spelling correction and 

transliteration-based character conversion 

using an approach inspired by the phrase-

based statistical machine translation 

framework. At the phrase (substring) level, k 

most probable pinyin (Romanized Chinese) 

corrections are generated using a monotone 

decoder; at the sentence level, input pinyin 

strings are directly transliterated into target 

Chinese characters by a decoder using a log-

linear model that refer to the features of both 

levels. A new method of automatically 

deriving parallel training data from user 

keystroke logs is also presented. Experiments 

on Chinese pinyin conversion show that our 

integrated method reduces the character error 

rate by 20% (from 8.9% to 7.12%) over the 

previous state-of-the art based on a noisy 

channel model.  

1 Introduction 

This paper addresses the problem of online 

spelling correction, which tries to correct users' 

misspellings as they type, rather than post-editing 

them after they have already been input. This 

online scenario is particularly important for 

languages that routinely use transliteration-based 

text input methods, including Chinese and 

Japanese: in these languages, characters (called 

hanzi in Chinese and kanji/kana in Japanese) are 

typically input by typing how they are pronounced 

in Roman alphabet (called pinyin in Chinese, 

romaji in Japanese), and selecting a conversion 

candidate among those that are offered by an input 

method system, often referred to as IMEs or input 

method editors. One big challenge posed by 

spelling mistakes is that they prevent the desired 

candidates from appearing as conversion 

candidates, as in Figure 1: suesheng is likely to be 

a spelling error of xuesheng学生 'student', but it is 

not included as one of the candidates.  

                  

Figure 1: Spelling mistake prevents the desired output 

(学生) from appearing in the list of candidates 

This severely limits the utility of an IME, as 

spelling errors are extremely common. Speakers of 

a non-standard dialect and non-native speakers 

have a particularly hard time, because they may 

not know the standard pronunciation of the word to 

begin with, preventing them from inputting the 

word altogether. Error-tolerant word completion 

and next word prediction are also highly desirable 

features for text input on software (onscreen) 

keyboards for any language, making the current 

work relevant beyond Chinese and Japanese.  

In this paper, we propose a novel, unified 

system of text input with spelling correction, using 
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Chinese pinyin-to-hanzi conversion as an example. 

We first formulate the task of pinyin spelling 

correction as a substring-based monotone 

translation problem, inspired by phrase-based 

statistical machine translation (SMT) systems 

(Koehn et al., 2003; Och and Ney, 2004): we 

consider the pinyin input (potentially with errors) 

as the source language and the error-corrected 

pinyin as the target, and build a log-linear model 

for spelling correction. In doing so, we also 

propose a novel, unsupervised method of 

collecting parallel training data from user input 

logs. We then build an integrated end-to-end text 

input system that directly converts a potentially 

erroneous input pinyin sequence into a desired 

hanzi sequence, also formulated as a monotone 

phrase-based SMT problem, in which the feature 

functions of the substring-based error correction 

component are integrated and jointly optimized 

with the sentence-level feature functions for 

character conversion  

Our method generalizes and improves over the 

previous state-of-the-art methods for the task of 

error correction and text input in several crucial 

respects. First, our error correction model is 

designed and implemented as a substring-based, 

fully trainable system based on a log-linear model, 

which has been shown effective for related tasks 

such as transliteration and letter-to-phone 

conversion, but has not been attempted for the task 

of spelling correction. Second, we build an end-to-

end pinyin-to-hanzi conversion system by 

combining all the feature functions used in the 

error correction and character conversion 

components in an SMT-style log-linear model, 

where the feature weights are trained 

discriminatively for the end-to-end task. This 

integration method generalizes the previous 

approach based on a noisy channel model (Chen 

and Lee, 2000; Zheng et al. 2011b), in which only 

the error model and the conversion model 

probabilities are used and combined with equal 

weights. Finally, like other statistical systems, the 

amount and quality of training data control the 

quality of the outcome; we thus propose a new, 

language-independent method of deriving parallel 

data for spelling correction from user keystroke 

logs.  

We performed experiments on various methods 

of integrating the error correction and character 

conversion sub-components. Our best system, a 

fully integrated SMT-based approach, reduces the 

character error rate by 35% on test data that is 

completely independent of the creation of error 

correction and character conversion models.  

In what follows, we first give the background of 

this research in Section 2. We then describe our 

approach to the spelling correction task (Section 3) 

and the end-to-end conversion task (Section 4). We 

summarize our contribution and conclude with 

remarks for future directions in Section 5.  

2 Related Work  

The current work builds on many previous works 

on the task of monotone substring-based 

transduction, including spelling correction, letter-

to-phone conversion and transliteration between 

different scripts. In particular, our substring-based 

approach to spelling correction is motivated by the 

success on transliteration (e.g., Sherif and Kondrak, 

2007; Cherry and Suzuki, 2009) and letter-to-

phoneme conversion (e.g., Jiampojamarn et al., 

2007; Rama et al., 2009). One big challenge of the 

spelling correction research is the general lack of 

naturally occurring paired data of contextual 

spelling errors and their correction. Previous work 

has therefore either focused on the task of 

correcting out-of-vocabulary words out of context 

(e.g., Brill and Moore, 2000; Toutanova and 

Moore, 2002), or has resorted to innovative 

methods of data collection. For example, Banko 

and Brill (2001) generate data artificially by 

substituting words from a confusion word set in 

text for building a contextual speller; Whitelaw et 

al. (2009) use word frequency and edit distance 

information to harvest error pairs from a web 

corpus in an unsupervised manner; Bertoldi et al. 

(2010) intentionally corrupt clean text by adding 

noise to the data. Another approach to spelling 

error data collection uses web search query logs, 

available in large quantity (albeit to limited 

institutions), and limit its focus on the task of 

correcting misspelled queries (e.g., Cucerzan and 

Brill, 2004; Gao et al., 2010; Sun et al., 2010; 

Duan and Hsu, 2011). The problem of data 

collection is particularly difficult for pinyin error 

correction, as pinyin is not a final form of text in 

Chinese, so it is not recorded in final text. Zheng et 

al. (2011a) study a log of pinyin input method and 

use the backspace key to learn the user mistyping 

behavior, but they do so only for the purpose of 
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data analysis, and do not build a statistical model 

from this data.  

Text input methods have been commercially 

available for decades for inputting Chinese and 

Japanese, but have also recently become available 

for other non-Roman script languages including 

Arabic and the languages of India.
1
 Early research 

work on text input methods includes e.g., Mori et 

al. (1998), Chen and Lee (2000) and Gao et al. 

(2002), all of which approach the problem using a 

noisy channel model. Discriminative approaches 

have also been proposed, e.g., Suzuki and Gao 

(2005); Tokunaga et al. (2011). There is only a 

very limited amount of work that deals with 

spelling correction in the context of text input: 

Zheng et al. (2011b) represents a recent work 

based on a noisy channel model, which defines our 

baseline. Their work is strictly word-based and 

only handles the correction of out-of-vocabulary 

pinyin words into in-vocabulary pinyin words, 

while our substring-based model is not limited by 

these constraints.  

The current work also has an affinity to the task 

of speech translation in that the parallel data 

between the input (speech signal) and the output 

(text in foreign language) is not directly available, 

but is mediated by a corrected (transcribed) form 

of input. Zhang et al. (2011) is thus relevant to our 

study, though their approach differs from ours in 

that we build an integrated system that include the 

feature functions of both error correction and 

character conversion sub-systems.  

3 Substring-based Spelling Correction 

using a Log-linear Model 

In this section, we describe our approach to pinyin 

error correction within a log-linear framework. 

Though our current target is pinyin error correction, 

the method described in this section is applicable 

to any language of interest.  

The spelling correction problem has been 

standardly formulated within the framework of 

noisy channel model (e.g., Kernighan et al., 1990). 

Let A be the input phonetic string in pinyin. The 

task of spelling correction is to search for the best 

                                                           
1 A few examples include Google Transliterate 

(http://www.google.com/transliterate/) and Microsoft Maren 

(http://www.microsoft.com/middleeast/egypt/cmic/maren/) / 

ILIT (http://specials.msn.co.in/ilit/Hindi.aspx). Quillpad 

(http://quillpad.in/) is also popularly used in India. 

correction candidate in pinyin C* among all 

possible corrections for each potentially misspelled 

pinyin A: 

         
        

   |                                               

Applying Bayes' Rule and dropping the constant 

denominator, we have 

         
        

   |                                         

where the error model    |  models the 

translation probability from C to A, and the 

language model      models how likely the 

output C is a correctly spelled pinyin sequence. 

Many variations on the error model have been 

proposed, including substring-based (Brill and 

Moore, 2000) and pronunciation-based (Toutanova 

and Moore, 2002) models.  

Our model is inspired by the SMT framework, 

in which the error correction probability    |   of 

Equation (1) is directly modeled using a log-linear 

model of the following form:   

   |   
 

    
   ∑                               

 

 

where Z(A) is the normalization factor, hi is a 

feature function and λi is the feature weight. 

Similarly to phrase-based SMT, many feature 

functions are derived from the translation and 

language models, where the translation model-

derived features are trained using a parallel corpus 

of original pinyin and correction pairs. The argmax 

of Equation (1) defines the search operation: we 

use a left-to-right beam search decoder to seek for 

each input pinyin the best correction according to 

Equation (3).   
We first describe how the paired data for 

deriving the error model probabilities is generated 

from user logs in Section 3.1, and then how the 

models are trained and the model weights are 

learned in Section 3.2. We discuss the results of 

pinyin error correction as an independent task in 

Section 3.3.  

3.1 Generating error correction pairs from 

keystroke logs 

Unlike English text, which includes instances of 

misspelled words explicitly, pinyin spelling errors 

are not found in a corpus, because pinyin is used as 

a means of inputting text, and is not part of the 
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final written form of the language. Therefore, 

pinyin error correction pairs must be created 

intentionally. We chose the method of 

implementing a version of an input method which 

records the keystrokes of users while they are 

asked to type a particular Chinese text in hanzi; in 

doing so, we captured each keystroke issued by the 

user behind the scene. Such keystroke logs include 

the use of the backspace key, from which we 

compute the pinyin strings after the usage of the 

backspace keys as well as the putative pinyin string 

had the user not corrected it using the backspace 

key.
2
 Table 1 shows a few examples of the entries 

in the keystroke log, along with the computed 

pinyin strings before and after correction. Each 

entry (or phrase) in the log represents the unit that 

corresponds to the sequence the user input at once, 

at the end of which the user committed to a 

conversion candidate, which typically consists of 

one or more words. While the post-correction 

string can be straightforwardly derived by deleting 

the same number of characters preceding the 

backspaces, the computation of the pre-correction 

string is trickier and ambiguous, because the 

backspace key is used for the purpose of both 

deletion and substitution (delete and replace) 

operations. In Table 1, a backspace usage is 

indicated by _ in the original keystroke sequence 

that is logged. In the second example, a deletion 

interpretation will generate zhonguo as a pre-

correction string, while substitution interpretation 

will generate zhonguoo. In order to recover the 

desired pre-correcting string, we compared the 

prefix of the backspace usage (zhonguo) with the 

substrings after error correction (zhong, zhongg, 

zhonggu…). We considered that the prefix was 

spell-corrected into the substring which is the 

longest and with the smallest edit distance: in this 

case, zhonguo is considered an error for 

zhongguo, therefore recovering the pre-correction 

string of the whole sequence as zhonguo. Note 

that this method of error data extraction is general 

                                                           
2 Zheng et al. (2011a) also uses the backspace key in the IME 

log to generate error-correction pairs, but they focus on the 

usage of a backspace after the desired hanzi characters have 

been input, i.e., the backspace key is used to delete one or 

more hanzi characters. In contrast, our method focuses on the 

use of backspace to delete one or more pinyin characters 

before conversion. This simulates the scenario of online error 

correction more truthfully, and can collect paired data in large 

quantity faster.  

and is language-independent. Since paired error 

correction data do not exist naturally and is 

expensive to collect for any language, we believe 

that the proposed method is useful beyond the case 

of Chinese text input and applicable to the data 

collection of the spelling correction task in general. 

In a related work (Baba and Suzuki, 2012), we 

collected such keystroke data using Amazon's 

Mechanical Turk for English and Japanese, and 

released the error-correction pairs for research 

purposes.
3
  

The extracted pairs are still quite noisy, because 

one error correction behavior might not completely 

eliminate the errors in typing a word. For example, 

in trying to type women 我们 'we', a user might 

first type wmen, hit the backspaces key four times, 

retype womeen, and commit to a conversion 

candidate by mistake. We extract the pair (wmen, 

womeen) from this log incorrectly, which is one of 

the causes of the noise in the data. Despite these 

remaining errors, we use the data without further 

cleaning, as we expect our approach to be robust 

against a certain amount of noise.  

Keystroke data was collected for three text 

domains (chat, blog and online forum) from 60 

users, resulting in 86,783 pairs after removing 

duplicates. The data includes the pairs with the 

same source and target, with about 41% 

representing the case of correction. We used 5,000 

pairs for testing, 1,000 pairs for tuning the log-

linear model weights (see the next subsection), and 

the remaining portion for training the error 

correction component.  

3.2 Training the log-linear model 

The translation model captures substring-based 

spelling error patterns and their transformation 

probabilities. The model is learned from large 

amounts of pinyin-correction pairs mined from 

user keystroke logs discussed above. Take the 

                                                           
3 Available at http://research.microsoft.com/en-

us/downloads/4eb8d4a0-9c4e-4891-8846-

7437d9dbd869/default.aspx.  

keystroke pre-

correction 

post-

correction 

n a n s _ r e n nansen nanren 

z h o n g u o _ _ g u o zhonguo 

(*zhonguoo) 

zhongguo 

Table 1: Computation of pre- and post-correction 

strings from keystroke log 
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following pinyin-correction pair as an example, 

where the input pinyin and its correction are 

aligned at the character level: given a pair (A,C), 

we align the letters in A with those in C so as to 

minimize the edit distance between A and C based 

on single character insertions, deletions and 

substitutions. 

 
From this pair, we learn a set of error patterns that 

are consistent with the character alignment,
4
 each 

of which is a pair of substrings indicating how the 

spelling is transformed from one to another. Some 

examples of extracted phrases are (wanmian, 

waimian) and (andshi, andeshi). In our 

implementation, we extract all patterns with a 

substring length of up to 9 characters. We then 

learn the translation probabilities for each pair 

using maximum likelihood estimation (MLE). Let 

(a,c) denote a pair. For each pair, we learn the 

translation probabilities P(c|a) and P(a|c), 

estimated using MLE, as well as lexical weights in 

two directions following Koehn et al. (2003).  Our 

error correction model is completely substring-

based and does not use a word-based lexicon, 

which gives us the flexibility of generating unseen 

correction targets as well as supporting pinyin 

input consisting of multiple words at a time. For 

the language model, we use a character 9-gram 

model to capture the knowledge of correctly 

spelled pinyin words and phrases. We trained the 

language model using the target portion of the 

parallel data described in Section 3.1, though it is 

possible to train it with an arbitrary text in pinyin 

when such data is available.  

In addition to the feature functions derived from 

the error and language models, we also use word 

and phrase penalties as feature functions, which are 

commonly used in SMT. These features also make 

sense in the current context, as using fewer phrase 

means encouraging longer ones with more context, 

and the target character length can capture 

tendencies to delete or insert words in errors. 

                                                           
4 Consistency here implies two things. First, there must be at 

least one aligned character pair in the aligned phrase. Second, 

there must not be any alignments from characters inside the 

aligned phrase to characters outside the phrase. That is, we do 

not extract a phrase pair if there is an alignment from within 

the phrase pair to outside the phrase pair. 

Overall, the log-linear model uses 7 feature 

functions: 4 derived from the translation models, 

word and phrase penalties, and the language model. 

The model weights were trained using the 

minimum error rate training algorithm (MERT, 

Och, 2003). We tried MERT with two objective 

functions: one that uses the 4-gram BLEU score as 

straightforwardly adapted from SMT, and the other 

that minimizes the character error rate (CER). CER 

is based on the edit distance between the reference 

and system output, which is used for evaluating the 

IME accuracy (Section 4.3). It is more directly 

related with the word/phrase-level accuracy, which 

we used to evaluate the error correction module in 

isolation, than the BLEU metric. As we will show 

below, however, using different objective 

functions turned out to have only a minimal impact 

on the spelling correction accuracy.  

3.3 Experiments and results 

The performance of pinyin error correction was 

evaluated on two data sets: (1) log-test: the test set 

of the data in Section 3.1, which is derived in the 

same way as the training data but is noisy, 

consisting of 5,000 phrases of which 2,020 are 

misspelled; (2) CHIME: the gold standard from the 

CHIME data set made available by Zheng et al. 

(2011b),
5
 which is also used in the end-to-end 

evaluation in Section 4. This data set consists of 

2,000 sentence pairs of pinyin input with errors 

and the target hanzi characters, constructed by 

collecting actual user typing logs of the Lancaster 

corpus (McEnery and Xiao, 2004), which includes 

text from newspaper, fiction, and essays.
6

 The 

CHIME data set does not include the corrected 

pinyin string; we therefore generated this by 

running a text-to-pinyin utility,
7
 and created the 

pairs before and after error correction for 

evaluating our pinyin spelling correction module. 

The set contains 11,968 words of which 908 are 

misspelled. 

The results of the evaluation are given in Table 

2. They are for phrase/word-level accuracy, as the 

log-derived data set is for each phrase (a user-

                                                           
5 Available from http://chime.ics.uci.edu/ 
6 Details on the Lancaster corpus are found at 

http://www.lancs.ac.uk/fass/projects/corpus/LCMC/.  
7 We used an in-house tool, but many tools are available 

online. Unlike pinyin-to-hanzi, hanzi-to-pinyin is relatively 

straightforward as most characters have a unique 

pronunciation. 
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defined unit of conversion, consisting of one to a 

few words), while the CHIME data set is word-

segmented. The baseline accuracy is the accuracy 

of not correcting any error, which is very strong in 

this task: 59.6% and 92.41% for the two data sets, 

respectively. The accuracy on the log-test data is 

generally much lower than the CHIME data, 

presumably because the latter is cleaner, contains 

less errors to begin with, and the unit of evaluation 

is smaller (word) than the log-test (phrase). 

Though CHIME is an out-of-domain data set, the 

proposed model works very well on this set, 

achieving more than 93% accuracy with the best 

output, significantly (at p<0.001 using McNemar's 

test) improving on the strong baseline of not 

correcting any error. The proposed log-linear 

approach is also compared against the noisy 

channel model baseline, which is simulated by 

only using one error model-derived feature 

function    |   and the language model, weighted 

equally, using the same beam search decoder. 

Somewhat surprisingly, the noisy channel model 

results fall below the baseline in both data sets, 

while the log-linear model improves over the 

baseline, especially on the 1-best accuracy: all 

differences between the noisy channel model and 

the log-linear model outputs are significant. Finally, 

regarding the effect of using the CER as the 

objective function of MERT, we only observe 

minimal impact: none of the differences in 

accuracy between the BLEU and CER objectives is 

statistically significant on either data set. For a 

monotone decoding task such as spelling 

correction, using either objective function therefore 

seems to suffice, even though BLEU is more 

indirect and redundant in capturing the phrase-

level accuracy.   

4 A Unified Model of Character 

Conversion with Spelling Correction  

In this section we describe our unified model of 

spelling correction and transliteration-based 

character conversion. Analogous to the spelling 

correction task, the character conversion problem 

can also be considered as a substring-based 

translation problem. The novelty of our approach 

lies in the fact that we take advantage of the 

parallelism between these tasks, and build an 

integrated model that performs spelling correction 

and character conversion at the same time, within 

the log-linear framework. This allows us to 

optimize the feature weights directly for the end 

goal, from which from we can expect a better 

overall conversion accuracy.  

4.1 Noisy channel model approach to 

incorporating error correction in 

character conversion 

The task of pinyin-to-hanzi conversion consists of 

converting the input phonetic strings provided by 

the user into the appropriate word string using 

ideographic characters. This has been formulated 

within the noisy channel model (Chen and Lee, 

2000), in exactly the same manner as the spelling 

correction, as describe in Equations (1) and (2) in 

Section 3. Given the pinyin input A, the task is to 

find the best output hanzi sequence W*: 

  

       
        

   |                                                     

       
        

       |   

In traditional conversion systems which do not 

consider spelling errors, P(A|W) is usually set to 1 

if the word is found in a dictionary of word-

pronunciation pairs, which also defines GEN(A). 

Therefore, the ranking of the candidates relies 

exclusively on the language model probability 

P(W).  

An extension of this formulation to handle 

spelling errors can be achieved by incorporating an 

actual error model P(A|W). Assuming a conditional 

independence of A and W given the error-corrected 

pinyin sequence C, Equation (4) can be re-written 

as: 

 1-best 3-best 20-best 

log-test: No correction  59.6   

log-test: Noisy Channel 49.5 67.86 84.8 

log-test: Proposed (BLEU) 62.46 74.58 86.66 

log-test: Proposed (CER) 62.82 75.06 86.8 

CHIME: No correction 92.41   

CHIME: Noisy Channel 91.29 95.75 98.82 

CHIME: Proposed (BLEU) 93.51 97.38 99.06 

CHIME: Proposed (CER) 93.49 97.29 99.08 

Table 2: Pinyin error correction accuracy (in %) 
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   |  

       
 

∑   |     |                                      

 

       
 

∑   |         |  

 

 

Here, P(C|W) corresponds to the channel model of 

traditional input methods, P(W) the language 

model, and P(C|A) the pinyin error correction 

model. There have been attempts to use this 

formulation in text input: for example, Chen and 

Lee (2000) trained a syllable-based model for 

P(C|A) with user keystroke data,
8
 and Zheng et al. 

(2011b) used a model based on a weighted 

character edit distance whose weights are manually 

assigned. This noisy channel integration of error 

correction and character conversion is the state-of-

the-art in the task of error-correcting text input, 

and will serve as our baseline.  

4.2 Log-linear model for error-correcting 

character conversion 

 Similar to the formulation of our error correction 

model in Section 3, we adopt the log-linear model 

for modeling the character conversion probability 

in (4):  

   |   
 

    
   ∑         

 

 

where A = a1,…,an is a sequence of phrases in 

pinyin, and W = w1,…,wn is the corresponding 

sequence in hanzi. A unique challenge of the 

current task is that the parallel data for A and W do 

not exist directly. Therefore, we generated the 

translation phrase table offline by merging the 

                                                           
8 No detail of this data is available in Chen and Lee (2000).  

substring-based phrase table generated for the 

pinyin error correction task in Section 3 with the 

results of character conversion. This process is 

described in detail in Figure 2: k-best candidates 

for each input pinyin phrase a are generated by the 

error model in Section 3, which are then submitted 

offline to an IME system to obtain n-best 

conversion candidates with probabilities. For the 

IME system, we used an in-house conversion 

system, which only uses a word trigram language 

model for ranking. In the resulting translation table, 

defined for each (a, w) pair, the feature functions 

and their values are inherited from the pinyin error 

correction translation table mediated by the 

correction candidates c1…k for a, plus the function 

that defines the IME conversion probability for (cj, 

w). Note that in this final phrase table, the 

correction candidates for a are latent, only 

affecting the values of the feature functions.
9
 The 

final end-to-end system uses the following 11 

features:  

- 7 error correction model features at the phrase 

level  

- IME conversion probability at the phrase level 

- language model probability at the sentence level 

- word/phrase penalty features at the sentence 

level 

The language model at the sentence level is trained 

on a large monolingual corpus of Chinese in hanzi, 

consisting of about 13 million sentences (176 

million words). The IME conversion probability 

                                                           
9 The final phrase table needs to be unique for each phrase pair 

(a, w), though the process described here results in multiple 

entries with the same pair having different feature values, 

because the generation of (a, w) is mediated by multiple 

correction candidates c1…k. These entries need to be added up 

to remove duplicates; we used a heuristic approximation of 

taking the pair where a equals cj (i.e., no spelling correction) 

when multiple entries are found.  

c1  xuesheng f1 ... f7
c2  xueshereng   f1 ... f7
c3  xueshusheng  f1 ... f7
...

+
c1  xuesheng    w1 学生 1

c2  xueshereng w1 学社仍 0.103

        w2 学舌仍 0.101

        w3 学舍仍 0.101

             ...

c3  xueshusheng  w1 学术生 0.102 

            w2 学术声 0.101 

            w3 学术省 0.101

           ...

...

→
w11 xueshseng 学生 f1 ... f7 1

w21 xueshseng 学社仍 f1 ... f7 0.103

w22 xueshseng 学舌仍 f1 ... f7 0.101

w23 xueshseng 学舍仍 f1 ... f7 0.101

...

w31 xueshseng 学术生 f1 ... f7 0.102

w32 xueshseng 学术声 f1 ... f7 0.101

w33 xueshseng 学术省 f1 ... f7 0.101

...

k-best error correction candidates c1...k 
n-best IME conversion 

candidates w1...n for c1...k
combined translation table w11...kn

 

Figure 2: Generation of integrated translation table for the pinyin input a = xueshseng 
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also uses a word trigram model, but it is trained on 

a different data set which we did not have access 

to; we therefore used both of these models. The 

values for k and n can be determined empirically; 

we used 20 for both of them.
10

 This generates 

maximally 400 conversion candidates for each 

input pinyin.  

The feature weights of the log-linear model are 

tuned using MERT. As running MERT on a CER-

based target criterion on the similar, monotone 

translation task of spelling correction did not lead 

to a significant improvement (Section 3.3), we 

simply report the results of using the 4-gram 

BLEU as the training criterion in this task.  

4.3 Experiments and results 

For the evaluation of the end-to-end conversion 

task, we used the CHIME corpus mentioned above. 

In order to use the word trigram language model 

that is built in-house, we re-segmented the CHIME 

corpus using our word-breaker, resulting in 12,102 

words in 2,000 sentences. We then divided the 

sentences in the corpus randomly into two halves, 

and performed a two-fold cross validation 

evaluation. The development portion of the data is 

used to tune the weights of the feature functions in 

MERT-style training. We measured our results 

using character error rate (CER), which is based on 

the longest common subsequence match in 

characters between the reference and the best 

system output. This is a standard metric used in 

evaluating IME systems (e.g., Mori et al., 1998; 

Gao et al., 2002). Let NREF be the number of 

characters in a reference sentence, NSYS be the 

character length of a system output, and NLCS be 

the length of the longest common subsequence 

between them. Then the character-level recall is 

defined as NLCS/NREF, and the precision as NLCS/NSYS. 

The CER based on recall and on precision are then 

defined as 1 – recall and 1 – precision, respectively. 

We report the harmonic mean of these values, 

similarly to the widely used F1-measure. 

As our goal is to show the effectiveness of the 

unified approach, we used simpler methods of 

integrating pinyin error correction with character 

conversion to create baselines. The simplest 

                                                           
10 From Table 2, we observe that the accuracy of the 20-best 

output of the spelling correction component is over 99%. An 

offline run with the IME system on an independent data set 

also showed that the accuracy of the 20-best IME output is 

over 99%.  

baseline is a pre-processing approach: we use the 

pinyin error correction model to convert A into a 

single best candidate C, and run an IME system on 

C. Another more realistic baseline is the noisy 

channel integration discussed in Section 4.1. We 

approximated this integration method by re-

ranking all the candidates generated by the 

proposed log-linear model with only the channel 

and language model probabilities, equally 

weighted.  

The results are shown Table 3. 5-best results as 

well as the 1-best results are shown, because in an 

IME application, providing the correct candidate in 

the candidate list is particularly important even if it 

is not the best candidate. Let us first discuss the 1-

best results. The CER of this test corpus using the 

in-house IME system without correcting any errors 

is 10.91. The oracle CER, which is the result of 

applying the IME on the gold standard pinyin input 

derived from the reference text using a hanzi-to-

pinyin converter (as mentioned in Section 3.3), is 

4.08, which is the upper-bound imposed by the 

IME conversion accuracy. The simple pipeline 

approach of concatenating the pinyin correction 

component with the character conversion 

component improves the CER by 1% to 9.93. 

Assuming that there are on average 20 words in a 

sentence, and each word consists of 2 characters, 

1% CER reduction means one improvement every 

2.5 sentences. Noisy channel integration improves 

over this quite substantially, achieving a CER of 

7.92, demonstrating the power of the word 

language model in character conversion. 

Incidentally, the CER of the output by Zheng et al. 

(2011b)'s model is 8.90.
11

 Their results are not as 

good as our noisy channel integration, as their 

system uses a manually defined error model and a 

word bigram language model. With the use of 

additional feature functions weighted 

discriminatively for the final conversion task, the 

                                                           
11 Available at http://chime.ics.uci.edu/. 

 CER on 

1-best 

CER on 

5-best 

Baseline: No correction 10.91 7.76 

Baseline: Pre-processing 9.93 6.75 

Baseline: Zheng et al. (2011b) 8.90  

Baseline: Noisy channel 7.92 3.93 

Proposed: SMT model 7.12 3.63 

Oracle 4.08 1.51 

Table 3: CER results for the conversion task (%) 
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proposed method outperforms all these baselines to 

reduce the CER to 7.12, a 35% relative error rate 

reduction compared with the no correction baseline, 

a 20% reduction against Zheng et al (2011b) and a 

10% reduction from our noisy channel baseline. 

The 5-best results follow the same trend of steady 

improvement as we use a more integrated system.  

In order to understand the characteristics of the 

errors and remaining issues, we ran an error 

analysis on the 1-best results of the proposed 

system. For each word in the test data (all 2,000 

sentences) for which the system output had an 

error, we classified the reasons of failure into one 

of the four categories: (1) character conversion 

error: correct pinyin was input to the IME but the 

conversion failed; (2) over-correction of pinyin 

input: the system corrected the pinyin input when 

it should not have; (3) under-correction of pinyin 

input: the system did not correct an error in the 

input pinyin when it should have; (4) wrong 

correction: input pinyin string had a spelling error 

but it was corrected incorrectly.   

Table 4 shows the results of the error analysis. 

We find that somewhat contrary to our expectation, 

over-correction of the spelling mistakes was not a 

conspicuous problem, even though the pinyin 

correction rate of the training data is much higher 

than that of the test data. We therefore conclude 

that the error correction model adapts very well to 

the characteristics of the test data in our integrated 

SMT-based approach, which trains the unified 

feature weights to optimize the end goal.  

5 Conclusion and Future Work 

In this paper we have presented a unified approach 

to error-tolerant text input, inspired by the phrase-

based SMT framework, and demonstrated its 

effectiveness over the traditional method based on 

the noisy channel model. We have also presented a 

new method of automatically collecting parallel 

data for spelling correction from user keystroke 

logs, and showed that the log-linear model works 

well on the task of spelling correction in isolation 

as well.  

In this study, we isolated the problem of spelling 

errors and studied the effectiveness of error 

correction over a basic IME system that does not 

include advanced features such as abbreviated 

input (e.g., typing only "py" for 朋友 pengyou 

'friend' or 拼音 pinyin in Chinese) and auto-

completion (e.g., typing only "ari" for ありがとう 

arigatou 'thank you' in Japanese). Integrating data-

driven error correction feature with these advanced 

features for the benefit of users is the challenge we 

face in the next step.  
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Abstract

We propose a new semantic orientation, Ex-
citation, and its automatic acquisition method.
Excitation is a semantic property of predicates
that classifies them into excitatory, inhibitory
and neutral. We show that Excitation is useful
for extracting contradiction pairs (e.g., destroy
cancer ⊥ develop cancer) and causality pairs
(e.g., increase in crime ⇒ heighten anxiety).
Our experiments show that with automatically
acquired Excitation knowledge we can extract
one million contradiction pairs and 500,000
causality pairs with about 70% precision from
a 600 million page Web corpus. Furthermore,
by combining these extracted causality and
contradiction pairs, we can generate one mil-
lion plausible causality hypotheses that are not
written in any single sentence in our corpus
with reasonable precision.

1 Introduction

Recognizing semantic relations between events in
texts is crucial for such NLP tasks as question an-
swering (QA). For example, to answer the question
“What ruined the crops in Japan?” a QA system
must recognize that the sentence “the Fukushima
nuclear power plant caused radioactive pollution
and contaminated the crops in Japan” contains a
causal relation and that contaminate crops entails
ruin crops but contradicts preserve crops.

To facilitate the acquisition of causality, contra-
diction, paraphrase and entailment relations between
events we propose a new semantic orientation, Ex-
citation, that classifies unary predicates (templates,
hereafter) into excitatory, inhibitory and neutral. An
excitatory template entails that the main function or

effect of the referent of its argument is activated or
enhanced (e.g., cause X, preserve X), while an in-
hibitory template entails that it is deactivated or sup-
pressed (e.g., ruin X, contaminate X, prevent X).

Excitation is useful for extracting contradiction;
if two templates with similar distributional profiles
have opposite Excitation polarities, they tend to be
contradictions (e.g., contaminate crops and preserve
crops). With extracted contradictions we can distin-
guish paraphrases from contradictions among distri-
butionally similar phrases. Furthermore, contradic-
tion in itself is important knowledge for Recogniz-
ing Textual Entailment (RTE) (Voorhees, 2008).

Excitation is also a powerful indicator of causal-
ity. In the physical world, the activation or de-
activation of one thing often causes the activation
or deactivation of another. Two excitatory or in-
hibitory templates that co-occur in some temporal
or logical order in the same narrative often describe
a causal chain of events, like “the Fukushima nu-
clear power plant caused radioactive pollution and
contaminated crops in Japan”.

In this paper we propose both the concept of Ex-
citation and an automatic method for its acquisition.
Our method acquires Excitation templates based on
certain natural, language independent constraints on
narrative structures found in text. We also propose
acquisition methods for contradiction and causal-
ity relations based on Excitation. Our methods ex-
tract one million contradiction pairs with over 70%
precision, and 500,000 causality pairs with about
70% precision from a 600 million page Web corpus.
Moreover, by combining these extracted causality
pairs and contradiction pairs, we generated one mil-
lion plausible causality hypotheses that were not
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written in any single sentence in our corpus with rea-
sonable precision. For example, a causality hypoth-
esis prevent radioactive pollution ⇒ preserve crops
can be generated from an extracted causality cause
radioactive pollution ⇒ contaminate crops.

We target the Japanese language in this paper.

2 What is Excitation?

Excitation classifies templates into excitatory, in-
hibitory, and neutral, as explained below.

excitatory templates entail that the function, ef-
fect, purpose or role of their argument’s refer-
ent is activated or enhanced. (e.g., cause X, buy
X, produce X, import X, increase X, enable X)

inhibitory templates entail that the function, ef-
fect, purpose or role of their argument’s refer-
ent is deactivated or suppressed. (e.g., prevent
X, discard X, remedy X, decrease X, disable X)

neutral templates are neither excitatory nor in-
hibitory. (e.g., consider X, proportional to X,
related to X, evaluate X, close to X)

For example, when fire fills the X slot of cause X,
it suggests that the effect of fire is activated. If pre-
vent X’s slot is filled with flu, the effect of flu is sup-
pressed. In this study, we aim to acquire excitatory
and inhibitory templates that are useful for extract-
ing contradiction and causality, though neutral tem-
plates are the most frequent in our data (See Section
5.1). Collectively we call excitatory and inhibitory
templates Excitation templates, and excitatory and
inhibitory two opposite polarities.

Excitation is independent of the good/bad seman-
tic orientation. (Hatzivassiloglou and McKeown,
1997; Turney, 2002; Rao and Ravichandran, 2009).
For example, sophisticate X and complicate X are
both excitatory, but only the former has a positive
connotation. Similarly, remedy X and degrade X are
both inhibitory but only the latter is negative.

General Inquirer (Stone et al., 1966) deals with
semantic factors some of which were proposed by
Osgood et al. (1957). Their ‘activity’ factor involves
binary opposition between ‘active’ and ‘passive.’
Notice that activity and Excitation are independent.
In General Inquirer, both accelerate X and abolish
X are active, but only the former is excitatory. Both
accept X and abate X are passive, but only the lat-
ter is inhibitory. Pustejovsky (1995) proposed telic

and agentive roles, which inspired our excitatory no-
tion, but they have no corresponding notion of in-
hibitory. Andreevskaia and Bergler (2006) acquired
the increase/decrease semantic orientation, which is
a subclass of Excitation.

Excitation is inverted if a template’s predicate is
negated. For example, preserve X is excitatory,
while don’t preserve X is inhibitory. We acknowl-
edge that this may seem somewhat counter-intuitive
and will address this issue in future work.

3 Excitation Template Acquisition

This section presents our acquisition method of Ex-
citation templates. We introduce constraints in the
co-occurrence of templates in text that seem both ro-
bust and language independent in Section 3.1. Our
method exploits these constraints for the acquisition
of Excitation templates. First we construct a tem-
plate network where nodes are templates and links
represent that two connected templates have either
SAME or OPPOSITE polarities. Given 46 manually
prepared seed templates we calculate the Excitation
value of each template, a value in range [−1, 1] that
is positive if the template is excitatory and negative
if it is inhibitory. Technically, our method treats all
templates as excitatory or inhibitory, and, upon com-
pletion, regards templates with small absolute Exci-
tation values as neutral.

The whole method is a bootstrapping process.
Each iteration expands the network and the Excita-
tion value of each template is (re-)calculated.

3.1 Characteristics of Excitation Templates
Our method exploits natural discourse constraints on
the possible combinations of (a) the polarity of co-
occurring templates, (b) the nouns that fill their ar-
gument slots and (c) the connectives that link the
templates in a given sentence. Table 1 shows the
constraints and Figure 1 shows examples that will
be explained shortly. Though our target is Japanese
we believe these constraints are universal discourse
principles, and as such not language dependent. Ex-
amples are given in English for ease of explanation.

We first identify two categories of connectives
in our target sentences: AND/THUS-type (e.g., and,
thus and since) and BUT-type (e.g., but and though).
Both types suggest a sort of consistency or inconsis-
tency between predicates. We manually classified
169 frequently used connectives into AND/THUS-
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(1) He smoked cigarettes, AND/THUS he suffered lung
cancer. (Both smoke X and suffer X are excitatory.)

(2) He quit cigarettes, AND/THUS was immune from lung
cancer. (quit X and immune from X are inhibitory.)

(3) He smoked cigarettes, BUT didn’t suffer lung cancer.
(smoke X is excitatory, not suffer X is inhibitory.)

(4) He quit cigarettes, BUT he suffered lung cancer. (quit
X is inhibitory, but suffer X is excitatory.)

(5) He underwent cancer treatment, AND/THUS he could
cure the cancer. (undergo X is excitatory, cure X is
inhibitory.)

(6) He underwent cancer treatment, BUT still had cancer.
(Both undergo X and have X are excitatory.)

(7) Unnatural: He smoked cigarettes, BUT he suffered
lung cancer. (smoke X and suffer X are excitatory.)

Figure 1: Examples of constraints: (cigarettes, lung can-
cer) is PNP and (cancer treatment, cancer) is NNP.

PNPs NNPs others
AND/THUS SAME OPPOSITE N/A

BUT OPPOSITE SAME N/A

Table 1: Constraint matrix.

and BUT-type (See supplementary materials).
Next we extract sentences from the Web in which

two templates co-occur and are joined by one of
these connectives, and then classify the noun pairs
filling the templates’ argument slots into “positively-
associated” and “negatively-associated” noun pairs
(PNPs and NNPs). Mirroring our definition of Excita-
tion, PNPs are noun pairs in which the referent of the
first noun facilitates the emergence of the referent
of the second noun. PNPs can range from causally
related noun pairs like (cigarettes, lung cancer) to
“material-product” relation pairs like (semiconduc-
tor, electronic circuit). We found that PNPs only
fill the argument slots of (a) same Excitation polar-
ity templates connected by AND/THUS-type connec-
tives (examples 1 and 2 in Figure 1), or (b) opposite
Excitation polarity templates connected by a BUT-
type connectives (examples 3 and 4). Violating such
constraints (example 7) seems unnatural. Similarly,
NNPs are noun pairs in which the referent of one
noun suppresses the emergence of the referent of the
other noun. Examples include such “inverse causal-
ity” pairs as (cancer treatment, cancer). NNPs only
fill the argument slots of (a) opposite Excitation po-
larity templates connected by AND/THUS-type con-
nectives (example 5), or (b) same polarity templates
connected by a BUT-type connective (example 6).

All these constraints are summarized in Table 1,

which we will call the constraint matrix. Accord-
ing to the constraint matrix, we can know whether
two templates’ polarities are the same or opposite if
we know whether a noun pair filling the two tem-
plates’ slots is PNP or NNP. Conversely, we can
know whether a noun pair is PNP or NNP if we know
whether two templates whose slots are filled with
the noun pair have the same or opposite polarities.
We believe these constraints capture certain univer-
sal principles of discourse, since it is difficult in any
language to produce natural sounding sentences that
violate these constraints. We empirically confirm
their validity for Japanese in Section 5.1.

3.2 Bootstrapping Approach to Excitation
Template Acquisition

To calculate the Excitation values for the templates,
we construct a template network where templates
are connected by links indicating polarity agreement
between two connected templates (either SAME or
OPPOSITE polarity), as determined by the constraint
matrix. Excitation values are determined by spread-
ing activation applied to the network, given a small
number of manually prepared seed templates.

However, we cannot construct the network unless
we know whether each noun pair is PNP or NNP, due
to the configuration of the constraint matrix, and cur-
rently we have no feasible method to classify all of
them into PNPs and NNPs in advance. We therefore
adopt a bootstrapping method (Figure 2) that starts
from manually prepared excitatory and inhibitory
seed templates (Step 1 in Figure 2). Our method
begins by extracting noun pairs from the Web that
co-occur with two seed templates connected by a
AND/THUS- or BUT-type connective, and classifies
these noun pairs into PNPs and NNPs based on the
constraint matrix (Steps 2 and 3). Next, we automat-
ically extract additional (non-seed) template pairs
from the Web that co-occur with these PNPs and
NNPs. Links (either SAME or OPPOSITE) between
all template pairs are determined by the constraint
matrix (Step 4), and we construct a template network
from both seed and non-seed template pairs (Step 5).

Our method calculates the Excitation values for
all the templates in the network by first assign-
ing Excitation values +1 and −1 to the excitatory
and inhibitory seed templates, and applies a spread-
ing activation method proposed by Takamura et al.
(2005) (Step 6) to the network. This method calcu-
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1. Prepare initial seed templates with fixed excitation values (either
+1 or −1).

2. Make seed template pairs that are combinations of two seed tem-
plates and a connective (either AND/THUS-type or BUT-type).

3. Extract noun pairs that co-occur with one of the seed template
pairs from the Web. Classify the noun pairs into PNPs and NNPs
based on the constraints matrix. Filter out those noun pairs that
appear as both PNP and NNP on the Web or those whose occur-
rence frequency is less than or equal to F, which is set to 5.

4. Extract additional (non-seed) template pairs that are filled by one
of the PNPs or NNPs from the Web. Determine the link type
(SAME or OPPOSITE) for each template pair based on the con-
straint matrix. If a template pair appears on the Web as having
both link types, we determine its link type by majority vote.

5. Construct the template network from all the template pairs. Re-
move from the network those templates whose number of linked
templates is less than D, which is set to 5.

6. Apply Takamura et al.’s method to the network and fix the Exci-
tation value of each template.

7. Extract the top- and bottom-ranked N × i templates from the
result of Takamura et al.’s method. N is a constant, which is
set to 30. i is the iteration number. They are used as additional
seed templates for the next iteration. The top-ranked templates
are given Excitation value +1 and the bottom-ranked templates
are assigned −1. Go to Step 2.

Figure 2: Bootstrapping for template acquisition.

lates all templates’ excitation values by solving the
network constraints imposed by the SAME and OP-
POSITE links, and the Excitation values of the seed
templates (This method is detailed in Section 3.3).
In each iteration i, our method selects the N × i top-
ranked and bottom-ranked templates as additional
seed templates for the next iteration (N is set to 30)
(Step 7). Our method then constructs a new tem-
plate network using the augmented seed templates
and restarts the calculation process. Figure 2 sum-
marizes our bootstrapping process.

Bootstrapping stops after M iterations, with M
set to 7 based on our preliminary experiments.

To prepare the initial seed templates we con-
structed a maximal template network that could in
theory be created by our bootstrapping method. This
maximal network consists of any two templates that
co-occur in a sentence with any connective, regard-
less of their arguments. We manually selected 36
excitatory and 10 inhibitory seed templates from
among 114 templates with the most links in the net-
work (See supplementary materials).

3.3 Determining Excitation in the Network
This section details Step 6 of our bootstrapping
method, i.e., how Takamura et al.’s method calcu-
lates the Excitation value of each template. Their
method is based on the spin model in physics, where
each electron has a spin of either up or down. We

chose this method due to the straightforward parallel
between the spin model and our Excitation template
model. Both models capture the spreading of acti-
vation (either spin direction or excitation polarity)
between neighboring objects in a network. Deter-
mining the optimal algorithm for this task is beyond
our current scope, but for the purpose of our experi-
ments we found that Takamura et al.’s method gave
satisfactory results.

The spin model defines an energy function on a
spin network, and each electron’s spin can be esti-
mated by minimizing this function:

E(x,W ) = −1/2× Σijwijxixj

Here, xi, xj ∈ x are spins of electrons i and j, and
matrix W = {wij} assigns weights to links between
electrons. We regard templates as electrons and Ex-
citation polarities as their spins (up and down corre-
spond to excitatory and inhibitory). We define the
weight wij of the link between templates i and j as:

wij =
{

1/
√

d(i)d(j) if SAME(i, j)
−1/

√
d(i)d(j) if OPPOSITE(i, j)

Here, d(i) denotes the number of templates linked
to i. SAME(i, j) (OPPOSITE(i, j)) indicates a SAME
(OPPOSITE) link exists between i and j. We obtain
excitation values by minimizing the above energy
function. Note that after minimizing E, xi and xj

tend to get the same polarity when wij is positive.
When wij is negative, xi and xj tend to have op-
posite polarities. Initially seed templates are given
values +1 or −1 depending on whether they are ex-
citatory or inhibitory, and others are given 0.

We used SUPPIN (http://www.lr.pi.titech.
ac.jp/∼takamura/pubs/SUPPIN-0.01.tar.gz),
an implementation of Takamura et al.’s method. Its
parameter β is set to the default value (0.75).

4 Knowledge Acquisition by Excitation

This section shows how the concept of Excitation
can be used for automatic knowledge acquisition.

4.1 Contradiction Extraction

Our first knowledge acquisition method extracts
contradiction pairs like destroy cancer ⊥ develop
cancer, based on our assumption that they often con-
sist of distributionally similar templates that have a
sharp contrast in Excitation value. Concretely, we
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extract two phrases as a contradiction pair if (a)
their templates have opposite Excitation polarities,
(b) they share the same argument noun, and (c) the
part-of-speech of their predicates is the same. Then
the contradiction pairs are ranked by Ct:

Ct(p1, p2) = |s1| × |s2| × sim(t1, t2)

Here p1 and p2 are two phrases that satisfy condi-
tions (a), (b) and (c) above, t1 and t2 are their re-
spective templates, and |s1| and |s2| are the absolute
values of t1 and t2’s excitation values. sim(t1, t2) is
the distributional similarity proposed by Lin (1998).

Note that “contradiction” here includes what we
call “quasi-contradiction.” This consists of two
phrases such that, if the tendencies of the events they
describe get stronger, they eventually become con-
tradictions. For example, the pair emit smells ⊥ re-
duce smells is not logically contradictory since the
two events can happen at the same time. However,
they become almost contradictory when their ten-
dencies get stronger (i.e., emit smells more strongly
⊥ thoroughly reduce smells). We believe quasi-
contradictions are useful for NLP tasks.

4.2 Causality Extraction

Our second knowledge acquisition method extracts
causality pairs like increase in crime ⇒ heighten
anxiety that co-occur with AND/THUS-type connec-
tives in a sentence. The assumption is that if two
templates (t1 and t2) with a strong Excitation ten-
dency are connected by an AND/THUS-type connec-
tive in a sentence, the event described by t1 and its
argument n1 tends to be a cause of the event de-
scribed by t2 and its argument n2. Here, Excitation
strength is expressed by absolute Excitation values.
The intuition is that, if the referent of n1 is strongly
activated or suppressed, it tends to have some causal
effect on the referent of n2 in the same sentence.

We focus on extracting causality pairs that co-
occur with only “non-causal connectives” like and,
which are AND/THUS-type connectives that do NOT
explicitly signal causality, since causal connectives
like thus can mask the effectiveness of Excitation.
We prepared 139 non-causal connectives (See sup-
plementary materials). We extract two templates
such as increase in X and heighten Y co-occurring
with only non-causal connectives, as well as the
noun pair that fills the two templates’ slots (e.g.,
(crime, anxiety)) to obtain causal phrase pairs. In

Japanese, the temporal order between events is usu-
ally determined by precedence in the sentence. Cs
ranks the obtained causality pairs:

Cs(p1, p2) = |s1| × |s2|

Here p1 and p2 are the phrases of causality pair, and
|s1| and |s2| are absolute Excitation values of p1’s
and p2’s templates. As is common in the literature,
this notion of causality should be interpreted prob-
abilistically rather than logically, i.e., we interpret
causality A ⇒ B as “if A happens, the probability of
B increases”. This interpretation is often more use-
ful for NLP tasks than a strict logical interpretation.

4.3 Causality Hypothesis Generation
Our third knowledge acquisition method generates
plausible causality hypotheses that are not written in
any single sentence using the previously extracted
contradiction and causality pairs. We assume that if
a causal relation (e.g., increase in crime ⇒ heighten
anxiety ) is valid, its inverse (e.g., decrease in crime
⇒ diminish anxiety ) is often valid as well. From
a logical definition of causation, taking the inverse
of an implication obviously does not preserve valid-
ity. However, at least under our probabilistic inter-
pretation, taking the inverse of a given causality pair
using the extracted contradiction pairs proves to be
a viable strategy for generating non-trivial causality
hypotheses, as our experiments in Section 5.4 show.

For an extracted causality pair, we generate its
inverse as a causality hypothesis by replacing both
phrases in the original pair with their contradiction
counterparts. For instance, a causality hypothesis
decrease in crime ⇒ diminish anxiety is generated
from a causality increase in crime ⇒ heighten anxi-
ety by two contradictions, decrease in crime ⊥ in-
crease in crime and diminish anxiety ⊥ heighten
anxiety. Since we are interested in finding new
causal hypotheses, we filter out hypotheses whose
phrase pair co-occurs in a sentence in our corpus.
Remaining causality hypotheses are ranked by Hp.

Hp(q1, q2) = Ct(p1, q1)× Ct(p2, q2)× Cs′(p1, p2)

Here, q1 and q2 are two phrases of a causality hy-
pothesis. p1 and p2 are two phrases of a hypothesis’s
original causality. That is, p1 ⊥ q1 and p2 ⊥ q2 are
contradiction pairs, and Ct(p1, q1) and Ct(p2, q2)
are their contradiction scores. Cs′(p1, p2) is the
original causality’s causality score. Cs′ can be Cs
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from Section 4.2, but based on preliminary experi-
ments we found the following score works better:

Cs′(p1, p2) = |s1| × |s2| × npfreq(n1, n2)

|s1| and |s2| are absolute Excitation values of p1’s
and p2’s templates, whose slots are filled with n1 and
n2. npfreq(n1, n2) is the co-occurrence frequency
of (n1, n2) with polarity-identical template pairs (if
(n1, n2) is PNP) or with polarity-opposite template
pairs (if (n1, n2) is NNP). Thus, npfreq indicates a
sort of association strength between two nouns.

5 Experiments

This section shows that our template acquisition
method acquired many Excitation templates. More-
over, using only the acquired templates we extracted
one million contradiction pairs with more than 70%
precision, and 500,000 causality pairs with about
70% precision. Further, using only these extracted
contradiction and causality pairs we generated one
million causality hypotheses with 57% precision.

In our experiments we removed evaluation sam-
ples containing the initial seed templates and exam-
ples used for annotation instruction from the evalua-
tion data. Three annotators (not the authors) marked
all evaluation samples, which were randomly shuf-
fled so that they could not identify which sample was
produced by which method. Information about the
predicted labels or ranks was also removed from the
evaluation data. Final judgments were made by ma-
jority vote between the annotators. They were non-
experts without formal training in linguistics or se-
mantics. See supplementary materials for our anno-
tation manuals (translated into English).

We used 600 million Japanese Web pages
(Akamine et al., 2010) parsed by KNP (Kawahara
and Kurohashi, 2006) as a corpus. We restricted
the argument positions of templates to ha (topic),
ga (nominative), wo (accusative), ni (dative), and de
(instrumental). We discarded templates appearing
fewer than 20 times in compound sentences (regard-
less of connectives) in our corpus.

5.1 Excitation Template Acquisition
We show that our proposed method for template ex-
traction (PROPtmp) successfully acquired many Ex-
citation templates from which we obtained a huge
number of contradiction and causality pairs, and that
Excitation is a reasonably comprehensible notion

even for non-experts. We also show that PROPtmp

outperformed two baselines by a large margin.
The template network constructed by PROPtmp

contained 10,825 templates. Among these, the boot-
strapping process classified 8,685 templates as exci-
tatory and 2,140 as inhibitory. Note that these can-
didates in fact also contain neutral templates, as ex-
plained at the beginning of Section 3.

Baselines The baseline methods are ALLEXC and
SIM. ALLEXC regards all templates that are ran-
domly extracted from the Web as excitatory, since in
our data excitatory templates outnumber inhibitory
ones. Actually, in our data neutral templates rep-
resent the most frequent class, but since our objec-
tive is to acquire excitatory and inhibitory templates,
a baseline marking all templates as neutral would
make little sense. SIM is a distributional similarity
baseline that takes as input the same 10,825 tem-
plates of PROPtmp above, constructs a network by
connecting two templates whose distributional simi-
larity is greater than zero, and regards two connected
templates as having the same polarity. The weight
of the links between templates is set to their distri-
butional similarity based on Lin (1998). Then SIM
is given the same initial seed templates as PROPtmp,
by which it calculates the Excitation values of tem-
plates using Takamura et al.’s method. As a result,
SIM assigned positive Excitation values to all tem-
plates, and except for the 10 inhibitory initial seed
templates no templates were regarded inhibitory.

Evaluation scheme We randomly sampled 100
templates each from PROPtmp’s 8,685 excitatory
candidates, PROPtmp’s 2,140 inhibitory candidates,
all the ALLEXC’s templates, and all the SIM’s tem-
plates, i.e., 400 templates in total. To make the an-
notators’ judgements easier, we randomly filled the
argument slot of each template with a noun filling its
argument slot in our Web corpus. Three annotators
labeled each sample (a combination of a template
and a noun) as ‘excitatory,’ ‘inhibitory,’ ‘neutral,’ or
‘undecided’ if they were not sure about its label.

Results for excitatory In the top graph in Fig-
ure 3, ‘Proposed’ shows PROPtmp’s precision curve.
The curve is drawn from its 100 samples whose X-
axis positions represent their ranks. We plot a dot for
every 5 samples. Among the 100 samples, 37 were
judged as excitatory, 6 as inhibitory, 45 as neutral,
and 6 as ‘undecided’. For the remaining 6 samples,
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Figure 3: Precision of template acquisition: excitatory
(top) and inhibitory (bottom).

the three annotators gave three different labels and
the label was not fixed (‘split-votes’ hereafter). For
calculating precision, only the 37 samples labeled
excitatory were regarded as correct. PROPtmp out-
performed all baselines by a large margin, with an
estimated 70% precision for the top 2,000 templates.
‘Allexc’ and ‘Sim’ in Figure 3 denote ALLEXC and
SIM. Among ALLEXC’s 100 samples, 19 were
judged as excitatory, 5 as inhibitory, 74 as neutral,
and 2 as ‘undecided’. SIM’s low performance re-
flects the fact that templates with opposite polarities
are sometimes distributionally similar, and as a re-
sult get connected by SAME links.

Results for inhibitory ‘Proposed’ in the bottom
graph in Figure 3 shows the precision curve drawn
from the 100 samples of PROPtmp’s inhibitory can-
didates. Among the 100 samples, 41 were judged as
inhibitory, 15 as excitatory, 32 as neutral, 4 as ‘unde-
cided’, and 8 as ’split-votes’. Only the 41 inhibitory
samples were regarded as correct. From the curve
we estimate that PROPtmp achieved about 70% pre-
cision for the top 500. Note that SIM could not ac-
quire any inhibitory templates, yet we can think of
no other reasonable baseline for this task.

Inter-annotator agreement The Fleiss’ kappa
(Fleiss, 1971) of annotator judgements was 0.48
(moderate agreement (Landis and Koch, 1977)). For
training, the annotators were given a one-page anno-
tation manual (see supplementary materials), which
basically described the same contents in Section 2,

in addition to 14 examples of excitatory, 14 exam-
ples of inhibitory, and 6 examples of neutral tem-
plates that were manually prepared by the authors.
Using the manual and the examples, we instructed
all the annotators face-to-face for a few hours. We
also made sure the evaluation data did not contain
any examples used during instruction.

Observations about argument positions Among
the 200 evaluation samples of PROPtmp (for both ex-
citatory and inhibitory evaluations), 52 were judged
as excitatory, 47 as inhibitory, and 77 as neutral. For
the excitatory templates, the numbers of nominative,
topic, accusative, dative, and instrumental argument
positions are 15, 11, 10, 8, and 8, respectively. For
the inhibitory templates, the numbers are 17, 11, 16,
3, and 0. For the neutral templates, the numbers are
8, 23, 17, 21, and 8. Accordingly, we found no no-
ticeable bias with regard to their numbers. Likewise,
we found no noticeable bias regarding their useful-
ness for contradiction and causality acquisition re-
ported shortly, too.

Summary PROPtmp works well, as it outperforms
the baselines. Its performance demonstrates the va-
lidity of our constraint matrix in Table 1. Besides,
since our annotators were non-experts but showed
moderate agreement, we conclude that Excitation is
a reasonably comprehensible notion.

5.2 Contradiction Extraction
This section shows that our proposed method for
contradiction extraction (PROPcont) extracted one
million contradiction pairs with more than 70% pre-
cision, and that Excitation values are useful for con-
tradiction ranking. As input for PROPcont we took
the top 2,000 excitatory and the top 500 inhibitory
templates from the previous experiment (i.e., the
other templates were regarded as neutral).

Baselines Our baseline methods are RANDcont

and PROPcont-NE. RANDcont randomly combines
two phrases, each consisting of a template and a
noun that they share. It does not rank its output.
PROPcont-NE is the same as PROPcont except that it
does not use Excitation values; ranking is based only
on sim(t1, t2). PROPcont-NE does combine phrases
with opposite template polarities, just like PROPcont.

Evaluation scheme We randomly sampled 200
phrase pairs from the top one million results of each
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Figure 4: Precision of contradiction extraction.

PROPcont and PROPcont-NE, and 100 samples from
the output of RANDcont’s output, giving 500 sam-
ples. Three annotators labeled whether the samples
are contradictions. Fleiss’ kappa was 0.78 (substan-
tial agreement).

Results ‘Proposed’ in Figure 4 shows the preci-
sion curve of PROPcont. PROPcont achieved an esti-
mated 70% precision for its top one million results.
Readers might wonder whether PROPcont’s output
consists of a small number of template pairs that are
filled with many different nouns. If this were the
case, PROPcont’s performance would be somewhat
misleading. However, we found that PROPcont’s 200
samples contained 194 different template pairs, sug-
gesting that our method can acquire a large variety
of contradiction phrases. ‘Proposed-ne’ is the pre-
cision curve for PROPcont-NE. Its precision is more
than 10% lower than PROPcont at the top one million
results. ‘Random’ shows that RANDcont’s precision
is only 4%. Table 2 shows examples of PROPcont’s
outputs and their English translation. The labels
‘Cont,’ ‘Quasi’ and ‘6’ denote whether a pair is con-
tradictory, quasi-contradictory, or not contradictory.
Among PROPcont’s 145 samples judged by the an-
notators as contradiction, 46 were judged as quasi-
contradictory by one of the authors. The first 6
case in Table 2 was caused by the template, Xを改
善する (improve X). It is tricky since it is excitatory
when taking arguments like function, while it is in-
hibitory when taking arguments like disorder. How-
ever, PROPtmp currently cannot distinguish these us-
ages and judged it as inhibitory in our experiments
in Section 5.1, though it must be interpreted as ex-
citatory for the 6 case. The second 6 case was due
to PROPtmp’s error; it incorrectly judged the neutral
template, Xが関係する (related to X), as inhibitory.

Rank Contradiction Pairs Label
8,767 アンバランスを是正する ⊥アンバランスを生じさせる Cont

repair imbalance ⊥ become imbalanced
103,581 運転を助ける ⊥運転を妨げる Cont

assist the driver ⊥ disturb the driver
151,338 緊張感が緩和される ⊥緊張を伴う Quasi

calm tension ⊥ feel tension
184,014 機能を改善する ⊥機能を高める 6

improve function ⊥ boost function
316,881 円安が止まる ⊥円安が進行する Cont

yen depreciation stops ⊥ yen depreciation develops
317,028 騒音がひどくなる ⊥騒音は減少する Cont

noise gets worse ⊥ noise abates
334,642 酸味がます ⊥酸味が消える Cont

a sour taste is augmented ⊥ a sour taste is lost
487,496 痛みが発症する ⊥痛みを減らす Quasi

feel pain ⊥ reduce pain
529,173 アクセスが生ずる ⊥アクセスを抑制する Cont

access occurs ⊥ curb access
555,049 原発をなくす ⊥原発を増やす Cont

lose nuclear plants ⊥ augment nuclear plants
608,895 放射能が放出される ⊥放射能が減る Quasi

radioactivity is released ⊥ radioactivity is reduced
638,092 ユーロが下落する ⊥ユーロが強くなる Cont

Euro falls ⊥ Euro gets strong
757,423 シェアを有する ⊥シェアが低下する Quasi

have share (in market) ⊥ share decreases
833,941 活性酸素が放出される ⊥活性酸素が関係する 6

generate active oxygen ⊥ related to active oxygen
848,331 ガンを破壊する ⊥ガンを進行させる Cont

destroy cancer ⊥ develop cancer
982,980 ウイルスが死滅する ⊥ウイルスが活性化する Cont

virus becomes extinct ⊥ virus is activated

Table 2: Examples of PROPcont’s outputs.

Summary PROPcont is a low cost but high perfor-
mance method, since it acquired one million con-
tradiction pairs with over 70% precision from only
the 46 initial seed templates. Besides, Excitation
contributes to contradiction ranking since PROPcont

outperformed PROPcont-NE by a 10% margin for the
top one million results. Thus we conclude that our
assumption on contradiction extraction is valid.

5.3 Causality Extraction

We show that our method for causality extraction
(PROPcaus) extracted 500,000 causality pairs with
about 70% precision, and that Excitation values con-
tribute to the ranking of causal pairs. PROPcaus took
as input all 10,825 templates classified by PROPtmp.

Baselines RANDcaus randomly extracts two
phrases that co-occur in a sentence with one of the
AND/THUS-type connectives, i.e., it uses not only
non-causal connectives but also causal ones like
thus. FREQ is the same as PROPcaus except that it
ranks its output by the phrase pair co-occurrence
frequency rather than Excitation values.
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Figure 5: Precision of causality extraction.

Evaluation scheme We randomly sampled 100
pairs each from the top one million results of
PROPcaus and FREQ, and all RANDcaus’s output.
The annotators were shown the original sentences
from which the samples were extracted. Fleiss’
kappa was 0.68 (substantial agreement).

Results ‘Proposed’ in Figure 5 is the precision
curve for PROPcaus. From this curve the estimated
precision of PROPcaus is about 70% around the top
500,000. Note that PROPcaus outperformed FREQ
by a large margin, and extracted a large variety of
causal pairs since its 100 samples contained 91 dif-
ferent template pairs. Table 3 shows examples of
PROPcaus’s output along with English translations.
The labels ‘4’ and ‘6’ denote whether a pair is
causality or not. The 6 cases in Table 3 were
exceptions to our assumption described in Section
4.2; even if two Excitation templates co-occur in a
sentence with an AND/THUS-type connective, they
sometimes do not constitute causality. Actually, the
first 6 case consists of two phrases that co-occurred
in a sentence with a (non-causal) AND/THUS-type
connective but described two events that happen as
the effects of introducing the RAID storage system;
both are caused by the third event. In the second 6
case, the two phrases co-occurred in a sentence with
a (non-causal) AND/THUS-type connective but just
described two opposing events.

Summary PROPcaus performs well since it ex-
tracted 500,000 causality pairs with about 70%
precision. Moreover, Excitation values contribute
to causality ranking since PROPcaus outperformed
FREQ by a large margin. Then we conclude that our
assumption on causality extraction is confirmed.

Rank Causality Pairs Label
1,036 基礎代謝を高める⇒脂肪燃焼力を高める 4

increase basal metabolism ⇒ enhance fat-burning ability
2,128 学習意欲を高める⇒自己学習を促進する 4

increase desire to learn ⇒ facilitate self-learning
6,471 信頼性を高める⇒容量を増やす 6

improve reliability ⇒ increase capacity
29,638 血中甲状腺ホルモン濃度が高まる⇒新陳代謝が高まる 4

circulating thyroid hormone level increases ⇒ improves metabolism
56,868 輸出が増える⇒ＧＤＰが増加する 4

exports increase ⇒ GDP grows
267,364 血行を促進する⇒新陳代謝を助ける 4

promote blood circulation ⇒ improve metabolism
268,670 ＢＳＥが発生する⇒輸入禁止になる 4

BSE outbreak occurs ⇒ import ban (on beef) is issued
290,846 視界が良くなる⇒作業効率が向上する 4

improve the view ⇒ improve the efficiency of work
322,121 大地震が発生する⇒メルトダウンを起こす 4

giant earthquake occurs ⇒ meltdown is triggered
532,106 熱効率が良い⇒暖房効果を高める 4

good at thermal efficiency ⇒ enhance heating efficiency
563,462 インフレを起こす⇒円安が進行する 4

promote inflation (in Japan) ⇒ yen depreciation develops
591,175 利益をもたらす⇒不利益をもたらす 6

bring profit ⇒ bring detriment
657,676 体力が落ちる⇒免疫力が下がる 4

physical strength declines ⇒ immune system weakens
676,902 国債先物急落を受ける⇒金利が上昇する 4

sharp fall in government bond futures occurs ⇒ interest rates increase
914,101 誤差が出る⇒めいわくをかける 4

have a margin of error ⇒ cause trouble

Table 3: Examples of PROPcaus’s outputs.

5.4 Causality Hypothesis Generation

Here we show that our causality hypothesis genera-
tion method in Section 4.3 (PROPhyp) extracted one
million hypotheses with about 57% precision.

This experiment took the top 100,000 results of
PROPcaus as input, generated hypotheses from them,
and randomly selected 100 samples from the top one
million hypotheses. We evaluated only PROPcaus,
since we could not think of any reasonable baseline
for this task. Randomly coupling two phrases might
be a baseline, but it would perform so poorly that it
could not be a reasonable baseline.

The annotators judged each sample in the same
way as Section 5.3, except that we presented them
with source causality pairs from which hypotheses
were generated, as well as the original sentences of
these source pairs. Fleiss’ kappa was 0.51 (moderate
agreement).

As a result, PROPhyp generated one million hy-
potheses with 57% precision. It generated various
kinds of hypotheses, since these 100 samples con-
tained 99 different template pairs. Table 4 shows
some causal hypotheses generated by PROPhyp. The
source causal pair is shown in parentheses. The la-
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bels ‘4’ and ‘6’ denote whether a pair is causality
or not. The first 6 case was due to an error made by

Rank Causality Hypotheses (and their Origin) Label
18,886 ストレスが減少する⇒不眠が改善される 4

(ストレスが増加する⇒不眠が続く) 4
alleviate stress ⇒ remedy insomnia
(increase stress ⇒ continue to have insomnia)

93,781 デフレを阻止する⇒税収が増加する 4
(デフレが進む⇒税収が減る) 4
halt deflation ⇒ tax revenue increases
(deflation is promoted ⇒ tax revenes declines)

121,163 楽しみが増大する⇒ストレスが減少する 4
(楽しみが減る⇒ストレスが高まる) 4
enjoyment increases ⇒ stress decreases
(enjoyment decreases ⇒ stress grows)

205,486 犯罪を減らす⇒不安が無くなる 4
(犯罪が増加する⇒不安が高まる) 4
decrease in crime ⇒ diminish anxiety
(increase in crime ⇒ heighten anxiety)

253,531 塩素を減らす⇒バクテリアは増殖する 4
(塩素を発生させる⇒バクテリアを死滅させる) 4
reduce chlorine ⇒ bacteria grow
(generate chlorine ⇒ bacteria extinct)

450,353 需要が拡大する⇒失業を減少させる 4
(需要が減る⇒失業が増える) 4
expand demand ⇒ decrease unemployment rate
(decrease demand ⇒ increase unemployment rate)

464,546 消化が悪くなる⇒コレステロールを増やす 6
(消化を助ける⇒コレステロールを減らす) 6
(ability of) digestion deteriorates ⇒ cholesterol increases
(aid digestion ⇒ decrease cholesterol)

538,310 疲れを軽減する⇒免疫を増強する 4
(疲れがたまる⇒免疫が弱まる) 4
relieve fatigue ⇒ improve immunity
(feel fatigued ⇒ immunity is weakened)

789,481 調子があがる⇒トラブルを防げる 4
(調子が悪くなる⇒トラブルが起きる) 4
conditions improve ⇒ prevent troubles
(conditions become bad ⇒ cause troubles)

837,850 景気をコントロールする⇒問題を伴う 6
(景気が良くなる⇒問題が解消される) 4
control economic conditions ⇒ accompany problems
(economic conditions improve ⇒ problems are solved)

Table 4: Examples of causality hypotheses.

our causality extraction method PROPcaus; the case
was erroneous since its original causality was erro-
neous. The second 6 case was due to the fact that
one of the contradiction phrase pairs used to gener-
ate the hypothesis was in fact not contradictory (景
気をコントロールする 6⊥ 景気が良くなる ‘con-
trol economic conditions 6⊥ economic conditions im-
prove’).

From these results, we conclude that our assump-
tion on causality hypothesis generation is valid.

6 Related Work

While the semantic orientation involving good/bad
(or desirable/undesirable) has been extensively stud-

ied (Hatzivassiloglou and McKeown, 1997; Turney,
2002; Rao and Ravichandran, 2009; Velikovich et
al., 2010), we believe Excitation represents a gen-
uinely new semantic orientation.

Most previous methods of contradiction extrac-
tion require either thesauri like Roget’s or WordNet
(Harabagiu et al., 2006; Mohammad et al., 2008; de
Marneffe et al., 2008) or large training data for su-
pervision (Turney, 2008). In contrast, our method
requires only a few seed templates. Lin et al. (2003)
used a few “incompatibility” patterns to acquire
antonyms, but they did not report their method’s per-
formance on the incompatibility identification task.

Many methods for extracting causality or script-
like knowledge between events exist (Girju, 2003;
Torisawa, 2005; Torisawa, 2006; Abe et al., 2008;
Chambers and Jurafsky, 2009; Do et al., 2011; Shi-
bata and Kurohashi, 2011), but none uses a notion
similar to Excitation. As we have shown, we expect
that Excitation will improve their performance.

Regarding the acquisition of semantic knowledge
that is not explicitly written in corpora, Tsuchida et
al. (2011) proposed a novel method to generate se-
mantic relation instances as hypotheses using auto-
matically discovered inference rules. We think that
automatically generating plausible semantic knowl-
edge that is not written (explicitly) in corpora as hy-
potheses and augmenting semantic knowledge base
is important for the discovery of so-called “unknown
unknowns” (Torisawa et al., 2010), among others.

7 Conclusion

We proposed a new semantic orientation, Excitation,
and its acquisition method. Our experiments showed
that Excitation allows to acquire one million con-
tradiction pairs with over 70% precision, as well as
causality pairs and causality hypotheses of the same
volume with reasonable precision from the Web. We
plan to make all our acquired knowledge resources
available to the research community soon (Visit
http://www.alagin.jp/index-e.html).

We will investigate additional applications of Ex-
citation in future work. For instance, we expect that
Excitation and its related semantic knowledge ac-
quired in this study will improve the performance
of Why-QA system like the one proposed by Oh et
al. (2012).
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Abstract
This paper presents a paraphrase acquisition
method that uncovers and exploits generali-
ties underlying paraphrases: paraphrase pat-
terns are first induced and then used to col-
lect novel instances. Unlike existing methods,
ours uses both bilingual parallel and monolin-
gual corpora. While the former are regarded as
a source of high-quality seed paraphrases, the
latter are searched for paraphrases that match
patterns learned from the seed paraphrases.
We show how one can use monolingual cor-
pora, which are far more numerous and larger
than bilingual corpora, to obtain paraphrases
that rival in quality those derived directly from
bilingual corpora. In our experiments, the
number of paraphrase pairs obtained in this
way from monolingual corpora was a large
multiple of the number of seed paraphrases.
Human evaluation through a paraphrase sub-
stitution test demonstrated that the newly ac-
quired paraphrase pairs are of reasonable qual-
ity. Remaining noise can be further reduced
by filtering seed paraphrases.

1 Introduction

Paraphrases are semantically equivalent expressions
in the same language. Because “equivalence” is the
most fundamental semantic relationship, techniques
for generating and recognizing paraphrases play an
important role in a wide range of natural language
processing tasks (Madnani and Dorr, 2010).

In the last decade, automatic acquisition of knowl-
edge about paraphrases from corpora has been draw-
ing the attention of many researchers. Typically, the
acquired knowledge is simply represented as pairs of
semantically equivalent sub-sentential expressions
as in (1).

(1) a. look like ⇔ resemble
b. control system ⇔ controller

The challenge in acquiring paraphrases is to ensure
good coverage of the targeted classes of paraphrases
along with a low proportion of incorrect pairs. How-
ever, no matter what type of resource has been used,
it has proven difficult to acquire paraphrase pairs
with both high recall and high precision.

Among various types of corpora, monolingual
corpora can be considered the best source for high-
coverage paraphrase acquisition, because there is
far more monolingual than bilingual text avail-
able. Most methods that exploit monolingual cor-
pora rely on the Distributional Hypothesis (Harris,
1968): expressions that appear in similar contexts
are expected to have similar meaning. However,
if one uses purely distributional criteria, it is dif-
ficult to distinguish real paraphrases from pairs of
expressions that are related in other ways, such as
antonyms and cousin words.

In contrast, since the work in (Bannard and
Callison-Burch, 2005), bilingual parallel corpora
have been acknowledged as a good source of high-
quality paraphrases: paraphrases are obtained by
putting together expressions that receive the same
translation in the other language (pivot language).
Because translation expresses a specific meaning
more directly than context in the aforementioned ap-
proach, pairs of expressions acquired in this manner
tend to be correct paraphrases. However, the cov-
erage problem remains: there is much less bilingual
parallel than monolingual text available.

Our objective in this paper is to obtain para-
phrases that have high quality (like those extracted
from bilingual parallel corpora via pivoting) but can
be generated in large quantity (like those extracted
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from monolingual corpora via contextual similar-
ity). To achieve this, we propose a method that ex-
ploits general patterns underlying paraphrases and
uses both bilingual parallel and monolingual sources
of information. Given a relatively high-quality set of
paraphrases obtained from a bilingual parallel cor-
pus, a set of paraphrase patterns is first induced.
Then, appropriate instances of such patterns, i.e.,
potential paraphrases, are harvested from a mono-
lingual corpus.

After reviewing existing methods in Section 2,
our method is presented in Section 3. Section 4
describes our experiments in acquiring paraphrases
and presents statistics summarizing the coverage of
our method. Section 5 describes a human evaluation
of the quality of the acquired paraphrases. Finally,
Section 6 concludes this paper.

2 Literature on Paraphrase Acquisition

This section summarizes existing corpus-based
methods for paraphrase acquisition, following the
classification in (Hashimoto et al., 2011): similarity-
based and alignment-based methods.

2.1 Similarity-based Methods
Techniques that use monolingual (non-parallel) cor-
pora mostly rely on the Distributional Hypothesis
(Harris, 1968). Because a large quantity of mono-
lingual data is available for many languages, a large
number of paraphrase candidates can be acquired
(Lin and Pantel, 2001; Paşca and Dienes, 2005; Bha-
gat and Ravichandran, 2008, etc.). The recipes pro-
posed so far are based on three main ingredients, i.e.,
features used for representing context of target ex-
pression (contextual features), criteria for weighting
and filtering features, and aggregation functions.

A drawback of relying only on contextual simi-
larity is that it tends to give high scores to semanti-
cally related but non-equivalent expressions, such as
antonyms and cousin words. To enhance the preci-
sion of the results, filtering mechanisms need to be
introduced (Marton et al., 2011).

2.2 Alignment-based Methods
Pairs of expressions that get translated to the same
expression in a different language can be regarded as
paraphrases. On the basis of this hypothesis, Barzi-
lay and McKeown (2001) and Pang et al. (2003)

created monolingual parallel corpora from multiple
human translations of the same source. Then, they
extracted corresponding parts of such parallel sen-
tences as sub-sentential paraphrases.

Leveraging recent advances in statistical ma-
chine translation (SMT), Bannard and Callison-
Burch (2005) proposed a method for acquiring sub-
sentential paraphrases from bilingual parallel cor-
pora. As in SMT, a translation table is first built on
the basis of alignments between expressions, such as
words, phrases, and subtrees, across a parallel sen-
tence pair. Then, pairs of expressions (e1, e2) in the
same language that are aligned with the same ex-
pressions in the other language (pivot language) are
extracted as paraphrases. The likelihood of e2 being
a paraphrase of e1 is given by

p(e2|e1) =
∑

f∈Tr(e1,e2)

p(e2|f)p(f |e1), (1)

where Tr(e1, e2) stands for the set of shared trans-
lations of e1 and e2. Each factor p(e|f) and p(f |e)
is estimated from the number of times e and f are
aligned and the number of occurrences of each ex-
pression in each language. Kok and Brockett (2010)
showed how one can discover paraphrases that do
not share any translation in one language by travers-
ing a graph created from multiple translation tables,
each corresponding to a bilingual parallel corpus.

This approach, however, suffers from a cover-
age problem, because both monolingual parallel and
bilingual parallel corpora tend to be significantly
smaller than monolingual non-parallel corpora. The
acquired pairs of expressions include some non-
paraphrases as well. Many of these come from er-
roneous alignments, which are particularly frequent
when the given corpus is small.

Monolingual comparable corpora have also been
exploited as sources of paraphrases using alignment-
based methods. For instance, multiple news arti-
cles covering the same event (Shinyama et al., 2002;
Barzilay and Lee, 2003; Dolan et al., 2004; Wubben
et al., 2009) have been used. Such corpora have
also been created manually through crowdsourcing
(Chen and Dolan, 2011). However, the availabil-
ity of monolingual comparable corpora is very lim-
ited for most languages; thus, approaches relying
on these corpora have typically produced only very
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small collections of paraphrases. Hashimoto et al.
(2011) found a way around this limitation by collect-
ing sentences that constitute explicit definitions of
particular words or phrases from monolingual non-
parallel Web documents, pairing sentences that de-
fine the same noun phrase, and then finding corre-
sponding phrases in each sentence pair. One limita-
tion of this approach is that it requires a considerable
amount of labeled data for both the corpus construc-
tion and the paraphrase extraction steps.

2.3 Summary

Existing methods have investigated one of the fol-
lowing four types of corpora as their principal re-
source1: monolingual non-parallel corpora, mono-
lingual parallel corpora, monolingual comparable
corpora, and bilingual parallel corpora. No matter
what type of resource has been used, however, it
has proven difficult to acquire paraphrases with both
high recall and precision, with the possible excep-
tion of the method in (Hashimoto et al., 2011) which
requires large amounts of labeled data.

3 Proposed Method

While most existing methods deal with expressions
only at the surface level, ours exploits generalities
underlying paraphrases to achieve better coverage
while retaining high precision. Furthermore, unlike
existing methods, ours uses both bilingual parallel
and monolingual non-parallel corpora as sources for
acquiring paraphrases.

The process is illustrated in Figure 1. First, a
set of high-quality seed paraphrases, PSeed , is ac-
quired from bilingual parallel corpora by using an
alignment-based method. Then, our method collects
further paraphrases through the following two steps.

Generalization (Step 2): Paraphrase patterns are
learned from the seed paraphrases, PSeed .

Instantiation (Step 3): A novel set of paraphrase
pairs, PHvst , is finally harvested from mono-
lingual non-parallel corpora using the learned
patterns; each newly acquired paraphrase pair
is assessed by contextual similarity.

1Chan et al. (2011) used monolingual corpora only for re-
ranking paraphrases obtained from bilingual parallel corpora.
To the best of our knowledge, bilingual comparable corpora
have never been used as sources for acquiring paraphrases.

Monolingual 
Non-parallel 

Corpus

Step 1. Seed Paraphrase Acquisition

Step 2. Paraphrase Pattern Induction

Step 3. Paraphrase Instance Acquisition

“health issue” ⇒ “health problem” 
“look like” ⇒ “resemble” 
“regional issue” ⇒ “regional problem” 

“health issue” ⇒ “problème de santé” 
“health problem” ⇒ “problème de santé” 
“look like” ⇒ “ressemble” 
“regional issue” ⇒ “problème régional” 
“regional problem” ⇒ “problème régional” 
“resemble” ⇒ “ressemble” 

“X issue” ⇒ “X problem”; 
        {food, regional, ...}

“backlog issue” ⇒ “backlog problem” 
“communal issue” ⇒ “communal problem” 
“phishing issue” ⇒ “phishing problem” 
“spatial issue” ⇒ “spatial problem”

Translation 
Table

PSeed: Seed 
Paraphrases

Paraphrase 
Patterns

PHvst: Novel 
Paraphrases

Bilingual 
Parallel 
Corpus

Figure 1: Process of paraphrase acquisition.

The set PSeed acquired early in the process can be
pooled with the set PHvst harvested in the last stage
of the process.

3.1 Step 1. Seed Paraphrase Acquisition

The goal of the first step is to obtain a set of high-
quality paraphrase pairs, PSeed .

For this purpose, alignment-based methods with
bilingual or monolingual parallel corpora are prefer-
able to similarity-based methods applied to non-
parallel corpora. Among various options, in this pa-
per, we start from the standard technique proposed
by Bannard and Callison-Burch (2005) with bilin-
gual parallel corpora (see also Section 2.2). In par-
ticular, we assume the phrase-based SMT frame-
work (Koehn et al., 2003). Then, we purify the re-
sults with several filtering methods.

The phrase pair extraction process of phrase-
based SMT systems aims at high recall for increased
robustness of the translation process. As a result,
a naive application of the paraphrase acquisition
method produces pairs of expressions that are not
exact paraphrases. For instance, the algorithm ex-
plained in Koehn (2009, p.134) extracts both “dass”
and “, dass” as counterparts of “that” from the sen-
tence pair. To reduce that kind of noise, we apply
some filtering techniques to the candidate translation
pairs. First, statistically unreliable translation pairs
(Johnson et al., 2007) are filtered out. Then, we also
filter out phrases made up entirely of stop words (in-
cluding punctuation marks), both in the language of
interest and in the pivot language.

Let PRaw be the initial set of paraphrase pairs ex-
tracted from the sanitized translation table. We first
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lp: control apparatus

rp: control devicep(rp|lp)
.172

rp: control system
.032

rp: the control device
.015

rp: control device of the.005

rp: controlling device
.004

rp: control system of

.003

rp: a control system for an

.001

rp: a controlling device

.001

Figure 2: RHS-filtering for “control apparatus”.

rp: control device

lp: controller p(lp|rp)
.153

lp: control apparatus
.135

lp: the control apparatus
.010

lp: control apparatus of .008

lp: controlling unit
.004

lp: control equipment

.002

lp: controller for a

.001

lp: to the control apparatus

.001

Figure 3: LHS-filtering for “control device”.

discard pairs whose difference comprises only stop
words, such as “the schools” ⇒ “schools and”. We
also remove pairs containing only singular-plural
differences, such as “family unit” ⇒ “family units”.
Depending on the language of interest, other types of
morphological variants, such as those shown in (2),
may also be ignored.
(2) a. “européenne” ⇒ “européen”

(Gender in French)
b. “guten Lösungen” ⇒ “gute Lösungen”

(Case in German)
We further filter out less reliable pairs, such as

those shown with dotted lines in Figures 2 and 3.
This is carried out by comparing the right-hand side
(RHS) phrases of each left-hand side (LHS) phrase,
and vice versa2. Given a set of paraphrase pairs,
RHS phrases corresponding to the same LHS phrase
lp are compared. A RHS phrase rp is not licensed iff
lp has another RHS phrase rp′ (̸= rp) which satis-
fies the following two conditions (see also Figure 2).
• rp′ is a word sub-sequence of rp

• rp′ is a more likely paraphrase than rp,
i.e., p(rp ′|lp) > p(rp|lp)

LHS phrases for each RHS phrase rp are also com-
pared in a similar manner, i.e., a LHS phrase lp is
not qualified as a legitimate source of rp iff rp has
another LHS phrase lp′ (̸= lp) which satisfies the
following conditions (see also Figure 3).
• lp′ is a word sub-sequence of lp

• lp′ is a more likely source than lp,
i.e., p(lp ′|rp) > p(lp|rp)

The two directions of filtering are separately applied
and the intersection of their results is retained.

2cf. Denkowski and Lavie (2011); they only compared each
RHS phrase to its corresponding LHS phrase.

Candidate pairs are finally filtered on the basis
of their reliability score. Traditionally, a threshold
(thp) on the conditional probability given by Eq. (1)
is used (Du et al., 2010; Max, 2010; Denkowski
and Lavie, 2011, etc.). Furthermore, we also re-
quire that LHS and RHS phrases exceed a thresh-
old (ths ) on their contextual similarity in a mono-
lingual corpus. This paper neither proposes a spe-
cific recipe nor makes a comprehensive comparison
of existing recipes for computing contextual simi-
larity, although one particular recipe is used in our
experiments (see Section 4.1).

3.2 Step 2. Paraphrase Pattern Induction

From a set of seed paraphrases, PSeed , paraphrase
patterns are induced. For instance, from paraphrases
in (3), we induce paraphrase patterns in (4).

(3) a. “restraint system” ⇒ “restraint apparatus”
b. “movement against racism”

⇒ “anti-racism movement”
c. “middle eastern countries”

⇒ “countries in the middle east”

(4) a. “X system” ⇒ “X apparatus”
b. “X against Y ” ⇒ “anti-Y X”
c. “X eastern Y ” ⇒ “Y in the X east”

Word pairs of LHS and RHS phrases will be re-
placed with variable slots iff they are fully identi-
cal or singular-plural variants. Note that stop words
are retained. While a deeper level of lexical cor-
respondences, such as “eastern” and “east” in (3c)
and “system” and “apparatus” in (3a), could be cap-
tured, this would require the use of rich language
resources, thereby making the method less portable
to resource-poor languages.
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Note that our aim is to automatically capture gen-
eral paraphrase patterns of the kind that have some-
times been manually described (Jacquemin, 1999;
Fujita et al., 2007). This is different from ap-
proaches that attach variable slots to paraphrases for
calculating their similarity (Lin and Pantel, 2001;
Szpektor and Dagan, 2008) or for constraining
the context in which they are regarded legitimate
(Callison-Burch, 2008; Zhao et al., 2009).

3.3 Step 3. Paraphrase Instance Acquisition
Given a set of paraphrase patterns, such as those
shown in (4), a set of novel instances, i.e., novel
paraphrases, PHvst , will now be harvested from
monolingual non-parallel corpora. In other words,
a set of appropriate slot-fillers will be extracted.

First, expressions that match both elements of
the pattern, except stop words, are collected from
a given monolingual corpus. Pattern matching alone
may generate inappropriate pairs, so we then assess
the legitimacy of each collected slot-filler.

Let LHS (w) and RHS (w) be the expressions
generated by instantiating the k variable slots in
LHS and RHS phrases of the pattern with a k-tuple
of slot-fillers w (= w1, . . . , wk), respectively. We
estimate how likely RHS (w) is to be a paraphrase of
LHS (w) based on the contextual similarity between
them using a monolingual corpus; a pair of phrases
is discarded if they are used in substantially dissim-
ilar contexts. We use the same recipe and threshold
value for ths with Step 1 in our experiments.

Contextual similarity of antonyms and cousin
words can also be high, as they are often used in sim-
ilar contexts. However, this is not a problem in our
framework, because semantic equivalence between
LHS (w) and RHS (w) is almost entirely guaran-
teed as a result of the way the corresponding patterns
were learned from a bilingual parallel corpus.

3.4 Characteristics
In terms of coverage, PHvst is expected to be greatly
larger than PSeed , although it will not cover to-
tally different pairs of paraphrases, such as those
shown in (1). On the other hand, the quality of
PHvst depends on that of PSeed . Unlike in the pure
similarity-based method, PHvst is constrained by the
paraphrase patterns derived from the set of high-
quality paraphrases, PSeed , and will therefore gen-

erally exclude the kind of semantically similar but
non-equivalent pairs that contextual similarity alone
tends to extract alongside real paraphrases.

As mentioned in Section 3.1, other types of meth-
ods can be used for obtaining high-quality seed
paraphrases, PSeed . For instance, the supervised
method proposed by Hashimoto et al. (2011) uses
the existence of shared words as a feature to deter-
mine whether the given pair of expressions are para-
phrases, and thereby extracts many pairs sharing the
same words. Thus, their output has a high potential
to be used as an alternative seed for our method.

Another advantage of our method is that it does
not require any labeled data, unlike the super-
vised methods proposed by Zhao et al. (2009) and
Hashimoto et al. (2011).

4 Quantitative Impact

4.1 Experimental Settings

Two different sets of corpora were used as data
sources; in both settings, we acquired English para-
phrases.
Europarl: The English-French version of the Eu-

roparl Parallel Corpus3 consisting of 1.8M sen-
tence pairs (51M words in English and 56M
words in French) was used as a bilingual par-
allel corpus, while its English side and the En-
glish side of the 109 French-English corpus4

consisting of 23.8M sentences (649M words)
were used as monolingual data.

Patent: The Japanese-English Patent Translation
data (Fujii et al., 2010) consisting of 3.2M sen-
tence pairs (122M morphemes in Japanese and
106M words in English) was used as a bilingual
parallel corpus, while its English side and the
30.0M sentences (626M words) from the 2007
chapter of NTCIR unaligned patent documents
were used as monolingual data.

To study the behavior of our method for different
amounts of bilingual parallel data, we carried out
learning curve experiments.

We used our in-house tokenizer for segmentation
of English and French sentences and MeCab5 for
Japanese sentences.

3http://statmt.org/europarl/, release 6
4http://statmt.org/wmt10/training-giga-fren.tar
5http://mecab.sourceforge.net/, version 0.98
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Figure 4: # of paraphrase pairs in PSeed (left: Europarl, right: Patent).

Stop word lists for sanitizing translation pairs and
paraphrase pairs were manually compiled: we enu-
merated 442 English words, 193 French words, and
149 Japanese morphemes, respectively.

From a bilingual parallel corpus, a translation ta-
ble was created by our in-house phrase-based SMT
system, PORTAGE (Sadat et al., 2005). Phrase
alignments of each sentence pair were identified by
the heuristic “grow-diag-final”6 with a maximum
phrase length 8. The resulting translation pairs were
then filtered with the significance pruning technique
of (Johnson et al., 2007), using α + ϵ as threshold.

As contextual features for computing similarity
of each paraphrase pair, all of the 1- to 4-grams of
words adjacent to each occurrence of a phrase were
counted. This is a compromise between less expen-
sive but noisier approaches, such as bag-of-words,
and more accurate but more expensive approaches
that incorporate syntactic features (Lin and Pantel,
2001; Shinyama et al., 2002; Pang et al., 2003;
Szpektor and Dagan, 2008). Contextual similarity is
finally measured by taking cosine between two fea-
ture vectors.

4.2 Statistics on Acquired Paraphrases
Seed Paraphrases (PSeed )

Figure 4 shows the number of paraphrase pairs
PSeed obtained from the bilingual parallel corpora.
The general trend is simply that the larger the cor-
pus is, the more paraphrases are acquired.

Given the initial set of paraphrases, PRaw (“×”),
our filtering techniques (“2”) discarded a large por-
tion (63-75% in Europarl and 43-64% in Patent) of
them. Pairs with zero similarity were also filtered
out, i.e., ths = ϵ. This suggests that many incorrect

6http://statmt.org/moses/?n=FactoredTraining.AlignWords

and/or relatively useless pairs, such as those shown
in Figures 2 and 3, had originally been acquired.

Lines with “◦” show the results based on a
widely-used threshold value on the conditional prob-
ability in Eq. (1), i.e., thp = 0.01 (Du et al., 2010;
Max, 2010; Denkowski and Lavie, 2011, etc.). The
percentage of paraphrase pairs thereby discarded
varied greatly depending on the corpus size (17-78%
in Europarl and 31-82% in Patent), suggesting that
the threshold value should be determined depending
on the given corpus. In the following experiment,
however, we conform to the convention thp = 0.01
(“△”) to ensure the quality of PSeed that we will be
using for inducing paraphrase patterns, even though
this results in discarding some less frequent but cor-
rect paraphrase pairs, such as “control apparatus”
⇒ “controlling device” in Figure 2.

Paraphrase Patterns
Figures 5 and 6 show the number of paraphrase

patterns that our method induced and their cover-
age against PSeed , respectively. Due to their rather
rigid form, the patterns covered no more than 15%
of PSeed in Europarl. In contrast, a higher propor-
tion of PSeed in Patent was generalized into patterns.
We speculate it is because the patent domain con-
tains many expressions, including technical terms,
that have similar variations of constructions.

The acquired patterns were mostly one-variable
patterns: 88-93% and 80-91% of total patterns for
different variants of the Europarl and Patent set-
tings, respectively. Given that there are far more
one-variable patterns than other types, and that one-
variable patterns are the simplest type, we hence-
forth focus on them. More complex patterns, includ-
ing two-variable patterns (7-11% and 8-17% in each
setting), will be investigated in our future work.
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Figure 7: # of paraphrase pairs and unique LHS phrases in PSeed and PHvst (left: Europarl, right: Patent).

Novel Paraphrases (PHvst )
Using the paraphrase patterns, novel paraphrase

pairs, PHvst , were harvested from the monolingual
non-parallel corpora. In this experiment, we only
retained one-variable patterns and regarded only sin-
gle words as slot-fillers for them. Nevertheless, we
managed to acquire a large number of paraphrase
pairs as depicted in Figure 7, where pairs having
zero similarity were excluded. For instance, when
the full size of bilingual parallel corpus in Patent was
used, we acquired 1.41M pairs of seed paraphrases,
PSeed , and 28.7M pairs of novel paraphrases, PHvst .
In other words, our method expanded PSeed by about
21 times. The number of unique LHS phrases that
PHvst covers was also significantly larger than that
of PSeed .

Figure 8 highlights the remarkably large ratio of
PHvst to PSeed in terms of the number of paraphrase
pairs and the number of unique LHS phrases. The
smaller the bilingual corpus is, the higher the ratio
is, except when there is only a very small amount of
Europarl data. This demonstrates that our method is
quite powerful, given a minimum amount of data.

Another striking difference between PSeed and
PHvst is the average number of RHS phrases per

unique LHS phrase, i.e., their relative yield. As
displayed in Figure 9, the yield for PHvst increased
rapidly with the scaling up of the bilingual cor-
pus, while that of PSeed only grew slowly. The
alignment-based method with bilingual corpora can-
not produce very many RHS phrases per unique
LHS phrase due to its reliance on conditional prob-
ability and the surface level processing. In con-
trast, our method does not limit the number of RHS
phrases: each RHS phrase is separately assessed by
its similarity to the corresponding LHS phrase. One
limitation of our method is that it cannot achieve
high yield for PHvst whenever only a small num-
ber of paraphrase patterns can be extracted from the
bilingual corpus (see also Figure 5).

Both the ratio of PHvst to PSeed and the relative
yield could probably be increased by scaling up the
monolingual corpus. For instance, in the patent do-
main, monolingual documents 10 times larger than
the one used in the above experiments are avail-
able at the NTCIR project7. It would be interesting
to compare the relative gains brought by in-domain
versus general-purpose corpora.

7http://ntcir.nii.ac.jp/PatentMT-2/
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Figure 10: # of acquired paraphrase pairs against threshold values.
(left: probability-based (0.01 ≤ thp ≤ 0.9, ths = ϵ), right: similarity-based (ϵ ≤ ths ≤ 0.9, thp = 0.01))

Finally, we investigated how the number of para-
phrase pairs varies depending on the values for the
two thresholds, i.e., thp on the conditional probabil-
ity and ths on the contextual similarity, respectively.
Figure 10 shows the results when the full sizes of
bilingual corpora are used. When the pairs were fil-
tered only with thp , the number of paraphrase pairs
in PHvst decreased more slowly than that of PSeed

according to the increase of the threshold value. This
is a benefit from our generalization and instantiation
method. The same paraphrase pattern is often in-
duced from more than one paraphrase pair in PSeed .
Thus, as long as at least one of them has a proba-
bility higher than the given threshold value, corre-
sponding novel paraphrases can be harvested.

On the other hand, as a results of assessing each
individual paraphrase pair by the contextual similar-
ity, many pairs in PHvst , which are supposed to be
incorrect instances of their corresponding pattern,
are filtered out by a larger threshold value for ths .
In contrast, many pairs in PSeed have a relatively
high similarity, e.g., 40% of all pairs have similarity
higher than 0.4. This indicates the quality of PSeed

is highly guaranteed by the shared translations.

5 Human Evaluation of Quality

To confirm that the quality of PHvst is sufficiently
high, we carried out a substitution test.

First, by substituting sub-sentential paraphrases
to existing sentences in a given test corpus, pairs
of slightly different sentences were automatically
generated. For instance, by applying “looks like”
⇒ “resembles” to (5), (6) was generated.
(5) The roof looks like a prehistoric lizard’s spine.
(6) The roof resembles a prehistoric lizard’s spine.
Human evaluators were then asked to score each
pair of an original sentence and a paraphrased sen-
tence with the following two 5-point scale grades
proposed by Callison-Burch (2008):
Grammaticality: whether the paraphrased sen-

tence is grammatical (1: horrible, 5: perfect)
Meaning: whether the meaning of the original sen-

tence is properly retained by the paraphrased
sentence (1: totally different, 5: equivalent)

To make results more consistent and reduce the
human labor, evaluators were asked to rate at the
same time several paraphrases for the same source
phrase. For instance, given a source sentence (5), the
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evaluators might be given the following sentences in
addition to a paraphrased sentence (6).
(7) The roof seems like a prehistoric lizard’s spine.
(8) The roof would look like a prehistoric lizard’s spine.

In this experiment, we showed five paraphrases
per source phrase, assuming that evaluators would
get confused if too large a number of paraphrase
candidates were presented at the same time.

5.1 Data for Evaluation
As in previous work (Callison-Burch, 2008; Chan
et al., 2011), we evaluated paraphrases acquired
from the Europarl corpus on news sentences. Para-
phrase examples were automatically generated from
the English part of WMT 2008-2011 “newstest” data
(10,050 unique sentences) by applying the union of
PSeed and PHvst of the Europarl setting (19.3M para-
phrases for 5.95M phrases).

On the other hand, paraphrases acquired from
patent documents are much more difficult to eval-
uate due to the following reasons. First, they may
be too domain-specific to be of any use in general
areas such as news sentences. However, conduct-
ing an in-domain evaluation would be difficult with-
out enrolling domain experts. We expect that para-
phrases from a domain can be used safely in that
domain. Nevertheless, deciding under what circum-
stances they can be used safely in another domain is
an interesting research question.

To reduce the human labor for the evaluation, sen-
tences were restricted to those with moderate length:
10-30 words, which are expected to provide suf-
ficient but succinct context. To propose multiple
paraphrase candidates at the same time, we also re-
stricted phrases to be paraphrased (LHS phrases) to
those having at least five paraphrases including ones
from PHvst . This resulted in 60,421 paraphrases for
988 phrase tokens (353 unique phrases).

Finally, we randomly sampled 80 unique phrase
tokens and five unique paraphrases for each phrase
token (400 examples in total), and asked six people
having a high level of English proficiency to evalu-
ate them. Inter-evaluator agreement was calculated
from five different pairs of evaluators, each judging
the same 10 examples. The remaining 350 exam-
ples were divided into six chunks of slightly unequal
length, with each chunk being judged by one of the
six evaluators.

5-point Binary
n G M G M Both

PSeed 55 4.60 4.35 0.85 0.93 0.78
PHvst 295 4.22 3.35 0.74 0.67 0.55
Total 350 4.28 3.50 0.76 0.71 0.58

Table 1: Avg. score and precision of binary classification.

5.2 Results

Table 1 shows the average of the original 5-point
scale scores and the percentage of examples that
are judged correct based on a binary judgment
(Callison-Burch, 2008): an example is considered to
be correct iff the grammaticality score is 4 or above
and/or the meaning score is 3 or above. Paraphrases
based on PSeed achieved a quite high performance
in both grammaticality (“G”) and meaning (“M”) in
part because of the effectiveness of our filtering tech-
niques. The performance of paraphrases drawn from
PHvst was reasonably high and similar to the scores
0.68 for grammaticality, 0.61 for meaning, and 0.55
for both, of the best model reported in (Callison-
Burch, 2008), although it was inferior to PSeed .

Despite the fact that all of our evaluators had a
high-level command of English, the agreement was
not very high. This was true even when the col-
lected scores were mapped into binary classes. In
this case, the κ values (Cohen, 1960) for each crite-
rion were 0.45 and 0.45, respectively, which indicate
the agreement was “fair”. To obtain a better κ value,
the criteria for grading will need to be improved.
However, we think that was not too low either8.

The most promising way for improving the qual-
ity of PHvst is to ensure that paraphrase patterns
cover only legitimate paraphrases. We investigated
this by filtering the manually scored paraphrase ex-
amples with two thresholds for cleaning seed para-
phrases PSeed : thp on the conditional probability es-
timated using the bilingual parallel corpus and ths

on the contextual similarity in the monolingual non-
parallel corpus. Figure 11 shows the average score
of the examples whose corresponding paraphrase is
obtainable with the given threshold values. Note that
the points in the figure with higher threshold values
are less reliable than the others, because filtering re-
duces the number of the manually scored examples

8Note that Callison-Burch (2008) might possibly underesti-
mate the chance agreement and overestimate the κ values, be-
cause the distribution of human scores would not be uniform.
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The points with higher threshold values are less reliable than the others,
because filtering reduces the number of the manually scored examples used to calculate scores.

used to calculate scores. Nevertheless, it indicates
that better filtering of PSeed with higher threshold
values is likely to produce a better-quality set of
paraphrases PHvst . For instance, an inappropriate
paraphrase pattern (9a) was excluded with thp = 0.1
or ths = 0.1, while correct ones (9b) and (9c) re-
mained even when a large threshold value is used.
(9) a. “X years” ⇒ “turn X”

b. “X supplied” ⇒ “X provided”
c. “main X” ⇒ “most significant X”

Kendall’s correlation coefficient τB (Kendall,
1938) between the contextual similarity and each of
the human scores were 0.24 for grammaticality and
0.21 for meaning, respectively. Although they are ri-
valing the best results reported in (Chan et al., 2011),
i.e., 0.24 and 0.21, similarity metrics should be fur-
ther investigated to realize a more accurate filtering.

6 Conclusion

In this paper, we exploited general patterns under-
lying paraphrases to acquire automatically a large
number of high-quality paraphrase pairs using both
bilingual parallel and monolingual non-parallel cor-
pora. Experiments using two sets of corpora demon-
strated that our method is able to leverage informa-
tion in a relatively small bilingual parallel corpus
to exploit large amounts of information in a rela-
tively large monolingual non-parallel corpus. Hu-
man evaluation through a paraphrase substitution
test revealed that the acquired paraphrases are gen-
erally of reasonable quality. Our original objective
was to extract from monolingual corpora a large
quantity of paraphrases whose quality is as high as

that of paraphrases from bilingual parallel corpora.
We have met the quantity part of the objective, and
have come close to meeting the quality part.

There are three main directions for our future
work. First, we intend to carry out in-depth anal-
yses of the proposed method. For instance, while
we showed that the performance of phrase substi-
tution could be improved by removing noisy seed
paraphrases, this also strongly affected the quan-
tity. We will therefore investigate similarity metrics
in our future work. Other interesting questions re-
lated to the work presented here are, as mentioned in
Section 4.2, exploitation of patterns with more than
one variable, learning curve experiments with dif-
ferent amounts of monolingual data, and compari-
son of in-domain and general-purpose monolingual
corpora. Second, we have an interest in exploiting
sophisticated paraphrase patterns; for instance, by
inducing patterns hierarchically (recursively) and in-
corporating lexical resources such as those exempli-
fied in (4). Finally, the developed paraphrase col-
lection will be attested through applications, such
as sentence compression (Cohn and Lapata, 2008;
Ganitkevitch et al., 2011) and machine translation
(Callison-Burch et al., 2006; Marton et al., 2009).
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Abstract

Learning the meaning of words from ambigu-
ous and noisy context is a challenging task for
language learners. It has been suggested that
children draw on syntactic cues such as lexical
categories of words to constrain potential ref-
erents of words in a complex scene. Although
the acquisition of lexical categories should be
interleaved with learning word meanings, it
has not previously been modeled in that fash-
ion. In this paper, we investigate the inter-
play of word learning and category induction
by integrating an LDA-based word class learn-
ing module with a probabilistic word learning
model. Our results show that the incremen-
tally induced word classes significantly im-
prove word learning, and their contribution is
comparable to that of manually assigned part
of speech categories.

1 Learning the Meaning of Words

For young learners of a natural language, mapping
each word to its correct meaning is a challenging
task. Words are often used as part of an utterance
rather than in isolation. The meaning of an utter-
ance must be inferred from among numerous pos-
sible interpretations that the (usually complex) sur-
rounding scene offers. In addition, the linguistic and
visual context in which words are heard and used
is often noisy and highly ambiguous. Particularly,
many words in a language are polysemous and have
different meanings.

Various learning mechanisms have been proposed
for word learning. One well-studied mechanism
is cross-situational learning, a bottom-up strategy
based on statistical co-occurrence of words and ref-
erents across situations (Quine 1960, Pinker 1989).

Several experimental studies have shown that adults
and children are sensitive to cross-situational evi-
dence and use this information for mapping words to
objects, actions and properties (Smith and Yu 2007,
Monaghan and Mattock 2009). A number of com-
putational models have been developed based on this
principle, demonstrating that cross-situational learn-
ing is a powerful and efficient mechanism for learn-
ing the correct mappings between words and mean-
ings from noisy input (e.g. Siskind 1996, Yu 2005,
Fazly et al. 2010).

Another potential source of information that can
help the learner to constrain the relevant aspects of a
scene is the sentential context of a word. It has been
suggested that children draw on syntactic cues pro-
vided by the linguistic context in order to guide word
learning, a hypothesis known as syntactic bootstrap-
ping (Gleitman 1990). There is substantial evidence
that children are sensitive to the structural regular-
ities of language from a very young age, and that
they use these structural cues to find the referent of
a novel word (e.g. Naigles and Hoff-Ginsberg 1995,
Gertner et al. 2006). In particular, young children
have robust knowledge of some of the abstract lexi-
cal categories such as nouns and verbs (e.g. Gelman
and Taylor 1984, Kemp et al. 2005).

Recent studies have examined the interplay of
cross-situational learning and sentence-level learn-
ing mechanisms, showing that adult learners of an
artificial language can successfully and simultane-
ously apply cues and constraints from both sources
of information when mapping words to their refer-
ents (Gillette et al. 1999, Lidz et al. 2010, Koehne
and Crocker 2010; 2011). Several computational
models have also investigated this interaction by
adding manually annotated part-of-speech tags as
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input to word learning algorithms, and suggesting
that integration of lexical categories can boost the
performance of a cross-situational model (Yu 2006,
Alishahi and Fazly 2010).

However, none of the existing experimental or
computational studies have examined the acquisition
of word meanings and lexical categories in paral-
lel. They all make the simplifying assumption that
prior to the onset of word learning, the categoriza-
tion module has already formed a relatively robust
set of lexical categories. This assumption can be jus-
tified in the case of adult learners of a second or ar-
tificial language. But children’s acquisition of cate-
gories is most probably interleaved with the acquisi-
tion of word meaning, and these two processes must
ultimately be studied simultaneously.

In this paper, we investigate concurrent acquisi-
tion of word meanings and lexical categories. We
use an online version of the LDA algorithm to
induce a set of word classes from child-directed
speech, and integrate them into an existing prob-
abilistic model of word learning which combines
cross-situational evidence with cues from lexical
categories. Through a number of simulations of a
word learning scenario, we show that our automat-
ically and incrementally induced categories signifi-
cantly improve the performance of the word learning
model, and are closely comparable to a set of gold-
standard, manually-annotated part of speech tags.

2 A Word Learning Model

We want to investigate whether lexical categories
(i.e. word classes) that are incrementally induced
from child-directed speech can improve the perfor-
mance of a cross-situational word learning model.
For this purpose, we use the model of Alishahi and
Fazly (2010). This model uses a probabilistic learn-
ing algorithm for combining evidence from word–
referent co-occurrence statistics and the meanings
associated with a set of pre-defined categories. They
use child-directed utterances, manually annotated
with a small set of part of speech tags, from the
Manchester corpus (Theakston et al. 2001) in the
CHILDES database (MacWhinney 1995). Their ex-
perimental results show that integrating these gold-
standard categories into the algorithm boosts its per-
formance over a pure cross-situational version.

The model of Alishahi and Fazly (2010) has the
suitable architecture for our goal: it provides an in-
tegrated learning mechanism which combines evi-
dence from word-referent co-occurrence with cues
from the meaning representation associated with
word categories. However, the model has two ma-
jor shortcomings. First, it assumes that lexical cate-
gories are formed and finalized prior to the onset of
word learning and that a correct and unique category
for a target word can be identified at each point in
time, assumptions that are highly unlikely. Second,
it does not handle any ambiguity in the meaning of
a word. Instead, each word is assumed to have only
one correct meaning. Considering the high level of
lexical ambiguity in most natural languages, this as-
sumption unreasonably simplifies the word learning
problem.

To investigate the plausibility of integrating word
and category learning, we use an online algorithm
for automatically and incrementally inducing a set
of lexical categories. Moreover, we use each word in
its original form instead of lemmatizing them, which
implies that categories contain different morpholog-
ical forms of the same word. By applying these
changes, we are able to study the contribution of lex-
ical categories to word learning in a more realistic
scenario.

Representation of input. The input to the model
consists of a sequence of utterances, each paired
with a representation of an observed scene. We rep-
resent an utterance as a set of words, U = {w}
(e.g. {she, went, home, ...}), and the corresponding
scene as a set of semantic features, S = {f} (e.g.
{ANIMATE, HUMAN, FEMALE, ...}).

Word and category meaning. We represent the
meaning of a word as a time-dependent probability
distribution p(t)(·|w) over all the semantic features,
where p(t)(f |w) is the probability of feature f be-
ing associated with word w at time t. In the absence
of any prior knowledge, the model assumes a uni-
form distribution over all features as the meaning of
a novel word. Also, a function cat(t)(w) gives us
the category to which a word w in utterance U (t) be-
longs.

At each point in time, a category c contains a set
of word tokens. We assign a meaning to each cat-
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egory as a weighted sum of the meaning learned
so far for each of its members, or p(t)(f |c) =
(1/|c|)

∑
w∈c p

(t)(f |w), where |c| is the number of
word tokens in c at the current moment.

Learning algorithm. Given an utterance-scene pair
(U (t), S(t)) received at time t, the model first calcu-
lates an alignment score a for each word w ∈ U (t)

and each semantic feature f ∈ S(t). A semantic fea-
ture can be aligned to a word according to the mean-
ing acquired for that word from previous observa-
tions (word-based alignment, or aw). Alternatively,
distributional clues of the word can be used to de-
termine its category, and the semantic features can
be aligned to the word according to the meaning as-
sociated to its category (category-based alignment,
or ac). We combine these two sources of evidence
when estimating an alignment score:

a(w|f, U (t), S(t)) = λ(w)× aw(w|f, U (t), S(t)) (1)

+(1− λ(w))× ac(w|f, U (t), S(t))

where the word-based and category-based alignment
scores are estimated based on the acquired meanings
of the word and its category, respectively:

aw(w|f, U (t), S(t)) =
p(t−1)(f |w)∑

wk∈U(t)

p(t−1)(f |wk)

ac(w|f, U (t), S(t)) =
p(t−1)(f |cat(w))∑

wk∈U(t)

p(t−1)(f |cat(wk))

The relative contribution of the word-based versus
the category-based alignment is determined by the
weight function λ(w). Cross-situational evidence
is a reliable cue for frequent words; on the other
hand, the category-based score is most informative
when the model encounters a low-frequency word
(See Alishahi and Fazly (2010) for a full analysis of
the frequency effect). Therefore, we define λ(w) as
a function of the frequency of the word n(w):

λ(w) = n(w)/(n(w) + 1)

Once an alignment score is calculated for each
word w ∈ U (t) and each feature f ∈ S(t), the model
revises the meanings of all the words in U (t) and

their corresponding categories as follows:

assoc(t)(w, f) = assoc(t−1)(w, f) + a(w|f,U(t),S(t))

where assoc(t−1)(w, f) is zero if w and f have not
co-occurred before. These association scores are
then used to update the meaning of the words in the
current input:

p(t)(f |w) =
assoc(t)(f, w)∑

fj∈F
assoc(t)(fj , w)

(2)

where F is the set of all features seen so far. We use
a smoothed version of this formula to accommodate
noisy or rare input. This process is repeated for all
the input pairs, one at a time.

Uniform categories. Adding the category-based
alignment as a new factor to Eqn. (1) might im-
ply that the role of categories in this model is noth-
ing more than smoothing the cross-situational-based
alignment of words and referents. In order to in-
vestigate this issue, we use the following alignment
formula as an informed baseline in our experiments,
where we replace ac(·|f, U (t), S(t)) with a uniform
distribution:1

a(w|f, U (t), S(t)) = λ(w)× aw(w|f, U (t), S(t)) (3)

+(1− λ(w))× 1

|U (t)|

where aw(w|f, U (t), S(t)) and λ(w) are estimated as
before. In our experiments in Section 4, we refer to
this baseline as the ‘uniform’ condition.

3 Online induction of word classes with
LDA

Empirical findings suggest that young children form
their knowledge of abstract categories, such as
verbs, nouns, and adjectives, gradually (e.g. Gel-
man and Taylor 1984, Kemp et al. 2005). In ad-
dition, several unsupervised computational mod-
els have been proposed for inducing categories of
words which resemble part-of-speech categories, by

1We thank an anonymous reviewers for suggesting this con-
dition as an informed baseline.
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drawing on distributional properties of their con-
text (see for example Redington et al. 1998, Clark
2000, Mintz 2003, Parisien et al. 2008, Chrupała
and Alishahi 2010). However, explicit accounts of
how such categories can be integrated in a cross-
situational model of word learning have been rare.
Here we adopt an online version of the model pro-
posed in Chrupała (2011), a method of soft word
class learning using Latent Dirichlet Allocation. The
approach is much more efficient than the commonly
used alternative (Brown clustering, (Brown et al.
1992)) while at the same time matching or outper-
forming it when the word classes are used as au-
tomatically learned features for supervised learning
of various language understanding tasks. Here we
adopt this model as our approach to learning lexical
categories.

In Section 3.1 we describe the LDA model for
word classes; in Section 3.2 we discuss the online
Gibbs sampler we use for inference.

3.1 Word class learning with LDA

Latent Dirichlet Allocation (LDA) was introduced
by Blei et al. (2003) and is most commonly used
for modeling the topic structure in document collec-
tions. It is a generative, probabilistic hierarchical
Bayesian model that induces a set of latent variables,
which correspond to the topics. The topics them-
selves are multinomial distributions over words.

The generative structure of the LDA model is the
following:

φk ∼ Dirichlet(β), k ∈ [1,K]

θd ∼ Dirichlet(α), d ∈ [1, D]

znd
∼ Categorical(θd), nd ∈ [1, Nd]

wnd
∼ Categorical(φznd

), nd ∈ [1, Nd]

(4)

Chrupała (2011) reinterprets the LDA model in
terms of word classes as follows: K is the number
of classes, D is the number of unique word types,
Nd is the number of context features (such as right or
left neighbor) associated with word type d, znd

is the
class of word type d in the nth

d context, andwnd
is the

nth
d context feature of word type d. Hyperparameters
α and β control the sparseness of the vectors θd and
φk.

Wordtype Features
How doR

do HowL youR youL

you doL doR

Table 1: Matrix of context features

1.8M words (CHILDES) 100M words (BNC)

train car can will
give bring June March
shoes clothes man woman
book hole black white
monkey rabbit business language

Table 2: Most similar word pairs

As an example consider the small corpus consist-
ing of the single sentence How do you do. The rows
in Table 1 show the features w1 . . . wNd

for each
word type d if we use each word’s left and right
neighbors as features, and subscript words with L

and R to indicate left and right.
After inference, the θd parameters correspond to

word class probability distributions given a word
type while the φk correspond to feature distributions
given a word class: the model provides a probabilis-
tic representation for word types independently of
their context, and also for contexts independently of
the word type.

Probabilistic, soft word classes are more expres-
sive than hard categories. First, they make it
easy and efficient to express shared ambiguities:
Chrupała (2011) gives an example of words used
as either first names or surnames, and this shared
ambiguity is reflected in the similarity of their word
class distributions. Second, with soft word classes it
becomes easy to express graded similarity between
words: as an example, Table 2 shows a random se-
lection out of the 100 most similar word pairs ac-
cording to the Jensen-Shannon divergence between
their word class distributions, according to a word
class model with 25 classes induced from (i) 1.8 mil-
lion words of the CHILDES corpus or (ii) 100 mil-
lion word of the BNC corpus. The similarities were
measured between each of the 1000 most frequent
CHILDES or BNC words.
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3.2 Online Gibbs sampling for LDA

There have been a number of attempts to develop
online inference algorithms for topic modeling with
LDA. A simple modification of the standard Gibbs
sampler (o-LDA) was proposed by Song et al.
(2005) and Banerjee and Basu (2007).

Canini et al. (2009) experiment with three sam-
pling algorithms for online topic inference: (i) o-
LDA, (ii) incremental Gibbs sampler, and (iii) a par-
ticle filter. Only o-LDA is truly online in the sense
that it does not revisit previously seen documents.
The other two, the incremental Gibbs sampler and
the particle filter, keep seen documents and periodi-
cally resample them. In Canini et al.’s experiments
all of the online algorithms perform worse than the
standard batch Gibbs sampler on a document clus-
tering task.

Hoffman et al. (2010) develop an online version
of the variational Bayes (VB) optimization method
for inference for topic modeling with LDA. Their
method achieves good empirical results compared
to batch VB as measured by perplexity on held-
out data, especially when used with large minibatch
sizes.

Online VB for LDA is appropriate when stream-
ing documents: with online VB documents are rep-
resented as word count tables. In our scenario where
we apply LDA to modeling word classes we need to
process context features from sentences arriving in
a stream: i.e. we need to sample entries from a ta-
ble like Table 1 in order of arrival rather than row
by row. This means that online VB is not directly
applicable to online word-class induction.

However it also means that one issue with o-LDA
identified by Canini et al. (2009) is ameliorated.
When sampling in a topic modeling setting, docu-
ments are unique and are never seen again. Thus,
the topics associated with old documents get stale
and need to be periodically rejuvenated (i.e. resam-
pled). This is the reason why the incremental Gibbs
sampler and the particle filter algorithms in Canini
et al. (2009) need to keep old documents around and
cannot run in a true online fashion. Since for word
class modeling we stream context features as they
arrive, we will continue to see features associated
with the seen word types, and will automatically re-
sample their class assignments. In exploratory ex-

periments we have seen that this narrows the per-
formance gap between the o-LDA sampler and the
batch collapsed Gibbs sampler.

We present our version of the o-LDA sampler in
Algorithm 1. For each incoming sentence twe run J
passes of sampling, updating the counts tables after
each sampling step. We sample the class assignment
zti for feature wti according to:

P (zt|zt−1,wt,dt) ∝
(nzt,dt

t−1 + α)× (nzt,wt
t−1 + β)∑Vt−1

j=1 n
zt,wj

t−1 + β
,

(5)
where nz,d

t stands for the number of times class z
co-occurred with word type d up to step t, and sim-
ilarly nz,w

t is the number of times feature w was as-
signed to class z. Vt is the number of unique features
seen up to step t, while α and β are the LDA hyper-
parameters. There are two differences between the
original o-LDA and our version: we do not initialize
the algorithm with a batch run over a prefix of the
data, and we allow more than one sampling pass per
sentence.2 Exploratory experiments have shown that
batch initialization is unnecessary, and that multiple
passes typically improve the quality of the induced
word classes.

Algorithm 1 Online Gibbs sampler for word class
induction with LDA

for t = 1→∞ do
for j = 1→ J do

for i = 1→ It do
sample zti ∼ P (zti |zti−1,wti ,dti)

increment n
zti ,wti
t and n

zti ,dti
t

Figure 1 shows the top 10 words for each of the
10 word classes induced with our online Gibbs sam-
pler from 1.8 million words of CHILDES. Similarly,
Figure 2 shows the top 10 words for 5 randomly cho-
sen topics out of 50, learned online from 100 million
words of the BNC.

The topics are relatively coherent and at these lev-
els of granularity express mostly part of speech and
subcategorization frame information.

Note that for each word class we show the words
most frequently assigned to it while Gibbs sampling.

2Note that we do not allow multiple passes over the stream
of sentences. Rather, while processing the current sentence, we
allow the words in this sentence to be sampled more than once.
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do are have can not go put did get play
is that it what not there he was where put
you not I the we what it they your a
to you we and I will not can it on
it a that the not he this right got she
are do is have on in can want did going
one I not shall there then you are we it
is in are on oh with and of have do
the a your of that it this some not very
going want bit go have look got will at little

Figure 1: Top 10 words for 10 classes learned from
CHILDES

I you he it they we she , You He
a the more some all no The other I two
as if when that where how because If before what
was is ’s had , has are would did said
the his her their this an that its your my

Figure 2: Top 10 words of 5 randomly chosen classes
learned from BNC

Since we are dealing with soft classes, most word-
types have non-zero assignment probabilities for
many classes. Thus frequently occurring words such
as not will typically be listed for several classes.

4 Evaluation

4.1 Experimental setup
As training data, we extract utterances from the
Manchester corpus (Theakston et al. 2001) in the
CHILDES database (MacWhinney 1995), a corpus
that contains transcripts of conversations with chil-
dren between the ages of 1 year, 8 months and 3
years. We use the mother’s speech from transcripts
of 12 children (henceforth referred to by children’s
names).

We run word class induction while simultane-
ously outputting the highest scoring word-class la-
bel for each word: for a new sentence, we sam-
ple class assignments for each feature (doing J
passes), update the counts, and then for each word
dti output the highest scoring class label according
to argmaxz n

z,dti
t (where n

z,dti
t stands for the num-

ber of times class z co-occurred with word type dti

up to step t).
During development we ran the online word class

induction module on data for Aran, Becky, Carl and
Anne and then started the word learning module for
the Anne portion while continuing inducing cate-
gories. We then evaluated word learning on Anne.
We chose the parameters of the word class induc-
tion module based on those development results:∑K

1=1 α = 10, β = 0.1, K = 10 and J = 20.
We used cross-validation for the final evaluation.

For each of six data files (Anne, Aran, Becky, Carl,
Dominic and Gail), we ran word-class induction on
the whole corpus with the chosen file last, and then
started applying the word-learning algorithm on this
last chosen file (while continuing with category in-
duction). We evaluated how well word meanings
were learned in those six cases.

We follow Alishahi and Fazly (2010) in the con-
struction of the input. We need a semantic represen-
tation paired with each utterance. Such a represen-
tation is not available from the corpus and has to be
constructed. We automatically construct a gold lexi-
con for all nouns and verbs in this corpus as follows.
For each word, we extract all hypernyms for its first
sense in the appropriate (verb or noun) hierarchy in
WordNet (Fellbaum 1998), and add the first word in
the synset of each hypernym to the set of semantic
features for the target word. For verbs, we also ex-
tract features from VerbNet (Kipper et al. 2006). A
small subset of words (pronouns and frequent quan-
tifiers) are also manually added. This lexicon repre-
sents the true meaning of each word, and is used in
generating the scene representations in the input and
in evaluation.

For each utterance in the input corpus, we form
the union of the feature representations of all its
words. Words not found in the lexicon (i.e. for which
we could not extract a semantic representation from
WordNet and VerbNet) are removed from the utter-
ance (only for the word learning module).

In order to simulate the high level of noise that
children receive from their environment, we follow
Alishahi and Fazly (2010) and pair each utterance
with a combination of its own scene representation
and the scene representation for the following utter-
ance. This decision was based on the intuition that
consequent utterances are more likely to be about re-
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Utterance: { mommy, ate, broccoli }
Scene: { ANIMATE, HUMAN, ...,

CONSUMPTION, ACTION, ...
BROCCOLI, VEGETABLE, ...
PLATE, OBJECT, ... }

Figure 3: A sample input item to the word learning model

lated topics and scenes. This results in a (roughly)
200% ambiguity. In addition, we remove the mean-
ing of one random word from the scene representa-
tion of every second utterance in an attempt to sim-
ulate cases where the referent of an uttered word is
not within the perception field (such as ‘daddy is not
home yet’). A sample utterance and its correspond-
ing scene are shown in Figure 3.

As mentioned before, many words in our input
corpus are polysemous. For such words, we extract
different sets of features depending on their manu-
ally tagged part of speech and keep them in the lex-
icon (e.g. the lexicon contains two different entries
for set:N and set:V). When constructing a scene rep-
resentation for an utterance which contains an am-
biguous word, we choose the correct sense from our
lexicon according to the word’s part of speech tag in
Manchester corpus.

In the experiments reported in the next section,
we assess the performance of our model on learning
words at each point in time: for each target word,
we compare its set of features in the lexicon with
its probability distribution over the semantic fea-
tures that the model has learned. We use mean aver-
age precision (MAP) to measure how well p(t)(·|w)
ranks the features of w.

4.2 Learning curves

To understand whether our categories contribute to
learning of word–meaning mappings, we compare
the pattern of word learning over time in four con-
ditions. The first condition represents our baseline,
in which we do not use category-based alignment
in the word learning model by setting λ(w) = 1
in Eqn. (1). In the second condition we use a set
of uniformly distributed categories for alignment,
as estimated by Eqn. (3) on page 3 (this condition
is introduced to examine whether categories act as
more than a simple smoothing factor in the align-

Category Avg. MAP Std. Dev.
None 0.626 0.032
Uniform 0.633 0.032
LDA 0.659 0.029
POS 0.672 0.030

Table 3: Final Mean Average Precision scores

ment process.) In the third condition we use the cat-
egories induced by online LDA in the word learning
model. The fourth condition represents the perfor-
mance ceiling, in which we use the pre-defined and
manually annotated part of speech categories from
the Manchester corpus.

Table 3 shows the average and the standard devia-
tion of the final MAP scores across the six datasets,
for the four conditions (no categories, uniform cat-
egories, LDA categories and gold part-of-speech
tags). The differences between LDA and None, and
between LDA and Uniform are statistically signif-
icant according to the paired t test (p < 0.01),
while the difference between LDA and POS is not
(p = 0.16).

Figure 4 shows the learning curves in each con-
dition, averaged over the six splits explained in the
previous section. The top panel shows the average
learning curve over the minimum number of sen-
tences across the six sub-corpora (8800 sentences).
The curves show that our LDA categories signifi-
cantly improve the performance of the model over
both baselines. That means that using these cate-
gories can improve word learning compared to not
using them and relying on cross-situational evidence
alone. Moreover, LDA-induced categories are not
merely acting as a smoothing function the way the
‘uniform’ categories are. Our results show that they
are bringing relevant information to the task at hand,
that is, improving word learning by using the sen-
tential context. In fact, this improvement is compa-
rable to the improvement achieved by integrating the
‘gold-standard’ POS categories.

The middle and bottom panels of Figure 4 zoom
in on shorter time spans (5000 and 1000 sentences,
respectively). These diagrams suggest that the pat-
tern of improvement over baseline is relatively con-
stant, even at very early stages of learning. In fact,
once the model receives enough input data, cross-
situational evidence becomes stronger (since fewer
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words in the input are encountered for the first time)
and the contribution of the categories becomes less
significant.

4.3 Class granularity

In Figure 5 we show the influence of the number of
word classes used on the performance in word learn-
ing. It is evident that in the range between 5 to 20
classes the performance of the word learning module
is quite stable and insensitive to the exact class gran-
ularity. Even with only 5 classes the model can still
roughly distinguish noun-like words from verb-like
words from pronoun-like words, and this will help
learn the meaning elements derived from the higher
levels of WordNet hierarchy. Notwithstanding that,
ideally we would like to avoid having to pre-specify
the number of classes for the word class induction
module: we thus plan to investigate non-parametric
models such as Hierarchical Dirichlet Process for
this purpose.

5 Related Work

This paper investigates the interplay between two
language learning tasks which have so far been stud-
ied in isolation: the acquisition of lexical categories
from distributional clues, and learning the mapping
between words and meanings. Previous models
have shown that lexical categories can be learned
from unannotated text, mainly drawing on distri-
butional properties of words (e.g. Redington et al.
1998, Clark 2000, Mintz 2003, Parisien et al. 2008,
Chrupała and Alishahi 2010).

Independently, several computational models
have exploited cross-situational evidence in learning
the correct mappings between words and meanings,
using rule-based inference (Siskind 1996), neural
networks (Li et al. 2004, Regier 2005), hierarchical
Bayesian models (Frank et al. 2007) and probabilis-
tic alignment inspired by machine translation mod-
els (Yu 2005, Fazly et al. 2010).

There are only a few existing computational mod-
els that explore the role of syntax in word learning.
Maurits et al. (2009) investigates the joint acquisi-
tion of word meaning and word order using a batch
model. This model is tested on an artificial language
with a simple first order predicate representation of
meaning, and limited built-in possibilities for word
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(c) first 1000 sentences

Figure 4: Mean average precision for all observed words
at each point in time for four conditions: with gold
POS categories, with LDA categories, with uniform cate-
gories, and without using categories. Each panel displays
a different time span.

650



0 2000 4000 6000 8000

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

Input Items

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

20 LDA classes
10 LDA classes
5 LDA classes
No categories

Figure 5: Mean average precision for all observed words
at each point in time in four conditions: using online LDA
categories of varying numbers of 20, 10 and 5, and with-
out using categories.

order. The model of Niyogi (2002) simulates the
mutual bootstrapping effects of syntactic and seman-
tic knowledge in verb learning, that is the use of syn-
tax to aid in inducing the semantics of a verb, and the
use of semantics to narrow down possible syntactic
frames in which a verb can participate. However,
this model relies on manually assigned priors for as-
sociations between syntactic and semantic features,
and is tested on a toy language with very limited vo-
cabulary and a constrained syntax.

Yu (2006) integrates automatically induced syn-
tactic word categories into his model of cross-
situational word learning, showing that they can im-
prove the model’s performance. Yu’s model also
processes input utterances in a batch mode, and its
evaluation is limited to situations in which only a
coarse distinction between referring words (words
that could potentially refer to objects in a scene, e.g.
concrete nouns) and non-referring words (words that
cannot possibly refer to objects, e.g. function words)
is sufficient. It is thus not clear whether information
about finer-grained categories (e.g. verbs and nouns)
can indeed help word learning in a more naturalistic
incremental setting.

On the other hand, the model of Alishahi and
Fazly (2010) integrates manually annotated part-of-
speech tags into an incremental word learning al-
gorithm, and shows that these tags boost the over-

all word learning performance, especially for infre-
quent words.

In a different line of research, a number of mod-
els have been proposed which study the acquisition
of the link between syntax and semantics within the
Combinatory Categorial Grammar (CCG) frame-
work (Briscoe 1997, Villavicencio 2002, Buttery
2006, Kwiatkowski et al. 2012). These approaches
set the parameters of a semantic parser on a cor-
pus of utterances paired with a logical form as their
meaning.

These models bring in extensive and detailed prior
assumptions about the nature of the syntactic repre-
sentation (i.e. atomic categories such as S and NP,
and built-in rules which govern their combination),
as well as about the representation of meaning via
the formalism of lambda calculus.

This is fundamentally different than the approach
taken in this paper, which in comparison only as-
sumes very simple syntactic and semantic represen-
tations of syntax. We view word and category learn-
ing as stand-alone cognitive tasks with independent
representations (word meanings as probabilistic col-
lections of properties or features as opposed to sin-
gle symbols; categories as sets of word tokens with
similar context distribution) and we do not bring in
any prior knowledge of specific atomic categories.

6 Conclusion

In this paper, we show the plausibility of using
automatically and incrementally induced categories
while learning word meanings. Our results suggest
that the sentential context that a word appears in
across its different uses can be used as a complemen-
tary source of guidance for mapping it to its featural
meaning representation.

In Section 4 we show that the improvement
achieved by our categories is comparable to that
gained by integrating gold POS categories. This re-
sult is very encouraging, since manually assigned
POS tags are typically believed to set the upper
bound on the usefulness of category information.

We believe that it automatically induced cate-
gories have the potential to do even better: Chrupała
and Alishahi (2010) have shown that categories in-
duced from usage data in an unsupervised fashion
can be used more effectively than POS categories in
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a number of tasks. In our experiments here on the
development data we observed some improvements
over POS categories. This advantage can result from
the fact that our categories are more fine-grained (if
also more noisy) than POS categories, which some-
times yields more accurate predictions.

One important characteristic of the category in-
duction algorithm we have used in this paper is that
it provides a soft categorization scheme, where each
word is associated with a probability distribution
over all categories. In future, we plan to exploit this
feature: when estimating the category-based align-
ment, we can interpolate predictions of multiple cat-
egories to which a word belongs, weighted by its
probabilities associated with membership in each
category.
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Abstract

This paper presents a comparative study
of graph-based approaches for cross-domain
sentiment classification. In particular, the
paper analyses two existing methods: an
optimisation problem and a ranking algorithm.
We compare these graph-based methods with
each other and with the other state-of-
the-art approaches and conclude that graph
domain representations offer a competitive
solution to the domain adaptation problem.
Analysis of the best parameters for graph-
based algorithms reveals that there are no
optimal values valid for all domain pairs
and that these values are dependent on the
characteristics of corresponding domains.

1 Introduction

The sentiment classification (SC) is an active area
of research concerned automatic identification of
sentiment strength or valence of texts. SC of
product reviews is commercially important and
widely researched but it typically needs to be
optimised separately for each type of product (i.e.
domain). When domain-specific data are absent
or insufficient the researchers usually seek solution
in semi-supervised, unsupervised or cross-domain
approaches. In this paper, we focus on cross-domain
methods in order to take advantage of the huge
amount of annotated sentiment data available on the
Internet. Our aim is to find out to what extent it is
possible to learn sentiment phenomena from these
data and transfer them to new domains rather than
induce them from scratch for each new domain.

Previous research has shown that models trained on
one data usually give much worse results on another,
especially when both data sets belong to completely
different domains. This is largely because the
sentiment words and their valences depend a lot
on the domain where they are expressed. The
first problem concerns the words that can convey
opposite sentiments with respect to the context or
domain. For example, a word “ridiculous” in
book reviews may express a negative meaning when
talking about a book content, however for reviews
on electronics this word can bear a positive meaning
when talking about prices. Another and more
common problem is related to sentiment words that
are specific for each domain. For instance, words
like “boring”, “inspiring”, “engaging” are very
common in book reviews but it is almost impossible
to find them in reviews on electronics. At the same
time, the electronics domain can contain words like
“defective”, “refund”, “return”, “customer service”,
which are very unusual for book reviews.

Several cross-domain approaches have been
suggested recently to solve the problem of accuracy
loss in cross-domain sentiment classification,
namely Structural Correspondence Learning (SCL)
(Blitzer et al., 2007), the graph-based approach
(Wu et al., 2009) and Spectral Feature Alignment
(SFA) (Pan et al., 2010). In this paper, we explore
graph-based algorithms which refer to a group of
techniques that model data as a graph of documents.
This data representation takes into account not only
document contents but also document connectivity
which is modeled as document sentiment similarity
rather than content similarity. Our interest in graph
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algorithms is two-fold. First, graph-based domain
representations can benefit from two independent
sources of information: scores given by a machine
learning technique which indicate the probability
of a document to belong to a sentiment class and
similarity relations between documents. Second,
unlike other suggested methods, this approach can
be easily adapted to multiple classes, which makes
it possible to classify documents using finer-grained
sentiment scales.

Different graph-based algorithms have been
applied to several SA tasks (Pang and Lee, 2005;
Goldberg and Zhu, 2006; Wu et al., 2009), but
no comparison has been made to find the most
appropriate one for SC. Moreover, in the framework
of the domain adaption task, we come across the
problem of choosing the best set of parameters,
which, as we further demonstrate, depends on
the characteristics of a corresponding domain
pair. Unfortunately, no study has investigated this
problem. (Pang and Lee, 2005; Goldberg and
Zhu, 2006) exploited the graph-based approach for
a semi-supervised task and experimented with data
belonging to one domain and, therefore did not
come across this issue. The work of (Wu et al.,
2009) lacks any discussion about the choice of
the parameter values; the authors set some values
equal for all domains without mentioning how they
obtained these numbers.

The present research brings several contributions.
First, we compare two graph-based algorithms
in cross-domain SC settings: the algorithm
exploited in (Goldberg and Zhu, 2006), which
seeks document sentiments as an output of an
optimisation problem (OPTIM) and the algorithm
adopted by (Wu et al., 2009), that uses ranking
to assign sentiment scores (RANK). Second,
as document similarity is a crucial factor for
satisfactory performance of graph-based algorithms,
we suggest and evaluate various sentiment similarity
measures. Sentiment similarity is different from
topic similarity as it compares documents with
respect to the sentiment they convey rather than
their topic. Finally, we discover the dependency
of algorithm parameter values on domain properties
and, subsequently, the impossibility to find universal
parameter values suitable for all domain pairs.
We discuss a possible strategy for choosing the

best set of parameters based on our previous
study (Ponomareva and Thelwall, 2012), where
we introduced two domain characteristics: domain
similarity and domain complexity and demonstrated
their strong correlation with cross-domain accuracy
loss.

The rest of the paper is structured as follows.
In Section 2 we give a short overview of related
works on cross-domain SC. Section 3 describes and
compares the OPTIM and RANK algorithms. In
Section 4 we discuss an issue of document similarity
and select document representation that correlates
best with document sentiments. Experimental
results are described in Section 5 followed by a
discussion on the strategy for choosing the best
parameter values of the algorithms (Section 6).
Finally, in Section 7 we summarise our contributions
and discuss further research.

2 Related work

Cross-domain sentiment analysis has received
considerable attention during the last five years
and, since then, several approaches to tackle this
problem have emerged. The most straightforward
approach is to use an ensemble of classifiers as
tested in several works (Aue and Gamon, 2005; Li
and Zong, 2008). It is a well-explored technique in
machine learning concerned with training classifiers
on domains where annotated data are available
and then, combining them in ensembles for the
classification of target data. Aue and Gamon (2005)
studied several possibilities to combine data from
domains with known annotations and came up with
the conclusion that an ensemble of classifiers in
a meta-classifier gives higher performance than a
simple merge of all features.

Structural Correspondence Learning (SCL)
(Blitzer et al., 2007) is another domain transfer
approach, which was also tested on parts of speech
(PoS) tagging (Blitzer et al., 2006). Its underlying
idea is to find correspondences between features
from source and target domains through modeling
their correlations with pivot features. Pivot features
are features occurring frequently in both domains,
which, at the same time, serve as good predictors
of document classes, like the general sentiment
words “excellent” and “awful”. The extraction
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of pivot features was made on the basis of their
frequency in source and target corpora and their
mutual information with positive and negative
source labels. The correlations between the pivot
features and all other features were modeled using
a supervised learning of linear pivot predictors to
predict occurrences of each pivot in both domains.
The proposed approach was tested on review data
from 4 domains (books, DVDs, kitchen appliances
and electronics) and demonstrated a significant
gain of accuracy for most domain pairs compared
to the baseline. However, for a few domains the
performance degraded due to feature misalignment:
the narrowness of the source domain and diversity
of the target domain created false projections of
features in the target domain. The authors proposed
to correct this misalignment with a small amount of
annotated in-domain data.

Spectral Feature Alignment (SFA), introduced by
Pan et al. (2010), holds the same idea as SCL,
i.e., an alignment of source and target features
through their co-occurrences with general sentiment
words. But instead of learning representations of
pivots in source and target domains the authors
used spectral clustering to align domain-specific and
domain-independent words into a set of feature-
clusters. The constructed clusters were then used for
the representation of all data examples and training
the sentiment classifier. This new solution yields a
significant improvement on cross-domain accuracy
compared with SCL for almost all domain pairs.

The method suggested by Bollegala et al. (2011)
also relies on word co-occurrences. In particular,
the authors presented a method for automatic
construction of a sentiment-sensitive thesaurus
where each lexical element (either unigram or
bigram) is connected to a list of related lexical
elements which most frequently appear in the
context expressing the same sentiment. This
thesaurus is then used on the training step to
expand feature vectors with related elements to
overcome the feature mismatch problem. The
method was tested on the same data set as SCL
and SFA but unlike previous works the authors
used a combination of domains to create sentiment-
sensitive thesauri and to train the cross-domain
classifier. They compare the accuracy of their
approach with an average accuracy over the results

with the same target domain given by SCL and
SFA, and concluded that their method surpasses all
existing approaches. However, we think that such
a comparison is not optimal. Indeed, using the
approach described in (Ponomareva and Thelwall,
2012) we can choose the most appropriate data
for training our classifier rather than averaging the
results given by all data sets. Therefore, instead of
average accuracies, the best accuracies with respect
to the same target domain should be compared. This
comparison leads to opposite conclusions, namely
that SCL and SFA significantly outperform the
sentiment-sensitive thesaurus-based method.

Unlike the approaches mentioned above,
graph-based algorithms exploit relations between
documents for finding the correct document scores.
We describe them in more details in the next section.

3 Graph-based algorithms

In this section we present and compare 2 graph-
based algorithms which use similar graph structures
but completely different methods to infer node
scores. The RANK algorithm (Wu et al.,
2009) is based on node ranking, while OPTIM
(Goldberg and Zhu, 2006) determines solution of
graph optimisation problem. Initially OPTIM was
applied for the rating-inference problem in a semi-
supervised setting. This study, for the first time,
analyses its behaviour for cross-domain SC and
compares its performance with a similar approach.

3.1 OPTIM algorithm
The OPTIM algorithm represents graph-based
learning as described in (Zhu et al., 2003). Let us
introduce the following notation:

• G = (V,E) is an undirected graph with 2n
nodes V and weighted edges E.

• L stands for labeled data (source domain data)
and U for unlabeled data (target domain data).

• xi is a graph node which refers to a document,
f(xi) is a true label of a document which is
supposed to be unknown even for annotated
documents, allowing for noisy labels. Each
xi ∈ L is connected to yi which represents
a given rating of a document. The edge
weight between x − i and yi is a large number
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Figure 1: Graph models for the OPTIM (A) and RANK (B) algorithms

M introducing the hard constraints between
labeled documents and their ratings. Each xi ∈
U is connected to ŷi that stands for predicted
rating of a document. The edge weight between
xi and ŷi is equal to 1.

• Each unlabeled document xi is connected to its
k nearest labeled documents kNNL(i) (source
domain neighbours). The weight between xi

and xj ∈ kNNL(i) is measured by a given
similarity w and denoted a · wij .

• Each unlabeled document xi is connected to
its k′ nearest unlabeled documents k′NNU (i)
(target domain neighbours). The weight
between xi and xj ∈ k′NNU (i) is denoted by
b · wij .

Figure 1A illustrates the graph structure
described. The algorithm is based on the assumption
that the rating function f(x) is smooth with respect
to the graph, so there are no harsh jumps of
sentiment between nearest neighbours. To satisfy
the smoothness condition sentiment variability
between the closest nodes should be minimised.
Another requirement is to minimise the difference
between each initial node rating and its final value,
although in the case of unlabeled nodes this is
optional. Taking into consideration the conditions
mentioned the sentiment-inference problem can be
formulated as an optimisation problem:

L(f) =∑
i∈L

M(f(xi)− yi)
2 +

∑
i∈U

(f(xi)− ŷi)
2+∑

i∈U

∑
j∈kNNL(i)

awij(f(xi)− f(xj))
2+

∑
i∈U

∑
j∈k′NNU (i)

bwij(f(xi)− f(xj))
2 → min (1)

After the substitutions α = ak + bk′ and β = b
a the

final optimisation problem can be written as:

L(f) =∑
i∈L

M(f(xi)− yi)
2 +

∑
i∈U

[(f(xi)− ŷi)
2+

α

k + βk′
(

∑
j∈kNNL(i)

wij(f(xi)− f(xj))
2+

∑
j∈k′NNU (i)

βwij(f(xi)− f(xj))
2)]→ min (2)

where β defines the relative weight between
labeled and unlabeled neighbours, while α controls
the weight of the graph-based solution with respect
to the primarily obtained supervised sentiment
scores.
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The minimum-loss function which gives the
solution of the optimisation problem can be found
by setting the gradient to zero. For more details on
the problem solution see (Goldberg and Zhu, 2006).

3.2 RANK algorithm

The RANK algorithm has a similar graph structure
(Figure 1B): nodes represent labeled and unlabeled
documents and there is a parameter (in this case
γ) that controls the relative importance of labeled
data over unlabeled data and is an analogue
of β in OPTIM. The weight of edges between
different nodes is also measured by document
similarity. However, there are no edges between
nodes and their initial sentiments because RANK
is an iterative algorithm and each iteration gives
new scores to unlabeled nodes while labeled
nodes remain constant. More precisely, on each
iteration sentiment scores of unlabeled documents
are updated on the basis of the weighted sum of
sentiment scores of the nearest labeled neighbours
and the nearest unlabeled neighbours. The process
stops when convergence is achieved, i.e. the
difference in sentiment scores is less than a
predefined tolerance.

Using the same notation as for OPTIM we can
formulate the iterative procedure in the following
way:

fk(xi) =
∑

j∈kNNL(i)

γwijf(xj)+∑
j∈k′NNU (i)

(1− γ)wijfk−1xj) (3)

where fk(xi) is the node sentiment score on the
k-th iteration. Document scores are normalised
after each iteration to ensure convergence (Wu et
al., 2009). It is worth noting that initially the
authors did not consider having a different number
of neighbours for the source and target domains.

Analysing differences in the graph structures and
assumptions of both models we can say that they
are almost identical. Even the smoothness condition
holds for the RANK algorithm as the score of a
node is an averaged sum of the neighbours. The
only principal difference concerns the requirement
of closeness of initial and final sentiment scores for

OPTIM. This condition gives more control on the
stability of the algorithm performance.

4 Measure of document similarity

A good measure of document similarity is a key
factor for the successful performance of graph-based
algorithms. In this section we propose and evaluate
several measures of document similarity based on
different vector representations and the cosine of
document vectors.

Following (Goldberg and Zhu, 2006) and (Pang
and Lee, 2005) we consider 2 types of document
representations:

- feature-based: this involves weighted
document features. The question here concerns the
features to be selected. When machine learning
is employed the answer is straightforward: the
most discriminative features are the best ones for
our task. However, we assume that we do not
know anything about the domain when measuring
sentiment similarity and, thus, we should establish
the appropriate set of features only relying on our
prior knowledge about sentiment words. According
to previous studies, adjectives, verbs and adverbs are
good indicators of sentiment (Pang and Lee, 2008),
therefore, we keep only unigrams and bigrams that
contain these PoS. We test two feature weights - tfidf
and idf (Ftfidf and Fidf in Table1 respectively). The
evident drawback of such a vector representation
concerns the discarding of nouns, which in many
cases also bear sentiments. To overcome this issue
we introduce a new measure that uses sentiment
dictionaries to add nouns expressing sentiments
(Fidf+SOCAL).

- lexicon-based: uses sentiment dictionaries to
assign scores to lexical elements of two types: words
or sentences. The dimension of the corresponding
document vector representation conforms with the
granularity of the sentiment scale. For example,
in case of binary sentiment scales, a document
vector consists of two dimensions, where first
component corresponds to the percentage of positive
words (sentences) and the second component -
to the percentage of negative words (sentences).
To assign sentiment scores to lexical elements
we exploit different sentiment resources, namely
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domain Ftfidf Fidf Fidf+SOCAL W2 W10 S2

BO 0.61 0.62 0.64 0.49 0.50 0.44
DV 0.61 0.61 0.64 0.56 0.56 0.51
EL 0.62 0.66 0.68 0.47 0.49 0.46
KI 0.65 0.67 0.68 0.51 0.54 0.53

Table 1: Correlation for various similarity measures with sentiment scores of documents across different domains.

SentiWordNet (Esuli and Sebastiani, 2006), SO-
CAL (Taboada et al., 2010) and SentiStrength
(Thelwall et al., 2012). The scores of sentences
are averaged by the number of their positive and
negative words. Preliminary experiments show a big
advantage of SO-CAL-dictionaries comparing with
other resources. SentiWordNet demonstrates quite
an unsatisfactory performance, while SentiStrength,
being very precise, has an insufficient scope and,
therefore, finds no sentiment in a substantial number
of documents.

The best document representation is selected
on the basis of its correlation with the sentiment
scores of documents. To compute correlations
for feature-based measures, we take 1000 features
with highest average tfidf weights. Table 1 gives
the results of a comparison for two document
representations and their different settings. Here
W2 and S2 stand for word-based and sentence-
based representations of dimension 2 and W10 -
for word-based representation of dimension 10.
All use SO-CAL-dictionaries to assign scores to
words or sentences. Feature-based representations
demonstrate significantly better correlations with
document sentiments although for some domains,
like DV, the lexical element-based representation
produces a similar result. Integration of SO-CAL-
dictionaries gives insignificant contribution into the
overall correlation, which maybe due to the limited
number of features participated in the analysis.
In our further experiments we use both Fidf and
Fidf+SOCAL document representations.

5 Experimental results

Our data comprises Amazon product reviews on 4
topics: books (BO), electronics (EL), kitchen (KI)
and DVDs (DV), initially collected and described
by Blitzer et al. (2007). Reviews are rated using
a binary scale, 1-2 star reviews are considered as

negative and 4-5 star reviews as positive. The data
within each domain are balanced: they contain 1000
positive and 1000 negative reviews.

First, we compute a baseline for each domain
pair by training a Support Vector Machines (SVMs)
classifier using one domain as training data and
another as test data. We choose SVMs as our
main learning technique because they have proved
to be the best supervised algorithm for SC (Pang
and Lee, 2008). In particular, we use the LIBSVM
library (Chang and Lin, 2011) and a linear kernel
function to train the classifier. For the feature
set we experiment with different features and
feature weights and conclude that unigrams and
bigrams weighted with binary values yield the best
performance.

Figure 2: Baseline accuracy for cross-domain SC.
(x-axis - source domains, y-axis - target domains).

Figure 2 presents an isoline image of cross-
domain accuracies for all domain pairs.1 Products
on the x-axis represent source domains and products

1We should point out that in the images the shading between
points is not intended to suggest interpolation but is used to
highlight the overall pattern. Of course the pattern depends on a
domain order on the axes, therefore, similar domains are placed
together to make the regions with high and low accuracies
evident.
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on the y-axis represent target domains. The isolines
image of the baseline accuracy delivers a good
representation of domain relations. In particular, we
can observe two regions with the highest accuracy
(EL-KI, KI-EL) and (BO-DV, DV-BO) and two
regions with a big performance drop (EL-BO, EL-
DV, KI-BO, KI-DV) and (BO-EL, BO-KI, DV-
EL, DV-KI). As shown in our previous study
(Ponomareva and Thelwall, 2012) the first two
regions conform with the most similar domain pairs
BO, DV and EL, KI.

OPTIM and RANK require the setting of several
parameters: (k, k′, α, β) for OPTIM and (k, k′, γ)
for RANK. As it is computationally expensive to
iterate over all possible values of parameters we first
run the algorithms on a small matrix of parameters
and then apply the gradient descent method which
takes the values with highest accuracy as its starting
points. We execute both algorithms with different
similarity measures, Fidf and Fidf+SOCAL. In
Table 2 OPTIM and RANK run with Fidf , while
OPTIM+SOCAL and RANK+SOCAL run with
Fidf+SOCAL. We give the best accuracies achieved
by these algorithms for each domain pair. Unlike
the correlations, the accuracies increase significantly
with the integration of SO-CAL-dictionaries, the
average improvement is about 3% for RANK and
1.5% for OPTIM. In general, RANK consistently
outperforms OPTIM for all domain pairs, OPTIM
shows competitive performance only for the pairs
of similar domains BO-DV, KI-EL and EL-KI.
We should also point out that OPTIM is more
time-consuming as it requires expensive matrix
operations. Due to these advantages of the RANK
algorithm, we mostly focus on its analysis in the rest
of the paper.

It is interesting to examine the performance of
RANK on the basis of the 3D isolines image (Figure
3B). The isolines stretch from left to right indicating
that accuracy is almost independent of the source
domain. Such behaviour for RANK suggests a
positive answer to our question stated in the title:
even if domains are quite different, neighbours from
the same domain will fix these discrepancies. This
property is definitely a big advantage of the RANK
algorithm in the context of the cross-domain task as
it minimises the importance of the source domain.
Obviously more experiments with different data

must be accomplished to prove this conclusion with
a higher level of confidence.

We also compare graph-based algorithms with
other state-of-the-art approaches, such as SCL and
SFA (Table 2, Figure 3). The best results in Table 2
are highlighted and if the difference is statistically
significant with α = 0.05 the corresponding
accuracy is underlined. Note that we compare
graph-based approaches against the others but not
each other, therefore, if the result given by RANK is
underlined it means that it is statistically significant
only in comparison with SCL and SFA and not with
OPTIM. According to Table 2, RANK surpasses
SCL for almost all domain pairs with an average
difference equal to 2%. Interestingly, without
using SO-CAL-dictionaries RANK loses to both
SCL and SFA for almost all domain pairs. The
advantage of RANK over SFA is disputable as
there is not much consistency about when one
algorithm outperforms another, except that SFA is
better overall for close domains. However Figure
3 suggests an interesting finding: that for domains
with different complexities swapping source and
target also changes the method that produces the
best performance. A comparison of RANK and SCL
on the Chinese texts given by (Wu et al., 2009)
shows the same phenomenon. It seems that RANK
works better when the target domain is simpler,
maybe because it can benefit more from in-domain
neighbours of the less rich and ambiguous domain.
In the future, we plan to increase the impact of
lexically different but reliably labeled source data
by implementing the SFA algorithm and measuring
document similarity between feature clusters rather
than separate features.

6 Strategy for choosing optimal
parameters

The results of the RANK and OPTIM algorithms
presented in the previous section represent the
highest accuracies obtained after running gradient
descent method. Table 3 lists the best parameter
values of the RANK algorithm over several domain
pairs. Our attempt to establish some universal values
valid for all domain pairs was not successful as the
choice of the parameters depends upon the domain
properties. Of course, in real life situations we do
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source-target baseline OPTIM RANK OPTIM+ RANK+ SCL SFA
SOCAL SOCAL

BO-EL 70.0 74.0 77.2 74.4 79.8 77.5 72.5
BO-DV 76.5 78.6 77.4 79.9 79.8 75.8 81.4
BO-KI 69.5 74.6 78.6 77.3 82.8 78.9 78.8
DV-BO 74.4 78.8 78.9 80.5 82.1 79.7 77.5
DV-EL 67.2 73.6 78.8 74.4 80.9 74.1 76.7
DV-KI 70.2 75.6 80.4 77.3 83.2 81.4 80.8
EL-BO 65.5 67.8 69.9 69.5 73.6 75.4 75.7
EL-DV 71.3 74.2 72.6 75.6 77.0 76.2 77.2
EL-KI 81.6 83.6 83.2 85.7 85.3 85.9 86.8
KI-BO 64.7 68.4 70.9 69.7 74.8 68.6 74.8
KI-DV 70.1 72.3 72.4 73.4 78.4 76.9 77.0
KI-EL 79.7 82.6 81.9 83.7 83.7 86.8 85.1
average 71.7 75.3 76.9 76.8 80.1 78.1 78.7

Table 2: Comparison of different cross-domain algorithms

Figure 3: Accuracy obtained with different cross-domain algorithms over various domains: A) OPTIM, B) RANK,
C) SCL, D) SFA. (x-axis - source domains, y-axis - target domains).
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parameter BO-EL BO-DV BO-KI EL-BO EL-DV EL-KI
γ 0.34 0.78 0.30 0.50 0.55 0.9
k 50 100 25 75 50 200
k′ 220 50 40 100 150 10

Table 3: Best number of labeled and unlabeled neighbours for the RANK algorithm over various domain pairs

source- similarity complexity γ
target variance

BO-EL 1.23 -1.93 0.34
BO-DV 1.75 0.06 0.76
BO-KI 1.17 -1.26 0.48
DV-BO 1.75 -0.06 0.75
DV-EL 1.22 -1.99 0.52
DV-KI 1.18 -1.32 0.44
EL-BO 1.23 1.93 0.62
EL-DV 1.22 1.99 0.68
EL-KI 1.87 0.67 0.75
KI-BO 1.17 1.26 0.64
KI-DV 1.18 1.32 0.54
KI-EL 1.87 -0.67 0.76

Table 4: Similarity, complexity variance and γ averaged
over the best results (confidence level of 95%) of the
RANK algorithm. The values are given on various
domain pairs

not have a knowledge of the parameter values which
produce the best performance and, therefore, it
would be useful to elaborate a strategy for choosing
the optimal values with respect to a corresponding
domain pair. In our previous work (Ponomareva
and Thelwall, 2012) we introduced two domain
characteristics: domain similarity and domain
complexity variance and proved their impact into
the cross-domain accuracy loss. Domain similarity
and complexity are independent properties of a
domain pair as the former measures similarity of
data distributions for frequent words, while the latter
compares the tails of distributions. In Ponomareva
and Thelwall (2012), we tested various metrics
to estimate these domain characteristics. As a
result, inversed χ2 was proved to be the best
measure of domain similarity as it gave the highest
correlation with the cross-domain accuracy drop.
The percentage of rare words (words that occur
less than 3 times) was found to be the closest
approximation to domain complexity as it showed

the highest correlation with the in-domain accuracy
drop.

It is naturally to assume that if domain similarity
and complexity are responsible for the cross-domain
accuracy loss, they might influence on the parameter
values of domain adaptation algorithms. This is
proved to be true for the γ parameter, whose values
averaged over the top results of the RANK algorithm
are listed in Table 4. We use the confidence
interval of 95% to select the top values of γ.
Table 4 shows that γ is the lowest for dissimilar
domains with a simpler target (negative values of
domain complexity variance), which means that the
RANK algorithm benefits the most from unlabeled
but simpler data. γ grows to values close to 0.6
for dissimilar domains with more complex target
(positive values of domain complexity variance),
which shows that the impact of simpler source data,
though different from target, increases. Finally γ
reaches its maximum for similar domains with the
same level of complexity. Unfortunately, due to
comparable amount of data for each domain, no
cases of similar domains with different complexity
are observed. We plan to study these particular cases
in the future.

High dependency of γ on both domain
characteristics is proved numerically. The
correlation between γ and domain similarity and
complexity reaches 0.91, and decreases drastically
when one of these characteristics is ignored.

Concerning the optimal number of labeled and
unlabeled neighbours, no regularity is evident
(Table 3). In our opinion, that is an effect
of choosing the neighbours on the basis of the
quantitative threshold. Nevertheless, different
domains have distinct pairwise document similarity
distributions. Figure 4 demonstrates similarity
distributions for BO, EL and DV inside and across
domains. Therefore, taking into account only
the quantitative threshold we ignore discrepancies
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Figure 4: Pairwise document similarity distributions inside domains (A) and across domains (B)

in graph connectivities inside and across domains
and may bring “bad” neighbours to participate in
decision-making. In our further research we plan
to explore the idea of a qualitative threshold, which
chooses neighbours according to their similarity and
uses the same similarity levels for in-domain and
cross-domain graphs.

7 Conclusions and future work

This paper has studied the performance of two
graph-based algorithms, OPTIM and RANK when
applied to cross-domain sentiment classification.
Comparison on their performance on the same data
has revealed that, in spite of the similar graph
structures, RANK consistently produces better
results than OPTIM. We also have compared the
graph-based algorithms with other cross-domain
methods, including SCL and SFA, and concluded
that RANK considerably outperforms SCL and
obtains better results than SFA for half of the
cases. Given that we consider only the best
accuracies obtained with RANK, such comparison
is not completely fair but it shows the potential of
the RANK algorithm once the strategy for choosing
its optimal parameters is established. In this paper,
we also discuss some ideas about how to infer
optimal parameter values for the algorithms on the
basis of domain characteristics. In particular, the
strong correlation for γ with domain similarity and
complexity has been observed. Unfortunately we
are not able to find any regularity in the number
of source and target domain neighbours, which we
think is the result of the qualitative approach to

selecting the closest neighbours.
As a result of this research we have identified

the following future directions. First, we plan
to improve the RANK performance by choosing
the number of neighbours on the basis of the
document similarity threshold which we set equal
for both in-domain and cross-domain neighbours.
We expect that this modification will diminish the
number of “bad” neighbours and allow us to reveal a
dependency of similarity threshold on some domain
properties. Another research direction will focus on
the integration of SFA into the similarity measure
to overcome the problem of lexical discrepancy in
the source and target domains. Finally, as all our
conclusions have been drawn on a data set of 12
domain pairs, we plan to increase a number of
domains to verify our findings on larger data sets.
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Abstract 

This paper explores log-based query expan-

sion (QE) models for Web search. Three 

lexicon models are proposed to bridge the 

lexical gap between Web documents and 

user queries. These models are trained on 

pairs of user queries and titles of clicked 

documents. Evaluations on a real world data 

set show that the lexicon models, integrated 

into a ranker-based QE system, not only 

significantly improve the document retriev-

al performance but also outperform two 

state-of-the-art log-based QE methods. 

1 Introduction 

Term mismatch is a fundamental problem in Web 

search, where queries and documents are com-

posed using different vocabularies and language 

styles. Query expansion (QE) is an effective strate-

gy to address the problem. It expands a query is-

sued by a user with additional related terms, called 

expansion terms, so that more relevant documents 

can be retrieved.  

In this paper we explore the use of clickthrough 

data and translation models for QE. We select ex-

pansion terms for a query according to how likely 

it is that the expansion terms occur in the title of a 

document that is relevant to the query. Assuming 

that a query is parallel to the titles of documents 

clicked for that query (Gao et al. 2010a), three lex-

icon models are trained on query-title pairs ex-

tracted from clickthrough data. The first is a word 

model that learns the translation probability be-

tween single words. The second model uses lexi-

calized triplets to incorporate word dependencies 

for translation. The third is a bilingual topic model, 

which represents a query as a distribution of hid-

den topics and learns the translation between a 

query and a title term at the semantic level. We 

will show that the word model provides a rich set 

of expansion candidates while the triplet and topic 

models can effectively select good expansion 

terms, and that a ranker-based QE system which 

incorporates all three of these models not only sig-

nificantly improves Web search result but outper-

forms other log-based QE methods that are state-

of-the-art. 

There is growing interest in applying user logs 

to improve QE. A recent survey is due to Baeze-

Yates and Ribeiro-Neto (2011). Below, we briefly 

discuss two log-based QE methods that are closest 

to ours and are re-implemented in this study for 

comparison. Both systems use the same type of log 

data that we used to train the lexicon models. The 

term correlation model of Cui et al. (2002; 2003) is 

to our knowledge the first to explore query-

document relations for direct extraction of expan-

sion terms for Web search. The method outper-

forms traditional QE methods that do not use log 

data e.g. the local analysis model of Xu and Croft 

(1996). In addition, as pointed out by Cui et al. 

(2003) there are three important advantages that 

make log-based QE a promising technology to im-

prove the performance of commercial search en-

gines. First, unlike traditional QE methods that are 

based on relevance feedback, log-based QE derives 

expansion terms from search logs, allowing term 

correlations to be pre-computed offline. Compared 

to methods that are based on thesauri either com-

piled manually (Prager et al. 2001) or derived au-
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tomatically from document collections (Jing and 

Croft 1994), the log-based method is superior in 

that it explicitly captures the correlation between 

query terms and document terms, and thus can 

bridge the lexical gap between them more effec-

tively. Second, since search logs retrain query-

document pairs clicked by millions of users, the 

term correlations reflect the preference of the ma-

jority of users. Third, the term correlations evolve 

along with the accumulation of user logs, thus can 

reflect updated user interests at a specific time. 
However, as pointed out by Riezler et al. 

(2008), Cui et al.’s correlation-based method suf-

fers low precision of QE partly because the corre-

lation model does not explicitly capture context 

information and is susceptible to noise. Riezler et 

al. developed a QE system by retraining a standard 

phrase-based statistical machine translation (SMT) 

system using query-snippet pairs extracted from 

clickthrough data (Riezler et al. 2008; Riezler and 

Liu 2010). The SMT-based system can produce 

cleaner, more relevant expansion terms because 

rich context information useful for filtering noisy 

expansions is captured by combining language 

model and phrase translation model in its decoder. 

Furthermore, in the SMT system all component 

models are properly smoothed using sophisticated 

techniques to avoid sparse data problems while the 

correlation model relies on pure counts of term 

frequencies. However, the SMT system is used as a 

black box in their experiments. So the relative con-

tribution of different SMT components is not veri-

fied empirically. In this study we break this black 

box in order to build a better, simpler QE system. 

We will show that the proposed lexicon models 

outperform significantly the term correlation mod-

el, and that a simpler QE system that incorporates 

the lexicon models can beat the sophisticated, 

black-box SMT system. 

2 Lexicon Models 

We view search queries and Web documents as 

two different languages, and cast QE as a means to 

bridge the language gap by translating queries to 

documents, represented by their titles. In this sec-

tion, we will describe three translation models that 

are based on terms, triplets, and topics, respective-

ly, and the way these models are learned from que-

ry-title pairs extracted from clickthrough data. 

2.1 Word Model 

The word model takes the form of IBM Model 1 

(Brown et al. 1993; Berger and Lafferty 1999). Let 

            be a query,   be an expansion term 

candidate, the translation probability from   to   is 

defined as  

   |     ∑ ( |  ) (  | )

 

   

 (1) 

where    |   is the unsmoothed unigram proba-

bility of word   in query  . The word translation 

probabilities    |   are estimated on the query-

title pairs derived from the clickthrough data by 

assuming that the title terms are likely to be the 

desired expansions of the paired query. Our train-

ing method follows the standard procedure of 

training statistical word alignment models pro-

posed by Brown et al. (1993).  Formally, we opti-

mize the model parameters   by maximizing the 

probability of generating document titles from que-

ries over the entire training corpus: 

           ∏    |     

 

   

 (2) 

where both the titles   and the paired queries   are 

viewed as bag of words. The translation probability 

    |      takes the form of IBM Model 1 as  

   |     
 

      
∏∑ (  |    )

 

   

 

   

 (3) 

where   is a constant,   is the length of  , and   is 

the length of  . To find the optimal word transla-

tion probabilities of IBM Model 1, we used the EM 

algorithm, where the number of iterations is deter-

mined empirically on held-out data. 

2.2 Triplet Model 

The word model is context independent. The triplet 

model, which is originally proposed for SMT (Ha-

san et al. 2008), is intended to capture inter-term 

dependencies for selecting expansion terms. The 

model is based on lexicalized triplets (       ) 
which can be understood as two query terms trig-

gering one expansion term. The translation proba-

bility of   given   for the triplet model is parame-

terized as 
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   |     
 

 
∑ ∑  ( |     )

 

     

   

   

 (4) 

where Z is a normalization factor based on the cor-

responding query length, i.e.,   
      

 
, and 

 (  |     ) is the probability of translating    into 

   given another query word   . Since    can be 

any word in   that is not necessary to be adjacent 

to   , the triple model is able to combine local (i.e. 

word and phrase level) and global (i.e. query level) 

contextual information useful for word translation.  

Similar to the case of word model, we used the 

EM algorithm to estimate the translation probabili-

ties    |      on the query-title pairs.  Since the 

number of all possible triplets (      ) is large and 

as a consequence the model training could suffer 

the data sparseness problem, in our experiments 

count-based cutoff is applied to prune the model to 

a manageable size. 

2.3 Bilingual Topic Model (BLTM) 

The BLTM was originally proposed for Web doc-

ument ranking by Gao et al. (2011). The idea un-

derlying the model is that a search query and its 

relevant Web documents share a common distribu-

tion of (hidden) topics, but use different (probably 

overlapping) vocabularies to express these topics. 

Intuitively, BLTM-based QE works as follows. 

First, a query is represented as a vector of topics. 

Then, all the candidate expansion terms, which are 

selected from document, are ranked by how likely 

it is that these document terms are selected to best 

describe those topics. In a sense, BLTM is similar 

to the word model and the triplet model since they 

all map a query to a document word. BLTM differs 

in that the mapping is performed at the topic level 

(via a language independent semantic representa-

tion) rather than at the word level. In our experi-

ments BLTM is found to often select a different set 

of expansion terms and is complementary to the 

word model and the triplet model. 

Formally, BLTM-based QE assumes the follow-

ing story of generating   from  : 

1. First, for each topic  , a pair of different 

word distributions    
    

   are selected 

from a Dirichlet prior with concentration pa-

rameter β, where   
 

 is a topic-specific query 

term distribution, and   
  a topic-specific 

document term distribution. Assuming there 

are   topics, we have two sets of distribu-

tions       
      

   and    

   
      

  . 

2. Given  , a topic distribution    is drawn 

from a Dirichlet prior with concentration pa-

rameter  . 

3. Then a document term (i.e., expansion term 

candidate)   is generated by first selecting a 

topic   according to the topic distribution   , 

and then drawing a word from   
 . 

By summing over all possible topics, we end up 

with the following model form 

       |   ∑   |  
     |   

 

 (5) 

The BLTM training follows the method described 

in Gao et al. (2011). We used the EM algorithm to 

estimate the parameters (         of BLTM by 

maximizing the joint log-likelihood of the query-

title pairs and the parameters. In training, we also 

constrain that the paired query and title have simi-

lar fractions of tokens assigned to each topic. The 

constraint is enforced on expectation using posteri-

or regularization (Ganchev et al. 2010). 

3 A Ranker-Based QE System 

This section describes a ranker-based QE system in 

which the three lexicon models described above 

are incorporated. The system expands an input 

query in two distinct stages, candidate generation 

and ranking, as illustrated by an example in Figure 

1. 

Original query jaguar locator 

Ranked expansion  jaguar finder 

candidates 

(altered words are in 

car locator 

jaguar location 

italic) jaguar directory 

 … 

 jaguar list 

Expanded query OR(jaguar, car)  

(selected expansion 

terms are in italic) 
OR(locator, finder, location, 

directory) 

Figure 1. An example of an original query, its expan-

sion candidates and the expanded query generated by 

the ranker-based QE system. 
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In candidate generation, an input query   is 

first tokenized into a sequence of terms. For each 

term   that is not a stop word, we consult a word 

model described in Section 2.1 to identify the best 

  altered words according to their word transla-

tion probabilities from  . Then, we form a list of 

expansion candidates, each of which contains all 

the original words in   except for the word that is 

substituted by one of its altered words. So, for a 

query with   terms, there are at most     candi-

dates. 

In the second stage, all the expansion candidates 

are ranked using a ranker that is based on the Mar-

kov Random Field (MRF) model in which the 

three lexicon models are incorporated as features.  

Expansion terms of a query are taken from those 

terms in the  -best (     in our experiments) 

expansion candidates of the query that have not 

been seen in the original query string. 

In the remainder of this section we will describe 

in turn the MRF-based ranker, the ranking features, 

and the way the ranker parameters are estimated. 

3.1 MRF-Based Ranker 

The ranker is based on the MRF model that models 

the joint distribution of         over a set of ex-

pansion term random variables             and 

a query random variable  . It is constructed from a 

graph   consisting of a query node and nodes for 

each expansion term. Nodes in the graph represent 

random variables and edges define the independ-

ence semantics between the variables. An MRF 

satisfies the Markov property (Bishop 2006), 

which states that a node is independent of all of its 

non-neighboring nodes given observed values of 

its neighbors, defined by the clique configurations 

of  . The joint distribution over the random varia-

bles in   is defined as  

        
 

  
∏       

      

 (6) 

where      is the set of cliques in  , and each 

       is a non-negative potential function de-

fined over a clique configuration c that measures 

the compatibility of the configuration,   is a set of 

parameters that are used within the potential func-

tion, and    normalizes the distribution. For rank-

ing expansion candidates, we can drop the expen-

sive computation of    since it is independent of 

E, and simply rank each expansion candidate   by 

its unnormalized joint probability with   under the 

MRF. It is common to define MRF potential func-

tions of the exponential form as        
            , where      is a real-valued feature 

function over clique values and    is the weight of 

the feature function. Then, we can compute the 

posterior     |   as 

    |   
       

     
 (7) 

    
⇒   ∑           

      

 ∑       

      

  

which is essentially a weighted linear combination 

of a set of features. 

Therefore, to instantiate the MRF model, one 

needs to define a graph structure and a set of po-

tential functions. In this paper, the graphical model 

representation we propose for QE is a fully con-

nected graph shown in Figure 2, where all expan-

sion terms and the original query are assumed de-

pendent with each other. In what follows, we will 

define six types of cliques that we are interested in 

defining features (i.e., potential functions) over. 

3.2 Features 

The cliques and features are inspired by the com-

ponent models used in SMT systems. The cliques 

defined in   for MRF can be grouped into two cat-

egories. The first includes three types of cliques 

involving both the query node and one or more 

expansion terms. The potential functions defined 

over these cliques attempt to abstract the idea be-

hind the query to title translation models. The other 

three types, belonging to the second category, in-

volve only expansion terms. Their potential func-

 
 

Figure 2: The structure of the Markov random field for 

representing the term dependency among the query   

and the expansion terms        . 
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tions attempt to abstract the idea behind the target 

language models.  

The first type of cliques involves a single ex-

pansion term and the query node. The potentials 

functions for these cliques are defined as 

                             (6) 

               

                   

where the three feature functions of the form 

       are defined as the log probabilities of 

translating   to   according to the word, triplet and 

topic models defined in Equations (1), (4) and (5), 

respectively. 

                   |    

                   |    

                       |    

The second type of cliques contains the query 

node and two expansion terms,    and     , which 

appear in consecutive order in the expansion. The 

potential functions over these cliques are defined 

as 

                                        (7) 

where the feature        is defined as the log prob-

ability of generating an expansion bigram given   

           |               |    

Unlike the language models used for document 

ranking (e.g., Zhai and Lafferty 2001), we cannot 

compute the bigram probability by simply counting 

the relative frequency of           in   because 

the query is usually very short and the bigram is 

unlikely to occur. Thus, we approximate the bi-

gram probability by assuming that the words in   

are independent with each other. We thus have 

         |   
            

    
 

 
           |   ∏     |        

 
   

∏      
 
   

  

where     |         is the translation probability 

computed using a variant of the triplet model de-

scribed  in Section 2.2. The model variation differs 

from the one of Equation (4) in two respects. First, 

it models the translation in a different direction i.e., 

from expansion to query. Second, we add a con-

straint to the triplets such that (       ) must be an 

ordered, contiguous bigram. The model variation is 

also trained using EM on query-title pairs.       

and       |    are assigned respectively by the 

unigram and bigram language models, estimated 

from the collection of document titles of the click-

through data, and        is the unigram probability 

of the query term, estimated from the collection of 

queries of the clickthrough data. 

The third type of cliques contains the query 

node and two expansion terms,    and   , which 

occur unordered within the expansion. The poten-

tial functions over these cliques are defined as 

                                    (8) 

where the feature        is defined as the log prob-

ability of generating a pair of expansion terms 

        given   

         |             |  .  

Unlike            |   defined in Equation (7), this 

class of features captures long-span term depend-

ency in the expansion candidate. Similar to the 

computation of          |   in Equation (7), we 

approximate        |   as     

       |   
          

    
 

 
         |   ∏     |       

   

∏      
 
   

  

where     |       is the translation probability 

computed using the triplet model described  in Sec-

tion 2.2, but in the expansion-to-query direction. 

      is assigned by a unigram language model 

estimated from the collection of document titles of 

the clickthrough data.     |    is assigned by a co-

occurrence model, estimated as  

    |    
        

∑         
  

where          is the number of times that the two 

terms occur in the same title in clickthrough data.  

We now turn to the other three types of cliques 

that do not contain the query node. The fourth type 

of cliques contains only one expansion term. The 

potential functions are defined as 
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                          (9) 

                  

where       is the unigram probability computed 

using a unigram language model trained on the 

collection of document titles. 

The fifth type of cliques contains a pair of terms 

appearing in consecutive order in the expansion. 

The potential functions are defined as 

                                    (10) 

                      |     

where       |    is the bigram probability com-

puted using a bigram language model trained on 

the collection of document titles. 

The sixth type of cliques contains a pair of 

terms appearing unordered within the expansion. 

The potential functions are defined as 

                                (11) 

                  |     

where     |    is the assigned by a co-occurrence 

model trained on the collection of document titles. 

3.3 Parameter Estimation 

The MRF model uses 8 classes of features defined 

on 6 types of cliques, as in Equations (6) to (11). 

Following previous work (e.g., Metzler and Croft 

2005; Bendersky et al. 2010), we assume that all 

features within the same feature class are weighted 

by the same tied parameter   . Thus, the number of 

free parameters of the MRF model is significantly 

reduced. This not only makes the model training 

easier but also improves the robustness of the 

model. After tying the parameters and using the 

exponential potential function form, the MRF-

based ranker can be parameterized as  

    |  
    
⇒      ∑          

 

   
  (12) 

   ∑          
 

   
  

     ∑            
 

   
  

   ∑               
   

   
  

   ∑ ∑             
 

     

   

   
  

   ∑        
 

   
  

   ∑             
   

   
  

   ∑ ∑           
 

     

   

   
 

where there are in total 8  ’s to be estimated. 

Although the MRF is by nature a generative 

model, it is not always appropriate to train the pa-

rameters using conventional likelihood based ap-

proaches due to the metric divergence problem 

(Morgan et al. 2004): i.e., the maximum likelihood 

estimate is unlikely to be the one that optimizes the 

evaluation metric. In this study the effectiveness of 

a QE method is evaluated by first issuing a set of 

queries which are expanded using the method to a 

search engine and then measuring the Web search 

performance. Better QE methods are supposed to 

lead to better Web search results using the corre-

spondingly expanded query set. 

For this reason, the parameters of the MRF-

based ranker are optimized directly for Web 

search. In our experiments, the objective in train-

ing is Normalized Discounted Cumulative Gain 

(NDCG, Jarvelin and Kekalainen 2000), which is 

widely used as quality measure for Web search. 

Formally, we view parameter training as a multi-

dimensional optimization problem, with each fea-

ture class as one dimension. Since NDCG is not 

differentiable, we tried in our experiments numeri-

cal algorithms that do not require the computation 

of gradient. Among the best performers was the 

Powell Search algorithm (Press et al., 1992). It first 

constructs a set of   virtual directions that are con-

jugate (i.e., independent with each other), then it 

uses line search   times (    in our case), each 

on one virtual direction, to find the optimum. Line 

search is a one-dimensional optimization algo-

rithm. Our implementation follows the one de-

scribed in Gao et al. (2005), which is used to opti-

mize averaged precision. 

4 Experiments 

We evaluate the performance of a QE method by 

first issuing a set of queries which are expanded 

using the method to a search engine and then 
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measuring the Web search performance. Better QE 

methods are supposed to lead to better Web search 

results using the correspondingly expanded query 

set.  

Due to the characteristics of our QE methods, 

we cannot conduct experiments on standard test 

collections such as the TREC data because they do 

not contain related user logs we need. Therefore, 

following previous studies of log-based QE (e.g., 

Cui et al. 2003; Riezler et al. 2008), we use the 

proprietary datasets that have been developed for 

building a commercial search engine, and demon-

strate the effectiveness of our methods by compar-

ing them against previous state-of-the-art log-

based QE methods. 
The relevance judgment set consists of 4,000 

multi-term English queries. On average, each que-

ry is associated with 197 Web documents (URLs). 

Each query-URL pair has a relevance label. The 

label is human generated and is on a 5-level rele-

vance scale, 0 to 4, with 4 meaning document D is  

the  most  relevant  to  query Q  and 0 meaning  D 

is  not  relevant to Q.  

The relevance judgment set is constructed as 

follows. First, the queries are sampled from a year 

of search engine logs. Adult, spam, and bot queries 

are all removed. Queries are “de-duped” so that 

only unique queries remain. To reflect a natural 

query distribution, we do not try to control the 

quality of these queries. For example, in our query 

sets, there are roughly 20% misspelled queries, 20% 

navigational queries, and 10% transactional que-

ries. Second, for each query, we collect Web doc-

uments to be judged by issuing the query to several 

popular search engines (e.g., Google, Bing) and 

fetching retrieval results from each. Finally, the 

query-document pairs are judged by a group of 

well-trained assessors. In this study all the queries 

are preprocessed as follows. The text is white-

space tokenized and lowercased, numbers are re-

tained, and no stemming/inflection treatment is 

performed. We split the judgment set into two non-

overlapping datasets, namely training and test sets, 

respectively. Each dataset contains 2,000 queries. 
The query-title pairs used for model training are 

extracted from one year of query log files using a 

procedure similar to Gao et al. (2009). In our ex-

periments we used a randomly sampled subset of 

20,692,219 pairs that do not overlap the queries 

and documents in the test set. 

Our Web document collection consists of ap-

proximately 2.5 billion Web pages. In the retrieval 

experiments we use the index based on the content 

fields (i.e., body and title text) of each Web page. 

The Web search performance is evaluated by 

mean NDCG. We report NDCG scores at trunca-

tion levels of 1, 3, and 10.  We also perform a sig-

nificance test using the paired t-test. Differences 

are considered statistically significant when p-

value is less than 0.05. 

4.1 Comparing Systems 

Table 1 shows the main document ranking results 

using different QE systems, developed and evalu-

ated using the datasets described above.  

NoQE (Row 1) is the baseline retrieval system 

that uses the raw input queries and the BM25 doc-

ument ranking model. Rows 2 to 4 are different QE 

systems. Their results are obtained by first expand-

ing a query, then using BM25 to rank the docu-

ments with respect to the expanded query.  

TC (Row 2) is our implementation of the corre-

lation-based QE system (Cui et al. 2002; 2003). It 

takes the following steps to expand an input query 

 : 

# QE methods NDCG@1 NDCG@3 NDCG@10 

1 NoQE 34.70 36.50 41.54 

2 TC 33.78 36.57 42.33
 α
 

3 SMT 34.79
 β
 36.98

 αβ
 42.84

 αβ
 

4 MRF 36.10
 αβγ

 38.06
 αβγ

 43.71
 αβγ

 

5 MRFum+bm+cm 33.31 36.12 42.26
 α
 

6 MRFtc 34.50
 β
 36.59 42.33

 α
 

7 MRFwm 34.73
 β
 36.62 42.73

 αβ
 

8 MRFtm 35.13
 αβ

 37.46
 αβγ

 42.82
 αβ

 

9 MRFbltm 34.34
 β
 36.19 41.98

 α
 

10 MRFwm+tm 35.21
 αβγ

 37.46
 αβγ

 42.83
 αβ

 

11 MRFwm+tm+bltm 35.84
 αβγ

 37.70
 αβγ

 43.14
 αβγ

 

Table 1: Ranking results using BM25 with different 

query expansion systems. The superscripts      and    

indicate statistically significant improvements 

         over NoQE, TC, and SMT, respectively. 

Rows 5 to 11 are different versions of MRF in Row 5, 

They use the same candidate generator but use in the 

ranker different feature classes, as specified by the 

subscript. tc specifies the feature class defined as the 

scoring function in Equation (13). Refer to Equation 

(12) for the names of other feature classes. 
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1. Extract all query terms   (eliminating 

stopwords) from  . 

2. Find all documents that have clicks on a 

query that contains one or more of these 

query terms. 

3. For each title term   in these documents, 

calculate its evidence of being selected as 

an expansion term according to the whole 

query via a scoring function        |   . 

4. Select n title terms with the highest score 

(where the value of n is optimized on train-

ing data) and formulate the expanded que-

ry by adding these terms into  . 

5. Use the expanded query to rank documents. 

The scoring function is based on the term correla-

tion model, and is defined as 

       |     (∏   |    

   

) (13) 

   |   ∑    |     |  

    

 
 

where    is the set of documents clicked for the 

queries containing the term   and is collected from 

search logs,    |   is a normalized tf-idf weight 

of the document term in  , and    |   is the rela-

tive occurrence of   among all the documents 

clicked for the queries containing  . Table 1 shows 

that TC leads to significant improvement over 

NoQE in NDCG@10, but not in NDCG@1 and 

NDCG@3 (Row 2 vs. Row 1). The result is not 

entirely consistent with what reported in Cui et al. 

(2003). A possible reason is that Cui et al. per-

formed the evaluation using documents and search 

logs collected from the Encarta website, which is 

much cleaner and more homogenous than the data 

sets we used. The result suggests that although QE 

improves the recall of relevant documents, it is 

also likely to introduce noise that hurts the preci-

sion of document retrieval. 

SMT (Row 3) is a SMT-based QE system. Fol-

lowing Riezler et al. (2008), the system is an im-

plementation of a phrase-based SMT system with a 

standard set of features for translation model and 

language model, combined under a log linear mod-

el framework (Koehn et al. 2003). Different from 

Riezler et al.’s system where the translation model 

is trained on query-snippet pairs and the language 

model on queries, in our implementation the trans-

lation model is trained on query-title pairs and the 

language model on titles. To apply the system to 

QE, expansion terms of a query are taken from 

those terms in the 10-best translations of the query 

that have not been seen in the original query string. 

We see that SMT significantly outperforms TC in 

NDCG at all levels. The result confirms the con-

clusion of Riezler et al., demonstrating that context 

information is crucial for improving retrieval pre-

cision by filtering noisy expansions.  

Both TC and SMT, considered as state-of-the-

art QE methods, have been frequently used for 

comparison in related studies. Thus, we also used 

them as baselines in our experiments. 

MRF (Row 4) is the ranker-based QE system 

described in Section 3, which uses a MRF-based 

ranker to incorporate all 8 classes of features de-

rived from a variety of lexicon translation models 

and language models as in Equation (12). Results 

show that the ranker-based QE system significantly 

outperforms both NoQE and the two state-of-the-

art QE methods. The fact that MRF beats SMT 

with a statistically significant margin although the 

former is a much simpler system indicates that text 

translation and QE are different tasks and some 

SMT components, designed for the task of regular 

text translation, are not as effective in selecting 

expansion terms. We will explore this in more de-

tail in the next section. 

4.2 Comparing Models 

The experiments presented in this section investi-

gate in detail the effectiveness of different models, 

e.g., the lexicon models and the language models 

described in Sections 2 and 3, in ranking expansion 

candidates for QE. The results are summarized in 

Rows 5 to 11 in Table 1, where a number of differ-

ent versions of the ranker-based QE system are 

compared. These versions, labeled as MRFf, use 

the same candidate generator, and differ in the fea-

ture classes (which are specified by the subscript f) 

incorporated in the MRF-based ranker. In what 

follows, we focus our discussion on the results of 

the three lexicon models. 

MRFwm (Row 7) uses the word translation 

model described in Section 2.1. Both the word 

model and term correlation model used in MRFtm 

(Row 6) are context independent. They differ 

mainly in the training methods. For the sake of 

comparison, in our experiment the word model is 
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EM-trained with the correlation model as initial 

point. Rezler et al. (2008) hypothesize that statisti-

cal translation model is superior to correlation 

model because the EM training captures the hidden 

alignment information when mapping document 

terms to query terms, leading to a better smoothed 

probability distribution. Our result (Row 7 vs. Row 

6) verifies the hypothesis. Notice that MRFtc out-

performs TC in NDCG@1 (Row 6 vs. Row 2) 

mainly because in the former the expansion candi-

dates are generated by a word translation model 

and are less noisy. 

It is encouraging to observe that the rankers us-

ing the triplet model features achieve the QE per-

formance either in par with or better than that of 

SMT (Rows 8, 10 and 11 vs. Row 3), although the 

latter is a much more sophisticated system. The 

result suggests that not all SMT components are 

useful for QE. For example, language models are 

indispensable for translation but are less effective 

than word models for QE (Row 5 vs. Rows 6 and 

7). We also observe that the triplet model not only 

outperforms significantly the word model due to 

the use of contextual information (Row 8 vs. Row 

7), but also seems to subsume the latter in that 

combining the features derived from both models 

in the ranker leads to little improvement over the 

ranker that uses only the triplet model features 

(Row 10 vs. Row 8).  
The bilingual topic model underperforms the 

word model and the triplet model (Row 9 vs. Rows 

7 and 8). However, we found that the bilingual top-

ic model often selects a different set of expansion 

terms and is complementary to the other two lexi-

con models. As a result, unlike the case of combin-

ing the word model and triplet model features, in-

corporating the bilingual topic model features in 

the ranker leads to some visible improvement in 

NDCG at all positions (Row 11 vs. Row 10). 

To better understand empirically how the MRF-

based QE system achieves the improvement, we 

analyzed the expansions generated by our system 

in detail and obtained several interesting findings. 

First, as expected, in comparison with the word 

model, the triplet translation model is more effec-

tive in benefitting long queries, e.g., notably que-

ries containing questions and queries containing 

song lyrics. Second, unlike the two lexicon models, 

the bilingual topic model tends to generate expan-

sions that are more likely to relate to an entire que-

ry rather than individual query terms. Third, the 

features involving the order of the expansion terms 

benefitted queries containing named entities. 

5 Related Work 

In comparison with log-based methods studied in 

this paper, the QE methods based on automatic 

relevance feedback have been studied much more 

extensively in the information retrieval (IR) com-

munity, and have been proved useful for improving 

IR performance on benchmark datasets such as 

TREC (e.g., Rocchio 1971; Xu and Croft 1996; 

Lavrenko 2001; Zhai and Lafferty 2001). Howev-

er, these methods cannot be applied directly to a 

commercial Web search engine because the rele-

vant documents are not always available and gen-

erating pseudo-relevant documents requires multi-

phase retrieval, which is prohibitively expensive. 

Although automatic relevance feedback is not the 

focus of this study, our method shares a lot of simi-

larities with some of them. For example, similar to 

the way the parameters of our QE ranker are esti-

mated, Cao et al. (2008) propose a method of se-

lecting expansion terms to directly optimize aver-

age precision. The MRF model has been previous-

ly used for QE, in the form of relevance feedback 

and pseudo-relevance feedback (Metzler et al. 

2007; Lang et al. 2010). While their MRF models 

use the features derived from IR systems such as 

Indri, we use the SMT-inspired features.  

Using statistical translation models for IR is not 

new (e.g., Berger and Lafferty 1999; Jin et al. 2002; 

Xue et al. 2008). The effectiveness of the statistical 

translation-based approach to Web search has been 

demonstrated empirically in recent studies where 

word-based and phrase-based translation models 

are trained on large amounts of clickthrough data 

(e.g., Gao et al. 2010a; 2011). Our work extends 

these studies and constructs QE-oriented transla-

tion models that capture more flexible dependen-

cies. 

In addition to QE, search logs have also been 

used for other Web search tasks, such as document 

ranking (Joachims 2002; Agichtein et al. 2006), 

search query processing and spelling correction 

(Huang et al. 2010; Gao et al. 2010b) image re-

trieval (Craswell and Szummer 2007), and user 

query clustering (Baeza-Yates and Tiberi 2007; 

Wen et al. 2002). 

6 Conclusions 
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In this paper we extend the previous log-based QE 

methods in two directions. First, we formulate QE 

as the problem of translating a source language of 

queries into a target language of documents, repre-

sented as titles. This allows us to adapt the estab-

lished techniques developed for SMT to QE. Spe-

cially, we propose three lexicon models based on 

terms, lexicalized triplets, and topics, respectively. 

These models are trained on pairs of user queries 

and the titles of clicked documents using EM. Se-

cond, we present a ranker-based QE system, the 

heart of which is a MRF-based ranker in which the 

lexicon models are incorporated as features. We 

perform experiments on the Web search task using 

a real world data set. Results show that the pro-

posed system outperforms significantly other state-

of-the-art QE systems. 

This study is part of a bigger, ongoing project, 

aiming to develop a real-time QE system for Web 

search, where simplicity is the key to the success. 

Thus, what we learned from this study is particu-

larly encouraging. We demonstrate that with large 

amounts of clickthrough data for model training, 

simple lexicon models can achieve state-of-the-art 

QE performance, and that the MRF-based ranker 

provides a simple and flexible framework to incor-

porate a variety of features capturing different 

types of term dependencies in such an effective 

way that the Web search performance can be di-

rectly optimized. 
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Abstract

This paper addresses the task of construct-
ing a timeline of events mentioned in a given
text. To accomplish that, we present a novel
representation of the temporal structure of a
news article based on time intervals. We then
present an algorithmic approach that jointly
optimizes the temporal structure by coupling
local classifiers that predict associations and
temporal relations between pairs of tempo-
ral entities with global constraints. Moreover,
we present ways to leverage knowledge pro-
vided by event coreference to further improve
the system performance. Overall, our experi-
ments show that the joint inference model sig-
nificantly outperformed the local classifiers by
9.2% of relative improvement in F1. The ex-
periments also suggest that good event coref-
erence could make remarkable contribution to
a robust event timeline construction system.

1 Introduction

Inferring temporal relations amongst a collection of
events in a text is a significant step towards vari-
ous important tasks such as automatic information
extraction and document comprehension. Over the
past few years, with the development of the Time-
Bank corpus (Pustejovsky et al., 2003) , there have
been several works on building automatic systems
for such a task (Mani et al., 2006; Chambers and
Jurafsky, 2008; Yoshikawa et al., 2009; Denis and
Muller, 2011).

Most previous works devoted much efforts to the
task of identifying relative temporal relations (such
as before, or overlap) amongst events (Chambers
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Figure 1: A graphical illustration of our timeline representation.
The e’s, t’s and I’s are events, time points and time intervals,
respectively.

and Jurafsky, 2008; Denis and Muller, 2011), with-
out addressing the task of identifying correct asso-
ciations between events and their absolute time of
occurrence. Even if this issue is addressed, certain
restrictions are often imposed for efficiency reasons
(Yoshikawa et al., 2009; Verhagen et al., 2010). In
practice, however, being able to automatically infer
the correct time of occurrence associated with each
event is crucial. Such information not only leads to
better text comprehension, but also enables fusion
of event structures extracted from multiple articles
or domains.

In this work, we are specifically interested in map-
ping events into an universal timeline representa-
tion. Besides inferring the relative temporal rela-
tions amongst the events, we would also like to au-
tomatically infer a specific absolute time of occur-
rence for each event mentioned in the text. Unlike
previous work, we associate each event with a spe-
cific absolute time interval inferred from the text. An
example timeline representation is illustrated in Fig.
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1. Further details of our timeline representation are
given in Sec. 2.3.

We perform global inference by combining a col-
lection of local pairwise classifiers through the use
of an Integer Linear Programming (ILP) formula-
tion that promotes global coherence among local de-
cisions. The formulation allows our model to pre-
dict both event-event relations and event-time inter-
val associations simultaneously. We show that, with
the use of time intervals instead of time points, our
approach leads to a more concise ILP formulation
with reduced number of variables and constraints.

Moreover, we observed that event coreference can
reveal important information for such a task. We
propose that different event mentions that refer to
the same event can be grouped together before clas-
sification and performing global inference. This can
reduce the amount of efforts in both classification
and inference stages and can potentially eliminate
mistakes that would be made otherwise without such
coreference information. To the best of our knowl-
edge, our proposal of leveraging event coreference
to support event timeline construction is novel.

Our experiments on a collection of annotated
news articles from the standard ACE dataset demon-
strate that our approach produces robust timelines of
events. We show that our algorithmic approach is
able to combine various local evidences to produce
a global coherent temporal structure, with improved
overall performance. Furthermore, the experiments
show that the overall performance can be further im-
proved by exploiting knowledge from event corefer-
ence.

2 Background

We focus on the task of mapping event mentions in
a news article to a timeline. We first briefly describe
and define several basic concepts.

2.1 Events

Following the annotation guidelines of the ACE
project, we define an event as an action or occur-
rence that happens with associated participants or
arguments. We also distinguish between events and
event mentions, where a unique event can be core-
ferred to by a set of explicit event mentions in an
article. Formally, an event Ei is co-referred to by

a set of event mentions (ei1, e
i
2, . . . , e

i
k). Each event

mention e can be written as p(a1, a2, . . . , al), where
the predicate p is the word that triggers the presence
of e in text, and a1, a2, . . . al are the arguments asso-
ciated with e. In this work we focus on four tempo-
ral relations between two event mentions including
before, after, overlap and no relation.

2.2 Time Intervals

Similar to Denis and Muller (2011), we define time
intervals as pairs of time endpoints. Each time in-
terval I is denoted by [t−, t+], where t− and t+ are
two time endpoints representing the lower and upper
bound of the interval I , respectively, with t− ≤ t+.
The general form of a time endpoint is written as
“YYYY-MM-DD hh:mm:ss”. An endpoint can be un-
defined, in which case it is set to an infinity value:
−∞, or +∞. There are two types of time intervals:

Explicit intervals are time intervals that can be
extracted directly from a given text. For example,
consider the following snippet of an article in our
data set: The litigation covers buyers in auctions
outside the United States between January 1, 1993
and February 7, 2000. In this example, we can ex-
tract and normalize two time intervals which are ex-
plicitly written, including January 1, 1993→ [1993-
01-01 00:00:00, 1993-01-01 23:59:59] and Febru-
ary 7, 2000 → [2000-02-07 00:00:00, 2000-02-07
23:59:59]. Moreover, an explicit interval can also
be formed by one or more separate explicit temporal
expressions. In the example above, the connective
term between relates the two expressions to form a
single time interval: between January 1, 1993 and
February 7, 2000 → [1993-01-01 00:00:00, 2000-
02-07 23:59:59]. To extract explicit time intervals
from text, we use the time interval extractor de-
scribed in Zhao et al. (2012).

Implicit intervals are time intervals that are not
explicitly mentioned in the text. We observed that
there are events that cannot be assigned to any pre-
cise time interval but are roughly known to occur
in the past or in the future relative to the Doc-
ument Creation Time (DCT) of the article. We
introduce two implicit time intervals to represent
the past and the future events as (−∞, t−DCT ] and
[t+DCT ,+∞), respectively. In addition, we also al-
low an event mention to be assigned into the entire
timeline, which is denoted by (−∞,+∞) if we can-
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not identify its time of occurrence. We also consider
DCT as an implicit interval.

We say that the time interval Ii precedes the time
interval Ij on a timeline if and only if t+i ≤ t−j ,
which also implies that Ii succeeds Ij if and only if
t−i ≥ t

+
j . The two intervals overlap, otherwise.

2.3 Timeline

We define a timeline as a partially ordered set of time
intervals. Fig. 1 gives a graphical illustration of an
example timeline, where events are annotated and
associated with time intervals. Relations amongst
events can be properly reflected in the timeline rep-
resentation. For example, in the figure, the events e1

and e2 are both associated with the interval I1. The
relation between them is no relation, since it is un-
clear which occurs first. On the other hand, e5 and
e3 both happen in the interval I2 but they form an
overlap relation. The events e6 and e7 occur within
the same interval I3, but e7 precedes (i.e. before) e6

on the timeline. The event e4 is associated with the
interval (−∞,+∞), indicating there is no knowl-
edge about its time of occurrence.

We believe that such a timeline representation
for temporally ordering events has several advan-
tages over the temporal graph representations used
in previous works (Chambers and Jurafsky, 2008;
Yoshikawa et al., 2009; Denis and Muller, 2011).
Unlike previous works, in our model the events are
partially ordered in a single timeline, where each
event is associated with a precise time interval. This
improves human interpretability of the temporal re-
lations amongst events and time. This property of
our timeline representation, thus, facilitates merg-
ing multiple timelines induced from different arti-
cles. Furthermore, as we will show later, the use
of time intervals within the timeline representation
simplifies the global inference formulation and thus
the inference process.

3 A Joint Timeline Model

Our task is to induce a globally coherent timeline
for a given article. We thus adopt a global infer-
ence model for performing the task. The model
consists of two components: (1) two local pairwise
classifiers, one between event mentions and time in-
tervals (the E–T classifier) and one between event

mentions themselves (the E–E classifier), and (2)
a joint inference module that enforces global co-
herency constraints on the final outputs of the two
local classifiers. Fig. 2 shows a simplified temporal
structure of event mentions and time intervals of an
article in our model.

Our E–T classifier is different from previous
work (Chambers and Jurafsky, 2008; Yoshikawa et
al., 2009; Denis and Muller, 2011), where such clas-
sifiers were trained to identify temporal relations be-
tween event mentions and a temporal expression. In
our work, in order to construct absolute timeline of
event mentions, temporal expressions are captured
and normalized as absolute time intervals. The E–T
classifiers are then used to assign event mentions to
their contextually corresponding time intervals.

We also lifted several restrictions imposed in pre-
vious work (Bethard et al., 2007; Yoshikawa et al.,
2009; Verhagen et al., 2010). Specifically, we do
not require that event mentions and time expressions
have to appear in the same sentence, and we do not
require two event mentions have to appear very close
to each other (e.g., main event mentions in adjacent
sentences) in order to be considered as candidate
pairs for classification. Instead, we performed clas-
sifications over all pairs of event mentions and time
intervals as well as over all pairs of event mentions.
We show through experiments that lifting these re-
strictions is indeed important (see Sec. 5).

Another important improvement over previous
work is our global inference model We would like
to highlight that our work is also distinct from most
previous works in the global inference component.
Specifically, our global inference model jointly op-
timizes the E-E relations amongst event mentions
and their associations, E-T, with temporal informa-
tion (intervals in our case). Previous work (Cham-
bers and Jurafsky, 2008; Denis and Muller, 2011),
on the other hand, assumed that the E-T information
is given and only tried to improve E-E.

3.1 The Pairwise Classifiers
We first describe our local classifiers that associate
event mention with time interval and classify tempo-
ral relations between event mentions, respectively.
CE−T : is the E–T classifier that associates an

event mention with a time interval. Given an event
mention and a time interval, the classifier predicts
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e1 e2 e3 e4 en-1 ene5 • • •

I1 I2 I3 Im• • •

Figure 2: A simplified temporal structure of an article. There
are m time intervals I1 · · · Im and n event mentions e1 · · · en.
A solid edge indicates an association between an interval and
an event mention, whereas a dash edge illustrates a temporal
relation between two event mentions.

whether the former associates with the latter.

CE−T (ei, Ij)→ {0, 1},
∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (1)

where n and m are the number of event mentions
and time intervals in an article, respectively.
CE−E : is the E–E classifier that identifies

the temporal relation between two event mentions.
Given a pair of event mentions, the classifier predicts
one of the four temporal relations between them:
b̄efore, āfter, ōverlap and n̄o relation. Specifically:

CE−E(ei, ej)→ {b̄, ā, ō, n̄},
∀i, j, 1 ≤ i, j ≤ n, i 6= j, (2)

For training of the classifiers, we define a set of
features following some previous work (Bethard et
al., 2007; Chambers and Jurafsky, 2008; Yoshikawa
et al., 2009), together with some additional features
that we believe to be helpful for the interval-based
representation. We describe the base features below
and use † and ‡ to denote the features used for CE−T

and CE−E , respectively. We use the term temporal
entity (or entity, for short) to refer to either an event
mention or a time interval.

Lexical Features: A set of lexical features related
to the temporal entities: (i)†‡ the word, lemma and
part-of-speech of the input event mentions and the
context surrounding them, where the context is de-
fined as a window of 2 words before and after the
mention; (ii)† the modal verbs to the left and to the
right of the event mention; (iii)‡ the temporal con-
nectives between the event mentions1.

1We define a list of temporal connectives including before,
after, since, when, meanwhile, lately, etc.

Syntactic Features: (i)†‡ which entity appears
first in the text; (ii)†‡ whether the two entities appear
in the same sentence; (iii)†‡ the quantized number of
sentences between the two entities2; (iv)†‡ whether
the input event mentions are covered by preposi-
tional phrases and what are the heads of the phrases;
(v)†‡ if the entities are in the same sentence, what is
their least common constituent on the syntactic parse
tree; (vi)† whether there is any other temporal entity
that is closer to one of the two entities.

Semantic Features‡: A set of semantic features,
mostly related to the input event mentions: (i)
whether the input event mentions have a common
synonym from their synsets in WordNet (Fellbaum,
1998); (ii) whether the input event mentions have a
common derivational form derived from WordNet.

Linguistic Features†‡: The tense and the aspect
of the input event mentions. We use an in-house
rule-based recognizer to extract these features.

Time Interval Features†: A set of features re-
lated to the input time interval: (i) whether the
interval is implicit; (ii) if it is implicit, identify
its interval type: “dct” = [t−DCT , t

+
DCT ], “past” =

(−∞, t−DCT ], “feature” = [t+DCT ,+∞), and “en-
tire” = (−∞,+∞); (iii) the interval is before, after
or overlapping with the DCT.

We note that unlike many previous work (Mani et
al., 2006; Chambers and Jurafsky, 2008; Denis and
Muller, 2011), our classifiers do not use any gold
annotations of event attributes (event class, tense, as-
pect, modal and polarity) provided in the TimeBank
corpus as features.

In our work, we use a regularized averaged Per-
ceptron (Freund and Schapire, 1999) as our classifi-
cation algorithm3. We used the one-vs.-all scheme
to transform a set of binary classifiers into a multi-
class classifier (for CE−E). The raw prediction
scores were converted into probability distribution
using the Softmax function (Bishop 1996). If there
are n classes and the raw score of class i is acti, the
posterior estimation for class i is:

P̃ (i) =
eacti∑

1≤j≤n e
actj

2We quantize the number of sentences between two entities
to 0, 1, 2, less than 5 and greater than or equal to 5

3Other algorithm (e.g. SVM) gave comparable or worse re-
sults, so we only show the results from Averaged Perceptron.
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3.2 Joint Inference for Event Timeline

To exploit the interaction among the temporal enti-
ties in an article, we optimize the predicted tempo-
ral structure, formed by predictions from CE−T and
CE−E , w.r.t. a set of global constraints that enforce
coherency on the final structure. We perform exact
inference using Integer Linear Programming (ILP)
as in (Roth and Yih, 2007; Clarke and Lapata, 2008).
We use the Gurobi Optimizer4 as a solver.

Let I = {I1, I2, . . . , Im} denote the set of time
intervals extracted from an article, and let E =
{e1, e2, . . . , en} denote all event mentions in the
same article. Let EI = {(ei, Ij) ∈ E × I|ei ∈
E , Ij ∈ I} denote the set of all pairs of event
mentions and time intervals. We also denote the
set of event mention pairs by EE = {(ei, ej) ∈
E × E|ei ∈ E , ej ∈ E , i 6= j}. The prediction prob-
ability of an association of a pair eI ∈ EI, given
by classifier CE−T , is denoted by p〈eI,1〉

5. Now, let
R = {b̄, ā, ō, n̄} be the set of temporal relations be-
tween two event mentions. The prediction proba-
bility of an event mention pair ee ∈ EE that takes
temporal relation r, given by CE−E , is denoted by
p〈ee,r〉. Furthermore, we define x〈eI,1〉 to be a binary
indicator variable that takes on the value 1 iff an as-
sociation is predicted between e and I . Similarly,
we define a binary indicator variable y〈ee,r〉 of a pair
of event mentions ee that takes on the value 1 iff ee
is predicted to hold the relation r.

The objective function is then defined as a linear
combination of the prediction probabilities from the
two local classifiers as follows:

arg max
x,y

[
λ
∑

eI∈EI
p〈eI,1〉 · x〈eI,1〉

+ (1− λ)
∑

ee∈EE

∑
r∈R

p〈ee,r〉 · y〈ee,r〉
]

(3)

subject to the following constraints:

x〈eI,1〉 ∈ {0, 1}, ∀eI ∈ EI (4)

y〈ee,r〉 ∈ {0, 1}, ∀ee ∈ EE , r ∈ R (5)∑
r∈R

y〈ee,r〉 = 1, ∀ee ∈ EE (6)

4http://gurobi.com/
5This value is complementary to the non-association proba-

bility, denoted by p〈eI,0〉 = 1− p〈eI,1〉

We use the single parameter λ to balance the over-
all contribution of two components E-T and E-E.
λ is determined through cross validation tuning on
a development set. We use (4) and (5) to make sure
x〈eI,1〉 and y〈ee,r〉 are binary values. The equality
constraint (6) ensures that exactly one particular re-
lation can be assigned to each event mention pair.

In addition, we also require that each event is as-
sociated with only one time interval. These con-
straints are encoded as follows:∑

I∈I
x〈eI,1〉 = 1, ∀e ∈ E (7)

Our model also enforces reflexivity and transitiv-
ity constraints on the relations among event men-
tions as follows:

y〈eiej ,r〉 − y〈ejei,r̂〉 = 0,
∀eiej = (ei, ej) ∈ EE , i 6= j (8)

y〈eiej ,r1〉 + y〈ejek,r2〉 − y〈eiek,r3〉 ≤ 1,
∀eiej , ejek, eiek ∈ EE , i 6= j 6= k (9)

The equality constraints in (8) encode reflexive
property of event-event relations, where the rela-
tion r̂ denotes the inversion of the relation r. The
set of possible (r, r̂) pairs is defined as follows:{

(b̄, ā), (ā, b̄), (ō, ō), (n̄, n̄)
}

. Following the work
of (Bramsen et al., 2006; Chambers and Jurafsky,
2008), we encode transitive closure of relations be-
tween event mentions with inequality constraints in
(9), which states that if the pair (ei, ej) has a certain
relation r1, and the pair (ej , ek) has the relation r2,
then the relation r3 must be satisfied between ei and
ek. Examples of such triple (r1, r2, r3) include (b̄, b̄,
b̄) and (ā, ā, ā).

Finally, to capture the interactions between our
local pairwise classifiers we add the following con-
straints:

x〈eiIk,1〉 + x〈ejIl,1〉 − y〈eiej ,b̄〉 ≤ 1,

∀eiIk, ejIl ∈ EI, ∀eiej ∈ EE ,
Ik precedes Il, i 6= j, k 6= l (10)

Intuitively, the inequality constraints in (10) spec-
ify that a temporal relation between two event men-
tions can be inferred from their respective associated
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time intervals. Specifically, if two event mentions ei
and ej are associated with two time intervals Ik and
Il respectively, and Ik precedes Il in the timeline,
then ei must happen before ej .

It is important to note that our interval-based for-
mulation is more concise in terms of the number of
variables and constraints needed in the ILP relative
to time expression-based (or timepoint-based) for-
mulations used in previous work (Chambers and Ju-
rafsky, 2008). Specifically, in such timepoint-based
formulations, the relation between each event men-
tion and each time expression needs to be inferred,
resulting in |E||T ||RT | variables, where |E|, |T |,
and |RT | are the numbers of event mentions, time
points, and temporal relations respectively. In con-
trast, only |E||I| variables are required in our for-
mulation, where |I| is the number of intervals (since
we extract intervals explicitly, |I| is roughly equal
to |T |). Furthermore, performing inference with the
timepoint-based formulation would require |E||T |
equality constraints to enforce that each event men-
tion can take only one relation inRT for a particular
time point, whereas our interval-based model only
requires |E| constraints, since each event is strictly
associated with one interval (see Eqn. (7)). We jus-
tify the benefits of our formulation later in Sec. 5.4.

4 Incorporating Knowledge from Event
Coreference

One of the key contributions of our work is using
event coreference information to enhance the time-
line construction performance. This is motivated by
the following two principles:

(P1) All mentions of a unique event are associ-
ated with the same time interval, and overlap with
each other.

(P2) All mentions of an event have the same tem-
poral relation with all mentions of another event.

The example below, extracted from an article pub-
lished on 03/11/2003 in the Automatic Content Ex-
traction (ACE), 2005, corpus6 serves to illustrate the
significance of event coreference to our task.

6http://www.itl.nist.gov/iad/mig/tests/ace/2005/

The world’s most powerful fine art auction houses,
Sotheby’s and Christie’s, have agreed to [e11 =
pay] 40 million dollars to settle an international
price-fixing scam, Sotheby’s said. The [e12 = pay-
ment], if approved by the courts, would settle a
slew of [e21 = suits] by clients over auctions held
between 1993 and 2000 outside the US. ... Sotheby’s
and Christie’s will each [e13 = pay] 20 million dol-
lars,” said Sotheby’s, which operates in 34 countries.

In this example, there are 4 event mentions, whose
trigger words are highlighted in bold face. The un-
derlined text gives an explicit time interval: I1 =
[1993-01-01 00:00:00, 2000-12-31 23:59:59] (we
ignore 2 other intervals given by 1993 and 2000
to simplify the illustration). Now if we consider
the event mention e1

2, it actually belongs to the im-
plicit future interval I2 = [2003-03-11 23:59:59,
+∞). Nevertheless, there is a reasonable chance
that CE−T associates it with I1, given that they both
appear in the same sentence, and there is no di-
rect evident feature indicating the event will actu-
ally happen in the future. In such a situation, using
a local classifier to identify the correct temporal as-
sociation could be challenging.

Fortunately, precise knowledge from event coref-
erence may help alleviate such a problem. The
knowledge reveals that the 4 event mentions can be
grouped into 2 distinct events: E1 = {e1

1, e
1
2, e

1
3},

E2 = {e2
1}. If CE−T can make a strong prediction

in associating the event mention e1
1 (or e1

3) to I2, in-
stead of I1, the system will have a high chance to
re-assign e1

2 to I2 based on principle (P1). Similarly,
if CE−E is effective in figuring out that some men-
tion of event E1 occurs after some mention of E2,
then all the mentions of E1 would be predicted to
occur after all mentions in E2 according to (P2).

To incorporate knowledge from event coreference
into our classifiers and the joint inference model, we
use the following procedure: (1) performing classi-
fication with CE−T and CE−E on the data, (2) using
the knowledge from event coreference to overwrite
the prediction probabilities obtained by the two lo-
cal classifiers in step (1), and (3) applying the joint
inference model on the new prediction probabilities
obtained from (2). We note that if we stop at step (2),
we get the outputs of the local classifiers enhanced
by event coreference knowledge.

To overwrite the classification probabilities using
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event coreference knowledge, we propose two ap-
proaches as follows:

MaxScore: We define the probability between
any mention e ∈ Ei and an interval I as follows:

p〈eI,1〉 = max
e′∈Ei

P̃ (e′, I) (11)

where P̃ (e′, I) is the classifier (CE−T ) probability
for associating event mention e′ to the time interval.

On the other hand, the probabilities for associat-
ing the set of temporal relations, R, to each pair of
mentions in Ei×Ej , is given by the following pair:

(ei, ej)∗ = arg max
(ei′ ,ej′ )∈Ei×Ej ,r∈R

P̃
(
(ei
′
, ej
′
), r)

)
p〈ee,r〉 = P̃

(
(ei, ej)∗, r

)
,∀r ∈ R (12)

In other words, over all possible event mention
pairs and relations, we first pick the pair who glob-
ally obtains the highest probability for some rela-
tion. Next, we simply take the probability distri-
bution of that event mention pair as the distribution
over the relations, for the event pair.

SumScore: The probability between any mention
e ∈ Ei and an interval I is obtained by:

p〈eI,1〉 =
1
|Ei|

∑
e′∈Ei

P̃ (e′, I) (13)

To obtain the probability distribution over the set
of temporal relations,R, for any pair of mentions in
Ei × Ej , we used the following procedure:

r∗ = arg max
r∈R

∑
ei∈Ei

∑
ej∈Ej

P̃
(
(ei, ej), r

)
(ei, ej)∗ = arg max

(ei′ ,ej′ )∈Ei×Ej

P̃
(
(ei
′
, ej
′
), r∗

)
p〈ee,r〉 = P̃

(
(ei, ej)∗, r

)
,∀r ∈ R (14)

In other words, given two groups of event men-
tions, we first compute the total score of each rela-
tion, and select the relation which has the highest
score. Next from the list of pairs of event mentions
from the two groups, we select the pair which has the
relation r* with highest score compared to all other
pairs. The probability distribution of this pair will
be used as the probability distribution of all event
mention pairs between the two events.

In both approaches, we assign the overlap rela-
tions to all pairs of event mentions in the same event
with probability 1.0.

5 Experimental Study

We first describe the experimental data and then
present and discuss the experimental results.

5.1 Data and Setup

Most previous works in temporal reasoning used
the TimeBank corpus as a benchmark. The cor-
pus contains a fairly diverse collection of anno-
tated event mentions, without any specific focus on
certain event types. According to the annotation
guideline of the corpus, most of verbs, nominal-
izations, adjectives, predicative clauses and preposi-
tional phrases can be tagged as events. However, in
practice, when performing temporal reasoning about
events in a given text, one is typically interested in
significant and typed events, such as Killing, Leg-
islation, Election. Furthermore, event mentions in
TimeBank are annotated with neither event argu-
ments nor event coreference information.

We noticed that the ACE 2005 corpus contains the
annotation that we are interested in. The corpus con-
sists of articles annotated with event mentions (with
event triggers and arguments) and event coreference
information. To create an experimental data set for
our work, we selected from the corpus 20 newswire
articles published in March 2003. To extract time
intervals from the articles, we used the time inter-
val extractor described in (Zhao et al., 2012) with
minimal post-processing. Implicit intervals are also
added according to Sec. 2.2. We then hired an anno-
tator with expertise in the field to annotate the data
with the following information: (i) event mention
and time interval association, and (ii) the temporal
relations between event mentions, including {b̄, ā,
ō}. The annotator was not required to annotate all
pairs of event mentions, but as many as possible.
Next, we saturated the relations based on the ini-
tial annotations as follows: (i) event mentions that
had not been associated with any time intervals were
assigned to the entire timeline interval (−∞,+∞),
and (ii) added inferred temporal relations between
event mentions with reflectivity and transitivity. Ta-
ble 1 shows the data statistics before and after sat-
uration. There are totally 8312 event pairs from 20
documents, including no relation pairs. We note that
in a separate experiment, we still evaluated CE−E

on the TimeBank corpus and got better performance
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Data #Intervals #E-mentions #E-T #E-E
Initial 232 324 305 376
Saturated 232 324 324 5940

Table 1: The statistics of our experimental data set.

than a corresponding classifier in an existing work
(see Sec. 5.4).

We conducted all experiments with 5-fold cross
validation at the instance level on our data set after
saturation. The global inference model was applied
on a whole document. The results of the systems are
reported in averaged precision, recall and F1 score
on the association performance, for CE−T , and the
temporal relations (we excluded the n̄ relation, for
CE−E). We also measured the overall performance
of the systems by computing the average of the per-
formance of the classifiers.

5.2 A Baseline

We developed a baseline system that works as fol-
lows. It associates an event mention with the closest
time interval found in the same sentence. If such
an interval is not found, the baseline associates the
mention with the closest time interval to the left.
If the interval is again not found, the mention will
be associated with the DCT interval. The baseline
is based on the intuition of natural reading order:
events that are mentioned earlier are likely to pre-
cede those mentioned later. For the temporal rela-
tion between a pair of event mentions, the baseline
treats the event mention that appears earlier in the
text as temporally happening before the other men-
tion. The baseline performance is shown in the first
group of results in Table 2.

5.3 Our Systems

For our systems, we first evaluated the performance
of our local pairwise classifiers and the global in-
ference model. The second group of results in Ta-
ble 2 shows the systems’ performance. Overall,
the results show that our global inference model
relatively outperformed the baseline and the local
classifiers by 57.8% and 9.2% in F1, respectively.
We perform a bootstrap resampling significance test
(Koehn, 2004) on the output predictions of the lo-
cal classifiers with and without the inference model.

The test shows that the overall improvement with
the inference model is statistically significant (p <
0.01). This indicates the effectiveness of our joint
inference model with global coherence constraints.

Next, we integrated event coreference knowledge
into our systems (as described in Sec. 4) and eval-
uated their performance. Our experiments showed
that the SumScore approach works better for CE−T ,
while MaxScore is more suitable for CE−E . Our ob-
servations showed that event mentions of an event
may appear in close proximity with multiple time
intervals in the text, making CE−T produce high
prediction scores for many event mention-interval
pairs. This, consequently, confuses MaxScore on
the best association of the event and the time inter-
vals, whereas SumScore overcomes the problem by
averaging out the association scores. On the other
hand, CE−E gets more benefit from MaxScore be-
causeCE−E works better on pairs of event mentions
that appear closely in the text, which activate more
valuable learning features. We will report the results
using the best approach of each classifier.

To evaluate our systems with event coreference
knowledge, we first experimented our systems with
gold event coreference as given by the ACE 2005
corpus. Table 2 shows the contribution of event
coreference to our systems in the third group of the
results. The results show that injecting knowledge
from event coreference remarkably improved both
the local classifiers and the joint inference model.
Overall, the system that combined event corefer-
ence and the global inference model achieved the
best performance, which significantly overtook all
other compared systems. Specifically, it outper-
formed the baseline system, the local classifiers, and
the joint inference model without event coreference
with 80%, 25%, and 14% of relative improvement in
F1, respectively. It also consistently outperformed
the local classifiers enhanced with event corefer-
ence. We note that the precision and recall of CE−T

in the joint inference model are the same because
the inference model enforced each event mention to
be associated with exactly one time interval. This
is also true for the systems integrated with event
coreference because our integration approaches as-
sign only one time interval to an event mention.

We next move to experimenting with automati-
cally learned event coreference systems. In this ex-
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Model
CE−T CE−E Overall

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1 Baseline 33.29 33.29 33.29 20.86 32.81 25.03 27.06 33.05 29.16

2
No Event Coref.

Local classifiers 62.70 34.50 43.29 40.46 42.42 40.96 51.58 38.46 42.13
Global inference 47.88 47.88 47.88 41.42 48.04 44.14 44.65 47.96 46.01

3
With Gold Event Coref.

Local classifiers 50.88 50.88 50.88 43.86 52.65 47.46 47.37 51.77 49.17
Global inference 50.88 50.88 50.88 48.04 62.45 54.05 49.46 56.67 52.47

4
With Learned Event Coref.

Local classifiers 46.37 46.37 46.37 40.83 45.28 42.60 43.60 45.83 44.49
Global inference 46.37 46.37 46.37 42.09 52.50 46.47 44.23 49.44 46.42

Table 2: Performance under various evaluation settings. All figures are averaged scores from 5-fold cross-validation experiments.

periment, we re-trained the event coreference sys-
tem described in Chen et al. (2009) on all arti-
cles in the ACE 2005 corpus, excluding the 20 ar-
ticles used in our data set. The performance of these
systems are shown in the fourth group of the re-
sults in Table 2. The results show that by using a
learned event coreference system, we achieved the
same improvement trends as with gold event coref-
erence. However, we did not obtain significant im-
provement when comparing with global inference
without event coreference information. This result
shows that the performance of an event coreference
system can have a significant impact on the over-
all performance. While this suggests that a better
event coreference system could potentially help the
task more, it also opens the question whether event
coreference can be benefited from our local classi-
fiers through the use of a joint inference framework.
We would like to leave this for future investigations.

5.4 Previous Work-Related Experiments

We also performed experiments using the same set-
ting as in (Yoshikawa et al., 2009), which followed
the guidelines of the TempEval challenges (Verha-
gen et al., 2007; Verhagen et al., 2010), on our sat-
urated data. Several assumptions were made to sim-
plify the task. For example, only main events in
adjacent sentences are considered when identifying
event-event relations. See (Yoshikawa et al., 2009)
for more details. We performed 5-fold cross valida-
tion without event coreference. Overall, the system
achieved 29.99 F1 for the local classifiers and 34.69
when the global inference is used. These results are
better than the baseline but underperform our full
models where those simplification assumptions are

not imposed, as shown in Table 2, indicating the im-
portance of relaxing their assumptions in practice.

We also evaluated our CE−E on the TimeBank
corpus. We followed the settings of Chambers and
Jurafsky (2008) to extract all event mention pairs
that were annotated with before (or ibefore, “imme-
diately before”) and after (or iafter) relations in 183
news articles in the corpus. We trained and evalu-
ated ourCE−E on these examples with the same fea-
ture set that we evaluated in our experiments above,
with gold tense and aspect features but without event
type. Following their work, we performed 10-fold
cross validation. Our classifier achieved a micro-
averaged accuracy of 73.45%, whereas Chambers
and Jurafsky (2008) reported 66.8%. We next in-
jected the knowledge of an event coreference sys-
tem trained on the ACE2005 corpus into our CE−E ,
and obtained a micro-averaged accuracy of 73.39%.
It was not surprising that event coreference did not
help in this dataset because: (i) different domains
– the event coreference was trained on ACE 05 but
applied on TimeBank, and (ii) different annotation
guidelines on events in ACE 2005 and TimeBank.

Finally, we conducted an experiment that justi-
fies the advantages of our interval-based inference
model over a time point-based inference. To do this,
we first converted our data in Table 1 from inter-
vals to time points and infer the temporal relations
between the annotated event mentions and the time
points: before, after, overlap, and unknown. We
modified the first component in the objective func-
tion in (3) to accommodate these temporal relations.
We also made several changes to the constraints,
including removing those in (7) since they are no
longer required, and adding constraints that ensure
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the relation between a time point and an event men-
tion takes exactly one value. Proper changes were
also made to other constraints in (10) to reflect the
fact that time points are considered rather than inter-
vals. We observed that experiment with such a for-
mulation was unable to finish within 5 hours (we ter-
minated the ILP inference after waiting for 5 hours),
whereas our interval-based model finished the ex-
periment with an average of 21 seconds per article.

6 Related Work

Research in temporal reasoning recently received
much attention. Allen (1983) introduced an interval
based temporal logic which has been used widely
in the field. Recent efforts in building an annotated
temporal corpus (Pustejovsky et al., 2003) has pop-
ularized the use of machine learning techniques for
the task (Mani et al., 2006; Bethard et al., 2007).
This corpus was later used (with simplifications) in
two TempEval challenges (Verhagen et al., 2007;
Verhagen et al., 2010). In these challenges, several
temporal-related tasks were defined including the
tasks of identifying the temporal relation between an
event mention and a temporal expression in the same
sentence, and recognizing temporal relations of pairs
of event mentions in adjacent sentences. However,
with several restrictions imposed to these tasks, the
developed systems were not practical.

Recently, there has been much work attempting
to leverage Allen’s interval algebra of temporal re-
lations to enforce global constraints on local pre-
dictions. The work of Tatu and Srikanth (2008)
used global relational constraints to not only expand
the training data but also identifies temporal incon-
sistencies to improve local classifiers. They used
greedy search to select the most appropriate config-
uration of temporal relations among events and tem-
poral expressions. For exact inferences, Bramsen et
al. (2006), Chambers and Jurafsky (2008), Denis
and Muller (2011), and Talukdar et al. (2012) for-
mulated the temporal reasoning problem in an ILP.
However, the inference models in their work were
not a joint model involving multiple local classifiers
but only one local classifier was involved in their ob-
jective functions.

The work of Yoshikawa et al. (2009) did formu-
late a joint inference model with Markov Logic Net-

work (MLN). They, however, used the same setting
as the TempEval challenges, thus only pairs of tem-
poral entities in the same or adjacent sentences are
considered. Our work, on the other hand, focuses on
constructing an event timeline with time intervals,
taking multiple local pairwise predictions into a joint
inference model and removing the restrictions on the
positions of the temporal entities. Furthermore, we
propose for the first time to use event coreference
and evaluate the importance of its role in the task of
event timeline construction.

7 Conclusions and Future Work

We proposed an interval-based representation of the
timeline of event mentions in an article. Our rep-
resentation allowed us to formalize the joint infer-
ence model that can be solved efficiently, compared
to a time point-based inference model, thus open-
ing up the possibility of building more practical
event temporal inference systems. Our inference
model achieved significant improvement over the lo-
cal classifiers. We also showed that event coref-
erence can naturally support timeline construction,
and good event coreference led to significant im-
provement in the system performance. Specifically,
when such gold event coreference knowledge was
injected into the model, a significant improvement
in the overall performance could be obtained. While
our experiments suggest that the temporal classi-
fiers can potentially help enhance the performance
of event coreference, in future work we would like
to investigate into coupling event coreference with
other components in a global inference framework.
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Abstract

We present a new family of models for unsu-
pervised parsing,Dependency and Boundary
models, that use cues at constituent bound-
aries to inform head-outward dependency tree
generation. We build on three intuitions that
are explicit in phrase-structure grammars but
only implicit in standard dependency formu-
lations: (i) Distributions of words that oc-
cur at sentence boundaries — such as English
determiners — resemble constituent edges.
(ii) Punctuation at sentence boundaries fur-
ther helps distinguish full sentences from
fragments like headlines and titles, allow-
ing us to model grammatical differences be-
tween complete and incomplete sentences.
(iii) Sentence-internal punctuation boundaries
help with longer-distance dependencies, since
punctuation correlates with constituent edges.
Our models induce state-of-the-art depen-
dency grammars for many languages without
special knowledge of optimal input sentence
lengths or biased, manually-tuned initializers.

1 Introduction

Natural language is ripe with all manner of bound-
aries at the surface level that align with hierarchical
syntactic structure. From the significance of func-
tion words (Berant et al., 2006) and punctuation
marks (Seginer, 2007; Ponvert et al., 2010) as sepa-
rators between constituents in longer sentences — to
the importance of isolated words in children’s early
vocabulary acquisition (Brent and Siskind, 2001)
— word boundaries play a crucial role in language
learning. We will show that boundary information
can also be useful in dependency grammar induc-
tion models, which traditionally focus on head rather
than fringe words (Carroll and Charniak, 1992).

DT NN VBZ IN DT NN

[The check] is in [the mail].
︸ ︷︷ ︸

Subject
︸ ︷︷ ︸

Object

Figure 1: A partial analysis of our running example.

Consider the example in Figure 1. Because the
determiner (DT) appears at the left edge of the sen-
tence, it should be possible to learn that determiners
may generally be present at left edges of phrases.
This information could then be used to correctly
parse the sentence-internal determiner inthe mail.
Similarly, the fact that the noun head (NN) of the ob-
ject the mailappears at the right edge of the sentence
could help identify the nouncheckas the right edge
of the subjectNP. As with jigsaw puzzles, working
inwards from boundaries helps determine sentence-
internal structures of both noun phrases, neither of
which would be quite so clear if viewed separately.

Furthermore, properties of noun-phrase edges are
partially shared with prepositional- and verb-phrase
units that contain these nouns. Because typical head-
driven grammars model valence separately for each
class of head, however, they cannot see that the left
fringe boundary,The check, of the verb-phrase is
shared with its daughter’s,check. Neither of these
insights is available to traditional dependency for-
mulations, which could learn from the boundaries
of this sentence only that determiners might have no
left- and that nouns might have no right-dependents.

We propose a family of dependency parsing mod-
els that are capable of inducing longer-range im-
plications from sentence edges than just fertilities
of their fringe words. Our ideas conveniently lend
themselves to implementations that can reuse much
of the standard grammar induction machinery, in-
cluding efficient dynamic programming routines for
the relevant expectation-maximization algorithms.
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2 The Dependency and Boundary Models

Our models follow a standard generative story for
head-outward automata (Alshawi, 1996a), restricted
to the split-head case (see below),1 over lexical word
classes{cw}: first, a sentence rootcr is chosen, with
probability PATTACH(cr | ⋄; L); ⋄ is a special start
symbol that, by convention (Klein and Manning,
2004; Eisner, 1996), produces exactly one child, to
its left. Next, the process recurses. Each (head)
word ch generates a left-dependent with probability
1 − PSTOP( · | L; · · · ), where dots represent additional
parameterization on which it may be conditioned. If
the child is indeed generated, its identitycd is cho-
sen with probabilityPATTACH(cd | ch; · · · ), influenced
by the identity of the parentch and possibly other pa-
rameters (again represented by dots). The child then
generates its own subtree recursively and the whole
process continues, moving away from the head, un-
til ch fails to generate a left-dependent. At that point,
an analogous procedure is repeated toch’s right, this
time using stopping factorsPSTOP( · | R; · · · ). All parse
trees derived in this way are guaranteed to be projec-
tive and can be described by split-head grammars.

Instances of these split-head automata have been
heavily used in grammar induction (Paskin, 2001b;
Klein and Manning, 2004; Headden et al., 2009,
inter alia), in part because they allow for efficient
implementations (Eisner and Satta, 1999,§8) of
the inside-outside re-estimation algorithm (Baker,
1979). The basic tenet of split-head grammars is
that every head word generates its left-dependents
independently of its right-dependents. This as-
sumption implies, for instance, that words’ left-
and right-valences — their numbers of children
to each side — are also independent. But it does
not imply that descendants that are closer to the
head cannot influence the generation of farther
dependents on the same side. Nevertheless, many
popular grammars for unsupervised parsing behave
as if a word had to generate all of its children
(to one side) — or at least their count —before
allowing any of these children themselves to recurse.

For example, Klein and Manning’s (2004) depen-
dency model with valence (DMV) could be imple-

1Unrestricted head-outward automata are strictly more pow-
erful (e.g., they recognize the languageanbn in finite state) than
the split-head variants, which process one side before the other.

mented as both head-outward and head-inward au-
tomata. (In fact, arbitrary permutations of siblings
to a given side of their parent would not affect the
likelihood of the modified tree, with the DMV.) We
propose to make fuller use of split-head automata’s
head-outward nature by drawing on information in
partially-generated parses, which contain useful pre-
dictors that, until now, had not been exploited even
in featurized systems for grammar induction (Cohen
and Smith, 2009; Berg-Kirkpatrick et al., 2010).

Some of these predictors, including the identity
— or even number (McClosky, 2008) — of already-
generated siblings, can be prohibitively expensive in
sentences above a short lengthk. For example, they
break certain modularity constraints imposed by the
charts used inO(k3)-optimized algorithms (Paskin,
2001a; Eisner, 2000). However, in bottom-up pars-
ing and training from text, everything about the yield
— i.e., the ordered sequence of all already-generated
descendants, on the side of the head that is in the
process of spawning off an additional child — is not
only known but also readily accessible. Taking ad-
vantage of this availability, we designed three new
models for dependency grammar induction.

2.1 Dependency and Boundary Model One

DBM-1 conditions all stopping decisions on adja-
cency and the identity of the fringe wordce — the
currently-farthest descendant (edge) derived by head
ch in the given head-outward direction (dir ∈ {L, R}):

PSTOP( · | dir; adj, ce).

In the adjacent case (adj = T), ch is deciding whether
to have any children on a given side: a first child’s
subtree would be right next to the head, so the head
and the fringe words coincide (ch = ce). In the non-
adjacent case (adj = F), these will be different words
and their classes will, in general, not be the same.2

Thus, non-adjacent stopping decisions will be made
independently of a head word’s identity. Therefore,
all word classes will be equally likely to continue to
grow or not, for a specific proposed fringe boundary.

For example, production ofThe check isinvolves
two non-adjacent stopping decisions on the left: one
by the nouncheckand one by the verbis, both of
which stop after generating a first child. In DBM-1,

2Fringe words differ also from other standard dependency
features (Eisner, 1996,§2.3): parse siblings and adjacent words.
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DT NN VBZ IN DT NN ♦

The check is in the mail .

P = (1−

0

︷ ︸︸ ︷

PSTOP(⋄ | L; T)) × PATTACH(VBZ | ⋄; L)
× (1− PSTOP( · | L; T, VBZ)) × PATTACH(NN | VBZ; L)
× (1− PSTOP( · | R; T, VBZ)) × PATTACH(IN | VBZ; R)
× PSTOP( · | L; F, DT) // VBZ × PSTOP( · | R; F, NN) // VBZ

× (1− PSTOP( · | L; T, NN))
2 × P

2
ATTACH(DT | NN; L)

× (1− PSTOP( · | R; T, IN)) × PATTACH(NN | IN; R)
× P

2
STOP( · | R; T, NN) × P

2
STOP( · | L; F, DT) // NN

× PSTOP( · | L; T, IN) × PSTOP( · | R; F, NN) // IN

× P
2
STOP( · | L; T, DT) × P

2
STOP( · | R; T, DT)

× PSTOP(⋄ | L; F)
︸ ︷︷ ︸

1

× PSTOP(⋄ | R; T)
︸ ︷︷ ︸

1

.

Figure 2: Our running example — a simple sentence and
its unlabeled dependency parse structure’s probability, as
factored by DBM-1; highlighted comments specify heads
associated to non-adjacent stopping probability factors.

this outcome is captured by squaring a shared pa-
rameter belonging to the left-fringe determinerThe:
PSTOP( · | L; F, DT)2 — instead of by a product of two
factors, such asPSTOP( · | L; F, NN) · PSTOP( · | L; F, VBZ).

In these grammars, dependents’ attachment prob-
abilities, given heads, are additionally conditioned
only on their relative positions — as in traditional
models (Klein and Manning, 2004; Paskin, 2001b):

PATTACH(cd | ch; dir).

Figure 2 shows a completely factored example.

2.2 Dependency and Boundary Model Two

DBM-2 allows different but related grammars to co-
exist in a single model. Specifically, we presuppose
that all sentences are assigned to one of two classes:
complete and incomplete (comp ∈ {T, F}, for now
taken as exogenous). This model assumes that word-
word (i.e., head-dependent) interactions in the two
domains are the same. However, sentence lengths
— for which stopping probabilities are responsible
— and distributions of root words may be different.

Consequently, an additionalcomp parameter is
added to the context of two relevant types of factors:

PSTOP( · | dir; adj, ce, comp);

andPATTACH(cr | ⋄; L, comp).

For example, the new stopping factors could capture
the fact that incomplete fragments — such as the
noun-phrasesGeorge Morton, headlinesEnergyand
Odds and Ends, a line itemc - Domestic car, dollar

quantity Revenue:$3.57 billion, the time1:11am,
and the like — tend to be much shorter than com-
plete sentences. The new root-attachment factors
could further track that incomplete sentences gener-
ally lack verbs, in contrast to other short sentences,
e.g., Excerpts follow:, Are you kidding?, Yes, he
did., It’s huge., Indeed it is., I said, ‘NOW?’, “Ab-
solutely,” he said., I am waiting., Mrs. Yeargin de-
clined., McGraw-Hill was outraged., “It happens.”,
I’m OK, Jack., Who cares?, Never mind.and so on.

All other attachment probabilitiesPATTACH(cd | ch; dir)

remain unchanged, as in DBM-1. In practice,comp

can indicate presence of sentence-final punctuation.

2.3 Dependency and Boundary Model Three

DBM-3 adds further conditioning on punctuation
context. We introduce another boolean parameter,
cross, which indicates the presence of intervening
punctuation between a proposed head wordch and
its dependentcd. Using this information, longer-
distance punctuation-crossing arcs can be modeled
separately from other, lower-level dependencies, via

PATTACH(cd | ch; dir, cross).

For instance, inContinentals believe thatthe
strongest growth area willbe southern Europe., four
words appear betweenthat andwill . Conditioning
on (the absence of) intervening punctuation could
help tell true long-distance relations from impostors.

All other probabilities,PSTOP( · | dir; adj, ce, comp) and
PATTACH(cr | ⋄; L, comp), remain the same as in DBM-2.

2.4 Summary of DBMs and Related Models

Head-outward automata (Alshawi, 1996a; Alshawi,
1996b; Alshawi et al., 2000) played a central part as
generative models for probabilistic grammars, start-
ing with their early adoption in supervised split-head
constituent parsers (Collins, 1997; Collins, 2003).
Table 1 lists some parameterizations that have since
been used by unsupervised dependency grammar in-
ducers sharing their backbone split-head process.

3 Experimental Set-Up and Methodology

We first motivate each model by analyzing the Wall
Street Journal (WSJ) portion of the Penn English
Treebank (Marcus et al., 1993),3 before delving into

3We converted labeled constituents into unlabeled depen-
dencies using deterministic “head-percolation” rules (Collins,
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Split-Head Dependency Grammar PATTACH (head-root) PATTACH (dependent-head) PSTOP (adjacent and not)
GB (Paskin, 2001b) 1 / |{w}| d | h; dir 1 / 2
DMV (Klein and Manning, 2004) cr | ⋄; L cd | ch; dir · | dir; adj, ch

EVG (Headden et al., 2009) cr | ⋄; L cd | ch; dir, adj · | dir; adj, ch

DBM-1 (§2.1) cr | ⋄; L cd | ch; dir · | dir; adj, ce

DBM-2 (§2.2) cr | ⋄; L, comp cd | ch; dir · | dir; adj, ce, comp
DBM-3 (§2.3) cr | ⋄; L, comp cd | ch; dir, cross · | dir; adj, ce, comp

Table 1: Parameterizations of the split-head-outward generative process used by DBMs and in previous models.

grammar induction experiments. Although motivat-
ing solely from this treebank biases our discussion
towards a very specific genre of just one language,
it has the advantage of allowing us to make concrete
claims that are backed up by significant statistics.

In the grammar induction experiments that follow,
we will test each model’s incremental contribution
to accuracies empirically, across many disparate lan-
guages. We worked with all 23 (disjoint) train/test
splits from the 2006/7 CoNLL shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007), span-
ning 19 languages.4 For each data set, we induced
a baseline grammar using the DMV. We excluded
all training sentences with more than 15 tokens to
create a conservative bias, because in this set-up the
baseline is known to excel (Spitkovsky et al., 2009).
Grammar inducers were initialized using (the same)
uniformly-at-random chosen parse trees of training
sentences (Cohen and Smith, 2010); thereafter, we
applied “add one” smoothing at every training step.

To fairly compare the models under considera-
tion — which could have quite different starting
perplexities and ensuing consecutive relative like-
lihoods — we experimented with two termination
strategies. In one case, we blindly ran each learner
through 40 steps of inside-outside re-estimation, ig-
noring any convergence criteria; in the other case,
we ran until numerical convergence of soft EM’s ob-
jective function or until the likelihood of resulting
Viterbi parse trees suffered — an “early-stopping la-
teen EM” strategy (Spitkovsky et al., 2011a,§2.3).
We evaluated against all sentences of the blind test
sets (except one 145-token item in Arabic ’07 data).

Table 2 shows experimental results, averaged over

1999), discarding any empty nodes, etc., as is standard practice.
4We did not test on WSJ data because such evaluation would

not be blind, as parse trees from the PTB are our motivating ex-
amples; instead, performance on WSJ serves as a strong base-
line in a separate study (Spitkovsky et al., 2012a): bootstrapping
of DBMs from mostly incomplete inter-punctuation fragments.

all 19 languages, for the DMV baselines and DBM-1
and 2. We did not test DBM-3 in this set-up because
most sentence-internal punctuation occurs in longer
sentences; instead, DBM-3 will be tested later (see
§7), using most sentences,5 in the final training step
of a curriculum strategy (Bengio et al., 2009) that we
will propose for DBMs. For the three models tested
on shorter inputs (up to 15 tokens) both terminating
criteria exhibited the same trend; lateen EM consis-
tently scored slightly higher than 40 EM iterations.

Termination Criterion DMV DBM-1 DBM-2
40 steps of EM 33.5 38.8 40.7

early-stopping lateen EM 34.0 39.0 40.9

Table 2: Directed dependency accuracies, averaged over
all 2006/7 CoNLL evaluation sets (all sentences), for the
DMV and two new dependency-and-boundary grammar
inducers (DBM-1,2) — using two termination strategies.6

4 Dependency and Boundary Model One

The primary difference between DBM-1 and tradi-
tional models, such as the DMV, is that DBM-1 con-
ditions non-adjacent stopping decisions on the iden-
tities of fringe words in partial yields (see§2.1).

4.1 Analytical Motivation

Treebank data suggests that the class of the fringe
word — its part-of-speech,ce — is a better predic-
tor of (non-adjacent) stopping decisions, in a given
directiondir, than the head’s own classch. A statis-
tical analysis of logistic regressions fitted to the data
shows that the(ch, dir) predictor explains only about
7% of the total variation (see Table 3). This seems
low, although it is much better compared to direction
alone (which explains less than 2%) and slightly bet-
ter than using the (current) number of the head’s de-

5Results for DBM-3 — given only standard input sentences,
up to length fifteen — would be nearly identical to DBM-2’s.

6We down-weighed the four languages appearing in both
CoNLL years (see Table 8) by 50% in all reported averages.
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Non-Adjacent Stop Predictor R2

adj AICc

(dir) 0.0149 1,120,200
(n, dir) 0.0726 1,049,175
(ch, dir) 0.0728 1,047,157
(ce, dir) 0.2361 904,102.4

(ch, ce, dir) 0.3320 789,594.3

Table 3: Coefficients of determination (R2) and Akaike
information criteria (AIC), both adjusted for the number
of parameters, for several single-predictor logistic models
of non-adjacent stops, given directiondir; ch is the class
of the head,n is its number of descendants (so far) to that
side, andce represents the farthest descendant (the edge).

scendants on that side,n, instead of the head’s class.
In contrast, usingce in place ofch boosts explanatory
power to 24%, keeping the number of parameters the
same. If one were willing to roughly square the size
of the model, explanatory power could be improved
further, to 33% (see Table 3), using bothce andch.

Fringe boundaries thus appear to be informative
even in the supervised case, which is not surprising,
since using just one probability factor (and its com-
plement) to generate very short (geometric coin-flip)
sequences is a recipe for high entropy. But as sug-
gested earlier, fringes should be extra attractive in
unsupervised settings because yields are observable,
whereas heads almost always remain hidden. More-
over, every sentence exposes two true edges (Hänig,
2010): integrated over many sample sentence begin-
nings and ends, cumulative knowledge about such
markers can guide a grammar inducer inside long in-
puts, where structure is murky. Table 4 shows distri-
butions of all part-of-speech (POS) tags in the tree-
bank versus in sentence-initial, sentence-final and
sentence-root positions. WSJ often leads with deter-
miners, proper nouns, prepositions and pronouns —
all good candidates for starting English phrases; and
its sentences usually end with various noun types,
again consistent with our running example.

4.2 Experimental Results

Table 2 shows DBM-1 to be substantially more ac-
curate than the DMV, on average: 38.8 versus 33.5%
after 40 steps of EM.7 Lateen termination improved
both models’ accuracies slightly, to 39.0 and 34.0%,
respectively, with DBM-1 scoring five points higher.

7DBM-1’s 39% average accuracy with uniform-at-random
initialization is two points above DMV’s scores with the “ad-
hoc harmonic” strategy, 37% (Spitkovsky et al., 2011a, Table 5).

% of All First Last Sent. Frag.
POS Tokens Tokens Tokens Roots Roots
NN 15.94 4.31 36.67 0.10 23.40
IN 11.85 13.54 0.57 0.24 4.33
NNP 11.09 20.49 12.85 0.02 32.02
DT 9.84 23.34 0.34 0.00 0.04
JJ 7.32 4.33 3.74 0.01 1.15
NNS 7.19 4.49 20.64 0.15 17.12
CD 4.37 1.29 6.92 0.00 3.27
RB 3.71 5.96 3.88 0.00 1.50
VBD 3.65 0.09 3.52 46.65 0.93
VB 3.17 0.44 1.67 0.48 6.81
CC 2.86 5.93 0.00 0.00 0.00
TO 2.67 0.37 0.05 0.02 0.44
VBZ 2.57 0.17 1.65 28.31 0.93
VBN 2.42 0.61 2.57 0.65 1.28
PRP 2.08 9.04 1.34 0.00 0.00
VBG 1.77 1.26 0.64 0.10 0.97
VBP 1.50 0.05 0.61 14.33 0.71
MD 1.17 0.07 0.05 8.88 0.57
POS 1.05 0.00 0.11 0.01 0.04
PRP$ 1.00 0.90 0.00 0.00 0.00
WDT 0.52 0.08 0.00 0.01 0.13
JJR 0.39 0.18 0.43 0.00 0.09
RP 0.32 0.00 0.42 0.00 0.00
NNPS 0.30 0.20 0.56 0.00 2.96
WP 0.28 0.42 0.01 0.01 0.04
WRB 0.26 0.78 0.02 0.01 0.31
JJS 0.23 0.27 0.06 0.00 0.00
RBR 0.21 0.20 0.54 0.00 0.04
EX 0.10 0.75 0.00 0.00 0.00
RBS 0.05 0.06 0.01 0.00 0.00
PDT 0.04 0.08 0.00 0.00 0.00
FW 0.03 0.01 0.05 0.00 0.09
WP$ 0.02 0.00 0.00 0.00 0.00
UH 0.01 0.08 0.05 0.00 0.62
SYM 0.01 0.11 0.01 0.00 0.18
LS 0.01 0.09 0.00 0.00 0.00

Table 4: Empirical distributions for non-punctuationpart-
of-speech tags in WSJ, ordered by overall frequency, as
well as distributions for sentence boundaries and for the
roots of complete and incomplete sentences. (A uniform
distribution would have1/36 = 2.7% for all POS-tags.)

√

1−
∑

x

√
pxqx All First Last Sent. Frag.

Uniform 0.48 0.58 0.64 0.79 0.65
All 0.35 0.40 0.79 0.42

First 0.59 0.94 0.57
Last 0.83 0.29
Sent. 0.86

Table 5: A distance matrix for all pairs of probability dis-
tributions over POS-tags shown in Table 4 and the uni-
form distribution; the BC- (or Hellinger) distance (Bhat-
tacharyya, 1943; Nikulin, 2002) between discrete distri-
butionsp andq (overx ∈ X ) ranges from zero (iffp = q)
to one (iffp · q = 0, i.e., when they do not overlap at all).
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Figure 3: Histograms of lengths (in tokens) for 2,261 non-clausal fragments (red) and other sentences (blue) in WSJ.

5 Dependency and Boundary Model Two

DBM-2 adapts DBM-1 grammars to two classes
of inputs (complete sentences and incomplete frag-
ments) by forking off new, separate multinomials for
stopping decisions and root-distributions (see§2.2).

5.1 Analytical Motivation

Unrepresentative short sentences — such as head-
lines and titles — are common in news-style data
and pose a known nuisance to grammar inducers.
Previous research sometimes took radical measures
to combat the problem: for example, Gillenwater
et al. (2009) excluded all sentences with three or
fewer tokens from their experiments; and Mareček
and Zabokrtský (2011) enforced an “anti-noun-root”
policy to steer their Gibbs sampler away from the
undercurrents caused by the many short noun-phrase
fragments (among sentences up to length 15, in
Czech data). We refer to such snippets of text as
“incomplete sentences” and focus our study of WSJ
on non-clausal data (as signaled by top-level con-
stituent annotations whose first character is notS).8

Table 4 shows that roots of incomplete sentences,
which are dominated by nouns, barely resemble the
other roots, drawn from more traditional verb and
modal types. In fact, these two empirical root dis-
tributions are more distant from one another than ei-
ther is from the uniform distribution, in the space of
discrete probability distributions over POS-tags (see
Table 5). Of the distributions we considered, only
sentence boundaries are as or more different from

8I.e., separating top-level types{S, SINV, SBARQ, SQ, SBAR}
from the rest (ordered by frequency):{NP, FRAG, X, PP, . . .}.

(complete) roots, suggesting that heads of fragments
too may warrant their own multinomial in the model.

Further, incomplete sentences are uncharacteris-
tically short (see Figure 3). It is this property that
makes them particularly treacherous to grammar in-
ducers, since by offering few options of root posi-
tions they increase the chances that a learner will
incorrectly induce nouns to be heads. Given that ex-
pected lengths are directly related to stopping deci-
sions, it could make sense to also model the stopping
probabilities of incomplete sentences separately.

5.2 Experimental Results

Since it is not possible to consult parse trees during
grammar induction (to check whether an input sen-
tence is clausal), we opted for a proxy: presence of
sentence-final punctuation. Using punctuation to di-
vide input sentences into two groups, DBM-2 scored
higher: 40.9, up from 39.0% accuracy (see Table 2).

After evaluating these multi-lingual experiments,
we checked how well our proxy corresponds to ac-
tual clausal sentences in WSJ. Table 6 shows the bi-
nary confusion matrix having a fairly low (but posi-
tive) Pearson correlation coefficient. False positives

rφ ≈ 0.31 Clausal non-Clausal Total
Punctuation 46,829 1,936 48,765

no Punctuation 118 325 443
Total 46,947 2,261 49,208

Table 6: A contingency table for clausal sentences and
trailing punctuation in WSJ; the mean square contingency
coefficientrφ signifies a low degree of correlation. (For
two binary variables,rφ is equivalent to Karl Pearson’s
better-known product-moment correlation coefficient,ρ.)
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include parenthesized expressions that are marked
as noun-phrases, such as(See related story: “Fed
Ready to Inject Big Funds”: WSJ Oct. 16, 1989);
false negatives can be headlines having a main verb,
e.g.,Population Drain Ends For Midwestern States.
Thus, our proxy is not perfect but seems to be toler-
able in practice. We suspect that identities of punc-
tuation marks (Collins, 2003, Footnote 13) — both
sentence-final and sentence-initial — could be of ex-
tra assistance in grammar induction, specifically for
grouping imperatives, questions, and so forth.

6 Dependency and Boundary Model Three

DBM-3 exploits sentence-internal punctuation con-
texts by modeling punctuation-crossing dependency
arcs separately from other attachments (see§2.3).

6.1 Analytical Motivation

Many common syntactic relations, such as between
a determiner and a noun, are unlikely to hold over
long distances. (In fact, 45% of all head-percolated
dependencies in WSJ are between adjacent words.)
However, some common constructions are more re-
mote: e.g., subordinating conjunctions are, on av-
erage, 4.8 tokens away from their dependent modal
verbs. Sometimes longer-distance dependencies can
be vetted using sentence-internal punctuation marks.

It happens that the presence of punctuation be-
tween such conjunction (IN) and verb (MD) types
serves as a clue that they are not connected (see Ta-
ble 7a); by contrast, a simpler cue — whether these
words are adjacent — is, in this case, hardly of any
use (see Table 7b). Conditioning on crossing punc-
tuation could be of help then, playing a role simi-
lar to that of comma-counting (Collins, 1997,§2.1)
— and “verb intervening” (Bikel, 2004,§5.1) — in
early head-outward models for supervised parsing.

a) rφ ≈ −0.40 Attached not Attached Total
Punctuation 337 7,645 7,982

no Punctuation 2,144 4,040 6,184
Total 2,481 11,685 14,166

non-Adjacent 2,478 11,673 14,151
Adjacent 3 12 15

b) rφ ≈ +0.00 Attached not Attached Total

Table 7: Contingency tables forIN right-attachingMD,
among closest ordered pairs of these tokens in WSJ sen-
tences with punctuation, versus: (a) presence of interven-
ing punctuation; and (b) presence of intermediate words.

6.2 Experimental Results Postponed

As we mentioned earlier (see§3), there is little point
in testing DBM-3 with shorter sentences, since most
sentence-internal punctuation occurs in longer in-
puts. Instead, we will test this model in a final step of
a staged training strategy, with more data (see§7.3).

7 A Curriculum Strategy for DBMs

We propose to train up to DBM-3 iteratively —
by beginning with DBM-1 and gradually increasing
model complexity through DBM-2, drawing on the
intuitions of IBM translation models 1–4 (Brown et
al., 1993). Instead of using sentences of up to 15 to-
kens, as in all previous experiments (§4–5), we will
now make use of nearly all available training data:
up to length 45 (out of concern for efficiency), dur-
ing later stages. In the first stage, however, we will
use only a subset of the data with DBM-1, in a pro-
cess sometimes calledcurriculum learning(Bengio
et al., 2009; Krueger and Dayan, 2009,inter alia).
Our grammar inducers will thus be “starting small”
in both senses suggested by Elman (1993): simulta-
neously scaffolding on model-anddata-complexity.

7.1 Scaffolding Stage #1: DBM-1

We begin by training DBM-1 on sentences with-
out sentence-internal punctuation but with at least
one trailing punctuation mark. Our goal is to avoid,
when possible, overly specific arbitrary parameters
like the “15 tokens or less” threshold used to select
training sentences. Unlike DBM-2 and 3, DBM-1
does not model punctuation or sentence fragments,
so we instead explicitly restrict its attention to this
cleaner subset of the training data, which takes ad-
vantage of the fact that punctuation may generally
correlate with sentence complexity (Frank, 2000).9

Aside from input sentence selection, our exper-
imental set-up here remained identical to previous
training of DBMs (§4–5). Using this new input data,
DBM-1 averaged 40.7% accuracy (see Table 8).
This is slightly higher than the 39.0% when using
sentences up to length 15, suggesting that our heuris-
tic for clean, simple sentences may be a useful one.

9More incremental training strategies are the subject of an
unpublished companion manuscript (Spitkovsky et al., 2012a).
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Directed Dependency Accuracies for: Best of State-of-the-Art Systems
CoNLL Year this Work (@10) Monolingual; POS- Cross-Lingual
& Language DMV DBM-1 DBM-2 DBM-3 +inference (i) Agnostic (ii) Identified (iii) Transfer

Arabic 2006 12.9 10.6 11.0 11.1 10.9(34.5) 33.4 SCAJ6 — 50.2 Sbg
’7 36.6 43.9 44.0 44.4 44.9(48.8) 55.6 RF 54.6 RFH1

—
Basque ’7 32.7 34.1 33.0 32.7 33.3(36.5) 43.6 SCAJ5 34.7 MZNR —
Bulgarian ’7 24.7 59.4 63.6 64.6 65.2 (70.4) 44.3 SCAJ5 53.9 RFH1&2

70.3 Spt
Catalan ’7 41.1 61.3 61.1 61.1 62.1(78.1) 63.8 SCAJ5 56.3 MZNR —
Chinese ’6 50.4 63.1 63.0 63.2 63.2(65.7) 63.6 SCAJ6 — —

’7 55.3 56.8 57.0 57.1 57.0(59.8) 58.5 SCAJ6 34.6 MZNR —
Czech ’6 31.5 51.3 52.8 53.0 55.1 (61.8) 50.5 SCAJ5 — —

’7 34.5 50.5 51.2 53.3 54.2 (67.3) 49.8 SCAJ5 42.4 RFH1&2 —
Danish ’6 22.4 21.3 19.9 21.8 22.2(27.4) 46.0 RF 53.1 RFH1&2

56.5 Sar
Dutch ’6 44.9 45.9 46.5 46.0 46.6 (48.6) 32.5 SCAJ5 48.8 RFH1&2

65.7 MPHm:p
English ’7 32.3 29.2 28.6 29.0 29.6(51.4) 50.3 SAJ 23.8 MZNR 45.7 MPHel
German ’6 27.7 36.3 37.9 38.4 39.1 (52.1) 33.5 SCAJ5 21.8 MZNR 56.7 MPHm:d
Greek ’6 36.3 28.1 26.1 26.1 26.9(36.8) 39.0 MZ 33.4 MZNR 65.1 MPHm:p
Hungarian ’7 23.6 43.2 52.1 57.4 58.2 (68.4) 48.0 MZ 48.1 MZNR —
Italian ’7 25.5 41.7 39.8 39.9 40.7(41.8) 57.5 MZ 60.6 MZNR 69.1 MPHpt
Japanese ’6 42.2 22.8 22.7 22.7 22.7(32.5) 56.6 SCAJ5 53.5 MZNR —
Portuguese ’6 37.1 68.9 72.3 71.1 72.4 (80.6) 43.2 MZ 55.8 RFH1&2 76.9 Sbg
Slovenian ’6 33.4 30.4 33.0 34.1 35.2 (36.8) 33.6 SCAJ5 34.6 MZNR —
Spanish ’6 22.0 25.0 26.7 27.1 28.2(51.8) 53.0 MZ 54.6 MZNR 68.4 MPHit
Swedish ’6 30.7 48.6 50.3 50.0 50.7 (63.2) 50.0 SCAJ6 34.3 RFH1&2

68.0 MPHm:p
Turkish ’6 43.4 32.9 33.7 33.4 34.4(38.1) 40.9 SAJ 61.3 RFH1

—
’7 58.5 44.6 44.2 43.7 44.8(44.4) 48.8 SCAJ6 — —

Average: 33.6 40.7 41.7 42.2 42.9 (51.9) 38.2 SCAJ6 (best average, not an average of bests)

Table 8: Average accuracies over CoNLL evaluation sets (allsentences), for the DMV baseline and DBM1–3 trained
with a curriculum strategy, and state-of-the-art results for systems that: (i) are also POS-agnostic and monolingual,
including SCAJ (Spitkovsky et al., 2011a, Tables 5–6) and SAJ (Spitkovsky et al., 2011b); (ii) rely on gold POS-tag
identities to discourage noun roots (Mareček and Zabokrtský, 2011, MZ) or to encourage verbs (Rasooli and Faili,
2012, RF); and (iii) transfer delexicalized parsers (Søgaard, 2011a, S) from resource-rich languages with transla-
tions (McDonald et al., 2011, MPH). DMV and DBM-1 trained on simple sentences, from uniform; DBM-2 and 3
trained on most sentences, from DBM-1 and 2, respectively;+inferenceis DBM-3 with punctuation constraints.

7.2 Scaffolding Stage #2: DBM-2← DBM-1

Next, we trained on all sentences up to length 45.
Since these inputs are punctuation-rich, in both re-
maining stages we used the constrained Viterbi EM
set-up suggested by Spitkovsky et al. (2011b) in-
stead of plain soft EM; we employ an early termina-
tion strategy, quitting hard EM as soon as soft EM’s
objective suffers (Spitkovsky et al., 2011a). Punc-
tuation was converted into Viterbi-decoding con-
straints during training using the so-calledloose
method, which stipulates that all words in an inter-
punctuation fragment must be dominated by a single
(head) word, also from that fragment — with only
these head words allowed to attach the head words
of other fragments, across punctuation boundaries.

To adapt to full data, we initialized DBM-2 using
Viterbi parses from the previous stage (§7.1), plus

uniformly-at-random chosen dependency trees for
the new complex and incomplete sentences, subject
to punctuation-induced constraints. This approach
improved parsing accuracies to 41.7% (see Table 8).

7.3 Scaffolding Stage #3: DBM-3← DBM-2

Next, we repeated the training process of the pre-
vious stage (§7.2) using DBM-3. To initialize this
model, we combined the final instance of DBM-2
with uniform multinomials for punctuation-crossing
attachment probabilities (see§2.3). As a result, av-
erage performance improved to 42.2% (see Table 8).

Lastly, we applied punctuation constraints also in
inference. Here we used thesprawl method — a
more relaxed approach than in training, allowing ar-
bitrary words to attach inter-punctuation fragments
(provided that each entire fragment still be derived
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by one of its words) — as suggested by Spitkovsky
et al. (2011b). This technique increased DBM-3’s
average accuracy to 42.9% (see Table 8). Our fi-
nal result substantially improves over the baseline’s
33.6% and compares favorably to previous work.10

8 Discussion and the State-of-the-Art

DBMs come from a long line of head-outward mod-
els for dependency grammar induction yet their gen-
erative processes feature important novelties. One
is conditioning on more observable state — specifi-
cally, the left and right end words of a phrase being
constructed — than in previous work. Another is al-
lowing multiple grammars — e.g., of complete and
incomplete sentences — to coexist in a single model.
These improvements could make DBMs quick-and-
easy to bootstrap directly from any available partial
bracketings (Pereira and Schabes, 1992), for exam-
ple capitalized phrases (Spitkovsky et al., 2012b).

The second part of our work — the use of a cur-
riculum strategy to train DBM-1 through 3 — elim-
inates having to know tuned cut-offs, such as sen-
tences with up to a predetermined number of tokens.
Although this approach adds some complexity, we
chose conservatively, to avoid overfitting settings
of sentence length, convergence criteria, etc.: stage
one’s data is dictated by DBM-1 (which ignores
punctuation); subsequent stages initialize additional
pieces uniformly: uniform-at-random parses for new
data and uniform multinomials for new parameters.

Even without curriculum learning — trained with
vanilla EM — DBM-2 and 1 are already strong.
Further boosts to accuracy could come from em-
ploying more sophisticated optimization algorithms,
e.g., better EM (Samdani et al., 2012), constrained
Gibbs sampling (Mareček and Zabokrtský, 2011) or
locally-normalized features (Berg-Kirkpatrick et al.,
2010). Other orthogonal dependency grammar in-
duction techniques — including ones based on uni-
versal rules (Naseem et al., 2010) — may also ben-
efit in combination with DBMs. Direct comparisons
to previous work require some care, however, as
there are several classes of systems that make dif-
ferent assumptions about training data (see Table 8).

10Note that DBM-1’s 39% average accuracy with standard
training (see Table 2) was already nearly a full point higherthan
that of any single previous best system (SCAJ6 — see Table 8).

8.1 Monolingual POS-Agnostic Inducers

The first type of grammar inducers, including our
own approach, uses standard training and test data
sets for each language, with gold part-of-speech tags
as anonymized word classes. For the purposes of
this discussion, we also include in this group trans-
ductive learners that may train on data from the test
sets. Our DBM-3 (decoded with punctuation con-
straints) does well among such systems — for which
accuracies onall sentence lengths of the evaluation
sets are reported — attaining highest scores for 8 of
19 languages; the DMV baseline is still state-of-the-
art for one language; and the remaining 10 bests are
split among five other recent systems (see Table 8).11

Half of the five came from various lateen EM strate-
gies (Spitkovsky et al., 2011a) for escaping and/or
avoiding local optima. These heuristics are compat-
ible with how we trained our DBMs and could po-
tentially provide further improvement to accuracies.

Overall, the final scores of DBM-3 were better, on
average, than those of any other single system: 42.9
versus 38.2% (Spitkovsky et al., 2011a, Table 6).
The progression of scores for DBM-1 through 3
without using punctuation constraints in inference
— 40.7, 41.7 and 42.2% — fell entirely above this
previous state-of-the-art result as well; the DMV
baseline — also trained on sentences without inter-
nal but with final punctuation — averaged 33.6%.

8.2 Monolingual POS-Identified Inducers

The second class of techniques assumes knowledge
about identities of part-of-speech tags (Naseem et
al., 2010), i.e., which word tokens are verbs, which
ones are nouns, etc. Such grammar inducers gener-
ally do better than the first kind — e.g., by encour-
aging verbocentricity (Gimpel and Smith, 2011) —
though even here our results appear to be compet-
itive. In fact, to our surprise, only in 5 of 19 lan-
guages a “POS-identified” system performed better
than all of the “POS-agnostic” ones (see Table 8).

8.3 Multi-Lingual Semi-Supervised Parsers

The final broad class of related algorithms we con-
sidered extends beyond monolingual data and uses

11For Turkish ’06, the “right-attach” baseline outperforms
even the DMV, at 65.4% (Rasooli and Faili, 2012, Table 1); an
important difference between 2006 and 2007 CoNLL data sets
has to do with segmentation of morphologically-rich languages.
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both identities of POS-tags and/or parallel bitexts
to transfer (supervised) delexicalized parsers across
languages. Parser projection is by far the most suc-
cessful approach to date and we hope that it too
may stand to gain from our modeling improvements.
Of the 10 languages for which we found results
in the literature, transferred parsers underperformed
the grammar inducers in only one case: on En-
glish (see Table 8). The unsupervised system that
performed better used a special “weighted” initial-
izer (Spitkovsky et al., 2011b,§3.1) that worked well
for English (but less so for many other languages).

DBMs may be able to improve initialization. For
example, modeling of incomplete sentences could
help in incremental initialization strategies likebaby
steps(Spitkovsky et al., 2009), which are likely sen-
sitive to the proverbial “bum steer” from unrepresen-
tative short fragments,paceTu and Honavar (2011).

8.4 Miscellaneous Systems on Short Sentences

Several recent systems (Cohen et al., 2011; Søgaard,
2011b; Naseem et al., 2010; Gillenwater et al., 2010;
Berg-Kirkpatrick and Klein, 2010,inter alia) are ab-
sent from Table 8 because they do not report perfor-
mance for all sentence lengths. To facilitate com-
parison with this body of important previous work,
we also tabulated final accuracies for the “up-to-ten
words” task under heading@10: 51.9%, on average.

9 Conclusion

Although a dependency parse for a sentence can be
mapped to a constituency parse (Xia and Palmer,
2001), the probabilistic models generating them use
different conditioning: dependency grammars focus
on the relationship between arguments and heads,
constituency grammars on the coherence of chunks
covered by non-terminals. Since redundant views of
data can make learning easier (Blum and Mitchell,
1998), integrating aspects of both constituency and
dependency ought to be able to help grammar in-
duction. We have shown that this insight is correct:
dependency grammar inducers can gain from mod-
eling boundary information that is fundamental to
constituency (i.e., phrase-structure) formalisms.

DBMs are a step in the direction towards mod-
eling constituent boundaries jointly with head de-
pendencies. Further steps must involve more tightly

coupling the two frameworks, as well as showing
ways to incorporate both kinds of information in
other state-of-the art grammar induction paradigms.
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Abstract

The task of inferring the native language of
an author based on texts written in a second
language has generally been tackled as a clas-
sification problem, typically using as features
a mix of n-grams over characters and part of
speech tags (for small and fixed n) and un-
igram function words. To capture arbitrar-
ily long n-grams that syntax-based approaches
have suggested are useful, adaptor grammars
have some promise. In this work we investi-
gate their extension to identifying n-gram col-
locations of arbitrary length over a mix of PoS
tags and words, using both maxent and in-
duced syntactic language model approaches to
classification. After presenting a new, simple
baseline, we show that learned collocations
used as features in a maxent model perform
better still, but that the story is more mixed for
the syntactic language model.

1 Introduction

The task of inferring the native language of an author
based on texts written in a second language — na-
tive language identification (NLI) — has, since the
seminal work of Koppel et al. (2005), been primarily
tackled as a text classification task using supervised
machine learning techniques. Lexical features, such
as function words, character n-grams, and part-of-
speech (PoS) n-grams, have been proven to be use-
ful in NLI (Koppel et al., 2005; Tsur and Rappoport,
2007; Estival et al., 2007). The recent work of Wong
and Dras (2011), motivated by ideas from Second
Language Acquisition (SLA), has shown that syn-
tactic features — potentially capturing syntactic er-

rors characteristic of a particular native language —
improve performance over purely lexical ones.

PoS n-grams can be leveraged to characterise sur-
face syntactic structures: in Koppel et al. (2005),
for example, ungrammatical structures were approx-
imated by rare PoS bigrams. For the purpose of NLI,
small n-gram sizes like bigram or trigram might not
suffice to capture sequences that are characteristic of
a particular native language. On the other hand, an
attempt to represent these with larger n-grams would
not just lead to feature sparsity problems, but also
computational efficiency issues. Some form of fea-
ture selection should then come into play.

Adaptor grammars (Johnson, 2010), a hierarchi-
cal non-parametric extension of PCFGs (and also in-
terpretable as an extension of LDA-based topic mod-
els), hold out some promise here. In that initial
work, Johnson’s model learnt collocations of arbi-
trary length such as gradient descent and cost func-
tion, under a topic associated with machine learning.
Hardisty et al. (2010) applied this idea to perspective
classification, learning collocations such as pales-
tinian violence and palestinian freedom, the use of
which as features was demonstrated to help the clas-
sification of texts from the Bitter Lemons corpus as
either Palestinian or Israeli perspective.

Typically in NLI and other authorship attribu-
tion tasks, the feature sets exclude content words,
to avoid unfair cues due to potentially different do-
mains of discourse. In our context, then, what we are
interested in are ‘quasi-syntactic collocations’ of ei-
ther pure PoS (e.g. NN IN NN) or a mixture of PoS
with function words (e.g. NN of NN). The partic-
ular question of interest for this paper, then, is to

699



investigate whether the power of adaptor grammars
to discover collocations — specifically, ones of ar-
bitrary length that are useful for classification — ex-
tends to features beyond the purely lexical.

We examine two different approaches in this pa-
per. We first utilise adaptor grammars for discovery
of high performing ‘quasi-syntactic collocations’ of
arbitrary length as mentioned above and use them
as classification features in a conventional maximum
entropy (maxent) model for identifying the author’s
native language. In the second approach, we adopt
a grammar induction technique to learn a grammar-
based language model in a Bayesian setting. The
grammar learned can then be used to infer the most
probable native language that a given text written
in a second language is associated with. The latter
approach is actually closer to the work of Hardisty
et al. (2010) using adaptor grammars for perspec-
tive modeling, which inspired our general approach.
This alternative approach is also similar in nature
to the work of Börschinger et al. (2011) in which
grounded learning of semantic parsers was reduced
to a grammatical inference task.

The structure of the paper is as follows. In Sec-
tion 2, we review the existing work of NLI as well
as the mechanics of adaptor grammars along with
their applications to classification. Section 3 details
the supervised maxent classification of NLI with
collocation (n-gram) features discovered by adaptor
grammars. The language model-based classifier is
described in Section 4. Finally, we present a dis-
cussion in Section 5 and follow with concluding re-
marks.

2 Related Work
2.1 Native Language Identification

Most of the existing research treats the task of na-
tive language identification as a form of text classi-
fication deploying supervised machine learning ap-
proaches.

The earliest notable work in this classification
paradigm is that of Koppel et al. (2005) using as
features function words, character n-grams, and PoS
bigrams, together with some spelling errors. Their
experiments were conducted on English essays writ-
ten by authors whose native language one of Bulgar-
ian, Czech, French, Russian, or Spanish. The cor-
pus used is the first version of International Corpus

of Learner English (ICLE). Apart from investigating
lexical features, syntactic features (errors in particu-
lar) were highlighted by Koppel et al. (2005) as po-
tentially useful features, but they only explored this
by characterising ungrammatical structures with rare
PoS bigrams: they chose 250 rare bigrams from the
Brown corpus.

Features for this task can include content words
or not: Koppel et al. (2009), in reviewing work in
the general area of authorship attribution (including
NLI), discuss the (perhaps unreasonable) advantage
that content word features can provide, and com-
ment that consequently they “are careful . . . to dis-
tinguish results that exploit content-based features
from those that do not”. We will not be using con-
tent words as features; we therefore note only ap-
proaches to NLI that similarly do not use them.

Following Koppel et al. (2005), Tsur and Rap-
poport (2007) replicated their work and hypothe-
sised that word choices in second language writing
is highly influenced by the frequency of native lan-
guage syllables. They investigated this through mea-
suring classification performance with only charac-
ter bigrams as features.

Estival et al. (2007) tackled the broader task of
developing profiles of authors, including native lan-
guage and various other demographic and psycho-
metric author traits, across a smaller set of languages
(English, Spanish and Arabic). To this end, they de-
ployed various lexical and document structure fea-
tures.

Wong and Dras (2011), starting from the Kop-
pel et al. (2005) approach, explored the usefulness
of syntactic features in a broader sense in which
they characterised syntactic errors with cross sec-
tions of parse trees obtained from statistical parsers,
both horizontal slices of the parse trees in the form
of CFG production rules, and the feature schemata
used in discriminative parse reranking (Charniak
and Johnson, 2005); they also found that using the
top 200 PoS bigrams helped. Their results on the
second version of the ICLE corpus, across seven
languages (those of Koppel et al., plus two Orien-
tal languages, Chinese and Japanese) demonstrated
that syntactic features of these kinds lead to signifi-
cantly better performance than the Koppel et al. fea-
tures alone, with a top accuracy (on 5-fold cross-
validation) of 77.75%.
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Subsequently, Wong et al. (2011) explored
Bayesian topic modeling (Blei et al., 2003; Griffiths
and Steyvers, 2004) as a form of feature dimension-
ality reduction technique to discover coherent latent
factors (‘topics’) that might capture predictive fea-
tures for individual native languages. Their topics,
rather than the typical word n-grams, consisted of
bigrams over (only) PoS. However, while there was
some evidence of topic cluster coherence, this did
not improve classification performance.

The work of the present paper differs in that it
uses Bayesian techniques to discover collocations of
arbitrary length for use in classification, over a mix
of both PoS and function words, rather than for use
as feature dimensionality reduction.

2.2 Adaptor Grammars
Adaptor Grammars are a non-parametric extension
to PCFGs that are associated with a Bayesian in-
ference procedure. Here we provide an informal
introduction to Adaptor Grammars; Johnson et al.
(2007) provide a definition of Adaptor Grammars as
a hierarchy of mixtures of Dirichlet (or 2-parameter
Poisson-Dirichlet) Processes to which the reader
should turn for further details.

Adaptor Grammars can be viewed as extending
PCFGs by permitting the grammar to contain an
unbounded number of productions; they are non-
parametric in the sense that the particular produc-
tions used to analyse a corpus depends on the cor-
pus itself. Because the set of possible productions
is unbounded, they cannot be specified by simply
enumerating them, as is standard with PCFGs. In-
stead, the productions used in an adaptor gram-
mar are specified indirectly using a base grammar:
the subtrees of the base grammar’s “adapted non-
terminals” serve as the possible productions of the
adaptor grammar (Johnson et al., 2007), much in
the way that subtrees function as productions in Tree
Substitution Grammars .1

Another way to view Adaptor Grammars is that
they relax the independence assumptions associated
with PCFGs. In a PCFG productions are gener-
ated independently conditioned on the parent non-
terminal, while in an Adaptor Grammar the proba-
bility of generating a subtree rooted in an adapted

1For computational efficiency reasons Adaptor Grammars
require the subtrees to completely expand to terminals. The
Fragment Grammars of O’Donnell (2011) lift this restriction.

non-terminal is roughly proportional to the number
of times it has been previously generated (a certain
amount of mass is reserved to generate “new” sub-
trees). This means that the distribution generated by
an Adaptor Grammar “adapts” based on the corpus
being generated.

2.2.1 Mechanics of adaptor grammars

Adaptor Grammars are specified by a PCFG G,
plus a subset of G’s non-terminals that are called
the adapted non-terminals, as well as a discount
parameter aA, where 0 ≤ aA < 1 and a con-
centration parameter bA, where b > −a, for each
adapted non-terminal A. An adaptor grammar de-
fines a two-parameter Poisson-Dirichlet Process for
each adapted non-terminal A governed by the pa-
rameters aA and bA. For computational purposes it
is convenient to integrate out the Poisson-Dirichlet
Process, resulting in a predictive distribution spec-
ified by a Pitman-Yor Process (PYP). A PYP can
be understood in terms of a “Chinese Restaurant”
metaphor in which “customers” (observations) are
seated at “tables”, each of which is labelled with a
sample from a “base distribution” (Pitman and Yor,
1997).

In an Adaptor Grammar, unadapted non-terminals
expand just as they do in a PCFG; a production r ex-
panding the non-terminal is selected according to the
multinomial distribution θr over productions speci-
fied in the grammar. Each adapted non-terminalA is
associated with its own Chinese Restaurant, where
the tables are labelled with subtrees generated by
the grammar rooted in A. In the Chinese Restau-
rant metaphor, the customers are expansions of A,
each table corresponds to a particular subtree ex-
panding A, and the PCFG specifies the base distri-
bution for each of the adapted non-terminals. An
adapted non-terminal A expands as follows. A ex-
pands to a subtree t with probability proportional to
nt, where nt is the number of times t has been pre-
viously generated. In addition, A expands using a
PCFG rule r expanding A with probability propor-
tional to (mA aA + bA) θr, where mA is the number
of subtrees expanding A (i.e., the number of tables
in A’s restaurant). Because the underlying Pitman-
Yor Processes have a “rich get richer” property, they
generate power-law distributions over the subtrees
for adapted non-terminals.

701



2.2.2 Adaptor grammars as LDA extension
With the ability to rewrite non-terminals to en-

tire subtrees, adaptor grammars have been used to
extend unigram-based LDA topic models (Johnson,
2010). This allows topic models to capture se-
quences of words with abitrary length rather than
just unigrams of word. It has also been shown that it
is crucial to go beyond the bag-of-words assump-
tion as topical collocations capture more meaning
information and represent more interpretable topics
(Wang et al., 2007).

Taking the PCFG formulation for the LDA topic
models, it can be modified such that each topic
Topici generates sequences of words by adapting
each of the Topici non-terminals (usually indicated
with an underline in an adaptor grammar). The over-
all schema for capturing topical collocations with an
adaptor grammar is as follows:

Sentence→ Docj j ∈ 1, . . . ,m

Docj → j j ∈ 1, . . . ,m

Docj → Docj Topici i ∈ 1, . . . , t;

j ∈ 1, . . . ,m

Topici →Words i ∈ 1, . . . , t

Words→Word

Words→Words Word

Word→ w w ∈ V
There is a non-grammar-based approach to find-

ing topical collocations as demonstrated by Wang et
al. (2007). Both of these approaches learned use-
ful collocations: for instance, as mentioned in Sec-
tion 1, Johnson (2010) found collocations such gra-
dient descent and cost function associated with the
topic of machine learning; Wang et al. (2007) found
the topic of human receptive system comprises of
collocations such as visual cortext and motion de-
tector.

Adaptor grammars have also been deployed as a
form of feature selection in discovering useful collo-
cations for perspective classification. Hardisty et al.
(2010) argued that indicators of perspectives are of-
ten beyond the length of bigrams and demonstrated
that the use of the adaptor grammar inferred n-grams
of arbitrary length as features establishes the start-
of-the-art performance for perspective classification
on the Bitter Lemons corpus, depicting two differ-
ent perspectives of Israeli and Pelestinian. We are
adopting a similar approach in this paper for classi-

fying texts with respect to the author’s native lan-
guage; but the key difference with Hardisty et al.
(2010)’s approach is that our focus is on collocations
that mix PoS and lexical elements, rather than being
purely lexical.

3 Maxent Classification

In this section, we first explain the procedures taken
to set up the conventional supervised classification
task for NLI through the deployment of adaptor
grammars for discovery of ‘quasi-syntactic colloca-
tions’ of arbitrary length. We then present the classi-
fication results attained based on these selected sets
of n-gram features. In all of our experiments, we
investigate two sets of collocations: pure PoS and
a mixture of PoS and function words. The idea of
examining the latter set is motivated by the results
of Wong and Dras (2011) where inclusion of parse
production rules lexicalised with function words as
features had shown to improve the classification per-
formance relative to unlexicalised ones.

3.1 Experimental Setup

3.1.1 Data and evaluation
The classification experiments are conducted on

the second version of ICLE (Granger et al., 2009).2

Following our earlier NLI work in Wong and Dras
(2011), our data set consists of 490 texts written
in English by authors of seven different native lan-
guage groups: Bulgarian, Czech, French, Russian,
Spanish, Chinese, and Japanese. Each native lan-
guage contributes 70 out of the 490 texts. As we are
using a relative small data set, we perform k-fold
cross-validation, choosing k = 5.

3.1.2 Adaptor grammars for supervised
classification

We derive two adaptor grammars for the maxent
classification setting, where each is associated with
a different set of vocabulary (i.e. either pure PoS
or the mixture of PoS and function words). We use

2Joel Tetreault and Daniel Blanchard from ETS have pointed
out (personal communication) that there is a subtle issue with
ICLE that could have an impact on the classification perfor-
mance of NLI tasks; in particular, when character n-grams are
used as features, some special characters used in some ICLE
texts might affect performance. For our case, this should not be
of much issue since they will not appear in our collocations.
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the grammar of Johnson (2010) as presented in Sec-
tion 2.2.2, except that the vocabulary differs: either
w ∈ Vpos or w ∈ Vpos+fw. For Vpos, there are
119 distinct PoS tags based on the Brown tagset.
Vpos+fw is extended with 398 function words as per
Wong and Dras (2011). m = 490 is the number of
documents, and t = 25 the number of topics (chosen
as the best performing one from Wong et al. (2011)).

Rules of the form Docj → Docj Topici that
encode the possible topics that are associated with
a document j are given similar α priors as used
in LDA (α = 5/t where t = 25 in our experi-
ments). Likewise, similar β priors from LDA are
placed on the adapted rules expanding from Topici

→ Words, representing the possible sequences of
words that each topic comprises (β = 0.01).3 The
inference algorithm for the adaptor grammars are
based on the Markov Chain Monte Carlo technique
made available online by Johnson (2010).4

3.1.3 Classification models with n-gram
features

Based on the two adaptor grammars inferred, the
resulting collocations (n-grams) are extracted as fea-
tures for the classification task of identifying au-
thors’ native language. These n-grams found by the
adaptor grammars are only a (not necessarily proper)
subset of those n-grams that are strongly characteris-
tic of a particular native language. In principle, one
could find all strongly characteristic n-grams by enu-
merating all the possible instances of n-grams up to
a given length if the vocabulary is of a small enough
closed set, such as for PoS tags, but this is infeasi-
ble when the set is extended to PoS plus function
words. The use of adaptor grammars here can be
viewed as a form of feature selection, as in Hardisty
et al. (2010).

Baseline models To serve as a baseline, we take
the commonly used PoS bigrams as per the previ-
ous work of NLI (Koppel et al., 2005). A set of
200 PoS bigrams is selected in two ways: the 200
most frequent in the training data (as in Wong and
Dras (2011)) and the 200 with the highest informa-
tion gain (IG) values in the training data (not evalu-

3The values of α and β are also based on the established
values presented in Wong et al. (2011).

4Adaptor grammar software is available on http://web.
science.mq.edu.au/˜mjohnson/Software.htm.

ated in other work).

Enumerated n-gram models Here, we enumer-
ate all the possible n-grams up to a fixed length and
select the best of these according to IG, as a general-
isation of the baseline. The first motivation for this
feature set is that, in a sense, this should give a rough
upper bound for the adaptor grammar’s PoS-alone n-
grams, as these latter should most often be a subset
of the former. The second motivation is that it gives
a robust comparison for the mixed PoS and function
word n-grams, where it is infeasible to enumerate all
of them.

ENUM-POS We enumerate all possible n-grams up
to the length of 5, and select those that actually
occur (i.e. of the

∑5
i=1 119i possible n-grams,

this is 218,042 based on the average of 5 folds).
We look at the top n-grams up to length 5 selected
by IG: the top 2,800 and the top 6,500 (for com-
parability with adaptor grammar feature sets, be-
low), as well as the top 10,000 and the top 20,000
(to study the effect of larger feature space).

Adaptor grammar n-gram models The classifi-
cation features are the two sets of selected colloca-
tions inferred by the adaptor grammars which are the
main interest of this paper.

AG-POS This first set of the adaptor grammar-
inferred features comprise of pure PoS n-grams
(i.e. Vpos). The largest length of n-gram found
is 17, but about 97% of the collocations are of
length between 2 to 5. We investigate three vari-
ants of this feature set: top 200 n-grams of all
lengths (based on IG), all n-grams of all lengths
(n = 2, 795 on average), and all n-grams up to
the length of 5 (n = 2, 710 on average).

AG-POS+FW This second set of the adaptor
grammar-inferred features are mixtures of PoS
and function words (i.e. Vpos+fw). The largest
length of n-gram found for this set is 19 and
the total number of different collocations found
is much higher. For the purpose of comparabil-
ity with the first set of adaptor grammar features,
we investigate the following five variants for this
feature set: top 200 n-grams of all lengths, all n-
grams of all lengths (n = 6, 490 on average), all
n-grams up to the length of 5 (n = 6, 417 on av-
erage), top 2,800 n-grams of all different lengths,

703



Features (n-grams) Accuracy
BASELINE-POS [top200 MOST-FREQ] 53.87

BASELINE-POS [top200 IG] 56.12
AG-POS [top200 IG] 61.02

AG-POS [all ≤17-gram] (n ≈ 2800) 68.37
AG-POS [all ≤ 5-gram] (n ≈ 2700) 68.57

AG-POS+FW [top200 IG] 58.16
AG-POS+FW [all ≤19-gram] (n ≈ 6500) 74.49
AG-POS+FW [all ≤5-gram] (n ≈ 6400) 74.49
AG-POS+FW [top2800 IG ≤ 19-gram] 71.84
AG-POS+FW [top2800 IG ≤ 5-gram] 71.84
ENUM-POS [top2800 IG ≤ 5-gram] 69.79
ENUM-POS [top6500 IG ≤ 5-gram] 72.44
ENUM-POS [top10K IG ≤ 5-gram] 71.02
ENUM-POS [top20K IG ≤ 5-gram] 71.43

Table 1: Maxent classification results for individual fea-
ture sets (with 5-fold cross validation).

and top 2,800 n-grams up to the length of 5. (All
the selections are based on IG).

In our models, all feature values are of binary
type. For the classifier, we employ a maximum en-
tropy (MaxEnt) machine learner — MegaM (fifth re-
lease) by Hal Daumé III.5

3.2 Classification results
Table 1 presents all the classification results for the
individual feature sets, along with the baselines. On
the whole, both sets of the collocations inferred by
the adaptor grammars perform better than the two
baselines. We make the following observations:

• Regarding ENUM-POS as a (rough) upper
bound, the adaptor grammar AG-POS with a
comparable number of features performs al-
most as well. However, because it is possible to
enumerate many more n-grams than are found
during the sampling process, ENUM-POS opens
up a gap over AG-POS of around 4%.

• Collocations with a mix of PoS and function
words do in fact lead to higher accuracy as
compared to those of pure PoS (except for the
top 200 n-grams); for instance, compare the
2,800 n-grams up to length 5 from the two cor-
responding sets (71.84 vs. 68.57).

• Furthermore, the adaptor grammar-inferred
collocations with mixtures of PoS and function

5MegaM software is available on http://www.cs.
utah.edu/˜hal/megam/.

Features (n-grams) Accuracy
AG-POS [all ≤ 5-gram] & FW 72.04

ENUM-POS [top2800 ≤ 5-gram] & FW 73.67
AG-POS+FW & AG-POS a 75.71
AG-POS+FW & AG-POS b 74.90

AG-POS+FW & ENUM-POS [top2800] a 73.88
AG-POS+FW & ENUM-POS [top2800] b 74.69
AG-POS+FW & ENUM-POS [top10K] b 74.90
AG-POS+FW & ENUM-POS [top20K] b 75.10

Table 2: Maxent classification results for combined fea-
ture sets (with 5-fold cross validation). aFeatures from
the two sets are selected based on the overall top 3700
with highest IG; bfeatures from the two sets are just lin-
early concatenated.

words (AG-POS+FW) in general perform better
than our rough upper bound of PoS colloca-
tions, i.e. the enumerated PoS n-grams (ENUM-
POS): the overall best results of the two feature
sets are 74.49 and 72.44 respectively.

Given that the AG-POS+FW n-grams are captur-
ing different sorts of document characteristics, they
could potentially usefully be combined with the
PoS-alone features. We thus combined them with
both AG-POS and ENUM-POS feature sets, and the
classification results are presented in Table 2. We
tried two ways of integrating the feature sets: one
way is to take the overall top 2,800 of the two sets
based on IG; the other way is to just combine the two
sets of features by concatenation of feature vectors
(as indicated by a and b respectively in the result
table). For comparability purposes, we considered
only n-grams up to the length of 5. A baseline ap-
proach to this is just to add in function words as un-
igram features by feature vector concatenation, giv-
ing two further models, AG-POS [all ≤ 5-gram] &
FW and ENUM-POS [top2800 ≤ 5-gram] & FW.

Overall, the classification accuracies attained by
the combined feature sets are higher than the in-
dividual feature sets. The best performing of all
the models is achieved by combining the mixed
PoS and function word collocations with the adap-
tor grammar-inferred PoS, producing the best accu-
racy thus far of 75.71. This demonstrates that fea-
tures inferred by adaptor grammars do capture some
useful information and function words are playing
a role. The way of integrating the two feature sets
has different effects on the types of combination. As
seen in Table 2, method a works better for the com-
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bination of the two adaptor grammar feature sets;
whereas method b works better for combining adap-
tor grammar features with enumerated n-gram fea-
tures.

Using adaptor grammar collocations also outper-
forms the alternative baseline of adding in function
words as unigrams. For instance, the best perform-
ing combined feature set of both AG-POS and AG-
POS+FW does result in higher accuracy as compared
to the two alternative baseline models, comparing
75.71 with 72.04 (and 75.71 with 73.67). This
demonstrates that our more general PoS plus func-
tion word collocations derived from adaptor gram-
mars are indeed useful, and supports the argument
of Wang et al. (2007) that they are a useful tech-
nique for looking into features beyond just the bag
of words.

4 Language Model-based Classification

In this section, we take a language modeling ap-
proach to native language identification; the idea
here is to adopt grammatical inference to learn
a grammar-based language model to represent the
texts written by non-English native users. The gram-
mar learned is then used to predict the most probable
native language that a document (a sentence) is as-
sociated with.

In a sense, we are using a parser-based language
model to rank the documents with respect to native
language. We draw on the work of Börschinger et
al. (2011) for this section. In that work, the task
was grounded learning of a semantic parser. Train-
ing examples there consisted of natural language
strings (descriptions of a robot soccer game) and
a set of candidate meanings (actions in the robot
soccer game world) for the string; each was tagged
with a context identifier reflecting the actual action
of the game. A grammar was then induced that
would parse the examples, and was used on test data
(where the context identifier was absent) to predict
the context. We take a similar approach to devel-
oping an grammatical induction technique, although
where they used a standard LDA topic model-based
PCFG, we use an adaptor grammar. We expect that
the results will likely to be lower than for the dis-
criminative approach of Section 3. However, the
approach is of interest for a few reasons: because,
whereas the adaptor grammar plays an ancillary, fea-

ture selection role in Section 3, here the feature se-
lection is an organic part of the approach as per the
actual implementation of Hardisty et al. (2010); be-
cause adaptor grammars can potentially be extended
in a natural way with unlabelled data; and because,
for the purposes of this paper, it constitutes a second,
quite different way to evaluate the use of n-gram col-
locations.

4.1 Language Models

We derive two adaptor grammar-based language
models. One consists of only unigrams and bi-
grams, and the other finds n-gram collocations, in
both cases over either PoS or the mix of PoS and
function words. The assumption that we make is that
each document (each sentence) is a mixture of two
sets of topics: one is the native language-specific
topic (i.e. characteristic of the native language) and
the other is the generic topic (i.e. characteristic of
the second language — English in our case). The
generic topic is thus shared across all languages,
and will behave quite differently from a language-
specific topic, which is not shared. In other words,
there are eight topics, representing seven native lan-
guage groups that are of interest (Bulgarian, Czech,
French, Russian, Spanish, Chinese, and Japanese)
and the second language English itself.6

Bigram models The following rule schema is
applicable to both vocabulary types of PoS and the
mixture of PoS and function words.

Root→ lang langTopics

langTopics→ langTopics langTopic

langTopics→ langTopics nullTopic

langTopics→ langTopic

langTopics→ nullTopic

langTopic→Words

nullTopic→Words

Words→Word Word

Words→Word

Word→ w w ∈ Vpos; w ∈ Vpos+fw

N-gram models The grammar is the same as
the above with the exception that the non-terminal
Words is now rewritten as follows in order to

6We could just induce a regular PCFG here, rather than an
adaptor grammar, by taking as terminals all pairs of PoS tags.
We use the adaptor grammar formulation for comparability.
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capture n-gram collocations of arbitrary length.

Words→Words Word
Words→Word

It should be noted that the two grammars above
can in theory be applied to an entire document or on
individual sentences. For this present work, we work
on the sentence level as the run-time of the current
implementation of the adaptor grammars grows pro-
portional to the cube of the sentence length. For each
grammar we try both sparse and uniform Dirichlet
priors (α = {0.01, 0.1, 1.0}). The sparse priors en-
courage only a minority of the rules to be associated
with high probabilities.

4.2 Training and Evaluation
As we are using the same data set as per the pre-
vious approach, we perform 5-fold cross validation
as well. However, the training for each fold is con-
ducted with a different grammar consisting of only
the vocabulary that occur in each training fold. The
reason is that we are now having a form of super-
vised topic models where the learning process is
guided by the native languages. Hence, each of the
training sentences are prefixed with the (native) lan-
guage identifiers lang, as seen in the Root rules of
the grammar presented above.

To evaluate the grammars learned, as in
Börschinger et al. (2011) we need to slightly modify
the grammars above by removing the language iden-
tifiers ( lang) from theRoot rules and then parse the
unlabeled sentences using a publicly available CKY
parser.7 The predicted native language is inferred
from the parse output by reading off the langTopics
that the Root is rewritten to. We take that as the
most probable native language for a particular test
sentence. At the document level, we select as the
class the language predicted for the largest number
of sentences in that document.

4.3 Parsing Results
Tables 3 and 4 present the parsing results at the sen-
tence level and the document level, respectively. On
the whole, the results at the sentence level are much
poorer as compared to those at the document level.
In light of the results of Section 3.2, it is surprising

7CKY parser by Mark Johnson is available on
http://web.science.mq.edu.au/˜mjohnson/
Software.htm.

Features Accuracy
(n-grams) (α = 0.01) (α = 0.1) (α = 1.0)

AG-POS [bigrams] 26.84 27.03 26.77
AG-POS [n-grams] 25.85 25.78 25.62

AG-POS+FW [bigrams] 28.58 28.40 27.43
AG-POS+FW [n-grams] 26.64 27.64 28.75

Table 3: Language modeling-based classification results
based on parsing (at the sentence level).

Features Accuracy
(n-grams) (α = 0.01) (α = 0.1) (α = 1.0)

AG-POS [bigrams] 41.22 38.88 39.69
AG-POS [n-grams] 36.12 34.90 35.20

AG-POS+FW [bigrams] 47.45 46.94 44.64
AG-POS+FW [n-grams] 43.97 49.39 50.15

Table 4: Language modeling-based classification results
based on parsing (at the document level).

that bigram models appear to perform better than n-
gram models for both types of vocabulary, with the
exception of AG-POS+FW at the document level. In
fact, one would expect n-gram models to perform
better in general as it is a generalisation that would
contain all the potential bigrams. Nonetheless, the
language models over the mixture of PoS and func-
tion words appear to be a more suitable representa-
tive of our learner corpus as compared to those over
purely PoS, confirming the usefulness of integrated
function words for the NLI classification task.

It should also be noted that sparse priors gen-
erally appear to be more appriopriate; except that
for AG-POS+FW n-grams, uniform priors are indeed
better and resulted in the highest parsing result of
50.15. (Although all the parsing results are much
weaker as compared to the results presented in Sec-
tion 3.2, they are all higher than the majority base-
line of 14.29% i.e. 70/490).

5 Discussion
Here we take a closer look at how well each ap-
proach does in identifying the individual native lan-
guages. The confusion matrix for the best model
of two approaches are presented in Table 5 and Ta-
ble 6. Both approaches perform reasonably well for
the two Oriental languages (Chinese in particular);
this is not a major surprise, as the two languages
are not part of the language family that the rest of
the languages come from (i.e. Indo-European). Un-
der the supervised maxent classification, misclassi-
fications largely are observed in the Romance ones
(French and Spanish) as well as Russian; for the lan-
guage model-based approach, Bulgarian is identi-
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BL CZ RU FR SP CN JP
BL [52] 5 7 4 2 - -
CZ 5 [50] 5 3 4 - 3
RU 6 8 [46] 5 1 - 4
FR 7 3 5 [43] 8 - 4
SP 7 2 4 9 [47] - 1
CN - - - - - [70] -
JP - - 2 2 1 2 [63]

Table 5: Confusion matrix based on the best performing
model under maxent setting (BL:Bulgarian, CZ:Czech,
RU:Russian, FR:French, SP:Spanish, CN:Chinese,
JP:Japanese).

BL CZ RU FR SP CN JP
BL [20] 32 9 6 - 1 2
CZ 2 [59] 3 1 - - 5
RU 3 41 [19] 2 1 - 4
FR 8 20 4 [31] 4 - 3
SP 7 27 11 12 [9] - 4
CN - 2 - 2 - [62] 4
JP - 19 1 2 - 1 [47]

Table 6: Confusion matrix based on the best
performing model under language modeling setting
(BL:Bulgarian, CZ:Czech, RU:Russian, FR:French,
SP:Spanish, CN:Chinese, JP:Japanese).

fied poorly, and Spanish moreso. However, the latter
approach appears to be better in identifying Czech.
On the whole, the maxent approach results in much
fewer misclassifications compared to its counterpart.

In fact, there is a subtle difference in the exper-
imental setting of the models derived from the two
approaches with respect to the adaptor grammar: the
number of topics. Under the maxent setting, the
number of topics t was set to 25, while we restricted
the models with the language modeling approach to
only eight topics (seven for the individual native lan-
guages and one for the common second language,
English). Looking more deeply into the topics them-
selves reveals that there appears to be at least two out
of the 25 topics (from the supervised models) asso-
ciated with n-grams that are indicative of the native
languages, taking Chinese and Japanese as examples
(see the associated topics in Table 7).8 Perhaps as-
sociating each native language with only one gener-
alised topic is not sufficient.

Furthermore, the distribution of n-grams among
the topics (i.e. subtrees of collocations derived
from the adaptor grammars) are quite different be-
tween the two approaches although the total num-

8Taking the examples from Wong et al. (2011) as reference,
we found similar n-grams that are indicative of Japanese and
Chinese.

Top 10 Mixture N-grams
Japanese Chinese

topic2 topic23 topic9 topic17

. . NN .
we VB PPSS VB a NN NN NN

our NNS my NN NN NN NNS
our NN CC VBN by NN
NN VBG NP . RB ,

PPSS VB PPSS think NP of NN
about NN : JJ NN

because PPSS VBD ( NN .
it . RB as VBG NN

we are PPSS ’ NN NN NN NN NN NN NN

Table 7: Top mixture n-grams (collocations) for 4 out of
the 25 topics representative of Japanese and Chinese (un-
der maxent setting). N-grams of pronoun with verb are
found at the upper end of Topic2 and Topic23 reflecting
the frequent usage of Japanese; n-grams of noun are top
n-grams under Topic9 and Topic17 indicating Chinese’s
common error of determiner-noun disagreement.

ber of n-grams inferred by each approach is about
the same. For the language modeling ones, a high
number of n-grams were associated with the generic
topic nullTopic9 and each language-specific topic
langTopic has a lower number of n-grams relative
to bi-grams (Table 8) associated with it. For the
maxent models, in contrast, the majority of the top-
ics were associated with a higher number of n-grams
(Table 9). The smaller number of n-grams to be used
as features — and the fact that their extra length
means that they will occur more sparsely in the doc-
uments — seems to be the core of the problem.

Nonetheless, the language models inferred dis-
cover relevant n-grams that are representative of
individual native languages. For instance, the bi-
gram NN NN, which Wong and Dras (2011) claim
may reflect the error of determiner-noun disagree-
ment commonly found amongst Chinese learners,
was found under the Chinese topic at the top-2 posi-
tion with a probability of 0.052 as compared to the
other languages at the probability range of 0.0005-
0.003. Similarly, one example for Japanese, the mix-
ture bigram PPSS think, indicating frequent us-
age of pronouns within Japanese was seen under the
Japanese topic at the top-9 position with a probabil-
ity of 0.025 in relation to other languages within the
range of 0.0002-0.006: this phenomenon as char-

9This is quite plausible as there should be quite a number of
structures that are representative of native English speakers that
are shared by non-native speakers.
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Model N-gram Frequency
Types BGTopic CZTopic FRTopic RUTopic SPTopic CNTopic JPTopic NullTopic

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
Bigrams 374 187 352 219 426 165 350 211 351 156 397 351 394 194 867 6169
N-grams 177 159 226 217 151 152 148 202 128 147 357 255 209 226 3089 7794

Table 8: Distribution of n-grams (collocations) for each topic under language modeling setting. (a) subcolumns are
for n-grams of pure PoS and (b) subcolumns are for n-grams of mixtures of PoS and function words.

N-gram Frequency
Topic1 Topic2 Topic3 Topic4 Topic5 Topic6 Topic7 Topic8 Topic9 Topic10

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
174 443 145 441 136 245 141 341 236 519 169 748 127 340 182 473 109 339 190 236
Topic11 Topic12 Topic13 Topic14 Topic15 Topic16 Topic17 Topic18 Topic19 Topic20

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
57 259 126 455 103 543 211 225 170 459 81 309 238 207 152 475 119 452 333 423

Topic21 Topic22 Topic23 Topic24 Topic25

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)
245 341 168 492 194 472 201 366 195 190

Table 9: Distribution of n-grams (collocations) for each topic under maxent setting. (a) subcolumns are for n-grams
of pure PoS and (b) subcolumns are for n-grams of mixtures of PoS and function words.

Languages Excerpts from ICLE
Chinese ... the overpopulation problem in urban area ...

... The development of country park can directly ...
... when it comes to urban renewal project ...

... As developing new town in ...
... and reserve some country park as ...

Japanese ... I think many people will ...
... I think governments should not ...

... I think culture is the most significant ...
... I think the state should not ...
... I really think we must live ...

Table 10: Excerpts from ICLE illustrating the common
phenomena observed amongst Chinese and Japanese.

acteristic of Japanese speakers has also been noted
for different corpora by Ishikawa (2011). (Note that
this collocation as well as its pure PoS counterpart
PPSS VB are amongst the top n-grams discovered
under the maxent setting as seen in Table 7.) Table
10 presents some excerpts extracted from the corpus
that illustrate these two common phenomena.

To investigate further the issue associated with the
number of topics under the language modeling set-
ting, we attempted to extend the adaptor grammar
with three additional topics that represent the lan-
guage family of the seven native languages of inter-
est: Slavic, Romance, and Oriental. (The resulting
grammar is presented as below.) However, the pars-
ing result does not improve over the initial setting
with eight topics in total.

Root→ lang langTopics

langTopics→ langTopics langTopic

langTopics→ langTopics familyTopic

langTopics→ langTopics nullTopic

langTopics→ langTopic
langTopics→ familyTopic
langTopics→ nullTopic
langTopic→Words
familyTopic→Words
nullTopic→Words
Words→Words Word
Words→Word
Word→ w w ∈ Vpos; w ∈ Vpos+fw

6 Conclusion and Future Work
This paper has shown that the extension of adap-
tor grammars to discovering collocations beyond the
lexical, in particular a mix of PoS tags and function
words, can produce features useful in the NLI clas-
sification problem. More specifically, when added
to a new baseline presented in this paper, the com-
bined feature set of both types of adaptor grammar
inferred collocations produces the best result in the
context of using n-grams for NLI. The usefulness of
the collocations does vary, however, with the tech-
nique used for classification.

Future work will involve a broader exploration
of the parameter space of the adaptor grammars,
in particular the number of topics and the value
of α; a look at other non-parametric extensions of
PCFGs, such as infinite PCFGs (Liang et al., 2007)
for finding a set of non-terminals permitting more
fine-grained topics; and an investigation of how the
approach can be extended to semi-supervised learn-
ing to take advantage of the vast quantity of texts
with errors available on the Web.
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Abstract

We propose a novel probabilistic technique
for modeling and extracting salient struc-
ture from large document collections. As
in clustering and topic modeling, our goal
is to provide an organizing perspective into
otherwise overwhelming amounts of infor-
mation. We are particularly interested in
revealing and exploiting relationships be-
tween documents. To this end, we focus on
extracting diverse sets of threads—singly-
linked, coherent chains of important doc-
uments. To illustrate, we extract research
threads from citation graphs and construct
timelines from news articles. Our method
is highly scalable, running on a corpus of
over 30 million words in about four minutes,
more than 75 times faster than a dynamic
topic model. Finally, the results from our
model more closely resemble human news
summaries according to several metrics and
are also preferred by human judges.

1 Introduction

The increasing availability of large document
collections has the potential to revolutionize
our ability to understand the world. However,
the scale and complexity of such collections fre-
quently make it difficult to quickly grasp the
important details and the relationships between
them. As a result, automatic interfaces for data
navigation, exploration, aggregation, and analy-
sis are becoming increasingly valuable.

In this work we propose a novel approach:
threading structured document collections. Con-

sider a large graph, with documents as nodes
and edges indicating relationships, as in Figure 1.
Our goal is to find a diverse set of paths (or
threads) through the collection that are indi-
vidually coherent and together cover the most
salient parts. For example, given a collection
of academic papers, we might want to identify
the most significant lines of research, threading
the citation graph to produce chains of impor-
tant papers. Or, given news articles connected
chronologically, we might want to extract threads
of articles to form timelines describing the ma-
jor events from the most significant news stories.
Top-tier news organizations like The New York
Times and The Guardian regularly publish such
timelines, but have so far been limited to creat-
ing them by hand. Other possibile applications
might include discovering trends on social media
sites, or perhaps mining blog entries for impor-
tant conversations through trackback links. We
show how these kinds of threading tasks can be
done efficiently, providing a simple, practical tool
for representing graph-based data that offers new
possibilities compared with existing models.

The Topic Detection and Tracking (TDT) pro-
gram (Wayne, 2000) has recently led to some
research in this direction. Several of TDT’s core
tasks, like link detection, topic detection, and
topic tracking, can be seen as subroutines for
the threading problem. Our work, however, ad-
dresses these tasks jointly, using a global prob-
abilistic model with a tractable inference algo-
rithm. To achieve this, we employ structured
determinantal point processes (SDPPs) (Kulesza

710



Figure 1: An illustration of document collection threading. We first build a graph from the collection, using
measures of importance and relatedness to weight nodes (documents) and build edges (relationships). Then,
from this graph, we extract a diverse, salient set of threads to represent the collection. The supplement
contains a version of this figure for our real-world news dataset.

and Taskar, 2010), which offer a natural prob-
abilistic model over sets of structures (such as
threads) where diversity is desired, and we incor-
porate k-DPP extensions to control the number
of threads (Kulesza and Taskar, 2011).

We apply our model to two real-world datasets,
extracting threads of research papers and time-
lines of news articles. An example of news
threads extracted using our model is shown in
Figure 2. Quantitative evaluation shows that our
model significantly outperforms multiple base-
lines, including dynamic topic models, in com-
parisons with human-produced news summaries.
It also outperforms baseline methods in a user
evaluation of thread coherence, and runs 75 times
faster than a dynamic topic model.

The primary contributions of this paper
are: (1) proposing a novel framework for finding
diverse and salient sets of document threads; (2)
combining SDPPs and k-DPPs to implement the
proposed model; (3) introducing random projec-
tions to improve efficiency with only bounded
deviation; and (4) demonstrating the model on
large-scale, real-world datasets.

2 Related Work

A variety of papers from the topic tracking liter-
ature are broadly related to our work (Mei and
Zhai, 2005; Blei and Lafferty, 2006; Leskovec et
al., 2009; Ahmed and Xing, 2010). Blei and Laf-
ferty (2006) recently introduced dynamic topic
models (DTMs). Assuming a division of doc-
uments into time slices, a DTM draws in each
slice a set of topics from a Gaussian distribution
whose mean is determined by the topics from
the previous slice. In this way, a DTM generates

topic threads. In this work we are interested in
the related but not identical task of generating
document threads. We engineer a baseline for
constructing document threads from DTM topic
threads (see Section 6.2.2), but the topic-centric
nature of DTMs means they are not ideal for
this task. Figure 2 illustrates some of the issues.

The work of Ahmed and Xing (2010) general-
izes DTMs to iDTMs (infinite DTMs) by allowing
topics to span only a subset of time slices, and
allowing an arbitrary number of topics. However,
iDTMs still require placing documents into dis-
crete epochs, and the issue of generating topic
rather than document threads remains. In Sec-
tion 6 we compare to DTMs but not iDTMs
because an implementation of iDTMs was not
readily available.

In the information retrieval community there
has also been work on extracting temporal in-
formation from document collections. Swan and
Jensen (2000) proposed a system for finding tem-
porally clustered named entities in news text and
presenting them on a timeline. Allan, Gupta,
and Khandelwal (2001) introduced the task of
temporal summarization, which takes a stream
of news articles on a particular topic and tries to
extract sentences describing important events as
they occur. Yan et al (2011) evaluated methods
for choosing sentences from temporally clustered
documents that are relevant to a query. Here, we
are interested not in extracting topically grouped
entities or sentences, but instead in organizing a
subset of the articles themselves into timelines,
with topic identification as a side effect.

There has also been some prior work focus-
ing more directly on threading. Shahaf and
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cancer heart breast women disease aspirin risk study 

palestinian israel baghdad palestinians sunni korea gaza israeli 

social security accounts retirement benefits tax workers 401 payroll 

mets rangers dodgers delgado martinez astacio angels mientkiewicz 

hotel kitchen casa inches post shade monica closet 

Feb 24: Parkinson’s Disease Increases Risks to Pope
Feb 26: Pope’s Health Raises Questions About His Ability to Lead
Mar 13: Pope Returns Home After 18 Days at Hospital
Apr 01: Pope’s Condition Worsens as World Prepares for End of Pa-

pacy
Apr 02: Pope, Though Gravely Ill, Utters Thanks for Prayers
Apr 18: Europeans Fast Falling Away from Church
Apr 20: In Developing World, Choice [of Pope] Met with Skepticism
May 18: Pope Sends Message with Choice of Name

Jan 11: Study Backs Meat, Colon Tumor Link
Feb 07: Patients—and Many Doctors—Still Don’t Know How Often

Women Get Heart Disease
Mar 07: Aspirin Therapy Benefits Women, but Not in the Way It

Aids Men
Mar 16: Study Shows Radiation Therapy Doesn’t Increase Heart Dis-

ease Risk for Breast Cancer Patients
Apr 11: Personal Health: Women Struggle for Parity of the Heart
May 16: Black Women More Likely to Die from Breast Cancer
May 24: Studies Bolster Diet, Exercise for Breast Cancer Patients
Jun 21: Another Reason Fish is Good for You

Figure 2: A set of five news threads generated by our method (left) and a dynamic topic model (right) for
the first half of 2005. Above, the threads are shown on a timeline with the most salient words superimposed;
below, the dates and headlines from the threads appearing at the bottom are listed. Topic models are not
designed for threading and often link together topically similar documents that do not constitute a coherent
news story, as on the right.

Guestrin (2010) and Chieu and Lee (2004) pro-
posed selecting a single thread, whereas we seek
a set of threads, which is a more general task.
Shahaf, Guestrin, and Horvitz (2012) recently
proposed metro maps as alternative structured
representations of related news stories. Metro
maps are effectively sets of non-chronological
threads that are encouraged to intersect and thus
create a “map” of events and topics. However,
these approaches assume some prior knowledge
about content. Shahaf and Guestrin (2010), for
example, assume the thread endpoints are spec-
ified, and Chieu and Lee (2004) require a set
of query words. These inputs make it possible
to quickly pare down the document graph. In
constrast, we work with very large graphs and
consider all possible threads. Furthermore, while
some prior work has relied on heuristics and ap-
proximate optimization, we can efficiently sample
a joint probabilistic model with approximation
guarantees.

In previous work on SDPPs (structured DPPs),
which we use here to model threads, Kulesza and
Taskar (2010) derived exact polynomial-time al-
gorithms for sampling and other inference. How-
ever, their experiments involved feature vectors
of only 32 dimensions. For text, natural features

like word occurrences typically yield dimension-
ality in the tens of thousands, making SDPP
inference prohibitively expensive. We solve this
problem by reducing the feature space using ran-
dom projections (see Section 5). We prove that
even a logarithmic number of projections is suffi-
cient to yield a close approximation to the origi-
nal SDPP distribution.

3 Framework

Before presenting our probabilistic model, we
describe a natural framework for representing
document collections. We assume that the collec-
tion has been transformed into a directed graph
G = (V,E) on n vertices, where each node cor-
responds to a document and each edge repre-
sents a relationship between documents whose
semantics depend on the task. We also as-
sume the existence of a weight function w on
nodes and edges, which measures the impor-
tance or salience of documents and the relative
strength of the relationships between them. For-
mally, we define the weight of a path (or thread)
y = (y(1), y(2), . . . , y(T )), (y(t), y(t+1)) ∈ E by:

w(y) =

T∑
t=1

w
(
y(t)
)

+

T−1∑
t=1

w
(
y(t), y(t+1)

)
. (1)
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Lastly, we also assume the existence of node
features. Specifically, let φ represent a feature
mapping from nodes to RD (for example, tf-idf
word vectors). The feature map on a thread is
then just a sum over the nodes in the thread:

φ(y) =

T∑
t=1

φ
(
y(t)
)
. (2)

(If it is convenient to have features on edges as
well as on nodes, it is possible to accommodate
them without affecting asymptotic performance.)
Given this framework, our goal is to develop
a probabilistic model over sets of k threads of
length T , favoring sets whose threads have large
weight but are also distinct from one another with
respect to φ. In other words, a high-probability
set under the model should include threads that
are both salient and diverse.

This is a daunting problem, given that the
number of possible sets of threads is O(nkT ).
For the datasets we use later, the actual number
is around 21000. However, we will show how to
construct the desired model in a way that allows
efficient inference, even for large datasets, using
determinantal point processes (DPPs). We begin
with some background.

4 Determinantal point processes

A DPP is a type of distribution over subsets.
Formally, a DPP P on a set of items Y =
{y1, . . . , yN} is a probability measure on 2Y , the
set of all subsets of Y . (In our setting, Y will be
the set of all possible threads.) For every Y ⊆ Y
we have:

P(Y ) =
det(LY )∑

Y⊆Y
det(LY )

=
det(LY )

det(L+ I)
, (3)

where L is a positive semidefinite matrix and I
is the N ×N identity matrix. LY ≡ [Lij ]yiyj∈Y
denotes the restriction of L to the entries indexed
by elements of Y , and det(L∅) = 1. We can
define the entries of L as follows:

Lij = q(yi)φ(yi)
>φ(yj)q(yj) , (4)

where we can think of q(yi) ∈ R+ as the “qual-
ity” of an item yi, and φ(yi) ∈ RD, ‖φ(yi)‖2 = 1

Figure 3: (a) The DPP probability of a set Y depends
on the volume spanned by vectors q(yi)φ(yi) for i ∈ Y .
(b) As quality (length) increases, so does volume. (c)
As similarity increases, volume decreases.

as a normalized D-dimensional feature vector
such that φ(yi)

>φ(yj) ∈ [−1, 1] is a measure of
similarity between items yi and yj . This simple
definition gives rise to a distribution that places
most of its weight on sets that are both high qual-
ity and diverse. To understand why this is the
case, note that determinants are closely related
to volumes; in particular, det(LY ) is proportional
to the volume spanned by the vectors q(yi)φ(yi)
for yi ∈ Y . Thus, sets with high-quality, diverse
items have the highest probability; see Figure 3
for an illustration.

4.1 Structured DPPs

Kulesza and Taskar (2010) introduced structured
DPPs (SDPPs) to efficiently handle Y containing
exponentially many structures. In our setting, Y
contains all threads of length T , so each yi ∈ Y is

a sequence (y
(1)
i , . . . , y

(T )
i ), where y

(t)
i is the docu-

ment included in the thread at position t. When
G is a complete graph, there are nT possible
sequences, so |Y| = N = nT .

In order to allow for efficient normalization
and sampling, SDPPs assume a factorization
of the quality score q(yi) and similarity score
φ(yi)

>φ(yj) into parts, decomposing quality mul-
tiplicatively and similarity additively:

q(yi) =
T∏
t=1

q
(
y

(t)
i

)
φ(yi) =

T∑
t=1

φ
(
y

(t)
i

)
(5)

For threading, the definition of φ is just as given
in Equation (2). However, in order to convert the
weight function defined in Equation (1) to the
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appropriate multiplicative form, we use a sim-
ple log-linear model, setting q(yi) = exp(λw(yi)),
where λ is a hyperparameter that effectively gov-
erns the balance between quality and diversity
by adjusting the dynamic range of the quality
function.

An efficient algorithm for sampling structures
(in this case, sets of threads) from an SDPP is
derived in Kulesza and Taskar (2010). While
the details are beyond the scope of this paper,
we note that the sampling algorithm requires
O(Tn2D2) time. If the node degrees are bounded
by r then the time is reduced to O(TrnD2). This
is not quite efficient enough when the number
of features, D, is large, as it often is for textual
tasks, but we will show in Section 5 how to
overcome this last hurdle.

Note that, in our later experiments, we fix T
to moderate values (T = 5, 8) for ease of analysis
and display. However, it is possible (and effi-
cient, due to the linear scaling) to allow longer
threads, as well as threads of variable length.
The latter effect can be achieved by adding a sin-
gle “dummy” node to the document graph, with
incoming edges from all other documents and a
single outgoing self-loop edge. Shorter threads
will simply transition to this dummy node when
they are complete.

4.2 k-DPPs

SDPPs allow us to efficiently model all sets of
threads; however, for practical reasons we would
prefer to focus only on sets of exactly k threads.
To do so we exploit recently developed methods
for working with DPPs of fixed size (Kulesza
and Taskar, 2011). A k-DPP Pk is a DPP con-
ditioned on the event that the subset Y ∈ Y has
cardinality k; formally, whenever |Y | = k:

Pk(Y ) =
det(LY )∑

|Y ′|=k det(LY ′)
. (6)

In this work we combine k-DPPs with SDPPs,
referring to the result as a k-SDPP. We note that
using k-SDPPs instead of SDPPs does not affect
efficiency of sampling; it merely affords a mecha-
nism for controlling the number of threads.

5 Random projections

As described above, the time complexity for sam-
pling sets from SDPPs is O(TrnD2). Although
this is polynomial, for practical problems nD2

is prohibitively large. While previous work has
dealt only with small datasets, in our experi-
ments we typically have n,D > 30,000; storing
a single message for the message-passing routine
involved in SDPP sampling would require over
200 terabytes of memory. To make the model
practical, therefore, we turn to techniques for
dimensionality reduction.

Standard PCA requires O(D3) time and would
be much too slow. But a classic result of John-
son and Lindenstrauss (1984) shows that high-
dimensional points can be randomly projected
onto a logarithmic number of dimensions while
approximately preserving the distances between
them. More recently, Magen and Zouzias (2008)
extended this idea to the preservation of volumes
spanned by sets of points. Here, we use a rela-
tionship between determinants and volumes to
adapt the latter result. We will prove the follow-
ing bound on the variational distance between
the original k-SDPP and a randomly projected
version.

Theorem 1. Fix ε, δ < 1/2, and set d =

max

{
2k

ε
,
24

ε2

(
log(3/δ)

logN
+ 1

)
log 2N + k − 1

}
.

(7)
Let Pk be the k-SDPP distribution in Equa-
tion (6), let G be a d × D random matrix
whose entries are independently sampled from
N (0, 1/d), and let P̃k(Y ) be the k-SDPP distri-
bution after projecting φ by G—that is, replacing
φ with Gφ. Then with probability at least 1− δ,

‖Pk−P̃k‖1 =
∑
|Y |=k

|Pk(Y )−P̃k(Y )| ≤ e6kε−1 .

(8)
Note that e6kε − 1 ≈ 6kε when kε is small, and
d = O(max{k/ε, (log(1/δ) + T log n)/ε2}).

Practically, Theorem 1 says that if we project
φ down to dimension d logarithmic in the number
of documents and linear in thread length, the L1

variational distance between the true model and
the projected model is bounded.
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To prove Theorem 1, we will first state a vari-
ant of Magen and Zouzias’ result, which bounds
the ratio of volumes before and after projection
from D down to d dimensions.

Lemma 1. Let X be a D×N matrix. Fix k < N
and ε, δ < 1/2, and set d and G as in Theorem 1.
Then with probability at least 1− δ we have, for
all D × k matrices Y formed by a subset of k
columns from X:

(1− ε)k ≤ Vol(GY )

Vol(Y )
≤ (1 + ε)k ,

where Vol(Y ) is the k-dimensional volume
spanned by the columns of Y and the origin.

We can make use of the following fact to con-
vert this bound on volumes to a bound on deter-
minants:

Vol(Y ) =
1

k!

√
det(Y >Y ) . (9)

In order to handle the k-SDPP normalization
constant

∑
|Y |=k

∏
yi∈Y

q2(yi)

det(φ(Y )>φ(Y )) , (10)

we also must adapt Lemma 1 to sums of deter-
minants. The following lemma gives the details.

Lemma 2. Under the same conditions as
Lemma 1, with probability at least 1− δ,

(1+2ε)−2k ≤
∑
|Y |=k det((GY )>(GY ))∑

|Y |=k det(Y >Y )
≤ (1+ε)2k .

Proof.∑
|Y |=k

det((GY )>(GY ))

=
∑
|Y |=k

(k!Vol(GY ))2

≥
∑
|Y |=k

(
k!Vol(Y )(1− ε)k

)2

≥ (1 + 2ε)−2k
∑
|Y |=k

det(Y >Y ) ,
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Figure 4: The effect of random projections. In black,
on the left, we estimate the L1 variational distance
between the true and projected models. In blue, on
the right, we plot the memory required for sampling.
Running time is proportional to memory use.

where the first inequality holds with probability
at least 1−δ by Lemma 1, and the second follows
from the fact that (1− ε)(1 + 2ε) ≥ 1 (since ε <
1/2), thus (1− ε)2k ≥ (1 + 2ε)−2k. A symmetric
argument gives the upper bound.

Proof (of Theorem 1). Let B be the matrix
whose columns are given by Bi = q(yi)φ(yi).
We have

‖Pk − P̃k‖1 =
∑
|Y |=k

|Pk(Y )− P̃k(Y )|

=
∑
|Y |=k

Pk(Y )

∣∣∣∣∣1− P̃k(Y )

Pk(Y )

∣∣∣∣∣
=
∑
|Y |=k

Pk(Y )

∣∣∣∣1− det([GB>Y ][GBY ])

det(B>Y BY )

·
∑
|Y ′|=k det(B>Y ′BY ′)∑

|Y ′|=k det([GB>Y ′ ][GBY ′ ])

∣∣∣∣∣
≤
∣∣∣1− (1 + ε)2k(1 + 2ε)2k

∣∣∣ ∑
|Y |=k

Pk(Y )

≤ e6kε − 1 ,

where the first inequality follows from Lemma 1
and Lemma 2, which hold simultaneously with
probability at least 1− δ, and the second follows
from (1 + a)b ≤ eab for a, b ≥ 0.
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Figure 5: Example threads sampled from a 4-SDPP with thread length T = 5 on the Cora dataset. We
project from word-space to two dimensions by running PCA on the centroids of the threads. The nodes not
on the thread paths form a representative subset of the other documents from Cora. Displayed beside each
thread are a few of its maximum-tfidf words. Paper titles from two of the threads are shown to the right.

6 Experiments

We begin by showing the performance of random
projections on a small, synthetic threading task
where the exact model is tractable, with n = 600
and D = 150. Figure 4 shows the L1 variational
distance (estimated by sampling) as well as the
actual memory required for a variety of projec-
tion dimensions d. Note that, as predicted by
Theorem 1, fidelity to the true model increases
rapidly with d.

6.1 Cora citation graph

To qualitatively illustrate our model, we apply
it to Cora (McCallum et al., 2000). Cora is a
large collection of academic papers on computer
science topics, plus citations between them. We
construct a directed graph with papers as nodes
and citations as edges; after removing papers
with missing metadata or zero outgoing citations,
our graph contains n = 28,155 papers.

To obtain useful threads, we set edge weights
to reflect the degree of textual similarity between
the citing and cited papers, and set node weights
to reflect paper “importance”. Edge weights
are given by normalized cosine similarity (NCS),
which for two documents i and j is the dot prod-
uct of their normalized tfidf vectors:∑

w∈W tfidfi(w)tfidfj(w)√∑
w∈W tfidfi(w)2

√∑
w∈W tfidfj(w)2

,

where W is a subset of the words found in the
documents. We select W by filtering according
to document frequency; that is, we remove words
that are too common or too rare. After filtering,
there are 50,912 unique words. The node weights
are given by LexRank scores (Erkan and Radev,
2004), which are similar to node degrees.

Finally, we build a similarity feature map φ to
encourage diversity. We represent each document
by the 1000 documents to which it is most similar
according to NCS; this results in binary φ of
dimension m = n with exactly 1000 non-zeros.
The dot product between the similarity features
of two documents is thus proportional to the
fraction of top-1000 similar documents they have
in common. As described in Section 5, we then
randomly project this large feature set from D ≈
28,000 to d = 50 dimensions.

We illustrate the behavior of the resulting
model in Figure 5. The discovered threads oc-
cupy distinct regions of word-space, standing
apart visually, and contain diverse salient terms.

6.2 News articles

For quantitative evaluation, we use newswire
data. Our dataset comprises over 200,000 arti-
cles from the New York Times, collected from
2005-2007 as part of the English Gigaword cor-
pus (Graff and Cieri, 2009). We split the articles
into six-month time periods, with an average of
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n = 34,504 articles per period. After filtering,
there are a total of 36,356 unique words.

For each time period, we generate a graph with
articles as nodes. We use NCS for edge weights,
and throw away edges with weight < 0.1. We
also require that edges go forward in time; this
enforces the chronological ordering of our threads.
The supplement contains illustrations of one of
the resulting graphs. We use LexRank for node
weights and the top-1000 similar documents as
similarity features φ, projecting to d = 50, as
before (Section 6.1). We also add a constant fea-
ture ρ to φ, which controls the overall degree of
repulsion; large values of ρ make all documents
more similar. This makes the k-SDPP distri-
bution more peaked around diverse sets. For
all of the following results, we use T = 8 and
k = 10 so that the resulting timelines are of a
manageable size for analysis. However, we tried
several values of k and T in our experiments, and
did not see significant differences in relative per-
formance. We report all metrics averaged over
100 random samples from the model for each
six-month period.

6.2.1 Graph visualizations

The (very large) news graph for the first
half of 2005 can be viewed interactively at
http://zoom.it/jOKV. In this graph each node
(dark circle) represents a news article, and is an-
notated with its headline. Node size corresponds
to weight (LexRank score). Nodes are laid out
chronologically, left-to-right, from January to
June of 2005. The five colored paths indicate a
set of threads sampled from the k-SDPP. Head-
lines of the articles in each thread are colored
to match the thread. Edges are included as de-
scribed in the paper, but due to the scale of this
dataset, only 1% of the edges are shown. Edge
thickness corresponds to weight (NCS).

We provide a view of a small subgraph for
illustration purposes in Figure 6, which shows
the incoming and outgoing edges for a single
node. A zoomable version of this subgraph is
available at http://zoom.it/GUCR.
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JURY SELECTION TO BEGIN TUESDAY IN HUMAN-SMUGGLING TRIAL OF ACCUSED TRUCKER IN DEATHS OF 19 ILLEGAL IMMIGRANTSJURY SELECTION TO BEGIN TUESDAY IN HUMAN-SMUGGLING TRIAL OF ACCUSED TRUCKER IN DEATHS OF 19 ILLEGAL IMMIGRANTS

NEW MIGRANT LAW IRKS MEXICONEW MIGRANT LAW IRKS MEXICO

HELPING EDUCATORS THROW OUT OLD RULES AND TAKE A FEW RISKSHELPING EDUCATORS THROW OUT OLD RULES AND TAKE A FEW RISKS

RECORD IMMIGRATION CHANGING NEW YORK'S NEIGHBORHOODSRECORD IMMIGRATION CHANGING NEW YORK'S NEIGHBORHOODS

ATTORNEYS SAY TESTIMONY WILL SHOW OFFICIALS LET TRUCK PASS WITH ILLEGAL IMMIGRANTSATTORNEYS SAY TESTIMONY WILL SHOW OFFICIALS LET TRUCK PASS WITH ILLEGAL IMMIGRANTS

FEINSTEIN BILL WOULD PROTECT FOREIGN KIDS IN U.S. CUSTODY SENATE BILL WOULD PROTECT FOREIGN CHILDREN IN U.S. CUSTODYFEINSTEIN BILL WOULD PROTECT FOREIGN KIDS IN U.S. CUSTODY SENATE BILL WOULD PROTECT FOREIGN CHILDREN IN U.S. CUSTODY

IMMIGRATION BOOM COOLINGIMMIGRATION BOOM COOLING

REPUBLICANS SQUARING OFF OVER BUSH PLAN ON IMMIGRATIONREPUBLICANS SQUARING OFF OVER BUSH PLAN ON IMMIGRATION

SMUGGLING-DEFENDANT-HNSSMUGGLING-DEFENDANT-HNS

BUSH VOWS COOPERATION ON IMMIGRATION REFORM; DIFFERENCES OVER SCOPE, AGENDA MAY STALL PLANBUSH VOWS COOPERATION ON IMMIGRATION REFORM; DIFFERENCES OVER SCOPE, AGENDA MAY STALL PLAN

JUDGE SAYS GUILTY PLEA IN DEADLY TEXAS SMUGGLING MUST STANDJUDGE SAYS GUILTY PLEA IN DEADLY TEXAS SMUGGLING MUST STAND

HOUSING, IMMIGRATION CALLED KEYS TO THE FUTUREHOUSING, IMMIGRATION CALLED KEYS TO THE FUTURE

PRESIDENT REIGNITES EMOTIONAL DEBATE OVER IMMIGRATION POLICYPRESIDENT REIGNITES EMOTIONAL DEBATE OVER IMMIGRATION POLICY

GUEST WORKER PLAN WILL BE TOUGH SELL FOR BUSHGUEST WORKER PLAN WILL BE TOUGH SELL FOR BUSH

MEXICAN POLITICIANS FIND BENEFITS IN U.S. CAMPAIGNSMEXICAN POLITICIANS FIND BENEFITS IN U.S. CAMPAIGNS

SEN. CORNYN FOCUESES IN IMMIGRATIONSEN. CORNYN FOCUESES IN IMMIGRATION

TANCREDO WEIGHS PRESIDENTIAL RUN WITH PILGRIMAGE TO N.H.TANCREDO WEIGHS PRESIDENTIAL RUN WITH PILGRIMAGE TO N.H.

BRITAIN, SPAIN, BOTH IN EU, ANNOUNCE DIVERGENT IMMIGRATION POLICIESBRITAIN, SPAIN, BOTH IN EU, ANNOUNCE DIVERGENT IMMIGRATION POLICIES

SPAIN LETS ILLEGAL IMMIGRANTS SEEK RESIDENCYSPAIN LETS ILLEGAL IMMIGRANTS SEEK RESIDENCY

IMMIGRANT-LICENSES-HNSIMMIGRANT-LICENSES-HNS

BUSH BACKS DRIVER'S LICENSE BANBUSH BACKS DRIVER'S LICENSE BAN

DEPORTED FROM MEXICO, 3 MORE IN ALLEGED SMUGGLING RING MAY FACE CAPITAL PUNISHMENT IN DEATHS OF 19 IMMIGRANTSDEPORTED FROM MEXICO, 3 MORE IN ALLEGED SMUGGLING RING MAY FACE CAPITAL PUNISHMENT IN DEATHS OF 19 IMMIGRANTS

HOUSE APPROVES TOUGHER IMMIGRATION BILLHOUSE APPROVES TOUGHER IMMIGRATION BILL

TAKING HARD LINE ON ILLEGAL IMMIGRANTS: HOUSE PASSES BILL TO MAKE IT TOUGHER TO GET ASYLUM OR DRIVER'S LICENSESTAKING HARD LINE ON ILLEGAL IMMIGRANTS: HOUSE PASSES BILL TO MAKE IT TOUGHER TO GET ASYLUM OR DRIVER'S LICENSES

HOUSE PASSES TIGHTENING OF LAWS ON IMMIGRATIONHOUSE PASSES TIGHTENING OF LAWS ON IMMIGRATION

HOUSE OKS BAN ON LICENSES FOR ILLEGAL IMMIGRANTSHOUSE OKS BAN ON LICENSES FOR ILLEGAL IMMIGRANTS

MEXICANS HELP TRANSFORM HOMES THEY LEFTMEXICANS HELP TRANSFORM HOMES THEY LEFT

ANDY GARCIA NEARS END OF HIS QUEST: A FILM ON CUBAANDY GARCIA NEARS END OF HIS QUEST: A FILM ON CUBA

MEXICO HAS JOBS PLAN FOR CITIZENS DEPORTED FROM U.S.MEXICO HAS JOBS PLAN FOR CITIZENS DEPORTED FROM U.S.

REPORT LINKS SOCIAL SECURITY FINANCES IN PART TO LEVELS OF IMMIGRATIONREPORT LINKS SOCIAL SECURITY FINANCES IN PART TO LEVELS OF IMMIGRATION

IN DEPORTATIONS OF PARENTS, FATE OF CHILDREN IS OFTEN AN AFTERTHOUGHTIN DEPORTATIONS OF PARENTS, FATE OF CHILDREN IS OFTEN AN AFTERTHOUGHT

JUDGE BLOCKS NEW YORK DENIAL OF IMMIGRANT DRIVER LICENSESJUDGE BLOCKS NEW YORK DENIAL OF IMMIGRANT DRIVER LICENSES

IMMIGRANT VOTERS DEFY POLITICAL PATTERNSIMMIGRANT VOTERS DEFY POLITICAL PATTERNS

KC-AFGHAN-NEWSKC-AFGHAN-NEWS

POLICY SHIFT IN GERMANY TRIMS JEWISH MIGRATIONPOLICY SHIFT IN GERMANY TRIMS JEWISH MIGRATION

IN JOB MARKET, SOME WIN, SOME LOSEIN JOB MARKET, SOME WIN, SOME LOSE

HUNDREDS GET AID AT VALLEY SHELTERSHUNDREDS GET AID AT VALLEY SHELTERS

POLITICAL PRESSURE MOUNTING TO BOOST BORDER PATROL AGENTS ALONG BORDERPOLITICAL PRESSURE MOUNTING TO BOOST BORDER PATROL AGENTS ALONG BORDER

P1 A23 MEXICO-HNSP1 A23 MEXICO-HNS

MEXICO-VOTE-HNSMEXICO-VOTE-HNS

BILL TO LET MEXICAN MIGRANTS VOTE HITS ROADBLOCKSBILL TO LET MEXICAN MIGRANTS VOTE HITS ROADBLOCKS

MORE DUTCH PLAN TO EMIGRATE AS MUSLIM INFLUX TIPS SCALESMORE DUTCH PLAN TO EMIGRATE AS MUSLIM INFLUX TIPS SCALES

GONZALES LAYS OUT HIS PRIORITIES AT JUSTICE DEPT.GONZALES LAYS OUT HIS PRIORITIES AT JUSTICE DEPT.

MOST UNDOCUMENTED IMMIGRANTS RECEPTIVE TO GUEST WORKER PROGRAMMOST UNDOCUMENTED IMMIGRANTS RECEPTIVE TO GUEST WORKER PROGRAM

SURVEY: MOST MEXICAN IMMIGRANTS WOULD USE GUEST WORKER PROGRAMSURVEY: MOST MEXICAN IMMIGRANTS WOULD USE GUEST WORKER PROGRAM

SURVEY: MOST UNDOCUMENTED ALIENS SUPPORT GUEST WORKER PLANSURVEY: MOST UNDOCUMENTED ALIENS SUPPORT GUEST WORKER PLAN

NEW STUDY PAINTS CLEARER PICTURE OF MEXICANS IN NEW YORK CITYNEW STUDY PAINTS CLEARER PICTURE OF MEXICANS IN NEW YORK CITY

IMMIGRATION CHANGES COULD CUT BACK ASYLUM SEEKERSIMMIGRATION CHANGES COULD CUT BACK ASYLUM SEEKERS

TEXAS TO HOST U.S.-MEXICO-CANDADA SUMMITTEXAS TO HOST U.S.-MEXICO-CANDADA SUMMIT

YOUNG BULLDOGS LEARN HARD WAYYOUNG BULLDOGS LEARN HARD WAY

TRIAL STARTS IN NATION'S DEADLIEST HUMAN SMUGGLING CASETRIAL STARTS IN NATION'S DEADLIEST HUMAN SMUGGLING CASE

RICE SAYS AL-QAIDA FOCUSED ON BREACHING U.S. BORDERS, ANNOUNCES WATER AGREEMENT WITH MEXICORICE SAYS AL-QAIDA FOCUSED ON BREACHING U.S. BORDERS, ANNOUNCES WATER AGREEMENT WITH MEXICO

BORDER-PATROL-HNSBORDER-PATROL-HNS

RICE SEEKS THAW IN MEXICO-U.S. RELATIONSRICE SEEKS THAW IN MEXICO-U.S. RELATIONS

CASE FOCUSES ON DEFINITION OF TORTURE FOR DEPORTEESCASE FOCUSES ON DEFINITION OF TORTURE FOR DEPORTEES

FIRST THEY WERE SOLDIERS -- NOW THEY'RE CITIZENS; IMMIGRANTS WHO FOUGHT FOR U.S. ARE NATURALIZED, GREETED BY BUSH SR.FIRST THEY WERE SOLDIERS -- NOW THEY'RE CITIZENS; IMMIGRANTS WHO FOUGHT FOR U.S. ARE NATURALIZED, GREETED BY BUSH SR.

ADVANCE FOR SUNDAY, MARCH 13 IMMIGRANTS MAY GET TO VOTE HERE IN MEXICO'S 2006 ELECTIONADVANCE FOR SUNDAY, MARCH 13 IMMIGRANTS MAY GET TO VOTE HERE IN MEXICO'S 2006 ELECTION

DESPITE NEW EFFORTS ALONG ARIZONA BORDER, 'SERIOUS PROBLEMS' REMAINDESPITE NEW EFFORTS ALONG ARIZONA BORDER, 'SERIOUS PROBLEMS' REMAIN

MYTH CITED REPEATEDLY IN IMMIGRATION DEBATEMYTH CITED REPEATEDLY IN IMMIGRATION DEBATE

SWEEP NETS 103 SUSPECTS OF MS-13 GANG IN SEVEN CITIESSWEEP NETS 103 SUSPECTS OF MS-13 GANG IN SEVEN CITIES

FEDS SAY SWEEP NETS 100 MEMBERS OF IMMIGRANT GANGFEDS SAY SWEEP NETS 100 MEMBERS OF IMMIGRANT GANG

U.S.-MEXICO BORDER STILL TOO POROUS, OFFICIALS SAYU.S.-MEXICO BORDER STILL TOO POROUS, OFFICIALS SAY

ALLEGED OBSCENE GESTURE DELAYS IMMIGRANT SMUGGLING TRIAL; DEATH PENALTY PROTESTERS CLAIM JUROR HAS ALREADY MADE UP HIS MINDALLEGED OBSCENE GESTURE DELAYS IMMIGRANT SMUGGLING TRIAL; DEATH PENALTY PROTESTERS CLAIM JUROR HAS ALREADY MADE UP HIS MIND

FOX REFUTES U.S. CLAIMS ON AL-QAIDA, VOWS LEGAL ACTION TO HALT VIGILANTESFOX REFUTES U.S. CLAIMS ON AL-QAIDA, VOWS LEGAL ACTION TO HALT VIGILANTES

FOX TO PUSH IMMIGRATION, SECURITY, TRADE ISSUES DURING MEETING WITH BUSH, CANADA'S PRIME MINISTERFOX TO PUSH IMMIGRATION, SECURITY, TRADE ISSUES DURING MEETING WITH BUSH, CANADA'S PRIME MINISTER

TESTIMONY IN TRUCK DRIVER'S IMMIGRANT SMUGGLING CASE HALTED AFTER PROSECUTION RESTS; JUDGE QUESTIONS HARBORING CHARGESTESTIMONY IN TRUCK DRIVER'S IMMIGRANT SMUGGLING CASE HALTED AFTER PROSECUTION RESTS; JUDGE QUESTIONS HARBORING CHARGES

57 BRAZILIANS HELD AFTER BRIBE IS ALLEGED57 BRAZILIANS HELD AFTER BRIBE IS ALLEGED

WAL-MART TO PAY $11 MILLION IN ILLEGAL IMMIGRANT CASEWAL-MART TO PAY $11 MILLION IN ILLEGAL IMMIGRANT CASE

WAL-MART SETTLES ILLEGAL IMMIGRANT CASE FOR $11 MILLIONWAL-MART SETTLES ILLEGAL IMMIGRANT CASE FOR $11 MILLION

GARCIA WANTS TO BE PART OF THE CONVERSATIONGARCIA WANTS TO BE PART OF THE CONVERSATION

EDITORIAL OBSERVER: ENLIGHTENED IMMIGRATIONEDITORIAL OBSERVER: ENLIGHTENED IMMIGRATION

EDITORIAL: OUR TERRORIST-FRIENDLY BORDERSEDITORIAL: OUR TERRORIST-FRIENDLY BORDERS

10.3 MILLION FROM MEXICO IN U.S. ILLEGALLY, RESEARCHER ON LATINOS SAYS10.3 MILLION FROM MEXICO IN U.S. ILLEGALLY, RESEARCHER ON LATINOS SAYS

BUSH FOCUSES ON BORDER ISSUES WITH MEXICO, CANADABUSH FOCUSES ON BORDER ISSUES WITH MEXICO, CANADA

LANGUAGE PLAYS A LOUD VOICE IN DEBATE ABOUT IMMIGRATION REFORMLANGUAGE PLAYS A LOUD VOICE IN DEBATE ABOUT IMMIGRATION REFORM

U.S. BEGINS TO SEE NATIONAL SECURITY GAP IN MEXICAN SMUGGLINGU.S. BEGINS TO SEE NATIONAL SECURITY GAP IN MEXICAN SMUGGLING

MEXICANS VOTING IN U.S. COULD ALTER POLITICSMEXICANS VOTING IN U.S. COULD ALTER POLITICS

TEXAS ADVOCATES FOR IMMIGRATION REFORMS JOIN OTHERS AROUND NATION IN RALLIES URGING BUSH, FOX TO ACT QUICKLYTEXAS ADVOCATES FOR IMMIGRATION REFORMS JOIN OTHERS AROUND NATION IN RALLIES URGING BUSH, FOX TO ACT QUICKLY

SECURITY, TRADE TO BE PRIMARY FOCUS OF BUSH-FOX-MARTIN SUMMITSECURITY, TRADE TO BE PRIMARY FOCUS OF BUSH-FOX-MARTIN SUMMIT

NORTH AMERICAN LEADERS MAKE BORDERS AND TRADE A PRIORITYNORTH AMERICAN LEADERS MAKE BORDERS AND TRADE A PRIORITY

BUSH TELLS MEXICAN LEADER HE'LL CONTINUE TO SEEK IMMIGRATION LAW CHANGESBUSH TELLS MEXICAN LEADER HE'LL CONTINUE TO SEEK IMMIGRATION LAW CHANGES

BUSH TELLS MEXICAN LEADER HE'LL SEEK IMMIGRATION LAW CHANGESBUSH TELLS MEXICAN LEADER HE'LL SEEK IMMIGRATION LAW CHANGES

LEAVING A YEAR EARLY, BUT A YEAR TOO LATELEAVING A YEAR EARLY, BUT A YEAR TOO LATE

BUSH SUMMIT VOWS CLOSER TIES, BETTER TIMES AHEADBUSH SUMMIT VOWS CLOSER TIES, BETTER TIMES AHEAD

U.S. SIGNS TRADE, SECURITY DEAL WITH MEXICO, CANADA; BUSH PUSHES FOR IMPROVED TIES WITH SOUTH AMERICAU.S. SIGNS TRADE, SECURITY DEAL WITH MEXICO, CANADA; BUSH PUSHES FOR IMPROVED TIES WITH SOUTH AMERICA

KEEPING IMMIGRATION LEGALKEEPING IMMIGRATION LEGAL

DUKE BLOCKS GEORGIA'S ROAD TO INDYDUKE BLOCKS GEORGIA'S ROAD TO INDY

THAT BURGER-FLIPPER IS NO KID ANYMORETHAT BURGER-FLIPPER IS NO KID ANYMORE

MOTHERS IMMIGRATING TO BECOME BREADWINNERSMOTHERS IMMIGRATING TO BECOME BREADWINNERS

LAST OF THREE PARTS; WITH PHOTOS, GRAPHIC CANADA'S OPEN BORDER BOON TO HUMAN TRAFFICKERSLAST OF THREE PARTS; WITH PHOTOS, GRAPHIC CANADA'S OPEN BORDER BOON TO HUMAN TRAFFICKERS

BEST, BRIGHTEST MUST CHOOSE BETWEEN MENIAL JOBS IN U.S., ROCKY FUTURE AT HOMEBEST, BRIGHTEST MUST CHOOSE BETWEEN MENIAL JOBS IN U.S., ROCKY FUTURE AT HOME

U.S. TO REINFORCE POROUS ARIZONA BORDERU.S. TO REINFORCE POROUS ARIZONA BORDER

REPORT URGES CUTS IN CARE FOR ILLEGAL IMMIGRANTSREPORT URGES CUTS IN CARE FOR ILLEGAL IMMIGRANTS

DNA HELPS IDENTIFIES MEXICAN MIGRANTS IN PAUPERS' GRAVESDNA HELPS IDENTIFIES MEXICAN MIGRANTS IN PAUPERS' GRAVES

CIVILIAN PATROL TO RAISE BORDER CONCERNSCIVILIAN PATROL TO RAISE BORDER CONCERNS

FALLEN BROTHER INSPIRATION FOR GARCIAFALLEN BROTHER INSPIRATION FOR GARCIA

ARMED VOLUNTEERS WAIT ALONG ARIZONA BORDER TO STOP ILLEGAL IMMIGRANTSARMED VOLUNTEERS WAIT ALONG ARIZONA BORDER TO STOP ILLEGAL IMMIGRANTS

KC-5LOUVILLE1,KC-5LOUVILLE1,

WANTED: BORDER HOPPERS. AND SOME EXCITEMENT, TOO.WANTED: BORDER HOPPERS. AND SOME EXCITEMENT, TOO.

VOLUNTEERS SET TO PATROL ARIZ. BORDERVOLUNTEERS SET TO PATROL ARIZ. BORDER

IMMIGRATION FOES BEGIN ARIZONA BORDER WATCHIMMIGRATION FOES BEGIN ARIZONA BORDER WATCH

HOW SOCIAL SECURITY BALANCES BOOKS ON BACKS OF IMMIGRANTSHOW SOCIAL SECURITY BALANCES BOOKS ON BACKS OF IMMIGRANTS

CITIZEN PATROL SPREADS FEAR, RESOLVE AT US-MEXICO BORDERCITIZEN PATROL SPREADS FEAR, RESOLVE AT US-MEXICO BORDER

CITIZEN PATROL SPREADS FEAR, RESOLVE AT BORDERCITIZEN PATROL SPREADS FEAR, RESOLVE AT BORDER

FEW VOLUNTEERS FOR BORDER PROJECTFEW VOLUNTEERS FOR BORDER PROJECT

WHITE POWER GROUPS TRY NEW TACTICS AND TOOLSWHITE POWER GROUPS TRY NEW TACTICS AND TOOLS

POLICE SAY IMMIGRANT POLICY IS A HINDRANCEPOLICE SAY IMMIGRANT POLICY IS A HINDRANCE

BATTLE OVER LICENSES FOR IMMIGRANTS BACK IN COURTBATTLE OVER LICENSES FOR IMMIGRANTS BACK IN COURT

THE INVISIBLE DELIVERYMANTHE INVISIBLE DELIVERYMAN

GIRL CALLED WOULD-BE BOMBER WAS DRAWN TO ISLAMGIRL CALLED WOULD-BE BOMBER WAS DRAWN TO ISLAM

RAID NETS 53 ILLEGAL IMMIGRANTS IN SOUTHWEST HOUSTON HOMERAID NETS 53 ILLEGAL IMMIGRANTS IN SOUTHWEST HOUSTON HOME

BUSINESSES MAKING A PUSH FOR GUEST WORKER PLAN MOVING IN WASHINGTON AND FINANCIAL CATEGORIES FOR RELEASE SUNDAY, APRIL 10.BUSINESSES MAKING A PUSH FOR GUEST WORKER PLAN MOVING IN WASHINGTON AND FINANCIAL CATEGORIES FOR RELEASE SUNDAY, APRIL 10.

OUTRAGE AT ARREST OF GIRL, 16, AS TERRORIST THREATOUTRAGE AT ARREST OF GIRL, 16, AS TERRORIST THREAT

ADVANCE FOR USE SUNDAY, APRIL 10, AND THEREAFTER. "MINUTEMEN" SEE LITTLE ACTION ALONG BORDERADVANCE FOR USE SUNDAY, APRIL 10, AND THEREAFTER. "MINUTEMEN" SEE LITTLE ACTION ALONG BORDER

COMMENTARY: AILING HEALTH CARECOMMENTARY: AILING HEALTH CARE

LOCAL BRAZILIANS SAY THEY'RE TARGETED UNFAIRLYLOCAL BRAZILIANS SAY THEY'RE TARGETED UNFAIRLY

EDITORIAL: A WEST TOO WILDEDITORIAL: A WEST TOO WILD

SIERRA CLUB ASKS MEMBER VOTE ON IMMIGRATION LIMITSSIERRA CLUB ASKS MEMBER VOTE ON IMMIGRATION LIMITS

SIERRA CLUB SPLIT AGAIN ON IMMIGRATION STANCESIERRA CLUB SPLIT AGAIN ON IMMIGRATION STANCE

FRIST OPPOSES AMENDMENTS ON IMMIGRANTSFRIST OPPOSES AMENDMENTS ON IMMIGRANTS

BORDER RESIDENTS SAY 'MINUTEMAN' PATROLS HIGHLIGHT A CRISISBORDER RESIDENTS SAY 'MINUTEMAN' PATROLS HIGHLIGHT A CRISIS

IMMIGRATION MEASURE HITS SENATE ROADBLOCKIMMIGRATION MEASURE HITS SENATE ROADBLOCK

HOTEL FIRE SHEDS LIGHT ON FRANCE'S ILLEGAL IMMIGRANTSHOTEL FIRE SHEDS LIGHT ON FRANCE'S ILLEGAL IMMIGRANTS

DEEPLY SPLIT SENATE REJECTS GUEST FARMWORKER BILLDEEPLY SPLIT SENATE REJECTS GUEST FARMWORKER BILL

SENATE CLEARS WAY FOR VOTE ON SPENDING FOR MILITARYSENATE CLEARS WAY FOR VOTE ON SPENDING FOR MILITARY

SENATE APPROVES $81.26 BILLION IN A MILITARY EMERGENCY BILLSENATE APPROVES $81.26 BILLION IN A MILITARY EMERGENCY BILL

IMMIGRATION CONTROL ADVOCATES DESCEND ON CAPITOL HILLIMMIGRATION CONTROL ADVOCATES DESCEND ON CAPITOL HILL

POLICE REPORT NONCITIZENS TO U.S., OFFICIAL SAYSPOLICE REPORT NONCITIZENS TO U.S., OFFICIAL SAYS

BRITISH ELECTION DEBATE SPOTLIGHTS CONCERN ABOUT IMMIGRATIONBRITISH ELECTION DEBATE SPOTLIGHTS CONCERN ABOUT IMMIGRATION

TOP DOGS! GYM DOGS TAKE TITLETOP DOGS! GYM DOGS TAKE TITLE

ILLEGAL IMMIGRATION FOES DEMANDING ACTIONILLEGAL IMMIGRATION FOES DEMANDING ACTION

SIERRA CLUB STANDS PAT ON IMMIGRATION POLICYSIERRA CLUB STANDS PAT ON IMMIGRATION POLICY

KOSOVAR FEARS ID PROPOSAL WILL JEOPARDIZE SAFE LIFE IN U.S.KOSOVAR FEARS ID PROPOSAL WILL JEOPARDIZE SAFE LIFE IN U.S.

A MISTAKEN ID LAW (FOR USEA MISTAKEN ID LAW (FOR USE

TRAFFICKING LEADS LATINO SUMMIT AGENDATRAFFICKING LEADS LATINO SUMMIT AGENDA

IMMIGRATION-SCAM-HNSIMMIGRATION-SCAM-HNS

LATINO KIDS LAG IN HEALTH COVERAGELATINO KIDS LAG IN HEALTH COVERAGE

LAWMAKERS TO DECIDE FATE OF DRIVER'S LICENSE IMMIGRATION BILLLAWMAKERS TO DECIDE FATE OF DRIVER'S LICENSE IMMIGRATION BILL

WHITE HOUSE BACKS LEGISLATION THAT WOULD TOUGHEN IMMIGRATION RULESWHITE HOUSE BACKS LEGISLATION THAT WOULD TOUGHEN IMMIGRATION RULES

IN RARE ACCORD, SPURNED ASYLUM SEEKER TO GET $87,500IN RARE ACCORD, SPURNED ASYLUM SEEKER TO GET $87,500

COMMENTARY: A PRIVATE OBSESSIONCOMMENTARY: A PRIVATE OBSESSION

EX-VALLEY MAN IN VANGUARD OF MINUTEMAN PROJECTEX-VALLEY MAN IN VANGUARD OF MINUTEMAN PROJECT

SCHWARZENEGGER ENDORSES ARMED VOLUNTEERS ON BORDERSCHWARZENEGGER ENDORSES ARMED VOLUNTEERS ON BORDER

GOVERNOR SIGNALS HE'D WELCOME MINUTEMEN ON CALIFORNIA BORDERGOVERNOR SIGNALS HE'D WELCOME MINUTEMEN ON CALIFORNIA BORDER

VALLEY HOSPITAL BOOM UNDER WAYVALLEY HOSPITAL BOOM UNDER WAY

ACTIVISTS, OPPONENTS CLASH AT IMMIGRATION RALLYACTIVISTS, OPPONENTS CLASH AT IMMIGRATION RALLY

MEXICAN SENATOR WANTS TO BLOCK WOULD-BE ILLEGAL IMMIGRANTS FROM ENTERING U.S.MEXICAN SENATOR WANTS TO BLOCK WOULD-BE ILLEGAL IMMIGRANTS FROM ENTERING U.S.

MAYANS HERE TRY TO SAVE OLD WAYSMAYANS HERE TRY TO SAVE OLD WAYS

STATE OFFICIALS WARY OF NEW DRIVER'S LICENSE REQUIREMENTSSTATE OFFICIALS WARY OF NEW DRIVER'S LICENSE REQUIREMENTS

EDITORIAL: AN UNREALISTIC 'REAL ID'EDITORIAL: AN UNREALISTIC 'REAL ID'

ROUTINE LICENSE CHECK CAN MEAN JAIL AND DEPORTATIONROUTINE LICENSE CHECK CAN MEAN JAIL AND DEPORTATION

HOUSE PASSES EMERGENCY SPENDING BILLHOUSE PASSES EMERGENCY SPENDING BILL

BILL WOULD PROTECT ILLEGAL IMMIGRANT DRIVERS' CARS FROM IMPOUNDBILL WOULD PROTECT ILLEGAL IMMIGRANT DRIVERS' CARS FROM IMPOUND

HOUSE OKS $82 BILLION MORE FOR WARSHOUSE OKS $82 BILLION MORE FOR WARS

IMMIGRANTS IN TENNESSEE ISSUED CERTIFICATES TO DRIVE ARIEL HART CONTRIBUTED REPORTING FOR THIS ARTICLE FROM ATLANTA.IMMIGRANTS IN TENNESSEE ISSUED CERTIFICATES TO DRIVE ARIEL HART CONTRIBUTED REPORTING FOR THIS ARTICLE FROM ATLANTA.

PAYMENTS TO HELP HOSPITALS CARE FOR ILLEGAL IMMIGRANTSPAYMENTS TO HELP HOSPITALS CARE FOR ILLEGAL IMMIGRANTS

IMMIGRANTS' PLIGHT BECOMES A RALLYING CRY AMONG LATINO, U.S. MUSICIANSIMMIGRANTS' PLIGHT BECOMES A RALLYING CRY AMONG LATINO, U.S. MUSICIANS

CATHOLIC GROUPS LAUNCH IMMIGRATION REFORM CAMPAIGNCATHOLIC GROUPS LAUNCH IMMIGRATION REFORM CAMPAIGN

BORDER STATES COMPLAIN THAT U.S. ISN'T FOOTING THE BILL FOR JAILING ILLEGAL IMMIGRANTSBORDER STATES COMPLAIN THAT U.S. ISN'T FOOTING THE BILL FOR JAILING ILLEGAL IMMIGRANTS

NATIONAL CHILDREN'S STUDY STARVING FOR FUNDS, BACKERS SAYNATIONAL CHILDREN'S STUDY STARVING FOR FUNDS, BACKERS SAY

SENATE APPROVES MONEY FOR IRAQ WAR; RESTRICTS DRIVER'S LICENSES FOR ILLEGAL IMMIGRANTSSENATE APPROVES MONEY FOR IRAQ WAR; RESTRICTS DRIVER'S LICENSES FOR ILLEGAL IMMIGRANTS

IMMIGRANTS ENCOURAGED TO RIDE BUSIMMIGRANTS ENCOURAGED TO RIDE BUS

IMMIGRATION-CRACKDOWN-HNSIMMIGRATION-CRACKDOWN-HNS

SENATE UNANIMOUSLY OKS WAR FUNDING AND DRIVERS LICENSE RESTRICTIONS FOR IMMIGRANTSSENATE UNANIMOUSLY OKS WAR FUNDING AND DRIVERS LICENSE RESTRICTIONS FOR IMMIGRANTS

DENIAL OF DRIVER'S LICENSES TO MANY IMMIGRANTS VOIDED IN NEW YORKDENIAL OF DRIVER'S LICENSES TO MANY IMMIGRANTS VOIDED IN NEW YORK

MINUTEMEN-IMMIGRANTS-HNSMINUTEMEN-IMMIGRANTS-HNS

MAJOR IMMIGRATION REFORM MEASURE TO BE INTRODUCEDMAJOR IMMIGRATION REFORM MEASURE TO BE INTRODUCED

GARCIA MAY HAVE CRASHED, BUT HE'S NOT BURNED UPGARCIA MAY HAVE CRASHED, BUT HE'S NOT BURNED UP

BILL WOULD ALLOW ILLEGAL IMMIGRANTS TO BECOME LEGAL TEMPORARY WORKERSBILL WOULD ALLOW ILLEGAL IMMIGRANTS TO BECOME LEGAL TEMPORARY WORKERS

MCCAIN, KENNEDY BILL WOULD PUT MILLIONS OF ILLEGALS ON PATH TO GREEN CARDMCCAIN, KENNEDY BILL WOULD PUT MILLIONS OF ILLEGALS ON PATH TO GREEN CARD

KENNEDY, MCCAIN BILL ADDRESSES IMMIGRANTSKENNEDY, MCCAIN BILL ADDRESSES IMMIGRANTS

IMMIGRATION-REFORM-HNSIMMIGRATION-REFORM-HNS

IMMIGRANT LABOR BILL CREATES 3-YEAR VISAS FOR GUEST WORKERSIMMIGRANT LABOR BILL CREATES 3-YEAR VISAS FOR GUEST WORKERS

U.S. OFFICIALS, AFRICAN AMERICAN LEADERS SEEK APOLOGY OVER MEXICAN PRESIDENT'S REMARKSU.S. OFFICIALS, AFRICAN AMERICAN LEADERS SEEK APOLOGY OVER MEXICAN PRESIDENT'S REMARKS

SMUGGLING OF IMMIGRANTS IS DETAILED AS TRIAL STARTSSMUGGLING OF IMMIGRANTS IS DETAILED AS TRIAL STARTS

FOX MEETS JACKSON SEEKING TO EASE UPROAR OVER REMARKSFOX MEETS JACKSON SEEKING TO EASE UPROAR OVER REMARKS

EDITORIAL: MAJOR IMMIGRATION SURGERYEDITORIAL: MAJOR IMMIGRATION SURGERY

N.H. POLICE CHIEF'S TACTICS STIR A STORM ON IMMIGRATIONN.H. POLICE CHIEF'S TACTICS STIR A STORM ON IMMIGRATION

NH-IMMIGRATION-ART-BOSNH-IMMIGRATION-ART-BOS

POST-9/11 PROGRAM MAY END FAMILY'S AMERICAN DREAMPOST-9/11 PROGRAM MAY END FAMILY'S AMERICAN DREAM

STRESSFUL LIVES BURDEN REFUGEESSTRESSFUL LIVES BURDEN REFUGEES

ECUADORANS LEAD DANBURY IMMIGRATION PROTEST RALLYECUADORANS LEAD DANBURY IMMIGRATION PROTEST RALLY

EARLY HEAT WAVE KILLS 12 ILLEGAL IMMIGRANTS IN THE ARIZONA DESERTEARLY HEAT WAVE KILLS 12 ILLEGAL IMMIGRANTS IN THE ARIZONA DESERT

FEDERAL RESERVE PROGRAM GIVES BANKS A SHOT AT TRANSFERS TO MEXICOFEDERAL RESERVE PROGRAM GIVES BANKS A SHOT AT TRANSFERS TO MEXICO

BILL WOULD FORCE SAVINGS ON MEDICAID SPENDINGBILL WOULD FORCE SAVINGS ON MEDICAID SPENDING

BILL BY GOP SENATORS INCREASES BORDER GUARDS; NEW SECURITY IS PART OF AN OVERALL IMMIGRATION PLANBILL BY GOP SENATORS INCREASES BORDER GUARDS; NEW SECURITY IS PART OF AN OVERALL IMMIGRATION PLAN

A BATTLE AGAINST ILLEGAL WORKERS, WITH AN UNLIKELY DRIVING FORCEA BATTLE AGAINST ILLEGAL WORKERS, WITH AN UNLIKELY DRIVING FORCE

POLICE ACROSS U.S. DON'T CHECK IMMIGRANT STATUS DURING STOPSPOLICE ACROSS U.S. DON'T CHECK IMMIGRANT STATUS DURING STOPS

BOOK REVIEW: EXPLORING IMMIGRANT SMUGGLING TRAGEDYBOOK REVIEW: EXPLORING IMMIGRANT SMUGGLING TRAGEDY

IMMIGRATION MAY BE MAJOR ISSUE IN 2008 ELECTION EUNICE MOSCOSOIMMIGRATION MAY BE MAJOR ISSUE IN 2008 ELECTION EUNICE MOSCOSO

BULLDOGS SET PACE IN NCAASBULLDOGS SET PACE IN NCAAS

TEXAN PLANS TO BRING MINUTEMEN PATROLS TO MEXICAN BORDERTEXAN PLANS TO BRING MINUTEMEN PATROLS TO MEXICAN BORDER

GEORGIA TO BATTLE JACKETS FOR TITLEGEORGIA TO BATTLE JACKETS FOR TITLE

SOME SKILLED FOREIGNERS FIND JOBS SCARCE IN CANADASOME SKILLED FOREIGNERS FIND JOBS SCARCE IN CANADA

AT VATICAN'S DOORSTEP, A CONTEST FOR IMMIGRANT SOULSAT VATICAN'S DOORSTEP, A CONTEST FOR IMMIGRANT SOULS

BABY SURVIVES AGAINST ALL ODDSBABY SURVIVES AGAINST ALL ODDS

IDENTITY CRISIS: SOCIAL SECURITY NUMBERS FOR RENTIDENTITY CRISIS: SOCIAL SECURITY NUMBERS FOR RENT

NATION PONDERS IMMIGRANT WORKER PARADOXNATION PONDERS IMMIGRANT WORKER PARADOX

WEB CLASSES FROM MEXICO HELP MIGRANTSWEB CLASSES FROM MEXICO HELP MIGRANTS

NUMBER OF NON-MEXICAN ALIENS CROSSING SOUTHERN BORDER SKYROCKETINGNUMBER OF NON-MEXICAN ALIENS CROSSING SOUTHERN BORDER SKYROCKETING

IMMIGRATION OFFICIALS SEEK EXPANSION OF PROGRAM THAT ALLOWS BORDER AGENTS TO QUICKLY DEPORT ILLEGAL IMMIGRANTSIMMIGRATION OFFICIALS SEEK EXPANSION OF PROGRAM THAT ALLOWS BORDER AGENTS TO QUICKLY DEPORT ILLEGAL IMMIGRANTS

LAZARUS AT LARGE COLUMN HEALTH CARE A DRAG ON U.S. BUSINESSLAZARUS AT LARGE COLUMN HEALTH CARE A DRAG ON U.S. BUSINESS

MOST ILLEGAL ALIENS FREED ON BAIL, OWN RECOGNIZANCEMOST ILLEGAL ALIENS FREED ON BAIL, OWN RECOGNIZANCE

DELAY SAYS BUSH PROMISES BETTER EFFORT ON IMMIGRATION LAWDELAY SAYS BUSH PROMISES BETTER EFFORT ON IMMIGRATION LAW

BUSH-IMMIGRATION-HNSBUSH-IMMIGRATION-HNS

GROWTH RATE OF HISPANIC POPULATION IS RISING, CENSUS BUREAU SAYSGROWTH RATE OF HISPANIC POPULATION IS RISING, CENSUS BUREAU SAYS

REPORT DESCRIBES IMMIGRANTS AS YOUNGER, MORE DIVERSEREPORT DESCRIBES IMMIGRANTS AS YOUNGER, MORE DIVERSE

SHARED LANGUAGE (FOR USESHARED LANGUAGE (FOR USE

DIPLOMAT: MIGRANT BILL NEEDEDDIPLOMAT: MIGRANT BILL NEEDED

IMMIGRATION REFORM AT TOP OF MANY AGENDAS; SIMILAR PROPOSALS BY BUSH, SEN. CORNYN TO TACKLE GUEST WORKERS, BORDER SECURITYIMMIGRATION REFORM AT TOP OF MANY AGENDAS; SIMILAR PROPOSALS BY BUSH, SEN. CORNYN TO TACKLE GUEST WORKERS, BORDER SECURITY

SOUTH TEXAS COUNTY OVERWHELMED BY ILLEGAL IMMIGRANTSSOUTH TEXAS COUNTY OVERWHELMED BY ILLEGAL IMMIGRANTS

STUDY TRACKS SURGE IN ILLEGAL IMMIGRATION FROM MEXICOSTUDY TRACKS SURGE IN ILLEGAL IMMIGRATION FROM MEXICO

NO WORRIES AT PINEHURST FOR 'EL NINO'NO WORRIES AT PINEHURST FOR 'EL NINO'

ONE IN 11 MEXICAN NATIVES IN U.S., HALF ILLEGALONE IN 11 MEXICAN NATIVES IN U.S., HALF ILLEGAL

LOW-PROFILE KENTUCKY TOBACCO MAN BUYS UP TEXAS RANCH LANDLOW-PROFILE KENTUCKY TOBACCO MAN BUYS UP TEXAS RANCH LAND

BOOK REVIEW: CREATING A NEW AMERICANISMOBOOK REVIEW: CREATING A NEW AMERICANISMO

CORNYN-IMMIGRATION-HNSCORNYN-IMMIGRATION-HNS

LAWMAKER SAYS ILLEGAL IMMIGRANTS SHOULDN'T COUNT IN THE CENSUSLAWMAKER SAYS ILLEGAL IMMIGRANTS SHOULDN'T COUNT IN THE CENSUS

GEORGIA STATE LOOKS AT FOOTBALLGEORGIA STATE LOOKS AT FOOTBALL

GARCIA HAS ALL THE SHOTS BUT NOT A MAJOR TITLEGARCIA HAS ALL THE SHOTS BUT NOT A MAJOR TITLE

GUARDSMAN KILLED IN AFGHANISTAN BURIEDGUARDSMAN KILLED IN AFGHANISTAN BURIED

TWO IMMIGRATION PLANS TAKE SHAPE IN SENATETWO IMMIGRATION PLANS TAKE SHAPE IN SENATE

UP TO 64 LABORERS LIVED IN A SMALL HOUSE, AUTHORITIES SAYUP TO 64 LABORERS LIVED IN A SMALL HOUSE, AUTHORITIES SAY

THE VALUE OF IMMIGRANTSTHE VALUE OF IMMIGRANTS

FEDS FAIL TO GO AFTER COMPANIES HIRING ILLEGAL IMMIGRANTSFEDS FAIL TO GO AFTER COMPANIES HIRING ILLEGAL IMMIGRANTS

MINUTEMAN GROUP MAKES PLANS FOR TEXAS PATROLMINUTEMAN GROUP MAKES PLANS FOR TEXAS PATROL

GEORGIA LAGS BEHIND IN LOCAL EMERGENCY PLANNING GROUPSGEORGIA LAGS BEHIND IN LOCAL EMERGENCY PLANNING GROUPS

EDITORIAL: SHAM SANCTIONSEDITORIAL: SHAM SANCTIONS

ON LONG ISLAND, A RAID STIRS DISPUTE OVER INFLUX OF IMMIGRANTSON LONG ISLAND, A RAID STIRS DISPUTE OVER INFLUX OF IMMIGRANTS

HISPANIC POLITICAL POWER LAGS BEHIND RECORD GROWTH , STUDY SAYSHISPANIC POLITICAL POWER LAGS BEHIND RECORD GROWTH , STUDY SAYS

LEGISLATION TO LICENSE UNDOCUMENTED IMMIGRANTS MOVES FORWARDLEGISLATION TO LICENSE UNDOCUMENTED IMMIGRANTS MOVES FORWARD

BUSH ADMINISTRATION BORDER SURVEY NOT RELEASEDBUSH ADMINISTRATION BORDER SURVEY NOT RELEASED

MEXICO TO LET MIGRANTS VOTE BY MAILMEXICO TO LET MIGRANTS VOTE BY MAIL

LAWMAKERS IN MEXICO APPROVE ABSENTEE VOTING FOR MIGRANTSLAWMAKERS IN MEXICO APPROVE ABSENTEE VOTING FOR MIGRANTS

GARCIA: TOO GOOD TO BE TRUE?GARCIA: TOO GOOD TO BE TRUE?

BUSH'S STAND ON IMMIGRATION RILES SOME OF THE PARTY'S BASEBUSH'S STAND ON IMMIGRATION RILES SOME OF THE PARTY'S BASE

BRAZILIANS STREAMING INTO U.S. THROUGH MEXICAN BORDERBRAZILIANS STREAMING INTO U.S. THROUGH MEXICAN BORDER

BUSH ADMINISTRATION SAYS MEXICAN STAMPS ARE INAPPROPRIATEBUSH ADMINISTRATION SAYS MEXICAN STAMPS ARE INAPPROPRIATE

TECH ASSISTANT TAPPED FOR GEORGIA STATE ADTECH ASSISTANT TAPPED FOR GEORGIA STATE AD

LONG ISLAND OFFICIALS TRY A DIFFERENT APPROACH TO IMMIGRANT CRACKDOWNLONG ISLAND OFFICIALS TRY A DIFFERENT APPROACH TO IMMIGRANT CRACKDOWN

Figure 6: Snapshot of a single article node
and all of its neghboring article nodes. See
http://zoom.it/GUCR for the zoomable image.

6.2.2 Baselines

k-means baseline: A simple baseline is to
split each six-month period of articles into T
equal time slices, then apply k-means clustering
to each slice, using NCS to measure distance.
We then select the most central article from each
cluster, and finally match the k articles from
time slice i one-to-one with those from slice i+ 1
by computing the pairing that maximizes the
average NCS of the pairs, i.e., the coherence of
the threads. The result is a set of k threads
of length T , where no two threads contain the
same article. In its use of clustering, this base-
line is somewhat similar to the “event threading”
baseline of Shahaf and Guestrin (2010).

DTM baseline: A more sophisticated base-
line is the dynamic topic model (Blei and Lafferty,
2006), which explicitly attempts to find topics
that are smooth through time. We use code
provided by the authors to fit DTMs with the
number of topics set to k and with the data split
into T equal slices, as before. We then choose,
for each topic at each time step, the document
with the highest per-word probability of being
generated by that topic. Documents from the
same topic form a single thread.
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CosSim
ROUGE-1 ROUGE-2 ROUGE-SU4

F Prec/ Rec F Prec / Rec F Prec/ Rec

k-means 29.9 16.5 17.3/15.8 0.695 0.725 / 0.669 3.76 3.94/3.60
DTM 27.0 14.7 15.5/14.0 0.750 0.813 / 0.698 3.44 3.63/3.28
k-SDPP 33.2 17.2 17.7/16.7 0.892 0.917/0.870 3.98 4.11/3.87

Table 1: Similarity of automatically generated timelines to human summaries. Bold entries are significantly
higher than others in the column at 99% confidence, computed using bootstrapping (Hesterberg et al., 2003).

6.2.3 Comparison to human summaries

We compare the threads generated by our
baselines and sampled from the k-SDPP to a
set of human-generated news summaries. The
human summaries are not threaded; they are
flat, roughly daily news summaries published by
Agence France-Presse and found in the Gigaword
corpus, distinguished by their “multi” type tag.
A sample summary is included in the supplement.
These summaries tend to focus on world news,
which is only a subset of the contents of our
dataset. However, they allow us to provide an
extrinsic evaluation of our method without gold
standard timelines. We compute four statistics:

• Cosine similarity: NCS (in percent) be-
tween the concatenated threads and con-
catenated human summaries. The hyper-
parameters for all methods—such as the
constant feature magnitude ρ for k-SDPPs
and the parameter governing topic propor-
tions for DTMs—were tuned to optimize
cosine similarity on a development set from
January-June 2005.

• ROUGE-1, 2, and SU4: Standard
ROUGE scores for summarization evalua-
tion (Lin, 2004).

Table 1 shows the results of these comparisons,
averaged across all six half-year intervals. Under
each measure, the k-SDPP threads more closely
resemble human summaries.

6.2.4 Mechanical Turk evaluation

An important distinction between the base-
lines and the k-SDPP is that the former are
topic-oriented, choosing articles that relate to
broad subject areas, while our approach is story-
oriented, chaining together articles with direct

Rating Interlopers

k-means 2.73 0.71
DTM 3.19 1.10
k-SDPP 3.31 1.15

Table 2: Rating: average coherence score from 1
(worst) to 5 (best). Interlopers: average number of
interloper articles identified (out of 2). Bold entries
are significantly higher with 95% confidence.

individual relationships. An example of this dis-
tinction can be seen in Figure 2.

To obtain a large-scale evaluation of thread co-
herence, we turn to Mechanical Turk. We asked
Turkers to read the headlines and first few sen-
tences of each article in a timeline and then rate
the overall narrative coherence of the timeline on
a scale of 1 (“the articles are totally unrelated”)
to 5 (“the articles tell a single clear story”). Five
separate Turkers rated each timeline; the average
ratings are shown in Table 2. Note that k-means
does particularly poorly in terms of coherence
since it has no way to ensure that clusters are
similar between time slices.

We also had Turkers evaluate threads implic-
itly by performing a simple task. We showed
them timelines into which two additional “in-
terloper” articles selected at random had been
inserted, and asked them to remove the two ar-
ticles that they thought should be removed to
“improve the flow of the timeline”. A screenshot
of the task is provided in the supplement. Intu-
itively, the interlopers should be selected more
often when the original timeline is coherent. The
average number of interloper articles correctly
identified is shown in Table 2.

718



Runtime

k-means 625.63
DTM 19,433.80
k-SDPP 252.38

Table 3: Time (in seconds) required to produce a
complete set of threads. The test machine has eight
Intel Xeon E5450 cores and 32GB of memory.

6.2.5 Runtimes

Finally, we report in Table 3 the time required
to produce a complete set of threads for each
method. This time includes clustering for k-
means, model fitting for DTM and random pro-
jections, computation of the covariance matrix,
and sampling for k-SDPP. We view the graph
as an input (much like tfidf vectors for the base-
lines), and so do not include its computation in
the runtime for the k-SDPP. Constructing the
graph only requires an additional 160 seconds
though.

6.3 Analysis

Below we briefly summarize the main differences
between the k-SDPP and the baselines, and dis-
cuss their significance.

• Neither baseline directly models the docu-
ment threads themselves. In contrast, the
k-SDPP defines a probability distribution
over all possible sets of document threads.
This makes the k-SDPP a better choice for
applications where, for instance, the coher-
ence of individual threads is important.

• While the baselines seek threads that cover
or explain as much of the dataset as possible,
k-SDPPs are better suited for tasks where
a balance between quality and diversity is
key, since its hyperparameters correspond
to weights on these quantities. With news
timelines, for example, we want not just
topical diversity but also a focus on the
most important stories.

• Both baselines require input to be split into
time slices, whereas the k-SDPP does not;
this flexibility allows the k-SDPP to put
multiple articles from a single time slice in

a thread, or to build threads that span only
part of the input period.

• While clustering and topic models rely on
EM to approximately optimize their objec-
tives, the k-SDPP comes with an exact,
polynomial-time sampling algorithm.

Revisiting Figure 2, we can see all of these
advantages in action. The k-SDPP produces
more consistent threads due to its use of graph
information, while the DTM threads, though
topic-focused, are less coherent as a story. Fur-
thermore, DTM threads span the entire time
period, while our method selects threads cover-
ing only relevant spans. The quantitative results
in this section underscore the empirical value of
these characteristics.

7 Conclusion

We introduced the novel problem of finding di-
verse and salient threads in graphs of large doc-
ument collections. We developed a probabilistic
approach, combining SDPPs and k-SDPPs, and
showed how random projections make inference
efficient and yield an approximate model with
bounded variational distance to the original. We
then demonstrated that the method produces
qualitatively reasonable results, and, relative to
several baslines, reproduces human news sum-
maries more faithfully, builds more coherent story
threads, and is significantly faster. It would be
interesting to extend our model to structures be-
yond linear chains to trees and other structures.
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Abstract

This paper describes a study on the impact of
the original signal (text, speech, visual scene,
event) of a text pair on the task of both man-
ual and automatic sub-sentential paraphrase
acquisition. A corpus of 2,500 annotated sen-
tences in English and French is described, and
performance on this corpus is reported for
an efficient system combination exploiting a
large set of features for paraphrase recogni-
tion. A detailed quantified typology of sub-
sentential paraphrases found in our corpus
types is given.

1 Introduction

Sub-sentential paraphrases can be acquired from text
pairs expressing the same meaning (Madnani and
Dorr, 2010). If the semantic similarity of a text
pair has a direct impact on the quality of the ac-
quired paraphrases, it has, to our knowledge, never
been shown what impact the type of original sig-
nal has on paraphrase acquisition. In this work,
we consider four types of corpora, which we think
are representative of the main types of original
semantic signals: text pairs (roughly, sentences)
originating a) from independent translations of a
text (TEXT), b) from independent translations of a
speech (SPEECH), c) from independent descriptions
of a visual scene (SCENE), and d) from independent
descriptions of some event (EVENT). We will report
the results of experiments on sub-sentential para-
phrase acquisition on all these corpus types in two
languages, English and French, and provide some
answers to the following questions: What types of

paraphrases can be found by human annotators, with
what confidence and in which quantities? How well
can representative paraphrase acquisition systems
perform on each corpus type, and how performance
can be improved through combination? On what
corpus types can performance be improved by using
training material from other corpus types? Our ex-
perimental results will provide several indications of
the differences and complementarities of the corpus
types under study, and will notably show that perfor-
mance on the most readily available corpus type can
be improved by using training data from the set of
all other corpus types.

We will first describe the building procedures
and characteristics of our corpora (section 2), and
then describe our experimental settings for evalu-
ating paraphrase acquisition (section 3.1). Our ex-
periments will first consist of the description (sec-
tion 3.2) and evaluation (section 3.3) of a system
combination on each corpus type and then of our
system provided with additional training data from
the other corpus types (section 3.4). We will finally
briefly review related work (section 4) and discuss
our main findings and future work (section 5).

2 Collection of sentence pair corpora

In this study, we will focus on paraphrase acquisition
from related sentence pairs characteristic of 4 corpus
types, which correspond to different original signal
types of text pairs illustrated by the word alignment
matrices on Figure 1. A corpus for each type has
been collected for 2 languages, English and French,
and comprises 625 sentence pairs per language. We
now briefly describe how each corpus was built.
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Figure 1: Example reference alignment matrices for
(from top to bottom) TEXT, SPEECH, SCENE and
EVENT. Sure alignments appear in green or gray (identi-
ties) and possible alignments in yellow.

TEXT For English, we used the MTC corpus1 (de-
scribed in (Cohn et al., 2008)) consisting of sets
of news article translations from Chinese, and for
French the CESTA corpus2 consisting of sets of
news article translations from English. For each
sentence cluster, we selected sentence pairs with
minimal edit distance above an empirically-selected
threshold, covering all clusters first and then select-
ing from already used clusters to reach the target
number of sentence pairs.
e.g. It is estimated that the total annual volume of import
and export will exceed 9 billion US dollars. ↔ It is an-
ticipated that the annual total foreign trade volume will
exceed US$9 billion.

SPEECH For English, we used two freely avail-
able subtitle files3 of the French movies Le Fabuleux
Destin d’Amélie Poulain and Les Choristes, and for
French we used two subtitle files from the Desperate
Housewives TV series. We first aligned each paral-
lel corpus using the algorithm described in (Tiede-
mann, 2007), based on time frames and developed
for bilingual subtitles, we then filtered out sentence
pairs below a minimal edit distance threshold, and
manually removed obvious errors made by the algo-
rithm.
e.g. So he uses the photo booths to remind people what
he looks like. ↔ He uses those machines to remind the
living of his face.

SCENE We used the Multiple Video Description
Corpus (Chen and Dolan, 2011) obtained from mul-
tiple descriptions of short videos. Similarly to what
we did for TEXT, we selected sentence pairs from
clusters by minimal edit distance above a threshold.
An important fact is that for English we were able
to use what is described as “verified” descriptions.
There were, however, far fewer descriptions avail-
able for French, and none had the “verified” status.
We decided to use this corpus nonetheless, but with
the knowledge that this source for French is of a sub-
stantially lower quality (this corpus type will there-
fore appear as “(SCENE)” in all tables to reflect this).
e.g. a boy is riding on a bicycle fast. ↔ a boy rides a bike
on a dirt road.

1http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogId=LDC2002T01

2http://www.elda.org/article125.html
3http://www.opensubtitles.org
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Corpus statistics Annotator agreements Tokens in paraphrase statistics
500 sentence pairs 50 sentence pairs not considering identity paraphrases

sure para. possible para.
# tokens # tokens per sent. sure para. possible para. % tokens # tokens % tokens # tokens

ENGLISH
TEXT 21,473 21.0 66.1 20.4 18.6 4004 12.3 2651

SPEECH 11,049 10.5 79.1 10.9 17.5 1942 31.6 3500
SCENE 7,783 7.5 80.5 35.2 10.9 851 14.0 1094
EVENT 8,609 8.0 65.3 20.5 17.5 1506 14.5 1251

FRENCH
TEXT 24,641 24.0 64.6 16.6 29.2 7218 6.2 1527

SPEECH 11,850 11.5 82.7 20.8 22.5 2667 16.7 1981
(SCENE) 7,012 6.5 42.8 9.3 3.9 275 9.4 664
EVENT 9,121 9.1 67.8 3.8 19.6 1793 9.6 876

Table 1: Description of all corpora and paraphrase reference sets for English (top) and French (bottom). Note that
SCENE for French appears within parentheses as we do not consider it of the same quality as the other corpora.

EVENT We used titles of news article clusters
from the Google News4 news aggregation service.
We further refined the clustering algorithm by filter-
ing out article pairs whose publication dates differed
from more than one day. We repeated the same se-
lection procedure as for TEXT and SCENE to have
a maximal cluster coverage and select more similar
pairs first.
e.g. Pigeons Have an Understanding of Numbers on Par
With Primates ↔ Pigeons Have Numerical Abilities Just
Like Primates

Table 1 provides various statistics for these cor-
pora. The first observation is that TEXT contains sig-
nificantly larger sentences than the other types, more
than twice as long as those of SPEECH. Annotation
was performed following the guidelines proposed by
Cohn et al. (2008)5 using the YAWAT tool (Germann,
2008), except that alignments where not initially ob-
tained automatically so as not to bias our annota-
tors’ work (there were two annotators per language).
The main guidelines that they had to follow were
that sure and possible paraphrases must be distin-
guished, smaller alignments were to be prefered but
any-to-any alignments may be used, and sentences
should be aligned as much as possible. Henceforth,
we will only consider for all reported statistics and
experiments those paraphrases that are not identity
pairs (e.g. (a nice day ↔ a nice day)), as they are

4http://news.google.com
5See http://staffwww.dcs.shef.ac.uk/

people/T.Cohn/paraphrase_guidelines.pdf

considered trivial as far as acquisition is concerned.
Table 1 also reports inter-annotator agreement6

values computed on sets of 50 sentence pairs. We
find that acceptable values are obtained for sure
paraphrases, but that low values are obtained for
possible paraphrases. This was somehow expected,
given the many possible interpretations of possible
paraphrases, but was not a problem for our experi-
ments: as we will describe in section 3.1, the evalua-
tion metrics we use will not count them as expected
solutions, but will simply not count them as false
when proposed as candidates.

Table 1 finally shows proportions and absolute
numbers of paraphrases of each type for all corpora.
We find that there are approximately the same to-
tal number of paraphrases for English (16,799) and
French (17,001), but that English corpora collec-
tively have an equivalent number of sure and pos-
sible paraphrases (8,303 vs. 8,496) and French have
more sure paraphrases (11,953 vs. 5,048). This may
be explained by the fact that our annotators worked
independently and that the corpora used have dif-
ferences by nature, as our experiments will show.
Other salient results include the fact that TEXT con-
tains more sure paraphrases in number than the other
corpora, that SPEECH contains relatively more pos-
sible paraphrases than the other corpora, and that
SCENE has significantly fewer paraphrases, both in
proportion and number. In Figure 2 various mea-

6For each paraphrase type, we used the average of recall
values obtained for each annotator set as the reference .
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synonymy typography tense inclusion pragmatics syntax morphology number
ENGLISH

TEXT 51.2 7.6 5.1 12.1 0.6 4.4 12.1 6.4
SPEECH 39.8 25.6 3.5 12.3 1.7 3.5 3.5 9.7
SCENE 50.0 1.3 13.5 21.6 0.0 1.3 5.4 6.7
EVENT 36.9 15.0 8.2 19.1 1.3 6.8 6.8 5.4

FRENCH
TEXT 46.9 9.0 8.7 2.1 3.6 6.6 3.0 19.8

SPEECH 45.5 14.2 8.0 8.0 2.6 11.6 3.5 6.2
(SCENE) 46.4 5.3 3.5 8.9 0.0 5.3 0.0 30.3
EVENT 28.3 19.7 6.1 16.0 7.4 8.6 7.4 6.1

Table 2: Percentages of paraphrase classes in 50 randomly selected sentence pairs for reference paraphrases for English
(top) and French (bottom). Classes are illustrated by the following examples: (mutual understanding ↔ consensus)
(synonymy), (California ↔ CA) (typography), (letting ↔ having let) (tense), (Asian Development Bank ↔ Asian
Bank) (inclusion), (police dispatcher↔ woman) (pragmatics), (grief-stricken↔ struck with grief ) (syntactic), (Viet-
name ↔ Vietnam) (morphology), (mortgage ↔ mortgages) (number).

sures of sentence pair similarities are given. TEXT

contains the most similar sentence pairs according to
all metrics, with EVENT at a similar level on French.
SCENE has sentence pairs that are more similar than
those in SPEECH for English, but this is not the case
for French. While the metrics used can only provide
a crude account of semantic equivalence at the sen-
tence level, these results clearly indicate that trans-
lating from text yields more similar sentences than
translating from speech.

Table 2 provides a typology of paraphrases found
in all our corpora and two languages, where each
class has been quantified with respect to the refer-
ence alignments.7 The main observation here is that
phrasal synonymy (e.g. mutual understanding ↔
consensus) is the most present phenomenon. It is
also interesting to note that the EVENT corpus type,
which is easy to collect on a daily basis, contains ref-
erence paraphrases spread over all classes. Lastly, it
is expected that paraphrases in the pragmatics class
(e.g. police dispatcher ↔ woman) would be diffi-
cult to acquire, as this would often rely on document
context and costly world knowledge.8

7Note that typologies of paraphrases have already been pro-
posed in the literature (e.g. (Culicover, 1968; Vila et al., 2011)),
but that the choice of our classes has been primarily moti-
vated by potential subsequent uses of the acquired paraphrases
(paraphrases could be annotated as belonging to more than one
class). Note also that our experiments will also include results
focused on the synonymy class only (cf. Table 5).

8Reusing such types of paraphrases into applications would
however often be too strongly context-dependent.
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Figure 2: Sentence pair average similarities for all cor-
pora for English (left) and French (right) using the co-
sine of token vectors, BLEU (Papineni et al., 2002),
TER (Snover et al., 2006) and METEOR (Lavie and
Agarwal, 2007).

3 Bilingual experiments across corpus
types

3.1 Evaluation of paraphrase acquisition

We followed the PARAMETRIC methodology de-
scribed in (Callison-Burch et al., 2008) for assess-
ing the performance of systems on the task of sub-
sentential paraphrase acquisition. In this methodol-
ogy, a set of paraphrase candidates extracted from
a sentence pair is compared with a set of reference
paraphrases, obtained through human annotation, by
computing usual measures of precision (P ) and re-
call (R). The first value corresponds to the propor-
tion of paraphrase candidates, denoted H, produced
by a system and that are correct relative to the ref-
erence set containing sure and possible paraphrases,
denoted Rall. Recall is obtained by measuring the
proportion of the reference set of sure paraphrases,
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Figure 3: Architecture of our combination system for
paraphrase identification.

denoted Rsure, that are found by a system. We also
computed an F-measure value (F1), which consid-
ers recall and precision as equally important. These
values are thus given by the following formulae:

P =
|H ∩ Rall|
|H|

R =
|H ∩ Rsure|
|Rsure|

F1 =
2PR

P + R

Note that the way the sets Rall and Rsure of refer-
ence paraphrase pairs are defined ensures that para-
phrase pair candidates that include possible refer-
ence paraphrases will not penalize precision while
not increasing recall.

All performance values reported in the follow-
ing sections will be obtained using 10-fold cross-
validation and averaging the results on each sub-test.
All data sets of cross-validation contain 500 sen-
tence pairs per corpus type, and 125 pairs are kept
for development.

3.2 A framework for sub-sentential paraphrase
identification

We now describe the systems that will be tested
on the various corpora described in section 2 using
the methodology described in section 3.1. Follow-
ing (Bouamor et al., 2012), a combination system
is used to automatically weight paraphrase pair can-
didates produced by individual systems using a set
of features aiming at recognizing paraphrases, as il-
lustrated on Figure 3. Four individual systems have
been used and are described below: the reasons for
considering those systems include their free avail-

ability, the possibility of using comparable resources
when relevant for our two languages, and the spe-
cific characteristics of the techniques used.

Statistical learning of word alignments (GIZA)
The GIZA++ tool (Och and Ney, 2004) com-
putes statistical word alignment models of increas-
ing complexity from parallel corpora. It was run
on each monolingual corpus of sentence pairs in
both directions, symmetrized alignments were kept
and classical phrase extraction heuristics were ap-
plied (Koehn et al., 2003), without growing phrases
with unaligned tokens.

Linguistic knowledge on term variation (FASTR)
The FASTR tool (Jacquemin, 1999) spots term vari-
ants in large corpora, where variants are described
through metarules expressing how the morphosyn-
tactic structure of a term variant can be derived
from a given term by means of regular expressions
on morphosyntactic categories. Paradigmatic varia-
tion can also be expressed with constraints between
words, imposing that they be of the same morpho-
logical or semantic family using existing resources
available in our two languages. Variants for all
phrases from one sentence of a pair are extracted
from the other sentence, and the intersection of the
sets for both directions is kept.

Edit rate on word sequences (TERp) The TERp

tool (Snover et al., 2010) can be used to compute an
optimal set of word and phrase edits that can trans-
form one sentence into another one.9 Edit types are
parameterized by one or more weights which were
optimized towards F-measure by hill climbing with
100 random restarts using the held-out data set con-
sisting of 125 sentence pairs for each corpus type.

Translational equivalence (PIVOT) We exploited
the paraphrase probability defined by Bannard and
Callison-Burch (2005) on bilingual parallel corpora.
We used the Europarl corpus10 of parliamentary de-
bates in English and French, consisting of approx-
imately 1.7 million parallel sentences, using each
language as source and pivot in turn. GIZA++

9Note that contrarily to what TERp allows, we did not used
the possibility of using word or phrase equivalents as those are
only made available for English. This type of knowledge is
however captured in part by the FASTR and PIVOT systems.

10http://statmt.org/europarl
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Phrase pair features – edit distance between paraphrases, stem identity, bag-of-tokens similarity, phrase
length ratio
Sentence pair features – sentence pair similarity (cosine, BLEU, TER, METEOR), relative position of
paraphrases, presence of common tokens at paraphrase boundaries, presence of another paraphrase pair
from each system at paraphrase boundaries, presence of a paraphrase at a different position in the other
sentence
Distributional features – similarity of token context vectors for each phrase of a paraphrase (derived
from counts in the large English-French parallel corpus from WMT’11 (http://www.statmt.org/
wmt11/translation-task.html) (approx. 30 million parallel sentences)
System features – combination of the individual systems that proposed the paraphrase pair

Table 3: Features used by our classifiers. Discretized intervals based on median values are used for real values, and
binarized values are used for combinations.

was used for word alignment and phrase transla-
tion probabilities were estimated from them by the
MOSES system (Koehn et al., 2007). For each
phrase of a sentence pair, we built its set of para-
phrases, and extracted its paraphrase from the other
sentence with highest probability. We repeated this
process in both directions, and finally kept for each
phrase its paraphrase pair from any direction with
highest probability.

Automatic validation of candidate paraphrases
Taking the union of all paraphrase pair candidates
from all the above systems for each sentence pair, we
perform a Maximum Entropy two-class classifica-
tion11, which allows us to include features that were
not necessarily exploited or straightforward to ex-
ploit by individual systems to determine the proba-
bility that each candidate is a good paraphrase. More
generally, this allows us to attempt to learn a more
generic characterization of paraphrases, which could
trivially accept any number of systems as inputs.
Positive examples for the classifier are those from
the union of candidates that are also in the reference
setRsure, while negative examples are the remaining
ones from the union. The features that we used are
summarized in Table 3.

3.3 Experimental results

Results for individual systems, their union and our
validation system trained on each corpus type are
given on Table 4. First, we find that all individual
systems fare better on TEXT, for which more train-
ing data were available and where semantic equiv-

11Using the implementation at: http://homepages.
inf.ed.ac.uk/lzhang10/maxent_toolkit.html

alence of sentence pairs is most likely. EVENT ap-
pears to be the most difficult corpus type, whereas
one could say that being the most readily data source
this is a disapointing result: we will return to this in
section 3.4. In terms of performance on F-measure
per corpus type, GIZA performs best for TEXT and
SPEECH, containing long sentences with possible
repetitions, while TERp performs on par with GIZA

for SCENE and best for EVENT, where equivalences
that are rare at the corpus level are more present.
FASTR achieves a very low recall, showing that the
encoded definitions of term variants do not cover all
types of paraphrases, and also possibly that the lex-
ical resource that it uses has incomplete coverage.
It nonetheless obtains high precision values, most
notably on TEXT. One last comment regarding in-
dividual systems is that PIVOT is by far the most
precise of all the techniques used, but with a recall
much lower than those of GIZA and TERp: as is
the case for FASTR, which makes use of manually-
encoded lexical resources, PIVOT encodes in some
sense some kind of semantic knowledge.12

In all cases, our combination system manages
to increase F-measure substantially over the best
individual system for a corpus type and the sim-
ple union. Improvements are strong on TEXT

(resp. +12.5 and +11.6 on English and French)
and on SPEECH (+11.7 and +11.1) and quite good
on SCENE (+3.2 and +6.4) and on EVENT (+5.4

12Note that the fact that English and French were used as the
pivot for one another may have had some positive effect here,
but, incidentally, the two corpora obtained by translating from
the other language (TEXT and SPEECH) are not those where
PIVOT fares better. The difference observed may however lie in
the higher complexity of the sentences in these corpus types.
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Individual systems Combination systems
GIZA FASTR TERp→F PIVOT union validation

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

ENGLISH
TEXT 48.2 58.9 53.0 63.1 5.9 10.7 41.2 66.4 50.9 73.4 25.8 38.2 20.8 80.8 33.1 68.4 62.8 65.5

SPEECH 39.7 44.2 41.8 27.1 3.5 6.3 25.0 50.3 33.4 79.2 15.3 25.7 25.5 71.4 37.6 51.0 56.3 53.5

SCENE 44.8 57.7 50.5 47.4 5.2 9.5 40.1 67.9 50.4 84.6 14.6 25.0 36.2 83.4 50.5 44.9 66.8 53.7

EVENT 19.0 33.9 24.3 62.9 3.1 6.0 28.8 68.7 40.6 97.4 11.2 20.1 20.8 75.5 32.7 35.0 67.1 46.0

FRENCH
TEXT 52.5 58.9 55.5 56.9 4.9 9.1 46.4 61.4 52.8 64.5 30.3 41.2 41.5 77.9 54.1 74.7 61.0 67.1

SPEECH 44.0 54.9 48.9 30.7 4.3 7.6 34.8 60.2 44.1 75.5 19.0 30.4 31.4 76.2 44.5 60.2 59.7 60.0

(SCENE) 14.4 43.6 21.7 53.0 4.0 7.4 13.8 75.3 23.4 94.6 5.21 9.8 12.7 86.4 22.2 19.9 59.8 29.8

EVENT 28.7 44.2 34.8 34.4 2.3 4.3 29.9 58.9 39.7 79.5 15.0 25.2 25.2 72.5 37.4 40.0 56.3 46.8

Table 4: Evaluation results for individual systems (left) and combination systems (right) on all corpus types for English
(top) and French (bottom). Values in bold are for highest values for a given metric for each corpus type and language.

and +6.1). Recall from Table 1 that TEXT and
SPEECH were the two corpus types with the highest
number of sure paraphrase examples for both lan-
guages: results show that our classifier was able to
efficiently use them.

Recall values for the union are quite strong for
all corpus types, ranging from 71.4 (SPEECH in En-
glish) to 83.4 (SCENE in English). There is, how-
ever, a substantial decrease between the unions and
the results of our combination systems, although
recall values for our systems are roughly between
56 and 67, which may be considered an acceptable
range on such a task. Further study of false neg-
atives should help with engineering new features to
improve paraphrase recognition. Lastly, we note that
precision is in general highest for a specific system
(PIVOT), and reaches high values for our validation
system on TEXT, where we have the most examples
(resp. 68.4 and 74.7 for English and French).

As seen in Table 2, synonymy is the most present
phenomenon in all our corpora; it is also proba-
bly one of the most useful type of knowledge for
many applications. We now therefore focus on this
class, for which all the sure paraphrases in our cor-
pora falling in this class have been annotated. Ta-
ble 5 shows F-measure values for the individual
techniques and our combination systems on all cor-
pus types. We first observe that our combination sys-
tem also always improves here over the best individ-
ual system, albeit not by a large margin on EVENT.

GIZA FASTR TERp PIVOT validation
ENGLISH

TEXT 52.2 6.1 47.3 47.1 68.1
SPEECH 42.6 5.0 30.3 39.5 54.9
SCENE 51.8 6.0 48.0 26.0 56.3
EVENT 22.5 2.1 34.8 24.7 35.5

FRENCH
TEXT 55.3 3.9 50.7 50.5 70.3

SPEECH 49.8 1.6 40.9 36.2 57.2
(SCENE) 19.6 4.2 23.1 0.0 24.7
EVENT 36.8 3.5 35.3 25.6 39.9

Table 5: F-measure values for test instances in the syn-
onymy class (see Table 2) for all individual systems and
our validation system for English (top) and French (bot-
tom).

Also, we find that PIVOT performs relatively closer
to GIZA and TERp on TEXT and SPEECH than for
the full set of classes, confirming the intuition that
translational equivalence may be appropriate to rec-
ognize synonymy.

3.4 Experiments across corpus types

To test how different the corpora under study are as
regards paraphrase identification, we now consider
using as additional training data for our classifiers
corpora of the other types, both individually and col-
lectively. Results are given on Table 6.13

13Note that our results are still given by performing cross-
validation averaging over 10 test sets for each tested corpus
type.
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+TEXT +SPEECH +SCENE +EVENT +All
ENGLISH

# ex+ 7,342 2,296 1,784 1,171 12,593

TEXT 65.5 66.2 65.1 66.2 65.1
SPEECH 56.0 53.5 52.8 54.8 56.6
SCENE 49.7 54.3 53.7 53.8 42.7
EVENT 51.1 45.3 42.5 46.0 56.2

FRENCH
# ex+ 12,961 3,340 966 2,160 19,427

TEXT 67.1 67.2 66.7 67.0 66.6
SPEECH 57.6 60.0 56.4 59.6 57.9
(SCENE) 23.7 22.0 29.8 23.9 21.1
EVENT 45.2 45.6 44.3 46.8 49.3

Table 6: Evaluation results (F1 scores) for all corpus
types for English (top) and French (bottom) when adding
training material from other corpus types (values with
gray background on the diagonal are when no additional
training data are used). “#ex+” rows indicate numbers of
positive paraphrase examples for each additional corpus
type.

The most notable observation is that EVENT is
substantially improved by using all available addi-
tional training data for English (+10.2), and to a
lesser extent for French (+2.5) . It should be noted
that no individual corpus type, save TEXT, individu-
ally improves results on EVENT, and that results are
yet substantially improved over the use of training
data from TEXT when using all available data, re-
vealing a collective contribution of all corpus types.
The second major observation is that all other cor-
pus types seem to be quite specific in nature, as no
addition of training data from other types yields any
improvement (with the exception of SPEECH on En-
glish), but they often in fact decrease performance.
For instance, SCENE in English is substantially neg-
atively impacted by the use of the numerous exam-
ples of TEXT (-4 in F-measure) and even more when
using all other training data (-9). This underlines
the specific nature of this corpus type: independent
descriptions of the same scene in a video may be
worded with much variation that mostly differ from
that present in other corpus types.

Our main conclusion here is therefore that all our
corpora under study are quite specific in nature, but
that EVENT can benefit from all training data from
the other corpus types. We can further note that the

fact that TEXT is almost not impacted by additional
data may also be explained by the fact that this cor-
pus type contains more than half of the total number
of examples for the two languages. Finally, there are
substantially more positive paraphrase examples for
French (19,427) than for English (12,593).

4 Related work

Over the years, paraphrase acquisition and genera-
tion have attracted a wealth of research works that
are too many to adequatly summarize here: (Mad-
nani and Dorr, 2010) presents a complete and up-
to-date review of the main approaches. Sentential
paraphrase collection has been tackled from specific
resources increasing the probability of sentences be-
ing paraphrases (Dolan et al., 2004; Bernhard and
Gurevych, 2008; Wubben et al., 2009), from com-
parable monolingual corpora (Barzilay and Elhadad,
2003; Fung and Cheung, 2004; Nelken and Shieber,
2006), and even at web scale (Pasça and Dienes,
2005; Bhagat and Ravichandran, 2008).

Various techniques have been proposed for para-
phrase acquisition from related sentence pairs
(Barzilay and McKeown, 2001; Pang et al., 2003)
and from bilingual parallel corpora (Bannard and
Callison-Burch, 2005; Kok and Brockett, 2010).
The issue of corpus construction for developing and
evaluating paraphrase acquisition techniques are ad-
dressed in (Cohn et al., 2008; Callison-Burch et al.,
2008). To the best of our knowledge, this is the first
time that a study in paraphrase acquisition is con-
ducted on several corpus types and for 2 languages.
Faruqui and Padó (2011) study the acquisition of en-
tailment pairs (premise and hypothesis), with ex-
periments in 3 languages and various domains of
newspaper corpora for one language. Although their
work is not directly comparable to ours, they report
that robustness across domains is difficult to achieve.

Laslty, the evaluation of automatically generated
paraphrases has recently received some attention
(Liu et al., 2010; Chen and Dolan, 2011; Met-
zler et al., 2011) although it remains a difficult is-
sue. Application-driven paraphrase generation pro-
vides indirect means of evaluating paraphrase gen-
eration (Zhao et al., 2009). For instance, the field of
Statistical Machine Translation has produced works
showing both the usefulness of human-produced
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(Schroeder et al., 2009; Resnik et al., 2010) and au-
tomatically produced paraphrases (Madnani et al.,
2008; Marton et al., 2009; Max, 2010; He et al.,
2011) for improving translation performance.

5 Discussion and future work

This work has addressed the issue of sub-sentential
paraphrase acquisition from text pairs. Analogu-
ously to bilingual parallel corpora, which are still
to date the most reliable resources for automatic ac-
quisition of sub-sentential translations, monolingual
parallel corpora are generally regarded as very ap-
propriate for paraphrase acquisition. However, their
low availability makes searching for less parallel
corpora a necessity. In this study, we have attempted
to identify corpora of various degrees of semantic
textual similarity by considering text pairs originat-
ing from various signal types. These signal types
allow various degrees of freedom as to how to for-
mulate a text: a text is read and translated into a dif-
ferent language (TEXT); some speech is listened to
in the context of a visual story and translated into a
different language (SPEECH); some action is looked
at and described (SCENE); and some event that took
place is concisely reported (EVENT).

The results presented in this paper have shown
how these corpora differed in various aspects. First,
they contain varying quantities of paraphrases that
are differently distributed into paraphrase classes.
Individual acquisition techniques, based on statis-
tical learning of word alignments (GIZA), linguis-
tic knowledge on term variation (FASTR), edit rate
on word sequence (TERp), and translational equiv-
alence (PIVOT), for which different performances
were observed among them on the same corpus
type, were shown to achieve different performances
across corpus types. An efficient combination of
candidate paraphrases from these individual tech-
niques exploiting additional features to character-
ize paraphrases has yielded substantial increases in
performance on all corpus types; however, it is in-
teresting to note that the highest amplitude in per-
formance across corpus types was not so much on
recall (amplitude of 10.5 on English and 4.7 on
French) than on precision (amplitude of 33.4 on En-
glish and 34.714 on French). This, some other fac-

14Not considering (SCENE) for French.

tors aside, emphasizes the fact that the correct idenfi-
cation of paraphrases is facilitated when equivalence
of semantic content is more probable. Many works
have accordingly attempted to identify text units that
are as parallel as possible from large corpora, and
the task of measuring semantic textual similarity,
which can find many uses, has received some atten-
tion lately (Agirre et al., 2012). However, it itself
relies on some knowledge on paraphrasing.

Our avenues for future work lie in three main ar-
eas. The first one is to continue our current line of
work and study the impact of additional individual
acquisition techniques and better characterizations
of paraphrases in context, in tandem with working
on identifying parallel text pairs in large corpora.
Another avenue is to start from the output of high
recall techniques and to attempt to characterize the
contexts of possible substitution for candidate para-
phrases from large corpora as a means to acquire
precise paraphrases. As the examples from Table 7
show, some classes of paraphrases, and in particular
in the continuum from our synonymy to pragmat-
ics classes, require the joint acquisition of contextual
information that license substitution. Lastly, we plan
to apply such knowledge in text-to-text applications.

synonymy
TEXT take part in ↔ participate in

great assistance ↔ enormous help
SPEECH make a deal ↔ come to an agreement

I don’t care ↔ I don’t give a damn
SCENE riding a bicycle ↔ cycling

lady ↔ woman
EVENT jail escapee ↔ prison fugitive

apologizes ↔ expresses regret
pragmatics

TEXT flew in ↔ arrived in
flood-control materials ↔ needed supplies

SPEECH face ↔ picture
want to sleep ↔ dream about sleeping

SCENE a man ↔ someone
bento ↔ food

EVENT violence ↔ bloodshed
anger ↔ emotion

Table 7: Examples in English for the synonymy and
pragmatics classes.
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Abstract

Graph-based dependency parsers suffer from
the sheer number of higher order edges they
need to (a) score and (b) consider during opti-
mization. Here we show that when working
with LP relaxations, large fractions of these
edges can be pruned before they are fully
scored—without any loss of optimality guar-
antees and, hence, accuracy. This is achieved
by iteratively parsing with a subset of higher-
order edges, adding higher-order edges that
may improve the score of the current solu-
tion, and adding higher-order edges that are
implied by the current best first order edges.
This amounts to delayed column and row gen-
eration in the LP relaxation and is guaranteed
to provide the optimal LP solution. For second
order grandparent models, our method consid-
ers, or scores, no more than 6–13% of the sec-
ond order edges of the full model. This yields
up to an eightfold parsing speedup, while pro-
viding the same empirical accuracy and cer-
tificates of optimality as working with the full
LP relaxation. We also provide a tighter LP
formulation for grandparent models that leads
to a smaller integrality gap and higher speed.

1 Introduction

Many problems in NLP, and structured prediction in
general, can be cast as finding high-scoring struc-
tures based on a large set of candidate parts. For
example, in second order graph-based dependency
parsing (Kübler et al., 2009) we have to choose a
quadratic number of first order and a cubic number
of second order edges such that the graph is both
high-scoring and a tree. In coreference, we have
to select high-scoring clusters of mentions from an

exponential number of candidate clusters, such that
each mention is in exactly one cluster (Culotta et
al., 2007). In segmentation of citation strings, we
need to consider a quadratic number of possible seg-
ments such that every token is part of exactly one
segment (Poon and Domingos, 2007).

What makes such problems challenging is the
large number of possible parts to consider. This
number not only affects the cost of search or opti-
mization but also slows down the process of scor-
ing parts before they enter the optimization prob-
lem. For example, the cubic grandparent edges in
second-order dependency parsing slow down dy-
namic programs (McDonald and Pereira, 2006), be-
lief propagation (Smith and Eisner, 2008) and LP
solvers (Martins et al., 2009), since there are more
value functions to evaluate, more messages to pass,
or more variables to consider. But to even calculate
the score for each part we need a cubic number of
operations that usually involve expensive feature ex-
traction. This step often becomes a major bottleneck
in parsing, and structured prediction in general.

Candidate parts can often be heuristically pruned.
In the case of dependency parsing, previous work
has used coarse-to-fine strategies where simpler first
order models are used to prune unlikely first or-
der edges, and hence all corresponding higher or-
der edges (Koo and Collins, 2010; Martins et al.,
2009; Riedel and Clarke, 2006). While such meth-
ods can be effective, they are more convoluted, often
require training of addition models as well as tuning
of thresholding hyper-parameters, and usually pro-
vide no guarantees of optimality.

We present an approach that can solve problems
with large sets of candidate parts without consider-
ing all of these parts in either optimization or scor-
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ing. And in contrast to most pruning heuristics, our
algorithm can give certificates of optimality before
having optimized over, or even scored, all parts. It
does so without the need of auxiliary models or tun-
ing of threshold parameters. This is achieved by a
delayed column and row generation algorithm that
iteratively solves an LP relaxation over a small sub-
set of current candidate parts, and then finds new
candidates that score highly and can be inserted into
the current optimal solution without removing high
scoring existing structure. The latter step subtracts
from the cost of a part the price of resources the part
requires, and is often referred as pricing. Sometimes
parts may score highly after pricing, but are neces-
sary in order to make the current solution feasible.
We add such parts in a step that roughly amounts to
violated cuts to the LP.

We illustrate our approach in terms of a second-
order grandparent model for dependency parsing.
We solve these models by iteratively parsing, pric-
ing, and cutting. To this end we use a variant of the
LP relaxation formulated by Martins et al. (2009).
Our variant of this LP is designed to be amenable to
column generation. It also turns out to be a tighter
outer bound that leads to fewer fractional solutions
and faster runtimes. To find high scoring grandpar-
ent edges without explicitly enumerating all of them,
we prune out a large fraction using factorized upper
bounds on grandparent scores.

Our parse, price and cut algorithm is evaluated
using a non-projective grandparent model on three
languages. Compared to a brute force approach of
solving the full LP, we only score about 10% of the
grandparent edges, consider only 8% in optimiza-
tion, and so observe an increase in parsing speed of
up to 750%. This is possible without loss of opti-
mality, and hence accuracy. We also find that our
extended LP formulation leads to a 15% reduction
of fractional solutions, up to 12 times higher speed,
and generally higher accuracy when compared to the
grandparent formulation of Martins et al. (2009).

2 Graph-Based Dependency Parsing

Dependency trees are representations of the syntac-
tic structure of a sentence (Nivre et al., 2007). They
determine, for each token of a sentence, the syntac-
tic head the token is modifying. As a lightweight al-

ternative to phrase-based constituency trees, depen-
dency representations have by now seen widespread
use in the community in various domains such as
question answering, machine translation, and infor-
mation extraction.

To simplify further exposition, we now formalize
the task, and mostly follow the notation of Martins et
al. (2009). Consider a sentence x = 〈t0, t1, . . . , tn〉
where t1, . . . , tn correspond to the n tokens of the
sentence, and t0 is an artificial root token. Let
V , {0, . . . , n} be a set of vertices corresponding
to the tokens in x, and C ⊆ V ×V a set of candidate
directed edges. Then a directed graph y ⊆ C is a
legal dependency parse if and only if it is a tree over
V rooted at vertex 0. Given a sentence x, we use Y
to denote the set of its legal parses. Note that all of
the above definitions depend on x, but for simplicity
we omit this dependency in our notation.

2.1 Arc-Factored Models
Graph-based models define parametrized scoring
functions that are trained to discriminate between
correct and incorrect parse trees. So called arc-
factored or first order models are the most basic
variant of such functions: they assess the quality of a
tree by scoring each edge in isolation (McDonald et
al., 2005b; McDonald et al., 2005a). Formally, arc-
factored models are scoring functions of the form

s (y;x,w) =
∑

〈h,m〉∈y

s〈h,m〉 (x,w) (1)

where w is a weight vector and s〈h,m〉 (x,w) scores
the edge 〈h, m〉 with respect to sentence x and
weights w. From here on we will omit both x and w
from our notation if they are clear from the context.

Given such a scoring function, parsing amounts to
solving:

maximize
y

∑
〈h,m〉∈y

s〈h,m〉

subject to y ∈ Y.

(2)

2.2 Higher Order Models
Arc-factored models cannot capture higher order de-
pendencies between two or more edges. Higher
order models remedy this by introducing scores
for larger configurations of edges appearing in the
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tree (McDonald and Pereira, 2006). For example,
in grandparent models, the score of a tree also in-
cludes a score s

gp
〈g,p,c〉 for each grandparent-parent-

child triple 〈g, p, c〉:

s (y) =
∑

〈h,m〉∈y

s〈h,m〉 +
∑

〈g,p〉∈y,〈p,c〉∈y

s
gp
〈g,p,c〉 (3)

There are other variants of higher order models
that include, in addition to grandparent triples, pairs
of siblings (adjacent or not) or third order edges.
However, to illustrate our approach we will focus
on grandparent models and note that most of what
we present can be generalized to other higher order
models.

2.3 Feature Templates
For our later exposition the factored and
parametrized nature of the scoring functions
will be crucial. In the following we therefore
illustrate this property in more detail.

The scoring functions for arcs or higher order
edges usually decompose into a sum of feature tem-
plate scores. For example, the grandparent edge
score s

gp
〈g,p,c〉 is defined as

s
gp
〈g,p,c〉 ,

∑
t∈T gp

s
gp,t
〈g,p,c〉 (4)

where T gp is the set of grandparent templates, and
each template t ∈ T gp defines a scoring func-
tion s

gp,t
〈g,p,c〉 to assess a specific property of the

grandparent-parent-child edge 〈g, p, c〉.
The template scores again decompose. Consider-

ing grandparent scores, we get

st
〈g,p,c〉 , w>

t f t
(
ht

g, h
t
p, h

t
c, d

t
g,p,c

)
(5)

where ht
i is an attribute of token ti, say h101

i =
Part-of-Speech (ti). The term dt

g,p,c corresponds to
a representation of the relation between tokens cor-
responding to g, p and g. For example, for template
101 it could return their relative positions to each
other:

d101
g,p,c , 〈I [g > p] , I [g > c] , I [p > c]〉 . (6)

The feature function f t maps the representations
of g, p and c into a vector space. For the purposes of
our work this mapping is not important, and hence
we omit details.

2.4 Learning

The scoring functions we consider are parametrized
by a family of per-template weight vectors w =
〈wt〉t∈T . During learning we need to estimate w
such that our scoring functions learns to differenti-
ate between correct and incorrect parse trees. This
can be achieved in many ways: large margin train-
ing, maximizing conditional likelihood, or variants
in between. In this work we follow Smith and Eis-
ner (2008) and train the models with stochastic gra-
dient descent on the conditional log-likelihood of the
training data, using belief propagation in order to
calculate approximate gradients.

3 LP and ILP Formulations

Riedel and Clarke (2006) showed that dependency
parsing can be framed as Integer Linear Pro-
gram (ILP), and efficiently solved using an off-the-
shelf optimizer if a cutting plane approach is used.1

Compared to tailor made dynamic programs, such
generic solvers give the practitioner more modeling
flexibility (Martins et al., 2009), albeit at the cost
of efficiency. Likewise, compared to approximate
solvers, ILP and Linear Program (LP) formulations
can give strong guarantees of optimality. The study
of Linear LP relaxations of dependency parsing has
also lead to effective alternative methods for parsing,
such as dual decomposition (Koo et al., 2010; Rush
et al., 2010). As we see later, the capability of LP
solvers to calculate dual solutions is also crucial for
efficient and exact pruning. Note, however, that dy-
namic programs provide dual solutions as well (see
section 4.5 for more details).

3.1 Arc-Factored Models

To represent a parse y ∈ Y we first introduce an
vector of variables z , 〈za〉a where za is 1 if a ∈ y
and 0 otherwise. With this representation parsing
amounts to finding a vector z that corresponds to a
legal parse tree and that maximizes

∑
a zasa. One

way to achieve this is to search through the convex
hull of all legal incidence vectors, knowing that any
linear objectives would take on its maximum on one
of the hull’s vertices. We will use Z to denote this
convex hull of incidence vectors of legal parse trees,

1Such as the highly efficient and free-for-academic-use
Gurobi solver.
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and callZ the arborescence polytope (Martins et al.,
2009). The Minkowski-Weyl theorem tells us thatZ
can be represented as an intersection of halfspaces,
or constraints, Z = {z|Az ≤ b}. Hence optimal
dependency parsing, in theory, can be addressed us-
ing LPs.

However, it is difficult to describe Z with a com-
pact number of constraints and variables that lend
themselves to efficient optimization. In general we
therefore work with relaxations, or outer bounds, on
Z . Such outer bounds are designed to cut off all
illegal integer solutions of the problem, but still al-
low for fractional solutions. In case the optimum is
achieved at an integer vertex of the outer bound, it
is clear that we have found the optimal solution to
the original problem. In case we find a fractional
point, we need to map it onto Z (e.g., by projection
or rounding). Alternatively, we can use the outer
bound together with 0/1 constraints on z, and then
employ an ILP solver (say, branch-and-bound) to
find the true optimum. Given the NP-hardness of
ILP, this will generally be slow.

In the following we will present the outer bound
Z̄ ⊇ Z proposed by Martins et al. (2009).
Compared to the representation Riedel and Clarke
(2006), this bound has the benefit a small polyno-
mial number of constraints. Note, however, that of-
ten exponentially many constraints can be efficiently
handled if polynomial separation algorithms exists,
and that such representations can lead to tighter
outer bounds.

The constraints we employ are:

No Head For Root In a dependency tree the root
node never has a head. While this could be captured
through linear constraints, it is easier to simply re-
strict the candidate set C to never contain edges of
the form 〈·, 0〉.

Exactly One Head for Non-Roots Any non-root
token has to have exactly one head token. We can
enforce this property through the set of constraints:

m > 0 :
∑

h

z〈h,m〉 = 1. (OneHead)

No Cycles A parse tree cannot have cycles. This is
equivalent, together with the head constraints above,
to enforcing that the tree be fully connected. Mar-
tins et al. (2009) capture this connectivity constraint

using a single commodity flow formulation. This
requires the introduction of flow variables φ ,
〈φa〉a∈C . By enforcing that token 0 has n outgoing
flow, ∑

m>0

φ〈0,m〉 = n, (Source)

that any other token consumes one unit of flow,

t > 0 :
∑

h

φ〈h,t〉 −
∑
m>0

φ〈t,m〉 = 1 (Consume)

and that flow is zero on disabled arcs

φ〈h,m〉 ≤ nz〈h,m〉, (NoFlow)

connectivity can be ensured.
Assuming we have such a representation, parsing

with an LP relaxation amounts to solving

maximize
z≥0

∑
a∈A

zasa

subject to A
[

z
φ

]
≤ b.

(7)

3.2 Higher Order Models
The 1st-Order LP can be easily extended to capture
second (or higher) order models. For for the case
of grandparent models, this amounts to introduc-
ing another class of variables, z

gp
g,p,c, that indicate if

the parse contains both the edge 〈g, p〉 and the edge
〈p, c〉. With the help of the indicators zgp we can rep-
resent the second order objective as a linear function.
We now need an outer bound on the convex hull of
vectors 〈z, zgp〉 where z is a legal parse tree and zgp

is a consistent set of grandparent indicators. We will
refer to this convex hull as the grandparent polytope
Zgp.

We can re-use the constraints A of section 3.1 to
ensure that z is in Z . To make sure zgp is consistent
with z, Martins et al. (2009) linearize the equiva-
lence zgp

g,p,c ⇔ zg,p ∧ zp,c we know to hold for legal
incidence vectors, yielding

g, p, c : z〈g,p〉 + z〈p,c〉 − z
gp
〈g,p,c〉 ≤ 1 (ArcGP)

and

g, p, c : z〈g,p〉 ≥ z
gp
〈g,p,c〉, z〈p,c〉 ≥ z

gp
〈g,p,c〉 (GPArc)

There are additional constraints we know to hold in
Zgp. First, we know that for any active edge 〈p, c〉 ∈
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y with p > 0 there is exactly one grandparent edge
〈g, p, c〉. Likewise, for an inactive edge 〈p, c〉 /∈ y
there must be no grandparent edge 〈g, p, c〉. This
can be captured through the constraint:

p > 0, c :
∑

g

z
gp
〈g,p,c〉 = z〈p,c〉. (OneGP)

We also know that if an edge 〈g, p〉 in inactive,
there must not be any grandparent edge 〈g, p, c〉 that
goes through 〈g, p〉:

g, p :
∑

c

z
gp
〈g,p,c〉 ≤ nz〈g,p〉. (NoGP)

It can be easily shown that for integer solu-
tions the constraints ArcGP and GPArc of Martins
et al. (2009) are sufficient conditions for consis-
tency between z and zgp. It can equally be shown
that the same holds for the constraints OneGP and
NoGP. However, when working with LP relax-
ations, the two polytopes have different fractional
vertices. Hence, by combining both constraint sets,
we can get a tighter outer bound on the grandparent
polytope Zgp. In section 6 we show empirically that
this combined polytope in fact leads to fewer frac-
tional solutions. Note that when using the union of
all four types of constraints, the NoGP constraint is
implied by the constraint GPArc (left) by summing
over c on both sides, and can hence be omitted.

4 Parse, Price and Cut

We now introduce our parsing algorithm. To this
end, we first give a general description of column
and row generation for LPs; then, we illustrate how
these techniques can be applied to dependency pars-
ing.

4.1 Column and Row Generation

LPs often have too many variables and constraints
to be efficiently solved. In such cases delayed
column and row generation can substantially re-
duce runtime by lazily adding variables only when
needed (Gilmore and Gomory, 1961; Lübbecke and
Desrosiers, 2004).

To illustrate column and row generation let us
consider the following general primal LP and its cor-

responding dual problem:

Primal

maximize
z≥0

sᵀz

subject to Az ≤ b

Dual

minimize
λ≥0

λᵀb

subject to Aᵀλ ≥ s.

Say you are given a primal feasible z′ and a dual fea-
sible λ′ for which complementary slackness holds:
for all variables i we have z′i > 0⇒ si =

∑
j λ′

jai,j

and for all constraints j we have λ′
j > 0 ⇒ bj =∑

i z
′
iai,j . In this case it is easy to show that z′ is

an optimal primal solution, λ′ and optimal dual so-
lution, and that both objectives meet at these val-
ues (Bertsekas, 1999).

The idea behind delayed column and row gener-
ation is to only consider a small subset of variables
(or columns) I and subset of constraints (or rows) J .
Optimizing over this restricted problem, either with
an off-the-shelf solver or a more specialized method,
yields the pair

(
z′I ,λ

′
J

)
of partial primal and dual

solutions. This pair is feasible and complementary
with respect to variables I and constraints J . We
can extend it to a solution (z′,y′) over all variables
and constraints by heuristically setting the remain-
ing primal and dual variables. If it so happens that
(z′,y′) is feasible and complementary for all vari-
ables and constraints, we have found the optimal so-
lution. If not, we add the constraints and variables
for which feasibility and slackness are violated, and
resolve the new partial problem.

In practice, the uninstantiated primal and dual
variables are often set to 0. In this case complemen-
tary slackness holds trivially, and we only need to
find violated primal and dual constraints. For primal
constraints,

∑
i ziai,j ≤ bi, searching for violating

constraints j is the well-known separation step in
cutting plane algorithms. For the dual constraints,∑

j λjai,j ≥ si, the same problem is referred to
as pricing. Pricing is often framed as searching for
all, or some, variables i with positive reduced cost
ri , si−

∑
j λjai,j . Note that while these problems

are, naturally, dual to each other, they can have very
different flavors. When we assess dual constraints
we need to calculate a cost si for variable i, and
usually this cost would be different for different i.
For primal constraints the corresponding right-hand-
sides are usually much more homogenous.
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Algorithm 1 Parse, Price and Cut.
Require: Initial candidate edges and hyperedges P .
Ensure: The optimal z.

1: repeat
2: z,λ ← parse(P )
3: N ← price(λ)
4: M ← cut(z)
5: P ← P ∪N ∪M
6: until N = ∅ ∧M = ∅
7: return z

The reduced cost ri = si −
∑

j λjai,j has sev-
eral interesting interpretations. First, intuitively it
measures the score we could gain by setting zi = 1,
and subtracts an estimate of what we would loose
because zi = 1 may compete with other variables
for shared resources (constraints). Second, it cor-
responds to the coefficient of zi in the Lagrangian
L (λ, z) , sᵀz + λ [b−Az]. For any λ, Uzi=k =
maxz≥0,zi=k L (λ, z) is an upper bound on the best
possible primal objective with zi = k. This means
that ri = Uzi=1 − Uzi=0 is the difference between
an upper bound that considers zi = 1, and one that
considers zi = 0. The tighter the bound Uzi=0 is,
the closer ri is to an upper bound on the maximal
increase we can get for setting zi to 1. At conver-
gence of column generation, complementary slack-
ness guarantees that Uzi=0 is tight for all z′i = 0, and
hence ri is a true an upper bound.

4.2 Application to Dependency Parsing

The grandparent formulation in section 3.2 has a cu-
bic number of variables z〈g,p,c〉 as well as a cubic
number of constraints. For longer sentences this
number can slow us down in two ways. First, the
optimizer works with a large search space, and will
naturally become slower. Second, for every grand-
parent edge we need to calculate the score s〈g,p,c〉,
and this calculation can often be a major bottleneck,
in particular when using complex feature functions.
To overcome this bottleneck, our parse, price and cut
algorithm, as shown in algorithm 1, uses column and
row generation. In particular, it lazily instantiates
the grandparent edge variables z

gp
〈g,p,c〉, and the cor-

responding cubic number of constraints. All unin-
stantiated variables are implicitly set to 0.

The algorithm requires some initial set of vari-

ables to start with. In our case this set P contains all
first-order edges 〈h, m〉 in the candidate set C, and
for each of these one grandparent edge 〈0, h,m〉.
The primary purpose of these grandparent edges is
to ensure feasibility of the OneGP constraints.

In step 2, the algorithm parses with the current
set of candidates P by solving the corresponding LP
relaxation. The LP contains all columns and con-
straints that involve the edges and grandparent edges
of P . The solver returns both the best primal solu-
tion z (for both edges and grandparents), and a com-
plementary dual solution λ.

In step 3 the dual variables λ are used to find unin-
stantiated grandparent edges 〈g, p, c〉 with positive
reduced cost. The price routine returns such edges
in N . In step 4 the primal solution is inspected for
violations of constraint ArcGP. The cut routine per-
forms this operation, and returns M , the set of edges
〈g, p, c〉 that violate ArcGP.

In step 5 the algorithm converges if no more con-
straint violations, or promising new columns, can
be found. If there have been violations (M 6= ∅)
or promising columns (N 6= ∅), steps 2 to 4 are
repeated, with the newly found parts added to the
problem. Note that LP solvers can be efficiently
warm-started after columns and rows have been
added, and hence the cost of calls to the solver in
step 2 is substantially reduced after the first itera-
tion.

4.3 Pricing

In the pricing step we need to efficiently find a
set of grandparent edge variables z

gp
〈g,p,c〉 with posi-

tive reduced cost, or the empty set if no such vari-
ables exist. Let λOneGP

〈p,c〉 be the dual variables for
the OneGP constraints and λNoGP

〈g,p〉 the duals for con-
straints NoGP. Then for the reduced cost of z

gp
〈g,p,c〉

we know that:

r〈g,p,c〉 = s〈g,p,c〉 − λOneGP
〈p,c〉 − λNoGP

〈g,p〉 . (8)

Notice that the duals for the remaining two con-
straints ArcGP and GPArc do not appear in this
equation. This is valid because we can safely set
their duals to zero without violating dual feasibility
or complementary slackness of the solution returned
by the solver.
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4.3.1 Upper Bounds for Efficient Pricing
A naive pricing implementation would exhaus-

tively iterate over all 〈g, p, c〉 and evaluate r〈g,p,c〉
for each. In this case we can still substantially re-
duce the number of grandparent variables that en-
ter the LP, provided many of these variables have
non-positive reduced cost. However, we still need to
calculate the score s〈g,p,c〉 for each 〈g, p, c〉, an ex-
pensive operation we hope to avoid. In the follow-
ing we present an upper bound on the reduced cost,
r̄

gp
〈g,p,c〉 ≥ r

gp
〈g,p,c〉, which decomposes in a way that

allows for more efficient search. Using this bound,
we find all new grandparent edges N̄ for which this
upper bound is positive:

N̄ ←
{
〈g, p, c〉 |r̄gp

〈g,p,c〉 > 0
}

. (9)

Next we prune away all but the grandparent edges
for which the exact reduced cost is positive:

N ← N̄ \ {e : rgp
e > 0} . (10)

Our bound r̄
gp
〈g,p,c〉 on the reduced cost of 〈g, p, c〉

is based on an upper bound s̄
gp
〈g,p,·〉 ≥ maxc s

gp
〈g,p,c〉

on the grandparent score involving 〈g, p〉 as grand-
parent and parent, and the bound s̄

gp
〈·,p,c〉 ≥

maxg s
gp
〈g,p,c〉 on the grandparent score involving

〈p, c〉 as parent and child. Concretely, we have

r̄
gp
〈g,p,c〉 , min

(
s̄

gp
〈g,p,·〉, s̄

gp
〈·,p,c〉

)
− λOneGP

〈p,c〉 − λNoGP
〈g,p〉 .

(11)
To find edges 〈g, p, c〉 for which this bound is

positive, we can filter out all edges 〈p, c〉 such that
s

gp
〈·,p,c〉− λOneGP

〈p,c〉 is non-positive. This is possible be-
cause NoGP is a≤ constraint and therefore λNoGP

〈g,p〉 ≥
0.2 Hence r̄

gp
〈g,p,c〉 is at most s̄

gp
〈·,p,c〉 − λOneGP

〈p,c〉 . This
filtering step cuts off a substantial number of edges,
and is the main reason why can avoid scoring all
edges.

Next we filter, for each remaining 〈p, c〉, all pos-
sible grandparents g according to the definition of
r̄

gp
〈g,p,c〉. This again allows us to avoid calling the

2Notice that in section 4.1 we discussed the LP dual in
case were all constraints are inequalities. When equality con-
straints are used, the corresponding dual variables have no sign
constraints. Hence we could not make the same argument for
λOneGP
〈p,c〉 .

grandparent scoring function on 〈g, p, c〉, and yields
the candidate set N̄ . Only if r̄

gp
〈g,p,c〉 is positive do we

have to evaluate the exact reduced cost and score.

4.3.2 Upper Bounds on Scores
What remains to be done is the calculation of up-

per bounds s̄
gp
〈g,p,·〉 and s̄

gp
〈·,p,c〉. Our bounds factor

into per-template bounds according to the definitions
in section 2.3. In particular, we have

s̄
gp
〈·,p,c〉 ,

∑
t∈T gp

s̄
gp,t
〈·,p,c〉 (12)

where s̄t
〈·,p,c〉 is a per-template upper bound defined

as

s̄
gp,t
〈·,p,c〉 , max

v∈range(ht)
e∈range

`
dt

´ w>
t f t

(
v, ht

p, h
t
c, e

)
. (13)

That is, we maximize over all possible attribute val-
ues v any token g could have, and any possible rela-
tion e a token g can have to p and c.

Notice that these bounds can be calculated offline,
and hence amortize after deployment of the parser.

4.3.3 Tightening Duals
To price variables, we use the duals returned by

the solver. This is a valid default strategy, but may
lead to λ with overcautious reduced costs. Note,
however, that we can arbitrary alter λ to minimize
reduced costs of uninstantiated variables, as long as
we ensure that feasibility and complementary slack-
ness are maintained for the instantiated problem.

We use this flexibility for increasing λOneGP
〈p,c〉 , and

hence lowering reduced costs z
gp
〈g,p,c〉 for all tokens c.

Assume that z〈p,c〉 = 0 and let r〈p,c〉 = λOneGP
〈p,c〉 + K

be the current reduced cost for z〈p,c〉 in the instanti-
ated problem. Here K is a value depending on s〈p,c〉
and the remaining constraints z〈p,c〉 is involved in.

We know that r〈p,c〉 ≤ 0 due to dual feasibility
and hence r〈p,c〉 may be 0, but note that r〈p,c〉 < 0 in
many cases. In such cases we can increase λOneGP

〈p,c〉
to −K and get r〈p,c〉 = 0. With respect to z〈p,c〉 this
maintains dual feasibility (because r〈p,c〉 ≤ 0) and
complementary slackness (because z〈p,c〉 = 0). Fur-
thermore, with respect to the z

gp
〈g,p,c〉 for all tokens c

this also maintains feasibility (because the increased
λOneGP
〈p,c〉 appears with negative sign in 8) and com-

plementary slackness (because z
gp
〈g,p,c〉 = 0 due to

z〈p,c〉 = 0).
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4.4 Separation

What happens if both z〈g,p〉 and z〈p,c〉 are active
while z

gp
〈g,p,c〉 is still implicitly set to 0? In this case

we violate constraint ArcGP. We could remedy this
by adding the cut z〈g,p〉 + z〈p,c〉 ≤ 1, resolve the
LP, and then use the dual variable corresponding to
this constraint to get an updated reduced cost r〈g,p,c〉.
However, in practice we found this does not happen
as often, and when it does, it is cheaper for us to add
the corresponding column r〈g,p,c〉 right away instead
of waiting to the next iteration to price it.

To find all pairs of variables for z〈g,p〉 + z〈p,c〉 ≤ 1
is violated, we first filter out all edges 〈h, m〉 for
which z〈h,m〉 = 0 as these automatically satisfy
any ArcGP constraint they appear in. Now for each
z〈g,p〉 > 0 all z〈p,c〉 > 0 are found, and if their sum
is larger than 1, the corresponding grandparent edge
〈g, p, c〉 is returned in the result set.

4.5 Column Generation in Dynamic Programs

Column and Row Generation can substantially re-
duce the runtime of an off-the-shelf LP solver, as
we will find in section 6. Perhaps somewhat sur-
prisingly, it can also be applied in the context of dy-
namic programs. It is well known that for each dy-
namic program there is an equivalent polynomial LP
formulation (Martin et al., 1990). Roughly speak-
ing, in this formulation primal variables correspond
to state transitions, and dual variables to value func-
tions (e.g., the forward scores in the Viterbi algo-
rithm).

In pilot studies we have already used DCG to
speed up (exact) Viterbi on linear chains (Belanger
et al., 2012). We believe it could be equally applied
to dynamic programs for higher order dependency
parsing.

5 Related Work

Our work is most similar in spirit to the relaxation
method presented by Riedel and Smith (2010) that
incrementally adds second order edges to a graphi-
cal model based on a gain measure—the analog of
our reduced cost. However, they always score every
higher order edge, and also provide no certificates of
optimality.

Several works in parsing, and in MAP inference
in general, perform some variant of row genera-

tion (Riedel and Clarke, 2006; Tromble and Eis-
ner, 2006; Sontag and Jaakkola, 2007; Sontag et al.,
2008). However, none of the corresponding methods
lazily add columns, too. The cutting plane method
of Riedel (2008) can omit columns, but only if their
coefficient is negative. By using the notion of re-
duced costs we can also omit columns with positive
coefficient. Niepert (2010) applies column gener-
ation, but his method is limited to the case of k-
Bounded MAP Inference.

Several ILP and LP formulations of dependency
parsing have been proposed. Our formulation is in-
spired by Martins et al. (2009), and hence uses fewer
constraints than Riedel and Clarke (2006). For the
case of grandparent edges, our formulation also im-
proves upon the outer bound of Martins et al. (2009)
in terms of speed, tightness, and utility for column
generation. Other recent LP relaxations are based
on dual decomposition (Rush et al., 2010; Koo et
al., 2010; Martins et al., 2011). These relaxations
allow the practitioner to utilize tailor-made dynamic
programs for tractable substructure, but still every
edge needs to be scored. Given that column gener-
ation can also be applied in dynamic programs (see
section 4.5), our algorithm could in fact accelerate
dual decomposition parsing as well.

Pruning methods are a major part of many struc-
tured prediction algorithms in general, and of pars-
ing algorithms in particular (Charniak and Johnson,
2005; Martins et al., 2009; Koo and Collins, 2010;
Rush and Petrov, 2012). Generally these meth-
ods follow a coarse-to-fine scheme in which sim-
pler models filter out large fractions of edges. Such
methods are effective, but require tuning of thresh-
old parameters, training of additional models, and
generally lead to more complex pipelines that are
harder to analyze and have fewer theoretical guar-
antees.

A* search (Ahuja et al., 1993) has been used
to search for optimal parse trees, for example by
Klein and Manning (2003) or, for dependency pars-
ing, by Dienes et al. (2003). There is a direct rela-
tion between both A* and Column Generation based
on an LP formulation of the shortest path problem.
Roughly speaking, in this formulation any feasible
dual assignments correspond to a consistent (and
thus admissible) heuristic, and the corresponding re-
duced costs can be used as edge weights. Run-
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ning Dijkstra’s algorithm with these weights then
amounts to A*. Column generation for the shortest
path problem can then be understood as a method to
lazily construct a consistent heuristic. In every step
this method finds edges for which consistency is vi-
olated, and updates the heuristic such that all these
edges are consistent.

6 Experiments

We claim that LP relaxations for higher order pars-
ing can be solved without considering, and scoring,
all candidate higher order edges. In practice, how
many grandparent edges do we need to score, and
how many do we need to add to the optimization
problem? And what kind of reduction in runtime
does this reduction in edges lead to?

We have also pointed out that our outer bound on
the grandparent polytope of legal edge and grand-
parent vectors is tighter than the one presented by
Martins et al. (2009). What effect does this bound
have on the number of fractional solutions and the
overall accuracy?

To answer these questions we will focus on a set
of non-projective grandparent models, but point out
that our method and formulation can be easily ex-
tended to projective parsing as well as other types
of higher order edges. We use the Danish test data
of Buchholz and Marsi (2006) and the Italian and
Hungarian test datasets of Nivre et al. (2007).

6.1 Impact of Price and Cut

Table 1 compares brute force optimization (BF) with
the full model, in spirit of Martins et al. (2009),
to running parse, price and cut (PPC) on the same
model. This model contains all constraints presented
in 3.2. The table shows the average number of
parsed sentences per second, the average objective,
number of grandparent edges scored and added, all
relative to the brute force approach. We also present
the average unlabeled accuracy, and the percentage
of sentences with integer solutions. This number
shows us how often we not only found the optimal
solution to the LP relaxation, but also the optimal
solution to the full ILP.

We first note that both systems achieve the same
objective, and therefore, also the same accuracy.
This is expected, given that column and row gen-

eration are known to yield optimal solutions. Next
we see that the number of grandparent edges scored
and added to the problem is reduced to 5–13% of the
full model. This leads to up to 760% improvement
in speed. This improvement comes for free, without
any sacrifice in optimality or guarantees. We also
notice that in all cases at least 97% of the sentences
have no fractional solutions, and are therefore opti-
mal even with respect to the ILP. Table 1 also shows
that our bounds on reduced costs are relatively tight.
For example, in the case of Italian we score only
one percent more grandparent edges than we actu-
ally need to add.

Our fastest PCC parser processes about one sen-
tence per second. This speed falls below the reported
numbers of Martins et al. (2009) of about 0.6 sec-
onds per sentence. Crucially, however, in contrast to
their work, our speed is achieved without any first-
order pruning. In addition, we expect further im-
provements in runtime by optimizing the implemen-
tation of our pricing algorithm.

6.2 Tighter Grandparent Polytope

To investigate how the additional grandparent con-
straints in section 3.2 help, we compare three mod-
els, this time without PPC. The first model follows
Martins et al. (2009) and uses constraints ArcGP and
GPArc only. The second model uses only constraints
OneGP and NoGP. The final model incorporates all
four constraints.

Table 2 shows speed relative to the baseline model
with constraints ArcGP and GPArc, as well as the
percentage of integer solutions and the average un-
labeled accuracy—all for the Italian and Hungarian
datasets. We notice that the full model has less frac-
tional solutions than the partial models, and either
substantially (Italian) or slightly (Hungarian) faster
runtimes than ArcGP+GPArc. Interestingly, both
sets of constraints in isolation perform worse, in par-
ticular the OneGP and NoGP model.

7 Conclusion

We have presented a novel method for parsing in
second order grandparent models, and a general
blueprint for more efficient and optimal structured
prediction. Our method lazily instantiates candidate
parts based on their reduced cost, and on constraint
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Italian Hungarian Danish
BF PPC BF PPC BF PPC

Sent./sec. relative to BF 100% 760% 100% 380% 100% 390%
GPs Scored relative to BF 100% 6% 100% 12% 100% 13%
GPs Added relative to BF 100% 5% 100% 7% 100% 7%
Objective rel. to BF 100% 100% 100% 100% 100% 100%
% of Integer Solutions 98% 98% 97% 97% 97% 97%
Unlabeled Acc. 88% 88% 81% 81% 88% 88%

Table 1: Parse, Price and Cut (PPC) vs Brute Force (BF). Speed is the number of sentences per second,
relative to the speed of BF. Objective, GPs scored and added are also relative to BF.

GPArc+ OneGP+
Constraints ArcGP NoGP All
Sent./sec. 100% 1000% 1200%
% Integer 77% 9% 98%
Unlabeled Acc. 87% 85% 88%

(a) Italian

GPArc+ OneGP+
Constraints ArcGP NoGP All
Sent./sec. 100% 162% 105%
% Integer 71% 3% 97%
Unlabeled Acc. 80% 77% 81%

(b) Hungarian

Table 2: Different outer bounds on the grandpar-
ent polytope, for nonprojective parsing of Italian and
Danish.

violations. This allows us to discard a large fraction
of parts during both scoring and optimization, lead-
ing to nearly 800% speed-ups without loss of accu-
racy and certificates. We also present a tighter bound
on the grandparent polytope that is useful in its own
right.

Delayed column and row generation is very useful
when solving large LPs with off-the-shelf solvers.
Given the multitude of work in NLP that uses LPs
and ILPs in this way (Roth and Yih, 2004; Clarke
and Lapata, 2007), we hope that our approach will
prove itself useful for other applications. We stress
that this approach can also be used when working
with dynamic programs, as pointed out in section
4.5, and therefore also in the context of dual de-
composition. This suggests even wider applicabil-
ity, and usefulness in various structured prediction

problems.
The underlying paradigm could also be useful for

more approximate methods. In this paradigm, al-
gorithms maintain an estimate of the cost of certain
resources (duals), and use these estimates to guide
search and the propose new structures. For exam-
ple, a local-search based dependency parser could
estimate how contested certain tokens, or edges, are,
and then use these estimates to choose better next
proposals. The notion of reduced cost can give guid-
ance on what such estimates should look like.
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Abstract

We propose an adaptive ensemble method to
adapt coreference resolution across domains.
This method has three features: (1) it can op-
timize for any user-specified objective mea-
sure; (2) it can make document-specific pre-
diction rather than rely on a fixed base model
or a fixed set of base models; (3) it can auto-
matically adjust the active ensemble members
during prediction. With simplification, this
method can be used in the traditional within-
domain case, while still retaining the above
features. To the best of our knowledge, this
work is the first to both (i) develop a domain
adaptation algorithm for the coreference reso-
lution problem and (ii) have the above features
as an ensemble method. Empirically, we show
the benefits of (i) on the six domains of the
ACE 2005 data set in domain adaptation set-
ting, and of (ii) on both the MUC-6 and the
ACE 2005 data sets in within-domain setting.

1 Introduction

Coreference resolution is a fundamental component
of natural language processing (NLP) and has been
widely applied in other NLP tasks (Stoyanov et al.,
2010). It gathers together noun phrases (mentions)
that refer to the same real-world entity (Ng and
Cardie, 2002). In the past decade, several corefer-
ence resolution systems have been proposed, e.g.,
(Ng and Cardie, 2002), (Denis and Baldridge, 2007)
and (Stoyanov et al., 2010). All of these focus on
the within-domain case — to use the labeled doc-
uments from a domain to predict on the unlabeled

∗The work is done during postdoc in NTU, Singapore.

documents in the same domain. However, in prac-
tice, there is usually limited labeled data in a specific
domain of interest, while there may be plenty of la-
beled data in other related domains. Effective use of
data from the other domains for predicting in the do-
main of interest is therefore an important strategy in
NLP. This is called domain adaptation, and, in this
context, the former domains is called the source do-
mains, while the latter domain is called the target
domain (Blitzer et al., 2006; Jiang and Zhai, 2007).

Based on the type of the knowledge to be trans-
ferred to the target domain, domain adaptation learn-
ing can be categorized as instance-based method,
feature-based method, parameter-based method or
relational-knowledge-based method (Pan and Yang,
2010). Previously, domain adaptation learning has
been successfully used in other NLP tasks such as
relation extraction (Jiang, 2009) and POS tagging
(Jiang and Zhai, 2007), semantic detection (Tan et
al., 2008), name entity recognition (Guo et al., 2009)
and entity type classification (Jiang and Zhai, 2007).
However, to the best of our knowledge, it has yet to
be explored for coreference resolution.

In this paper, we propose an adaptive ensemble
method to adapt coreference resolution across do-
mains. This proposed method can be categorized
as both feature-based and parameter-based domain
adaptation learning methods. It has three main steps:
ensemble creation, cross-domain knowledge learn-
ing and decision inference. The first step creates
the ensemble by collecting a set of base models,
which can be any individual methods with various
features/instances/parameters settings. The second
step analyzes the collected base models from vari-
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ous domains and learns the cross-domain knowledge
between each target domain and the source domain.
The third step infers the final decision in the target
domain based on all ensemble results.

In addition to domain adaptation, the proposed
adaptive ensemble method has the following fea-
tures that are absent in the other ensemble methods.
First, it can optimize any user-specified objective
measure without using a separate development set.
Second, it can provide document-specific prediction
instead of relying on a fixed base model or a fixed
set of base models for all documents. Third, it can
automatically adjust the active ensemble members
in decision inference so that underperforming base
models are filtered out. The proposed method can
also be used in the traditional within-domain prob-
lem with some simplifications.

We conduct experiments for coreference resolu-
tion under both the within-domain setting and the
domain-adaptation setting. In the within-domain
setting, we compare the proposed adaptive ensemble
method with the mention-pair methods and other en-
semble methods on the MUC-6 and ACE 2005 cor-
pora. The results show that the proposed adaptive
ensemble method consistently outperforms these
baselines. In the domain adaptation setting, we use
the ACE 2005 corpora to create six domain adap-
tation tasks to evaluate the effectiveness of our do-
main adaptation learning. The results show that our
method outperforms baselines that do not use do-
main adaptation.

The paper is organized as follows. Section 2 re-
views some existing ensemble methods for coref-
erence resolution. Section 3 presents the proposed
adaptive ensemble method for domain adaptation
problems. Section 4 presents a special case of
the proposed method for the within-domain setting.
Section 5 presents the experiments under both the
within-domain and the domain adaptation settings.
We conclude and discuss future work in Section 6.

2 Existing Ensemble Methods

Many ensemble methods have been proposed in the
machine learning literature, e.g., bagging (Breiman,
1996), boosting (Freund and Schapire, 1996), ran-
dom forest (Breiman, 2001) and mixture models
(Bishop, 2007). Some of them have been success-

fully used in coreference resolution (Pang and Fan,
2009; Munson et al., 2005; Rahman and Ng, 2011a).
However, these methods only focus on the within-
domain setting.

All these methods comprise of two steps: ensem-
ble creation and decision inference. Ng and Cardie
(2003) and Vemulapalli et al. (2009) applied the
bagging and boosting techniques on the documents
to create the ensemble. Recently, Rahman and Ng
(2011a) further enriched the ensemble by consider-
ing various feature sets and learning models. Specif-
ically, three types of feature sets (conventional, lex-
ical and combined) and three learning algorithms
(mention-pair model, mention-ranking model and
the clustering-ranking model) are employed. In de-
cision inference, these methods used voting or av-
eraging to get the final prediction. Rahman and Ng
(2011a) proposed four voting strategies for predic-
tion: applying best Per-NP-Type model, antecedent-
based voting, cluster-based voting and weighted
clustering-based voting. Although their approaches
achieved promising results in their end-to-end sys-
tems, these do not consider the user-specific perfor-
mance measure during the ensemble learning.

Another branch of ensemble methods uses model
selection (Munson et al., 2005; Ng, 2005), simi-
lar to the conventional model selection method for
generic parameter-tuning. The method of (Munson
et al., 2005) first collects a large family of base mod-
els. Then, a separate tuning set with ground truth
is used to evaluate each base model’s performance.
Finally, an iterative approach is used to select the
best performed base models to form the ensemble.
Like other methods, this method uses the average
strategy in decision inference. Similarly, the method
of (Ng, 2005) ranks base models according to their
performance on separate tuning set, and then uses
the highest-ranked base model for predicting on test
documents. These methods require a separate set of
labeled documents to assess the generalization per-
formance.

3 Adaptive Ensemble Method

In this section, we give our adaptive ensemble
method for domain adaptation for coreference res-
olution. We first introduce some notations.

For a corpus of N documents, document Di
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is the ith document, and it contains ni men-
tions mi = (m1

i , . . . ,m
ni
i ) with the ordering of

each mention as they appear in the document.
The index set of all mention pairs in Di is
Ei = {(a, b) | 1 ≤ a < b ≤ ni}. The transpose of
vector x is x′. The performance measure function
for document D is Λ(g(D); f(D)), where g(D) and
f(D) represent the coreference ground-truth and
prediction by model f on document D respectively.
In coreference resolution, typical performance mea-
sure functions include MUC (Vilain et al., 1995),
Rand index (Rand, 1971), B-CUBED (Bagga and
Baldwin, 1998) and CEAF (Luo, 2005). In this pa-
per, Λ can either be used as part of an objective func-
tion in learning or as an evaluation measure for as-
sessing the performance of a coreference system.

We consider the typical domain adaptation prob-
lem, which has one target domain t and p (p ≥ 1)
source domains s1, . . . , sp. The target domain
contains N (t) labeled documents and M unla-
beled documents, while source domains contain
N (s1), . . . , N (sp) labeled documents. Unlabeled
data in the source domains are not used. We use
D(v)

i for the ith document in domain v.

3.1 Ensemble Creation

Mention-pair methods have been widely-used for
coreference resolution due to their efficiency and
effectiveness, and they have often been taken as
base models in ensemble learning (Rahman and Ng,
2011a; Munson et al., 2005). We adopt a similar ap-
proach by using the standard mention-pair method
(Soon et al., 2001; Ng and Cardie, 2002) with var-
ious parameters to form the ensemble, though our
framework can incorporate other coreference meth-
ods in the ensemble. Mention-pair methods usu-
ally comprise of two steps. The first step classifies
every mention pair into either coreference or non-
coreference with a confidence between 0 and 1. The
second step partitions the set of mentions into clus-
ters based on the confidence values, where mentions
in each cluster are presumed to be the same under-
lying entity.

Classification We use Soon’s approach (Soon et
al., 2001) to select a portion of mention pairs to train
a binary classifier because this has better generaliza-
tion (Soon et al., 2001). The positive mention pairs

are the anaphoric mentionmb
i (b = 2, . . . , ni) paired

with its closest antecedent mention ma
i (a < b),

while the negative mention pairs are the mention
mb

i paired with each of the intervening mentions
ma+1

i ,ma+2
i , . . . ,mb−1

i . Following (Rahman and
Ng, 2011a), our binary classifier is SVM with the
regularization parameter C. The classifier is trained
with the software Liblinear (Fan et al., 2008), which
is also used to give probabilistic binary predictions.

Clustering We adopt closest-first clustering (Soon
et al., 2001) and best-first clustering (Ng and Cardie,
2002) to determine whether a mention pair is coref-
erent. For each mention, the closest-first method
(or best-first method) links it to the the closest (or
the best) preceding mention if the confidence value
(obtained from the first step) of this mention pair is
above a specified threshold t.

Features For each mention pair, we use the
d = 39 features proposed by Rahman and Ng
(2011b) to represent it. These features can be ex-
tracted using the Reconcile software (Stoyanov et
al., 2010). We use ϕ̂a,b ∈ Rd to represent the fea-
tures of a mention pair (ma,mb). With this feature
set, we found that the linear kernel is insufficient to
fit the training data. However, using an rbf kernel
would be too computationally expensive. Hence, we
augment ϕ̂a,b with a d̂-dimensional feature vector
[ψ1 · · · ψd̂] to give a new feature vector

ϕa,b = [ϕ̂a,b ψ1 · · · ψd̂], (1)

where the d̂ augmented features [ψ1 · · · ψd̂] are de-
termined by

ψj = exp(−
∥ϕ̂a,b − cj∥2

d
),∀j = 1, . . . , d̂. (2)

Herein, c1, . . . , cd̂ are the d̂ centroids of the
randomly-selected subset C from all labeled men-
tion pairs {ϕ̂a,b | (a, b) ∈ E1, . . . , EN}. In our ex-
periments, we use the k-means algorithm to obtain
the centroids of C.

Ensemble For domain v, we create a domain-
specified ensemble F (v) = {f1, . . . , f ℓ} of ℓ base
models by including the closest-first and best-first
mention-pair methods with the differentC and t val-
ues. If multiple domains are provided, we gather all
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the domain-specific ensembles into a grand ensem-
ble F = F (s1) ∪ · · · F (sp) ∪ F (t).

3.2 Cross-domain Knowledge Learning
Generally, the feature distributions are different in
different domains. Therefore, effective domain
adaptation requires using some knowledge of cross-
domain similarity. We now propose an approach
to learn the parametric-distances between the doc-
uments in source and target domains to characterize
this cross-domain knowledge.

Distances between documents A document Di is
represented by the sum of its new mention-pair fea-
tures (Yu and Joachims, 2009; Finley and Joachims,
2005):

Φ(Di) =
∑

(a,b)∈Ei

ϕa,b. (3)

The distance between a source labeled document
D(su)

i in domain su and a target labeled document
D(t)

j is parameterized as

Dist(D(su)
i ,D(t)

j ; µ) = µ′∆(D(su)
i ,D(t)

j ), (4)

where vector µ ∈ Rd+d̂ is to be learned, and vec-
tor function ∆(D(su)

i ,D(t)
j ) ∈ Rd+d̂ is the Euclidean

distance vector between two documents given by

∆(D(su)
i ,D(t)

j ) = (Φ(D(su)
i )− Φ(D(t)

j ))

⊙ (Φ(D(su)
i )− Φ(D(t)

j )). (5)

The operator ⊙ is the element-wise product. Dis-
tance (4) is actually the Mahanalobis distance (Yang
and Jin, 2006) with the scaling of features:

(Φ(D(su)
i )− Φ(D(t)

j ))′W (Φ(D(su)
i )− Φ(D(t)

j )),

where W is a diagonal matrix with diagonal entries
µ. MatrixW is diagonal to reduce computation cost
and to increase statistical confidence in estimation
when there is limited target labeled data (as is typi-
cally the case in domain adaptation).

That µ is the vector of diagonal entries in W re-
quires that each entry in µ is non-negative. If the lth

entry of µ is non-zero, then the lth feature in ϕa,b

contribute towards (4). To ensure that at least B fea-
tures are used, we also constrain that each entry in µ
is not more than unity and that 1′µ ≥ B.

Matching best base models For each labeled doc-
ument D(v)

j in domain v, we identify the best per-

forming base model f (v)∗

j in F (v) with

f
(v)∗

j = arg max
f∈F(v)

Λ(g(D(v)
j ); f(D(v)

j )), (6)

where Λ(· ; ·) is the the performance objective func-
tion to be instantiated in Section 3.3.

Then, for each source domain su and document
D(t)

j in the target domain, we find the set I(D(t)
j ; su)

of the documents in domain su that have the same
best performing base model as that for D(t)

j :

I(D(t)
j ; su) = {D(su)

i | f (su)∗

i = f
(t)∗

j ,

i = 1, . . . , N (su)}. (7)

The key idea in I(D(t)
j ; su) is to select documents

in a source domain su that are similar to document
D

(t)
j in the sense that they have the same best per-

forming base model under a specific Λ. This ensures
that optimization step (to be described next) is tar-
geted towards Λ and not confounded by document
pairs that should be disimilar anyway.

Optimization We determine the vector µ by mini-
mizing the parametric distance (4) between all target
labeled documents and their corresponding source
labeled document identified in the previous step.
That is,

min
µ

µ′
N(t)∑
j=1

∑
D(su)

i ∈I(D(t)
j ;su)

∆(D(su)
i ,D(t)

j ). (8)

The solution µ to this linear programming problem
can be regarded as the cross-domain knowledge be-
tween source domain su and the target domain t. Re-
peating for every source domain su, u = 1, . . . , p,
gives the cross-domain knowledge between every
source domain and the target domain.

The above three-steps procedure selects the effec-
tive features for each pair of source and target do-
mains. Generally, the results of feature selection
vary for different pairs of source and target domains,
due to the diversities of the feature distributions in
different domains.
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3.3 Decision Inference
After ensemble creation and cross-domain knowl-
edge learning, we need to provide the coreference
result on an unseen document in the target domain
based on the results of all the members in F . Un-
like the previous methods using the voting/average
or their variants (Pang and Fan, 2009; Munson et
al., 2005; Rahman and Ng, 2011a), we propose the
following nearest neighbor based approach.

Given the grand ensemble F and all labeled doc-
uments, the task is to predict on the target unlabeled
document D(t)

j , j = 1, . . . ,M . The idea of the pro-
posed method is to first find the k most similar docu-
ments N (D(t)

j ) from all labeled documents for doc-

ument D(t)
j . Then, we choose the base model that

performs best on the documents in N (D(t)
j ) as the

method f (t)∗

j for document D(t)
j .

Firstly, we employ the parametric-distance (4) to
measure the similarity between any labeled docu-
mentD(v)

i ,∀v, i, from all source and target domains,
and the target unlabeled document D(t)

j . Here, the
cross-domain knowledge µ in (4) has already been
determined by the optimization (8) in Section 3.2.

Secondly, based on the computed distance values,
we select k nearest neighbor documents for the tar-
get unlabeled document D(t)

j from all labeled doc-

uments D(v)
i ,∀v, i. These k nearest neighbor docu-

ments for document D(t)
j make up the set N (D(t)

j ).
Thirdly, the optimal base model for the unlabeled

document D(t)
j prediction is chosen by

f
(t)∗

j = arg max
Dp∈N (D(t)

j ), f∈F
Λ(g(Dp); f(Dp)). (9)

We can instantiate the performance objective func-
tion Λ(g(·); f(·)) in expressions (6) and (9) to be
any coreference resolution measures, such as MUC,
Rand index, B-CUBED and CEAF. We have not
known of other (ensemble) coreference resolution
methods that optimize for these measures. This ab-
sence is possibly due to their complex discrete and
non-convex properties.

3.4 Discussion
The above proposed adaptive ensemble approach in-
corporates the domain adaptation knowledge during

(a) the identification of similar documents between
different domains and (b) the determination of ac-
tive ensemble members. Beside these, it has the fol-
lowing features over other (ensemble) coreference
methods: (i) It can optimize any user-specified ob-
jective measure via (6) and (9). An intuitive rec-
ommendation is to directly optimize for an objective
function that matches the evaluation measure. (ii)
It can make document-specific decisions, as expres-
sions (4) and (9) deal with each testing document
separately. (iii) The prediction on the testing docu-
ment D(t)

j is not based on all members in F but only

on the active ensemble members N (D(t)
j ). This can

filter out some potentially unsuitable base models
for document D(t)

j . Moreover, the active ensemble

members N (D(t)
j ) is dynamically adjusted for each

test document.
For computational cost, the majority is by ensem-

ble creation, since a large number of base models
are usually used. This is common among all ensem-
ble methods. In contrast, the costs in (4) and (9)
are trivial as both are at the document level. The
cost of generating centroids in (2) can also be high
if the size of C is more than ten thousand, but this
is still negligible compared to the cost of ensemble
creation.

4 Special Case: Within-domain Setting

The adaptive ensemble method presented in Sec-
tion 3 is for the domain adaptation setting. How-
ever, it is possible to simplify it for the special case
of within-domain setting. In the within-domain set-
ting, the adaptive ensemble method only has ensem-
ble creation and decision inference steps.

In the ensemble creation step, we still use the
closest-first and best-first mention-pair methods
with various parameters to create the ensemble. Un-
like the domain adaptation setting, here we can only
use the labeled documents in the target domain to
create the ensemble F (t). Therefore, the size of en-
semble here is reduced by p times compared to the
domain adaptation setting.

In the decision inference step, we directly use the
Euclidean distance ∆(D(t)

i ,D(t)
j ) in (5) for the la-

beled document D(t)
i , i = 1, . . . , N (t) and unlabeled

document D(t)
j , j = 1, . . . ,M . Based on these dis-
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tance values, we similarly select k nearest neighbor
documentsN (D(t)

j ) for documentD(t)
j , and then de-

termine the final method f (t)∗

j for document D(t)
j by

(9) but with F replaced by F (t).

5 Experiments

We test the proposed adaptive method and sev-
eral baselines under both the within-domain and
the domain adaptation settings on the MUC-6 and
ACE 2005 corpora. MUC-6 contains 60 docu-
ments. ACE 2005 contains 599 documents from
six different domains: Newswire (NW), Broadcast
News (BN), Broadcast Conversations (BC), Web-
blog (WL), Usenet (UN), and Conversational Tele-
phone Speech (CTS). In all our experiments, we use
two popular performance measures, B-CUBED F-
measure (Bagga and Baldwin, 1998) and CEAF F-
measure (Luo, 2005) 1, to evaluate the coreference
resolution result. Since the focus of the paper is to
investigate the effectiveness of coreference resolu-
tion methods, we use the gold standard mentions in
all experiments.

For the proposed method, the ensemble F (v) in
every domain v has 208 members totally. They
are created by the closest-first and the best-first
mention-pair methods using SVM trained with pa-
rameter C taking values

C ∈ [0.001, 0.01, 0.1, 1, 10, 100, 1000, 1000] (10)

and using clustering with the threshold parameters t
taking values

t ∈ [0.2, 0.25, 0.3, 0.34, 0.38, 0.4, 0.42, 0.44,

0.46, 0.48, 0.5, 0.6, 0.7].
(11)

The size of the selected subset C is fixed to 2000,
and the number of centroids is determined by
the validation procedure from four possible values
[10, 20, 30, 40]. We use k-means algorithm to com-
pute the centroids. Due to the randomness of sub-
set C and k-means algorithm, we run the proposed
method 5 times and report the average results. For
the number of nearest neighbor k, we report three
results, each for k ∈ {1, 3, 5}.

1More exactly, we use the widely used ϕ3-CEAF F-measure.

Table 1: The settings in the experiments under within-
domain setting on MUC-6 and ACE 2005 corpora. N (t)

and M (t) and Total are the numbers of training, testing
and all documents respectively.

Domain N (t) M (t) Total

MUC-6 30 30 60
BC 48 12 60
BN 181 45 226
CTS 31 8 39
NW 85 21 106
UN 39 10 49
WL 95 24 119

5.1 Within-domain Setting
We conduct the experiment under the within-domain
setting on seven tasks, with the per-domain setting
shown in Table 1. The validation set is created by
further splitting training data into validation train-
ing and validation testing sets with the ratio of N(t)

M(t) ,
where N (t) and M (t) are given in Table 1. In this
experiment, we attempt to study the following three
things. First, we investigate whether the proposed
ensemble method is better than the tuned mention-
pair methods and other ensemble methods. Second,
we investigate the optimal number of active ensem-
ble members. Third, we investigate the impact to the
performance of the coreference system, when differ-
ent objective measures are used with different eval-
uation measures.

For the proposed ensemble method, we experi-
mented with nearest neighbor set of sizes k = 1, 3, 5
paired with objective function Λ in (9) set to Rand
Index, CEAF or B-CUBED. For baselines, the fol-
lowing four are used:

• Two mention-pair baselines. Two baselines are
the closest-first and the best-first mention-pair
methods with the tuned parameters C and t. In
the tuning process, the ranges of C and t are
specified in (10) and (11) respectively. These
two mention-pair methods are named as Sc and
Sb for short.

• Two existing ensemble baselines. The other
two baselines are the ensemble methods us-
ing the voting procedure in decision inference.
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Table 2: B-CUBED F-measure results by all methods under within-domain setting on MUC-6 and ACE 2005 corpora.

Baselines Λ = Rand Λ = CEAF Λ = B-CUBED

Sc Sb Em Ec k=1 3 5 k=1 3 5 k=1 3 5

MUC-6 66.1 66.1 61.9 57.1 67.6 67.3 68.5 65.2 64.1 65.5 68.7 66.7 67.5
BC 64.1 65.1 34.2 24.8 65.5 65.4 65.7 65.9 65.5 62.9 66.5 66.1 66.0
BN 75.9 74.8 57.7 48.0 75.7 75.1 74.9 76.3 75.9 75.3 76.4 76.3 76.7
CTS 71.0 65.1 39.6 31.5 70.6 69.3 68.3 71.3 69.9 70.4 71.7 70.6 69.1
NW 74.6 74.4 45.6 34.1 74.3 74.8 72.9 73.2 71.4 70.1 75.0 74.6 73.7
UN 69.5 70.2 44.1 27.4 70.4 69.9 69.3 69.6 67.6 66.0 70.3 71.4 70.3
WL 73.8 75.4 69.8 58.5 75.5 74.6 73.9 75.5 73.0 73.4 76.2 75.5 75.6

Average 70.7 70.2 50.4 40.2 71.4 70.9 70.5 71.0 69.6 69.1 72.1 71.6 71.3

These two baselines use the same ensemble as
the proposed method for fair comparison. In
decision inference, these two baselines use the
mention-based voting and cluster-based voting
respectively, as proposed in (Rahman and Ng,
2011a). In these two baselines, all members
in the ensemble participate the voting process.
These two ensemble baselines are named as Em

and Ec for short.

Tables 2 and 3 show the experiment results using
B-CUBED and CEAF as the evaluation measures
respectively. The best result for each of the seven
tasks is highlighted in bold. The last rows of the ta-
bles show the average performance value among all
seven tasks.

From the results, we observe that the proposed en-
semble method with objective function matching the
evaluation measure and with k = 1 generally per-
forms best among all methods and all tasks. Surpris-
ingly, the common ensemble method with mention-
based voting Em and cluster-based voting Ec strate-
gies do not perform well. The plausible reason is
the current ensemble may incorporate some bad base
models due to inappropriate C and t values, which
would undermine the voting result. Nevertheless, it
is difficult to judge the quality of the ensemble mem-
bers in advance. Therefore, this validates the impor-
tance of choosing an active set of ensemble members
in decision inference. The better performance of the
proposed method over the mention-pair baselines Sc

and Sb is probably because of the document-specific
decision. This is reasonable, as different base mod-

els in the ensemble would be good at predicting
the different documents. For the proposed ensem-
ble method with various configurations, we observe
using an objective function that matches the evalu-
ation measures is generally better. An exception is
the MUC-6 and BN tasks in CEAF F-measure. We
also observe that the ensemble method with k = 1
is generally better than that with the larger k, except
the BN and UN tasks in B-CUBED F-measure. This
suggests that the fewer the active ensemble members
the better the generalization performance. Follow-
ing (Rahman and Ng, 2011a), we also conduct the
Student’s t-test, and the results show that the pro-
posed method with the objective function matching
the evaluation measure and with k = 1 is signifi-
cantly better than the best baseline. In contrast, the
two baseline ensemble methods that use voting are
significantly worse than the best baseline. The sig-
nificance level 0.05.

5.2 Domain-adaptation Setting

We employ ACE 2005 corpora to simulate the do-
main adaptation settings in experiments. Specifi-
cally, we create six domain adaptation tasks, BC,
BN, CTS, NW, UN, WL in total. Each task has one
target domain and five source domains. For exam-
ple, in the task UN, the target domain is UN while
the other five source domains are BC, BN, CTS, NW
and WL. The number of labeled documents in each
domain is as the same as in Table 1, except when
that domain is the target domain, in which case we
use only five labeled documents. The number of test
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Table 3: CEAF F-measure results by all methods under within-domain setting on MUC-6 and ACE 2005 corpora.

Baselines Λ = Rand Λ = B-CUBED Λ = CEAF

Sc Sb Em Ec k=1 3 5 k=1 3 5 k=1 3 5

MUC-6 62.6 62.5 62.7 57.5 62.0 60.6 61.0 64.5 62.7 63.8 63.1 58.7 59.2
BC 58.8 56.5 36.6 26.6 56.7 57.1 57.0 58.3 58.8 57.2 59.3 59.2 58.4
BN 67.9 66.5 55.1 44.7 69.4 69.4 69.9 69.8 70.2 69.6 69.5 69.0 68.7
CTS 61.0 60.7 38.6 31.5 67.1 66.9 63.6 68.1 68.4 68.2 68.5 67.6 67.7
NW 66.9 66.4 41.1 31.2 68.4 68.0 64.6 69.2 68.4 66.4 69.3 66.1 66.7
UN 62.5 63.5 46.2 28.9 62.9 61.8 60.9 62.2 63.7 62.9 63.9 61.5 60.4
WL 69.7 70.3 63.5 54.3 70.7 70.2 72.5 71.5 71.4 72.3 72.4 69.4 70.0

Average 64.2 63.8 49.1 39.2 65.3 64.9 64.2 66.2 66.2 65.8 66.6 64.5 64.5

(or unlabeled) documents in the target document is
also the same as in Table 1. The validation set is
created similarly as in the experiment under within-
domain setting.

For the proposed ensemble method, we heuristi-
cally determine the parameter B in µ to be the num-
ber of non-zero elements in Γ, where

Γ =

N(t)∑
j=1

∑
D(su)

i ∈I(D(t)
j ;su)

∆(D(su)
i ,D(t)

j ).

Making use of the conclusion in the experiments
for the within-domain setting, we fix the optimized
measure to be the final performance measure in (9).
We compare with the following five baselines.

• Two mention-pair baselines in within-domain
setting. Two baselines are same as Sc and Sb in
the experiments under within-domain settings,
except that the labeled training documents are
reduced to 5.

• Three proposed adaptive ensemble methods
without cross-domain knowledge learning.
These three baselines uses neighborhood sizes
k = 1, 3, 5 with the grand ensemble F rather
than the target domain ensemble F (t). In an-
other words, these three baselines are the same
as the proposed method, but with µ = 1.

Tables 4 and 5 show the experimental results in
the domain adaptation settings using B-CUBED and

CEAF as the final performance measures respec-
tively. From the results, we can see that the pro-
posed method with cross-domain knowledge gener-
ally outperforms all the five baselines. Among them,
the best proposed domain adaptation method on av-
erage outperforms the best of Sc, Sb by 7.2% for B-
CUBED F-measure and 3% for CEAF F-measure.
The grand-ensemble baselines are also significantly
better than the within-domain baselines. These re-
sults clearly illustrate the usefulness of making use
of the labeled documents in the source domains. For
the comparison between the proposed method with
and without cross-domain knowledge learning, all
tasks, except UN task in CEAF F-measure, show
the superiority of the proposed method with cross-
domain knowledge learning. Among them, except
tasks BN and CTS in B-CUBED F-measure, the per-
formance gains are among 1%—3% for all tasks in
both measures. These results verify the necessity
of cross-domain knowledge learning. For the com-
parison of the proposed method with different k,
unlike the results in the within-domain setting, the
results here show that choosing optimal k is task-
dependent. The reason of this observation is not
clear yet. It is plausible due to the increased uncer-
tainties from multiple domains.

6 Conclusions and Future Work

In this paper, we proposed an adaptive ensem-
ble method for coreference resolution under both
within-domain and domain adaptation settings. The
key advantage of the proposed method is incor-
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Table 4: B-CUBED F-measure results by all methods under domain adaptation setting on ACE 2005 corpora, with Λ
set to B-CUBED. The within-domain and grand ensemble methods are the baselines.

Within-domain Grand ensemble Domain-adaptation

Sc Sb k=1 3 5 k=1 3 5

BC 58.0 65.1 65.0 67.1 67.0 67.5 68.2 67.7
BN 72.7 73.8 75.0 75.3 75.0 75.3 75.4 74.3
CTS 63.2 62.1 65.7 64.8 64.0 64.1 65.8 65.8
NW 54.9 54.6 73.6 73.1 74.2 73.0 74.4 74.7
UN 66.5 42.7 67.2 68.2 68.9 69.7 68.7 68.2
WL 68.6 73.2 73.0 72.6 73.4 74.8 74.5 73.6

Average 64.0 61.9 69.9 70.2 70.4 70.7 71.2 70.7

Table 5: CEAF F-measure results by all methods under domain adaptation setting on ACE 2005 corpora, with Λ set
to CEAF. The within-domain and grand ensemble methods are the baselines.

Within-domain Grand ensemble Domain-adaptation

Sc Sb k=1 3 5 k=1 3 5

BC 55.7 43.7 56.9 57.6 57.3 58.5 58.8 57.2
BN 65.8 67.2 65.9 64.1 65.8 63.9 62.7 67.2
CTS 56.0 51.0 56.6 54.6 53.7 58.6 57.4 55.3
NW 52.7 55.0 66.4 64.1 63.8 69.4 66.7 66.8
UN 64.0 39.1 63.6 63.7 64.4 64.3 62.9 62.7
WL 70.3 64.2 68.1 67.8 70.2 67.3 69.6 72.0

Average 60.7 53.4 62.9 62.0 62.5 63.7 63.0 63.5

porating the cross-domain knowledge to aid coref-
erence resolution learning. This is useful when
the labeled coreference labels are scarce. We also
demonstrate that the proposed adaptive ensemble
method can be readily applied to conventional coref-
erence tasks without cross-domain knowledge learn-
ing. Compared with existing ensemble methods, the
proposed method is simultaneously endowed with
the following three distinctive features: optimizing
any user-specified performance measure, making the
document-specific prediction and automatically ad-
justing the active ensemble members. In the exper-
iments under both within-domain settings and do-
main adaptation settings, the results evidence the
effectiveness of the proposed cross-domain knowl-
edge learning method, and also demonstrate the su-
periority of the proposed adaptive ensemble method
over other baselines.

Currently, the proposed method relies on some

limited target annotations. It would be interesting
to consider the pure unsupervised tasks that have no
any target annotations. Besides, to develop some
better ways for document-level representation, e.g.,
incorporating the domain knowledge, also deserves
our attentions. Similarly, to extend the diagonal Ma-
halanobis matrix to the general covariance matrix is
also desirable. Last but not least, to find a more sys-
tematical way to determine the optimal k in the pro-
posed method is also our possible future work.
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Abstract

We present a method for training a semantic
parser using only a knowledge base and an un-
labeled text corpus, without any individually
annotated sentences. Our key observation is
that multiple forms of weak supervision can be
combined to train an accurate semantic parser:
semantic supervision from a knowledge base,
and syntactic supervision from dependency-
parsed sentences. We apply our approach
to train a semantic parser that uses 77 rela-
tions from Freebase in its knowledge repre-
sentation. This semantic parser extracts in-
stances of binary relations with state-of-the-
art accuracy, while simultaneously recovering
much richer semantic structures, such as con-
junctions of multiple relations with partially
shared arguments. We demonstrate recovery
of this richer structure by extracting logical
forms from natural language queries against
Freebase. On this task, the trained semantic
parser achieves 80% precision and 56% recall,
despite never having seen an annotated logical
form.

1 Introduction

Semantic parsing converts natural language state-
ments into logical forms in a meaning repre-
sentation language. For example, the phrase
“town in California” might be represented as
λx.CITY(x) ∧ LOCATEDIN(x,CALIFORNIA), where
CITY, LOCATEDIN and CALIFORNIA are predicates
and entities from a knowledge base. The expressiv-
ity and utility of semantic parsing is derived from
this meaning representation, which is essentially a
program that is directly executable by a computer.

In this sense, broad coverage semantic parsing is the
goal of natural language understanding.

Unfortunately, due to data annotation constraints,
modern semantic parsers only operate in narrow do-
mains. The best performing semantic parsers are
trained using extensive manual annotation: typi-
cally, a number of sentences must be annotated with
their desired logical form. Although other forms of
supervision exist (Clarke et al., 2010; Liang et al.,
2011), these methods similarly require annotations
for individual sentences. More automated training
methods are required to produce semantic parsers
with richer meaning representations.

This paper presents an algorithm for training a se-
mantic parser without per-sentence annotations. In-
stead, our approach exploits two easily-obtainable
sources of supervision: a large knowledge base and
(automatically) dependency-parsed sentences. The
semantic parser is trained to identify relation in-
stances from the knowledge base while simulta-
neously producing parses that syntactically agree
with the dependency parses. Combining these two
sources of supervision allows us to train an accurate
semantic parser for any knowledge base without an-
notated training data.

We demonstrate our approach by training a Com-
binatory Categorial Grammar (CCG) (Steedman,
1996) that parses sentences into logical forms con-
taining any of 77 relations from Freebase. Our
training data consists of relation instances from
Freebase and automatically dependency-parsed sen-
tences from a web corpus. The trained semantic
parser extracts binary relations with state-of-the-art
performance, while recovering considerably richer
semantic structure. We demonstrate recovery of this
semantic structure using natural language queries
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town
N : λx.CITY(x)

Lex

in
(N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

Lex California
N : λx.x = CALIFORNIA

Lex

N\N : λg.λx.∃y.y = CALIFORNIA ∧ g(x) ∧ LOCATEDIN(x, y)
>

N : λx.∃y.y = CALIFORNIA ∧ CITY(x) ∧ LOCATEDIN(x, y)
<

Figure 1: An example parse of “town in California” using the example CCG lexicon. The first stage in parsing
retrieves a category from each word from the lexicon, represented by the “Lex” entries. The second stage applies CCG
combination rules, in this case both forms of function application, to combine these categories into a semantic parse.

against Freebase. Our weakly-supervised semantic
parser predicts the correct logical form for 56% of
queries, despite never seeing a labeled logical form.

This paper is structured as follows. We first pro-
vide some background information on CCG and the
structure of a knowledge base in Section 2. Section
3 formulates the weakly supervised training prob-
lem for semantic parsers and presents our algorithm.
Section 4 describes how we applied our algorithm to
construct a semantic parser for Freebase, and Sec-
tion 5 presents our results. We conclude with related
work and discussion.

2 Background

2.1 Combinatory Categorial Grammar
Combinatory Categorial grammar (CCG) is a lin-
guistic formalism that represents both the syntax and
semantics of language (Steedman, 1996). CCG is a
lexicalized formalism that encodes all grammatical
information in a lexicon Λ. This lexicon contains
syntactic and semantic categories for each word. A
lexicon may include entries such as:

town := N : λx.CITY(x)
California := N : λx.x = CALIFORNIA

in := (N\N)/N : λf.λg.λx.
∃y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

Each entry of the lexicon w := s : l maps a word or
short phrase w to a syntactic category s and a logical
form l. Syntactic categories s may be atomic (N ) or
complex (N\N ). Logical forms l are lambda calcu-
lus expressions constructed using predicates from a
knowledge base. These logical forms combine dur-
ing parsing to form a complete logical form for the
parsed text.

Parses are constructed by combining adjacent cat-
egories using several combination rules, such as for-
ward (>) and backward (<) application:

X/Y : f Y : g =⇒ X : f(g) (>)
Y : g X\Y : f =⇒ X : f(g) (<)

These rules mean that the complex categoryX/Y
(X\Y ) behaves like a function which accepts an ar-
gument of type Y on its right (left) and returns a
value of type X . Parsing amounts to sequentially
applying these two rules, as shown in Figure 1. The
result of parsing is an ordered pair, containing both
a syntactic parse tree and an associated logical form.
We refer to such an ordered pair as a semantic parse,
or by using the letter `.

Given a lexicon, there may be multiple seman-
tic parses ` for a given phrase w. Like context-free
grammars (CFGs), CCGs can be extended to repre-
sent a probability distribution over parses P (`|w; θ)
where θ is a parameter vector.

2.2 Knowledge Base

The main input to our system is a propositional
knowledge base K = (E,R,C,∆), containing
entities E, categories C, relations R and relation
instances ∆. Categories and relations are pred-
icates which operate on entities and return truth
values; categories c ∈ C are one-place predi-
cates (CITY(e)) and relations r ∈ R are two-
place predicates (LOCATEDIN(e1, e2)). Entities e ∈
E represent real-world entities and have a set of
known text names. For example, CALIFORNIA

is an entity whose text names include “Califor-
nia” and “CA.” Relation instances r(e1, e2) ∈ ∆
are facts asserted by the knowledge base, such
as LOCATEDIN(SACRAMENTO,CALIFORNIA). Ex-
amples of such knowledge bases include Freebase
(Bollacker et al., 2008), NELL (Carlson et al.,
2010), and YAGO (Suchanek et al., 2007).

The knowledge base influences the semantic
parser in two ways. First, CCG logical forms are
constructed by combining categories, relations and
entities from the knowledge base with logical con-
nectives; hence, the predicates in the knowledge
base determine the expressivity of the parser’s se-
mantic representation. Second, the known relation
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instances r(e1, e2) ∈ ∆ are used as weak supervi-
sion to train the semantic parser.

3 Weakly Supervised Semantic Parsing

We define weakly supervised semantic parsing as
the following learning problem.

Input:

1. A knowledge base K = (E,R,C,∆), as de-
fined above.

2. A corpus of dependency-parsed sentences S.
3. A CCG lexicon Λ that produces logical forms

containing predicates from K. Section 4.1 de-
scribes an approach to generate this lexicon.

4. A procedure for identifying mentions of enti-
ties from K in sentences from S. (e.g., simple
string matching).

Output:

1. Parameters θ for the CCG that produce correct
semantic parses ` for sentences s ∈ S.

This problem is ill-posed without additional as-
sumptions: since the correct logical form for a sen-
tence is never observed, there is no a priori reason
to prefer one semantic parse to another. Our train-
ing algorithm makes two assumptions about correct
semantic parses, which are encoded as weak super-
vision constraints. These constraints make learning
possible by adding an inductive bias:

1. Every relation instance r(e1, e2) ∈ ∆ is ex-
pressed by at least one sentence in S (Riedel
et al., 2010; Hoffmann et al., 2011).

2. The correct semantic parse of a sentence s con-
tains a subset of the syntactic dependencies
contained in a dependency parse of s.

Our weakly supervised training uses these con-
straints as a proxy for labeled semantic parses. The
training algorithm has two steps. First, the algo-
rithm constructs a graphical model that contains
both the semantic parser and constant factors en-
coding the above two constraints. This graphical
model is then used to estimate parameters θ for the
semantic parser, essentially optimizing θ to produce
parses that satisfy the weak supervision constraints.
If our assumptions are correct and sufficiently con-
strain the parameter space, then this procedure will
identify parameters for an accurate semantic parser.

3.1 Encoding the Weak Supervision
Constraints

The first step of training constructs a graphical
model containing the semantic parser and two weak
supervision constraints. However, the first weak su-
pervision constraint couples the semantic parses for
every sentence s ∈ S. Such coupling would result in
an undesirably large graphical model. We therefore
modify this constraint to enforce that every relation
r(e1, e2) is expressed at least once in S(e1,e2) ⊆ S,
the subset of sentences which mention both e1 and
e2. These mentions are detected using the provided
mention-identification procedure.

Figure 2 depicts the graphical model constructed
for training. The semantic constraint couples the ex-
tractions for all sentences S(e1,e2), so the graphical
model is instantiated once per (e1, e2) tuple. The
model has 4 types of random variables and values:
Si = si represents a sentence, Li = `i represents
a semantic parse, Zi = zi represents the satisfac-
tion of the syntactic constraint and Yr = yr repre-
sents the truth value of relation r. Si, Li and Zi are
replicated once for each sentence s ∈ S(e1,e2), while
Yr is replicated once for each relation type r in the
knowledge base (all r ∈ R).

For each entity pair (e1, e2), this graphical model
defines a conditional distribution over L,Y,Z given
S. This distribution factorizes as:

p(Y = y,Z = z,L = `|S = s; θ) =
1
Zs

∏
r

Ψ(yr, `)
∏
i

Φ(zi, `i, si)Γ(si, `i; θ)

The factorization contains three replicated fac-
tors. Γ represents the semantic parser, which is
parametrized by θ and produces a semantic parse
`i for each sentence si. Ψ and Φ are deterministic
factors representing the two weak supervision con-
straints. We now describe each factor in more detail.

Semantic Parser

The factor Γ represents the semantic parser, which
is a log-linear probabilistic CCG using the input lex-
icon Λ. Given a sentence s and parameters θ, the
parser defines an unnormalized probability distribu-
tion over semantic parses `, each of which includes
both a syntactic CCG parse tree and logical form.
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Figure 2: Factor graph containing the semantic parser
Γ and weak supervision constraints Ψ and Φ, instanti-
ated for an (e1, e2) tuple occurring in 2 sentences S1 and
S2, with corresponding semantic parses L1 and L2. The
knowledge base contains 3 relations, represented by the
Y variables.

Let f(`, s) represent a feature function mapping se-
mantic parses to vectors of feature values1. The fac-
tor Γ is then defined as:

Γ(s, `; θ) = exp{θT f(`, s)}

If the features f(`, s) factorize according to the
structure of the CCG parse tree, it is possible to
perform exact inference using a CKY-style dynamic
programming algorithm. However, other aspects of
the graphical model preclude exact inference, so we
perform approximate inference using beam search.
Inference is explained in more detail in Section 3.2.

Semantic Constraint

The semantic constraint states that, given an entity
tuple (e1, e2), every relation instance r(e1, e2) ∈ ∆
must be expressed somewhere in S(e1,e2). Further-
more, no semantic parse can express a relation in-
stance which is not in the knowledge base. This con-
straint is identical to the multiple deterministic-OR
constraint used by Hoffmann et al. (2011) to train a
sentential relation extractor.

The graphical model contains a semantic con-
straint factor Ψ and one binary variable Yr for each
relation r in the knowledge base. Yr represents
whether r(e1, e2) is expressed by any sentence in
S(e1,e2). The Ψ factor determines whether each se-
mantic parse in ` extracts a relation between e1 and
e2. It then aggregates these sentence-level extrac-
tions using a deterministic OR: if any sentence ex-
tracts r(e1, e2) then Yr = 1. Otherwise, Yr = 0.

1Section 4.3 describes the features used by our semantic
parser for Freebase.

Ψ(Yr, `) =
1 if Yr = 1 ∧ ∃i.EXTRACTS(`i, r, e1, e2)
1 if Yr = 0 ∧ 6 ∃i.EXTRACTS(`i, r, e1, e2)
0 otherwise

The EXTRACTS function determines the relation
instances that are asserted by a semantic parse `.
EXTRACTS(`, r, e1, e2) is true if ` asserts the rela-
tion r(e1, e2) and false otherwise. This function es-
sentially converts the semantic parser into a senten-
tial relation extractor, and its implementation may
depend on the types of logical connectives included
in the lexicon Λ. Logical forms in our Freebase se-
mantic parser consist of conjunctions of predicates
from the knowledge base; we therefore define EX-
TRACTS(`, r, e1, e2) as true if `’s logical form con-
tains the clauses r(x, y), x = e1 and y = e2.

Syntactic Constraint
A problem with the semantic constraint is that it

admits a large number of ungrammatical parses. The
syntactic constraint penalizes ungrammatical parses
by encouraging the semantic parser to produce parse
trees that agree with a dependency parse of the same
sentence. Specifically, the syntactic constraint re-
quires the predicate-argument structure of the CCG
parse to agree with the predicate-argument structure
of the dependency parse.

Agreement is defined as a function of each CCG
rule application in `. In the parse tree `, each rule
application combines two subtrees, `h and `c, into a
single tree spanning a larger portion of the sentence.
A rule application is consistent with a dependency
parse t if the head words of `h and `c have a depen-
dency edge between them in t. AGREE(`, t) is true
if and only if every rule application in ` is consistent
with t. This syntactic constraint is encoded in the
graphical model by the Φ factors and Z variables:

Φ(z, `, s) = 1 if z = AGREE(`,DEPPARSE(s))
0 otherwise

3.2 Parameter Estimation
To train the model, a single training example is con-
structed for every tuple of entities (e1, e2). The in-
put to the model is s = S(e1,e2), the set of sentences
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containing e1 and e2. The weak supervision vari-
ables, y, z, are the output of the model. y is con-
structed by setting yr = 1 if r(e1, e2) ∈ ∆, and 0
otherwise. This setting trains the semantic parser to
extract every true relation instance between (e1, e2)
from some sentence in S(e1,e2), while simultane-
ously avoiding incorrect instances. Finally, z = 1,
to encourage agreement between the semantic and
dependency parses. The training data for the model
is therefore a collection, {(sj , yj , zj)}nj=1, where j
indexes entity tuples (e1, e2).

Training optimizes the semantic parser parame-
ters θ to predict Y = yj ,Z = zj given S = sj . The
parameters θ are estimated by running the structured
perceptron algorithm (Collins, 2002) on the training
data defined above. The structured perceptron al-
gorithm iteratively applies a simple update rule for
each example (sj , yj , zj) in the training data:

`predicted ← arg max
`

max
y,z

p(`, y, z|sj ; θt)

`actual ← arg max
`
p(`|yj , zj , sj ; θt)

θt+1 ← θt +
∑
i

f(`actuali , si)

−
∑
i

f(`predictedi , si)

Each iteration of training requires solving two
maximization problems. The first maximization,
max`,y,z p(`, y, z|s; θt), is straightforward because y
and z are deterministic functions of `. Therefore,
it is solved by finding the maximum probability as-
signment `, then choosing values for y and z that
satisfy the weak supervision constraints.

The second maximization, max` p(`|y, z, s; θt), is
more challenging. When y and z are given, the infer-
ence procedure must restrict its search to the parses
` which satisfy these weak supervision constraints.
The original formulation of the Ψ factors permitted
tractable inference (Hoffmann et al., 2011), but the
EXTRACTS function and the Φ factors preclude ef-
ficient inference. We approximate this maximiza-
tion using beam search over CCG parses `. For each
sentence s, we perform a beam search to produce
k = 300 possible semantic parses. We then check
the value of Φ for each generated parse and elimi-
nate parses which do not satisfy this syntactic con-
straint. Finally, we apply EXTRACTS to each parse,

then use the greedy approximate inference proce-
dure from Hoffmann et al. (2011) for the Ψ factors.

4 Building a Grammar for Freebase

We apply the training algorithm from the previous
section to produce a semantic parser for a subset of
Freebase. This section describes details of the gram-
mar we construct for this task, including the con-
struction of the lexicon Λ, some extensions to the
CCG parser, and the features used during training.
In this section, we assume access to a knowledge
base K = (E,C,R,∆), a corpus of dependency-
parsed sentences S and a procedure for identifying
mentions of entities in sentences.

4.1 Constructing the Lexicon Λ

The first step in constructing the semantic parser
is defining a lexicon Λ. We construct Λ by ap-
plying simple dependency-parse-based heuristics to
sentences in the training corpus. The resulting lex-
icon Λ captures a variety of linguistic phenomena,
including verbs, common nouns (“city”), noun com-
pounds (“California city”) and prepositional modi-
fiers (“city in California”).

The first step in lexicon construction is to use the
mention identification procedure to identify all men-
tions of entities in the sentences S. This process
results in (e1, e2, s) triples, consisting of sentences
with two entity mentions. The dependency path be-
tween e1 and e2 in s is then matched against the de-
pendency parse patterns in Table 1. Each matched
pattern adds one or more lexical entries to Λ

Each pattern in Table 1 has a corresponding lexi-
cal category template, which is a CCG lexical cate-
gory containing parameters e, c and r that are chosen
at initialization time. Given the triple (e1, e2, s), re-
lations r are chosen such that r(e1, e2) ∈ ∆, and
categories c are chosen such that c(e1) ∈ ∆ or
c(e2) ∈ ∆. The template is then instantiated with
every combination of these e, c and r values.

After instantiating lexical categories for each sen-
tence in S, we prune infrequent lexical categories to
improve parser efficiency. This pruning step is re-
quired because the common noun pattern generates
a large number of lexical categories, the majority
of which are incorrect. Therefore, we eliminate all
common noun categories instantiated by fewer than
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Part of Dependency Parse Pattern Lexical Category TemplateSpeech
Proper (name of entity e) w :=N : λx.x = e
Noun Sacramento Sacramento :=N : λx.x = SACRAMENTO

Common e1
SBJ
===⇒ [is, are, was, ...] OBJ⇐=== w w :=N : λx.c(x)

Noun Sacramento is the capital capital :=N : λx.CITY(x)

Noun e1
NMOD⇐===== e2 Type change N : λx.c(x) to N |N : λf.λx.∃y.c(x) ∧ f(y) ∧ r(x, y)

Modifier Sacramento, California N : λx.CITY(x) to N |N : λf.λx.∃y.CITY(x) ∧ f(y) ∧ LOCATEDIN(x, y)

Preposition

e1
NMOD⇐===== w PMOD⇐===== e2 w := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ r(x, y)

Sacramento in California in := (N\N)/N : λf.λg.λx.∃y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

e1
SBJ
===⇒ VB* ADV⇐=== w PMOD⇐===== e2 w := PP/N : λf.λx.f(x)

Sacramento is located in California in := PP/N : λf.λx.f(x)

Verb

e1
SBJ
===⇒ w* OBJ⇐=== e2 w* := (S\N)/N : λf.λg.∃x, y.f(y) ∧ g(x) ∧ r(x, y)

Sacramento governs California governs := (S\N)/N : λf.λg.∃x, y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

e1
SBJ
===⇒ w* ADV⇐=== [IN,TO] PMOD⇐===== e2 w* := (S\N)/PP : λf.λg.∃x, y.f(y) ∧ g(x) ∧ r(x, y)

Sacramento is located in California is located := (S\N)/PP : λf.λg.∃x, y.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)

e1
NMOD⇐===== w* ADV⇐=== [IN,TO] PMOD⇐===== e2 w* := (N\N)/PP : λf.λg.λy.f(y) ∧ g(x) ∧ r(x, y)

Sacramento located in California located := (N\N)/PP : λf.λg.λy.f(y) ∧ g(x) ∧ LOCATEDIN(x, y)
Forms of (none) w* := (S\N)/N : λf.λg.∃x.g(x) ∧ f(x)“to be”

Table 1: Dependency parse patterns used to instantiate lexical categories for the semantic parser lexicon Λ. Each
pattern is followed by an example phrase that instantiates it. An * indicates a position that may be filled by multiple
consecutive words in the sentence. e1 and e2 are the entities identified in the sentence, r represents a relation where
r(e1, e2), and c represents a category where c(e1). Each template may be instantiated with multiple values for the
variables e, c, r.

5 sentences in S. The other rules are less fertile, so
we do not need to prune their output.

In addition to these categories, the grammar in-
cludes type-changing rules from N to N |N . These
rules capture noun compounds by allowing nouns to
become functions from nouns to nouns. There are
several such type-changing rules since the resulting
category includes a hidden relation r between the
noun and its modifier (see Table 1). As with lexical
categories, the set of type changing rules included
in the grammar is determined by matching depen-
dency parse patterns to the training data. Similar
rules for noun compounds are used in other CCG
parsers (Clark and Curran, 2007).

The instantiated lexicon represents the semantics
of words and phrases as conjunctions of predicates
from the knowledge base, possibly including exis-
tentially quantified variables and λ expressions. The
syntactic types N and PP are semantically rep-
resented as functions from entities to truth values
(e.g., λx.CITY(x)), while sentences S are statements
with no λ terms, such as ∃x, y.x = CALIFORNIA ∧
CITY(y) ∧ LOCATEDIN(x, y). Variables in the seman-
tic representation (x, y) range over entities from the
knowledge base. Intuitively, the N and PP cate-

gories represent sets of entities, while sentences rep-
resent assertions about the world.

4.2 Extensions to CCG

The semantic parser is trained using sentences from
a web corpus, which contains many out-of-domain
words. As a consequence, many of the words en-
countered during training cannot be represented us-
ing the vocabulary of predicates from the knowl-
edge base. To handle these extraneous words, we
allow the CCG parser to skip words while parsing
a sentence. During parsing, the parser first decides
whether to retrieve a lexical category for each word
in the sentence. The sentence is then parsed as if
only the retrieved lexical categories existed.

4.3 Features

The features f(`, s) for our probabilistic CCG con-
tain two sets of features. The first set contains lexi-
cal features, which count the number of times each
lexical entry is used in `. The second set contains
rule application features, which count the number
of times each combination rule is applied to each
possible set of arguments. An argument is defined
by its syntactic and semantic category, and in some
cases by the lexical entry which created it. We lex-
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icalize arguments for prepositional phrases PP and
common nouns (initialized by the second rule in Ta-
ble 1). This lexicalization allows the parser to dis-
tinguish between prepositional phrases headed by
different prepositions, as well as between different
common nouns. All other types are distinguished
solely by syntactic and semantic category.

5 Evaluation

In this section, we evaluate the performance of
a semantic parser for Freebase, trained using our
weakly-supervised algorithm. Empirical compari-
son is somewhat difficult because the most compara-
ble previous work – weakly-supervised relation ex-
traction – uses a shallower semantic representation.
Our evaluation therefore has two components: (1) a
binary relation extraction task, to demonstrate that
the trained semantic parser extracts instances of bi-
nary relations with performance comparable to other
state-of-the-art systems, and (2) a natural language
database query task, to demonstrate the parser’s abil-
ity to extract more complex logical forms than bi-
nary relation instances, such as logical expressions
involving conjunctions of multiple categories and re-
lations with partially shared arguments.

5.1 Corpus Construction

Our experiments use a subset of 77 relations2 from
Freebase3 as the knowledge base and a corpus of
web sentences. We constructed the sentence corpus
by first sampling sentences from a web crawl and
parsing them with MaltParser (Nivre et al., 2006).
Long sentences tended to have noisy parses while
also rarely expressing relations, so we discarded
sentences longer than 10 words. Entities were iden-
tified by performing a simple string match between
canonical entity names in Freebase and proper noun
phrases identified by the parser. In cases where a
single noun phrase matched multiple entities, we se-
lected the entity participating in the most relations.
The resulting corpus contains 2.5 million (e1, e2, s)
triples, from which we reserved 10% for validation
and 10% for testing. The validation set was used
to estimate performance during algorithm develop-

2These relations are defined by a set of MQL queries and
potentially traverse multiple relation links.

3http://www.freebase.com

Relation Name Relation SentencesInstances
CITYLOCATEDINSTATE 2951 13422
CITYLOCATEDINCOUNTRY 1696 7904
CITYOFPERSONBIRTH 397 440
COMPANIESHEADQUARTEREDHERE 326 432
MUSICARTISTMUSICIAN 251 291
CITYUNIVERSITIES 239 338
CITYCAPITALOFCOUNTRY 123 2529
HASHUSBAND 103 367
PARENTOFPERSON 85 356
HASSPOUSE 81 461

Table 2: Occurrence statistics for the 10 most frequent
relations in the training data. “Relation Instances” shows
the number of entity tuples (e1, e2) that appear as positive
examples for each relation, and “Sentences” shows the
total number of sentences in which these tuples appear.

ment, while the test set was used to generate the fi-
nal experimental results. All triples for each (e1, e2)
tuple were placed in the same set.

Approximately 1% of the resulting (e1, e2, s)
triples are positive examples, meaning there exists
some relation r where r(e1, e2) ∈ ∆4. To improve
training efficiency and prediction performance, we
subsample 5% of the negative examples for training,
producing a training set of 125k sentences with 27k
positive examples. The validation and test sets retain
the original positive/negative ratio. Table 2 shows
some statistics of the most frequent relations in the
test set.

5.2 Relation Extraction

The first experiment measures the semantic parser’s
ability to extract relations from sentences in our web
corpus. We compare our semantic parser to MUL-
TIR (Hoffmann et al., 2011), which is a state-of-
the-art weakly supervised relation extractor. This
method uses the same weak supervision constraint
and parameter estimation procedure, but replaces the
semantic parser by a linear classifier. The features
for this classifier include the dependency path be-
tween the entity mentions, the type of each mention,
and the intervening context (Mintz et al., 2009).

Both the semantic parser and MULTIR were
trained by running 5 iterations of the structured per-

4Note that the positive/negative ratio was much lower with-
out the length filter or entity disambiguation, which is partly
why filtering was performed.
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Figure 3: Aggregate precision as a function of recall, for
MULTIR (Hoffman et al., 2011) and our three semantic
parser variants.
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Figure 4: Sentential precision as a function of the ex-
pected number of correct extractions for MULTIR (Hoff-
man et al., 2011) and our three semantic parser variants.

ceptron algorithm5. At test time, both models pre-
dicted a relation r ∈ R or NONE for each (e1, e2, s)
triple in the test set. The parser parses the sen-
tence without considering the entities marked in the
sentence, then applies the EXTRACTS function de-
fined in Section 3.1 to identify a relation between e1
and e2. We compare three versions of the semantic
parser: PARSE, which is the basic semantic parser,
PARSE+DEP which additionally observes the cor-
rect dependency parse at test time, and PARSE-DEP

which is trained without the syntactic constraint.
Note that MULTIR uses the sentence’s dependency
parse to construct its feature vector.

Our evaluation considers two performance mea-
sures: aggregate and sentential precision/recall. Ag-
gregate precision takes the union of all extracted re-
lation instances r(e1, e2) from the test corpus and
compares these instances to Freebase. To pro-

5The structured perceptron algorithm does not converge to a
parameter estimate, and we empirically found that performance
did not improve beyond 5 iterations.
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Figure 5: Aggregate precision as a function of recall,
ignoring the two most frequent relations, CITYLOCATE-
DINSTATE and CITYLOCATEDINCOUNTRY.

duce a precision/recall curve, each extracted in-
stance r(e1, e2) is assigned the maximum score over
all sentences which extracted it. This metric is easy
to compute, but may be inaccurate due to inaccura-
cies and missing relations in Freebase.

Sentential precision computes the precision of ex-
tractions on individual (e1, e2, s) tuples. This met-
ric is evaluated by manually sampling and evaluat-
ing 100 test sentences from which a relation was ex-
tracted per model. Unfortunately, it is difficult to
compute recall for this metric, since the true number
of sentences expressing relations is unknown. We
instead report precision as a function of the expected
number of correct extractions, which is directly pro-
portional to recall.

Figure 3 displays aggregate precision/recall and
Figure 4 displays sentential precision/recall for all
4 models. Generally, PARSE behaves like MUL-
TIR with somewhat lower recall. In the sentential
evaluation, PARSE+DEP outperforms both PARSE

and MULTIR. The difference between PARSE+DEP’s
aggregate and sentential precision stems from the
fact that PARSE+DEP extracts each relation instance
from more sentences than either MULTIR or PARSE.
PARSE-DEP has the worst performance in both eval-
uations, suggesting the importance of syntactic su-
pervision. Precision in the aggregate experiment is
low partially due to examples with incorrect entity
disambiguation.

We found that the skewed distribution of relation
types hides interesting differences between the mod-
els. Therefore, we include Figure 5 comparing our
syntactically-supervised parsers to MULTIR, ignor-
ing the two most frequent relations (which together
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make up over half of all relation instances). Both
PARSE and PARSE+DEP are considerably more pre-
cise than MULTIR on these less frequent relations
because their compositional meaning representation
shares parameter strength between relations. For
example, the semantic parsers learn that “in” often
combines with a city to form a prepositional phrase;
the parsers can apply this knowledge to identify city
arguments of any relation. However, MULTIR is ca-
pable of higher recall, since its dependency parse
features can represent syntactic dependencies that
cannot be represented by our semantic parsers. This
limitation is a consequence of our heuristic lexicon
initialization procedure, and could be rectified by a
more flexible initialization procedure.

5.3 Natural Language Database Queries

The second experiment measures our trained
parser’s ability to correctly translate natural lan-
guage queries into logical queries against Freebase.

To avoid biasing the evaluation, we constructed
a test corpus of natural language queries in a data-
driven fashion. We searched the test data for sen-
tences with two related entities separated by an “is
a” expression. The portion of the sentence before the
“is a” expression was discarded and the remainder
retained as a candidate query. For example “Jesse is
an author from Austin, Texas,” was converted into
the candidate query “author from Austin, Texas.”
Each candidate query was then annotated with a log-
ical form using categories and relations from the
knowledge base; candidate queries without satisfac-
tory logical forms were discarded. We annotated 50
validation and 50 test queries in this fashion. The
validation set was used to estimate performance dur-
ing algorithm development and the test set was used
to generate the final results. Example queries with
their annotated logical forms are shown in Table 3.

Table 4 displays the results of the query evalua-
tion. For this evaluation, we forced the parser to in-
clude every word of the query in the parse. Precision
is the percentage of successfully parsed queries for
which the correct logical form was predicted. Re-
call is the percentage of all queries for which the
correct logical form was predicted. This evalua-
tion demonstrates that the semantic parser success-
fully interprets common nouns and identifies mul-
tiple relations with shared arguments. The perfor-

Example Query Logical Form
capital of Russia λx.CITYCAPITALOFCOUNTRY(x, RUSSIA)
wife of Abraham λx.HASHUSBAND(x,ABRAHAM)
vocalist from λx.MUSICIAN(x)∧
London, England PERSONBORNIN(x, LONDON)∧

CITYINCOUNTRY(LONDON, ENGLAND)
home of λx.HEADQUARTERS(CONOCOPHILLIPS, x)
ConocoPhillips ∧CITYINCOUNTRY(x, CANADA)
in Canada

Table 3: Example natural language queries and their cor-
rect annotated logical form.

Precision Recall
PARSE 0.80 0.56
PARSE-DEP 0.45 0.32

Table 4: Precision and recall for predicting logical forms
of natural language queries against Freebase. The table
compares PARSE, trained with syntactic supervision to
PARSE-DEP, trained without syntactic supervision.

mance difference between PARSE and PARSE-DEP

also demonstrates the benefit of including syntactic
supervision.

Examining the system output, we find two ma-
jor sources of error. The first is missing lexical cat-
egories for uncommon words (e.g., “ex-guitarist”),
which negatively impact recall by making some
queries unparsable. The second is difficulty distin-
guishing between relations with similar type signa-
tures, such as CITYLOCATEDINCOUNTRY and CITY-
CAPITALOFCOUNTRY.

6 Related Work

There are many approaches to supervised seman-
tic parsing, including inductive logic programming
(Zelle and Mooney, 1996), probabilistic and syn-
chronous grammars (Ge and Mooney, 2005; Wong
and Mooney, 2006; Wong and Mooney, 2007; Lu et
al., 2008), and automatically learned transformation
rules (Kate et al., 2005). This work most closely
follows the work on semantic parsing using CCG
(Zettlemoyer and Collins, 2005; Zettlemoyer and
Collins, 2007; Kwiatkowski et al., 2010). These su-
pervised systems are all trained with annotated sen-
tence/logical form pairs; hence these approaches are
labor intensive and do not scale to broad domains
with large numbers of predicates.

Several recent papers have attempted to reduce
the amount of human supervision required to train
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a semantic parser. One line of work eliminates the
need for an annotated logical form, instead using
only the correct answer for a database query (Liang
et al., 2011) or even a binary correct/incorrect sig-
nal (Clarke et al., 2010). This type of feedback may
be easier to obtain than full logical forms, but still
requires individually annotated sentences. Other ap-
proaches are completely unsupervised, but do not tie
the language to an existing meaning representation
(Poon and Domingos, 2009). It is also possible to
self-train a semantic parser without any labeled data
(Goldwasser et al., 2011). However, this approach
does not perform as well as more supervised ap-
proaches, since the parser’s self-training predictions
are not constrained by the correct logical form.

Recent research has produced several weakly su-
pervised relation extractors (Craven and Kumlien,
1999; Mintz et al., 2009; Wu and Weld, 2010; Riedel
et al., 2010; Hoffmann et al., 2011). These sys-
tems scale up to hundreds of predicates, but have
much shallower semantic representations than se-
mantic parsers. For example, these systems can-
not be directly used to respond to natural language
queries. This work extends weakly supervised rela-
tion extraction to produce richer semantic structure,
using only slightly more supervision in the form of
dependency parses.

7 Discussion

This paper presents a method for training a seman-
tic parser using only a knowledge base and a cor-
pus of unlabeled sentences. Our key observation is
that multiple forms of weak supervision can be com-
bined to train an accurate semantic parser: semantic
supervision from a knowledge base of facts, and syn-
tactic supervision in the form of a standard depen-
dency parser. We presented an algorithm for train-
ing a semantic parser in the form of a probabilistic
Combinatory Categorial Grammar, using these two
types of weak supervision. We used this algorithm
to train a semantic parser for an ontology of 77 Free-
base predicates, using Freebase itself as the weak se-
mantic supervision.

Experimental results show that our trained se-
mantic parser extracts binary relations as well as
a state-of-the-art weakly supervised relation extrac-
tor (Hoffmann et al., 2011). Further experiments

tested our trained parser’s ability to extract more
complex meanings from sentences, including logi-
cal forms involving conjunctions of multiple relation
and category predicates with shared arguments (e.g.,
λx.MUSICIAN(x) ∧ PERSONBORNIN(x, LONDON) ∧
CITYINCOUNTRY(LONDON, ENGLAND)). To test this
capability, we applied the trained parser to natural
language queries against Freebase. The semantic
parser correctly interpreted 56% of these queries,
despite the broad domain and never having seen an
annotated logical form. Together, these two experi-
mental analyses suggest that the combination of syn-
tactic and semantic weak supervision is indeed a suf-
ficient basis for training semantic parsers for a di-
verse range of corpora and predicate ontologies.

One limitation of our method is the reliance on
hand-built dependency parse patterns for lexicon ini-
tialization. Although these patterns capture a va-
riety of linguistic phenomena, they require manual
engineering and may miss important relations. An
area for future work is developing an automated
way to produce this lexicon, perhaps by extend-
ing the recent work on automatic lexicon generation
(Kwiatkowski et al., 2010) to the weakly supervised
setting. Such an algorithm seems especially impor-
tant if one wishes to model phenomena such as ad-
jectives, which are difficult to initialize heuristically
without generating large numbers of lexical entries.

An elegant aspect of semantic parsing is that it is
easily extensible to include more complex linguis-
tic phenomena, such as quantification and events
(multi-argument relations). In the future, we plan
to increase the expressivity of our parser’s mean-
ing representation to capture more linguistic and se-
mantic phenomena. In this fashion, we can make
progress toward broad coverage semantic parsing,
and thus natural language understanding.
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Abstract

This paper proposes cross-lingual language
modeling for transcribing source resource-
poor languages and translating them into tar-
get resource-rich languages if necessary. Our
focus is to improve the speech recognition
performance of low-resource languages by
leveraging the language model statistics from
resource-rich languages. The most challeng-
ing work of cross-lingual language modeling
is to solve the syntactic discrepancies between
the source and target languages. We therefore
propose syntactic reordering for cross-lingual
language modeling, and present a first result
that compares inversion transduction grammar
(ITG) reordering constraints to IBM and lo-
cal constraints in an integrated speech tran-
scription and translation system. Evaluations
on resource-poor Cantonese speech transcrip-
tion and Cantonese to resource-rich Mandarin
translation tasks show that our proposed ap-
proach improves the system performance sig-
nificantly, up to 3.4% relative WER reduction
in Cantonese transcription and 13.3% relative
bilingual evaluation understudy (BLEU) score
improvement in Mandarin transcription com-
pared with the system without reordering.

1 Introduction

Statistical language modeling techniques have
achieved remarkable success in speech and language
processing (Clarkson and Rosenfeld, 1997; Stolcke,
2002). However, this success largely depends on the
availability of a large amount of suitable text data in
a language. Without sufficient text data for training,

it is very difficult to build a practical and usable sta-
tistical language model. Therefore, most of the ad-
vances have been reported in so calledresource-rich
language such as English, Mandarin and Japanese,
after creating linguistic resources of these languages
at considerable cost. Today there are more than
6000 living languages spoken in the world (Gordon
et al., 2005), and most of them have little transcribed
texts and are considered asresource-poorlanguages
(Nakov and Ng, 2009). Many of these languages are
actually spoken by a huge number of speakers (e.g.
some Chinese and Indian languages), and thus there
is still a great demand to build speech and language
processing systems for these languages.

Owing to data scarcity, most often an interpo-
lation (Bellegarda, 2004) of language models be-
tween a resource-poor language and a resource-rich
language is used in most low-resource ASR sys-
tems. Some researchers have proposed transform-
ing resource-rich language models to resource-poor
language models by word-level transduction, either
in a context-independent or context-dependent man-
ner (Hori et al., 2003; Akita and Kawahara, 2006;
Jensson et al., 2009; Neubig et al., 2010). In (Jens-
son et al., 2009), a simple dictionary based context-
independent transduction from a resource-rich lan-
guage to a resource-poor language is exploited to
improve speech recognition of the resource-poor
language. In (Hori et al., 2003; Akita and Kawahara,
2006; Neubig et al., 2010), context-dependent trans-
duction is exploited. In their case, the resource-poor
language is a spoken language, and the resource-rich
language is a written language. They carried out lan-
guage model transformation since the input speech
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is in speaking-style and the output text is in written-
style.

Others have investigated cross-lingual informa-
tion between a resource-poor language and a
resource-rich language. In (Khudanpur and Kim,
2002), cross-language cues are used to improve a
language model of a resource-poor language. They
used cross-lingual unigram probabilities trained
from a story-specific parallel corpus of the resource-
poor and resource-rich languages. They interpo-
late the language model of the resource-poor lan-
guage with those unigram probabilities. In (Kim and
Khudanpur, 2003), an n-gram language model in a
resource-poor language is interpolated with cross-
lingual unigram trigger probabilities. These triggers
are word pairs of the resource-poor and resource-
rich languages with the highest mutual information
across these two languages. Another way of esti-
mating those unigram probabilities is using latent
semantic analysis by measuring cosine similarities
from a document-aligned corpus for any given word
pair (Kim and Khudanpur, 2004).

Both interpolation and word-level transduction
approaches fail to meet the challenge of syntac-
tic discrepancies between the resource-poor and
resource-rich languages. This syntactic discrepan-
cies exist, for example, even between the Sinitic lan-
guages and Indian languages1 of the same family.
Sinitic languages such as Cantonese/Yue, Shang-
hai/Wu, etc. are officially considered as ”dialects”
of the standard Chinese Mandarin (or Putonghua)2.
However, they differ greatly from Mandarin in all
aspects and are not mutually comprehensible. For
instance, in addition to lexical and pronunciation
differences, Cantonese Chinese (Lee, 2011) differs
syntactically from Mandarin as well - we found that
there are approximately 10% syntactic inversions
between sentences of the two forms of Chinese.

We suggest that a better approach than interpo-
lation and word-level transduction is to usecross-
lingual language modelingwith syntactic reorder-

1For example, Hindi and Malayalam (Geethakumary, 2002).
2Since Cantonese does not have an official written form,

there are very few written texts available for training language
models. In this paper, we treat Cantonese as a typical resource-
poor language and Mandarin as a typical resource-rich lan-
guage. This language pair will be used for illustration purposes
throughout this paper.

ing. A reordering model with reordering constraints,
such as ITG constraints (Wu, 1997), IBM con-
straints (Berger et al., 1996), and local constraints
(Kumar and Byrne, 2005) can account for the syn-
tactic differences. It has been shown in (Zens and
Ney, 2003; Kanthak et al., 2005; Dreyer et al., 2007)
that ITG constraints perform better than other con-
straints when tackling the reordering between many
language pairs. Previous work on weighted finite-
state transducer (WFST) based speech translation
such as (Casacuberta et al., 2004; Zhou et al., 2005;
Zhou et al., 2006; Mathias and Byrne, 2006; Ma-
tusov et al., 2006; Saon and Picheny, 2007) only
train the reordering model using IBM constraints,
local constraints or ad hoc rules. We will use
ITG constraints, which have only been applied to
text translation tasks before, to model the syntactic
differences in cross-lingual language modeling for
speech recognition.

We will implement a cross-lingual language
modelusing WFSTs, and integrate it into a WFST-
based speech recognition search space to give both
resource-poor language and resource-rich language
transcriptions. This creates an integrated speech
transcription and translation framework.

This paper is organized as follows: Section 2
presents our proposed cross-lingual language mod-
eling with syntactic reordering. In Section 3, we dis-
cuss speech recognition with cross-lingual language
models. Section 4 and 5 give the experimental setup
and results. We conclude our work at the end of this
paper.

2 Cross-lingual Language Modeling with
Syntactic Reordering

In automatic speech recognition (ASR), given an ob-
served source speech vectorX, the decoding pro-
cess searches the best word sequencev̂I1 (consists
of wordsv1, v2, ..., vI ) by maximizing the posterior
probability P (vI1 |X), wherevI1 is the source tran-
script representing the transcription of the source
speech (see Eq. (1)). According to Bayes’ law,
we can decomposeP (vI1 |X) into an acoustic model
P (X|vI1) and a language modelP (vI1). If a source
languageLv is a resource-rich language, then the
language modelP (vI1) can be well estimated from
sufficient training texts. However, if the source lan-
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guageLv is a resource-poor language, then the lan-
guage modelP (vI1) cannot be reliably or robustly
estimated due to lack of training texts.

v̂I1 = arg max
vI
1

P (vI1 |X) (1)

= arg max
vI
1

P (X|vI1)P (vI1)

= arg max
vI
1

P (X|vI1)
∑

wJ
1

P (vI1 |w
J
1 )P (wJ

1 )

≈ arg max
vI
1

P (X|vI1)max
wJ

1

P (vI1 |w
J
1 )P (wJ

1 )

Since this paper tackles the language modeling
challenge for low-resource speech recognition, here
we just assume that the source languageLv is a
resource-poor language. We further assume that
there is a target languageLw, which is a resource-
rich language closely related to the languageLv.
In order to improve the language modelP (vI1)
of the resource-poor languageLv, we introduce
cross-lingual language modelingby decomposing
the language modelP (vI1) into a translation model
P (vI1 |w

J
1 ) and a language modelP (wJ

1 ) of the
resource-rich languageLw (see Eq. (1)). wJ

1 is
the target resource-rich language transcript that con-
sists of wordsw1, w2, ..., wJ . P (vI1 |w

J
1 )P (wJ

1 ) is
defined as across-lingual language model. It lever-
ages the abundant statistics from the language model
P (wJ

1 ) to improve the language modelP (vI1) of the
resource-poor language.

The translation modelP (vI1 |w
J
1 ) can be esti-

mated by addressing the discrepancies between the
resource-poor languageLv and the resource-rich
languageLw, which can be modeled from a paral-
lel corpus of theLv transcriptvI1 and theLw tran-
script wJ

1 . For the syntactic inversions, we reorder
the word or phrase positions of theLw language
model into those of theLv language model. We
have observed that most of the words are aligned
monotonically betweenLv andLw within a phrase.
This paper, therefore only considers phrase-level re-
ordering, which effectively preserves the monotonic
word sequences within phrases, and significantly re-
duces the number of reordering paths compared with
word-level reordering.

2.1 Preprocessing: Phrase Extraction and
Segmentation

Our discussion starts with phrase extraction from the
parallel corpus. We define a phrase sequenceṽK1
(consists of phrases̃v1, ṽ2, ..., ṽK ) segmented from
the word-levelLv transcriptvI1 andw̃K

1 (consists of
phrasesw̃1, w̃2, ..., w̃K ) segmented from the word-
level Lw transcriptwJ

1 . Furthermore, we define a
reordering sequencerK1 , of which the detail can be
found in Section 2.2.

The phrase-level translation modelP (vI1 |w
J
1 ) is

decomposed into four components (see Eq. (2)):
segmentation modelP (w̃K

1 |w
J
1 ), phrasal reorder-

ing modelP (rK1 |w̃
K
1 , wJ

1 ), phrase-to-phrase trans-
duction modelP (ṽK1 |r

K
1 , w̃K

1 , wJ
1 ) and reconstruc-

tion modelP (vI1 |ṽ
K
1 , rK1 , w̃K

1 , wJ
1 ). Before present-

ing each component model, we need to extract two
phrase tables for theLv transcript and theLw tran-
script, respectively.

P (vI1 |w
J
1 ) ≈ max

ṽK
1
,rK

1
,w̃K

1

P (w̃K
1 |w

J
1 ) ·

P (rK1 |w̃
K
1 , wJ

1 ) ·

P (ṽK1 |r
K
1 , w̃K

1 , wJ
1 ) ·

P (vI1 |ṽ
K
1 , rK1 , w̃K

1 , wJ
1 ) (2)

The phrase extraction is based on word-to-word
alignments of the parallel corpus. We train word
alignments in both directions with GIZA++, and
then symmetrize the two alignments using there-
fined method(Och and Ney, 2003). Figure 1 shows
an example of word-to-word alignment results be-
tween anLv transcript (Cantonese) and anLw

transcript (Mandarin), from which phrase-to-phrase
alignments are derived by identifying deletion, sub-
stitution, insertion and inversion.

Prior to phrasal reordering, the segmentation
modelP (w̃K

1 |w
J
1 ) implemented by a segmentation

WFST Sw is applied to segment a word sequence
wJ
1 in theLw language model into a phrase sequence

{w̃1, w̃2, ..., w̃K}. The maximum number of words
that can be segmented into one phrase is controlled
by a segmentation orders. An example ofSw is
shown in Figure 3(a1). It segments a word sequence
{w1, w2, w3} into a phrase sequence{w1, w2 w3}
after performingcomposition(Mohri, 2009) with the
targetLw language model (see Figure 3(b1 & b2))3.

3The “ ” symbol is used to indicate the concatenation of con-
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Figure 1: An example (in English: Please give me an ad-
dress first) of phrase extraction from word-to-word align-
ments. i and j are word indexes.k′ andk are phrase
indexes. i↔j represents the word-to-word alignment.
k↔k′ represents the indentified phrase-to-phrase align-
ment.

2.2 Phrasal Reordering Model

Given a phrase sequence{w̃1, w̃2, ..., w̃K} of the
Lw transcript, the role of the reordering model
P (rK1 |w̃

K
1 , wJ

1 ) is to reorder phrase positions of the
Lw transcript into those of theLv transcript by per-
mutation ofw̃K

1 according to a reordering sequence
{rK1 : rk ∈ {1, 2, ...,K}, rk 6= rk′ 6=k}. The
phrase sequence{w̃1, w̃2, ..., w̃K} is therefore re-
ordered into{w̃r1 , w̃r2 , ..., w̃rK } consequently (see
Figure 2 whereK = 3). Since arbitrary permuta-
tions ofK phrases are NP-hard (Knight, 1999), re-
ordering constraints have to be set overrK1 to reduce
the number of permutations.

There are three reordering constraints widely used
in statistical machine translation, namely local con-
straints, IBM constraints and ITG constraints. Here
we would like to point out that this is the first
time that reordering constraints have been incorpo-
rated into a cross-lingual language model for speech
recognition.

Reordering Constraints

Local constraints make the restriction that one
phrase can jump at mostL−1 phrases either forward
or backward, whereL is the reordering distance (or
window size of permutation)4. The generation ofrK1
under local constraints can be viewed as solving of
the following problem (Kløve, 2009):

secutive words forming a phrase.
4The concept of reordering distance also applies to other

constraints.

How many permutations of
{1, 2, . . . k . . . ,K} satisfy |rk − k| < L

for all k?

IBM constraints, a superset of local constraints
(Dreyer et al., 2007), generate permutationsrK1 de-
viate from the monotonic phrase order{rK1 : rk =
k}. More specifically, any phrase positionrk can be
selected from the positions of the firstm yet uncov-
ered phrases (see Eq. (3)). A typical value ofm is 4
(Zens and Ney, 2003), and we write IBM constraints
with m = 4 as IBM(4).

rk ∈























{1, 2, ..., k − 1 + m; rk 6= rk′ 6=k}

if k ≤ K + 1−m,

{1, 2, ...,K; rk 6= rk′ 6=k}

if K + 1−m < k ≤ K.

(3)

ITG constraints provide a more faithful coverage
of syntactic reordering in the parallel data than lo-
cal constraints and IBM constraints. Our presenta-
tion of ITG constraints starts with defining of some
permutation sets. LetSK be the set of permuta-
tions on {1,2,. . . ,K}. A permutationrK1 ∈ SK ,
whererK1 = r1r2 . . . rK , contains a subsequence
of type τ ∈ SM if and only if a sequence of in-
dices1 ≤ i1 < i2 < . . . < iM ≤ K exists such
thatri1ri2 . . . riM has all the same pairwise compar-
isons asτ . We denote the set of permutations ofSK

not containing subsequences of typeτ by SK(τ). If
we have setsSK(τ1), . . . , SK(τp), we denote the set
SK(τ1)∩ . . .∩SK(τp) by SK(τ1, . . . , τp) (Barcucci
et al., 2000). ITG constraints allow the permutation
setSK(3142, 2413), which forbids subsequence of
type (3, 1, 4, 2) and its dual(2, 4, 1, 3). Explicitly,
ITG constraints avoid any permutationrK1 satisfy-
ing eitherri2 < ri4 < ri1 < ri3 or ri3 < ri1 <

ri4 < ri2 , where1 ≤ i1 < i2 < i3 < i4 ≤ K. In
(Wu, 1997), these forbidden subsequences are called
“inside-out” transpositions. They are fairly distorted
matchings, and hardly observed in real parallel data.

In order to get an intuitive sense of the reordering
capability of those three constraints, we list the num-
ber of permutations under local constraints, IBM
constraints as well as ITG constraints5 in Table 1.

5Interestingly, whenK = L, the number of permuta-
tions under ITG constraintsNITG = |SK(3142, 2413)|, and
|SK(3142, 2413)| equals theK−1-th Schröder numberssK−1

(Ehrenfeucht et al., 1998)
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Table 1: Comparison of permutation number under local constraints (NLocal), IBM constraints (NIBM(4)) and ITG
constraints (NITG). The comparison is constrained by the phrase numberK and the reordering distanceL.

K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

NLocal 2 3 5 8 13 21 34 55 89

L=2 NIBM(4) 2 3 5 8 13 21 34 55 89

NITG 2 3 5 8 13 21 34 55 89

NLocal 2 6 14 31 73 172 400 932 2177

L=3 NIBM(4) 2 6 14 31 73 172 400 932 2177

NITG 2 6 12 25 57 124 268 588 1285

NLocal 2 6 24 78 230 675 2069 6404 19708

L=4 NIBM(4) 2 6 24 78 230 675 2069 6404 19708

NITG 2 6 22 52 122 321 885 2304 5880

NLocal 2 6 24 120 504 1902 6902 25231 95401

L=5 NIBM(4) 2 6 24 96 330 1066 3451 11581 39264

NITG 2 6 22 90 236 602 1714 5269 16385

NLocal 2 6 24 120 720 3720 17304 76110 329462

L=6 NIBM(4) 2 6 24 96 384 1374 4718 16275 57749

NITG 2 6 22 90 394 1108 3014 9038 29618

We can see that given the sameK (K ≤ 10) and
L (L ≤ 6), IBM constraints have less permutations
than local constraints, and ITG constraints have less
permutations than IBM constraints in general (only
one exception whenK = L = 6). These obser-
vations indicate that ITG constraints can filter out
more unlikely permutations for a fixed reordering
distance, resulting in longer distance reordering ca-
pability.

Table 1 also tells us that the phrase numberK

and the reordering distanceL for any of the con-
straints cannot be too large for practical implemen-
tation. For instance, ifL = 6 andK goes from6 to
7, the order of magnitude ofNLocal, NIBM(4) and
NITG increases from2 to 3. Hence, phrases for per-
mutation should be selective to cover the most pos-
sible re-orderings. If long reordering distances are
allowed, unlikely permutations should be pruned so
that the memory consumption becomes manageable.

Reordering Sequence Distribution

So far we have discussed the issue that how to
generate permutations for the reordering model us-
ing reordering constraints. Another issue is how to
parameterize the reordering sequence distribution.
Both ITG constraints and other constraints assume

that all permutations are equally probable. However,
it makes sense to restrict those non-monotonic re-
orderings when performing the translation. This not
only helps the search of the most likely permutation,
but also guides the pruning of unlikely permutations.

P (rK1 |w̃
K
1 , wJ

1 ) = P (r1)

K
∏

k=2

P (rk|rk−1, w̃
K
1 )

= P (r1)
K
∏

k=2

P (rk|rk−1) (4)

We make a first order Markov assumption over the
phrasal reordering modelP (rK1 |w̃

K
1 , wJ

1 ) (see Eq.
(4)). The reordering sequence distribution is param-
eterized to assign decreasing likelihood to phrase re-
orderings{w̃r1 , w̃r2 , . . . , w̃rK} that diverge from the
original word order (Och et al., 1999; Kumar et al.,
2005). Supposẽwrk = wl′

l and w̃rk−1
= w

q′

q , the
reordering sequence distribution is set as Eq. (5),
wherep0 is a tuning factor. We normalize the proba-
bilities P (rk|rk−1) such that

∑K
k′=1,k′ 6=rk−1

P (rk =

k′|rk−1) = 1.

P (rk|rk−1) = p
|l−q′−1|
0

P (r1 = k) =
1

K
; k ∈ {1, 2, ...,K}

(5)

770



Assume that we have a phrase sequence
{w̃1, w̃2, w̃3}, Figure 2 shows the phrasal reordering
model implemented by a reordering WFSTΩr under
the first order Markov assumption for this phrase se-
quence.

Figure 3(a2) gives one more example ofΩr,
which reorders the phrase sequence{w1, w2 w3}
into {w2 w3, w1}

6. Within the WFST paradigm, re-
ordering models under any of those constraints can
be integrated into the cross-lingual language model.

)(/~:~
111
rPwwr )|(/~:~

1222
rrPwwr )|(/~:~

2333
rrPwwr

Figure 2: An example of reordering WFSTΩr imple-
menting the phrasal reordering model under the first or-
der Markov assumption.

2.3 Phrase-to-Phrase Transduction Model

Once the phrase sequence of theLw transcript
is reordered into theLv transcript order, we use
the phrase-to-phrase transduction model specified in
Eq. (6) to perform the cross-language transduction.
Given sufficient parallel training data, the context-
dependent phrase-to-phrase transduction model can
be estimated using the GIATI method (Casacu-
berta and Vidal, 2004). However, for the trans-
lation task with scarce training data, the context-
dependent transduction probabilities may not be re-
liably estimated. Therefore, we assume that a phrase
ṽk is generated independently by each phrasew̃rk .
C(ṽk, w̃rk) is the number of times that phraseṽk is
aligned tow̃rk in the parallel corpus. This model can
be implemented by a WFSTTvw which transduces
ṽk to w̃rk . Figure 3(a3) shows an example ofTvw

transducingv2 v3 to w2 w3.

P (ṽK1 |r
K
1 , w̃K

1 , wJ
1 ) = P (ṽK1 |r

K
1 , w̃K

1 )

=

K
∏

k=1

Pk(ṽk|w̃rk)

=
K
∏

k=1

C(ṽk, w̃rk)
∑

ṽk
C(ṽk, w̃rk)

(6)

2.4 Reconstruction Model

Reconstruction modelP (vI1 |ṽ
K
1 , rK1 , w̃K

1 , wJ
1 ) oper-

ates in the opposite direction as the segmentation
6For simplicity, reordering sequence distributions are not

shown there.

model. It generates a word sequencevI1 from a
phrase sequencẽvK1 . The reconstruction model can
be implemented by a WFSTRv. An example of
Rv is shown in Figure 3(a4), which reconstructs a
phrasev2 v3 into a word sequence{v2, v3}.

3 Speech Recognition with Cross-Lingual
Language Models

The translation modelP (vI1 |w
J
1 ) can be constructed

via WFST composition (denoted by◦) (Mohri,
2009) of all the component models as shown in Eq.
(7) and Figure 3, whereT is the final composed
WFST that transducesvI1 to wJ

1 .

T = Rv ◦ Tvw ◦ Ωr ◦ Sw (7)

The cross-lingual language modelGcl is con-
structed through composition (see Eq. (8)) of
the translation model and a resource-rich language
modelG.

Gcl = T ◦G = Rv ◦ Tvw ◦ Ωr ◦ Sw ◦G (8)

As the way of integrating a resource-rich lan-
guage modelG into ASR search space (Mohri et al.,
2008), we can integrate the cross-lingual language
modelGcl into ASR search space in a globally op-
timized way as well. The search space can be im-
plemented using a transducerASR, which is for-
mulated with a unified WFST approach as shown
in Eq. (9). HereH transduces HMM states to
context-dependent phones.C represents a trans-
duction from context-dependent phones to context-
independent phones.L is a lexicon transducer which
maps context-independent phone sequences to word
strings restricted to the input symbols of the cross-
lingual language model transducerGcl.

ASR = H ◦ C ◦ L ◦Gcl (9)

Eq. (9) outputs the recognition result in a resource-
rich language. If recognition system requires recog-
nition outputs in a resource-poor language, then the
search space should be constructed as Eq. (10),
where π is a projection (Mohri, 2009) operator
which projects the input label to the output label.
Before decoding, the recognition transducerASR

can be optimized by a determinization operation
right after each composition.

ASR = H ◦ C ◦ L ◦ π(Gcl) (10)
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(a3) Phrase-to-phrase transduction WFSTTvw (b3)Ωr ◦ Sw ◦G
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(b5)Rv ◦ Tvw ◦ Ωr ◦ Sw ◦G

Figure 3: Illustration of constructing a cross-lingual language model via WFSTs: a word sequence{w1, w2, w3}
represented by theLw language modelG (b1) is segmented into a phrase sequence{w1, w2 w3} (b2);{w1, w2 w3} is
reordered into{w2 w3, w1} (b3); phrasew2 w3 is transduced tov2 v3 (b4); phrasev2 v3 is reconstructed into a word
sequence{v2, v3} (b5).wk andvk representwk andvk, respectively. ”-” refers toǫ or null symbol. Auxiliary symbols
#1, #2, · · · are used to make the WFSTdeterminizable(Mohri, 2009) such that the transducer can be optimized by a
determinization(Mohri, 2009) operation which significantly reduces the search network size.
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4 Experimental Setup

4.1 Corpus and Model Training

To investigate the performance of our proposed
cross-lingual language models, we have chosen
Cantonese as a resource-poor language and Man-
darin as a resource-rich language. We have col-
lected Cantonese parliamentary speech from the
Hong Kong Legislative Council. Currently we only
have 4152 parallel transcribed sentences containing
19.4 hours of speech. It is separated into three sets,
a training set (11.9 hours, 2700 sentences), a de-
velopment set (3.7 hours, 788 sentences), and an
evaluation set (3.8 hours, 664 sentences). The sen-
tences in the evaluation set are a bit longer than
those in the development set. The parallel transcrip-
tions of the training set constitute a parallel cor-
pus, which includes Cantonese transcription (man-
ual transcription) of 106k words and Mandarin tran-
scription (Hansard7 transcription) of 80k words. The
statistics of substitutions, insertions, deletions and
inversions identified in the parallel corpus are shown
in Table 2. Besides the parallel corpus, we have a
set of additional Mandarin transcriptions, which has
31M words.

Table 2: No. of substitutions, insertions, deletions and
inversions identified in the parallel corpus with different
segmentation orders.

Segmentation Order s = 2 s = 3 s = 4 s = 5

Substitutions 30921 22723 19011 17106

Insertions 4657 3820 3641 3295

Deletions 1365 1158 1066 1030

Inversions 3000 2876 2814 2779

Total 39943 30577 26532 24210

The training set is used for training an acous-
tic model (includingH andC) using a Maximum
Likelihood criterion. It adopts 13 MFCC coeffi-
cients, together with 13 delta coefficients and 13 ac-
celeration coefficients as the acoustic features. The
acoustic model comprises 73 Hidden Markov Mod-
els (HMMs) to represent 70 Cantonese phonemes as
well as silence, short pause, and noise. During the
acoustic model training, tied-state cross-word tri-
phones are constructed by decision tree clustering.

7Hansard is a name of the printed transcripts of parliamen-
tary debates.

The parallel corpus is used for training the trans-
lation modelT . Together with the parallel corpus,
the additional Mandarin transcriptions are used for
training an interpolated word-level trigram language
model G, where the lexicon size is about 28K. A
modified scheme of Kneser-Ney discounting is ap-
plied for the language modelG with a back-off
threshold of 1 for unigram and 2 for bigram. The
cross-lingual language modelGcl can be obtained
by composition ofT andG.

4.2 Decoding and Evaluation Method

Decoding of the speech recognition search space
ASR is performed by T 3 Decoder (Dixon et
al., 2009), which is a state-of-the-art WFST-based
LVCSR speech decoder. Decoding ofASR in Eq.
(9) gives Mandarin outputs. Decoding ofASR in
Eq. (10) gives Cantonese outputs.

In our experiments, we use the following evalua-
tion criteria:

WER (word error rate). The WER is computed
as the minimum number of substitution, insertion
and deletion operations that have to be performed
to convert the generated sentence into the reference
sentence (Zens et al., 2004). The WER relates the
speech recognition accuracy. The lower WER, the
better.

BLEU (bilingual evaluation understudy) score.
The BLEU score measures the precision ofn-grams
(unigrams, bigrams, trigrams and fourgrams) with
respect to a reference translation with a penalty for
too short sentences (Papineni et al., 2002). The
BLEU score reflects the translation accuracy. The
larger BLEU score, the better.

We perform WER evaluation of decoding out-
puts of Eq. (10) and BLEU score evaluation of
decoding outputs of Eq. (9) using the evaluation
set. The WER evaluation is on the Cantonese output
against the Cantonese reference transcription (man-
ual transcription). The BLEU score evaluation is on
the Mandarin output against the Mandarin reference
transcription (Hansard transcription).

4.3 Parameter Settings

The performance of our proposed cross-lingual lan-
guage models is sensitive to many parameters.
Firstly, segmentation orders affects phrase extrac-
tion. The optimal value depends on the language
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Table 3: WER and BLEU score for decoding results ofH ◦ C ◦ L ◦ G, H ◦ C ◦ L ◦ π(Gcl) without reordering, and
H ◦ C ◦ L ◦ π(Gcl) with reordering under various constraints.

Models H ◦ C ◦ L ◦G

H ◦ C ◦ L ◦ π(Gcl) H ◦ C ◦ L ◦ π(Gcl)

Gcl = T3 ◦G Gcl = T3 ◦G,T3 = Rv ◦ Tvw ◦Ωr ◦ Sw

T3 = Rv ◦ Tvw ◦ Sw Local Constraints IBM Constraints ITG Constraints

WER(%) 29.85 27.05 26.35 26.20 26.13

BLEU N/A 29.23 32.29 32.81 33.12

pair and the size of corpus. Secondly,p0 in the
first order Markov assumption affects the decoding
results. Thirdly, the number of reordering permu-
tations or paths are formidable when the reorder-
ing distanceL is long as suggested by Table 1.
Therefore, we apply histogram pruning to reorder-
ing paths, which only maintains top N most likely
ones. The development set is used for tuning param-
etersp0 andN .

5 Experimental Results

The evaluation results of the proposed cross-lingual
language modelsGcl with reordering under various
constraints are presented in Table 3, whereGcl =
Ts◦G = T3◦G.8 In general, reordering has a signif-
icant effect on enhancing the performance of recog-
nition and translation in the sense of WER reduc-
tion and BLEU improvement. Compared with the
cross-lingual language model without reordering,
the cross-lingual language model with reordering
under local constraints gives 0.70% absolute WER
reduction and 3.06 absolute BLEU improvement.
The cross-lingual language model with reordering
under IBM constraints gives 0.85% absolute WER
reduction and 3.58 absolute BLEU improvement.
The cross-lingual language model with reordering
under ITG constraints yields the best performance,
with 0.92% absolute WER reduction and 3.89 abso-
lute BLEU improvement. All WER improvements
pointed out here are statistically significant at 99%
confidence according to a two-proportional z-test,
and all BLEU improvements are statistically signifi-
cant at 95% confidence according to a paired student
t-test using bootstrap resampling.

8We have chosen segmentation orders = 3 because it works
the best in our system.

6 Conclusions

We have proposed cross-lingual language model-
ing with phrase-level syntactic reordering for low-
resource speech recognition. The cross-lingual lan-
guage modeling enriches a resource-poor language
model by leveraging the language model from a
closely related resource-rich language. It provides
an effective method to solve the low-resource lan-
guage modeling challenge by using a large amount
of resource-rich language (e.g. Mandarin) data
and a small amount of resource-poor language (e.g.
Cantonese) data, as well as some parallel data of
resource-poor and resource-rich languages. With
a cross-lingual language model, our ASR system
can decode speech into transcriptions, either in a
resource-poor language or a resource-rich language,
using a single WFST-based speech decoder.

We have presented a first end-to-end WFST
source to target language transcription and transla-
tion system with syntactic reordering and global op-
timization. Our work is the first to use ITG con-
straints for the syntactic reordering in such an in-
tegrated system. We also did comparative study
of ITG constraints, IBM constraints and local con-
straints in the reordering model, for completeness.
We have also presented the determinizable design of
each transducer for composing a cross-lingual lan-
guage model such that we can optimize the search
network by determinization. This is crucially im-
portant to successfully build a practical integrated
system, and, of course, the work is extremely chal-
lenging.

Experiments on Cantonese recognition and Can-
tonese to Mandarin translation tasks have shown that
our proposed cross-lingual language model substan-
tially improves the performance of the recognition
and translation. The best system gives 12.5% rel-
ative WER reduction in Cantonese (resource-poor
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language) transcriptions over the system using inter-
polation. The best reordering model gives 3.4% rela-
tive WER reduction and 13.3% relative BLEU score
improvement in Mandarin (resource-rich language)
transcriptions over the system without reordering.
The improvements have been found to be statisti-
cally significant.

Even though the objective of our work is for
speech recognition, our proposed cross-lingual lan-
guage modeling can be easily applied to speech
translation of other language pairs for efficient di-
rect decoding from source speech to target text.
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Abstract

We examine the task of resolving complex
cases of definite pronouns, specifically those
for which traditional linguistic constraints
on coreference (e.g., Binding Constraints,
gender and number agreement) as well as
commonly-used resolution heuristics (e.g.,
string-matching facilities, syntactic salience)
are not useful. Being able to solve this task has
broader implications in artificial intelligence:
a restricted version of it, sometimes referred
to as the Winograd Schema Challenge, has
been suggested as a conceptually and practi-
cally appealing alternative to the Turing Test.
We employ a knowledge-rich approach to this
task, which yields a pronoun resolver that out-
performs state-of-the-art resolvers by nearly
18 points in accuracy on our dataset.

1 Introduction

Despite the significant amount of work on pronoun
resolution in the natural language processing com-
munity in the past forty years, the problem is still
far from being solved. Its difficulty stems in part
from its reliance on sophisticated knowledge sources
and inference mechanisms. The sentence pair below,
which we will subsequently refer to as theshoutex-
ample, illustrates how difficult the problem can be:

(1a) Ed shouted at Tim because he crashed the car.
(1b) Ed shouted at Tim because he was angry.

The pronounhe refers toTim in 1a andEd in 1b.
Humans can resolve the pronoun easily, but state-
of-the-art coreference resolvers cannot. The reason
is that humans have the kind ofworld knowledge

needed to resolve the pronouns that machines do not.
Our world knowledge tells us that if someone is an-
gry, he may shout at other people. SinceEdshouted,
he should be the one who was angry. Our world
knowledge also tells us that we may shout at some-
one who made a mistake and that crashing a car is
a mistake. Combining these two pieces of evidence,
we can easily infer thatTimcrashed the car.

Our goal in this paper is to examine the resolu-
tion of complexcases of definite pronouns that ap-
pear in sentences exemplified by theshoutexample.
Specifically, each sentence (1) has two clauses sepa-
rated by a discourse connective (i.e., the connective
appearsbetweenthe two clauses, just likebecause
in the shoutexample), where the first clause con-
tains two or more candidate antecedents (e.g.,Ed
and Tim), and the second clause contains the tar-
get pronoun (e.g.,he); and (2) the target pronoun
agrees in gender, number, and semantic class with
each candidate antecedent, but does not have any
overlap in content words with any of them. For con-
venience, we will refer to the target pronoun that ap-
pears in this kind of sentences as adifficult pronoun.

Note that many traditional linguistic constraints
on coreference are no longer useful for resolving dif-
ficult pronouns. For instance, syntactic constraints
such as the Binding Constraints will not be useful,
since the pronoun and the candidate antecedents ap-
pear in different clauses separated by a discourse
connective; and constraints concerning agreement in
gender, number, and semantic class will not be use-
ful, since the pronoun and the candidate antecedents
are compatible with respect to all these attributes.
Traditionally important clues provided by various
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I(a) The city councilmenrefused the demonstrators a permit becausetheyfeared violence.
I(b) The city councilmen refusedthe demonstratorsa permit becausetheyadvocated violence.
II(a) James askedRobert for a favor, butherefused.
II(b) Jamesasked Robert for a favor, buthewas refused.
III(a) Keith fired Blaine buthedid not regret.
III(b) Keith fired Blaine althoughhe is diligent.
IV(a) Emma did not pass the ball toJanie, althoughshewas open.
IV(b) Emma did not pass the ball to Janie, althoughsheshould have.
V(a) Medvedev will cede the presidency toPutin becausehe is more popular.
V(b) Medvedevwill cede the presidency to Putin becausehe is less popular.

Table 1: Sample twin sentences. The target pronoun in each sentence is italicized, and its antecedent is boldfaced.

string-matching facilities will not be useful either,
since the pronoun and its candidate antecedents do
not have any words in common.

As in theshoutexample, we ensure that each sen-
tence has atwin. Twin sentences were used ex-
tensively by researchers in the 1970s to illustrate
the difficulty of pronoun resolution (Hirst, 1981).
We consider two sentences as twins if (1) they
are identical up to and possibly including the dis-
course connective; and (2) the difficult pronouns in
them are lexically identical but have different an-
tecedents. The presence of twins implies that syn-
tactic salience, a commonly-used heuristic in pro-
noun resolution that prefers the selection of syntac-
tically salient candidate antecedents, may no longer
be useful, since the candidate in the subject position
is not more likely to be the correct antecedent than
the other candidates.

To enable the reader to get a sense of how hard it is
to resolve difficult pronouns, Table 1 shows sample
twin sentences from our dataset. Note that state-of-
the-art pronoun resolvers (e.g., JavaRAP (Qiu et al.,
2004), GuiTaR (Poesio and Kabadjov, 2004), as well
as those designed by Mitkov (2002) and Charniak
and Elsner (2009)) and coreference resolvers (e.g.,
BART (Versley et al., 2008), CherryPicker (Rahman
and Ng, 2009), Reconcile (Stoyanov et al., 2010),
the Stanford resolver (Raghunathan et al., 2010; Lee
et al., 2011)) cannot accurately resolve the difficult
pronouns in these structurally simple sentences, as
they do not have the mechanism to capture the fine
distinctions between twin sentences. In other words,
when given these sentences, the best that the existing
resolvers can do to resolve the pronouns is guess-
ing. This could be surprising to a non-coreference

researcher, but it is indeed the state of the art.
A natural question is: why do existing resolvers

not attempt to handle difficult pronouns? One rea-
son could be that these difficult pronouns do not
appear frequently in standard evaluation corpora
such as MUC, ACE, and OntoNotes (Bagga, 1998;
Haghighi and Klein, 2009). In fact, the Stanford
coreference resolver (Lee et al., 2011), which won
the CoNLL-2011 shared task on coreference resolu-
tion, adopts the once-popular rule-based approach,
resolving pronouns simply with rules that encode
the aforementioned traditional linguistic constraints
on coreference, such as the Binding constraints and
gender and number agreement.

The infrequency of occurrences of difficult pro-
nouns in these standard evaluation corpora by no
means undermines their significance, however. In
fact, being able to automatically resolve difficult
pronouns has broader implications in artificial intel-
ligence. Recently, Levesque (2011) has argued that
the problem of resolving the difficult pronouns in
a carefully chosen set of twin sentences, which he
refers to as the Winograd Schema Challenge1, could
serve as a conceptually and practically appealing
alternative to the well-known Turing Test (Turing,

1Levesque (2011) defines a Winograd Schema as a small
reading comprehension test involving the question of whichof
the two candidate antecedents for the definite pronoun in a given
sentence is its correct antecedent. Levesque names this chal-
lenge after Winograd because of his pioneering attempt to use a
well-known pair of twin sentences — specifically the first pair
in Table 1 — to illustrate the difficulty of natural language un-
derstanding (Winograd, 1972). Strictly speaking, we are ad-
dressing a relaxed version of the Challenge: while Levesque
focuses solely on definite pronouns whose resolution requires
background knowledgenot expressed in the words of a sen-
tence, we do not impose such a condition on a sentence.
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1950). The reason should perhaps be clear given the
above discussion: this is an easy task for a subject
who can “understand” natural language but a chal-
lenging task for one who can only make intelligent
guesses. Levesque believes that “with a very high
probability”, anything that can resolve correctly a
series of difficult pronouns “is thinking in the full-
bodied sense we usually reserve for people”. Hence,
being able to make progress on this task enables us
to move one step closer to building an intelligent ma-
chine that can truly understand natural language.

To sum up, an important contribution of our work
is that it opens up a new line of research involving
a problem whose solution requires a deeper under-
standing of a text. With recent advances in knowl-
edge extraction from text, we believe that time is ripe
to tackle this problem. It is worth noting that some
researchers have focused on other kinds of anaphors
that are hard to resolve, including bridging anaphors
(e.g., Poesio et al. (2004)) and anaphors referring
to abstract entities, such as those realized by verb
phrases in dialogs (e.g., Byron (2002), Strube and
Müller (2003), Müller (2007)). Nevertheless, to our
knowledge, there has been little work that specifi-
cally targets difficult pronouns.

Given the complexity of our task, we investigate
a variety of sophisticated knowledge sources for re-
solving difficult pronouns, and combine them via a
machine learning approach. Note that there has been
a recent surge of interest in extracting world knowl-
edge from online encyclopedias such as Wikipedia
(e.g., Ponzetto and Strube (2006, 2007), Poesio et
al. (2007)), YAGO (e.g., Bryl et al. (2010), Rahman
and Ng (2011), Uryupina et al. (2011)), and Free-
base (e.g., Lee et al. (2011)). However, the resulting
extractions are primarily IS-A relations (e.g.,Barack
ObamaIS-A U. S. president), which would not be
useful for resolving definite pronouns.

2 Dataset Creation

We asked 30 undergraduate students who are not af-
filiated with this research to compose sentence pairs
(i.e., twin sentences) that conform to the constraints
specified in the introduction. Each student was also
asked to annotate the candidate antecedents, the tar-
get pronoun, and the correct antecedent for each
sentence she composed. Note that a sentence may

contain multiple pronouns, but exactly one of them
— the one explicitly annotated by its author — is
the target pronoun. Each sentence pair was cross-
checked by one other student to ensure that it (1)
conforms to the desired constraints and (2) does not
contain pronouns with ambiguous antecedents (in
other words, a human should not be confused as
to which candidate antecedent is the correct one).
At the end of the process, 941 sentence pairs were
considered acceptable, and they formed our dataset.
These sentences cover a variety of topics, ranging
from real events (e.g., Iran’s plan to attack the Saudi
ambassador to the U.S.), to events and characters in
movies (e.g., Batman and Robin), to purely imagi-
nary situations (e.g., theshoutexample). We parti-
tion these sentence pairs into a training set and a test
set following a 70/30 ratio.

While not requested by us, the students annotated
exactly two candidate antecedents for each sentence.
For ease of exposition, we will assume below that
there are two candidate antecedents per sentence.

3 Machine Learning Framework

Since our goal is to determine which of the two can-
didate antecedents is the correct antecedent for the
target pronoun in each sentence, our system assumes
as input the sentence, the target pronoun, and the two
candidate antecedents.

We employ machine learning to combine the
features derived from different knowledge sources.
Specifically, we employ aranking-basedapproach.
Ranking-based approaches have been shown to out-
perform their classification-based counterparts (De-
nis and Baldridge, 2007, 2008; Iida et al., 2003;
Yang et al., 2003). Given a pronoun and two can-
didate antecedents, we aim to train a ranking model
that ranks the two candidates such that the correct
antecedent is assigned a higher rank.

More formally, given training sentenceSk con-
taining target pronounAk, correct antecedentCk

and incorrect antecedentIk, we create two feature
vectors,xCAk

and xIAk
, wherexCAk

is generated
from Ak and Ck, and xIAk

is generated fromAk

and Ik. The training set consists of ordered pairs
of feature vectors (xCAk

, xIAk
), and the goal of the

training procedure is to acquire a ranker that mini-
mizes the number of violations of pairwise rankings
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provided in the training set. We train this ranker us-
ing Joachims’ (2002) SVMlight package. It is worth
noting that we donot exploit the fact that each sen-
tence has a twin in training or testing.

After training, the ranker can be applied to the test
instances, which are created in the same way as the
training instances. For each test instance, the target
pronoun is resolved to the higher-ranked candidate
antecedent.

4 Linguistic Features

We derive linguistic features for resolving difficult
pronouns from eight components, as described be-
low. To enable the reader to keep track of these fea-
tures more easily, we summarize them in Table 2.

4.1 Narrative Chains

Consider the following sentence:

(2) Ed punished Tim because he tried to escape.

Humans resolvehe to Tim by exploiting the world
knowledge that someone who tried to escape is bad
and therefore should be punished. Such kind of
knowledge can be extracted fromnarrative chains.

Narrative chains are partially ordered sets of
events centered around a commonprotagonist, aim-
ing to encode the kind of knowledge provided by
scripts (Schank and Abelson, 1977). While scripts
are hand-written, narrative chains can be learned
from unannotated text. Below is a chain learned by
Chambers and Jurafsky (2008):

borrow-s invest-s spend-s pay-s raise-s lend-s

As we can see, a narrative chain is composed of a
sequence of events (verbs) together with the roles of
the protagonist. Here, “s” denotes the subject role,
even though a chain can contain a mix of “s” and “o”
(the object role). From this chain, we know that the
person who borrows something (probably money)
may invest, spend, pay, or lend it.

We employ narrative chains to heuristically pre-
dict the antecedent for the target pronoun, and en-
code the prediction as a feature. The heuristic de-
cision procedure operates as follows. Given a sen-
tence, we first determine the event the target pro-
noun participates inand its role in the event. As
an example, we determine that in sentence (2)he
participates in thetry event and theescapeevent

Component # Features Features
Narrative Chains 1 NC
Google 4 G1, G2, G3, G4
FrameNet 4 FN1, FN2, FN3, FN4
Heuristic Polarity 3 HPOL1, HPOL2, HPOL3
Learned Polarity 3 LPOL1, LPOL2, LPOL3
Connective-Based 1 CBR

Relation
Semantic Compat. 3 SC1, SC2, SC3
Lexical Features 68,331 antecedent- independent

and dependent features

Table 2: Summary of the features described in Section 4.

as asubject.2 Second, we determine the event(s)
that the candidate antecedents participate in. In (2),
both candidate antecedents participate in thepun-
ish event. Third, we pair each event participated
by each candidate antecedent with each event par-
ticipated by the pronoun. In our example, we would
create two pairs, (punish, try-s) and (punish, escape-
s). Note thattry andescapeare associated with the
role of the pronoun that we extracted in the first step.
Fourth, for each such pair, we extract all the narra-
tive chains containing both elements in the pair from
Chambers and Jurafsky’s output.3 This step results
in one chain being extracted, which contains punish-
o and escape-s. In other words, the protagonist in
this chain is the subject of anescapeevent and the
object of apunishevent. Fifth, from the extracted
chain, we obtain the role played by the pronoun (i.e.,
the protagonist) in the event in which the candidate
antecedents participate. In our example, the pronoun
plays an object role in thepunishevent. Finally, we
extract the candidate antecedent that plays the ex-
tracted role, which in our example is the second an-
tecedent,Tim.4

We create a binary feature, NC, which encodes
this heuristic decision, and compute its value as fol-
lows. Assume in the rest of the paper thati1 and
i2 are the feature vectors corresponding to the first
candidate antecedent and the second candidate an-

2Throughout the paper, the subject/object of an event refers
to its deeprather thansurfacesubject/object. We determine
the grammatical role of an NP using the Stanford dependency
parser (de Marneffe et al., 2006) and a set of simple heuristics.

3We employ narrative chains of length 12, which are
available from http://cs.stanford.edu/people/
nc/schemas/schemas-size12.

4For an alternative way of using narrative chains for coref-
erence resolution, see Irwin et al. (2011).
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tecedent, respectively.5 For our running example,
sinceTim is predicted to be the antecedent ofhe,
the value of NC ini2 is 1, and its value ini1 is 0.
For notational convenience, we write NC(i1)=0 and
NC(i2)=1, and will follow this convention when de-
scribing the features in the rest of the paper.

Finally, we note that NC(i1) and NC(i2) will
both be set to zero if (1) the pronoun and the an-
tecedents do not participate in events, or (2) no nar-
rative chains can be extracted in step 4 above, or (3)
step 4 enables us to extract more than one chain and
these chains indicate that the candidate antecedent
can have both a subject role and an object role.

4.2 Google

Consider the following sentences:

(3a) Lions eat zebras because they are predators.
(3b) The knife sliced through the flesh because

it was sharp.

Humans resolvethey to Lions in (3a) by exploiting
the world knowledge that predators attack and eat
other animals. Similarly, humans resolveit to the
knife in (3b) by exploiting the world knowledge that
the wordsharpcan be used to describe a knife but
not flesh. To acquire this kind of world knowledge,
we learn patterns of word usage from the Web by
issuing search queries. To facilitate our discussion,
let us first introduce some notation. Let a sentence
S be denoted by a triple (Z1, Conn, Z2), whereZ1

andZ2 are the clauses preceding and following the
discourse connectiveConn, respectively;A ∈ Z2

be the pronoun governed by the verbV ; W be the
sequence of words followingV in S; andC1, C2 ∈
Z1 be the candidate antecedents.

Given a sentence, we generate four queries: (Q1)
C1V ; (Q2)C2V ; (Q3)C1V W ; and (Q4)C2V W . If
v is a verb-to-be followed by an adjectiveJ , we gen-
erate two more queries: (Q5)JC1 and (Q6)JC2.
To exemplify, six queries are generated for (3b):
(Q1) “knife was”; (Q2) “flesh was”; (Q3) “knife was
sharp”; (Q4) “flesh was sharp”; (Q5) “sharp knife”;
and (Q6) “sharp flesh”. On the other hand, only four
queries are generated for (3a): (Q1) “lions are”; (Q2)

5The nth candidate antecedent in a sentence is thenth an-
notated NP encountered when processing the sentence in a left-
to-right manner. In sentence (2),Ed is the first candidate an-
tecedent andTim is the second.

“zebras are”; (Q3) “lions are predators”; and (Q4)
“zebras are predators”.

Using the counts returned by Google for these
queries, we create four features, G1, G2, G3, and
G4, whose values are determined by Rules 1, 2, 3,
and 4, respectively, as described below.

Rule 1: if count(Q1)> count(Q2) by at
least x% then G1(i1)=1 and G1(i2)=0;
else ifcount(Q2)> count(Q1) by at least
x% then G1(i2)=1 and G1(i1)=0; else
G1(i1)=G1(i2)=0.

Rule 2: if count(Q3)> count(Q4) by at
least x% then G2(i1)=1 and G2(i2)=0;
else ifcount(Q4)> count(Q3) by at least
x% then G2(i2)=1 and G2(i1)=0; else
G2(i1)=G2(i2)=0.

Rule 3: if count(Q5)> count(Q6) by at
least x% then G3(i1)=1 and G3(i2)=0;
else ifcount(Q6)> count(Q5) by at least
x% then G3(i2)=1 and G3(i1)=0; else
G3(i1)=G3(i2)=0.

Rule 4: if one of G1(i1) and G1(i2) is 1,
then G4(i1)=G1(i1) and G4(i2)=G1(i2);
else if one of G2(i1) and G2(i2) is 1,
then G4(i1)=G2(i1) and G4(i2)=G2(i2);
else if one of G3(i1) and G3(i2) is 1,
then G4(i1)=G3(i1) and G4(i2)=G3(i2);
elseG4(i1)=G4(i2)=0.

The role of the thresholdx should be obvious: it
ensures that a heuristic decision is made only if the
difference between the counts for the two queries are
sufficiently large, because otherwise there is no rea-
son for us to prefer one candidate antecedent to the
other. In all of our experiments, we setx to 20.

Note that other researchers have also used lexico-
syntactic patterns to generate search queries for
bridging anaphora resolution (e.g., Poesio et al.
(2004)), other-anaphora resolution (e.g., Modjeska
et al. (2003)), and learning selectional preferences
for pronoun resolution (e.g., Yang et al. (2005)).
However, in each of these three cases, the targetre-
lations (e.g., the part-whole relation in the case of
bridging anaphora resolution, and the subject-verb
and verb-object relations in the case of selectional
preferences) are specific enough that they can be ef-
fectively captured by specific patterns. For example,
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to determine whetherthe wheelis part ofthe car in
bridging anaphora resolution, Poesio et al. employ
queries of the form “X of Y”, where X and Y would
be replaced withthe wheelandthe car, respectively.
On the other hand, we are not targeting a particular
type of relation. Rather, we intend to capture world
knowledge likelions rather than zebras are preda-
tors. Such knowledge may not be expressed as a
relation and hence may not be easily captured using
specific patterns. For this reason, we need to employ
patterns as general as those such as Q3 and Q4.

4.3 FrameNet

If we generate search queries as described in the pre-
vious subsection for theshoutexample, it is unlikely
that Google will return meaningful counts to us. The
reason is that both candidate antecedents in the sen-
tence are proper names belonging to the same type
(which in this case is PERSON).

However, in some cases, we may be able to gener-
ate more meaningful queries from such kind of sen-
tences. Consider the following sentence:

(4) John killed Jim, so he was arrested.

To generate meaningful queries, we make one ob-
servation:JohnandJim played different roles in a
kill event. Hence, we can replace these proper names
with their roles. We propose to obtain these roles
from FrameNet (Baker et al., 1998). More gener-
ally, for each proper namee in a given sentence, we
(1) determine the event in whiche is involved (using
the Stanford dependency parser); (2) search for the
FrameNet frame corresponding to the event as well
as e’s role in the event; and (3) replace the name
with its FrameNet role. In our example, since both
names are involved in thekill event, we retrieve the
FrameNet frame forkill . Given thatJohnandJimare
the subject and object ofkill , we can extract their se-
mantic roles directly from the frame, which arekiller
andvictim, respectively.6 Consequently, we replace
the two names with their extracted semantic roles,
and generate the search queries from the resulting
sentence in the same way as before.

Note that if no frames can be found for the verb in
the first clause, no search queries will be generated.
After obtaining the query counts, we generate four
binary features, FN1, FN2, FN3, FN4, whose values

6We heuristically map grammatical roles to semantic roles.

are computed based on the same four heuristic rules
that were discussed in the previous subsection.

4.4 Heuristic Polarity

Some sentences involve comparing the two candi-
date antecedents. Consider the following sentences:

(5a) John was defeated by Jim in the election
even though he is more popular.

(5b) John was defeated by Jim in the election
because he is more popular.

The pronounhe refers toJohn in (5a) andJim in
(5b). To see how we can design an algorithm for re-
solving these pronouns, it would be useful to under-
stand how humans resolve them. The phrasemore
popular has a positive sentiment. In (5a), the use
of even thoughyields a clause of concession, which
flips the polarity ofmore popular(from positive to
negative), whereas in (5b), the use ofbecauseyields
a clause of cause, which does not change the po-
larity of more popular(i.e., more popularremains
positive). Sincemore popularis used to describehe,
he is “better” in (5b) but “worse” in (5a). Now, the
word defeathas a positive sentiment, and sinceJim
is thedeep subjectof defeat, Jim is “better” andJohn
is “worse”. Finally, in (5b),heandJim are “better”,
sohe is resolved toJim; on the other hand, in (5a),
heandJohnare “worse”, sohe is resolved toJohn.

We automate this (human) method for resolv-
ing pronouns as follows. We begin by determin-
ing whether we can assign arank value(i.e., “bet-
ter” or “worse”) to the pronoun and the two can-
didate antecedents. For instance, to determine the
rank value of the pronounA, we first determine the
polarity valuepA of its anchorword wA, which is
either the verbv for whichA serves as the deep sub-
ject, or the adjective modifyingA if v does not ex-
ist,7 using Wilson et al.’s (2005b) subjectivity lex-
icon.8 If pA is not NEUTRAL, we check whether
it can be flipped by the context ofwA. We con-
sider three kinds of polarity-reversing context: nega-
tion, comparative adverb, and discourse connective.
Specifically, we determine whetherwA is negated
using the Stanford dependency parser, which explic-

7In the sentiment analysis and opinion mining literature,
(wA, pA) is known as an opinion-target pair.

8The lexicon contains 8221 words, each of which is hand
labeled with a polarity of POSITIVE, NEGATIVE, or NEUTRAL.
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itly annotates instances of negation; we determine
the existence of a comparative adverb (e.g., “more”,
“less”) using the POS tag “RBR”; and we determine
whetherA exists in a clause headed by a polarity-
reversing connective, such asalthough. After flip-
pingpA by context, we can inferA’s rank value from
it. Specifically,A’s rank value is “better” ifpA is
positive; “worse” if pA is negative; and “cannot be
determined” ifpA is neutral. The polarity values of
the two candidate antecedents can be determined in
a similar fashion. Note that sometimes we may need
to infer rank values. For example, given the sentence
“Jane is prettier than Jill”,prettier has a positive po-
larity, so its modifying NP,Jane, has a “better” rank,
and we can infer thatJill ’s rank is “worse”.

We create three features, HPOL1, HPOL2, and
HPOL3, based on our heuristic polarity determina-
tion component. Specifically, if the rank value of
the pronoun or the rank value of one or both of the
candidate antecedents cannot be determined, the val-
ues of all three binary features will be set to zero
for both i1 andi2. Otherwise, we compute the val-
ues of the three features as follows. To compute
HPOL1, which is a binary feature, we (1) employ
a heuristic resolution procedure, which resolves the
pronoun to the candidate antecedent with the same
rank value, and then (2) encode the outcome of this
heuristic procedure as the value of HPOL1. For ex-
ample, since the first candidate antecedent,John, is
predicted to be the antecedent in (5a), HPOL1(i1)=1
and HPOL1(i2)=0. The value of HPOL2 is the
concatenation of the polarity values determined
for the pronoun and the candidate antecedent.
Referring again to (5a), HPOL2(i1)=positive-
positive and HPOL2(i2)=positive-negative. To
compute HPOL3 for a given instance, we sim-
ply take its HPOL2 value and append the
connective to it. Using (5a) as an exam-
ple, HPOL3(i1)=positive-positive-even-though and
HPOL3(i1)=positive-negative-even-though.

4.5 Machine-Learned Polarity

In the previous subsection, we compute the polarity
of a word by updating its prior polarity heuristically
with contextual information. We hypothesized that
polarity could be computed more accurately by em-
ploying a sentiment analyzer that can capture richer
contextual information. For this reason, we employ

OpinionFinder (Wilson et al., 2005a), which has a
pre-trained classifier for annotating the phrases in a
sentence with their contextual polarity values.

Given a sentence and the polarity values of the
phrases annotated by OpinionFinder, we determine
the rank values of the pronoun and the two candi-
date antecedents by mapping them to the polarized
phrases using the dependency relations provided by
the Stanford dependency parser. We create three bi-
nary features, LPOL1, LPOL2, and LPOL3, whose
values are computed in the same way as HPOL1,
HPOL2, and HPOL3, respectively, except that the
computation here is based on the machine-learned
polarity values rather than the heuristically deter-
mined polarity values.

4.6 Connective-Based Relations

Consider the following sentences:

(6a) Google bought Motorola because they
want its customer base.

(6b) Google bought Motorola because they
are rich.

Humans resolvetheyto Googlein (6a) by exploit-
ing the world knowledge that there is a causal rela-
tion (signaled by the discourse connectivebecause)
between thewantevent and thebuy event. A simi-
lar mechanism is used to resolvethey to Googlein
(6b): from world knowledge we know that there is a
causal relation betweenrich andbuy.

We automate this (human) method for resolving
pronouns as follows. First, we gather connective-
based relations of this kind from a large, unanno-
tated corpus. In our experiments, we use as our
unannotated corpus the documents in three text cor-
pora (namely, BLLIP, Reuters, and English Giga-
word), but retain only those sentences that con-
tain a single discourse connective and do not be-
gin with the connective. From these sentences,
we collect triples and their frequencies of occur-
rences in the corpus. Each triple is of the form
(V ,Conn,X), whereConn is a discourse connec-
tive, V is a stemmed verb in the clause preceding
Conn, andX is a stemmed verb or an adjective in
the clause followingConn. Each triple essentially
denotes a relation betweenV andX expressed by
Conn. Conceivably, the strength of the relation in a
triple increases with its frequency count.
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We use the frequency counts of these triples to
heuristically predict the correct antecedent for a tar-
get pronoun. Given a sentence whereConn is the
discourse connective,X is the stemmed verb gov-
erning the target pronounA or the adjective modify-
ing A (if X is a to beverb), andV is the stemmed
verb governing the candidate antecedents, we re-
trieve the frequency count of the triple (V ,Conn,X).
If the count is at least 100, we employ a procedure
for heuristically selecting the antecedent for the tar-
get anaphor. Specifically, ifX is a verb, then it re-
solves the target pronoun to the candidate antecedent
that has the same grammatical role as the pronoun.
However, ifX is an adjective and the sentence does
not involve comparison, then it resolves the target
pronoun to the candidate antecedent serving as the
subject ofV .

We create a binary feature,CBR, that encodes
this heuristic decision. In our running example, the
triple (buy, because, want) occurs 860 times in our
corpus, so the pronounthey is resolved to the can-
didate antecedent that occurs as the subject ofbuy.
Hence, CBR(i1)=1 and CBR(i2)=0. However, had
the triple occurred less than 100 times, both of these
features would have been set to zero.

4.7 Semantic Compatibility

Some of the queries generated by the Google com-
ponent, such as Q1 and Q2, aim to capture the
semantic compatibility between a candidate an-
tecedent,C, and the verb governing the target pro-
noun,V . However, using web search queries to esti-
mate semantic compatibility has potential problems,
including (1) aprecisionproblem: the fact thatC
and V appear next to each other in a query does
not necessarily imply that a subject-verb relation ex-
ists between them; and (2) arecall problem: these
queries fail to capture subject-verb relations where
C andV are not immediately adjacent to each other.

To address these potential problems, we com-
pute knowledge of selectional preferences from a
large, unannotated corpus. As before, we cre-
ate our unannotated corpus using the documents in
BLLIP, Reuters, and English Gigaword. Specifi-
cally, we first parse each sentence in the corpus us-
ing the Stanford dependency parser. Then, for each
stemmed verbv and each stemmed nounn in the
corpus, we collect the following statistics: (1) the

number of timesn is the subject ofv; (2) the num-
ber of timesn is the direct object ofv; (3) the mutual
information (MI) of v andn (with n as the subject
of v); and (4) the MI ofv andn (with n as the direct
object ofv).9

To understand how we use these statistics to gen-
erate features for resolving pronouns, consider the
following sentence:

(7) The man stole the neighbor’s bike because
he needed one.

Assuming that the target pronoun and its govern-
ing verbV has grammatical relationGR, we create
three features, SC1, SC2, and SC3, based on our se-
mantic compatibility component. SC1 encodes the
MI value of the head noun of a candidate antecedent
and V (and GR). SC2 is a binary feature whose
value indicates which of the candidate antecedents
has a larger MI value withV (andGR). SC3 is the
same as SC2, except that MI is replaced with corpus
frequency. In other words, SC2 and SC3 employ
different measures to heuristically predict the cor-
rect antecedent for the target pronoun. If the target
pronoun is governed by ato beverb, the values of
these three features will all be set to zero.

Given our running example, we first retrieve
the following corpus-based statistics: MI(need:subj,
man)=0.6322; MI(need:subj, neighbor)=0.3975;
count(need:subj, man)=474; and count(need:subj,
neighbor)=68. Using these statistics, we can then
compute the aforementioned features for our exam-
ple. Specifically, SC1(i1)=0.6322, SC1(i2)=0.3975,
SC2(i1)=1, SC2(i2)=0, SC3(i1)=1, and SC3(i2)=0.

4.8 Lexical Features

We exploit the coreference-annotated training docu-
ments by creatinglexical features from them. These
lexical features can be divided into two categories,
depending on whether they are computed based on
the candidate antecedents.

Let us begin with theantecedent-independentfea-
tures. Assuming thatW is an arbitrary word in a
sentenceS that is not part of a candidate antecedent
and Conn is the connective inS, we create three
types of binary-valued antecedent-independent fea-
tures, namely (1)unigrams, where we create one

9We use the same formula as described in Section 4.2 of
Bergsma and Lin (2006) to compute MI values.
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feature for eachW ; (2) word pairs, where we cre-
ate features by pairing eachW appearing before
Conn with eachW appearing afterConn, exclud-
ing adjective-noun and noun-adjective pairs10; and
(3) word triples, where we augment each word pair
in (2) with Conn. The value of each featuref indi-
cates the presence or absence off in S.

Next, we compute theantecedent-dependentfea-
tures. Let (1)HC1

andHC2
be the head words of

candidate antecedentsC1 andC2, respectively; (2)
VC1

, VC2
, andVA be the verbs governingC1, C2,

and the target pronounA, respectively; and (3)JC1
,

JC2
, andJA be the adjectives modifyingC1, C2, and

A, respectively.11 We create from each candidate an-
tecedent four features, each of which is a word pair.
FromC1, we create (HC1

, VC1
), (HC1

, JC1
), (HC1

,
VA), and (HC1

, JA), all of which will appear in the
feature vector corresponding toC1. A similar set of
four features are created fromC2. These antecedent-
dependent features are all binary-valued.

It is worth mentioning that while we also consid-
ered word triples in the connective-based relations
component and word pairs in the semantic compat-
ibility component, in those components we deter-
mine their usefulness in an unsupervised manner,
whereas by employing them as lexical features we
determine their usefulness in a supervised manner.

5 Evaluation

5.1 Experimental Setup

Dataset. We report results on the test set, which
comprises 30% of our hand-annotated sentence pairs
(see Section 2 for details).

Evaluation metrics. Results are expressed in
terms of accuracy, which is the percentage of cor-
rectly resolved target pronouns. We also report the
percentages of these pronouns that are (1) not re-
solved and (2) incorrectly resolved.

5.2 Results and Discussion

The Random baseline. Our first baseline is a re-
solver that randomly guesses the antecedent for the

10Pairing an adjectiveA in one clause with a nounN in an-
other clause may mislead the learner into thinking thatN is
modified byA, and hence we do not create such pairs.

11If C1, C2, and A are not modified by adjectives, no
adjective-based features will be created.

target pronoun in each sentence. Since there are
two candidate antecedents per sentence, the Random
baseline should achieve an accuracy of 50%.

The Stanford resolver. Our second baseline is the
Stanford resolver (Lee et al., 2011), which achieves
the best performance in the CoNLL 2011 shared task
(Pradhan et al., 2011). As a rule-based resolver, it
does not exploit any coreference-annotated data.

Recall from Section 3 that our system assumes as
input not only a sentence containing a target pronoun
but also the two candidate antecedents. To ensure a
fair comparison, the same input is provided to this
and other baselines. Hence, if the Stanford resolver
decides to resolve the target pronoun, it will resolve
it to one of the two candidate antecedents. However,
if it does not have enough confidence about resolv-
ing it, it will leave it unresolved. Its performance on
the test set is shown in the “Unadjusted Scores” col-
umn in row 1 of Table 3. As we can see, it correctly
resolves 40.1% of the pronouns, incorrectly resolves
29.8% of them, and does not make any decision on
the remaining 30.1%.

Given that the Random baseline correctly resolves
50% of pronouns and the Stanford resolver correctly
resolves only 40.1% of the pronouns, it is tempting
to conclude that Stanford does not perform as well
as Random. However, recall that Stanford leaves
30.1% of the pronouns unresolved. Hence, to ensure
a fairer comparison, we produce “adjusted” scores
for the Stanford resolver, where we “force” it to re-
solve all of the unresolved target pronouns by as-
suming that probabilistically half of them will be re-
solved correctly. This adjusted score is shown in the
“Adjusted Scores” column in row 1 of Table 3. As
we can see, Stanford achieves an accuracy of 55.1%,
which is 5.1 points higher than that of Random.

The Baseline Ranker. To understand whether the
somewhat unsatisfactory Stanford results can be at-
tributed to its inability to exploit the training data,
we employ as our third baseline a mention ranker
that is trained in the same way as our system (see
Section 3), except that it employs 39 commonly-
used linguistic features for learning-based corefer-
ence resolution (see Table 1 of Rahman and Ng
(2009) for a description of these features). Hence,
the performance difference between this Baseline
Ranker and our system can be attributed entirely
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Unadjusted Scores Adjusted Scores
Coreference System Correct Wrong No Decision Correct Wrong No Decision

1 Stanford 40.07% 29.79% 30.14% 55.14% 44.86% 0.00%
2 Baseline Ranker 47.70% 47.16% 5.14% 50.27% 49.73% 0.00%
3 Stanford+Baseline Ranker 53.49% 43.12% 3.39% 55.19% 44.77% 0.00%
4 Our system 73.05% 26.95% 0.00% 73.05% 26.95% 0.00%

Table 3: Results of the Stanford resolver, the Baseline Ranker, the Combined resolver, and our system.

to the difference between the two linguistic feature
sets. Results of the Baseline Ranker are shown in
row 2 of Table 3. Before score adjustment, it cor-
rectly resolves 47.7% of the target pronouns, incor-
rectly resolves 47.2% of them, and leaves the re-
maining 5.1% unresolved. (Note that we output “no
decision” if the ranker assigns the same rank value
to both candidate antecedents.) After score adjust-
ment, its accuracy is 50.3%, which is 0.3 points
higher than that of Random but statistically indis-
tinguishable from it.12 On the other hand, its accu-
racy is 4.9 points lower than that of Stanford, and
the difference between their performance is signifi-
cant. While it seems somewhat surprising that a su-
pervised resolver does not perform as well as a rule-
based resolver, neither of them employs knowledge
sources that are particularly useful for our dataset. In
other words, despite given access to annotated data,
the Baseline Ranker may not be able to make effec-
tive use of it due to the lack of useful features.

The Combined resolver. We create a fourth base-
line by combining the Stanford resolver and the
Baseline Ranker. The motivation is that the former
can provide better precision and the latter can pro-
vide better recall by handling “no decision” cases
not covered by the former. Note that the Baseline
Ranker will be applied to resolve only those pro-
nouns that are left unresolved by Stanford. Results
in row 3 of Table 3 show that the adjusted accuracy
of this Combined resolver is 55.2%, which is sta-
tistically indistinguishable from Stanford’s adjusted
accuracy. Hence, these results show that the addi-
tion of the Baseline Ranker does not help improve
Stanford’s resolution accuracy.

Our system. Results of our system, which is
trained using the features described in Section 4 in
combination with a ranking model, are shown in
row 4 of Table 3. As we can see, our system achieves

12All statistical significance test results in this paper are ob-
tained using the pairedt-test, withp < 0.05.

Feature Type Correct Wrong No Decision
All features 73.05% 26.95% 0.00%
−Narrative Chains 68.97% 31.03% 0.00%
−Google 65.96% 34.04% 0.00%
−FrameNet 72.16% 27.84% 0.00%
−Heuristic Polarity 71.45% 28.55% 0.00%
−Learned Polarity 72.70% 27.30% 0.00%
−Connective-Based Rel. 71.28% 28.72% 0.00%
−Semantic Compat. 71.81% 28.19% 0.00%
−Lexical Features 60.11% 25.35% 14.54%

Table 4: Results of feature ablation experiments.

an accuracy of 73.1%, significantly outperforming
the Combined resolver by 17.9 points in accuracy.
These results suggest that our features are more use-
ful for resolving difficult pronouns than those com-
monly used for coreference resolution.

5.3 Feature Analysis

In an attempt to gain additional insight into the per-
formance contribution of each of the eight types of
features used in our system, we conduct feature ab-
lation experiments. The unadjusted scores of these
experiments are shown in Table 4, where each row
shows the performance of the model trained on all
types of features except for the one shown in that
row. For easy reference, the performance of the
model trained on all types of features is shown in
row 1 of the table.

A few points deserve mention. First, perfor-
mance drops significantly whichever feature type is
removed. This suggests that all eight feature types
are contributing positively to overall accuracy. Sec-
ond, theGoogle-based features and theLexical Fea-
tures are the most useful, and those generated via
FrameNetand Learned Polarityare the least use-
ful in the presence ofother feature types. While it
is somewhat surprising thatLearned Polarityis not
more useful thanHeuristic Polarity, we speculate
the reason can be attributed to the fact that the cor-
pus on which OpinionFinder was trained was quite
different from ours. Finally, even without using the
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Feature Type Correct Wrong No Decision
Narrative Chains 30.67% 24.47% 44.86%
Google 33.16% 7.09% 59.75%
FrameNet 7.27% 4.08% 88.65%
Learned Polarity 4.79% 2.66% 92.55%
Heuristic Polarity 7.27% 1.77% 90.96%
Connective-Based Rel. 14.01% 8.69% 77.30%
Semantic Compat. 23.58% 13.12% 63.30%
Lexical Features 56.91% 43.09% 0.00%

Table 5: Results of single-feature coreference models.

Lexical Features, our system still outperforms all the
baseline resolvers: as can been implied from the last
row of Table 4, in the absence of theLexical Fea-
tures, our resolver achieves an adjusted accuracy of
67.4%, which is only 5.7 points less than that ob-
tained when the full feature set is employed. Hence,
while the Lexical Featuresare useful, their impor-
tance should not be over-emphasized.

To get a better idea of the utility of each feature
type, we conduct another experiment in which we
train eight models, each of which employs exactly
one type of features. Their unadjusted scores are
shown in Table 5. As we can see,Learned Polarity
has the smallest contribution, whereas theLexical
Featureshave the largest contribution.

5.4 Error Analysis

While our resolver significantly outperforms state-
of-the-art resolvers, there is a lot of room for im-
provement. To help direct future research on the res-
olution of difficult pronouns, we analyze the major
sources of errors made by our resolver.

Our analysis reveals that many of the errors cor-
respond to cases that cannot be handled by any of
the eight components of our resolver. To understand
these cases, consider first the strengths and weak-
nesses ofNarrative Chainsand Google, the two
components that contribute the most to overall per-
formance afterLexical Features.

Googleis especially good at capturing facts, such
aslions are predatorsandzebras are not predators,
helping us correctly resolve sentences such as (5a)
and (5b), as well as those in sentence pair (I) in Ta-
ble 1. However, it may not be good at handling pro-
nouns whose resolution requires an understanding of
the connection between the facts or events described
in the two clauses of a sentence. The reason is that
establishing such a connection requires that we con-

struct a search query composed of information ex-
tracted from both clauses, and the resulting, possi-
bly long, query is likely to receive no hit count due
to data sparseness. Investigating how to construct
such queries while avoiding data sparseness would
be an interesting line of future work.

Narrative chains, on the other hand, are useful
for capturing the relationship between the events de-
scribed in the two clauses. However, they are com-
puted over verbs, and therefore cannot capture such
a relationship when one or both of the events in-
volved are not described by verbs. For example,
narrative chains fail to capture the causal relation
between the event expressed byangry andshoutin
sentence (1b). It is also worth mentioning that some
pronouns that could have been resolved using nar-
rative chains are not owing to thecoverageandac-
curacy of Chambers and Jurafsky’s (2008) chains,
but we believe that these recall and precision prob-
lems could be addressed by (1) inducing chains from
a larger corpus and (2) using semantic roles rather
than grammatical roles in the induction process.

Some resolution errors arise from errors in polar-
ity analysis. This can be attributed to the simplicity
of our Heuristic Polarity component: determining
the polarity of a word based on its prior polarity is
too naı̈ve. Fine-grained polarity analysis would be
a promising solution to this problem (see Pang and
Lee (2008) and Liu (2012) for related work).

6 Conclusions

We investigated the resolution of complex cases of
definite pronouns, a problem that was under exten-
sive discussion by coreference researchers in the
1970s but has received revived interest owing in part
to its relevance to the Turing Test. Our experimental
results indicate that it is a challenge for state-of-the-
art resolvers, and while we proposed new knowledge
sources for addressing this challenge, our resolver
still has a lot of room for improvement. In partic-
ular, our error analysis indicates that further gains
could be achieved via more accurate sentiment anal-
ysis and induction of world knowledge from corpora
or the Web. In addition, we plan to integrate our
resolver into a general-purpose coreference system
and evaluate the resulting resolver on standard eval-
uation corpora such as MUC, ACE, and OntoNotes.
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Abstract

Quote extraction and attribution is the task of
automatically extracting quotes from text and
attributing each quote to its correct speaker.
The present state-of-the-art system uses gold
standard information from previous decisions
in its features, which, when removed, results
in a large drop in performance. We treat the
problem as a sequence labelling task, which
allows us to incorporate sequence features
without using gold standard information. We
present results on two new corpora and an aug-
mented version of a third, achieving a new
state-of-the-art for systems using only realis-
tic features.

1 Introduction

News stories are often driven by the quotes made
by politicians, sports stars, musicians, and celebri-
ties. When these stories exit the news cycle, the
quotes they contain are often forgotten by both read-
ers and journalists. A system that automatically ex-
tracts quotes and attributes those quotes to the cor-
rect speaker would enable readers and journalists to
place news in the context of all comments made by
a person on a given topic.

Though quote attribution may appear to be a
straightforward task, the simple rule-based ap-
proaches proposed thus far have produced disap-
pointing results. Going beyond these to machine
learning approaches presents several problems that
make quote attribution surprisingly difficult. The
main challenge is that while a large portion of quotes
can be attributed to a speaker based on simple rules,

the remainder have few or no contextual clues as
to who the correct speaker is. Additionally, many
quote sequences, such as dialogues, rely on the
reader understanding that there is an alternating se-
quence of speakers, which creates dependencies be-
tween attribution decisions made by a classifier.

Elson and McKeown (2010) is the only study that
directly uses machine learning in quote attribution,
treating the task as a classification task, where each
quote is attributed independently of other quotes. To
handle conversations and similar constructs they use
gold standard information about speakers of previ-
ous quotes as features for their model. This is an
unrealistic assumption, since gold standard informa-
tion is not available in practice.

The primary contribution of this paper is that we
reformulate quote attribution as a sequence labelling
task. This allows us to use sequence features with-
out having to use the unrealistic gold standard fea-
tures that were used in Elson and McKeown (2010).
We experiment with three sequence decoding mod-
els including greedy, Viterbi and a linear chain Con-
ditional Random Field (CRF).

Furthermore we present results on two new cor-
pora and an augmented version of a third. The two
new corpora are from news articles from the Wall
Street Journal and the Sydney Morning Herald re-
spectively, while the third corpus is an extension to
the classic literature corpus from Elson and McK-
eown (2010). Our results show that a quote attri-
bution system using only realistic features is highly
feasible for the news domain, with accuracies of
92.4% on the SMH corpus and 84.1% on the WSJ

corpus.
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2 Background

Early work into quote attribution by Zhang et al.
(2003) focused on identifying when different char-
acters were talking in children’s stories, so that a
speech synthesis system could read the quoted parts
in different voices. While they were able to ex-
tract quotes with high precision and recall, their at-
tribution accuracy was highly dependent on the doc-
ument in question, ranging from 47.6% to 86.7%.
Mamede and Chaleira (2004) conducted similar re-
search on children’s stories written in Portuguese.
Their system proved to be very good at extracting
quotes through simple rules, but when using a hand-
crafted decision tree to attribute those quotes to a
speaker, they achieved an accuracy of only 65.7%.

In the news domain, both Pouliquen et al. (2007)
and Sarmento and Nunes (2009) proposed rule-
based systems that work over large volumes of text.
Both systems aimed for high precision at the ex-
pense of low recall, as their data contained many re-
dundant quotes. More recently, SAPIENS, a French-
language quote extraction and attribution system,
was developed by de La Clergerie et al. (2011). It
conducts a full parse of the text, which allows it to
use patterns to extract direct and indirect quotes, as
well as the speaker of each quote. Their evaluation
found that 19 out of 40 quotes (47.5%) had a correct
span and author, while a further 19 had an incorrect
author, and 4 had an incorrect span. In related work,
Sagot et al. (2010) built a lexicon of French reported
speech verbs, and conducted some analysis of dif-
ferent types of quotes.

Glass and Bangay (2007) approached the task
with a three stage method. For each quote they
first find the nearest speech verb, they then find the
grammatical actor of that speech verb, and finally
they select the appropriate speaker for that actor. To
achieve each of these subtasks they built a model
with several manually weighted features that good
candidates should possess. For each subtask they
then choose the candidate with the largest weighted
sum of features. Their full approach yields an ac-
curacy of 79.4% on a corpus of manually annotated
fiction books.

Schneider et al. (2010) describe PICTOR, which
is principally a quote visualisation tool. Their task
was to find direct and indirect quotes, which they

attribute to a text span representing the speaker.
To do this they constructed a specialised grammar,
which was built with reference to a small develop-
ment corpus. With a permissive evaluation metric
their grammar-based approach yielded 86% recall
and 75% precision, however this dropped to 52% re-
call and 56% precision when measured in terms of
completely correct quote-speaker pairs.

The work most similar to ours is the work by El-
son and McKeown (2010). Their aim was to au-
tomatically identify both quotes and speakers, and
then to attribute each quote to a speaker, in a corpus
of classic literature that they compiled themselves.
To identify potential speakers they used the Stanford
NER tagger (Finkel et al., 2005) and a method out-
lined in Davis et al. (2003) that allowed them to find
nominal character references. They then grouped
name variants and pronominal mentions into a coref-
erence chain.

To attribute a quote to a speaker they first classi-
fied the quotes into categories. Several of the cat-
egories have a speaker explicit in their structure,
so they attribute quotes to those speakers with no
further processing. For the remaining categories,
they cast the attribution problem as a binary clas-
sification task, where each quote-speaker pair has
a “speaker” or “not speaker” label predicted by the
classifier. They then reconciled these independent
decisions using various techniques to produce a sin-
gle speaker prediction for each quote. For the sim-
ple category predictions they achieved 93-99% ac-
curacy, while for the more complicated categories
they achieved 63-64%, with an overall result of 83%
accuracy. This compares favourably with their rule-
based baseline, which achieved an accuracy of 52%.

While the results of Elson and McKeown (2010)
appear encouraging, they are misleading for two rea-
sons. First their corpus does not include quotes
where all three annotators chose different speakers.
While these quotes include some cases where the
annotators chose coreferent spans, it also includes
cases of legitimate disagreement about the speaker.
An automated system would likely find these cases
challenging. Second both their category predictions
and machine learning predictions rely on gold stan-
dard information from previous quotes, which is not
available in practice. In our study we address both
these issues.
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Proportion (%) Accuracy (%)
LIT WSJ SMH LIT WSJ SMH

Quote-Said-Person 17.9 20.2 3.1 98.9 99.8 99.1
Quote-Person-Said 2.8 6.1 16.6 97.7 97.0 98.5
Other Trigram 0.1 2.3 0.3 66.7 56.2 54.5
Quote-Said-Pronoun 1.9 0.1 0.0 38.6 100.0 0.0
Quote-Pronoun-Said 5.9 8.8 13.5 36.5 92.2 93.9
Other Anaphors 0.1 0.1 0.2 0.0 100.0 62.5
Added* 24.6 28.3 23.9 89.7 76.3 97.5
Backoff 11.0 33.9 32.3 - - -
Alone 18.0 0.2 9.7 - - -
Conversation* 17.7 0.2 0.3 85.2 0.0 8.3
Total 100.0 100.0 100.0 60.5 57.2 55.8

Table 1: The proportion of quotes in each category and the accuracy of the speaker prediction based on the category.
The two categories marked with an asterisk (*) depend on previous decisions.

3 Corpora

We evaluate our methods on two new corpora com-
ing from the news domain, and an augmented ver-
sion of an existing corpus, which covers classic lit-
erature. They are described below.

3.1 Columbia Quoted Speech Attribution
Corpus (LIT)

The first corpus we use was originally created by
Elson and McKeown (2010). It is a set of excerpts
from 11 fictional 19th century works by six well-
known authors, split into 18 documents. In total it
contains 3,126 quotes annotated with their speakers.

Elson and McKeown used an automated system
to find named entity spans and nominal mentions in
the text, with the named entities being linked to form
a coreference chain (they did not link nominal men-
tions). The corpus was built using Amazon’s Me-
chanical Turk, with three annotations per quote. To
ensure quality, all annotations from poorly perform-
ing annotators were removed, as were quotes where
each annotator chose a different speaker. Though
excluding some quotes ensures quality annotations,
it causes gaps in the quote chains, which is a prob-
lem for sequence labelling. Furthermore, the cases
where annotators disagreed are likely to be challeng-
ing, so removing them from the corpus could make
results appear better than they would be in practice.

To rectify this, we conducted additional annota-
tion of the quotes that were excluded by the origi-

nal authors. Two postgraduates annotated 654 addi-
tional quotes, with a raw agreement of 79% over 48
double-annotated quotes. Our annotators reported
seeing some errors in existing annotations, so we
had one annotator check 400 existing annotations for
correctness. This additional check found that 92.5%
of the quotes were correctly annotated.

3.2 PDTB Attribution Corpus Extension (WSJ)

Our next corpus is an extension to the attribution
annotations found in the Penn Discourse TreeBank
(PDTB). The original PDTB contains several forms
of discourse, including assertions, beliefs, facts, and
eventualities. These can be attributed to named enti-
ties or to unnamed, pronominal, or implicit sources.
Recent work by Pareti (2012) conducted further an-
notation of this corpus, including reconstructing at-
tributions that were only partially annotated, and in-
troducing additional information. From this corpus
we use only direct quotes and the directly quoted
portions of mixed quotes, giving us 4,923 quotes.

For the set of potential speakers we use the
BBN pronoun coreference and entity type cor-
pus (Weischedel and Brunstein, 2005), with auto-
matically coreferred pronouns. We automatically
matched BBN entities to PDTB extension speakers,
and included the PDTB speaker where no matching
BBN entity could be found. This means an automatic
system has an opportunity to find the correct speaker
for all quotes in the corpus.
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3.3 Sydney Morning Herald Corpus (SMH)

We compiled the final corpus from a set of news
documents taken from the Sydney Morning Her-
ald website1. We randomly selected 965 documents
published in 2009 that were not obituaries, opin-
ion pages, advertisements or other non-news sto-
ries. To conduct the annotation we employed 11
non-expert annotators via the outsourcing site Free-
lancer2, as well as five expert annotators from our
research group. A total of 400 news stories were
double-annotated, with at least 33 double-annotated
stories per annotator. Raw agreement on the speaker
of each quote was high at 98.3%. These documents
had already been annotated with named entities as
part of a separate research project (Hachey et al.,
2012), which includes manually constructed coref-
erence chains. The resulting corpus contains 965
documents, with 3,535 quotes.

3.4 Corpus Comparisons

In order to compare the corpora we categorise the
quotes into the categories defined by Elson and
McKeown (2010), as shown in Table 1. We assigned
quotes to these categories by testing (after text pre-
processing) whether the quote belonged to each cat-
egory, in the order shown below:

1. Trigram – the quote appears consecutively with
a mention of an entity, and a reported speech
verb, in any order;

2. Anaphors – same as above, except that the men-
tion is a pronoun;

3. Added – the quote is in the same paragraph as
another quote that precedes it;

4. Conversation – the quote appears in a para-
graph on its own, and the two paragraphs pre-
ceding the current paragraph each contain a sin-
gle quote, with alternating speakers;

5. Alone – the quote is in a paragraph on its own;

6. Miscellaneous – the quote matches none of the
preceding categories. This category is called
“Backoff” in Elson and McKeown (2010).

1http://www.smh.com.au
2http://www.freelancer.com

Unsurprisingly, the two corpora from the news do-
main share similar proportions of quotes in each
category. The main differences are that the SMH

uses a larger number of pronouns compared to the
WSJ, which tends to use explicit attribution more fre-
quently. The SMH also has a significant proportion
of quotes that appear alone in a paragraph, while
the WSJ has almost none. Finally, when attribut-
ing a quote using a trigram pattern, the SMH mostly
uses the Quote-Person-Said pattern, while the WSJ

mostly uses the Quote-Said-Person pattern. These
differences probably reflect the editorial guidelines
of the two newspapers.

The differences between the news corpora and
the literature corpus are more substantial. Most no-
tably the LIT corpus has a much higher proportion
of quotes that fall into the Conversation and Alone
categories. This is unsurprising as both monologues
and dialogues are common in fiction, but are rare in
newswire. The two news corpora have more quotes
in the Trigram and Backoff categories.

4 Quote Extraction

Quote extraction is the task of finding the spans that
represent quotes within a document. There are three
types of quotes that can appear:

1. Direct quotes appear entirely between quota-
tion marks, and are used to indicate that the
speaker said precisely what is written;

2. Indirect quotes do not appear between or con-
tain quotation marks, and are used to get the
speaker’s point across without implying that
the speaker used the exact words of the quote;

3. Mixed quotes are indirect quotes that contain a
directly quoted portion.

In this work, we limit ourselves to detecting direct
quotes and the direct portions of mixed quotes.

To extract quotes we use a regular expression that
searches for text between quotation marks. We also
deal with the special case of multi-paragraph quotes
where one quotation mark opens the quote and every
new paragraph that forms part of the quote, with a fi-
nal quotation mark only at the very end of the quote.
This straightforward approach yields over 99% ac-
curacy on all three corpora.
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5 Quote Attribution

Given a document with a set of quotes and a set
of entities, quote attribution is the task of finding
the entity that represents the speaker of each quote,
based on the context provided by the document.
Identifying the correct entity can involve choosing
either an entire coreference chain representing an
entity, or identifying a specific span of text that rep-
resents the entity.

In practice, most applications only need to know
which coreference chain represents the speaker, not
which particular span in the text. Despite this, the
best evidence about which chain is the speaker is
found in the context of the individual text spans, and
most existing systems aim to get the particular entity
span correct. This presents a problem for evaluation,
as an incorrect entity span may be identified, but it
might still be part of the correct coreference chain.
We chose to count attributions as correct if they at-
tributed the quote to the correct coreference chain
for both the LIT and SMH corpora, while for the WSJ

corpus, where the full coreference chains do not ex-
ist, we evaluated an attribution as correct if it was to
the correct entity span in the text.

5.1 Rule-based Baseline
To establish the effectiveness of our method we built
a rule-based baseline system. For each quote it pro-
ceeds with the following steps:

1. Search backwards in the text from the end of
the sentence the quote appears in for a reported
speech verb

2. If the verb is found return the entity mention
nearest the verb (ignoring mentions in quotes),
in the current sentence or any sentence preced-
ing it

3. If not, return the mention of an entity near-
est the end of the quote (ignoring mentions in
quotes), in the current sentence or any sentence
preceding it

This forms a reasonable baseline as it is able to pick
up the quotes that fall into the more simple cate-
gories, such as the Trigram category and the Added
category. It is also able to make a guess at the more
complicated categories, without using gold standard
information as the category predictions do.

6 Experimental Setup

We use two classifiers: a logistic regression imple-
mentation available in LIBLINEAR (Fan et al., 2008),
and a Conditional Random Field (CRF) from CRF-
Suite (Okazaki, 2007). Both packages use maxi-
mum likelihood estimation with L2 regularisation.
We experimented with several values for the coef-
ficient on a development set, but found that it had
little impact, so stuck with the default value. All of
our machine learning experiments use the same text
encoding, which is explained below, and all use the
category predictions when they are available.

6.1 Text Encoding

We encode our text similarly to Elson and McKeown
(2010). The major steps are:

1. Replace all quotes and speakers with special
symbols;

2. Replace all reported speech verbs with a sym-
bol. Elson and McKeown (2010) provided us
with their list of reported speech verbs;

3. Part-of-Speech (POS) tag the text and remove
adjectives, adverbs, and other parts of speech
that do not contribute useful information. We
used the POS tagger from Curran and Clark
(2003);

4. Remove any paragraphs or sentences where no
quotes, pronouns or names occur.

All features that will be discussed are calculated
with respect to this encoding (e.g. word distance
would be the number of words in the encoded text,
rather than the number of words in the original text).

6.2 Features

In our experiments we use the feature set from Elson
and McKeown (2010). The features for a particu-
lar pair of target quote (q) and target speaker (s) are
summarised below.

Distance features including number of words be-
tween q and s, number of paragraphs between
q and s, number of quotes between q and s, and
number of entity mentions between q and s
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Corpus
Sequence Features

Gold Pred None
LIT 74.7 49.0 49.6
WSJ 87.3 74.1 82.9
SMH 95.0 85.6 92.4

Table 2: Accuracy results comparing the E&M approach
with gold standard, predicted or no sequence features.

Paragraph features derived from the 10 para-
graphs preceding the quote (including the para-
graph the quote is in), includes number of men-
tions of s, number of mentions of other speak-
ers, number of words in each paragraph, and
number of quotes in each paragraph

Nearby features relating to the two tokens either
side of q and s, includes binary features for
each position indicating whether the position is
punctuation, s, q, a different speaker, a differ-
ent quote, or a reported speech verb

Quote features about q itself, including whether s
is mentioned within it, whether other speakers
are mentioned within it, how far the quote is
from the start of its paragraph and the length in
words of q

Sequence features that depend on the speakers
chosen for the previous quotes, includes num-
ber of quotes in the 10 paragraphs preceding
and including the paragraph where q appears
that were attributed to s, and the number that
were attributed to other speakers

6.3 Elson and McKeown Reimplementation
As part of our study we reproduce the core results
of Elson and McKeown (2010) (E&M ), as we be-
lieve it is a state-of-the-art system. This allows us
to determine the effectiveness of our approach when
compared to a state-of-the-art approach, and it also
allows us to determine how well the E&M approach
performs on other corpora. In this section we will
briefly summarise the key elements needed to repro-
duce their work.

The E&M approach makes a binary classification
between “speaker” and ‘not speaker” for up to 15
candidate speakers for each quote. They then recon-
cile these 15 classifications into one speaker predic-

tion for the quote. While E&M experimented with
several different reconciliation methods, we simply
chose the speaker with the highest probability at-
tached to its “speaker” label.

We conducted an experiment using our imple-
mentation of the E&M method on the original,
unaugmented E&M corpus, to see how our result
compared with E&M ’s 83%. On our test set we
achieved 78.2%, however this rose to 82.3% when
performing 10-fold cross validation across the whole
corpus. Though this is a large difference, it is not
necessarily that surprising, as our test set contains
documents by authors which are unseen, whereas
both the original E&M test set and all the cross val-
idation test sets contain documents by authors that
the learner has seen before.

In their work, E&M make a simplifying assump-
tion that all previous attribution decisions were cor-
rect. Due to this, their sequence features use gold
standard labels from previous quotes, which makes
their results unrealistic. In Table 2 we show the ef-
fect of replacing the gold standard sequence features
with features based on the predicted labels, or with
no sequence features at all. All three corpora show a
significant drop in accuracy, with the LIT corpus in
particular suffering a drop of more than 25%. This
motivates our study into including sequence infor-
mation without using gold standard labels.

7 Class Models

We consider two class models for our experiments,
which are described in detail below. The binary
model is able to take advantage of more data but has
less competition between decisions, while the n-way
model has more competition with less data. Both
models are used with all the decoding methods, with
the exception that the binary model is unsuitable for
the CRF experiments.

7.1 Binary

When working with n previous speakers, a binary
class model works by predicting n independent
“speaker” versus “not speaker” labels, one for each
quote-speaker pair. As the classifications are inde-
pendent the n decisions need to be reconciled, as
more than one speaker might be predicted. We rec-
oncile the n decisions by attributing the quote to the
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speaker with the highest “speaker” probability. Us-
ing a binary class with reconciliation in a greedy
decoding model is equivalent to the method in El-
son and McKeown (2010), except that the gold stan-
dard sequence features are replaced with predicted
sequence features.

7.2 n-way

A key advantage of the binary class model is that
when predicting “speaker” versus “not speaker” the
classifier only needs to predict one probability, and
thus can take into account the evidence of all other
quote-speaker pairs. The drawback to the binary
model is that the probabilities assigned to the can-
didate speakers do not need to directly compete
against each other. In other words when assigning
a binary probability to a candidate speaker, the clas-
sifier does not take into account how good the other
candidate speakers are.

To rectify these issues we experiment with a sin-
gle classification for each quote, where the classifier
directly decides between up to n candidate speakers
per quote. As speaker-specific evidence is far too
sparse, we encode the speakers with their ordinal po-
sition backwards from the quote. In other words, the
candidate speaker immediately preceding the quote
would be labelled “speaker1”, the speaker preced-
ing it would be “speaker2” and so on. The classifier
then directly predicts these labels. This representa-
tion means that candidate speakers need to directly
compete for probability mass, although it has the
drawback that the evidence for the higher-numbered
speakers is quite sparse.

The features we use for this representation are
similar to the features used in the E&M binary
model. The key difference is that where there were
individual features that were calculated with respect
to the speaker, there are now n features, one for each
of the speaker candidates. This allows the model to
account for the strength of other candidates when as-
signing a speaker label.

8 Sequence Decoding

We noted in the previous section that the E&M re-
sults are based on the unrealistic assumption that
all previous quotes were attributed correctly. In
this section we outline three sequence decoding ap-

proaches that remove this unrealistic assumption,
without removing all of the transition information
that it provides. We believe the transition infor-
mation is important as many quotes have no ex-
plicit attribution in the text, and instead rely on the
reader understanding something about the sequence
of speakers.

For these experiments we regard the set of speaker
attributions in a document as the sequence that we
want to decode. Each individual state therefore rep-
resents a sequence of w previous attribution deci-
sions, and a decision for the current quote. Obtain-
ing a probability for this state can be done in one
of two ways. Either the transition probabilities from
state to state can be learned explicitly, or the w pre-
vious attribution decisions can be used to build the
sequence features for the current state, which im-
plicitly encodes the transition probabilities.

8.1 Greedy Decoding

In sequence decoding the greedy algorithm calcu-
lates the probability of each label at a decision point
based on the predictions it has already made for pre-
vious decisions. More concretely this means we ap-
ply a standard classifier at each step, with the se-
quence features being calculated from the predic-
tions made in previous steps. Greedy decoding is
efficient in that it only considers one possible history
at each decision point, but it is consequently unable
to make trade-offs between good previous choices
and good current choices, which means that in gen-
eral it will not return the optimum sequence of la-
bels. As greedy decoding is an efficient algorithm
we do not restrict w, the number of previous deci-
sions, beyond the 10 paragraph restriction that is al-
ready in place.

8.2 Viterbi Decoding

Viterbi decoding finds the most probable path
through a sequence of decisions. It does this by de-
termining the probabilities of each of the labels at
the current decision point, with each of the possi-
ble histories of decisions within a given window w.
These probabilities can be multiplied together with
the previous decisions to retrieve a joint probability
for the entire sequence. The final decision for each
quote is then just the speaker which is predicted by
the sequence with the largest joint probability.
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Although they do not come with probabilities,
we chose to include the category predictions in our
Viterbi model. As we already know that they are
accurate indicators of the speaker we assign them
a probability of 100%, which effectively forces the
Viterbi decoder to choose the category predictions
when they are available. It is worth noting that
quotes are only assigned to the Conversation cate-
gory if the two prior quotes had alternating speakers.
As such, during the Viterbi decoding the categori-
sation of the quote actually needs to be recalculated
with regard to the two previous attribution decisions.
By forcing the Viterbi decoder to choose category
predictions when they are available, we get the ad-
vantage that quote sequences with no intervening
text may be forced into the Conversation category,
which is typically under-represented otherwise.

Both the sequences using the binary class and
the n-way class can be decoded using the Viterbi
algorithm, so we experiment with both class mod-
els. We also experiment with varying window sizes
(w), in order to gain insight into how many previous
decisions impact the current decision. Though the
Viterbi algorithm is able to find the best sequence
of probabilities without the need for an exhaustive
search, it can still take an impractical amount of time
to run. As such we ignore all but the 10 most promis-
ing sequences at each decision point.

8.3 Conditional Random Field (CRF) Decoding

The key drawback with the logistic regression ex-
periments described thus far is that the sequence
features are trained with gold standard information.
This means that during the training phase the se-
quence features have perfect information about pre-
vious speakers and are thus unrealistically good pre-
dictors of the final outcome. When the resulting
model is used with the less accurate predicted se-
quence features, it is overconfident about the infor-
mation those features provide.

We account for this by using a first-order linear
chain CRF model, which learns the probabilities of
progressing from speaker to speaker more directly.
During training the CRF is able to learn the asso-
ciation between features and labels, as well as the
chance of transitioning from one label to the next.
It also has the advantage of avoiding the label bias
problem that would be present in the equivalent Hid-

den Markov Model (Lafferty et al., 2001).
Though the n-way class model can be used di-

rectly in a CRF, the binary class model is more chal-
lenging. The main problem is that the “speaker”
versus “not speaker” output of the binary classifier
does not directly form a meaningful sequence that
the CRF can learn over. If the reconciliation step is
included it effectively adds an extra layer to the lin-
ear chain, making learning more difficult. Due to
these difficulties we only use the n-way class model
in our CRF experiments.

9 Results

The main result of our experiments with the E&M
method is the large drop in accuracy that occurs
when the gold standard sequence features are re-
moved, which can be seen in Table 3. When using
the binary class model this results in a drop of 25.1%
for the LIT corpus, while for the WSJ and SMH cor-
pora the drop is less substantial at 4.4% and 2.6%,
respectively. For the LIT corpus the drop is so severe
that it actually performs worse than the simple rule-
based system. Even more surprisingly, when the
predictions from previous decisions are used with a
simple greedy decoder, the accuracy drops even fur-
ther for all three corpora. This indicates that the clas-
sifier is putting too much weight on the gold stan-
dard sequence features during training, and is mis-
led into making poor decisions when the predicted
features are used during test time.

Table 4 shows the results for the n-way class
model. Compared to the binary model, the n-way
class model generally produced lower results, al-
though the results were more stable to changes in
parameters and decoders. The only corpus that pro-
duced better results with the n-way class model was
the WSJ corpus, which does not have full entity
coreference information. This indicates that the n-
way model may be helpful when there is more vari-
ety in the choice of entities.

The final results we would like to discuss here are
the CRF results. On all three corpora the CRF results
are underwhelming. The major issue that we can
see when applying a CRF model to this task is that
the sequences that it needs to learn over are entire
documents. This means that for the LIT corpus the
training set consisted of only 12 sequences, while

797



Corpus E&M Rule No seq. Greedy Viterbi
w = 1 w = 2 w = 5

LIT 74.7 53.3 49.6 49.0 46.0 49.8 45.9
WSJ 87.3 77.9 82.9 74.1 82.3 83.1 83.1
SMH 95.0 91.2 92.4 85.6 91.7 90.5 84.1

Table 3: Accuracy on test set with the binary class model. Italicised results indicate gold standard information is used.
Bold results show the best realistic result for each corpus.

Corpus Gold seq. Rule No seq. Greedy Viterbi CRF

w = 1 w = 2 w = 5

LIT 68.6 53.3 47.1 46.7 42.5 46.5 44.4 48.6
WSJ 88.9 77.9 83.6 77.0 84.1 83.7 83.3 79.6
SMH 94.4 91.2 90.0 89.6 89.5 90.1 90.4 91.0

Table 4: Accuracy on test set with the n-way class model. Italicised results indicate gold standard information is used.
Bold results show the best realistic result for each corpus.

the test set consisted of 6 sequences. With so few
sequences it is unsurprising that the CRF model did
not perform well. The limited range of the first order
linear chain model could also have played a part in
the poor performance of the CRF models. However,
moving to a higher-order model is problematic as
the number of transition probabilities that need to be
calculated increases exponentially with the order of
the model.

10 Conclusion

In this paper, we present the first large-scale evalua-
tion of a quote attribution system on newswire from
the 1989 Wall Street Journal (WSJ) and the 2009
Sydney Morning Herald (SMH), as well as compar-
ing against previous work (Elson and McKeown,
2010) on 19th-century literature.

We show that when Elson and McKeown’s unre-
alistic use of gold-standard history information is re-
moved, accuracy on all three corpora drops substan-
tially. We demonstrate that by treating quote attribu-
tion as a sequence labelling task, we can achieve re-
sults that are very close to their results on newswire,
though not for literature.

In future work, we intend to further explore the
sequence features that have a large impact on accu-
racy, and to find similar features or proxies for the
sequence features that would be beneficial. We will
also explore other approaches to representing quote

attribution with a CRF. For the task more broadly,
it would be beneficial to compare methods of find-
ing indirect and mixed quotes, and to evaluate how
well quote attribution performs on those quotes as
opposed to just direct quotes.

Our newswire results, 92.4% for the SMH and
84.1% for the WSJ corpus, demonstrate it is possible
to develop an accurate and practical quote extraction
system. On the LIT corpus our best result was from
the simple rule-based system, which yielded 53.3%.
It is clear that literature poses an ongoing research
challenge.
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Abstract

Supervised hierarchical topic modeling and
unsupervised hierarchical topic modeling are
usually used to obtain hierarchical topics, such
as hLLDA and hLDA. Supervised hierarchi-
cal topic modeling makes heavy use of the in-
formation from observed hierarchical labels,
but cannot explore new topics; while unsu-
pervised hierarchical topic modeling is able
to detect automatically new topics in the data
space, but does not make use of any informa-
tion from hierarchical labels. In this paper, we
propose a semi-supervised hierarchical topic
model which aims to explore new topics auto-
matically in the data space while incorporating
the information from observed hierarchical la-
bels into the modeling process, called Semi-
Supervised Hierarchical Latent Dirichlet Al-
location (SSHLDA). We also prove that hLDA
and hLLDA are special cases of SSHLDA. We
conduct experiments on Yahoo! Answers and
ODP datasets, and assess the performance in
terms of perplexity and clustering. The ex-
perimental results show that predictive ability
of SSHLDA is better than that of baselines,
and SSHLDA can also achieve significant im-
provement over baselines for clustering on the
FScore measure.

1 Introduction

Topic models, such as latent Dirichlet allocation
(LDA), are useful NLP tools for the statistical anal-
ysis of document collections and other discrete data.

∗This work was done in National University of Singapore.
†Corresponding author.

Furthermore, hierarchical topic modeling is able to
obtain the relations between topics — parent-child
and sibling relations. Unsupervised hierarchical
topic modeling is able to detect automatically new
topics in the data space, such as hierarchical La-
tent Dirichlet Allocation (hLDA) (Blei et al., 2004).
hLDA makes use of nested Dirichlet Process to auto-
matically obtain a L-level hierarchy of topics. Mod-
ern Web documents, however, are not merely col-
lections of words. They are usually documents with
hierarchical labels – such as Web pages and their
placement in hierarchical directories (Ming et al.,
2010). Unsupervised hierarchical topic modeling
cannot make use of any information from hierarchi-
cal labels, thus supervised hierarchical topic models,
such as hierarchical Labeled Latent Dirichlet Allo-
cation (hLLDA) (Petinot et al., 2011), are proposed
to tackle this problem. hLLDA uses hierarchical la-
bels to automatically build corresponding topic for
each label, but it cannot find new latent topics in the
data space, only depending on hierarchy of labels.

As we know that only about 10% of an iceberg’s
mass is seen outside while about 90% of it is unseen,
deep down in water. We think that a corpus with hi-
erarchical labels should include not only observed
topics of labels, but also there are more latent top-
ics, just like icebergs. hLLDA can make use of the
information from labels; while hLDA can explore
latent topics. How can we combine the merits of the
two types of models into one model?

An intuitive and simple combinational method is
like this: first, we use hierarchy of labels as basic hi-
erarchy, called Base Tree (BT); then we use hLDA
to build automatically topic hierarchy for each leaf
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node in BT, called Leaf Topic Hierarchy (LTH); fi-
nally, we add each LTH to corresponding leaf in the
BT and obtain a hierarchy for the entire dataset. We
refer the method as Simp-hLDA. The performance
of the Simp-hLDA is not so good, as can be seen
from the example in Figure 3 (b). The drawbacks
are: (i) the leaves in BT do not obtain reasonable
and right words distribution, such as “Computers &
Internet” node in Figure 3 (b), its topical words, “the
to you and a”, is not about “Computers & Internet”;
(ii) the non-leaf nodes in BT cannot obtain words
distribution, such as “Health” node in Figure 3 (b);
(iii) it is a heuristic method, and thus Simp-hLDA
has no solid theoretical basis.

To tackle the above drawbacks, we explore the
use of probabilistic models for such a task where
the hierarchical labels are merely viewed as a part
of a hierarchy of topics, and the topics of a path in
the whole hierarchy generate a corresponding doc-
ument. Our proposed generative model learns both
the latent topics of the underlying data and the la-
beling strategies in a joint model, by leveraging on
the hierarchical structure of labels and Hierarchical
Dirichlet Process.

We demonstrate the effectiveness of the proposed
model on large, real-world datasets in the question
answering and website category domains on two
tasks: the topic modeling of documents, and the use
of the generated topics for document clustering. Our
results show that our joint, semi-hierarchical model
outperforms the state-of-the-art supervised and un-
supervised hierarchical algorithms. The contribu-
tions of this paper are threefold: (1) We propose a
joint, generative semi-supervised hierarchical topic
model, i.e. Semi-Supervised Hierarchical Latent
Dirichlet Allocation (SSHLDA), to overcome the
defects of hLDA and hLLDA while combining the
their merits. SSHLDA is able to not only explore
new latent topics in the data space, but also makes
use of the information from the hierarchy of ob-
served labels; (2) We prove that hLDA and hLLDA
are special cases of SSHLDA; (3) We develop a
gibbs sampling inference algorithm for the proposed
model.

The remainder of this paper is organized as fol-
lows. We review related work in Section 2. In Sec-
tion 3, we introduce some preliminaries; while we
introduce SSHLDA in Section 4. Section 5 details

a gibbs sampling inference algorithm for SSHLDA;
while Section 6 presents the experimental results.
Finally, we conclude the paper and suggest direc-
tions for future research in Section 7.

2 Related Work

There have been many variations of topic mod-
els. The existing topic models can be divided
into four categories: Unsupervised non-hierarchical
topic models, Unsupervised hierarchical topic mod-
els, and their corresponding supervised counter-
parts.

Unsupervised non-hierarchical topic models are
widely studied, such as LSA (Deerwester et al.,
1990), pLSA (Hofmann, 1999), LDA (Blei et al.,
2003), Hierarchical-concept TM (Chemudugunta et
al., 2008c; Chemudugunta et al., 2008b), Corre-
lated TM (Blei and Lafferty, 2006) and Concept TM
(Chemudugunta et al., 2008a; Chemudugunta et al.,
2008b) etc. The most famous one is Latent Dirichlet
Allocation (LDA). LDA is similar to pLSA, except
that in LDA the topic distribution is assumed to have
a Dirichlet prior. LDA is a completely unsupervised
algorithm that models each document as a mixture
of topics. Another famous model that not only rep-
resents topic correlations, but also learns them, is
the Correlated Topic Model (CTM). Topics in CTM
are not independent; however it is noted that only
pairwise correlations are modeled, and the number
of parameters in the covariance matrix grows as the
square of the number of topics.

However, the above models cannot capture the
relation between super and sub topics. To address
this problem, many models have been proposed
to model the relations, such as Hierarchical LDA
(HLDA) (Blei et al., 2004), Hierarchical Dirichlet
processes (HDP) (Teh et al., 2006), Pachinko Allo-
cation Model (PAM) (Li and McCallum, 2006) and
Hierarchical PAM (HPAM) (Mimno et al., 2007)
etc. The relations are usually in the form of a hi-
erarchy, such as the tree or Directed Acyclic Graph
(DAG). Blei et al. (2004) proposed the hLDA model
that simultaneously learns the structure of a topic
hierarchy and the topics that are contained within
that hierarchy. This algorithm can be used to extract
topic hierarchies from large document collections.

Although unsupervised topic models are suffi-
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ciently expressive to model multiple topics per doc-
ument, they are inappropriate for labeled corpora be-
cause they are unable to incorporate the observed la-
bels into their learning procedure. Several modifica-
tions of LDA to incorporate supervision have been
proposed in the literature. Two such models, Su-
pervised LDA (Blei and McAuliffe, 2007; Blei and
McAuliffe, 2010) and DiscLDA (Lacoste-Julien et
al., 2008) are first proposed to model documents as-
sociated only with a single label. Another category
of models, such as the MM-LDA (Ramage et al.,
2009b), Author TM (Rosen-Zvi et al., 2004), Flat-
LDA (Rubin et al., 2011), Prior-LDA (Rubin et al.,
2011), Dependency-LDA (Rubin et al., 2011) and
Partially LDA (PLDA) (Ramage et al., 2011) etc.,
are not constrained to one label per document be-
cause they model each document as a bag of words
with a bag of labels. However, these models obtain
topics that do not correspond directly with the la-
bels. Labeled LDA (LLDA) (Ramage et al., 2009a)
can be used to solve this problem.

None of these non-hierarchical supervised mod-
els, however, leverage on dependency structure,
such as parent-child relation, in the label space. For
hierarchical labeled data, there are also few models
that are able to handle the label relations in data.
To the best of our knowledge, only hLLDA (Petinot
et al., 2011) and HSLDA (Perotte et al., 2011) are
proposed for this kind of data. HSLDA cannot ob-
tain a probability distribution for a label. Although
hLLDA can obtain a distribution over words for each
label, hLLDA is unable to capture the relations be-
tween parent and child node using parameters, and it
also cannot detect automatically latent topics in the
data space. In this paper, we will propose a genera-
tive topic model to tackle these problems of hLLDA.

3 Preliminaries

The nested Chinese restaurant process (nCRP) is a
distribution over hierarchical partitions (Blei et al.,
2004). It generalizes the Chinese restaurant process
(CRP), which is a distribution over partitions. The
CRP can be described by the following metaphor.
Imagine a restaurant with an infinite number of ta-
bles, and imagine customers entering the restaurant
in sequence. The dth customer sits at a table accord-

Table 1: Notations used in the paper.
Sym Description
V Vocabulary (word set), w is a word in V
D Document collection

Tj
The set of paths in the sub-tree whose root is the
jth leaf node in the hierarchy of observed topics

m A document m that consists of words and labels
wm The text of document m, wi is ith words in w
cm The topic set of document m
com The set of topics with observed labels for document m
cem The set of topics without labels for document m
ce−m The set of latent topics for all documents other than m

zem

The assignment of the words in the mth document
to one of the latent topics

wem

The set of the words belonging to one of the latent
topics in the the mth document

zm,n
The assignment of the nth word in the mth document
to one of the L available topics

z The set of zm,n for all words in all documents
ci A topic in the ith level in the hierarchy
θ The word distribution set for Z, i.e., {θ}z∈c
α Dirichlet prior of θ
δci The multinomial distribution over the sub-topics of ci−1

µci Dirichlet prior of δci

η Dirichlet prior of β
β The multinomial distribution of words
θm The distributions over topics for document m
θ The set for θm, m ∈ {1, ..., D}

ing to the following distribution,

p(cd = k|c1:(d−1)) ∝
{

mk if k is previous occupied
γ if k is a new tabel, (1)

where mk is the number of previous customers sit-
ting at table k and γ is a positive scalar. After D cus-
tomers have sat down, their seating plan describes a
partition of D items.

In the nested CRP, imagine now that tables are or-
ganized in a hierarchy: there is one table at the first
level; it is associated with an infinite number of ta-
bles at the second level; each second-level table is
associated with an infinite number of tables at the
third level; and so on until the Lth level. Each cus-
tomer enters at the first level and comes out at the
Lth level, generating a path with L tables as she sits
in each restaurant. Moving from a table at level l to
one of its subtables at level l+1, the customer draws
following the CRP using Formula (1). In this paper,
we will make use of nested CRP to explore latent
topics in data space.

To elaborate our model, we first define two con-
cepts. If a model can learn a distribution over words
for a label, we refer the topic with a corresponding
label as a labeled topic. If a model can learn an un-
seen and latent topic without a label, we refer the
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Figure 1: The graphical model of SSHLDA.

topic as a latent topic.

4 The Semi-Supervised Hierarchical Topic
Model

In this section, we will introduce a semi-
supervised hierarchical topic model, i.e., the Semi-
Supervised Hierarchical Latent Dirichlet Allocation
(SSHLDA). SSHLDA is a probabilistic graphical
model that describes a process for generating a hi-
erarchical labeled document collection. Like hi-
erarchical Labeled LDA (hLLDA) (Petinot et al.,
2011), SSHLDA can incorporate labeled topics into
the generative process of documents. On the other
hand, like hierarchical Latent Dirichlet Allocation
(hLDA) (Blei et al., 2004), SSHLDA can automat-
ically explore latent topic in data space, and extend
the existing hierarchy of observed topics. SSHLDA
makes use of not only observed topics, but also la-
tent topics.

The graphical model of SSHLDA is illustrated in
Figure 1. In the model, N is the number of words in
a document, D is the total number of documents in
a collection, M is the number of leaf nodes in hier-
archical observed nodes, ci is a node in the ith level
in the hierarchical tree, η, α and µci are dirichlet
prior parameters, βk is a distribution over words, θ
is a document-specific distribution over topics, δci is
a multinomial distribution over observed sub-topics
of topic ci, w is an observed word, z is the topic
assigned to w, Dirk(.) is a k-dimensional Dirichlet
distribution, Tj is a set of paths in the hierarchy of
latent topics for jth leaf node in the hierarchy of ob-

Figure 2: One illustration of SSHLDA. The tree has 5
levels. The shaded nodes are observed topics, and circled
nodes are latent topics. The latent topics are generated
automatically by SSHLDA model. After learning, each
node in this tree will obtain a corresponding probability
distribution over words, i.e. a topic.

served topics, γ is a Multi-nomial distribution over
paths in the tree. All notations used in this paper are
listed in Table 1.

SSHLDA, as shown in Figure 1, assumes the fol-
lowing generative process:

(1) For each table k ∈ T in the infinite tree,

(a) Draw a topic βk ∼ Dir(η).

(2) For each document, m ∈ {1, 2, ..., D}

(a) Let c1 be the root node.
(b) For each level l ∈ {2, ..., L}:

(i) If nodes in this level have been observed,
draw a node cl from Mult(δcl−1

|µcl−1
).

(ii) Otherwise, draw a table cl from restaurant
cl−1 using Formula (1).

(c) Draw an L-dimensional topic proportion vec-
tor θm from Dir(α).

(d) For each word n ∈ {1, ..., N}:
(i) Draw z ∈ {1, ..., L} from Mult(θ).

(ii) Draw wn from the topic associated with
restaurant cz .

As the example showed in Figure 2, we assume
that we have known a hierarchy of observed top-
ics: {A1,A2,A17,A3,A4}, and assume the height
of the desired topical tree is L = 5. All circled
nodes are latent topics, and shaded nodes are ob-
served topics. A possible generative process for a
document m can be: It starts from A1, and chooses
node A17 at level 2, and then chooses A18, A20 and
A25 in the following levels. Thus we obtain a path:
cm = {A1, A17, A18, A20, A25}. After getting the
path for m, SSHLDA generates each word from one
of topics in this set of topics cm.
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5 Probabilistic Inference

In this section, we describe a Gibbs sampling al-
gorithm for sampling from the posterior and corre-
sponding topics in the SSHLDA model. The Gibbs
sampler provides a method for simultaneously ex-
ploring the model parameter space (the latent topics
of the whole corpus) and the model structure space
(L-level trees).

In SSHLDA, we sample the paths cm for docu-
ment m and the per-word level allocations to topics
in those paths zm,n. Thus, we approximate the pos-
terior p(cm, zm|γ, η, w,µ). The hyper-parameter γ
reflects the tendency of the customers in each restau-
rant to share tables, η denotes the expected variance
of the underlying topics (e.g., η � 1 will tend to
choose topics with fewer high-probability words),
µci is the dirichlet prior of δci , and µ is the set of
µci . wm,n denotes the nth word in the mth docu-
ment; and cm,l represents the restaurant correspond-
ing to the lth-level topic in document m; and zm,n,
the assignment of the nth word in the mth document
to one of the L available topics. All other variables
in the model, θ and β, are integrated out. The Gibbs
sampler thus assesses the values of zm,n and cm,l.

The Gibbs sampler can be divided into two main
steps: the sampling of level allocations and the sam-
pling of path assignments.

First, given the values of the SSHLDA hidden
variables, we sample the cm,l variables which are as-
sociated with the CRP prior. Noting that cm is com-
posed of com and cem , com is the set of observed
topics for document m, and cem is the set of latent
topics for document m. The conditional distribution
for cm, the L topics associated with document m, is:

p(cm|z, w, c−m, µ)

=p(com |µ)p(cem |zem , wem , ce−m)

∝p(com |µ)p(wem |cem , we−m , zem)

p(cem |ce−m) (2)

where

p(com |µ) =

|com |−1∏
i=0

p(ci,m|µci) (3)

and

p(wem |cem , we−m , zem)

=

|cem |∏
l=1

(
Γ(n.

cem,l,−m + |V |η)∏
w Γ(nw

cem,l,−m + η)
×∏

w Γ(nw
cem,l,−m + nw

cem,l,m
+ η)

Γ(n.
cem,l,−m + n·cem,l,m

+ |V |η)

)
(4)

ce−m is the set of latent topics for all documents
other than m, zem is the assignment of the words
in the mth document to one of the latent topics, and
wem is the set of the words belonging to one of the
latent topics in the the mth document. nw

cem,l,−m is
the number of instances of word w that have been
assigned to the topic indexed by cem,l, not including
those in the document m.

Second, given the current state of the SSHLDA,
we sample the zm,n variables of the underlying
SSHLDA model as follows:

p(zm,n = j|z−(m,n), w, cm, µ)

∝
nm
−n,j + α

nm
−n,. + |cm|

·
n

wm,n

−n,j + ηwm,n

n.
−(m,n) + |V |

(5)

Having obtained the full conditional distribution,
the Gibbs sampling algorithm is then straightfor-
ward. The zm,n variables are initialized to determine
the initial state of the Markov chain. The chain is
then run for a number of iterations, each time find-
ing a new state by sampling each zm,n from the dis-
tribution specified by Equation (5). After obtain-
ing individual word assignments z, we can estimate
the topic multinomials and the per-document mixing
proportions. Specifically, the topic multinomials are
estimated as:

βcm,j,i = p(wi|zcm,j
) =

η + nz
wi
cm,j

|V |η +
∑

n.
zcm,j

(6)

while the per-document mixing proportions fixed
can be estimated as:

θm,j =
α + nm

.,j

|cm|α + nm
.,.

, j ∈ 1, ..., |cm| (7)

5.1 Relation to Existing Models
In this section, we draw comparisons with the cur-
rent state-of-the-art models for hierarchical topic
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modeling (Blei et al., 2004; Petinot et al., 2011) and
show that at certain choices of the parameters of our
model, these methods fall out as special cases.

Our method generalises not only hierarchi-
cal Latent Dirichlet Allocation (hLDA), but also
Hierarchical Labeled Latent Dirichlet Allocation
(hLLDA). Our proposed model provides a unified
framework allowing us to model hierarchical labels
while to explore new latent topics.
Equivalence to hLDA As introduced in Section 2,
hLDA is a unsupervised hierarchical topic model. In
this case, there are no observed nodes, that is, the
corpus has no hierarchical labels. This means cm is
equal to cem,m; meanwhile the factor p(com,m|µ) is
always equal to one because each document has root
node, and this allows us to rewrite Formula (2) as:

p(cm|z, w, c−m, µ)

∝p(wcm |c, w−m, z)p(cm|c−m) (8)

which is exactly the same as the conditional distribu-
tion for cm, the L topics associated with document
m in hLDA model. In this case, our model becomes
equivalent to the hLDA model.
Equivalence to hLLDA hLLDA is a supervised hi-
erarchical topic model, which means all nodes in hi-
erarchy are observed. In this case, cm is equal to
com,m, and this allows us to rewrite Formula (2) as:

p(cm|z, w, c−m, µ) = p(cm|µ) ∝ p(com |µ) (9)

which is exactly the same as the step “ Draw a
random path assignment cm” in the generative pro-
cess for hLLDA. Consequentially, in this sense our
model is equivalent to hLLDA.

6 Experiments

We demonstrate the effectiveness of the proposed
model on large, real-world datasets in the question
answering and website category domains on two
tasks: the topic modeling of documents, and the use
of the generated topics for document clustering.

6.1 Datasets

To construct comprehensive datasets for our ex-
periments, we crawled data from two websites.
First, we crawled nearly all the questions and as-
sociated answer pairs (QA pairs) of two top cat-

Table 2: The statistics of the datasets.
Datasets #labels #paths Max level #docs
Y Ans 46 35 4 6,345,786
O Hlth 6695 6505 10 54939
O Home 2432 2364 9 24254

egories of Yahoo! Answers: Computers & Inter-
net and Health. This produced forty-three sub-
categories from 2005.11 to 2008.11, and an archive
of 6,345,786 QA documents. We refer the Yahoo!
Answer data as Y Ans.

In addition, we first crawled two categories of
Open Directory Project (ODP)∗: Home and Health.
Then, we removed all categories whose number of
Web sites is less than 3. Finally, for each of Web
sites in categories, we submited the url of each Web
site to Google and used the words in the snippet and
title of the first returned result to extend the sum-
mary of the Web site. We denote the data from the
category Home as O Home, and the data from the
category Health as O Hlth.

The statistics of all datasets are summarized in Ta-
ble 2. From this table, we can see that these datasets
are very diverse: Y Ans has much fewer labels than
O Hlth and O Home, but have much more docu-
ments for each label; meanwhile the depth of hierar-
chical tree for O Hlth and O Home can reach level
9 or above.

All experiments are based on the results of models
with a burn-in of 10000 Gibbs sampling iterations,
symmetric priors α = 0.1 and free parameter η = 1.0;
and for µ, we can obtain the estimation of µci by
fixed-point iteration (Minka, 2003).

6.2 Case Study
With topic modeling, the top associated words of
topics can be used as good descriptors for topics in
a hierarchy (Blei et al., 2003; Blei and McAuliffe,
2010). We show in Figure 3 a pair of compara-
tive example of the proposed model and a baseline
model over Y Ans dataset. The tree-based topic vi-
sualizations of Figure 3 (a) and (b) are the results of
SSHLDA and Simp-hLDA.

We have three major observations from the exam-
ple: (i) SSHLDA is a unified and generative model,
after learning, it can obtain a hierarchy of topics;

∗http://dmoz.org/
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Figure 3: (a) A sub network discovered on Y Ans dataset using SSHLDA, and the whole tree has 74 nodes; (b) A sub
network discovered on Y Ans dataset using Simp-hLDA algorithm, and the whole tree has 89 nodes. In both figures,
the shaded and squared nodes are observed labels, not topics; the shaded and round nodes are topics with observed
labels; blue nodes are topics but without labels and the yellow node is one of leaves in hierarchy of labels. Each topic
represented by top 5 terms.

while Simp-hLDA is a heuristic method, and its re-
sult is a mixture of label nodes and topical nodes.
For example, Figure 3 (b) shows that the hierarchy
includes label nodes and topic nodes, and each of la-
beled nodes just has a label, but label nodes in Fig-
ure 3 (a) have their corresponding topics. (ii) Dur-
ing obtaining a hierarchy, SSHLDA makes use of the
information from observed labels, thus it can gener-
ate a logical, structual hierarchy with parent-child
relations; while Simp-hLDA does not incorporate
prior information of labels into its generation pro-
cess, thus although it can obtain a hierarchy, many
parent-child pairs have not parent-child relation. For
example, in Figure 3 (b), although label “root” is
a parent of label “Computers & Internet”, the topi-
cal words of label “Computers & Internet” show the
topical node is not a child of label “root”. How-
ever, in Figure 3 (a), label “root” and “Computers
& Internet” has corresponding parent-child relation
between their topical words. (iii) In a hierarchy of
topics, if a topical node has correspending label, the
label can help people understand descendant topi-
cal nodes. For example, when we know node “er-
ror files click screen virus” in Figure 3 (a) has its
label “Computers & Internet”, we can understand
the child topic “hard screen usb power dell” is about

“computer hardware”. However, in Figure 3 (b), the
labels in parent nodes cannot provide much informa-
tion to understand descendant topical nodes because
many label nodes have not corresponding right topi-
cal words, such as label “Computers & Internet”, its
topical words, “the to you and a”, do not reflect the
connotation of the label.

These observations further confirm that SSHLDA
is better than the baseline model.

6.3 Perplexity Comparison

A good topic model should be able to generalize to
unseen data. To measure the prediction ability of
our model and baselines, we compute the perplex-
ity for each document d in the test sets. Perplex-
ity, which is widely used in the language modeling
and topic modeling community, is equivalent alge-
braically to the inverse of the geometric mean per-
word likelihood (Blei et al., 2003). Lower perplexity
scores mean better. Our model, SSHLDA, will com-
pare with three state-of-the-art models, i.e. Simp-
hLDA, hLDA and hLLDA. Simp-hLDA has been
introduced in Section 1, and hLDA and hLLDA has
been reviewed in Section 2. We keep 80% of the data
collection as the training set and use the remaining
collection as the held-out test set. We build the mod-
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els based on the train set and compute the preplexity
of the test set to evaluate the models. Thus, our goal
is to achieve lower perplexity score on a held-out test
set. The perplexity of M test documents is calculated
as:

perplexity(Dtest) = exp

{
−
∑M

d=1

∑Nd
m=1 log p(wdm)∑M
d=1 Nd

}
(10)

where Dtest is the test collection of M documents,
Nd is document length of document d and wdm is
mth word in document d.

We present the results over the O Hlth dataset in
Figure 4. We choose top 3-level labels as observed,
and assume other labels are not observed, i.e. l = 3.
From the figure, we can see that the perplexities of
SSHLDA, are lower than that of Simp-hLDA, hLDA
and hLLDA at different value of the tree height pa-
rameter, i.e. L ∈ {5, 6, 7, 8}. It shows that the
performance of SSHLDA is always better than the
state-of-the-art baselines, and means that our pro-
posed model can model the hierarchical labeled data
better than the state-of-the-art models. We can also
obtain similar experimental results over Y Ans and
O Home datasets, and their detailed description is
not included in this paper due to the limitation of
space.

6.4 Clustering performance

To evaluate indirectly the performance of the pro-
posed model, we compare the clustering perfor-
mance of following systems: 1) the proposed model;
2) Simp-hLDA; 3) hLDA; 4) agglomerative cluster-
ing algorithm. There are many agglomerative clus-
tering algorithms, and in this paper, we make use
of the single-linkage method in a software package
called CLUTO (Karypis, 2005) to obtain hierarchies
of clusters over our datasets, with words as features.
We refer the method as h-clustering.

Given a document collection DS with a H-level hi-
erarchy of labels, each label in the hierarchy and cor-
responding documents will be taken as the ground
truth of clustering algorithms. The hierarchy of la-
bels denoted as GT-tree. The process of evaluation
is as follows. First, we choose top l-level labels
in GT-tree as an observed hierarchy, i.e. Base Tree
(BT), and we need to construct a L-level hierarchy
(l < L <= H) over the documents DS using a

Figure 4: Perplexities of hLLDA, hLDA, Simp-hLDA
and SSHLDA. The results are run over the O Hlth
dataset, with the height of the hierarchy of observed la-
bels l = 3. The X-axis is the height of the whole topical
tree (L), and Y-axis is the perplexity.

model. The remaining labels in GT-tree and cor-
responding documents are the ground truth classes,
each class denoted as Ci. Then, (i) for h-clustering,
we run single-linkage method over the documents
DS. (ii) for Simp-hLDA, hLDA runs on the doc-
uments in each leaf-node in BT, and the height pa-
rameter is (L − l) for each hLDA. After training,
each document is assigned to top-1 topic accord-
ing to the distribution over topics for the document.
Each topic and corresponding documents forms a
new cluster. (iii) for hLDA, hLDA runs on all docu-
ments in DS, and the height parameter is L. Similar
to Simp-hLDA, each document is assigned to top-
1 topic. Each topic and corresponding documents
forms a new cluster. (iv) for SSHLDA, we set height
parameter as L. After training, each document is
also assigned to top-1 topic. Topics and their cor-
responding documents form a hierarchy of clusters.

6.4.1 Evaluation Metrics
For each dataset we obtain corresponding clusters

using the various models described in previous sec-
tions. Thus we can use clustering metrics to measure
the quality of various algorithms by using a measure
that takes into account the overall set of clusters that
are represented in the new generated part of a hier-
archical tree.

One such measure is the FScore measure, intro-
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duced by (Manning et al., 2008). Given a particular
class Cr of size nr and a particular cluster Si of size
ni, suppose nri documents in the cluster Si belong
to Cr, then the FScore of this class and cluster is
defined to be

F (Cr, Si) =
2×R(Cr, Si)× P (Cr, Si)

R(Cr, Si) + P (Cr, Si)
(11)

where R(Cr, Si) is the recall value defined as
nri/nr, and P (Cr, Si) is the precision value defined
as nri/ni for the class Cr and the cluster Si. The FS-
core of the class Cr, is the maximum FScore value
attained at any node in the hierarchical clustering
tree T . That is,

F (Cr) = max
Si∈T

F (Cr, Si). (12)

The FScore of the entire clustering solution is then
defined to be the sum of the individual class FScore
weighted according to the class size.

FScore =
c∑

r=1

nr

n
F (Cr), (13)

where c is the total number of classes. In general, the
higher the FScore values, the better the clustering
solution is.

6.4.2 Experimental Results
Each of hLDA, Simp-hLDA and SSHLDA needs

a parameter—the height of the topical tree, i.e. L;
and for Simp-hLDA and SSHLDA, they need an-
other parameter—the height of the hierarchical ob-
served labels, i.e l. The h-clustering does not have
any height parameters, thus its FScore will keep the
same values at different height of the topical tree.
With choosing the height of hierarchical labels for
O Home as 4, i.e. l = 4, the results of our model
and baselines with respect to the height of a hierar-
chy are shown in Figure 5.

From the figure, we can see that our proposed
model can achieve consistent improvement over
the baseline models at different height, i.e. L ∈
{5, 6, 7, 8}. For example, the performance of
SSHLDA can reach 0.396 at height 5 while the h-
clustering, hLDA and hLLDA only achieve 0.295,
0.328 and 0.349 at the same height. The result shows
that our model can achieve about 34.2%, 20.7% and
13.5% improvements over h-clustering, hLDA and

Figure 5: FScore measures of h-clustering, hLDA,
Simp-hLDA and SSHLDA. The results are run over the
O Home dataset, with the height of the hierarchy of ob-
served labels l = 3. The X-axis is the height of the whole
topical tree (L), and Y-axis is the FScore measure.

hLLDA at height 5. The improvements are signifi-
cant by t-test at the 95% significance level. We can
also obtain similar experimental results over Y Ans
and O Hlth. However, for the same reason of limita-
tion of space, their detailed descriptions are skipped
in this paper.

7 Conclusion and Future work

In this paper, we have proposed a semi-supervised
hierarchical topic models, i.e. SSHLDA, which aims
to solve the drawbacks of hLDA and hLLDA while
combine their merits. Specially, SSHLDA incorpo-
rates the information of labels into generative pro-
cess of topic modeling while exploring latent topics
in data space. In addition, we have also proved that
hLDA and hLLDA are special cases of SSHLDA.
We have conducted experiments on the Yahoo! An-
swers and ODP datasets, and assessed the perfor-
mance in terms of Perplexity and FScore measure.
The experimental results show that the prediction
ability of SSHLDA is the best, and SSHLDA can
also achieve significant improvement over the base-
lines on Fscore measure.

In the future, we will continue to explore novel
topic models for hierarchical labeled data to further
improve the effectiveness; meanwhile we will also
apply SSHLDA to other media forms, such as im-
age, to solve related problems in these areas.
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Abstract

Many NLP tasks make predictions that are in-
herently coupled to syntactic relations, but for
many languages the resources required to pro-
vide such syntactic annotations are unavail-
able. For others it is unclear exactly how
much of the syntactic annotations can be ef-
fectively leveraged with current models, and
what structures in the syntactic trees are most
relevant to the current task.

We propose a novel method which avoids
the need for any syntactically annotated data
when predicting a related NLP task. Our
method couples latent syntactic representa-
tions, constrained to form valid dependency
graphs or constituency parses, with the predic-
tion task via specialized factors in a Markov
random field. At both training and test time we
marginalize over this hidden structure, learn-
ing the optimal latent representations for the
problem. Results show that this approach pro-
vides significant gains over a syntactically un-
informed baseline, outperforming models that
observe syntax on an English relation extrac-
tion task, and performing comparably to them
in semantic role labeling.

1 Introduction

Many NLP tasks are inherently tied to syntax, and
state-of-the-art solutions to these tasks often rely on
syntactic annotations as either a source for useful
features (Zhang et al., 2006, path features in relation
extraction) or as a scaffolding upon which a more
narrow, specialized classification can occur (as of-
ten done in semantic role labeling). This decou-

pling of the end task from its intermediate repre-
sentation is sometimes known as the two-stage ap-
proach (Chang et al., 2010) and comes with several
drawbacks. Most notably this decomposition pro-
hibits the learning method from utilizing the labels
from the end task when predicting the intermediate
representation, a structure which must have some
correlation to the end task to provide any benefit.

Relying on intermediate representations that are
specifically syntactic in nature introduces its own
unique set of problems. Large amounts of syntac-
tically annotated data is difficult to obtain, costly
to produce, and often tied to a particular domain
that may vary greatly from that of the desired end
task. Additionally, current systems often utilize only
a small amount of the annotation for any particular
task. For instance, performing named entity recogni-
tion (NER) jointly with constituent parsing has been
shown to improve performance on both tasks, but
the only aspect of the syntax which is leveraged by
the NER component is the location of noun phrases
(Finkel and Manning, 2009). By instead discover-
ing a latent representation jointly with the end task
we address all of these concerns, alleviating the need
for any syntactic annotations, while simultaneously
attempting to learn a latent syntax relevant to both
the particular domain and structure of the end task.

We phrase the joint model as factor graph and
marginalize over the hidden structure of the inter-
mediate representation at both training and test time,
to optimize performance on the end task. Infer-
ence is done via loopy belief propagation, making
this framework trivially extensible to most graph
structures. Computation over latent syntactic rep-
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resentations is made tractable with the use of special
combinatorial factors which implement unlabeled
variants of common dynamic-programming parsing
algorithms, constraining the hidden representation
to realize valid dependency graphs or constituency
trees.

We apply this strategy to two common NLP tasks,
coupling a model for the end task prediction with
latent and general syntactic representations via spe-
cialized logical factors which learn associations be-
tween latent and observed structure. In comparisons
with identical models which observe “gold” syntac-
tic annotations, derived from off-the-shelf parsers or
provided with the corpora, we find that our hidden
marginalization method is comparable in both tasks
and almost every language tested, sometimes signifi-
cantly outperforming models which observe the true
syntax.

The following sections serves as a preliminary,
introducing an inventory of factors and variables
for constructing factor graph representations of
syntactically-coupled NLP tasks. Section 3 explores
the benefits of this method on relation extraction
(RE), where we compare the use dependency and
constituency structure as latent representations. We
then turn to a more established semantic role label-
ing (SRL) task (§4) where we evaluate across a wide
range of languages.

2 Latent Pseudo-Syntactic Structure

The models presented in this paper are phrased in
terms of variables in an undirected graphical model,
Markov random field. More specifically, we imple-
ment the model as a factor graph, a bipartite graph
composed of factors and variables in which we can
efficiently compute the marginal beliefs of any vari-
able set with the sum-product algorithm for cyclic
graphs, loopy belief propagation,. We now intro-
duce the basic variable and factor components used
throughout the paper.

2.1 Latent Dependency Structure

Dependency grammar is a lexically-oriented syn-
tactic formalism in which syntactic relationships
are expressed as dependencies between individual
words. Each non-root word specifies another as
its head, provided that the resulting structure forms

a valid directed graph, ie. there are no cycles in
the graph. Due to the flexibility of this representa-
tion it is often used to describe free-word-order lan-
guages, and increasingly preferred in NLP for more
language-in-use scenarios. A dependency graph can
be modeled with the following nodes, as first pro-
posed by Smith and Eisner (2008):

• Let {Link(i, j) : 0 ≤ i ≤ j ≤ n, n 6= j}
be O(n2) boolean variables corresponding to
the possible links in a dependency parse. Li,j

= true implies that there is a dependency from
parent i to child j.

• Let {LINK(i, j) : 0 ≤ i ≤ j ≤ n, n 6= j}
be O(n2) unary factors, each paired with a cor-
responding Link(i, j) variable and expressing
the independent belief that Link(i, j) = true.

2.2 Latent Constituency Structure
Alternatively we can describe the more structured
constituency formalism by setting up a representa-
tion over span variables:

• Let {Span(i, j) : 0 ≤ i < j ≤ n} be O(n2)
boolean variables such that Span(i, j) = true
iff there is a bracket spanning i to j 1.

• Let {SPAN(i, j) : 0 ≤ i < j ≤ n} be O(n2)
unary factors, each attached to the correspond-
ing Span(i, j) variable. These factors score the
independent suitability of each span to appear
in an unlabeled constituency tree.

All boolean variables presented in this paper will
be paired to unary factors in this manner, which
we will omit in future descriptions. This encom-
passes the necessary representational structure for
both syntactic formalisms, but nothing introduced
up to this point guarantees that either of these rep-
resentations will form a valid tree or DAG.

2.3 Combinatorial Factors
Naively constraining these latent representations
through the introduction of many interconnected
ternary factors is possible, but would likely be com-
putationally intractable. However, as observed in

1In practice, we do not need to include variables for spans
of width 1 or n, since they will always be true.
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Smith and Eisner (2008), we can encapsulating
common dynamic programming algorithms within
special-purpose factors to efficiently globally con-
strain variable configurations . Since the outgoing
messages from such factors to a variable can be com-
puted from the factor’s posterior beliefs about that
variable, there is no difficulty in exchanging beliefs
between these special-purpose factors and the rest
of the graph, and inference can proceed using the
standard sum-product or max-product belief prop-
agation. Here we present two combinatorial factors
that provide efficient ways of constraining the model
to fit common syntactic frameworks.

• Let CKYTREE be a global combinatorial fac-
tor, as used in previous work in efficient pars-
ing (Naradowsky and Smith, 2012), attached to
all the Span(i, j) variables. This factor con-
tributes a factor of 1 to the model’s score iff the
span variables collectively form a legal, binary
bracketing and a factor of 0 otherwise. It en-
forces, therefore, a hard constraint on the vari-
ables, computing beliefs via an unlabeled vari-
ant of the inside-outside algorithm.

• Let DEP-TREE be a global combinatorial fac-
tor, as presented in Smith and Eisner (2008),
which attaches to all Link(i, j) variables and
similarly contributes a factor of 1 iff the config-
uration of Link variables forms a valid projec-
tive dependency graph. A graph is projective if
its edges do not cross.

2.4 Marginal MAP Inference

It is straightforward to train these latent variable
models to maximize the marginal probability of their
outputs, conditioning on their inputs, and marginal-
izing out the latent syntactic variables. To compute
feature expectations, we can use marginal inference
techniques such as sampling and sum-product belief
propagation to compute marginal probabilities.

A knottier problem arises when we want to find
the best assignment to the variables of interest
while marginalizing out “nuisance” latent variables.
This is the problem of marginal MAP inference—
sometimes known as consensus decoding—which
has been shown to be NP-hard and without a poly-
nomial time approximation scheme (Sima’an, 1996;

Casacuberta and Higuera, 2000). In the NLP com-
munity, these inference problems often arise when
dealing with spurious ambiguity where multiple
derivations can lead to the same derived structure. In
tree substitution grammars, for instance, there may
be many ways of combining elementary trees to pro-
duce the same output tree; in machine translation,
many different elementary phrases or elementary
tree pairs might produce the same output string. For
syntactic parsing, Goodman (1996) proposed a vari-
ational method for summing out spurious ambiguity
that was equivalent to minimum Bayes risk decoding
(Goel and Byrne, 2000; Kumar and Byrne, 2004)
with a constituent-recall loss function. For MT,
May and Knight (2006) proposed methods for de-
terminizing tree automata to reduce ambiguity, and
Li et al. (2009) proposed a variational method based
on n-gram loss functions. More recently, Liu and Ih-
ler (2011) analyzed message-passing algorithms for
marginal MAP.

In this paper, we adopt a simple minimum Bayes
risk decoding scheme. First, we perform sum-
product belief propagation on the full factor graph.
Then, we maximize the expected accuracy of the
variables of interest, subject to any hard constraints
on them (such as mutual exclusion among labels). In
some cases with complex combinatorial constraints,
this simple MBR scheme has proved more effec-
tive than exact decoding over all variables (Auli and
Lopez, 2011).

3 Relation Extraction

Performing a syntax-based NLP task in most real-
world scenarios requires that the incoming data first
be parsed using a pre-trained parsing model. For
some tasks, like relation extraction, many data sets
lack syntactic annotation and these circumstances
persist even into the training phase. In this sec-
tion we explore such scenarios and contrast the use
of parser-provided syntactic annotation to marginal-
izing over latent representations of constituency or
dependency syntax. We show the hidden syntactic
models are not just competitive with these “oracle”
models, but in some configurations can actually out-
perform them.

Relation extraction is the task of identifying se-
mantic relations between sets of entities in text (as
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illustrated in Fig. 1b), and a good proving ground
for latent syntactic methods for two reasons. First,
because entities share a semantic relationship, un-
der most linguistic analyses these entities will also
share some syntactic relation. Indeed, syntactic fea-
tures have long been an extremely useful source
of information for relation extraction systems (Cu-
lotta and Sorensen, 2004; Mintz et al., 2009). Sec-
ondly, relation extraction has been a common task
for pioneering efforts in processing data mined from
the internet, and otherwise noisy or out-of-domain
data. In particular, large noisily-annotated data sets
have been generated by leveraging freely available
knowledge bases such as Freebase (Bollacker et al.,
2008; Mintz et al., 2009). Such data sets have been
utilized successfully for relation extraction from the
web (Bunescu and Mooney, 2007).

3.1 Model

We present a simple model for representing rela-
tional structure, with the only variables present be-
ing a set of boolean-valued variables representing an
undirected dependency between two entities, and an
additional set of boolean label variables representing
the type label of the relation.

• Let {Rel(i, j : 0 ≤ i < j ≤ n} be O(n2)
boolean variables such that Rel(i, j) = true iff
there is a relation spanning i to j.

• Let {Rel-Label(i, j, λ) : λ ∈ L, and 0 ≤ i <
j ≤ n} be O(|L|n2) boolean variables such
that Rel-Label(i, j, λ) = true iff there is a re-
lation spanning i to j with relation type λ.

• Let {ATMOST1(i, j) : 0 ≤ i < j ≤ n} be
O(n2) factors, each coordinating the set L of
possible nonterminal variables to the Rel vari-
able at each i, j tuple, allowing a Rel-Label
variable to be true iff all other label variables
are false and Rel(i, j) = true.

Here the Rel(i, j) and Rel-Label(i, j) variables
simply express the representation of the problem,
while the ATMOST1 factors are logical constraints
ensuring that only one label will apply to a particu-
lar relation.

3.2 Coordination Factors
An important contribution of this work is the intro-
duction of a flexible, general framework for connect-
ing the latent and observable partitions of the model.
We accomplish this through the use of two addi-
tional factors, each expressing the same basic logic,
which learn when to coordinate and when to ignore
correlations between the latent syntax and the end
task. While here we specify binary and ternary ver-
sions of these factors, they also generalize to higher
dimensions.

• Let {D-CONNECT(i, j, k) : 0 ≤ i < j ≤
n; 0 ≤ k ≤ n} be O(n3) factors coordinating
any number of dependency syntax Link(i, j)
variables with representational variables on the
end task, multiplying in 1 to the model score
unless all variables are on, in which case it mul-
tiplies a connective potential φ derived from
its features. Thus it functions logically as a
soft NAND factor. In this ternary formulation k
represents a hidden dependency head or pivot
which is shared between two syntactic depen-
dencies anchored at the indices of the entities
in the relation (as illustrated in Fig. 1).

• Let {C-CONNECT(i, j) : 0 ≤ i < j ≤
n} be O(n2) factors coordinating syntactic
Span(i, j) and relation arc Rel(i, j), identi-
cally to D-CONNECT but with a 1-to-1 map-
ping. Intuitively the joint model might learn
φ > 1, i.e., constituency spans and task predic-
tion relations are more likely to be coterminous.

The difficulty in working with latent dependency
syntax is that we posit that the RE variables do not
share a 1-to-1 mapping with variables in the hid-
den representation. We expect instead, according
to linguistic intuition, that a relation between enti-
ties at position i and j in the sentence should have
corresponding syntactic dependencies but that they
are likely to realize this by sharing the same head
word (as depicted in Fig.1), a word whose identity
should help label the relation. Therefore we intro-
duce a special coordination factor, D-CONNECT as
a ternary factor to capture the relationship between
pairs of latent syntactic variables and a single rela-
tion variable, pivoting on the same unknown head
word.
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Figure 1: Latent Dependency coupling for the RE task.
The D-CONNECT factor expresses ternary connection re-
lations because the shared head word of the proposed re-
lation is unknown. As is convention, variables are repre-
sented by circles, factors by rectangles.

We introduce six model scenarios.

• Baseline, simply the arc-factored model con-
sisting only of Rel and corresponding Label
variables for each entity. Features on the re-
lation factors, which are common to all model
configurations, are combinations of lexical in-
formation (i.e., the words that form the entity,
the pos-tags of the entities, etc.) as well as the
distance between the relation. This is a light-
weight model and generally does not attempt
to exhaustively leverage all possible proven
sources of useful features (Zhou et al., 2005)
towards a higher absolute score, but rather to
serve as a point of comparison to the models
which rely on syntactic information.

• Baseline-Ent, a variant of Baseline with addi-
tional features which include combinations of
mention type, entity type, and entity sub-type.

• Oracle D-Parse, in which we also instantiate a
full set of latent dependency syntax variables,
and connect them to the baseline model us-
ing D-CONNECT factors. Syntax variables are
clamped to their true values.

• Oracle C-Parse, the constituency syntax ana-
logue of Oracle D-Parse.

• Hidden D-Parse, which is an extension of Or-
acle D-Parse in which we connect all syntax
variables to a DEP-TREE factor, syntax vari-
ables are unobserved, and are learned jointly
with the end task. The features for latent syntax
are a subset of those used in dependency pars-
ing (McDonald et al., 2005).

• Hidden C-Parse, the constituency syntax ana-
logue of Hidden D-Parse. The feature set is
similar but bigrams are taken over the words
defining the constituent span, rather than the
words defining the head/modifier relation.

Coordination factor features for the syntactically-
informed models are particularly important. This
became evident in initial experiments where the
baseline was often able to outperform the hidden
syntactic model. However, inclusion of entity and
mention label features into the connection factors
provides the model with greater reasoning over
when to coordinate or ignore the relation predictions
with the underlying syntax. These are a proper sub-
set of the Baseline-Ent features.

3.3 Data

We evaluate these models using the 2005 Auto-
matic Content Extraction (ACE) data set (Walker,
2006), using the English (dual-annotated) and Chi-
nese (solely annotator #1 data set) sections. Each
corpus is annotated with entity mentions—tagged as
PER, ORG, LOC, or MISC—and, where applica-
ble, what type of relation exists between them (e.g.,
coarse: PHYS; fine: Located). But like most cor-
pora available for the task, the burden of acquiring
corresponding syntactic annotation is left to the re-
searcher. In this situation it is common to turn to
existing pre-trained parsing models.

We generate our data by first splitting the raw
text paragraphs into sentences. Chinese sentences
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ACE Results
English Chinese

Unlabeled Labeled Unlabeled Labeled
Model P R F1 P R F1 P R F1 P R F1
Baseline 85.4 57.0 68.4 83.0 55.3 66.4 42.9 26.8 33.0 42.6 21.3 28.4
Baseline-Ent 87.2 65.4 74.8 85.8 64.4 73.6 55.2 31.1 39.8 51.2 29.4 37.4
Oracle D-Parse 89.3 67.4 76.8 89.3 66.2 75.4 60.0 32.6 42.2 58.1 31.3 40.7
Hidden D-Parse 87.8 69.8 77.7 85.3 67.8 75.6 48.0 32.0 38.4 47.2 30.0 36.7
Oracle C-Parse 89.1 68.7 77.6 87.5 67.5 76.2 66.8 37.8 48.3 63.8 37.0 46.8
Hidden C-Parse 90.5 69.9 78.9 88.8 68.6 77.4 56.3 32.3 41.0 53.4 31.6 39.7

Table 1: Relation Extraction Results. Models using hidden constituency syntax provide significant gains over the
syntactically-uniformed baseline model in both languages, but the advantages of the latent syntax were mitigated on
the smaller Chinese data set.

are also tokenized according to Penn Chinese Tree-
bank standards (Xue et al., 2005). The sentences are
then tagged and parsed using the Stanford CoreNLP
tools, using the standard pre-trained models for tag-
ging (Toutanvoa and Manning, 2000), and the fac-
tored parsing model of Klein and Manning (2002).
The distributed grammar is trained on a variety of
sources, including the standard Wallstreet Journal
corpus, but also biomedical, translation, and ques-
tions. We then apply entity and relation annota-
tions noisily to the data, collapsing multi-word en-
tities into one term. We filter out sentences with
fewer than two entities (and are thus incapable of
containing relations) and sentences with more than
40 words (to keep the parses more reliable). This
yields 6966 sentences for English data, but unfortu-
nately only 747 sentences for the Chinese. Nine of
every ten sentences comprise the training set, with
every tenth sentence reserved for test.

3.4 Results

We train all models using 20 iterations of stochastic
gradient descent, each with a maximum of 10 BP it-
erations (though in practice we find convergence to
often occur much earlier). The results are presented
in Table 1, showing precision, recall, and F-measure
for both labeled and unlabeled prediction. For En-
glish, not only is the hidden marginalization method
a suitable replacement for the syntactic trees pro-
vided by pre-trained, state-of-the-art models, but in
both configurations we find that inducing an optimal
hidden structure is preferable to the parser-produced
annotations. On Chinese, where the data set is atyp-
ically small, we still observe improved performance

over the baseline in the constituency-based model
though it is not able to match the observed syntax
model.

Despite the intuition that both entities occupy
roles as modifiers of the same verb, we find that
the Hidden D-Parse model often fails to recover the
correct latent structure, and that even when success-
ful dependency parses are observed, the head word
is often not uniquely indicative of the relation type
(as known is not strongly correlated with the relation
type EMPLOYS in the phrase: Shigeru Miyamoto,
best known for his work at the video game company
Nintendo). Hence when it comes to relation extrac-
tion, at least on our relatively small data sets, we find
the simplest approach to latent syntactic structure is
the best.

We now turn to the task of semantic role label-
ing to evaluate this method on a more established
hand-annotated data set, and a more varied set of
languages.

4 Semantic Role Labeling

The task of semantic role labeling (SRL) aims to
detect and label the semantic relationships between
particular words, most commonly verbs (referred to
in the domain as predicates), and their arguments
(Meza-Ruiz and Riedel, 2009).

In a manner similar to RE, there is a strong corre-
lation between the presence of an SRL relation and
there existing an underlying syntactic dependency,
though this is not always expressed as directly as a
1-to-1 correspondence. This has historically moti-
vated a reliance on syntactic annotation, and some
of the most successful methods have simply applied
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Figure 2: A tiered graphic representing the three different SRL model configurations. The baseline system is described
in the bottom (c & d), the separate panels highlighting the independent predictions of this model: sense labels are
assigned in an entirely separate process from argument prediction. Pruning in the model takes place primarily in
this tier, since we observe true predicates we only instantiate over these indices. The middle tier (b.) illustrates the
syntactic representation layer, and the connective factors between syntax and SRL. In the observed syntax model
the Link variables are clamped to their correct values, with no need for a factor to coordinate them to form a valid
tree. Finally, the hidden model comprises all layers, including a combinatorial syntactic constraint (a.) over syntactic
variables. In this scenario all labels in (b.) are hidden at both training and test time.

feature-rich classifiers to the parsed trees. Related
work has recognized the large annotation burden the
task demands, but aimed to keep the syntactic anno-
tations and induce semantic roles (Lang and Lapata,
2010). In this section we will take the opposite ap-
proach, disregarding the syntactic annotations which
we argue are more costly to acquire, as they require
more formal linguistic training to produce.

4.1 Model
We present a simple, flexible model for SRL in
which sense predictions are made independently of
the rest of the model, and argument predictions are
made independently of each other. The model struc-
ture is composed as depicted in Fig. 2.

• Let {Arg(i, j) : 0 ≤ i < j ≤ n} be O(n2)
boolean variables such that Arg(i, j) = true

iff predicate i takes token j as an argument.

• Let {Role(i, j, λ) : λ ∈ L, and 0 ≤ i <
j ≤ n} be O(|L|n2) boolean variables such
that Role(i, j, λ) = true iff Arg(i, j) is true
and takes the role label λ.

• Let {Sense(i, σ) : σ ∈ S, and 0 ≤ i ≤
n} be O(|S|n) boolean variables such that
Sense(i, σ) = true iff predicate i has sense
σ.

4.1.1 Features
At the coarsest level both the SRL and RE models

are specifying binary predictions between a pair of
indices in the sentence, and a set of labels for each
dependency that happens to be true. Similarly we
use almost identical features in SRL as we did in
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Figure 3: Examining the learned hidden representation for SRL. In this example the syntactic dependency arcs derived
from gold standard syntactic annotations (left) are entirely disjoint from the correct predicate/arguments pairs (shown
in the heatmaps by the squares outlined in black), and the observed syntax model fails to recover any of the correct
predictions. In contrast, the hidden model structure (right) learns a representation that closely parallels the desired end
task predictions, helping it recover three of the four correct SRL predictions (shaded arcs: red corresponds to a correct
prediction, with true labels GA, KARA, etc.), and providing some evidence towards the fourth. The dependency tree
corresponding to the hidden structure is derived by edge-factored decoding: dependency variables whose beliefs> 0.5
are classified as true (though some arcs not relevant to the SRL predictions are omitted for clarity).

RE, with the sole exception that we incorporate the
observable lemma and morphological features into
bigrams on predicate/argument pairs. For sense pre-
diction we rely only on unigram features taken in a
close (w = 2) window of the target predicate.

For the coordinating factors we use subsets of
combinations of word, part-of-speech, and capital-
ization features taken between head and argument,
and concatenate these with the distance and direc-
tion between the predicate and argument. We do not
find the performance of the system to be as sensi-
tive to which features are present in the coordinating
factors as we did in the RE task.

4.2 Data

We evaluate our SRL model using the data set devel-
oped for the CoNLL 2009 shared task competition

(Hajič et al., 2009), which features seven languages
and provides an ideal opportunity to measure the
ability of the hidden structure to generalize across
languages of disparate origin and varied character-
istics. It also provides the opportunity to observe
a variety of different annotation styles and biases,
some of which our model was able to uncover as ill-
suited to common models for the task. The data it-
self provides word, lemma, part-of-speech, and mor-
phological feature information, along with gold de-
pendency parses. Words which denote predicates are
identified, and their (train time) arguments are pro-
vided. They are also annotated with a sense label
for each predicate, which is scored as an additional
SRL dependency. Thus the task involves predicting
for each predicate a set of argument dependencies
and the sense label associated with that predicate.
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Unlabeled Labeled CoNLL 2009 F1
Data Model P R F1 P R F1 MAX. MEAN MED.

Catalan
Baseline 92.20 62.43 74.48 73.80 58.76 65.43

Oracle Syn. 98.48 96.17 97.31 70.42 68.78 69.59 80.3 71.0 74.1
Hidden Syn. 95.21 92.84 94.01 68.86 67.15 67.99

Chinese
Baseline 72.48 64.82 68.44 65.97 59.00 62.29

Oracle Syn. 98.57 78.98 87.69 87.64 70.22 77.97 78.6 72.2 70.4
Hidden Syn. 90.79 79.09 84.53 81.97 71.40 76.32

Czech
Baseline 97.73 56.50 71.61 84.80 48.80 61.84

Oracle Syn. 98.62 81.25 89.09 92.94 68.25 74.84 85.4 72.4 71.7
Hidden Syn. 92.39 89.35 90.85 74.41 71.96 73.16

English
Baseline 92.46 71.56 80.68 84.56 65.45 73.78

Oracle Syn. 96.75 82.25 88.91 85.48 72.67 78.55 85.6 75.6 72.1
Hidden Syn. 95.06 79.06 86.32 83.82 69.72 76.12

German
Baseline 93.49 44.24 60.06 75.00 35.49 48.18

Oracle Syn. 95.18 79.11 86.41 73.24 60.87 66.49 79.7 68.1 67.8
Hidden Syn. 91.92 86.26 89.00 69.47 65.19 67.26

Japanese
Baseline 91.64 43.36 58.87 80.41 38.05 51.66

Oracle Syn. 93.84 48.15 63.64 90.06 46.21 61.08 78.2 62.7 72.0
Hidden Syn. 90.88 73.47 81.25 73.42 59.36 65.65

Spanish
Baseline 82.90 39.47 53.48 67.64 32.21 43.64

Oracle Syn. 98.96 94.19 96.52 70.68 67.27 68.93 80.5 70.4 73.4
Hidden Syn. 96.15 90.53 93.25 68.81 64.79 66.74

Table 2: SRL Results. The hidden model excels on the unlabeled prediction results, often besting the scores obtained
using the parses distributed with the CoNLL data sets. These gains did not always translate to the labeled task where
poor sense prediction hindered absolute performance.

4.3 Results

We evaluate across a set of model configurations
analogous to before. All experiments used 30 itera-
tions of SGD with a Gaussian prior, and a max 10 it-
erations of BP to compute the marginals for each ex-
ample. In comparison to the CoNLL competition en-
tries (Table 2, rightmost columns) our syntactically-
informed models generally fall in the middle of the
rankings. This is not surprising given the indepen-
dent predictions of the model and the very general,
language universal assumptions we have made in the
model structure and feature sets. However, in terms
of gauging the usefulness of the hidden syntactic
marginalization method the results are extremely
compelling, with only marginal differences between
the performance of the observed-syntax model, es-
pecially relative to the baseline.

And despite the simplicity of the model, we still
manage to perform at state-of-the-art levels in a
few instances, sometimes outperforming most of the
competition entries without observing any syntax.
The performance on Chinese is an example of this,

with our system outperforming all but the best sys-
tem, and the hidden syntactic model only slightly
behind.

Abstracting away from the performance compar-
isons against other systems, the unlabeled results are
the more revealing evidence for the use of hidden
syntactic structure. Here the average hidden model
score (88.89) almost outperforms the observed syn-
tax model (90.22, and vs. 66.80 baseline), mostly
due to the large margins on the unlabeled Japanese
scores. The strong independence between sense
prediction and argument prediction hinders perfor-
mance on the labeled task, but on all languages we
find an extremely significant improvement exploit-
ing hidden syntactic structure in comparison to the
baseline system—the hidden model recovers more
than 92% of the gap between the baseline and the
observed syntax model. It is also interesting to note
that in the shared task competition the two languages
which systems lost the most performance between
their parsing F1 and their SRL F1 were Japanese
and German. As illustrated in Fig. 3, the corre-
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spondence between syntax and SRL are extremely,
and systematically, poor. In this example our hid-
den structure model was able to assign strong beliefs
to the latent syntactic variables which correspond to
the correct predicate/argument pairs, allowing it to
correctly identify three of the four SRL arguments
when the joint model failed to recover one.

5 Related Work

This work is perhaps mostly closely related to
the Learning over Constrained Latent Representa-
tions (LCLR) framework of Chang et al. (2010).
Their abstract problem formulation is identical: both
paradigms seek to couple the end task to an interme-
diate representation which is not accessible to the
learning algorithm. However much of the intent,
scale, and methodology is different. LCLR aims
to provide a flexible latent structure for increasing
the representational power of the model in a use-
ful way, and is demonstrated on tasks and domains
where data availability is not a key concern. In con-
trast, while our hidden structure models may outper-
form their observed syntax counterparts, our focus
is as much on alleviating the burden of procuring
large amounts of syntactic annotation as it is about
increasing the expressiveness of the model. To that
end we constrain a more sophisticated latent repre-
sentation and couple it to highly structured output
predictions, opposed to binary classification prob-
lems. In methodology, we perform the more com-
putationally intensive marginalization operation in-
stead of maximizing.

Marginalization of hidden structure is also funda-
mental to other work, and featured most prominently
in generative Bayesian latent variable models (Teh
et al., 2006). Our approach is trained discrimina-
tively, affording the use of very rich feature sets and
the prediction of partial structures without needing
to specify a full derivation. Similar approaches have
been used in more linear latent variable CRF-based
models (McCallum et al., 2005), but these must only
marginalize only over hidden states of a much more
compact representation. Naively extending this to
tree-based constraints would often be computation-
ally inefficient, and we avoid intractability through
the encapsulation of much of the dynamic program-
ming machinery into specialized factors. Moreover,

using loopy belief propagation means that the in-
ference method is not closely coupled to the task
structure, and need not change when applying this
method to other types of graphs.

6 Conclusion

We have presented a novel method of coupling
syntactically-oriented NLP tasks to combinatorially-
constrained hidden syntactic representations, and
have shown that marginalizing over this latent rep-
resentation not only provides significant improve-
ments over syntactically-uninformed baselines, but
occasionally improves performance when compared
to systems which observe syntax. On the task of
relation extraction we find that a constituency rep-
resentation provides the most improvement over the
baseline, while in the SRL domain our model is ex-
tremely competitive with the best reported results on
Chinese, and outperforms the model using the pro-
vided parses on German and Japanese.

We believe this method delivers very promising
results in our presented tasks, opening the door to
new lines of research examining what types of con-
straints and what configurations of hidden struc-
ture are most beneficial for particular tasks and lan-
guages. Moreover, we present one type of coordinat-
ing factor, as both D-CONNECT and C-CONNECT

logically express a soft NAND function, but more
sophisticated coupling schemes are another natural
direction to pursue. Finally, we use sum-product
variant of belief propagation inference, but more
specialized inference schemes may show additional
benefits.
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Abstract

Past work on learning part-of-speech taggers
from tag dictionaries and raw data has re-
ported good results, but the assumptions made
about those dictionaries are often unrealistic:
due to historical precedents, they assume ac-
cess to information about labels in the raw
and test sets. Here, we demonstrate ways to
learn hidden Markov model taggers from in-
complete tag dictionaries. Taking the MIN-
GREEDY algorithm (Ravi et al., 2010) as a
starting point, we improve it with several intu-
itive heuristics. We also define a simple HMM
emission initialization that takes advantage of
the tag dictionary and raw data to capture both
the openness of a given tag and its estimated
prevalence in the raw data. Altogether, our
augmentations produce improvements to per-
formance over the original MIN-GREEDY al-
gorithm for both English and Italian data.

1 Introduction

Learning accurate part-of-speech (POS) taggers
based on plentiful labeled training material is gener-
ally considered a solved problem. The best taggers
obtain accuracies of over 97% for English newswire
text in the Penn Treebank, which can be consid-
ered as an upper-bound that matches human perfor-
mance on the same task (Manning, 2011). How-
ever, as Manning notes, this story changes as soon
as one is working with different assumptions and
data, including having less training data, different
kinds of training data, other languages, and other
domains. Such POS tagging work has been plen-
tiful and includes efforts to induce POS tags without
labels (Christodoulopoulos et al., 2010); learn from

POS-tag dictionaries (Ravi et al., 2010), incom-
plete dictionaries (Hasan and Ng, 2009) and human-
constructed dictionaries (Goldberg et al., 2008);
bootstrap taggers for a language based on knowl-
edge about other languages (Das and Petrov, 2011),
and creating supervised taggers for new, challenging
domains such as Twitter (Gimpel et al., 2011).

Here, we focus on learning from tag dictionar-
ies. This is often characterized as unsupervised or
weakly supervised training. We adopt the terminol-
ogy type-supervised training to distinguish it from
unsupervised training from raw text and supervised
training from word tokens labeled with their parts-
of-speech. Work on type-supervision goes back to
(Merialdo, 1994), who introduced the still standard
procedure of using a bigram Hidden Markov Model
(HMM) trained via Expectation Maximization.

Early research appeared to show that learning
from types works nearly as well as learning from
tokens, with researchers in the 1990s obtaining ac-
curacies up to 96% on English (e.g. Kupiec (1992)).
However, the tag dictionaries in these cases were ob-
tained from labeled tokens. While replicating earlier
experiments, Banko and Moore (2004) discovered
that performance was highly dependent on clean-
ing tag dictionaries using statistics gleaned from the
tokens. This greatly simplifies the job of a type-
supervised HMM: it no longer must entertain entries
for uncommon word-tag pairs (or mistaken pairs
due to annotation errors), which otherwise stand on
equal footing with the common ones. When the
full, noisy tag dictionary was employed, Banko and
Moore found accuracies dropped from 96% to 77%.

Banko and Moore’s observations spurred a new
line of research that sought to improve performance
in the face of full, noisy dictionaries; see Ravi and
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Knight (2009) for an overview. The highest accu-
racy achieved to date under these assumptions is
91.6% (Ravi et al., 2010). However, as is often
noted (including by the authors themselves), many
papers that work on learning taggers from tag dic-
tionaries make unrealistic assumptions about the tag
dictionaries they use as input (Toutanova and John-
son, 2008; Ravi and Knight, 2009; Hasan and Ng,
2009). For example, tag dictionaries are typically
constructed with every token-tag pair in the data, in-
cluding those that appear only in the test set. This
means that the evaluation of these taggers does not
measure how they perform on sentences that contain
unseen words or unseen word-tag pairs, a likely oc-
currence in real use of a trained tagger.

We show that it is possible to achieve good tag-
ging accuracy using a noisy and incomplete tag dic-
tionary that has no access to the tags of the raw and
test data and no access to the tag frequency infor-
mation of the labeled training data from which the
dictionary is drawn. We build on Ravi et al.’s (2010)
model minimization approach, which reduces dic-
tionary noise by greedily approximating the mini-
mum set of tag bigrams needed to cover the raw data
and exploits that information as a constraint on the
initialization of the model before running EM. We
extend their method in four distinct ways.

1. Enable the algorithm to be used with incomplete
dictionaries by exploiting the type-based infor-
mation provided by the tag dictionary and raw
text to initialize EM, and by training a standard
supervised HMM on the output of EM.

2. Improve the greedy procedure to find a better
minimized set of tag-tag bigrams.

3. Modify the method to return only the set of bi-
grams required to tag sentences instead of keep-
ing all bigrams chosen by minimization.

4. Exploit the paths found during minimization as a
direct initialization for EM.

Together, these improvements make it possible to
use model minimization in a realistic context, and
obtain higher performance: on English, results go
from 63.5% for a vanilla HMM to 82.1% for an
HMM that uses strategies to deal with unknowns,
then to 85.0% with Ravi and Knight’s minimization
and finally to 88.5% with our enhancements.

2 Supervision for HMMs

Hidden Markov Models (HMMs) are well-known
generative probabilistic sequence models commonly
used for POS-tagging. The probability of a tag se-
quence given a word sequence is determined from
the product of emission and transition probabilities:

P (t|w) ∝
N∏

i=1

P (wi|ti) · P (ti|ti−1)

HMMs can be trained directly from labeled data by
calculating maximum likelihood estimates or from
incomplete data using Expectation Maximization
(EM) (Dempster et al., 1977). We use both strate-
gies in this work: EM is used to estimate models
that can automatically label raw tokens, and then a
new HMM is estimated from that auto-labeled data.

2.1 Token-supervised training
We use a simple but effective smoothing regime to
account for unknown words and unseen tag-tag tran-
sitions. For emissions:

P (wi|ti) =
C(ti, wi) + α(ti)Puni(wi)

C(ti) + α(ti)

where Puni(wi) is the unigram probability of wi,
and α(ti) is a tag specific amount of mass for
smoothing. We use one-count smoothing (Chen and
Goodman, 1996), where α(ti) is based on the num-
ber of words that occur with ti once:

α(ti) = |wi : C(ti, wi) = 1|

Since open-class tags occur more frequently with
words that appear once, they will reserve more mass
for unknown words than closed-class tags will. The
transition distributions are smoothed in a similar
fashion:

P (ti|ti−1) =
C(ti−1, ti) + λ(ti−1)Puni(ti)

C(ti−1) + λ(ti−1)

λ(ti−1) = |ti : C(ti−1, ti) = 1|

This simple scheme is quite effective: an HMM
trained on the Penn Treebank sections 0-18 and eval-
uated on sections 19-21 and smoothed in this way
obtains 96.5% accuracy. We do not use gold stan-
dard labels elsewhere for this paper, but do use this
model on the output of type-supervised HMMs.
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2.2 Type-supervised training

We are primarily interested in learning taggers from
tag dictionaries combined with unlabeled text. As is
standard, we use EM to iteratively estimate the tran-
sition and emission probability parameters to maxi-
mize the likelihood of unlabeled data. It is known,
however, that EM has particular problems learning a
good HMM for POS tagging (Johnson, 2007; Ravi
and Knight, 2009). One reason is that EM gener-
ally tries to learn probability distributions that are
fairly uniform while POS tag frequencies are quite
skewed. For example, “a” appears in the training
data with seven different tags, but 99.9% of “a” to-
kens are determiners. Thus, the accuracy of anything
approaching a uniform distribution for “a” tags will
suffer greatly. In the context of unsupervised POS
tagging models, modeling this distinction greatly
improves results (Moon et al., 2010). Here, we can
simply exploit the tag dictionary and raw data.

An initial set of parameters for the transitions
and emissions must be supplied as the input to EM.
Given just a tag dictionary, the simplest initializa-
tion is to set all tag transitions to be uniform, rang-
ing over all tag continuations, while for emissions, a
uniform distribution over all words that occur with
the tag is assigned. This may be appropriate when a
complete tag dictionary is available, including com-
plete information for words that appear only in the
test data. This is because there will never be any un-
known words during model estimation or inference.
Likewise, there will never be a situation where the
tag dictionary rules out all possible tag transitions
between two adjacent tokens in training or testing.
As a result, no smoothing is needed in this scenario.

The problem with this is that estimating a model
based on type-supervision requires raw text, and if
we have an incomplete tag dictionary, some of the
words in that text will be missing from the tag dic-
tionary. In a Bayesian setting, priors provide mass
for such tokens; models are estimated using either
Gibbs sampling or variational inference (Johnson,
2007). However, we use vanilla EM here; as a con-
sequence, once a parameter is zero, it is always zero.
We thus need to ensure that mass is reserved for
words outside the tag dictionary at the start of EM.
(For transitions, uniform distributions are sufficient
since the set of tags is closed.)

2.3 Emission probability initialization

The simplest way to initialize the emission distribu-
tions is to assign a count of one to every entry in the
tag dictionary, and one count for unknowns. Then,
during each iteration of EM, the expectation step is
able to estimate new non-zero counts for all possible
emissions encountered in the raw corpus. This basic
strategy allows one to train an HMM with EM us-
ing only an incomplete tag dictionary and raw text.
However, this basic approach for emission proba-
bilities produces bad unknown-word probabilities.
Specifically, if for each tag we simply assume one
count for each entry in the tag dictionary and one
count for unknowns and then normalize, the proba-
bility of an unknown word having a specific tag is
inversely correlated with the number of word types
associated with the tag in the tag dictionary. In other
words, a tag that appears with a smaller number of
distinct words will be seen by the HMM as being a
better candidate tag for an unknown word. Unfor-
tunately this is the opposite behavior we want since
closed-class tags like determiner and preposition are
bad candidates for tagging novel words.

For type-supervised training, we can do much bet-
ter. Note that C(w, t) comes in two varieties: w
is either found in the tag dictionary (known word
types), or it is not (unknown word types). We refer
to the later as td-unknown: these are words that oc-
cur in the raw word sequence used for EM but which
do not occur in the tag dictionary. These are thus
different unknowns from words have not been ob-
served in the dictionary or in the raw set but which
may be encountered at test time. Computing the full
C(w, t) is necessary since we want P (w|t) to cover
known and td-unknown words. We must thus deter-
mine both Cknown(w, t) and Cunktd

(w, t).
First, we focus on calculating Cknown(w, t). If a

word w appears C(w) times in the raw corpus, and
is seen with |TD(w)| tags in the tag dictionary, then
assume for each t in TD(w):

Cknown(w, t) = C(w) / |TD(w)|

andCknown(w, t) = 0 for all other t. In other words,
we split C(w), the count of w tokens in the corpus,
evenly among each of w’s possible tags. This pro-
vides us with an estimate of the true C(w, t) by ap-
proximating the portion of the counts of each word
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type that may be associated with that tag. Note that
while this will give us zeros for any words that don’t
appear in the raw corpus, this is not a problem be-
cause EM training is based only on that corpus.

Second, we look at td-unknown word types: those
in the raw data that are not found in the tag dic-
tionary. Given the value P (unktd|t) for the like-
lihood of an unknown word given a tag t, we can
compute estimated counts Cunktd

(w, t) for a td-
unknown word w using

Cunktd
(w, t) = C(w) · P (unktd|t)

where C(w), again, comes from the raw corpus.
This has the effect of spreading C(w), the count of
tokens of that unknown word w, across all of the
possible tags, with each tag receiving a proportion
of the total count as determined by P (unktd|t).

The challenge, then, is to compute P (unktd|t).
For this, we have two potential sources of knowl-
edge, the tag dictionary and the raw token sequence,
each telling us complementary information.

First, the tag dictionary tells us about the openness
of a tag—the likelihood that an unseen word will
have that label—based on our previously-discussed
intuition that we are more likely to see a new word
with a tag that is known to be associated with many
words already. Thus, we can estimate Ptd(unktd|t)
by simply normalizing the |TD(t)| values:

Ptd(unktd|t) =
|TD(t)|2∑

t′∈Tags |TD(t′)|2

We exaggerate the differences between tags by
squaring the |TD(t)| terms to draw an even larger
distinction between open and closed class types.

Unfortunately, if we calculate an estimated word
count directly from this using Cunktd

(w, t) =
C(w) · Ptd(unktd|t), the Cunktd

(w, t) values would
be taken without any regard to the overall like-
lihood of tag t. Since Cknown(NN) is very
high, Cunktd

(NN) will seem very low by compar-
ison. Likewise, since Cknown(RB) is much lower,
Cunktd

(RB) will seem very high by comparison.
P (unktd|t) must account for the overall likeli-

hood of t so that the Cunktd
(w, t) values will be

scaled appropriately according to the overall likeli-
hood of t. For this, we use our second knowledge
source: the raw data. Based on the Cknown(w, t)

values as given above, the raw data tells us about the
overall expectation of a word having a particular tag.
From this, we can estimate the tag distribution for
known words: Cknown(t) =

∑
w′∈V Cknown(w′, t)

and then normalize to get Pknown(t).
Finally, we need to combine Ptd(unktd|t) and

Pknown(t) into a single P (unktd|t) that accounts
for both the openness of a tag and its overall preva-
lence. We would like this combination to use the
high Pknown(NN) to boost P (unktd|NN) and the
low Pknown(RB) to dampen P (unktd|RB). So, we
compute and normalize:

P (unktd|t) ∝
|TD(t)|2∑

t′∈Tags |TD(t′)|2
· Pknown(t)

2.4 Auto-supervised post-EM smoothing

The initialization accounting for td-unknown words
given above allows EM to be run on the raw token
sequence, but it provides no probability for words
that are truly unseen (in either the tag dictionary or
the raw data). Consequently, any novel words in the
test set will have zero emission probabilities, leading
to extremely low unknown-word accuracies.

To overcome this problem, we perform a sim-
ple post-processing step after EM, which we refer
to as auto-supervised training. We take the HMM
trained by EM and use it to label the raw corpus.
This gives us an automatically-labeled corpus that
can be used for standard supervised training (with-
out EM) to produce a new HMM. The effect of this
post-processing step is to smooth the counts learned
from EM onto any new words encountered during
testing. This procedure significantly improves the
ability of the HMM to label unknown words.

As a final note, it would of course be possible to
use other models at this stage, such as a Conditional
Random Field (Lafferty et al., 2001).

3 Enhancing MIN-GREEDY

As was discussed above, one of the major prob-
lems for type-supervised POS-tagger training with
EM is a tag dictionary with low-frequency entries
such as the word “a” being associated with the for-
eign word tag when nearly all of its instances are
as a determiner. To avoid the need for manually
pruning the tag dictionary, Ravi and Knight (2009)
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〈b〉 The boy sees a dog 〈\b〉
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Figure 1: MIN-GREEDY graph showing a state in the
first phase. Numbered, solid arrows: order of chosen
bigrams; dotted: potential choices.
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Figure 2: Start of the second MIN-GREEDY phase.

proposed that low-probability tags might be auto-
matically filtered from the tag dictionary through a
model minimization procedure applied to the raw
text and constrained by the full tag dictionary. Ravi
et al. (2010) develop a faster approach for model
minimization using a greedy algorithm that they call
MIN-GREEDY. It is this algorithm that we extend.

3.1 The original MIN-GREEDY algorithm

The MIN-GREEDY algorithm starts by initializing a
graph with a vertex for each possible tag of each to-
ken in the raw data. The set of possible tags for each
token is the set of tags associated with that word
in the tag dictionary.Special sentence start and sen-
tence end vertices are added to the graph for each
sentence to mark its beginning and end. Unlike Ravi
et al. (2010), we allow for an incomplete tag dic-
tionary, meaning that our scenario has the additional
complication that the tag set for some raw-corpus

〈b〉 The boy sees a dog 〈\b〉

〈b〉

%%
DT

&&
DT

%%
NN

&&
NN

��

V B

&&

BB

FW

〈\b〉

Figure 3: Potential MIN-GREEDY conclusion.

words will not be known. For these words, the full
set of tags is used. Note that this increases the ambi-
guity and overall number of edges in the graph.

The MIN-GREEDY algorithm works in three
phases: Greedy Set Cover, Greedy Path Comple-
tion, and Iterative Model-Fitting. In the first two
phases, the algorithm chooses tag bigrams that form
the edges of the graph. The goal of these phases is to
select a set of edges that is sufficient to allow a path
through every sentence in the raw corpus. The al-
gorithm greedily selects these edges in an attempt to
quickly approximate the minimal set of tag bigrams
needed to accomplish this goal. In the final phase,
the algorithm runs several iterations of EM in order
to fit the bigram set to the raw data.

In the first phase, Greedy Set Cover, the algorithm
selects tag bigrams in an effort to cover all of the
word tokens. A word token is considered covered
if there is at least one tag bigram edge connected
to at least one of its vertices. At each iteration, the
algorithm examines the entire graph, across all sen-
tences, to find the tag bigram that, if added, would
maximize the number of newly covered words.

Consider the graph in Figure 1. Assume, for the
example, that this sentence comprises the entire raw
corpus. At the start of the first phase, no tag bigrams
are selected. On the first iteration, the algorithm
chooses the tag bigram DT→NN because this tag
bigram describes two edges for a total of four words
newly covered: The, boy, a, and dog. On the second
iteration, there are only three word tokens left un-
covered: the start symbol, sees, and the end symbol.
At this point, as the figure shows, there are five tag
bigrams that would each result in covering one addi-
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tional token. Since there are no tag bigrams whose
choosing would result in covering more than one ad-
ditional token, the algorithm randomly chooses one
of these five. The algorithm iterates like this until all
words are covered, as in, for example, Figure 2.

The second phase of the MIN-GREEDY algorithm,
Greedy Path Completion, seeks to fill holes in the
tag paths found in the graph. A hole is a poten-
tial edge that, if added, would connect two existing
edges. At each iteration, the algorithm finds the tag
bigram that, if selected, would maximize the number
of holes that would be filled across all raw sentences.

The example graph in Figure 2 shows a potential
start of the second phase. At this point, there are
three tag bigrams that each fill one hole if selected,
and the algorithm randomly selects one. Iteration
continues until there is a complete tag path through
each sentence in the raw corpus. One potential reso-
lution for the example is given in Figure 3.

Once a set of tag bigrams has been generated that
allows for a complete tag path through every sen-
tence of the raw corpus, MIN-GREEDY begins its
final phase: Iterative Model-Fitting. In this phase,
the algorithm trains a succession of type-supervised
HMM models. Each iteration trains an HMM and
then uses it to tag the raw corpus, the result of which
is used to prepare inputs for the next iteration.

Iterative Model-Fitting begins with the minimized
set of bigrams returned from the second phase of
MIN-GREEDY. This set is used as a hard constraint
on the allowable tag bigrams during type-supervised
HMM training. While EM is running, the only tag
transitions that are counted are those that fall into the
minimized tag bigram set; all other transition counts
are ignored. Once an HMM has been trained, it is
immediately used to tag the raw corpus, producing a
set of auto-labeled sentences. For the second itera-
tion of the phase, we extract a constrained tag dictio-
nary from the auto-labeled corpus by simply taking
every word/tag pair appearing in the data. This new
tag dictionary is a subset of the original, full, tag
dictionary, and hopefully has fewer low-frequency
entries that would cause problems for EM.

We use this constrained tag dictionary to again
perform type-supervised HMM training, but without
any constraints on the allowable tag bigrams. This
produces our third HMM. Using this HMM, we can,
again, tag the raw corpus, producing another set of

auto-labeled sentences. We can then extract the set
of tag bigrams appearing in this data to produce a
new set of tag transition constraints, similar to what
was returned by the second phase. With this set of
tag transition constraints, and the full tag dictionary,
we can perform another round of type-supervised
HMM training, and repeat the entire process.

The third MIN-GREEDY phase continues iterating,
alternating between training an HMM using a con-
strained set of tag transitions and training one using
a constrained tag dictionary. The size of the set of
constrained tag bigrams produced is tracked on each
iteration, and the algorithm is considered to have
converged when this value changes by less than five
percent. The final result of the MIN-GREEDY algo-
rithm is a trained HMM.

The evaluation of the MIN-GREEDY algorithm, as
described in Ravi et al. (2010), was performed only
for scenarios with a complete tag dictionary (includ-
ing all raw and test word types). As such, no tech-
niques were described for handling unknown words.
Because we are interested in the more realistic sce-
nario of an incomplete tag dictionary, we augment
the original MIN-GREEDY setup with the smoothing
techniques described above.

3.2 Improving tag bigram selection
One of the major problems with the MIN-GREEDY

algorithm is that its heuristics for choosing the next
tag bigram frequently result in many-way ties. In the
first two phases of MIN-GREEDY, the greedy pro-
cedure looks for the tag bigram that will have the
most positive impact. In the Greedy Set Cover phase
this means choosing the tag bigram that would cover
the most new tokens, and in the Greedy Path Com-
pletion phase this means choosing the tag bigram
that would fill the most holes. However, it is fre-
quently the case that there are many distinct tag bi-
grams that would cover the most new tokens or fill
the most holes, leaving the MIN-GREEDY algorithm
with no choice but to randomly select from these
options. Since there are frequently cases of having
many dozens of options, it is clear that some of those
choices must be better than others, even though MIN-
GREEDY does not make a distinction and considers
them all to be equally good choices.

Consider the example in Figure 1 representing a
possible state of the minimization graph. To have
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reached this stage, tag bigram DT→NN would have
been chosen since it covered the highest number of
tokens: four. Additionally, 〈b〉→DT and NN→〈\b〉
could have been chosen as the second and third tag
bigrams since they tied for the most new tokens cov-
ered: one. For the state shown in this figure, there
is only one uncovered token, sees, but three tag bi-
grams that cover it. Since each of these tag bigrams
covers exactly one new word, they are all considered
by MIN-GREEDY to be equally good choices as the
next tag bigram for inclusion, and the algorithm will
choose one at random. However, it should be clear
that the VB→FW tag bigram is wrong while the
other two would lead to a correct answer. As such,
we would like for the algorithm to avoid choosing
VB→FW, and to pick one of the others.

In order to push the algorithm into choosing the
right tag bigrams in these otherwise ambiguous sit-
uations, we have added an additional criterion to the
bigram-choosing heuristic: after narrowing down
the set of tag bigrams to those that cover the most
new tokens, we further narrow the choice of bigrams
by minimizing the number of new word-type/tag
pairs that would be added to the result. Consider
our example. If we choose the tag bigram NN→VB
or VB→DT, then exactly one new word-type/tag
pair would be added to our result: sees/VB (since
boy/NN and a/DT would already have been added
by the incorporation of previous selected tag bi-
grams). By contrast if we choose the tag bigram
VB→FW then two new word-type/tag pairs would
be added: sees/VB and a/FW.

Minimizing the number of new word/tag pairs
added by the algorithm has two main advantages.
First, it keeps the selected bigrams focused on the
same vertices, which results in fewer holes that the
Greedy Path Completion phase must deal with. Sec-
ondly, it keeps the selected bigrams focused on more
common tags for each word type, such as a/DT, and
keeps it away from rare tags, such as a/FW.

3.3 Only tag bigrams on minimization paths

As was described above, the output of MIN-
GREEDY’s second stage is a minimized set of tag
bigrams which is used as a constraint on the first
iteration of the third stage, Iterative Model-Fitting.
However, in order to determine when to stop adding
new bigrams during the first two phases, the MIN-

GREEDY algorithm must try to find complete tag
paths through each sentence in the raw corpus, stop-
ping once a tag path has been found for each one.
While the algorithm is trying to select only the tag
bigrams that are necessary for a complete tagging, it
happens frequently that bigrams are selected that are
not actually used on any tag path.

Consider the example shown in Figure 3. The
graph has a complete path through the sentence, but
also contains an extraneous edge, VB→FW, that is
not used on the path. Assuming that this tag bigram
is not used on the tag path of any other sentence, it
can safely be removed from the resultant set to pro-
duce a smaller set of tag bigrams, getting us even
closer to the minimized set that we desire.

To find the set of tag bigrams excluding these ex-
traneous edges, we modify the MIN-GREEDY algo-
rithm. During the first and second phases of the al-
gorithm, we check all raw data sentences for a com-
pleted path after each tag bigram is selected. If a
completed path is found for a sentence, we store that
path immediately. Once a path is found for every
sentence, we extract the set of bigrams used on these
paths, and pass that set, instead of the full set of se-
lected bigrams, to the third phase of the algorithm.

Note that it is important that we store the com-
pleted paths as soon as they are completed. Since
sentences are completed at different stages, and
more tag bigrams are selected after some of these
sentences are complete, it is inevitable that some
sentences will end up with multiple complete tag
paths by the end of the second phase. However, we
seek only the first such path. Tag bigrams are se-
lected in order of their impact, so bigrams selected
earlier are better and should be preferred. Consid-
ering again the example in Figure 3, based on the
frequency of the tags, it is likely that, given the
presence of other sentences in the raw corpus, the
tag path including bigrams VB→DT and DT→NN
would be found before the one including VB→FW
and FW→NN. Since they are more frequent bi-
grams, we would want to keep the first path even
if the second is completed at a later time.

The result of this improvement is a smaller,
cleaner minimized tag bigram set to be delivered to
the third phase of MIN-GREEDY.
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Scenario Total Known Unk.
0. Random baseline (choose tag randomly from tag dictionary) 63.53 65.49 2.38
1. HMM baseline (simple EM with tag dictionary and raw text) 69.20 71.42 0.27
2. HMM baseline + auto-supervised training 82.33 83.67 40.46
3. HMM baseline + auto-supervised training + emission initialization 82.05 83.27 44.31
4. MIN-GREEDY (Ravi et al., 2010) with add-one smoothing 74.79 77.17 0.45
5. MIN-GREEDY with add-one smoothing + auto-supervised 86.10 87.59 39.74
6. MIN-GREEDY with add-one smoothing + auto-supervised + emission init 85.02 86.33 44.28
7. 6 + enhanced tag bigram choice heuristic 86.71 88.08 43.93
8. 6 + restrict tag bigrams to tag paths of minimization-tagged output 87.01 88.40 43.74
9. 6 + HMM initialization from minimization-tagged output 88.52 89.92 44.80
10. 6 + 7 + 8 + 9 88.51 89.92 44.80

Table 1: English tagging accuracy using PTB sections 00-15 to build the tag dictionary. Known word types
are those appearing in the tag dictionary.

3.4 EM initialization with minimization output

As a final improvement to MIN-GREEDY, we took
the set of completed tag paths returned from the sec-
ond phase of the algorithm, as described in the pre-
vious section, and used them as labeled data to ini-
tialize an HMM for EM training.

Since we modified MIN-GREEDY to produce a set
of completed tag paths for sentences, we can take
this to be a complete set of labels for the raw cor-
pus. Furthermore, since we were careful about stor-
ing paths as soon as they become completed by the
minimization process, and the tag bigrams are cho-
sen in order of frequency, there will be more high-
frequency bigrams than low-frequency. As a result,
this labeling will contain good tag transitions and
token labelings. As such, the labeled data produced
by the second phase provides useful information be-
yond a simple set of sufficient bigrams: it contains
legitimate frequency information that can be used
to initialize the HMM. We, therefore, initialize an
HMM directly from this data to start EM.

4 Evaluation1

English data. We evaluate on the Penn Treebank
(Marcus et al., 1993). In all cases we use the first
47,996 tokens of section 16 as our raw data, sections
19–21 as our development set, and perform the final
evaluation on sections 22–24.

1Source code, scripts, and data to reproduce the results pre-
sented here can be found at github.com/dhgarrette/
type-supervised-tagging-2012emnlp

We evaluate two differently sized tag dictionaries.
The first is extracted directly from sections 00–15
(751,059 tokens) and the second from sections 00–
07 (379,908 tokens). The former contains 39,087
word types, 45,331 word/tag entries, a per-type am-
biguity of 1.16 and yields a per-token ambiguity of
2.21 on the raw corpus (treating unknown words
as having all 45 possible tags). The latter contains
26,652 word types, 30,662 word/tag entries, a per-
type ambiguity of 1.15 and yields a per-token ambi-
guity of 2.03 on the raw corpus. In both cases, every
word/tag pair found in the relevant sections was used
in the tag dictionary: no pruning was performed.
Italian data. As a second evaluation, we use the
TUT corpus (Bosco et al., 2000). To verify that our
approach is language-independent without the need
for specific tuning, we executed our tests on the Ital-
ian data without any trial runs, parameter modifica-
tions, or other changes. We divided the TUT data,
taking the first half of each of the five sections as in-
put to the tag dictionary, the next quarter as raw data,
and the last quarter as test data. All together, the tag
dictionary was constructed from 41,000 tokens con-
sisting of 7,814 word types, 8,370 word/tag pairs,
per-type ambiguity of 1.07 and a per-token ambigu-
ity of 1.41 on the raw data. The raw data consisted of
18,574 tokens and the test contained 18,763 tokens.

Results We ran eleven experiments for each data
set with results shown in Tables 1 and 2. All scores
are reported as the percentage of tokens for which
the correct tag was assigned. Accuracy is shown as
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PTB (00-07) TUT
Scenario Total Known Unk. Total Known Unk.
0. Random 64.98 68.04 2.81 62.81 76.10 1.58
1. HMM basic 69.32 72.70 0.56 60.70 73.77 0.51
2. HMM + auto-super 81.50 83.67 37.46 70.03 80.64 21.12
3. HMM + auto-super + init 81.71 83.62 42.89 70.89 80.91 24.74
4. MIN-GREEDY + add-1 68.86 72.20 0.92 53.96 65.49 0.84
5. MIN-GREEDY + add-1 + auto-super 80.78 82.88 38.02 70.85 82.41 17.60
6. MIN-GREEDY + add-1 + auto-super + init 80.92 82.80 42.64 71.52 81.56 25.28
7. 6 + enhanced bigram choice heuristic 86.69 88.83 43.07 71.48 81.57 24.98
8. 6 + restrict tag bigrams to tag paths 80.86 82.73 42.84 72.86 83.45 24.08
9. 6 + HMM init from minimization output 87.61 89.74 44.18 72.00 82.28 24.65
10. 6 + 7 + 8 + 9 87.95 90.12 43.74 71.99 82.50 23.57

Table 2: Tagging accuracy using PTB sections 00-07 and TUT to build the tag dictionary. Known word
types are those appearing in the tag dictionary. Scenario numbers correspond to Table 1.

the Total (all word types), Known (word types found
in the tag dictionary), and Unknown (word types not
found in the tag dictionary).

Experiments 1–3 evaluate our smoothing tech-
niques applied directly to the task of type-supervised
HMM training with EM, without MIN-GREEDY.
The basic HMM consistently beats the baseline ran-
dom tagger, the auto-supervision technique makes
an enormous improvement for both known and un-
known words, and the the emission initialization
yields a sizable improvement for unknown words.

Experiments 4–6 evaluated our reimplementation
of MIN-GREEDY. We start with the most basic level
of smoothing needed to work in a type-supervised
scenario. For the smaller PTB tag dictionary and
the TUT data, MIN-GREEDY actually has lower per-
formance than the HMM alone. This indicates that
if the tag dictionary has a low degree of ambigu-
ity, then MIN-GREEDY can make the situation worse.
However, with our smoothing techniques, we regain
similar improvements as with the HMM.

Finally we performed experiments evaluat-
ing combinations of our improvements to MIN-
GREEDY. Scenarios 7–9 show each improvement
taken in turn. Scenario 10 shows the results for us-
ing all three improvements. For the English data, the
best results are found when all the improvements are
used. When taken individually, the bigram choice
heuristic and HMM initialization from minimization
output each consistently outperform the improved-

MIN-GREEDY baseline on English. However, re-
stricting the tag bigrams to that in the minimization-
tagged output causes problems in the smaller PTB
scenario, presumably falling to a local maximum
like MIN-GREEDY that the other improvements are
able to help the algorithm avoid.

Though the accuracy improvements are less than
for English, the Italian results show that our MIN-
GREEDY enhancements make an appreciable differ-
ence for a language and dataset for which the ap-
proaches considered were run sight unseen.

Error analysis One of the primary goals of model
minimization is to automatically eliminate low-
probability entries from the tag dictionary that might
confuse the EM algorithm (Ravi et al., 2010). In or-
der to see how well our techniques are able to iden-
tify and eliminate these unlikely word/tag pairs, we
analyzed the tagging errors from each experiment.
In doing so, we discovered that the two of the most
problematic words for the EM algorithm are “a” and
“in”. We ran further experiments explore what was
happening with those words. The results, using PTB
sections 00–07 are shown in Table 3.

In PTB sections 00-07 the word “a” appears 7630
times and with 7 different tags. This includes 7621
occurrences with tag DT, 3 with tag SYM (symbol),
and 1 time with LS (list item marker). As such, we
would want the HMM to lean heavily toward tag DT
when tagging the token “a”. Unfortunately, the rare
tags confuse the EM procedure and end up with dis-
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model tokens tagged by scenario
tok output 3 6 7 8 9 10
a DT 32 4 4 4 2424 2425

LS 1531 0 0 0 0 0
SYM 731 2356 2305 2356 0 0

in IN 12 15 2024 4 2042 2047
FW 1922 1910 0 0 0 0
RP 20 27 0 2037 0 0

Table 3: Number of times, for the words “a” and
“in”, the tagger trained by the particular scenario se-
lected the given tag. Experiments used PTB sections
00-07 for the initial tag dictionary. Scenario num-
bers correspond to Table 1.

proportionately high probabilities. Our experiment
training an HMM without minimization (scenario 3)
resulted in 1531 “a” tokens being tagged LS, 731 as
SYM, and only 32 tagged as DT.

The situation is similar with the word “in”, which
appears 6155 times with 5 different tags in the 8
sections. Of these, 6073 occurrences are tagged
IN (preposition), 63 are RP (particle), and 1 is FW
(foreign word). Again, EM without minimization
is confused by the rare tokens, assigning FW 1922
times and IN 12 times.

The minimization procedure attempts to over-
come this problem by removing unlikely tags from
the tag dictionary automatically. As is show in Table
3, MIN-GREEDY without our enhancements is able
to reject the problematic LS as a tag for “a”, but
unable to do so for SYM, resulting in 2356 tokens
tagged SYM and only 4 tagged DT. Similarly, MIN-
GREEDY is unable to reject FW as a tag for “in”.

Our enhancements to MIN-GREEDY improve the
situation. More careful choosing of bigrams during
minimization results in the avoidance of LS and FW
(but not SYM) for “a” as well as FW and RP for
“in”. Restricting the tag bigrams output from MIN-
GREEDY to just those on tag paths avoids LS and FW
for “a” and FW for “in”. Finally, using the tagged
sentences from MIN-GREEDY as noisy supervision
for EM initialization eliminates all rare tags, as does
the use of all three enhancements together.

5 Conclusion

Our results show it is possible to create accurate
POS-taggers using type-supervision with incom-

plete tag dictionaries by extending the MIN-GREEDY

algorithm of Ravi et al. (2010). The most useful
change we made to the MIN-GREEDY procedure was
the implementation of a better heuristic for picking
tag bigrams. An intuitive and straightforward emis-
sion initialization provides the necessary basis to run
EM on a given raw token sequence. Using EM out-
put on this raw sequence as auto-labeled material
to a supervised HMM then proves highly effective
for generalization to new texts containing previously
unseen word types.

Vaswani et al (2010) explore the use of minimum
description length principles in a Bayesian model as
a way of capturing model minimization, inspired by
the MIN-GREEDY algorithm. The advantage there is
that only a single objective function needs to be opti-
mized, rather than having initialization followed by
an iterative back and forth with pruning of tag-tag
pairs. Our own next steps are to move in a similar
direction to explore the possibilities for encoding the
intuitions we developed for initialization and mini-
mization as a single generative model.

Goldberg et al. (2008) note that fixing noisy dic-
tionaries by hand is actually quite feasible, and sug-
gest that effort should focus on exploiting human
knowledge rather than just algorithmic improve-
ments. We agree; however, our ultimate motivation
is to use this work to tackle bootstrapping from very
small tag dictionaries or dictionaries obtained from
linguists or resources other than a corpus, and for
tag sets that are more ambiguous (e.g., supertagging
for CCGbank (Hockenmaier and Steedman, 2007)).
Such efforts require automatic expansion of tag dic-
tionaries, which then need be constrained based on
available raw token sequences using methods such
as those explored here. In this respect, the some-
what idiosyncratic noise in the corpus-derived dic-
tionaries used here make a good test.
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Abstract

In this paper, we investigate different usages
of feature representations in the web person
name disambiguation task which has been suf-
fering from the mismatch of vocabulary and
lack of clues in web environments. In litera-
ture, the latter receives less attention and re-
mains more challenging. We explore the fea-
ture space in this task and argue that collecting
person specific evidences from a corpus level
can provide a more reasonable and robust es-
timation for evaluating a feature’s importance
in a given web page. This can alleviate the
lack of clues where discriminative features can
be reasonably weighted by taking their corpus
level importance into account, not just relying
on the current local context. We therefore pro-
pose a topic-based model to exploit the person
specific global importance and embed it into
the person name similarity. The experimen-
tal results show that the corpus level topic in-
formation provides more stable evidences for
discriminative features and our method out-
performs the state-of-the-art systems on three
WePS datasets.

1 Introduction

Resolving ambiguity associated with person names
found on the Web is a key challenge in many Internet
applications, such as information retrieval, question
answering, open information extraction, automatic
knowledge acquisition(Wu and Weld, 2008) and so
on. For example, if you want to know more about a
guy named George Foster and feed Yahoo! with his
name, the results are not satisfactory where you get

more than 40 different persons named George Fos-
ter scattering in the top 100 returned pages. None
of the dominant search engines currently helps users
group those returned pages into clusters according
to whether they refer to the same person. Users thus
have to either read those pages carefully or adjust
their queries by adding extra modifiers. This moti-
vates an intensive study in automatically resolving
person name ambiguity in various web applications.

However, resolving web person name ambiguity
is not a trivial task. Due to the difficulties in fig-
uring out or predicting the number of namesakes
in the returned pages, the task has been investi-
gated in an unsupervised learning fashion in the lit-
erature, which is apparently different from the tra-
ditional word sense disambiguation or entity link-
ing/disambiguation tasks, where the inventories of
candidate word senses or entities are usually known
given the target word or entity mention.

A general framework for this task can be formu-
lated as first extracting various features from the web
pages, and then grouping these pages into several
clusters each of which is assumed to represent one
specific person. Despite of the inevitably noisy na-
ture of web data, a key challenge is how to handle
the data sparsity problem which we mean as: mis-
match of vocabulary and lack of clues. The for-
mer refers to the case that two web pages may de-
scribe the same person but use different words thus
the word overlap between them are small. Vari-
ous features, including entities, biographical infor-
mation, URL, etc., have been introduced to bridge
the gap(Mann and Yarowsky, 2003; Kalashnikov
et al., 2008a; Ikeda et al., 2009; Jiang et al., 2009),
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and external knowledge resources are also employed
to capture the semantic relationship between enti-
ties(Han and Zhao, 2009, 2010). However, a more
challenging scenario is that there are few clues avail-
able in the web pages. For example, there is a page
mentioning a nutritionist Emily Bender in WePS2
dataset(Javier et al., 2009). Throughout the whole
page we can find only one word, nutrition, related to
her identification, while other pages about the nu-
tritionist in the dataset contain substantial materi-
als about her profession and job. In this case, cur-
rent efforts, focusing on either feature engineering
or background knowledge, are incapable to exploit-
ing these limited clues from the current page to the
whole Emily Bender document set, where nutrition,
as an important feature for recognizing a nutritionist,
should be paid more attention.

As far as we know, there is less work focusing
on exploring person specific information to relieve
the lack of clues problem. Traditional vector space
model (VSM) is most widely used to accommodate
various features, but it ignores any relations between
them(Mann and Yarowsky, 2003; Ikeda et al., 2009).
Beyond bag-of-features, two kinds of features are
explored, co-occurrences of entities and Wikipedia
based semantic relationship between entities, both
of which provide a reasonable relatedness for en-
tity pairs. More recent works adopt one of these
relationships(Jiang et al., 2009; Kalashnikov et al.,
2008a; Han and Zhao, 2009). Han and Zhao try
to model both aspects, but their co-occurrence es-
timation, estimated from held-out resources, fails to
capture the person specific importance for a feature,
which is crucial to enhance limited clues in a cor-
pus level, e.g., the significance of nutrition for Emily
Bender in WePS1 dataset.

In this paper, we explore different usages of fea-
tures and propose an approach which mines cross
document information to capture the person specific
importance for a feature. Specifically, we construct a
semantic graph from Wikipedia concepts appearing
in all documents that contain the target name (which
we refer to name observation set), then group them
into several topics and further weight each feature by
considering both the relatedness of the feature to its
corresponding topic and the importance of this topic
in the current name observation set. By incorporat-
ing both the Wikipedia and topic information into

our person name similarity, our model exploits both
Wikipedia based background knowledge and per-
son specific importance. We argue that the corpus
level importance provides more stable evidences for
discriminative features in various scenarios, espe-
cially the tough case. We compared our model with
the state of the arts on three WePS datasets (from
the First and Second Web People Search Cluster-
ing Task), and our experiments show that our model
consistently outperforms other competitive models
on all three datasets.

In the rest of this paper, we first review related
work, and in Section 3, show how we exploit the
person specific importance in our disambiguation
model. Experiment results are discussed in Sec-
tion 4. We conclude this paper in Section 5.

2 Related Work

Web person name ambiguity resolution can be for-
mally defined as follows: Given a set of web
pages {d1, d2, ..., dn}, where each page di (i =
1, ..., n) contains an ambiguous name N which may
correspond to several persons holding this name
among these pages. The disambiguation system
should group these name observations into j cluster
{c1, c2, ..., cj} each of which is expected to contain
web pages about the same person.

As mentioned before, the task is usually formu-
lated in a unsupervised fashion, including two steps:
feature extraction and person clustering. Most re-
search efforts so far have been made to the for-
mer, exploring various features according to spe-
cific applications, while the second step is currently
dominated by hierarchical agglomerative cluster-
ing (HAC). According to the reliance of extra
knowledge resources, existing works can be catego-
rized into non-resource methods and resource-based
methods. Non-resource methods extract various lo-
cal features from the context of ambiguous names,
and compute the similarity between feature vectors.
These features include plain words(Bagga and Bald-
win, 1998), biographical information(Mann and
Yarowsky, 2003; Niu et al., 2004), named enti-
ties, compound key phrases, hyperlinks(Ikeda et al.,
2009), etc. The similarity between namesakes are
usually measured by the cosine similarity(Bagga
and Baldwin, 1998), or other graph based met-
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rics(Iria et al., 2007; Kalashnikov et al., 2008a;
Jiang et al., 2009). Those methods pay more at-
tention to extracting informative features and their
co-occurrences, but they usually treat the features lo-
cally, and ignore the semantic relatedness of features
beyond the current document.

Resource-based approaches, on the other hand,
can leverage external resources to benefit from rich
background knowledge, which is crucial to rem-
edy the data sparsity problem. The employed re-
sources include raw texts available on the web and
online encyclopedias. Kalashnikov et al. and Yim-
ing et al. use extra web corpora to obtain co-
occurrences between named entities. Rao et al. use
Google Snippets to provide more contexts. By em-
ploying Wikipedia, the largest online encyclopedia,
rich background knowledge about the semantic re-
latedness between entities can be leveraged to im-
prove the disambiguation performance, and relieve
the coverage problem, to some extent. Bunescu
and Pasca and Cucerzan utilize Wikipedia’s cate-
gory hierarchy to disambiguate entities, while Pilz
uses Wikipedia’s link information. Han and Zhao
adopt Wikipedia semantic relatedness to compute
the similarity between name observations. They also
combine multiple knowledge sources and capture
explicit semantic relatedness between concepts and
implicit semantic relationship embedded in a seman-
tic graph simultaneously(Han and Zhao, 2010).

Most approaches discussed above explore vari-
ous features in the current page or rely on exter-
nal knowledge resources to bridge the vocabulary
gap, but pay less attention to the lack of clues since
they ignore the person specific evidence in the cur-
rent corpus level. Our model focuses on solving the
data sparsity problem by utilizing other web pages
in the same name observation set to provide a robust
but person specific weighting for discriminative fea-
tures beyond the current document alone. In terms
of extra resources, the Wikipedia based model (WS)
by Han and Zhao (2009) is close to our model. The
WS model uses Wikipedia to capture the relation-
ship between entities in the local context to bridge
the vocabulary gap, but it is incapable to evaluate
the importance of a feature with regarding to the tar-
get name, hence is unable to make use of limited
clues in the current web page. Our method captures
person specific evidences by generating topics from

all concepts in the current name observation set and
weighting a feature accordingly. In this case, dis-
criminative features that are sparse in the current
page can be globally weighted so as to provide a
more accurate and stable person name similarity.

3 The Model

Our model consists of three steps: feature extrac-
tion, topic generation and name disambiguation. For
an ambiguous name, we first extract three types of
features and construct a semantic graph from all
Wikipedia concepts extracted from the current name
observation set. We then collect global person spe-
cific evidences by clustering these concepts on the
graph into different topics, which in turn are used
to weight each concept by considering the impor-
tance of its corresponding topic in the current name
observation set and its highly related neighbors in
both the topic and its local context. At last, we in-
corporate the proposed topic representation into the
person name similarity functionand adopt the hierar-
chical agglomerative clustering (HAC) algorithm to
group these web pages.

3.1 Feature Extraction
We extract features from the contexts of ambiguous
names, including Wikipedia concepts, named enti-
ties and biographical information, such as email ad-
dresses, phone numbers and birth years.

Wikipedia Concept Extraction Each concept in
Wikipedia is described by an article containing hy-
perlinks to other concepts which are supposed to
related to the current one. All the linking rela-
tions in Wikipedia construct a huge semantic graph,
where we can mine rich semantic relationship be-
tween concepts(David and Ian, 2008). We col-
lect Wikipedia concepts from all web pages in the
dataset by comparing all n-grams (up to 8) from
the dataset to Wikipedia anchor text dictionary and
checking whether it is a Wikipedia concept surface
form. We further prune the extracted concepts ac-
cording to their keyphraseness(Mihalcea and Cso-
mai, 2007). Initially, each concept is weighted ac-
cording to its average semantic relateness(David and
Ian, 2008) with other concepts in the current page.

Named Entity and Biographical Information Ex-
traction Although Wikipedia concepts can pro-
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vide rich background knowledge, they suffer from
the limited coverage. It is common that some
discriminative features are not likely to be found
in Wikipedia, such as names of infamous people
or organizations, email addresses, phone numbers,
etc. We therefore extract two extra kinds of fea-
tures, named entities that do not appear in the
Wikipedia anchor text dictionary, and biographical
information. We use Stanford Named Entity Rec-
ognizer(Finkel et al., 2005) to collect named entities
which are not in the Wikipedia list. We use regular
expressions to extract email address, phone numbers
and birth years. For convenience, we will also call
concept features for Wikipedia concept features and
non-concept features for the other two in the rest of
this paper.

3.2 Topic Generation and Weighting Scheme

Now we proceed to describe the key step of our
model, topic generation and weighting strategy. The
purpose of introducing topics into our model is to
exploit the corpus level importance of a feature for
a given name so that we will not miss any discrim-
inative features which are few in the current name
observation but have shown significant importance
over the whole name observation set.

Graph Construction In our model, we capture
the topic structure through a semantic graph. Specif-
ically, for each name observation set, we connect
all Wikipedia concepts appearing in the current ob-
servation set by their pairwise semantic relatedness-
David and Ian (2008)to form a semantic graph.

The constructed graph is usually very dense since
any pair of unrelated concepts would be connected
by a small semantic relatedness resulting in many
light-weighted or even meaningless edges. We
therefore propose to prune some light-weighted
edges to make the graph stable and easier to harvest
reasonable topics. We use the following strategies to
prune the graph:

• If an edge’s weight is lower than a predefined
threshold, it will be pruned.

• If two vertices of an edge do not co-occur in
any web page of the current observation set,
then this edge will be pruned.

Home 
Run

Major 
League 
Baseball

Stolen 
Base

Cincinnati 
Reds

Shortstop

Sports 
League

Cornerback

Tackle

National 
Football 
League Pro 

Football 
Weekly

0.3862

0.4228

0.3799

0.2976

0.3296

0.2697

0.2445

0.3467

0.3628

0.4145

0.4008 0.3205

0.2738

0.3567

0.3201

0.3136 0.2245

Figure 1: An abridged example of the semantic graph
for George Foster. The green node Sports League is a
hub node, and the yellow node Pro Football Weekly is an
outlier.

The second rule is set to be strict and is proposed
to handle the following circumstance. Some gen-
eral concepts, such as swimming, football, basket-
ball and golf, will be measured highly related with
each other by Wikipedia semantic relatedness and
thus are very likely to be grouped into one topic,
however, they are discriminative on their own when
disambiguating different persons. For example, the
concept swimming is discriminative enough to dis-
tinguish Russian swimmer Popov from basketball
player Popov. So it is not a good idea to group
these concepts into one topic. The proposed co-
occurrence rule is based on the above observation
that it is rare that such kind of general concepts,
e.g., swim and basketball, often co-occur with each
other when talking about one specific person. Af-
ter the pruning step, for each ambiguous name, we
get a semantic graph from all Wikipedia concepts
extracted in this name observation set. Figure 1 il-
lustrates an abridged version of a semantic graph for
George Foster.
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Graph Clustering Considering the graph con-
struction strategy we use, it is more suitable for us
to group the concepts on the graph into several top-
ics using a density-based clustering model.

We choose SCAN algorithm Xu et al. (2007) to
perform the clustering step. The SCAN algorithm
utilizes a neighborhood structure to measure the
similarity between two vertices. If a vertex has a
minimal of µ neighbors with a similarity larger than
ε, it is called a core. The algorithm1 starts from a
random vertex in a graph, examining whether it is a
core or not. If yes, the algorithm will expand a clus-
ter from this vertex recursively, otherwise the vertex
will be assigned either a hub node or an outlier de-
pending on the number of its neighboring clusters.
A hub node connects to more than one cluster, while
an outlier connects to one or no cluster. Take the
semantic graph in Figure 1 for example, the node
Sports League is a hub node, while the node Pro
Football Weekly is an outlier. Finally, all concepts
in the graph are grouped into K + 2 parts (K is the
number of the clusters, and is determined automat-
ically), including K clusters, the set of hub nodes
and the set of outliers.

One problem of applying SCAN in our work is
that it is originally designed for unweighted graphs.
We have to adapt it to our weighted graph by mod-
ifying the similarity function between two nodes as
follows:

sim(c1, c2) = α× simnb(c1, c2)

1 + α
+
sr(c1, c2)

1 + α
(1)

and simnb(c1, c2) is defined as:

simnb(c1, c2) =

∑
c∈N(c1)∩N(c2)

sr(c1,c)+sr(c2,c)
2

|N(c1) ∪N(c2)|

where N(c) is the neighbor set of concept c. This
new similarity function contains two parts: the
neighborhood similarity and the semantic related-
ness between two concepts. We combine them us-
ing a linear combination, where α is a weight tuned
during training.

Topic Generation Now we will map the cluster-
ing results into different topics. Intuitively, each

1We omit the details of SCAN for brevity, and refer inter-
ested reader to Xu et al. (2007) for more details.

cluster will be treated as a topic. However, we found
that hub nodes usually correspond to general con-
cepts which may be related to many topics, but with
a loose relatedness. We thus distribute each general
concept into its every related topic, but with a lower
weight to distinguish from ordinary concepts in this
topic.

Outliers may be concepts which are far away from
main themes of the corpus, or noise concepts. We
calculate the average semantic relatedness of an out-
lier with its neighbor concepts that belong to one
topic. If the result is lower than a threshold, this
outlier will be discarded, otherwise it will be treated
as a non-concept feature.

Now we are able to map the clustering results
into different topics. Intuitively, each cluster will
be treated as a topic. However, we found that hub
nodes usually correspond to general concepts, e.g.,
education or public, which may be related to many
topics, but with a loose relatedness. We thus dis-
tribute each general concept into its every related
topic, but with a lower weight to distinguish from
ordinary concepts in this topic. Outliers are found
to contain concepts which are far away from main
topics of the document set and look like noise con-
cepts. We therefore calculate the average semantic
relatedness of an outlier node with its neighboring
concepts which belong to some topics. If the aver-
age relatedness is lower than a threshold, this node
will be discarded, otherwise it will be treated as a
non-concept feature.

Weighting Topics After generating all topics, we
should weight each topic according to its importance
in the current name observation set as well as the
quality of the topic (cluster). Intuitively, if most con-
cepts in the topic are considered to be discriminative
in the current name set and they are closely related
to each other, this topic should be weighted as im-
portant. By properly weighting the generated topics,
we can capture the importance of a concept reliably
in the corpus level (in the current name observation
set) rather than in the current page solely.

Before we weight a topic, we first explain how
we re-weight a hub concept in a topic since our ini-
tial feature weighting scheme(Han and Zhao, 2009)
works on individual web page, lacks cross document
information and is likely to over-estimate the impor-
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tance of a hub node (general concept) by by assign-
ing a higher weight. Suppose a hub node h connects
to a topic t with n neighbors, namely c1, c2, · · · , cn.
The similarity between this hub node and the topic
is computed by averaging the semantic relatedness
between this hub node and these n neighbors:

sim(h, t) =
1

n

n∑
i=1

sr(h, ci). (2)

We then update the weight of this hub node by
considering its similarity with this topic: wt(h) =
w(h) × sim(h, t) from which we can see that the
hub node receives a lower weight than before indi-
cating that it is not as important as ordinary concepts
in a topic.

Now we proceed to weight the topic t by taking
into account the frequencies of its concepts and the
coherence between the concepts and their neighbor-
hood in topic t:

w(t) =

n∑
i=1

f(ci)

n
×

n∑
i=1

n coh(ci, t)

n
(3)

where topic t contains n concepts {c1, c2, ..., cn},
f(c) is the frequency of concept c over current name
observation set, specially, when c is a hub node con-
cept, we will distribute its frequency according to
equation (2), having ft(c) = f(c)sim(c, t). And
n coh(c, t) is the neighborhood coherence of con-
cept c with topic t, defined as:

n coh(c, t) =

∑
q∈N(c)∩t

sr(q, c)

|N(c) ∩ t|
(4)

where N(c) is the neighboring node set of concept
c.

By incorporating corpus level concept frequen-
cies into topic weighting, discriminative concepts
that are sparse in one document and suppressed by
conventional models can benefit from their corpus
level importance as well as their coherence in related
topics.

3.3 Clustering Person Name Observations
Now the remaining key step is to compute the sim-
ilarity between two name observations. The simi-
larity proposed in GRAPE(Jiang et al., 2009) mea-
sures two documents by bridge tags (common fea-
tures) shared by two document graphs. Specifically,

Jiang et al. utilize cohesion to weight a bridge tag in
a document. The more bridge tags two documents
share, the stronger the cohesion of each bridge tag
is, and in turn the more similar the two documents
are.

However, this similarity bears a shortcoming that
the bridge tags shared by the two documents re-
quire an exact match of features, which does not
take any semantic relatedness into consideration. If
two web pages mentioning the same person but have
few features in common, the GRAPE similarity may
not work properly. We, therefore, propose a new
similarity measure combining topic similarity, topic
based connectivity strength and GRAPE’s connec-
tivity strength.

Matching Topics to Person Name Observations
We first describe how to match the generated top-
ics to different name observations. In order to avoid
unreliable estimation, we only match a topic to a
name observation when they share at least one con-
cept. To measure the relatedness between a topic
and a name observation, we formulate this similar-
ity as the weighted average of semantic relatedness
between each concept from one side and its closely
related counterpart from the other side,defined as:

sim(A→ B) =

∑
a∈A

wA(a)× wB(ba)× sr(a, ba)∑
a∈A

wA(a)× wB(ba)
(5)

sim(A,B) = (sim(A→ B) + sim(B → A))/2,

where A can be a topic and B a name observation or
vice versa, ba is a concept inB that is most related to
concept a, wA(a) represents the weight of concept a
estimated by the averaged relatedness between a and
other concepts in A.

Person Name Similarity Now we describe the
first component in our proposed measure: topic sim-
ilarity, which is calculated through the common top-
ics shared by the two name observations, o1 and o2:

TSm(o1, o2) =
∑

t∈T (o1,o2)

sim(o1, t)× sim(o2, t) (6)

×sim(o1 ∩ t, o2 ∩ t)× w(t)

where T (o1, o2) contains all common topics of o1
and o2, w(t) is the weight of topic t estimated using
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equation (3), both sim(oi, t) and sim(o1 ∩ t, o2 ∩ t)
measure the similarity between two concept sets and
can be estimated using equation (5). The underly-
ing idea of the equation is, if two name observations
share more and closer common topics, and also these
topics receive higher weights according to the cur-
rent name observation set, then the two observations
should be more related to each other.

Specifically, the factor sim(o1 ∩ t, o2 ∩ t) is de-
signed to measure the fine relatedness between o1
and o2 given the topic t. Sometimes, both o1 and
o2 are mapped to t and both close to this topic, but
in fact they depict different aspects of t since some
of our topics are more general thus include several
aspects. The comparison of their intersections will
provide a more detailed view for their similarity.

Inspired by the use of bridge tags in
GRAPE(Jiang et al., 2009), we propose to capture
the connection strength between concept sets by the
means of our topics. We consider common topics
as the bridge tags and define our topic based con-
nectivity strength between two name observations
as:

TCS(o1, o2) =
1

2

∑
t∈T (o1,o2)

sim(o1 ∩ t, o2 ∩ t)×

(Cohs(o1, t) + Cohs(o2, t)) (7)

Note that we still need sim(o1 ∩ t, o2 ∩ t) to capture
the fine differences inside a topic. Cohs(o, t) is a
cohesion measure to capture the relatedness between
non-concept features in o and concept features in t,
defined as:

Cohs(o, t) =
∑

c∈o∩t

w(t)×
∑

q∈EB(o)

occ(c, q)fo(c)fo(q)

(8)
where EB(o) contains all non-concept features in
o (e.g., non-Wikipedia entities and biographical in-
formation), occ(c, q) is the co-occurring number of
concept c and feature q, fo(q) is the relative fre-
quency of q in observation o. It is easy to find that
a higher cohesion can be achieved by larger overlap
between o and t, higher topic weight and more co-
occurrences of concept features in t and other fea-
tures in o.

The third part is the original connectivity strength
defined in GRAPE(Jiang et al., 2009): CS(o1, o2),
calculated using plain features without topics (we

omit the details for brevity). Finally, we linearly
combine equation (6), (7) and CS(o1, o2) into the
person name similarity function as:

S(o1, o2)= α1 × TSm(o1, o2) + α2 × TCS(o1, o2)

+(1− α1 − α2)× CS(o1, o2) (9)

where α1 and α2 are optimized during training.
This final similarity function will then be embed-

ded into a normal HAC algorithm to group the web
pages into different namesakes where we compute
the centroid-based distance between clusters(Mann
and Yarowsky, 2003).

4 Experiments

We compare our model with competitive baselines
on three WePS datasets. In the following, we first
describe the experimental setup, and then discuss the
their performances.

4.1 Data
Wikipedia Data Wikipedia offers free copies of
all available data to interested users in their website.
We used the one released in March 6th, 2009 in our
experiments. We identified over 4,000,000 highly
connected concepts in this dump; each concept links
to 10 other concepts in average.

WePS Datasets We used three datasets in our
experiments, WePS1 Training and Testing (Artiles
et al., 2007), WePS2 Testing (Javier et al., 2009).
These datasets collected names from three differ-
ent resources including Wikipedia names, program
committee of a computer science conference and US
census. Each name were queried in Yahoo! Search
and top N result pages (100 pages in WePS1 and
150 pages in WePS2) were obtained and manually
labeled.

4.2 Baselines
We compare our model TM with four baseline meth-
ods: (1)VSM: traditional vector space model with
cosine similarity. We use features extracted in Sec-
tion 3.1 and weight them using TFIDF. The docu-
ments are grouped using standard HAC algorithm.
(2)GRAPE(Jiang et al., 2009): we re-implement the
state-of-the-art system which outperforms any mod-
els that do not use extra knowledge resources re-
ported in WePS1 and WePS2. (3)WS: the Wikipedia
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Semantic method(Han and Zhao, 2009). This sys-
tem uses Wikipedia to enhance the results of name
disambiguation. (4)SSR: the Structural Semantic re-
latedness model(Han and Zhao, 2010) creates a se-
mantic graph to re-calculate the semantic related-
ness between features, and captures both explicit
semantic relations and implicit structural semantic
knowledge. We also build two variants of TM: TM-
nTW which removes topic weighting to examine
what effect the topic weighting strategy can make
and whether it can provide a person specific evi-
dence and TM-nCP which does not use co-occurring
information to prune the semantic graph to examine
whether the pruning is effective.

4.3 Parameters

There are several parameters to be tuned in our
model. In the SCAN algorithm, we use default pa-
rameters according to (Xu et al., 2007) with an ex-
ception: the weight α is tuned exhaustively to be 0.2.
Note that the number of topics are automatically de-
cided by SCAN. The semantic graph pruning thresh-
old is set to 0.27 tuned on a held out set. The
smoothing parameters in equation (9) are: α1 = 0.3,
α2 = 0.2 which are tuned using cross validation.
Optimization of some parameters will be addressed
in detail in the following subsection. In HAC, all
optimal merging thresholds are selected by applying
leave-one-out cross validation.

4.4 Results and Discussion

We adopt the same evaluation process as (Han and
Zhao, 2009), and evaluating these models using Pu-
rity, Inverse Purity and the F-measure (also used in
WePS Task Artiles et al. (2007)). The overall perfor-
mance is shown in Table 1, and the best scores are
in boldface.

Let us first look at our model and its variants,
TM-nTW and TM-nCP. By introducing the corpus
level topic weighting scheme, our model improves
in average 1.6% consistently over all datasets. Re-
call that our topic weightings are obtained over the
whole name observation set beyond local context,
this improvement indicates that this corpus level per-
son specific evidences render the person similarity
more reasonably than that of single document. On
the other hand, by pruning the semantic graph, our
model improves averagely 1.3% over TM-nCP. This

Table 1: Web person name disambiguation results on all
three WePS datasets

WePS1 Training
Method P IP FMeasure

VSM 0.86 0.86 0.85
GRAPE 0.93 0.90 0.91

WS 0.88 0.89 0.87
SSR 0.82 0.92 0.85

TM-nTW 0.91 0.89 0.90
TM-nCP 0.92 0.90 0.91

TM 0.93 0.91 0.91
WePS1 Testing

Method P IP FMeasure
VSM 0.79 0.85 0.81

GRAPE 0.93 0.83 0.87
WS 0.88 0.90 0.88
SSR 0.85 0.83 0.84

TM-nTW 0.93 0.85 0.88
TM-nCP 0.92 0.86 0.88

TM 0.94 0.86 0.90
WePS2 Testing

Method P IP FMeasure
VSM 0.82 0.87 0.83

GRAPE 0.88 0.90 0.89
WS 0.85 0.89 0.86
SSR 0.89 0.84 0.86

TM-nTW 0.92 0.87 0.89
TM-nCP 0.93 0.88 0.90

TM 0.93 0.89 0.91

shows that our co-occurrence based pruning strategy
can help render the semantic graph with less noisy
edges, thus generate more reasonable topics.

Generally, our proposed model works best con-
sistently over all three datasets. Our method gains
9.3% improvement on average in three datasets com-
pared with VSM, 1.7% improvement compared to
GRAPE, 3.8% over WS and 6.7% over SSR. We also
performed significance testing on F-measures: the
differences between our model and other models are
significant. We notice there are many noisy or short
web pages which lead to inaccurate concept extrac-
tion, but this cross document evidences, to some ex-
tent, can remedy this. In the Emily Bender exam-
ple, our system correctly groups the odd page, which
contains limited clues, into the nutritionist cluster,
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while the rest, excluding WS and SSR, failed. Sur-
prisingly, SSR combines both kinds of relations and
implicit structural knowledge, but performs in the
same bulk with VSM in WePS1 training set. We
think the reason may be that some name observation
sets are too small to estimate non-concept related-
ness via random walk. In WePS1 training set, many
names in this dataset contains several namesakes,
each of which corresponds to a few web pages. In
this case, our corpus level weighting scheme and
WS show no advantage over GRAPE which consid-
ers word co-occurrences solely. From the results,
we can also find that there is no clear winner be-
tween GRAPE and WS. The former does not use
Wikipedia relatedness but only includes local rela-
tionship, and performs even slightly better than WS
in WePS2, which indicates that non-Wikipedia con-
cepts are important disambiguation features as well.

4.5 Parameter Optimization
In this subsection, we discuss the optimization of
several parameters in the proposed method. In total
we need to set four parameters. The first one is the
edge pruning threshold during graph construction;
the second one is the weight α in SCAN algorithm;
the third one and the forth one are the combination
parameters in the final similarity function. We will
address the first two in the following. The last two
combination parameters are tuned by exhaustively
searching the space and omitted here for brevity

First, we configure the pruning threshold. Intu-
itively, larger threshold can prune more unimpor-
tant edges and improve the disambiguation perfor-
mance. However, if the threshold is too large, we
may prune important edges and harm the results.
The F-measure of our method with respect to the
pruning threshold is plotted in Figure 2.

From Figure 2, we can know that in all three
data sets, a pruning threshold of 0.27 will lead to
the best performance. Both increasing and decreas-
ing of this pruning threshold will cause a decline of
the F-Measure, because they will either leave more
noisy light-weighted edges or prune some important
edges.

Secondly, we configure the neighborhood similar-
ity weight. The larger this weight is, the more neigh-
borhood information can influence the similarity be-
tween two nodes in the semantic graph. We plot the

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
0.86

0.87

0.88

0.89

0.9

0.91

0.92

Edge Pruning Threshold

F
M

ea
su

re

 

 
WePS1 Training
WePS1 Testing
WePS2 Testing

Figure 2: The F-Measure v.s. the edge pruning threshold
on three data sets.
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Figure 3: The F-Measure v.s. the neighborhood similarity
weight on three data sets.

performance of our method regarding to the neigh-
borhood similarity weight in Figure 3.

From Figure 3, we know that for the WePS 1 Test-
ing and WePS2 Testing data sets, a neighborhood
similarity weight of 0.2 can result in the best perfor-
mance, but for WePS 1 Training set, the weight for
the best performance is 0.6. In fact, when the neigh-
borhood similarity weight varies from 0 to 1, the dif-
ference between the best and worst performance are
less than 0.01, which indicates that neighborhood
similarity is as considerable as semantic relatedness.
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5 Conclusion and Future Work

In this paper, we explore the feature space in the
web person name disambiguation task and propose
a topic-based model which exploits corpus level
person specific evidences to handle the data spar-
sity challenges, especially the case that limited ev-
idences can be collected from the local context. In
particular, we harvest topics from wikipedia con-
cepts appearing in the name observation set, and
weight a concept based on both the relatedness of
the concept to its corresponding topic and the im-
portance of this topic in the current name observa-
tion set, so that some discriminative but sparse fea-
tures can obtain more reliable weights. Experimen-
tal results show that our weighting strategy does its
job and the proposed model outperforms the-state-
of-the-art systems. Our current work utilizes the
topic information shared in one name observation
set but is incapable to handle sparse name set, which
needs more accurate relation extraction inside the
name observations. Jointly modeling entity link-
ing and person (entity) disambiguation tasks will
be an interesting direction where the two tasks are
closely related and usually need to be considered at
the same time. Investigating the person name dis-
ambiguation task in different web applications will
also be of great importance, e.g., disambiguating a
name in streaming data or during knowledge base
construction. In addition, graphical model, which
has been studied in academic author disambiguation,
may be a good choice to cope with the noises and
non-standard forms in web data.
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Abstract

This paper proposes a method for learning
a discriminative parser for machine trans-
lation reordering using only aligned par-
allel text. This is done by treating the
parser’s derivation tree as a latent variable
in a model that is trained to maximize re-
ordering accuracy. We demonstrate that
efficient large-margin training is possible
by showing that two measures of reorder-
ing accuracy can be factored over the parse
tree. Using this model in the pre-ordering
framework results in significant gains in
translation accuracy over standard phrase-
based SMT and previously proposed unsu-
pervised syntax induction methods.

1 Introduction
Finding the appropriate word ordering in the
target language is one of the most difficult prob-
lems for statistical machine translation (SMT),
particularly for language pairs with widely di-
vergent syntax. As a result, there is a large
amount of previous research that handles the
problem of reordering through the use of im-
proved reordering models for phrase-based SMT
(Koehn et al., 2005), hierarchical phrase-based
translation (Chiang, 2007), syntax-based trans-
lation (Yamada and Knight, 2001), or pre-
ordering (Xia and McCord, 2004).

In particular, systems that use source-
language syntax allow for the handling of long-
distance reordering without large increases in
The first author is now affiliated with the Nara Institute
of Science and Technology.

decoding time. However, these require a good
syntactic parser, which is not available for many
languages. In recent work, DeNero and Uszko-
reit (2011) suggest that unsupervised grammar
induction can be used to create source-sentence
parse structure for use in translation as a part
of a pre-ordering based translation system.

In this work, we present a method for inducing
a parser for SMT by training a discriminative
model to maximize reordering accuracy while
treating the parse tree as a latent variable. As a
learning framework, we use online large-margin
methods to train the model to directly minimize
two measures of reordering accuracy. We pro-
pose a variety of features, and demonstrate that
learning can succeed when no linguistic informa-
tion (POS tags or parse structure) is available in
the source language, but also show that this lin-
guistic information can be simply incorporated
when it is available. Experiments find that the
proposed model improves both reordering and
translation accuracy, leading to average gains
of 1.2 BLEU points on English-Japanese and
Japanese-English translation without linguistic
analysis tools, or up to 1.5 BLEU points when
these tools are incorporated. In addition, we
show that our model is able to effectively max-
imize various measures of reordering accuracy,
and that the reordering measure that we choose
has a direct effect on translation results.

2 Preordering for SMT

Machine translation is defined as transforma-
tion of source sentence F = f1 . . . fJ to target
sentence E = e1 . . . eI . In this paper, we take
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Figure 1: An example with a source sentence F re-
ordered into target order F ′, and its corresponding
target sentence E. D is one of the BTG derivations
that can produce this ordering.

the pre-ordering approach to machine transla-
tion (Xia and McCord, 2004), which performs
translation as a two step process of reordering
and translation (Figure 1). Reordering first de-
terministically transforms F into F ′, which con-
tains the same words as F but is in the order of
E. Translation then transforms F ′ into E using
a method such as phrase-based SMT (Koehn et
al., 2003), which can produce accurate transla-
tions when only local reordering is required.

This general framework has been widely stud-
ied, with the majority of works relying on a
syntactic parser being available in the source
language. Reordering rules are defined over
this parse either through machine learning tech-
niques (Xia and McCord, 2004; Zhang et al.,
2007; Li et al., 2007; Genzel, 2010; Dyer and
Resnik, 2010; Khalilov and Sima’an, 2011) or
linguistically motivated manual rules (Collins et
al., 2005; Xu et al., 2009; Carpuat et al., 2010;
Isozaki et al., 2010b). However, as building a
parser for each source language is a resource-
intensive undertaking, there has also been some
interest in developing reordering rules without
the use of a parser (Rottmann and Vogel, 2007;
Tromble and Eisner, 2009; DeNero and Uszko-
reit, 2011; Visweswariah et al., 2011), and we
will follow this thread of research in this paper.

In particular, two methods deserve mention
for being similar to our approach. First, DeNero
and Uszkoreit (2011) learn a reordering model
through a three-step process of bilingual gram-
mar induction, training a monolingual parser
to reproduce the induced trees, and training

a reordering model that selects a reordering
based on this parse structure. In contrast, our
method trains the model in a single step, treat-
ing the parse structure as a latent variable in
a discriminative reordering model. In addition
Tromble and Eisner (2009) and Visweswariah et
al. (2011) present models that use binary clas-
sification to decide whether each pair of words
should be placed in forward or reverse order. In
contrast, our method uses traditional context-
free-grammar models, which allows for simple
parsing and flexible parameterization, including
features such as those that utilize the existence
of a span in the phrase table. Our work is also
unique in that we show that it is possible to di-
rectly optimize several measures of reordering
accuracy, which proves important for achieving
good translations.1

3 Training a Reordering Model with
Latent Derivations

In this section, we provide a basic overview of
the proposed method for learning a reordering
model with latent derivations using online dis-
criminative learning.

3.1 Space of Reorderings
The model we present here is based on the
bracketing transduction grammar (BTG, Wu
(1997)) framework. BTGs represent a binary
tree derivation D over the source sentence F
as shown in Figure 1. Each non-terminal node
can either be a straight (str) or inverted (inv)
production, and terminals (term) span a non-
empty substring f .2

The ordering of the sentence is determined by
the tree structure and the non-terminal labels
str and inv, and can be built bottom-up. Each
subtree represents a source substring f and its
reordered counterpart f ′. For each terminal
node, no reordering occurs and f is equal to f ′.

1The semi-supervised method of Katz-Brown et al.
(2011) also optimizes reordering accuracy, but requires
manually annotated parses as seed data.

2In the original BTG framework used in translation,
terminals produce a bilingual substring pair f/e, but as
we are only interested in reordering the source F , we
simplify the model by removing the target substring e.
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For each non-terminal node spanning f with its
left child spanning f1 and its right child span-
ning f2, if the non-terminal symbol is str, the
reordered strings will be concatenated in order
as f ′ = f ′

1f
′
2, and if the non-terminal symbol is

inv, the reordered strings will be concatenated
in inverted order as f ′ = f ′

2f
′
1.

We define the space of all reorderings that can
be produced by the BTG as F ′, and attempt to
find the best reordering F̂ ′ within this space.3

3.2 Reorderings with Latent
Derivations

In order to find the best reordering F̂ ′ given only
the information in the source side sentence F , we
define a scoring function S(F ′|F ), and choose
the ordering of maximal score:

Ḟ ′ = arg max
F ′

S(F ′|F ).

As our model is based on reorderings licensed
by BTG derivations, we also assume that there
is an underlying derivation D that produced F ′.
As we can uniquely determine F ′ given F and
D, we can define a scoring function S(D|F ) over
derivations, find the derivation of maximal score

Ḋ = arg max
D

S(D|F )

and use Ḋ to transform F into F ′.
Furthermore, we assume that the score

S(D|F ) is the weighted sum of a number of fea-
ture functions defined over D and F

S(D|F, w) =
∑

i

wiφi(D,F )

where φi is the ith feature function, and wi is
its corresponding weight in weight vector w.

Given this model, we must next consider how
to learn the weights w. As the final goal of our
model is to produce good reorderings F ′, it is
natural to attempt to learn weights that will al-
low us to produce these high-quality reorderings.

3BTGs cannot reproduce all possible reorderings, but
can handle most reorderings occurring in natural trans-
lated text (Haghighi et al., 2009).

Figure 2: An example of (a) the ranking function
r(fj), (b) loss according to Kendall’s τ , (c) loss ac-
cording to chunk fragmentation.

4 Evaluating Reorderings
Before we explain the learning algorithm, we
must know how to distinguish whether the F ′

produced by the model is good or bad. This
section explains how to calculate oracle reorder-
ings, and assign each F ′ a loss and an accuracy
according to how well it reproduces the oracle.

4.1 Calculating Oracle Orderings
In order to calculate reordering quality, we first
define a ranking function r(fj |F,A), which indi-
cates the relative position of source word fj in
the proper target order (Figure 2 (a)). In or-
der to calculate this ranking function, we define
A = a1, . . . , aJ , where each aj is a set of the in-
dices of the words in E to which fj is aligned.4
Given these alignments, we define an ordering
function aj1 < aj2 that indicates that the in-
dices in aj1 come before the indices in aj2 . For-
mally, we define this function as “the first index
in aj1 is at most the first index in aj2 , similarly
for the last index, and either the first or last
index in aj1 is less than that of aj2 .”

Given this ordering, we can sort every align-
ment aj , and use its relative position in the sen-
tence to assign a rank to its word r(fj). In

4Null alignments require special treatment. To do so,
we can place unaligned brackets and quotes directly be-
fore and after the spans they surround, and attach all
other unaligned words to the word directly to the right
for head-initial languages (e.g. English), or left for head-
final languages (e.g. Japanese).
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the case of ties, where neither aj1 < aj2 nor
aj2 < aj1 , both fj1 and fj2 are assigned the
same rank. We can now define measures of re-
ordering accuracy for F ′ by how well it arranges
the words in order of ascending rank. It should
be noted that as we allow ties in rank, there
are multiple possible F ′ where all words are in
strictly ascending order, which we will call ora-
cle orderings.

4.2 Kendall’s τ

The first measure of reordering accuracy that
we will consider is Kendall’s τ (Kendall, 1938),
a measure of pairwise rank correlation which
has been proposed for evaluating translation re-
ordering accuracy (Isozaki et al., 2010a; Birch
et al., 2010) and pre-ordering accuracy (Talbot
et al., 2011). The fundamental idea behind the
measure lies in comparisons between each pair of
elements f ′j1 and f ′j2 of the reordered sentence,
where j1 < j2. Because j1 < j2, f ′j1 comes before
f ′j2 in the reordered sentence, the ranks should
be r(f ′j1) ≤ r(f ′j2) in order to produce the cor-
rect ordering.

Based on this criterion, we first define a loss
Lt(F

′) that will be higher for orderings that are
further from the oracle. Specifically, we take the
sum of all pairwise orderings that do not follow
the expected order

Lt(F
′) =

J−1∑
j1=1

J∑
j2=j1+1

δ(r(f ′j1) > r(f ′j2))

where δ(·) is an indicator function that is 1 when
its condition is true, and 0 otherwise. An exam-
ple of this is given in Figure 2 (b).

To calculate an accuracy measure for ordering
F ′, we first calculate the maximum loss for the
sentence, which is equal to the total number of
non-equal rank comparisons in the sentence5

max
F ′

Lt(F
′) =

J−1∑
j1=1

J∑
j2=j1+1

δ(r(f ′j1) 6= r(f ′j2)).

(1)
5The traditional formulation of Kendall’s τ assumes

no ties in rank, and thus the maximum loss can be cal-
culated as J(J − 1)/2.

Finally, we use this maximum loss to normalize
the actual loss to get an accuracy

At(F
′) = 1− Lt(F

′)

max
F̃ ′

Lt(F̃ ′)
,

which will take a value between 0 (when F ′ has
maximal loss), and 1 (when F ′ matches one of
the oracle orderings). In Figure 2 (b), Lt(F

′) =
2 and max

F̃ ′
Lt(F̃

′) = 8, so At(F
′) = 0.75.

4.3 Chunk Fragmentation
Another measure that has been used in eval-
uation of translation accuracy (Banerjee and
Lavie, 2005) and pre-ordering accuracy (Talbot
et al., 2011) is chunk fragmentation. This mea-
sure is based on the number of chunks that the
sentence needs to be broken into to reproduce
the correct ordering, with a motivation that the
number of continuous chunks is equal to the
number of times the reader will have to jump to
a different position in the reordered sentence to
read it in the target order. One way to measure
the number of continuous chunks is considering
whether each word pair f ′j and f ′j+1 is discon-
tinuous (the rank of f ′j+1 is not equal to or one
greater than f ′j)

discont(f ′j , f
′
j+1) =

δ(r(f ′j) 6= r(f ′j+1) ∧ r(f ′j) + 1 6= r(f ′j+1))

and sum over all word pairs in the sentence to
create a sentence-based loss

Lc(F
′) =

J−1∑
j=1

discont(f ′j , f
′
j+1) (2)

While this is the formulation taken by previ-
ous work, we found that this under-penalizes
bad reorderings of the first and last words of
the sentence, which can contribute to the loss
only once, as opposed to other words which can
contribute to the loss twice. To account for
this, when calculating the chunk fragmentation
score, we additionally add two sentence bound-
ary words f0 and fJ+1 with ranks r(f0) = 0 and
r(fJ+1) = 1 + max

f ′
j∈F ′

r(f ′j) and redefine the sum-

mation in Equation (2) to consider these words
(e.g. Figure 2 (c)).
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procedure WeightUpdate(F , A, w)
D ← parse(F, w) . Create parse forest
Ḋ ← argmax

D∈D
S(D|F, w) + L(D|F, A)

. Find the model parse
D̂ ← argmin

D∈D
L(D|F,A)− αS(D|F, w)

. Find the oracle parse
if L(D̂|F, A) 6= L(Ḋ|F, A) then

w ← β(w + γ(φ(D̂, F )− φ(Ḋ, F )))
. Perform weight update

end if
end procedure

Figure 3: An online update for sentence F , alignment
A, and weight vector w. α is a very small constant,
and β and γ are defined by the update strategy.

Similarly to Kendall’s τ , we can also define
an accuracy measure between 0 and 1 using the
maximum loss, which will be at most J + 1,
which corresponds to the total number of com-
parisons made in calculating the loss6

Ac(F
′) = 1− Lc(F

′)

J + 1
.

In Figure 2 (c), Lc(F
′) = 3 and J + 1 = 6, so

Ac(F
′) = 0.5.

5 Learning a BTG Parser for
Reordering

Now that we have a definition of loss over re-
orderings produced by the model, we have a
clear learning objective: we would like to find
reorderings F ′ with low loss. The learning algo-
rithm we use to achieve this goal is motivated
by discriminative training for machine transla-
tion systems (Liang et al., 2006), and extended
to use large-margin training in an online frame-
work (Watanabe et al., 2007).

5.1 Learning Algorithm
Learning uses the general framework of large-
margin online structured prediction (Crammer
et al., 2006), which makes several passes through
the data, finding a derivation with high model
score (the model parse) and a derivation with

6It should be noted that for sentences of length one or
sentences with tied ranks, the maximum loss may be less
than J +1, but for simplicity we use this approximation.

minimal loss (the oracle parse), and updating w
if these two parses diverge (Figure 3).

In order to create both of these parses effi-
ciently, we first create a parse forest encoding a
large number of derivations Di according to the
model scores. Next, we find the model parse Ḋi,
which is the parse in the forest Di that maxi-
mizes the sum of the model score and the loss
S(Dk|Fk, w)+L(Dk|Fk, Ak). It should be noted
that here we are considering not only the model
score, but also the derivation’s loss. This is
necessary for loss-driven large-margin training
(Crammer et al., 2006), and follows the basic
intuition that during training, we would like to
make it easier to select negative examples with
large loss, causing these examples to be penal-
ized more often and more heavily.

We also find an oracle parse D̂i, which is se-
lected solely to minimize the loss L(Dk|Fk, Ak).
One important difference between the model we
describe here and traditional parsing models is
that the target derivation D̂k is a latent variable.
Because many Dk achieve a particular reorder-
ing F ′, many reorderings F ′ are able to mini-
mize the loss L(F ′

k|Fk, Ak). Thus it is necessary
to choose a single oracle derivation to treat as
the target out of many equally good reorderings.
DeNero and Uszkoreit (2011) resolve this ambi-
guity with four features with empirically tuned
scores before training a monolingual parser and
reordering model. In contrast, we follow previ-
ous work on discriminative learning with latent
variables (Yu and Joachims, 2009), and break
ties within the pool of oracle derivations by se-
lecting the derivation with the largest model
score. From an implementation point of view,
this can be done by finding the derivation that
minimizes L(Dk|Fk, Ak)−αS(Dk|Fk, w), where
α is a constant small enough to ensure that the
effect of the loss will always be greater than the
effect of the score.

Finally, if the model parse Ḋk has a loss that
is greater than that of the oracle parse D̂k, we
update the weights to increase the score of the
oracle parse and decrease the score of the model
parse. Any criterion for weight updates may be
used, such as the averaged perceptron (Collins,
2002) and MIRA (Crammer et al., 2006), but
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we opted to use Pegasos (Shalev-Shwartz et al.,
2007) as it allows for the introduction of regu-
larization and relatively stable learning.

To perform this full process, given a source
sentence Fk, alignment Ak, and model weights
w we need to be able to efficiently calculate
scores, calculate losses, and create parse forests
for derivations Dk, the details of which will be
explained in the following sections.

5.2 Scoring Derivation Trees
First, we must consider how to efficiently assign
scores S(D|F, w) to a derivation or forest during
parsing. The most standard and efficient way to
do so is to create local features that can be cal-
culated based only on the information included
in a single node d in the derivation tree. The
score of the whole tree can then be expressed as
the sum of the scores from each node:

S(D|F, w) =
∑
d∈D

S(d|F, w)

=
∑
d∈D

∑
i

wiφi(d, F ).

Based on this restriction, we define a number of
features that can be used to score the parse tree.
To ease explanation, we represent each node in
the derivation as d = 〈s, l, c, c + 1, r〉, where s
is the node’s symbol (str, inv, or term), while
l and r are the leftmost and rightmost indices
of the span that d covers. c and c + 1 are the
rightmost index of the left child and leftmost
index of the right child for non-terminal nodes.

All features are intersected with the node la-
bel s, so each feature described below corre-
sponds to three different features (or two for
features applicable to only non-terminal nodes).

• φlex: Identities of words in positions fl, fr,
fc, fc+1, fl−1, fr+1, flfr, and fcfc+1.

• φclass: Same as φlex, but with words ab-
stracted to classes. We use the 50 classes
automatically generated by Och (1999)’s
method that are calculated during align-
ment in standard SMT systems.

• φbalance: For non-terminals, features indi-
cating whether the length of the left span

(c− l+1) is lesser than, equal to, or greater
than the length of the right span (r − c).

• φtable: Features, bucketed by length, that
indicate whether “fl . . . fr” appears as a
contiguous phrase in the SMT training
data, as well as the log frequency of the
number of times the phrase appears total
and the number of times it appears as a
contiguous phrase (DeNero and Uszkoreit,
2011). Phrase length is limited to 8, and
phrases of frequency one are removed.

• φpos: Same as φlex, but with words ab-
stracted to language-dependent POS tags.

• φcfg: Features indicating the label of the
spans fl . . . fr, fl . . . fc, and fc+1 . . . fr in a
supervised parse tree, and the intersection
of the three labels. When spans do not cor-
respond to a span in the supervised parse
tree, we indicate “no span” with the label
“X” (Zollmann and Venugopal, 2006).

Most of these features can be calculated from
only a parallel corpus, but φpos requires a POS
tagger and φcfg requires a full syntactic parser
in the source language. As it is preferable to
have a method that is applicable in languages
where these tools are not available, we perform
experiments both with and without the features
that require linguistic analysis tools.

5.3 Finding Losses for Derivation Trees

The above features φ and their corresponding
weights w are all that are needed to calculate
scores of derivation trees at test time. However,
during training, it is also necessary to find model
parses according to the loss-augmented scoring
function S(D|F, w)+L(D|F,A) or oracle parses
according to the loss L(D|F,A). As noted by
Taskar et al. (2003), this is possible if our losses
can be factored in the same way as the feature
space. In this section, we demonstrate that the
loss L(d|F, A) for the evaluation measures we
defined in Section 4 can (mostly) be factored
over nodes in a fashion similar to features.
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5.3.1 Factoring Kendall’s τ

For Kendall’s τ , in the case of terminal nodes,
Lt(d = 〈term, l, r〉|F, A) can be calculated by
performing the summation in Equation (1). We
can further define this sum recursively and use
memoization for improved efficiency

Lt(d|F,A) =Lt(〈term, l, r − 1〉|F, A)

+

r−1∑
j=l

δ(r(fj) > r(fr)). (3)

For non-terminal nodes, we first focus on
straight non-terminals with parent node d =
〈str, l, c, c+1, r〉, and left and right child nodes
dl = 〈sl, l, lc, lc+1, c〉 and dr = 〈sr, c+1, rc, rc+
1, r〉. First, we note that the loss for the subtree
rooted at d can be expressed as

Lt(d|F,A) =Lt(dl|F, A) + Lt(dr|F,A)

+

c∑
j1=l

r∑
j2=c+1

δ(r(fj1) > r(fj2)).

In other words, the subtree’s total loss can be
factored into the loss of its left subtree, the
loss of its right subtree, and the additional loss
contributed by comparisons between the words
spanning both subtrees. In the case of inverted
terminals, we must simply reverse the compari-
son in the final sum to be δ(r(fj1) < r(fj2)).

5.3.2 Factoring Chunk Fragmentation
Chunk fragmentation loss can be factored in a

similar fashion. First, it is clear that the loss for
the terminal nodes can be calculated efficiently
in a fashion similar to Equation (3). In order to
calculate the loss for non-terminals d, we note
that the summation in Equation (2) can be di-
vided into the sum over the internal bi-grams
in the left and right subtrees, and the bi-gram
spanning the reordered trees

Lc(d|F, A) =Lc(dl|F, A) + Lc(dr|F, A)

+ discont(f ′c, f
′
c+1).

However, unlike Kendall’s τ , this equation re-
lies not on the ranks of fc and fc+1 in the origi-
nal sentence, but on the ranks of f ′c and f ′c+1 in
the reordered sentence. In order to keep track

of these values, it is necessary to augment each
node in the tree to be d = 〈s, l, c, c + 1, r, tl, tr〉
with two additional values tl and tr that indi-
cate the position of the leftmost and rightmost
words after reordering. Thus, a straight non-
terminal parent d with children dl = 〈sl, l, lc, lc+
1, c, tl, tlr〉 and dr = 〈sr, c+1, rc, rc+1, r, trl, tr〉
will have loss as follows

Lc(d|F, A) =Lc(dl|F, A) + Lc(dr|F, A)

+ discont(ftlr, ftrl)

with a similar calculation being possible for in-
verted non-terminals.

5.4 Parsing Derivation Trees
Finally, we must be able to create a parse forest
from which we select model and oracle parses.
As all feature functions factor over single nodes,
it is possible to find the parse tree with the high-
est score in O(J3) time using the CKY algo-
rithm. However, when keeping track of target
positions for calculation of chunk fragmentation
loss, there are a total of O(J5) nodes, an unrea-
sonable burden in terms of time and memory.
To overcome this problem, we note that this set-
ting is nearly identical to translation using syn-
chronous CFGs with an integrated bigram LM,
and thus we can employ cube-pruning to reduce
our search space (Chiang, 2007).

6 Experiments
Our experiments test the reordering and trans-
lation accuracy of translation systems using the
proposed method. As reordering metrics, we use
Kendall’s τ and chunk fragmentation (Talbot et
al., 2011) comparing the system F ′ and oracle
F ′ calculated with manually created alignments.
As translation metrics, we use BLEU (Papineni
et al., 2002), as well as RIBES (Isozaki et al.,
2010a), which is similar to Kendall’s τ , but eval-
uated on the target sentence E instead of the re-
ordered sentence F ′. All scores are the average
of three training runs to control for randomness
in training (Clark et al., 2011).

For translation, we use Moses (Koehn et al.,
2007) with lexicalized reordering (Koehn et al.,
2005) in all experiments. We test three types
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en-ja ja-en
Chunk τ BLEU RIBES Chunk τ BLEU RIBES

orig 61.22 73.46 21.87 68.25 66.42 72.99 18.34 65.36
3-step 63.51 72.55 21.45 67.66 67.17 73.01 17.78 64.42
3-step+φpos 64.28 72.11 21.45 67.44 67.56 74.21 18.18 64.65
3-step+φcfg 65.76 75.32 21.67 68.47 67.23 74.06 18.18 64.93
lader 73.19 78.44 23.11 69.86 75.14 79.14 19.54 66.93
lader+φpos 73.97 79.24 23.32 69.78 75.49 78.79 19.89 67.24
lader+φcfg 75.06 80.53 23.36 70.89 75.14 77.80 19.35 66.12

Table 2: Reordering (chunk, τ) and translation (BLEU, RIBES) results for each system. Bold numbers
indicate no significant difference from the best system (bootstrap resampling with p > 0.05) (Koehn, 2004).

sent. word (ja) word (en)
RM-train 602 14.5k 14.3k
RM-test 555 11.2k 10.4k
TM/LM 329k 6.08M 5.91M
Tune 1166 26.8k 24.3k
Test 1160 28.5k 26.7k

Table 1: The number of sentences and words for
training and testing the reordering model (RM),
translation model (TM), and language model (LM).

of pre-ordering: original order with F ′ ← F
(orig), pre-orderings learned using the 3-step
process of DeNero and Uszkoreit (2011) (3-
step), and the proposed model with latent
derivations (lader).7 Except when stated oth-
erwise, lader was trained to minimize chunk
fragmentation loss with a cube pruning stack
pop limit of 50, and the regularization constant
of 10−3 (chosen through cross-validation).

We test our systems on Japanese-English and
English-Japanese translation using data from
the Kyoto Free Translation Task (Neubig, 2011).
We use the training set for training translation
and language models, the development set for
weight tuning, and the test set for testing (Table
1). We use the designated development and test
sets of manually created alignments as training
data for the reordering models, removing sen-
tences of more than 60 words.

As default features for lader and the mono-
lingual parsing and reordering models in 3-step,
we use all the features described in Section 5.2

7Available open-source: http://phontron.com/lader

except φpos and φcfg. In addition, we test sys-
tems with φpos and φcfg added. For English,
we use the Stanford parser (Klein and Manning,
2003) for both POS tagging and CFG parsing.
For Japanese, we use the KyTea tagger (Neu-
big et al., 2011) for POS tagging,8 and the EDA
word-based dependency parser (Flannery et al.,
2011) with simple manual head-rules to convert
a dependency parse to a CFG parse.

6.1 Effect of Pre-ordering
Table 2 shows reordering and translation results
for orig, 3-step, and lader. It can be seen
that the proposed lader outperforms the base-
lines in both reordering and translation.9 There
are a number of reasons why lader outper-
forms 3-step. First, the pipeline of 3-step
suffers from error propogation, with errors in
monolingual parsing and reordering resulting
in low overall accuracy.10 Second, as Section
5.1 describes, lader breaks ties between ora-
cle parses based on model score, allowing easy-
to-reproduce model parses to be chosen dur-
ing training. In fact, lader generally found
trees that followed from syntactic constituency,
while 3-step more often used terminal nodes

8In addition, following the example of Sudoh et al.
(2011a)’s reordering rules, we lexicalize all particles.

9It should be noted that our results for 3-step are
significantly worse than those of DeNero and Uszkoreit
(2011). Likely reasons include a 20x difference in training
data size, the fact that we are using naturally translated
text as opposed to text translated specifically to create
word alignments, or differences in implementation.

10When using oracle parses, chunk accuracy was up to
81%, showing that parsing errors are highly detrimental.
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en-ja ja-en
Chunk τ BLEU RIBES Chunk τ BLEU RIBES

Lc 73.19 78.44 23.11 69.86 75.14 79.14 19.54 66.93
Lt 70.37 79.57 22.57 69.47 72.51 78.93 18.52 66.26
Lc + Lt 72.55 80.58 22.89 70.34 74.44 79.82 19.21 66.48

Table 3: Results for systems trained to optimize chunk fragmentation (Lc) or Kendall’s τ (Lt).

that spanned constituent boundaries (as long as
the phrase frequency was high). Finally, as Sec-
tion 6.2 shows in detail, the ability of lader to
maximize reordering accuracy directly allows for
improved reordering and translation results.

It can also be seen that incorporating POS
tags or parse trees improves accuracy of both
lader and 3-step, particularly for English-
Japanese, where syntax has proven useful for
pre-ordering, and less so for Japanese-English,
where syntactic pre-ordering has been less suc-
cessful (Sudoh et al., 2011b).

We also tested Moses’s implementation of hi-
erarchical phrase-based SMT (Chiang, 2007),
which achieved BLEU scores of 23.21 and 19.30
for English-Japanese and Japanese-English re-
spectively, approximately matching lader in
accuracy, but with a significant decrease in de-
coding speed. Further, when pre-ordering with
lader and hierarchical phrase-based SMT were
combined, BLEU scores rose to 23.29 and 19.69,
indicating that the two techniques can be com-
bined for further accuracy improvements.

6.2 Effect of Training Loss

Table 3 shows results when one of three losses is
optimized during training: chunk fragmentation
(Lc), Kendall’s τ (Lt), or the linear interpola-
tion of the two with weights chosen so that both
losses contribute equally (Lt + Lc). In general,
training successfully maximizes the criterion it is
trained on, and Lt +Lc achieves good results on
both measures. We also find that Lc and Lc+Lt

achieve the best translation results, which is
in concert with Talbot et al. (2011), who find
chunk fragmentation is better correlated with
translation accuracy than Kendall’s τ . This is
an important result, as methods such as that
of Tromble and Eisner (2009) optimize pairwise

en-ja ja-en
BLEU/RIBES BLEU/RIBES

orig 21.87 68.25 18.34 65.36
man-602 23.11 69.86 19.54 66.93
auto-602 22.39 69.19 18.58 66.07
auto-10k 22.53 69.68 18.79 66.89

Table 4: Results based on data size, and whether
manual or automatic alignments are used in training.

word comparisons equivalent to Lt, which may
not be optimal for translation.

6.3 Effect of Automatic Alignments
Table 4 shows the difference between using man-
ual and automatic alignments in the training of
lader. lader is able to improve over the orig
baseline in all cases, but when equal numbers
of manual and automatic alignments are used,
the reorderer trained on manual alignments is
significantly better. However, as the number of
automatic alignments is increased, accuracy im-
proves, approaching that of the system trained
on a smaller number of manual alignments.

7 Conclusion
We presented a method for learning a discrim-
inative parser to maximize reordering accuracy
for machine translation. Future work includes
application to other language pairs, develop-
ment of more sophisticated features, investiga-
tion of probabilistic approaches to inference, and
incorporation of the learned trees directly in
tree-to-string translation.
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Abstract 

The training of most syntactic SMT approaches 
involves two essential components, word 

alignment and monolingual parser. In the 

current state of the art these two components 

are mutually independent, thus causing 

problems like lack of rule generalization, and 

violation of syntactic correspondence in 

translation rules. In this paper, we propose two 

ways of re-training monolingual parser with the 

target of maximizing the consistency between 

parse trees and alignment matrices. One is 

targeted self-training with a simple evaluation 

function; the other is based on training data 
selection from forced alignment of bilingual 

data. We also propose an auxiliary method for 

boosting alignment quality, by symmetrizing 

alignment matrices with respect to parse trees. 

The best combination of these novel methods 

achieves 3 Bleu point gain in an IWSLT task 

and more than 1 Bleu point gain in NIST tasks. 

1 Introduction 

There are many varieties in syntactic statistical 
machine translation (SSMT). Apart from a few 

attempts to use synchronous parsing to produce the 

tree structure of both source language (SL) and 
target language (TL) simultaneously, most SSMT 

approaches make use of monolingual parser to 

produce the parse tree(s) of the SL and/or TL 

sentences, and then link up the information of the 
two languages through word alignment. In the 

current state of the art, word aligner and 

monolingual parser are trained and applied 
separately. On the one hand, an average word 

aligner does not consider the syntax information of 

both languages, and the output links may violate 

syntactic correspondence. That is, some SL words 

yielded by a SL parse tree node may not be traced 

to, via alignment links, some TL words with 
legitimate syntactic structure. On the other hand, 

parser design is a monolingual activity and its 

impact on MT is not well studied (Ambati, 2008). 

Many good translation rules may thus be filtered 
by a good monolingual parser. 

In this paper we will focus on the translation 

task from Chinese to English, and the string-to-tree 
SSMT model as elaborated in (Galley et al., 2006). 

There are two kinds of translation rules in this 

model, minimal rules, and composed rules, which 

are composition of minimal rules. The minimal 
rules are extracted from a special kind of nodes, 

known as frontier nodes, on TL parse tree. The 

concept of frontier node can be illustrated by 
Figure 1, which shows two partial bilingual 

sentences with the corresponding TL sub-trees and 

word alignment links. The TL words yielded by a 
TL parse node can be traced to the corresponding 

SL words through alignment links. In the diagram, 

each parse node is represented by a rectangle, 

showing the phrase label, span, and complement 

span respectively. The span of a TL node   is 

defined as the minimal contiguous SL string that 

covers all the SL words reachable from  . The 

complement span of   is the union of spans of all 

the nodes that are neither descendants nor 

ancestors of   (c.f. Galley et al., 2006) . A frontier 

node is a node of which the span and the 
complement span do not overlap with each other. 

In the diagram, frontier nodes are grey in color. 

Frontier node is the key in the SSMT model, as it 
identifies the bilingual information which is 

consistent with both the parse tree and alignment 

matrix. 

There are two major problems in the SSMT 
model. The first one is the violation of syntactic 
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structure by incorrect alignment links, as shown by 

the two dashed links in Figure 1(a). These two 
incorrect links hinder the extraction of a good 

minimal rule “毡房             ” and that of a 

good composed rule “牧民 , 的   NP(DT(the), 

NN(herdsmen), POS('s)) ”. By and large, incorrect 
alignment links lead to translation rules that are 

large in size, few in number, and poor in 

generalization ability (Fossum et al, 2008). The 

second problem is parsing error, as shown in 
Figure 1(b). The incorrect POS tagging of the word 

“lectures" causes a series of parsing errors, 

including the absence of the noun phrase 
“NP(NN(propaganda), NN(lectures))”. These 

parsing errors hinder the extraction of good rules, 

such as “ 宣 讲   NP(NN(propaganda), 

NN(lectures)) ”. 

Note that in Figure 1(a), the parse tree is correct, 

and the incorrect alignment links might be fixed if 
the aligner takes the parse tree into consideration. 

Similarly, in Figure 1(b) some parsing errors might 

be fixed if the parser takes into consideration the 
correct alignment links about “propaganda” and 

“lecture”. That is, alignment errors and parsing 

might be fixed if word aligner and parser are not 
mutually independent.  

In this paper, we emphasize more on the 

correction of parsing errors by exploiting 

alignment information. The general approach is to 
re-train a parser with parse trees which are the 

most consistent with alignment matrices. Our first 

strategy is to apply the idea of targeted self-
training (Katz-Brown et al., 2011) with the simple 

evaluation function of frontier set size. That is to 

re-train the parser with the parse trees which give 
rise to the largest number of frontier nodes. The 

second strategy is to apply forced alignment 

(Wuebker et al., 2010) to bilingual data and select 

the parse trees generated by our SSMT system for 
re-training the parser. Besides, although we do not 

invent a new word aligner exploiting syntactic 

information, we propose a new method to 
symmetrize the alignment matrices of two 

directions by taking parse tree into consideration.  
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(a)  (b) 

Figure 1. Two example partial bilingual sentences with word alignment and syntactic tree for the 

target sentence. All the nodes in gray are frontier nodes. Example (a) contains two error links (in dash 

line), and the syntactic tree for the target sentence of example (b) is wrong. 
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2 Parser Re-training Strategies 

Most monolingual parsers used in SSMT are 

trained upon certain tree bank. That is, a parser is 
trained with the target of maximizing the 

agreement between its decision on syntactic 

structure and that decision in the human-annotated 
parse trees. As mentioned in Section 1, 

monolingual syntactic structure is not necessarily 

suitable for translation, and sometimes the 
bilingual information in word alignment may help 

the parser find out the correct structure. Therefore, 

it is desirable if there is a way to re-train a parser 

with bilingual information. 
What is needed includes a framework of parser 

re-training, and a data selection strategy that 

maximizes the consistency between parse tree and 
alignment matrix. Our two solutions will be 

introduced in the next two subsections respectively. 

2.1 Targeted Self-Training with Frontier Set 

Based Evaluation (TST-FS) 

The first solution is based on targeted self-training 

(TST) (Katz-Brown et al., 2011). In standard self-

training, the top one parse trees produced by the 

current parser are taken as training data for the 
next round, and the training objective is still the 

correctness of monolingual syntactic structure. In 

targeted self-training, the training objective shifts 
to certain external evaluation function. For each 

sentence, the n-best parse trees from the current 

parser are re-ranked in accordance with this 
external evaluation function, and the top one of the 

re-ranked candidates is then selected as training 

data for the next round. The key of targeted self-

training is the definition of this external evaluation 
function. 

As shown by the example in Figure 1(b), an 

incorrect parse tree is likely to hinder the 
extraction of good translation rules, because the 

number of frontier nodes in the incorrect tree is in 

general smaller than that in the correct tree. 

Consider the example in Figure 2, which is about 
the same partial bilingual sentence as in Figure 

1(b). Although both parse trees do not have the 

correct syntactic structure, the tree in Figure 2 has 
more frontier nodes, leads to more valid translation 

rules, and is therefore more preferable.  

This example suggests a very simple external 
evaluation function, viz. the size of frontier set. 

Given a bilingual sentence, its alignment matrix, 

and the N-best parse trees of the TL sentence, we 

will calculate the number of frontier nodes for each 

parse tree, and re-rank the parse trees in its 
descending order. The new top one parse tree is 

selected as the training data for the next round of 

targeted self-training of the TL parser. In the 

following we will call this approach as targeted 
self-training with frontier set based evaluation 

(TST-FS). 

Note that the size of the N-best list should be 
kept small. It is because sometimes a parse tree 

with an extremely mistaken structure happens to 

have perfect match with the alignment matrix, 
thereby giving rise to nearest the largest frontier set 

size. It is empirically found that a 5-best list of 

parse trees is already sufficient to significantly 

improve translation performance. 

2.2 Forced Alignment-based Parser Re-

Training (FA-PR) 

If we doubt that the parse tree from a monolingual 

parser is not appropriate enough for translation 
purpose, then it seems reasonable to consider using 

the parse tree produced by an SSMT system to re-

train the parser. A naïve idea is simply to run an 
SSMT system over some SL sentences and retrieve 

the by-product TL parse trees for re-training the 

monolingual parser. The biggest problem of this 

naïve approach is that the translation by an MT 
system is often a 'weird' TL sentence, and thus the 

associated parse tree is of little use in improving 

the parser. 
Forced alignment (Wuebker et al., 2010) of 

bilingual data is a much more promising approach. 
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Figure 2. The parse tree selected by TST-FS for 

the example in Figure 1(b) 
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When applied to SSMT, given a bilingual sentence, 

it performs phrase segmentation of the SL side, 
parsing of the TL side, and word alignment of the 

bilingual sentence, using the full translation system 

as in decoding. It finds the best decoding path that 

generates the TL side of the bilingual sentence, and 
the parse tree of the TL sentence is also obtained as 

a by-product. The parse trees from forced 

alignment are suitable for re-training the 
monolingual parser.  

Here is the simple iterative re-training algorithm. 

First we have a baseline monolingual parser and 
plug it into an SSMT system. Then perform forced 

alignment, using the SSMT system, of some 

bilingual data and obtain the parse trees as new 

training data for the parser. The new parser can 
then be applied again to do the second round of 

forced alignment. This iteration of forced 

alignment followed by parser re-training is kept 
going until some stopping criterion is met. In the 

following we will call this approach as forced 

alignment based parser re-training (FA-PR). 

Algorithm 1  Forced Alignment Based Parser Re-

Training (FA-PR) 

 step1:      ;                . 

 step2: Use parser      to parse target 

sentences of training data, and build a 

SSMT system      . 

 step3: Perform forced alignment on training 

data with      to get parse trees 

         for target sentence of training 

data. 

 step4: Train a new parser          with 

         . 
 step5:                       . 

 Step6: Go to step 2, until performance of      

on development data drops, or a preset 
limit is reached. 

There are a few important implementation 
details of FA-PR. Forced alignment is guaranteed 

to obtain a parse tree if all translation rules are kept 

and no pruning is performed during decoding. Yet 

in reality an average MT system applies pruning 
during translation model training and decoding, 

and a lot of translation rules will then be discarded. 

In order to have more parse trees be considered by 
forced alignment, we keep all translation rules and 

relax pruning constraints in the decoder, viz. 

enlarge the stack size of each cell in the chart from 

50 to 150.  
Another measure to guarantee the existence of a 

decoding path in forced alignment is to allow part 

of a SL or TL sentence translate to null. Consider 
the example in Figure 1(b). We also add a null 

alignment for any span of the source and target 

sentences to handle the null translation scenario. It 

is easy to add a null translation candidate for a 
span of the source sentence during decoding, but 

not easy for target spans. For example, suppose the 

best translation candidate for the source span " 来 1  

NP 的 5 人 6 很多 7" is "a large number of people 

coming NP", and the best translation candidate for 

"听 2 他们 3 宣讲 4" is "their propaganda lectures", 

there is no combination of candidates from two n-
best translation lists which can match a sequence in 

the given target part, so we add a translation 

candidate ("to listen to ") generated from null, 
whose syntactic label can be any label (decided 

according to the translated context, which is 

“ADJP” here).  The feature weights for the added 

null alignment are set to be very small, so as to 
avoid the competition with the normal candidates. 

In order to generate normal trees with not so many 

null alignment sub-trees for the target sentence 
(such trees are not suitable for parser re-training), 

only target spans with less than 4 words can align 

to null, and such null-aligned sub-tree can only be 

added  no more than 3 times.  
With all the mentioned modification of the 

forced alignment, the partial target tree generated 

using forced alignment for the example in Figure 
1(b) is shown in Figure 3. We can see that even 
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Figure 3. The parse tree selected by FA-PR for the 

example in Figure 1(b) 
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with an incorrect sub-tree, more useful rules can be 

extracted, compared with the baseline sub-tree and 
the sub-tree generated from TST-FS. 

3  Word Alignment Symmetrization 

The most widely used word aligners in MT, like 
HMM and IBM Models (Och and Ney, 2003), are 

directional aligners. Such aligner produces one set 

of alignment matrices for the SL-to-TL direction 
and another set for the TL-to-SL direction. 

Symmetrization refers to the combination of these 

two sets of alignment matrices.  

The most popular method of symmetrization is 
intersect-diag-grow (IDG). Given a bilingual 

sentence and its two alignment matrices     and 

     IDG starts with all the links in        . 

Then IDG considers each link in           
          in turn. A link is added if its addition 

does not make some phrase pairs overlap. 
Although IDG is simple and efficient, and has been 

shown to be effective in phrase-based SMT, it is 

problematic in SSMT, as illustrated by the example 
in section 1. 

3.1 Intersect-Diag-Syntactic-Grow (IDSG) 

We propose a new symmetrization method, 

Intersect-Diag-Syntactic-Grow (IDSG), which is 
an adaptation of IDG but also taking syntactic 

information in consideration. It is sketched in 

Algorithm 2.  

Algorithm 2 Intersect-Diag-Syntactic-Grow  

 step1: Generate all the candidate links        

using IDG. 
 step2: Select the one which can generate the 

biggest frontier set: 

        
         

                          

 step3: Add   to  , and repeat step 1, until no 
new link can be added. 

Like IDG, IDSG starts with all the links in 

        and its main task is to add links selected 

from                         . IDSG is 

also subject to the constraints of IDG. The new 

criterion in link selection in IDSG is specified in 
Step 2. Given a parse tree of the TL side of the 

bilingual sentence, in each iteration IDSG 

considers the change of frontier set size caused by 

the addition of each link in       . The link 

leading to the maximum number of frontier nodes 

is added (and removed from       ). This process 

continues until no more links can be added. 

In sum, IDSG add links in an order which take 

syntactic structure into consideration, and the link 
with the least violation of the syntactic structure is 

added first. 

For the example in Figure 1(a), IDSG succeeds 
in discarding the two incorrect links, and produces 

the final alignment and frontier set as shown in 

Figure 4. Note that IDSG still fails to produce the 

correct link (the3, 牧民 4), since this link does not 

appear in        at all. 

3.2 Combining TST-FS/FA-PR and IDSG 

Parser re-training aims to improve a parser with 
alignment matrix while IDSG aims to improve 

alignment matrix with parse tree. It is reasonable to 

combine them, and there are two alternatives of the 
combination, depending on the order of application. 

That is, we could either improve alignment matrix 

by IDSG and then re-train parser with the better 
alignment, or re-train parser and then improve 

alignment matrix with better syntactic information. 

Either alternative can be arranged into an iterative 

training routine, but empirically it is found that 
only one round of parser re-training before or after 

only one round of IDSG is already enough. 
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Figure 4, the alignment generated by IDSG for the 

example in Figure 1(a) 
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4 Experiment 

In this section, we conduct experiments on Chinese 

to English translation task to test our proposed 
methods of parser re-training and word alignment 

symmetrization.  The evaluation method is the case 

insensitive IBM BLEU-4 (Papineni et al., 2002). 
Significant testing is carried out using bootstrap re-

sampling method proposed by Koehn (2004) with 

a 95% confidence level. 

4.1 Parser and SMT Decoder 

The syntactic parser we used in this paper is 

Berkley parser, with the grammar trained on WSJ 

corpus, and the training method follows Petrov and 
Klein (2007). Our SMT decoder is an in-house 

implementation of string-to-tree decoder. The 

features we used are standard used features, such 

as translation probabilities, lexical weights, 
language model probabilities and distortion 

probability. The feature weights are tuned using 

the minimum error rate training (MERT) (Och, 
2003). 

4.2 Experiment Data Setting and Baselines 

We test our method with two data settings: one is 

IWSLT data set, the other is NIST data set. 

 dev8+dialog dev9 

Baseline 50.58 49.85 

Table 1. Baselines for IWSLT data set 

 NIST'03 NIST'05 NIST'08 

Baseline 37.57 36.44 24.87 

Table 2. Baselines for NIST data set 

Our IWSLT data is the IWSLT 2009 dialog task 
data set. The training data include the BTEC and 

SLDB training data. The training data contains 81k 

sentence pairs, 655k Chinese words and 806k 

English words. The language model is 5-gram 
language model trained with the English sentences 

in the training data. We use the combination of 

dev8 and dialog as development set, and dev9 as 
test set. The TL sentences of the training data with 

the selected/generated trees are used as the training 

data to re-train the parser. To get the baseline of 

this setting, we run IDG to combine the bi-
direction alignment generated by Giza++ (Och 

Ney, 2003), and run Berkeley parser (Petrov and 

Klein, 2007) to parse the target sentences. With the 

baseline alignments and syntactic trees, we extract 
rules and calculate features. The baseline results 

are shown in Table 1. 

For the NIST data set, the bilingual training data 

we used is NIST 2008 training set excluding the 
Hong Kong Law and Hong Kong Hansard. The 

training data contains 354k sentence pairs, 8M 

Chinese words and 10M English words, and is also 
the training data for our parser re-training. The 

language model is 5-gram language model trained 

with the Giga-Word corpus plus the English 
sentences in the training data. The development 

data to tune the feature weights of our decoder is 

NIST 2003 evaluation set, and test sets are NIST 

2005 and 2008 evaluation sets. The baseline for 
NIST data is got in a similar way with for IWSLT, 

which are shown in Table 2 . 

4.3 Results of TST-FS/ FA-PR 

The parser re-training strategies TST-FS and FA-
PR are tested with two baselines, one is the default 

parser without any re-training and another is 

standard self-training (SST). All three re-training 
approaches are based on the same bilingual 

datasets as used in translation model training. The 

MT performances on IWSLT and NIST by the four 

approaches are shown in Table 3 and 4 
respectively. 

It can be seen that just standard self-training 

does improve translation performance, as re-
training on the TL side of bilingual data is a kind 

of domain adaptation (from WSJ to IWSLT/NIST). 

But targeted self-training achieves more noticeable 
improvement, almost twice as much as standard 

self-training. This confirms the value of word 

alignment information in parser re-training. Finally, 

the even larger improvement of FA-PR than TST-
FS shows that merely increasing the number of 

frontier nodes is not enough.  Some frontier nodes 

are of poor quality, and the frontier nodes found in 
forced alignment are more suitable.  

It can also be seen that the improvement in 

IWSLT is larger than that in NIST. The first reason 
is that both WSJ and NIST are of the news domain 

and of formal writing style, whereas IWSLT is of 

the tourist domain and of colloquial style. 

Therefore any improvement from the default parser, 
which is trained on WSJ, is expected to be smaller 

in the NIST case. Another reason is that, since the 
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IWSLT dataset is much smaller, the impact of 

more and better rules is more obvious.  
Note that the figures in Table 3 and 4 are about 

parser re-training for only one iteration. It is found 

that, more iteration do not lead to further 

significant improvement. The forced alignment of 
bilingual training data does not obtain a full 

decoding path for every bilingual sentence. It is 

because, although all translation rules are kept, 
there is still pruning during decoding. Only 64% of 

the IWSLT dataset and 53% of the NIST dataset 

can be successfully forced-aligned. In general, the 
longer the bilingual sentence, the less likely forced 

alignment is successful, and that is why a lower 

proportion of NIST can be forced-aligned. 

4.4  Symmetrization 

The new symmetrization method IDSG is 

compared with the baseline method IDG. 

 dev8+dialog dev9 # Rules 

IDG 50.58 49.85 515K 

IDSG 
52.71 

(+2.31) 
51.80 

(+2.05) 
626K 

Table 5. MT performance of symmetrization 

methods on IWSLT data set. The results in bold 

type are significantly better than the performance 

of IDG. 

 NIST'03 NIST'05 NIST'08 #Rules 

IDG 37.57 36.44 24.87 3,376K 

IDSG 
38.15 

(+0.58) 
37.07 

(+0.63) 
25.67 

(+0.80) 
4,109K 

Table 6. MT performance of symmetrization 

methods on NIST data. The results in bold type are 

significantly better than the performance of IDG. 

As shown by the results in Table 5 and 6, IDSG 
enlarges the set of translation rules by more than 

20%, thereby improving translation performance 

significantly. As in parser re-training, the 

improvement in the IWSLT task is larger than that 
in the NIST task. Again, it is because the IWSLT 

dataset is very small and so the effect of rule table 

size is more obvious. 

4.5 Methods combined 

As mentioned in section 3.2, parser re-training and 
the new symmetrization method can be combined 

in two different ways, depending on the order of 

application. Table 7 and 8 show the experiment 
results of combining FA-PR with IDSG. 

It can be seen that either way of the combination 

is better than using FA-PR or IDSG alone. Yet 

there is no significant difference between the two 
kinds of combination.  

The best result is a gain of more than 3 Bleu 

points on IWSLT and that of more than 1 Bleu 
point on NIST.  

5 Related Works 

There are a lot of attempts in improving word 
alignment with syntactic information (Cherry and 

Lin, 2006; DeNero and Klein, 2007; Hermjackob, 

2009) and in improving parser with alignment 
information (Burkett and Klein, 2008). Yet strictly 

speaking all these attempts aim to improve the 

 dev8+dialog dev9 # Rules 

Baseline 50.58 49.85 515K 

SST 
52.04 

(+1.46) 
51.26 

(+1.41) 
574K 

TST-FS 
52.75 

(+2.17) 
52.51 

(+2.66) 
572K 

FA-PR 
53.31 

(+2.73) 
52.8 

(+2.95) 
591K 

Table 3. MT performance of parser re-training 

strategies on IWSLT data set. The results in 
bold type are significantly better than the 

baseline. 

 NIST'03 NIST'05 NIST'08 #Rules 

Baseline 37.57 36.44 24.87 3,376K 

SST 
37.98 

(+0.41) 

36.79 

(+0.35) 

25.30 

(+0.43) 
3,462K 

TST-FS 
38.42 

(+0.85) 
37.39 

(+0.95) 
25.79 

(+0.92) 
3,642K 

FA-PR 
38.74 

(+1.17) 
37.69 

(+1.25) 
25.89 

(+1.02) 
3,976K 

Table 4. MT performance of parser re-training 

strategies on NIST data set. The results in bold 

type are significantly better than the baseline. 
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 dev8+dialog dev9 
# 

Rules 

Baseline 50.58 49.85 515K 

IDSG 
52.71 

(+2.31) 
51.80 

(+2.05) 
626K 

FA-PR 
53.31 

(+2.73) 
52.8 

(+2.95) 
591K 

IDSG  then 

FA-PR 
53.64 

(3.06) 
53.32 

(+3.47) 
602K 

FA-PR then 

IDSG 
53.81 

(+3.23) 
53.26 

(+3.41) 
597K 

Table 7. MT performance of the new methods 

on IWSLT data set. The results in bold type 

are significantly better than the baseline. 

 NIST'03 NIST'05 NIST'08 #Rules 

Baseline 37.57 36.44 24.87 3,376K 

IDSG 
38.15 

(+0.58) 
37.07 

(+0.63) 
25.67 

(+0.80) 
4,109K 

FA-PR 
38.74 

(+1.17) 
37.69 

(+1.25) 
25.89 

(+1.02) 
3,976K 

IDSG 

then 

FA-PR 

38.97 

(+1.40) 
37.95 

(+1.51) 
26.74 

(+1.87) 
4,557K 

FA-PR 

then 

IDSG 

38.90 
(+1.33) 

37.94 
(+1.50) 

26.52 
(+1.65) 

4,478K 

Table 8. MT performance of the new methods 
on NIST data set. The results in bold type are 

significantly better than the baseline. 

parser/aligner itself rather than the translation 

model.  
To improve the performance of syntactic 

machine translation, Huang and Knight (2006) 

proposed a method incorporating a handful of 

relabeling strategies to modify the syntactic trees 
structures. Ambati and Lavie (2008) restructured 

target parse trees to generate highly isomorphic 

target trees that preserve the syntactic boundaries 
of constituents aligned in the original parse trees. 

Wang et al., (2010) proposed to use re-structuring 

and re-labeling to modify the parser tree. The re-
structuring method uses a binarization method to 

enable the reuse of sub-constituent structures, and 

the linguistic and statistical re-labeling methods to 

handle the coarse nonterminal problem, so as to 
enhance generalization ability. Different from the 

previous work of modifying tree structures with 

post-processing methods, our methods try to learn 
a suitable grammar for string-to-tree SMT models, 

and directly produce trees which are consistent 

with word alignment matrices.  
Instead of modifying the parse tree to improve 

machine translation performance, many methods 

were proposed to modify word alignment by taking 

syntactic tree into consideration, including deleting 
incorrect word alignment links by a discriminative 

model (Fossum et al., 2008), re-aligning sentence 

pairs using EM method with the rules extracted 
with initial alignment (Wang et al., 2010), and 

removing ambiguous alignment of functional 

words with constraint from chunk-level 

information during rule extraction (Wu et al., 
2011). Unlike all these pursuits, to generate a 

consistent word alignment, our method modifies 

the popularly used IDG symmetrization method to 
make it suitable for string-to-tree rule extraction, 

and our method is much simpler and faster than the 

previous works.  

6 Conclusion  

In this paper we have attempted to improve SSMT 

by reducing the errors introduced by the mutual 
independence between monolingual parser and 

word aligner. Our major contribution is the 

strategies of re-training parser with the bilingual 
information in alignment matrices. Either of our 

proposals of targeted self-training with frontier set 

size as evaluation function and forced alignment 

based re-training is more effective than baseline 

parser or standard self-training of parser. As an 

auxiliary method, we also attempted to improve 
alignment matrices by a new symmetrization 

method.  

In future, we will explore more alternatives in 
integrating parsing information and alignment 

information, such as discriminative word 

alignment using a lot of features from parser. 
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Abstract

We describe a transformation-based learning
method for learning a sequence of mono-
lingual tree transformations that improve the
agreement between constituent trees and word
alignments in bilingual corpora. Using the
manually annotated English Chinese Transla-
tion Treebank, we show how our method au-
tomatically discovers transformations that ac-
commodate differences in English and Chi-
nese syntax. Furthermore, when transforma-
tions are learned on automatically generated
trees and alignments from the same domain as
the training data for a syntactic MT system,
the transformed trees achieve a 0.9 BLEU im-
provement over baseline trees.

1 Introduction

Monolingually, many Treebank conventions are
more or less equally good. For example, the En-
glish WSJ treebank (Marcus et al., 1993) attaches
verbs to objects rather than to subjects, and it at-
taches prepositional modifiers outside of all quan-
tifiers and determiners. The former matches most
linguistic theories while the latter does not, but to
a monolingual parser, these conventions are equally
learnable. However, once bilingual data is involved,
such treebank conventions entail constraints on rule
extraction that may not be borne out by semantic
alignments. To the extent that there are simply di-
vergences in the syntactic structure of the two lan-
guages, it will often be impossible to construct syn-
tax trees that are simultaneously in full agreement
with monolingual linguistic theories and with the
alignments between sentences in both languages.

To see this, consider the English tree in Figure 1a,
taken from the English side of the English Chi-
nese Translation Treebank (Bies et al., 2007). The

lowest VP in this tree is headed by ‘select,’ which
aligns to the Chinese verb ‘挑选.’ However, ‘挑
选’ also aligns to the other half of the English in-
finitive, ‘to,’ which, following common English lin-
guistic theory, is outside the VP. Because of this
violating alignment, many syntactic machine trans-
lation systems (Galley et al., 2004; Huang et al.,
2006) won’t extract any translation rules for this
constituent. However, by applying a simple trans-
formation to the English tree to set up the infinitive
as its own constituent, we get the tree in Figure 1b,
which may be less well-motivated linguistically, but
which corresponds better to the Chinese-mediated
semantics and permits the extraction of many more
syntactic MT rules.

In this work, we develop a method based on
transformation-based learning (Brill, 1995) for au-
tomatically acquiring a sequence of tree transforma-
tions of the sort in Figure 1. Once the transformation
sequence has been learned, it can be deterministi-
cally applied to any parsed sentences, yielding new
parse trees with constituency structures that agree
better with the bilingual alignments yet remain con-
sistent across the corpus. In particular, we use this
method to learn a transformation sequence for the
English trees in a set of English to Chinese MT train-
ing data. In experiments with a string-to-tree trans-
lation system, we show resulting improvements of
up to 0.9 BLEU.

A great deal of research in syntactic machine
translation has been devoted to handling the inher-
ent syntactic divergence between source and target
languages. Some systems attempt to model the dif-
ferences directly (Yamada and Knight, 2001; Eis-
ner, 2003), but most recent work focuses on reduc-
ing the sensitivity of the rule-extraction procedure
to the constituency decisions made by 1-best syn-
tactic parsers, either by using forest-based methods
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The first step is to select team members

S
NP

S
VP

VP
VPTO

VBZ

ADVPVB

��第一 步 是 挑�

(a) Before

The first step is to select team members

S
NP

S
VP

VP
VP

VBZ

��第一 步 是 挑�

TO+VB

VBTO ADVP

(b) After

Figure 1: An example tree transformation merging a VB node with the TO sibling of its parent VP. Before the trans-
formation (a), the bolded VP cannot be extracted as a translation rule, but afterwards (b), both this VP and the newly
created TO+VB node are extractable.

for learning translation rules (Mi and Huang, 2008;
Zhang et al., 2009), or by learning rules that en-
code syntactic information but do not strictly ad-
here to constituency boundaries (Zollmann et al.,
2006; Marton and Resnik, 2008; Chiang, 2010). The
most closely related MT system is that of Zhao et al.
(2011), who train a rule extraction system to trans-
form the subtrees that make up individual translation
rules using a manually constructed set of transfor-
mations similar to those learned by our system.

Instead of modifying the MT system to work
around the input annotations, our system modifies
the input itself in order to improve downstream
translation. Most systems of this sort learn how to
modify word alignments to agree better with the syn-
tactic parse trees (DeNero and Klein, 2007; Fossum
et al., 2008), but there has also been other work di-
rectly related to improving agreement by modifying
the trees. Burkett et al. (2010) train a bilingual pars-
ing model that uses bilingual agreement features to
improve parsing accuracy. More closely related to
the present work, Katz-Brown et al. (2011) retrain a
parser to directly optimize a word reordering metric
in order to improve a downstream machine transla-
tion system that uses dependency parses in a prepro-
cessing reordering step. Our system is in the same
basic spirit, using a proxy evaluation metric (agree-
ment with alignments; see Section 2 for details) to
improve performance on a downstream translation

task. However, we are concerned more generally
with the goal of creating trees that are more com-
patible with a wide range of syntactically-informed
translation systems, particularly those that extract
translation rules based on syntactic constituents.

2 Agreement

Our primary goal in adapting parse trees is to im-
prove their agreement with a set of external word
alignments. Thus, our first step is to define an agree-
ment score metric to operationalize this concept.

Central to the definition of our agreement score
is the notion of an extractable node. Intuitively, an
extractable English1 tree node (also often called a
“frontier node” in the literature), is one whose span
aligns to a contiguous span in the foreign sentence.

Formally, we assume a fixed word alignment a =
{(i, j)}, where (i, j) ∈ a means that English word
i is aligned to foreign word j. For an English span
[k, `] (inclusive), the set of aligned foreign words is:

fset([k, `]) = {j | ∃ i : k ≤ i ≤ `; (i, j) ∈ a}

We then define the aligned foreign span as:

fspan([k, `]) = [min(fset([k, `])), max(fset([k, `]))]

1For expositional clarity, we will refer to “English” and “for-
eign” sentences/trees, but our definitions are in no way language
dependent and apply equally well to any language pair.
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The aligned English span for a given foreign span
[s, t] is defined analogously:

eset([s, t]) = {i | ∃ j : s ≤ j ≤ t; (i, j) ∈ a}
espan([s, t]) = [min(eset([s, t])), max(eset([s, t]))]

Finally, we define [k, `] to be extractable if and
only if it has at least one word alignment and its
aligned foreign span aligns back to a subspan of
[k, `]:

fset([k, `]) 6= ∅ ∧ espan(fspan([k, `])) ⊆ [k, `]

With this definition of an extractable span, we can
now define the agreement score ga(t) for an English
tree t, conditioned on an alignment a:2

ga(t) =
∑

[k,`]∈t:
|[k,`]|>1

sign([k, `]) (1)

Where

sign([k, `]) =

{
1 [k, `] is extractable
−1 otherwise

Importantly, the sum in Equation 1 ranges over all
unique spans in t. This is simply to make the met-
ric less gameable, preventing degenerate solutions
such as an arbitrarily long chain of unary produc-
tions over an extractable span. Also, since all indi-
vidual words are generated by preterminal part-of-
speech nodes, the sum skips over all length 1 spans.

As a concrete example of agreement score, we can
return to Figure 1. The tree in Figure 1a has 6 unique
spans, but only 5 are extractable, so the total agree-
ment score is 5 - 1 = 4. After the transformation,
though, the tree in Figure 1b has 6 extractable spans,
so the agreement score is 6.

3 Transformation-Based Learning

Transformation-based learning (TBL) was origi-
nally introduced via the Brill part-of-speech tag-
ger (Brill, 1992) and has since been applied to a wide
variety of NLP tasks, including binary phrase struc-
ture bracketing (Brill, 1993), PP-attachment disam-
biguation (Brill and Resnik, 1994), base NP chunk-
ing (Ramshaw and Marcus, 1995), dialogue act tag-
ging (Samuel et al., 1998), and named entity recog-
nition (Black and Vasilakopoulos, 2002).

2Unextractable spans are penalized in order to ensure that
space is saved for the formation of extractable ones.

The generic procedure is simple, and requires
only four basic inputs: a set of training sentences, an
initial state annotator, an inventory of atomic trans-
formations, and an evaluation metric. First, you ap-
ply the initial state annotator (here, the source of
original trees) to your training sentences to ensure
that they all begin with a legal annotation. Then,
you test each transformation in your inventory to see
which one will yield the greatest improvement in the
evaluation metric if applied to the training data. You
greedily apply this transformation to the full training
set and then repeat the procedure, applying transfor-
mations until some stopping criterion is met (usu-
ally either a maximum number of transformations,
or a threshold on the marginal improvement in the
evaluation metric).

The output of the training procedure is an ordered
set of transformations. To annotate new data, you
simply label it with the same initial state annotator
and then apply each of the learned transformations
in order. This process has the advantage of being
quite fast (usually linear in the number of transfor-
mations and the length of the sentence; for parsing,
the cost will typically be dominated by the cost of
the initial state annotator), and, unlike the learned
parameters of a statistical model, the set of learned
transformations itself can often be of intrinsic lin-
guistic interest.

For our task, we have already defined the evalua-
tion metric (Section 2) and the initial state annotator
will either be the gold Treebank trees or a Treebank-
trained PCFG parser. Thus, to fully describe our sys-
tem, it only remains to define the set of possible tree
transformations.

4 Tree Transformations

The definition of an atomic transformation consists
of two parts: a rewrite rule and the triggering envi-
ronment (Brill, 1995). Tree transformations are best
illustrated visually, and so for each of our transfor-
mation types, both parts of the definition are repre-
sented schematically in Figures 2-7. We have also
included a real-world example of each type of trans-
formation, taken from the English Chinese Transla-
tion Treebank.

Altogether, we define six types of tree transfor-
mations. Each class of transformation takes be-
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A

... ...B C

A

... ...

B C

B+C

Type: ARTICULATE

Args: A: PARENT, B: LEFT, C: RIGHT

(a) Schematic

其他 �手

S

Other members will arrive in two groups .

将 分 两 批 到� 。

VPNP .

其他 �手

S

Other members will arrive in two groups .

将 分 两 批 到� 。

VPNP

.NP+VP

(b) Example: ARTICULATE〈S, NP, VP〉

Figure 2: ARTICULATE transformations.

A

... B ...

C D

A

... ...C D

Type: FLATTEN

Args: A: PARENT, B: TARGET

A

... B ...

D E

A

... ...E C

Type: FLATTENINCONTEXT

Args: A: PARENT, B: TARGET,
C: SIBLING, left: DIRECTION

C D

(a) Schematic

中国 �促会

NP

the China Trade Promotion Council

NML NNP
NNPNNP

NNPDT

中国 �促会

NP

the China Trade Promotion Council
NNPNNPNNPNNPDT

(b) Example: FLATTENINCONTEXT〈NP, NML, NNP, left〉

Figure 3: FLATTEN transformations.

A
... B

C ...

A
... B

...
C

Type: PROMOTE

Args: A: GRANDPARENT, B: PARENT,
C: CHILD, left: DIRECTION

(a) Schematic

NP

法国 �手 �・淘吉�

IN

by the French player N. Taugia

NP NP

PP

NP

法国 �手 �・淘吉�

IN

by the French player N. Taugia

NP

NP

PP

(b) Example: PROMOTE〈PP, NP, NP, left〉

Figure 4: PROMOTE transformations.

A
...B C

...

A
... B

... C
Type: DEMOTE

Args: A: PARENT, B: DEMOTER,
C: DEMOTED, left: DIRECTION

......

(a) Schematic

于 ２日 �赴

fly to Beijing on the 2nd

VP

北京

IN NP NPIN

PPVB PP

于 ２日 �赴

fly to Beijing on the 2nd

VP

北京

IN NP NPINVB

PP PP

(b) Example: DEMOTE〈VP, PP, VB, right〉

Figure 5: DEMOTE transformations.
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A

B C

D ...

A

B C
......

Type: TRANSFER

Args: A: GRANDPARENT, B: AUNT,
C: PARENT, D: TARGET,
left: DIRECTION

... D

(a) Schematic

serious consequences that cause losses

NP

NP SBAR

SWHNP

后果造成 �失 �重

JJ NNS

serious consequences that cause losses

NP

NP SBAR

S

后果造成 �失 �重

WHNPJJ NNS

(b) Example: TRANSFER〈NP, NP, SBAR, WHNP, left〉

Figure 6: TRANSFER transformations.

A

B C

D ...

A

B+D C
...B D

Type: ADOPT

Args: A: GRANDPARENT, B: AUNT,
C: PARENT, D: TARGET,
left: DIRECTION

(a) Schematic

Sabor also tied with Setangon

S

VP

PP

也�波 和 西唐�

RB VBD

NP ADVP

握手言和

VP

Sabor also tied with Setangon

S

PP

也�波 和 西唐�

RB
VBD

NP

握手言和

RB+VP

(b) Example: ADOPT〈S, VP, ADVP, RB, right〉

Figure 7: ADOPT transformations.

tween two and four syntactic category arguments,
and most also take a DIRECTION argument that
can have the value left or right.3 We refer to the
nodes in the schematics whose categories are argu-
ments of the transformation definition as participat-
ing nodes. Basically, a particular transformation is
triggered anywhere in a parse tree where all partici-
pating nodes appear in the configuration shown. The
exact rules for the triggering environment are:

1. Each participating node must appear in the
schematically illustrated relationship to the
others. The non-participating nodes in the
schematic do not have to appear. Similarly, any
number of additional nodes can appear as sib-
lings, parents, or children of the explicitly illus-
trated nodes.

2. Any node that will gain a new child as a re-
sult of the transformation must already have at
least one nonterminal child. We have drawn the
schematics to reflect this, so this condition is

3To save space, the schematic for each of these transforma-
tions is only shown for the left direction, but the right version is
simply the mirror image.

equivalent to saying that any participating node
that is drawn with children must have a phrasal
syntactic category (i.e. it cannot be a POS).

3. Repeated mergings are not allowed. That is, the
newly created nodes that result from an ARTIC-
ULATE or ADOPT transformation cannot then
participate as the LEFT or RIGHT argument of a
subsequent ARTICULATE transformation or as
the AUNT or TARGET argument of a subsequent
ADOPT transformation. This is simply to pre-
vent the unrestrained proliferation of new syn-
tactic categories.

The rewrite rule for a transformation is essentially
captured in the corresponding schematic. Additional
nodes that do not appear in the schematic are gener-
ally handled in the obvious way: unillustrated chil-
dren or parents of illustrated nodes remain in place,
while unillustrated siblings of illustrated nodes are
handled identically to their illustrated siblings. The
only additional part of the rewrite that is not shown
explicitly in the schematics is that if the node in the
PARENT position of a TRANSFER or ADOPT trans-
formation is left childless by the transformation (be-
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cause the TARGET node was its only child), then it is
deleted from the parse tree. In the case of a transfor-
mation whose triggering environment appears multi-
ple times in a single tree, transformations are always
applied leftmost/bottom-up and exhaustively.4

In principle, our transformation inventory consists
of all possible assignments of syntactic categories to
the arguments of each of the transformation types
(subject to the triggering environment constraints).
In practice, though, we only ever consider trans-
formations whose triggering environments appear in
the training corpus (including new triggering envi-
ronments that appear as the result of earlier trans-
formations). While the theoretical space of possi-
ble transformations is exponentially large, the set
of transformations we actually have to consider is
quite manageable, and empirically grows substan-
tially sublinearly in the size of the training set.

5 Results and Analysis

There are two ways to use this procedure. One is to
apply it to the entire data set, with no separate train-
ing phase. Given that the optimization has no notion
of gold transformations, this procedure is roughly
like an unsupervised learner that clusters its entire
data. Another way is to learn annotations on a sub-
set of data and apply it to new data. We choose the
latter primarily for reasons of efficiency and simplic-
ity: many common use cases are easiest to manage
when annotation systems can be trained once offline
and then applied to new data as it comes in.

Since we intend for our system to be used as
a pre-trained annotator, it is important to ensure
that the learned transformation sequence achieves
agreement score gains that generalize well to un-
seen data. To minimize errors that might be intro-
duced by the noise in automatically generated parses
and word alignments, and to maximize reproducibil-
ity, we conducted our initial experiments on the En-
glish Chinese Translation Treebank. For this dataset,
the initial state annotations (parse trees) were man-
ually created by trained human annotators, as were
the word alignments used to compute the agreement

4The transformation is repeatedly applied at the lowest, left-
most location of the parse tree where the triggering environment
appears, until the triggering environment no longer appears any-
where in the tree.
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Figure 8: Transformation results on the English Chinese
Translation Treebank. The value plotted is the average
(per-sentence) improvement in agreement score over the
baseline trees.

Transfor- Total Extractable Agreement
mations Spans Spans Score

0 13.15 9.78 6.40
10 12.57 10.36 8.15
50 13.41 11.38 9.35

200 14.03 11.96 9.89
1584 14.58 12.36 10.15
2471 14.65 12.35 10.06

Table 1: Average span counts and agreement scores on
the English Chinese Translation Treebank development
set. The highest agreement score was attained at 1584
transformations, but most of the improvement happened
much earlier.

score.5 The data was divided into training/dev/test
using the standard Chinese parsing split; we trained
the system on the training set (2261 sentences af-
ter filtering out sentences with missing annotations),
and evaluated on the development set (223 sentences
after filtering).

The improvements in agreement score are shown
in Figure 8, with a slightly more detailed breakdown
at a few fixed points in Table 1. While the system
was able to find up to 2471 transformations that im-
proved the training set agreement score, the major-
ity of the improvement, and especially the majority
of the improvement that generalized to the test set,

5The annotation guidelines for the English side of this Tree-
bank are similar, though not identical, to those for the WSJ
Treebank.

868



1 ARTICULATE〈S,NP,VP〉
2 FLATTENINCONTEXT〈PP,NP,IN,right〉
3 PROMOTE〈VP,VP,VBN,left〉
4 ADOPT〈VP,TO,VP,VB,left〉
5 ADOPT〈PP,VBG,PP,IN,left〉
6 FLATTEN〈VP,VP〉
7 ARTICULATE〈VP,VBD,NP〉
8 FLATTENINCONTEXT〈PP,NML,NNP,left〉
9 ARTICULATE〈NP,NNP,NNS〉

10 ARTICULATE〈S,NP,ADVP〉
11 TRANSFER〈NP,NP,SBAR,WHNP,left〉
12 FLATTENINCONTEXT〈NP,NML,NNP,left〉
13 ARTICULATE〈NP,NN,NNS〉
14 TRANSFER〈NP,NP+,,SBAR,WHNP,left〉
15 ADOPT〈PP,IN,PP,IN,left〉
16 PROMOTE〈S,VP,CC+VP,right〉
17 ARTICULATE〈VP,VBZ,VBN〉
18 ARTICULATE〈VP,VBD,PP〉
19 ARTICULATE〈VP,MD,ADVP〉
20 ADOPT〈PP,SYM,QP,CD,right〉

Table 2: The first 20 learned transformations, excluding
those that only merged punctuation or conjunctions with
adjacent phrases. The first 5 are illustrated in Figure 9.

was achieved within the first 200 or so transforma-
tions. We also see from Table 1 that, though the first
few transformations deleted many non-extractable
spans, the overall trend was to produce more finely
articulated trees, with the full transformation se-
quence increasing the number of spans by more than
10%.

As discussed in Section 3, one advantage of TBL
is that the learned transformations can themselves
often be interesting. For this task, some of the high-
est scoring transformations did uninteresting things
like conjoining conjunctions or punctuation, which
are often either unaligned or aligned monotonically
with adjacent phrases. However, by filtering out
all ARTICULATE transformations where either the
LEFT or RIGHT argument is “CC”, “-RRB-”, “,”, or
“.” and taking the top 20 remaining transformations,
we get the list in Table 2, the first 5 of which are
also illustrated in Figure 9. Some of these (e.g. #1,
#7, #10) are additional ways of creating new spans
when English and Chinese phrase structures roughly
agree, but many others do recover known differences

in English and Chinese syntax. For example, many
of these transformations directly address compound
verb forms in English, which tend to align to single
words in Chinese: #3 (past participle constructions),
#4 (infinitive), #6 (all), and #17 (present perfect).
We also see differences between English and Chi-
nese internal NP structure (e.g. #9, #12, #13).

6 Machine Translation

The ultimate goal of our system is to improve
the agreement between the automatically generated
parse trees and word alignments that are used as
training data for syntactic machine translation sys-
tems. Given the amount of variability between the
outputs of different parsers and word aligners (or
even the same systems with different settings), the
best way to improve agreement is to learn a trans-
formation sequence that is specifically tuned for the
same annotators (parsers and word aligners) we are
evaluating with. In particular, we found that though
training on the English Chinese Translation Tree-
bank produces clean, interpretable rules, prelimi-
nary experiments showed little to no improvement
from using these rules for MT, primarily because
actual alignments are not only noisier but also sys-
tematically different from gold ones. Thus, all rules
used for MT experiments were learned from auto-
matically annotated text.

For our Chinese to English translation experi-
ments, we generated word alignments using the
Berkeley Aligner (Liang et al., 2006) with default
settings. We used an MT pipeline that conditions
on target-side syntax, so our initial state annotator
was the Berkeley Parser (Petrov and Klein, 2007),
trained on a modified English treebank that has been
adapted to match standard MT tokenization and cap-
italization schemes.

As mentioned in Section 5, we could, in principle
train on all 500k sentences of our MT training data.
However, this would be quite slow: each iteration of
the training procedure requires iterating through all
n training sentences6 once for each of the m can-
didate transformations, for a total cost of O(nm)
where m grows (albeit sublinearly) with n. Since the

6By using a simple hashing scheme to keep track of trigger-
ing environments, this cost can be reduced greatly but is still
linear in the number of training sentences.
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Figure 9: Illustrations of the top 5 transformations from
Table 2.

most useful transformations almost by definition are
ones that are triggered the most frequently, any rea-
sonably sized training set is likely to contain them,
and so it is not actually likely that dramatically in-
creasing the size of the training set will yield partic-
ularly large gains.

Thus, to train our TBL system, we extracted a ran-
dom subset of 3000 sentences to serve as a train-
ing set.7 We also extracted an additional 1000 sen-
tence test set to use for rapidly evaluating agreement
score generalization. Figure 10 illustrates the im-
provements in agreement score for the automatically
annotated data, analogous to Figure 8. The same
general patterns hold, although we do see that the
automatically annotated data is more idiosyncratic
and so more than twice as many transformations are
learned before training set agreement stops improv-
ing, even though the training set sizes are roughly
the same.8 Furthermore, test set generalization in
the automatic annotation setting is a little bit worse,
with later transformations tending to actually hurt
test set agreement.

For our machine translation experiments, we used
the string-to-tree syntactic pipeline included in the
current version of Moses (Koehn et al., 2007).
Our training bitext was approximately 21.8 mil-
lion words, and the sentences and word alignments
were the same for all experiments; the only differ-
ence between each experiment was the English trees,
for which we tested a range of transformation se-
quence prefixes (including a 0-length prefix, which
just yields the original trees, as a baseline). Since
the transformed trees tended to be more finely artic-
ulated, and increasing the number of unique spans
often helps with rule extraction (Wang et al., 2007),
we equalized the span count by also testing bina-
rized versions of each set of trees, using the left-
branching and right-branching binarization scripts
included with Moses.9

We tuned on 1000 sentence pairs and tested on
7The sentences were shorter on average than those in the En-

glish Chinese Translation Treebank, so this training set contains
roughly the same number of words as that used in the experi-
ments from Section 5.

8Note that the training set improvement curves don’t actu-
ally flatten out because training halts once no improving trans-
formation exists.

9Binarized trees are guaranteed to have k − 1 unique spans
for sentences of length k.
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Figure 10: Transformation results on a subset of the MT
training data. The training and test sets are disjoint in
order to measure how well the learned transformation se-
quence generalizes. Once again, we plot the average im-
provement over the baseline trees. Though 5151 transfor-
mations were learned from the training set, the maximum
test set agreement was achieved at 630 transformations,
with an average improvement of 2.60.

642 sentence pairs from the NIST MT04 and MT05
data sets, using the BLEU metric (Papineni et al.,
2001). As discussed by Clark et al. (2011), the op-
timizer included with Moses (MERT, Och, 2003) is
not always particularly stable, and results (even on
the tuning set) can vary dramatically across tuning
runs. To mitigate this effect, we first used the Moses
training scripts to extract a table of translation rules
for each set of English trees. Then, for each rule
table, we ran MERT 11 times and selected the pa-
rameters that achieved the maximum tuning BLEU
to use for decoding the test set.

Table 3 shows the results of our translation exper-
iments. The best translation results are achieved by
using the first 139 transformations, giving a BLEU
improvement of more than 0.9 over the strongest
baseline.

7 Conclusion

We have demonstrated a simple but effective pro-
cedure for learning a tree transformation sequence
that improves agreement between parse trees and
word alignments. This method yields clear improve-
ments in the quality of Chinese to English trans-
lation, showing that by manipulating English syn-
tax to converge with Chinese phrasal structure, we
improve our ability to explicitly model the types of

Transfor- Agrmnt BLEU
mations Score None Left Right

0 5.36 31.66 31.81 31.84
32 7.17 32.41 32.17 32.06
58 7.42 32.18 32.68* 32.37

139 7.81 32.20 32.60* 32.77*
630 7.96 32.48 32.06 32.22

5151 7.89 32.13 31.84 32.12

Table 3: Machine translation results. Agreement scores
are taken from the test data used to generate Figure 10.
Note that using 0 transformations just yields the original
baseline trees. The transformation sequence cutoffs at 32,
58, and 139 were chosen to correspond to marginal train-
ing (total) agreement gain thresholds of 50, 25, and 10,
respectively. The cutoff at 630 was chosen to maximize
test agreement score and the cutoff at 5151 maximized
training agreement score. Column headings for BLEU
scores (“None,” “Left,” “Right”) refer to the type of bina-
rization used after transformations. Entries marked with
a ‘*’ show a statistically significant difference (p < 0.05)
from the strongest (right-binarized) baseline, according
to the paired bootstrap (Efron and Tibshirani, 1994).

structural relationships between languages that syn-
tactic MT systems are designed to exploit, even if we
lose some fidelity to the original monolingual anno-
tation standards in the process.
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Abstract

We present a distantly supervised system for
extracting the temporal bounds offluents(re-
lations which only hold during certain times,
such asattends school). Unlike previous
pipelined approaches, our model does not as-
sume independence between each fluent or
even between named entities with known con-
nections (parent, spouse, employer, etc.). In-
stead, we model what makes timelines of flu-
ents consistent by learning cross-fluent con-
straints, potentially spanning entities as well.
For example, our model learns that someone
is unlikely to start a job at age two or to marry
someone who hasn’t been born yet. Our sys-
tem achieves a 36% error reduction over a
pipelined baseline.

1 Introduction

Many information extraction (IE) systems tradition-
ally extracted just relations, but a great many real
world relations such asattends schoolor has spouse
vary over time. To capture this, some recent IE
systems have extended their focus from relations to
fluents(relations combined with temporal bounds).
This can be seen in the temporal slot filling track in
the TAC-KBP 2011 shared task (Ji et al., 2011). A
direct application of this work is the automatic im-
provement of online resources such as Freebase and
Wikipedia infoboxes. Indirect applications include
question answering systems.

Fluents can be grouped together to form time-
lines (see Figure 1 for an example) and provide eas-
ily capturable consistency constraints. Our goal is

Figure 1: A timeline of two named entities. Each time
span represents afluent(a relation with temporal bounds).
Temporal bounds are denoted by spans on the timeline.
Fluents can create links between entities (e.g., marriage).

to learn these constraints and use them to produce
more accurate timelines of significant events for
people and organizations. For example, it is com-
mon knowledge that someone cannot attend a school
if they haven’t been born yet. Constraints on con-
sistent timelines do not need to be hard constraints,
though: it is rare, although possible, to become the
CEO of a company at the age of 21.

Despite the rich constraints on valid timelines,
there is relatively little work on exploiting these con-
straints for mutual disambiguation. Many existing
systems extract different parts of a timeline sepa-
rately and use heuristics to combine them. These
heuristics tend to optimize only local consistency
(within a single fluent) but ignore more global con-
straints across fluents (e.g., attending a school be-
fore being born) or across fluents of two linked
entities (e.g., attending a school before the school
was founded). In this work, we explore using joint
inference to enforce these constraints. We show
that these techniques can yield substantial improve-
ments. Additionally, our general approach is not
specific to extracting temporal boundaries of fluents.
It could easily be applied to other IE systems which
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employ independent extractions followed by heuris-
tics to improve consistency.

2 The timelining task

As a basis for our task, we first describe the Tempo-
ral KBP task (Ji et al., 2011). As input, one is given
a list of queries, a database of example fluents, and
source documents. Queries are named entities (peo-
ple or organizations) with their gold relations but no
temporal bounds. The database consists of training
entities with their fluents, including known tempo-
ral bounds for each fluent. Example fluents can be
seen in Table 1. Note that the database may be in-
complete. In addition to missing fluents for an en-
tity, some temporal bounds may be missing from
the database; missing bounds are unfortunately in-
distinguishable from unbounded ranges. As a result,
we can only trust concrete temporal boundaries in
the database. Source documents consist of raw text
from news, blogs, and Wikipedia articles. For each
fluent, systems must output their predicted temporal
bounds, along with references to source documents
to provide provenance.

Our task is a variation of the Temporal KBP task.
In our case, the database is a collection of Freebase1

entities and their fluents, merged with Wikipedia in-
foboxes. Each entity has a unique ID, allowing us
to avoid some coreference issues (though there can
still be issues in document retrieval). In Temporal
KBP, the temporal representation allows for upper
and lower bounds on both the event start and end:
〈sl, su, el, eu〉 wheresl ≤ start ≤ su, el ≤ end ≤
eu. However, it is difficult to obtain these bounds
without manual annotation. As a result, we opted for
the simpler representation which can be easily found
in databases like Freebase. Our temporal represen-
tation is limited to bounds of the form〈start, end〉
where either can be unbounded or unknown (both
represented as±∞).

Our set of fluents is closely related to those in
the Temporal KBP task. Our goal was to use
as much temporal information as possible, with
the hope of each fluent providing additional poten-
tial constraints. While we omit theresides inand
member of fluents,2 we add several others. For

1http://freebase.org
2This is because these fluents are rarely present in Freebase

people and organizations, we add a special fluent,
lifespan, which doesn’t take a slot value.3 A list of
fluents we use are listed in Table 3.

3 Model

To operate on a set of queries, we first collect can-
didate temporal expression mentions for each fluent
from our source documents. This limits us to us-
ing temporal expression mentions which appear near
fluent mentions in text. It also ensures that we can
provide provenance for each temporal boundary as-
sertion. This process is described in§3.1.

Our model contains two components, both of
which assign probabilities to timelines. Theclas-
sifier componentdetermines how each candidate
temporal expression mention connects to its fluent
(§3.2). For example, the mention may indicate the
START of the fluent, theEND, both itsSTART AND

END (for instantaneous events), or beUNRELATED.
These connections involve relations between tempo-
ral expression mentions and relations and we refer to
them asmetarelations.4 For features, the classifier
uses the surrounding textual and syntactic context of
temporal expression and fluent mentions. Each clas-
sification decision is made independently, allowing
for inconsistency at multiple levels (within a fluent,
across fluents, or across entities). However, using
joint inference, the classifier component can deter-
mine the best overall span for each fluent.

The consistency componentlearns what makes
timelines consistent (§3.3). It is similar in nature to
a language model for timelines instead of sentences.
Given a candidate timeline, the consistency compo-
nent estimates its probability of occurring. This is
done by decomposing timelines into a series ofques-
tions (such as “did the entity go to school before
starting a job?”) and learning the probabilities of
different answers from training data.

Unlike the classifier component, the consistency
component is blind to the underlying text in the
source documents. The two components work to-
gether to find a global timeline that is both based on
textual evidence and coherent across entities using

with temporal bounds.
3Note that this is a relation in the non-temporal KBP task.
4Other metarelations are possible under more complex tem-

poral representations. For example, Artiles et al. (2011) uses
theHOLDS metarelation.
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Entity Relation Slot value Temporal bounds
Jon Stewart

lifespan — [1962-11-28,+∞)
/en/jon stewart
Jon Stewart

has parent
Donald Leibowitz

[1962-11-28,+∞)
/en/jon stewart /en/donald leibowitz
Jon Stewart

attends school
College of William and Mary

(−∞, 1984]
/en/jon stewart /en/college of william and mary
Jon Stewart

has spouse
Tracey McShane

[2000-11,+∞)
/en/jon stewart /en/tracy mcshane

Table 1: Example relations with their temporal bounds. Freebase IDs are shown inmonospace . Note that temporal
bounds differ in their resolution (some are days of the year,others are only years). Some bounds are unknown (e.g.,
the start of theattends schoolfluent) and indistinguishable from unbounded. Thelifespanfluent is a unary relation.

joint inference (note that they are trained indepen-
dently). The inference process is described in§3.4.

3.1 Temporal expression retrieval

Given a fluent, we search for all textual mentions
of the fluent and collect nearby temporal expression
mentions. These temporal expressions are used as
candidate boundaries for the fluent in later steps.
The search process assumes that if a fluent’s entity
and slot value co-occur in a sentence,5 that sentence
is typically a positive example of the fluent.6 This
is sometimes known asdistant supervision(Craven
and Kumlien, 1999; Mintz et al., 2009). We use
the Stanford Core NLP suite (Toutanova et al., 2003;
Finkel et al., 2005; Klein and Manning, 2003; Lee et
al., 2011) to annotate each document with POS and
NER tags, parse trees, and coreference chains. On
top of this, we apply a rule-based temporal expres-
sion extractor (Chang and Manning, 2012). Since
we have coreference links, we also search docu-
ments for anything coreferent with the fluent’s en-
tity.

The temporal expression extractor handles most
standard date and time formats. For each document,
one can provide an optional reference time. For
underspecified dates, the reference time is used to

5While we limit our scope to sentences in this work, it is
trivial to extend this to larger regions such as paragraphs.

6The lifespanfluent requires special handling. Ideally, its
candidates would be provided by a relation extraction mention
detector (e.g., a KBP system). For this work, we use the gold
lifespanbounds as slot values for the purpose of document re-
trieval. While this does heavily bias the system towards using
gold bounds, the system still must predict the correct associa-
tions (START, END, etc.) making thelifespanfluent non-trivial.

resolve these dates to full expressions if possible.
Some of our documents are news articles, where we
use the publication date as the reference time. Other
documents, e.g., Wikipedia articles, are undated and
we typically omit a reference time for these. We ex-
clude dates which are not uniquely resolvable (e.g.,
“September 15th,” when the reference date is un-
known) since our task requires us to output unam-
biguous dates.

We create training datums by computing the
metarelation between each temporal expression and
its gold fluent. For example, for the temporal
expression mention “September 15th, 1981” and
gold lifespan relation that spans[1981-09-15 ,
+∞), we would assign theSTART metarelation. As
a heuristic, we allow for underspecified matches.
Thus, both “1981” and “September 1981” would
have theSTART metarelation but “September 2nd,
1981” would be assignedUNRELATED.

3.2 Classifier component

We use a classifier to determine the nature of the
link between fluents and candidate temporal expres-
sion mentions. Our classifier (a standard multi-
class maximum entropy classifier) learns a function
C : (t, f) → M wheret is a temporal expression
mention,f = 〈entity, relation name, slot value〉 is
a fluent from the database, andM is the set of the
four possible metarelations.

Features for the classifier include many of those
in Artiles et al. (2011). These include standard re-
lation extraction features such as the dependency
paths between the temporal expression and the en-
tity or slot value. We use both the original depen-
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dency paths and their collapsed Stanford Dependen-
cies forms (de Marneffe and Manning, 2008). We
include the lengths of each path and, if the path is
shorter than four edges, the grammatical relations,
words, POS tags, and NER labels along the path.
We extract the same sorts of features from surface
paths (i.e., the words and tags between the entity and
the temporal expression) if the path is five tokens or
shorter. For temporal expressions, we include their
century and decade as features. These features act as
a crude prior over when valid temporal expressions
occur. There are also features for the precision of
the temporal expression (year only, has month, and
has day). Lastly, we include the relation name itself
as a feature.

Previous work (Artiles et al., 2011) heuristically
aggregates the hard decisions from their classifier to
create a locally consistent span. Thebasic aggre-
gation model(described in§4.2) is similar to their
method. In contrast, our method uses the likeli-
hood of complete spans to ensure both boundaries
are consistent with the text.

To calculate the likelihood of a specific temporal
span for a fluentf , we represent the span as a
series of metarelations and take the product of their
probabilities. For example, if the candidate span is
[1981-09-15 , +∞) and we have two temporal
expressions, “September 15th, 1981” and “2012”:

P
(

span(f) = [1981-09-15 , +∞) | f
)

=

P
(

C(“September 15th, 1981”,f) = START
)

×

P
(

C(“2012”, f) = UNRELATED
)

This can easily be extended to calculating the joint
probability of an entire timeline, represented as a list
of 〈fluent , span〉 pairs:

PCC

(

〈f1, s1〉, . . .
)

=
∏

i

P
(

span(fi) = si | fi

)

We refer to this model as the Combined Classifier
(CC) since it uses the probabilities of all timelines
boundaries rather than aggregating hard local deci-
sions.

3.3 Consistency component

While distant supervision can be used to create im-
plicit negative examples for the classifier component

(time expressions marked asUNRELATED), we do
not have an equivalent technique to reliably create
negative examples for the consistency component
(examples of inconsistent timelines). Instead, we
only have positive examples of consistent timelines
from the database. As a result, we must treat predict-
ing consistency as a density estimation rather than a
classification problem.

Our consistency component is designed to be as
general as possible – it does not even include basic
constraints about timelines such as “starts are before
ends.” Instead, we provide several simple templates
for temporal constraints to allow it to learn these ba-
sic tendencies as well as more complex ones. Ex-
amples include whether one typically goes to school
first or starts their first job, how many jobs people
typically have at one time, or if it is possible to marry
someone who hasn’t been born yet.

We achieve this by decomposing timelines
into a series of probabilistic events, orques-
tions. As an example, one question about
the timeline shown in Table 1 is whether Jon
Stewart graduated from the College of William
and Mary BEFORE marrying Tracey McShane,
i.e.,end(attends school) < start(has spouse). In this
case, the answer is “yes.” More generally, we
can apply theBEFORE template to all bound-
aries of all fluents: boundary1(fluent1) <
boundary2(fluent2). We use templates like these
(denoted bySMALL CAPS) to generate all possible
questions to ask about a specific entity.

Other questions can be asked at the fluent level
rather than the boundary level (Allen, 1983). One
set of fluent level questions asks whether two flu-
ents’ spansOVERLAP. For example, in Table 1, Jon
Stewart’slifespan OVERLAPs with the span of his
has spousefluent. Other sets of fluent level ques-
tions ask whether the span of a fluent completely
CONTAINS the span of another one, whether a flu-
ent is COMPLETELY BEFORE another fluent, and
whether two fluentsTOUCH (the start of one fluent
is the same as the end of another).

Since all of these questions involve ordering but
ignore the actual differences in time, we create one
more set of questions asking whether two bound-
aries areWITHIN a certain number of years:

|boundary1(fluent1)− boundary2(fluent2)| ≤ K
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for K ∈ {1, 2, 4, 8, 16}. The aim is to approxi-
mate the typical lengths of a single fluent or amount
of time between boundaries from different fluents.

There is nothing which requires that the flu-
ents in question come from a single entity. Thus,
we can trivially ask questions about two entities
which are linked by a fluent. For example, since
Jon Stewart is linked to Tracey McShane by the
has spousefluent (Table 1), we could ask the ques-
tion of whether Jon Stewart’slifespan OVERLAPS

Tracey McShane’slifespan. We can ask any type
of question about two linked entities and distinguish
the questions by prefixing them with the nature of
the link (has spousein this case).

Note that not all questions can be answered since
they may rely on comparing unknown values. This
is because (for our setup) infinite values are indistin-
guishable from unknown values. For example, the
start of the Jon Stewart’sattends schoolfluent is un-
defined in the database, but clearly not actually−∞.
Thus, we add a third possible answer to each ques-
tion: unknown. The answers to boundary level ques-
tions are defined only if both boundaries are finite.
Fluent level questions have known answers as long
as both fluents have at least one finite value.

To train our model, we gather the answers to ques-
tions over all the fluents from training entities. Each
question forms a multinomial over the three possible
values (yes, no, unknown). To determine the proba-
bility of a complete timeline:

Pconsistency(timeline) =

∏

(q,a)∈Q(timeline)

{

(1− c)Pθ(a | q) q is old

c q is new

where Q(·) generates all possible
〈question, answer〉 pairs which are consistent
with the fluents in the timeline,θ is a vector of the
model parameters, andc is a smoothing parameter
(described below).

To learn the model parameters, we start by us-
ing maximum-likelihood estimation for these multi-
nomials from training entities. However, some
smoothing is required since new entities may con-
tain previously unseen answers to existing ques-
tions. To address this, we apply add-λ smoothing
to each multinomial,Pθ(a | q). Additionally, it is
possible to see entirely new questions when we see

a new combination of fluent types. We reserve an
amount of probability mass for new questions,c. c
andλ are estimated in turn by picking the value that
maximizes the likelihood of the timeline made by
the development entities.

To adjust the weight of the consistency compo-
nent relative to the classifier component, we take
the geometric mean of the likelihood using the to-
tal number of questions,|Q(t)|, as the exponent and
raise the resulting mean to an exponent,β. This is
necessary since the two components essentially op-
erate on different scales. The Joint Classifier with
Consistency (JCC) model calculates the score of a
timeline,t, according to both components:

scoreJCC (t) = PCC (t)

[

Pconsistency(t)
β

|Q(t)|

]

3.4 Inference

Inference for the CC model is relatively simple:
Simply pick the most likely span for each fluent.
Since it assumes all fluents are independent, the
bounds for each fluent can be inferred separately.
To perform inference on a specific fluent, we con-
sider all of its possible temporal spans, limited by
the temporal expression mentions found by the re-
trieval system (§3.1). Each possible span assigns one
of the four metarelations to each candidate temporal
expression for the fluent. For example, if we found
only the temporal expression mention “1981” for a
specific fluent, there are four possible spans:

UNRELATED: (−∞, +∞)
START: [1981-01-01,+∞)
END: (−∞, 1981-12-31]
START AND END: [1981-01-01, 1981-12-31]

Note that when we assign “1981” as a start, we
use the earliest possible time (January 1st) while
when we assign it as an end, we use the latest pos-
sible time (December 31st). Of course, we typi-
cally have multiple candidate temporal expressions
and thus potentially many more than four possible
spans. All temporal expression mentions that re-
solve to the same time are grouped together, since it
wouldn’t make sense to assign “August 28th, 2010”
one metarelation and a different one to “8/28/2010.”

Joint inference for the JCC model is a little more
involved since the consistency model does not as-
sume independence across fluents. Thus, we need
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to apply techniques like Gibbs sampling or random-
restart hillclimbing (RRHC) to determine the opti-
mal temporal spans for each fluent. For our task,
the two methods obtain similar performance while
RRHC requires many fewer iterations so our discus-
sion focuses on the latter. RRHC involves looping
over all fluents in our testing entities, shuffling the
order of the fluents at the beginning of each pass.
We maintain a working timeline,t, with our current
guesses of the spans for each fluent. For each fluent
and span〈f, s〉 ∈ t, we pick the optimal span forf :

s∗ = argmax
s′∈S(f)

scoreJCC (ts′)

where S(f) determines all possible temporal
spans for the fluentf andts′ = (t∪ 〈f, s′〉)− 〈f, s〉
is a copy oft where s′ is the span forf instead
of s. After selectings∗, we add it to our timeline:
tnew = (t ∪ 〈f, s∗〉) − 〈f, s〉. Rather than calculat-
ing the score of the full timeline, we can save time by
using only the relevant fluents ints′ . For example,
if our fluent is thehas spousefluent for Jon Stew-
art, we include all the fluents involving Jon Stewart
and any relevant linked entities. In this case, we also
include all the fluents for Tracey McShane.

Each round of RRHC consists of two passes
through the fluents we are inferring: Anargmax
pass followed by a randomization pass where we
randomly choose spans for a random fraction of the
fluents. When finished, we return the highest scor-
ing timeline seen during either of these passes.

4 Experiments

We evaluate our models (CC and JCC) according to
their ability to predict the temporal bounds of flu-
ents from Freebase. This is similar to the Diagnostic
Track in the Temporal KBP task, where gold rela-
tions are provided as inputs. We provide three base-
lines for comparison, discussed further in§4.2. To
form our database, we scraped a random sample of
people and organization entities from Freebase us-
ing their API. Since our consistency model has lim-
ited effect if entities do not have any links to other
entities, we restrict our attention to entities linked
to at least one other entity – this eliminates a large

portion of possible entities. Our corpus7 consists of
8,450 entities for training, 1,072 for development,
and 1,067 for test. Entities have approximately 2.0
fluents on average.

From experiments on the development set, we set
the relative strength of the consistency component
β = 10. For the JCC model, we perform three runs
for each experiment with different random seeds.
Each experiment performs 10 rounds of RRHC,8 ini-
tializing from an empty timeline.

4.1 Evaluation metric

Our evaluation metric is adapted from the Temporal
KBP metric (Ji et al., 2011) to work with 2-tuples
for temporal representations rather than the 4-tuples
in Temporal KBP. The metric favors tighter bounds
on fluents while giving partial credit. All dates need
to be given at day resolution. Thus, for gold fluents
with only year- or month-level resolution, we treat
them as their earliest (for starts) or latest (for ends)
possible day. To score a boundary, we take the dif-
ference between the predicted and gold values: If
they’re both unbounded (±∞), the boundary’s score
is 1. If only one is unbounded, the score is 0. If
both are finite, the score is1/(1 + |d|) whered is
the difference between the values in years. To score
a fluent, we average the scores of its start and end
boundaries. In rare cases, we have multiple spans
for the same relation (e.g., Elizabeth Taylor married
Richard Burton twice). In these cases, we give sys-
tems the benefit of the doubt and greedily align flu-
ents in such a way as to maximize the metric. The
total metric computes the score of each fluent di-
vided by the number of fluents. The official metric
includes precision and recall components, but since
our setup provides gold relations, our precision and
recall are be equal. This allows us to report a single
number.

4.2 Baselines and oracle

The simplest baseline is thenull baseline, proposed
in Surdeanu et al. (2011). This baseline assumes that
all fluents are unbounded in their spans. The purpose

7http://nlp.stanford.edu/ ˜ mcclosky/data/
freebase-temporal-relations.tar.gz

8There was no significant difference in accuracy between
running 10 and 200 rounds of RRHC.
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Figure 2: Performance of models and baselines on devel-
opment data while varying amount of training data. Not
pictured: Thenull baseline at 58.8%.

of this baseline is primarily to show the approximate
minimal value for the temporal metric.

We provide two other baselines to describe heuris-
tic methods of aggregating the hard decisions from
the classifier functionC learned in§3.2. These are
unlike the CC model which uses the soft decisions
of C. Both of these baselines maintain lists of pos-
sible starts and ends for each fluent. If the classifier
assignsSTART AND END, we add the candidate tem-
poral expression to both. The first baseline,basic
aggregation, is along the same lines as the aggrega-
tion method used in Artiles et al. (2011), a state-of-
the-art system. Our baseline assigns the earliest start
and the latest end as the bounds for each fluent, as-
signing±∞ for empty lists. The second baseline,
basic aggregation (modes), is the same except that it
uses the mode from each list.

To determine the best possible score given our
temporal expression retrieval system, we calculate
the oracle score by assigning each fluent the span
which maximizes the temporal metric. The oracle
score can differ from a perfect score since we can
only use candidate temporal expressions as values
for a fluent if (a) mentions of the fluent are retriev-
able in our source documents, (b) the temporal ex-
pression mention appears nearby, and (c) our tem-
poral expression extractor is able to recognize it cor-
rectly. Nevertheless, it is still a reasonable upper
bound in our setting.

Model Dev Test
Oracle 78.1 75.2
Joint Classifier with Consistency 76.1 72.2
Combined Classifier 75.8 71.5
Basic aggregation (modes) 75.3 71.2
Basic aggregation 74.7 70.5
null baseline 58.8 55.6

Table 2: Performance of systems on development and test
divisions. The Joint classifier with Consistency is the av-
erage of three runs with negligible variance (σ ≈ 0.02).

4.3 Results

We present the performance of our models, base-
lines, and the oracle in Figure 2 while varying the
percentage of training entities. The JCC model
(76.1% on development with 100% training enti-
ties) is consistently the best non-oracle system. Its
gains are larger when the amount of training data is
low. This is presumably because the classifier suf-
fers from insufficient data and the consistency com-
ponent is able to learn consistency rules to recover
from this. Both the CC and JCC models outperform
the basic aggregation models. This shows the value
of incorporating all marginal probabilities. On the
test set (Table 2), the JCC model performs even bet-
ter in comparison to the simple models, despite the
test set being clearly more difficult than the develop-
ment set. In this case, the JCC achieves a 36% error
reduction over the basic aggregation model.9 On the
official KBP entities, the oracle score is 92%. Since
we use a different set of entities, there is a mismatch
between our entities and the source documents re-
sulting in a lower oracle score. Addressing this is
future work.

5 Discussion

Table 3 shows the performance of four systems
and baselines on individual fluent types. The JCC
model derives most of its improvement from the
two lifespanfluents and other high frequency flu-
ents. Thelifespanfluents provide the most room
for improvement since they tend to contain non-null
values a reasonable amount of the time (note how
these relations have a large gap between their ora-

9This counts errors relative to the oracle score since we treat
the retrieval system as fixed in this work.
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Model
Fluent Count null Basic Basic (modes) CC JCC Oracle
organization:lifespan 266 49.2 71.0 70.7 71.1 71.7 73.4
organization:top employees 150 88.0 88.0 88.0 88.0 88.0 88.3
organization:founders 31 0.0 5.4 5.4 10.8 11.1 16.3
organization:acquires company 14 21.4 21.4 21.4 21.4 21.4 38.5
person:lifespan 806 28.6 63.1 64.6 65.6 66.1 69.1
person:has spouse 582 92.2 92.1 92.1 92.2 92.3 93.1
person:attends school 107 97.7 97.7 97.7 97.7 98.1 98.1
person:has job 85 78.8 79.4 79.4 78.8 78.8 80.3
person:holds government position 45 16.7 19.7 19.7 19.7 19.7 25.1
person:romantic partner 5 50.0 52.9 52.9 52.9 52.9 71.2

Table 3: Fluent-level performance of models and baselines on development data. Scores are calculated with the
temporal metric. CC stands for Combined Classifier and JCC for Joint Classifier with Consistency. The JCC model
obtains most of its benefits on the twolifespanrelations. Forattends school, it is the only system able to achieve
oracle-level performance. Thenull baseline is especially strong for several fluents since these tend to be unbounded or
(more likely) missing their values in Freebase. The two basic aggregation models differ primarily on their predictions
for the lifespanfluents.

cle andnull scores). Additionally, thelifespanfluent
is always present for entities while other fluents are
sparser. Forattends school, JCC is the only system
able to achieve oracle-level performance. No system
improves on thenull baseline foracquires company.
This is likely due to its sparsity.

Inspecting the multinomials in the consistency
component, we can see that the model learns reason-
able answers to questions such as whether an entity
“was born before getting married?” (yes: 14.8%,
no: 0.04%),10 “died before their parents were born?”
(yes: 0.3%, no: 53.7%) and “finished a job before
starting a job (not necessarily the same one)?” (yes:
72.5%, no: 20.5%). Despite some unavoidable noise
in the data, it is clear these constraints are useful.

6 Related work

There is a large body of related work that focuses
on ordering events or classifying temporal relations
between them (Ling and Weld, 2010; Yoshikawa et
al., 2009; Chambers and Jurafsky, 2008; Mani et
al., 2006,inter alia). Much of this work uses the
Allen interval relations (Allen, 1983) which richly
describe partial orderings of fluents. We use several
of these as fluent-level question templates.

Joint inference has been applied successfully

10Percentages for “unknown” are omitted here.

to other NLP problems (Roth and Yih, 2004;
Toutanova et al., 2008; Martins et al., 2009; Chang
et al., 2010; Koo et al., 2010; Berant et al.,
2011). Two recent examples in information ex-
traction include using Markov Logic for temporal
ordering (Ling and Weld, 2010) and using dual-
decomposition for event extraction (Riedel and Mc-
Callum, 2011).

Our work is closest to Temporal KBP slot filling
systems. The CUNY and UNED systems (Artiles
et al., 2011; Garrido et al., 2011) for this task used
classifiers to determine the relation between tempo-
ral expressions and fluents. These systems use the
hard decisions from the classifier and combine the
decisions by finding a span that includes all temporal
expressions. In contrast, our system uses the classi-
fier’s marginal probabilities along with the consis-
tency component to incorporate global consistency
constraints. Other participants used rule-based and
pattern matching approaches (Byrne and Dunnion,
2011; Surdeanu et al., 2011; Burman et al., 2011).

Outside of Temporal KBP, there are several works
on the task of extracting fluents from text. Wang
et al. (2011) which uses label propagation, a graph-
based semi-supervised method to extend positive
and negative seed examples over the graph. Taluk-
dar et al. (2012) apply a similar approach by ag-
gregating local classification decisions using tempo-
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ral constraints (e.g., mutual exclusion, containment,
and succession) and joint inference. One key dif-
ference is that their constraints are included as input
rather than learned by the system.

7 Conclusion and future Work

Joint inference can be effectively applied to the task
of inferring timelines about named entities. Rather
than using hard coded heuristics, our model learns
and applies consistency constraints which capture
inter-entity and cross-entity rules. Simple inference
techniques such as random-restart hillclimbing score
well and run efficiently. Both of our models (CC and
JCC) obtain a substantial error reductions over sim-
pler heuristics-based consistency approaches.

The overall framework can easily be applied to
other information extraction tasks. Rather than list-
ing rules for consistency, these can be learned and
enforced via joint inference. While simple joint in-
ference methods such as random-restart hillclimb-
ing and Gibbs sampling worked well in our case,
more complex inference methods may be required
with more elaborate constraints.

A prime direction for future work is combining
our model with a probabilistic relation extraction
system. This could be accomplished by using the
marginal probabilities on the extracted relations and
multiplying them with the probabilities from the
classifier and consistency components. Inference
would require an additional step which could add or
drop candidate fluents. Furthermore, the consistency
component can be extended with new question types
to incorporate non-temporal constraints as well.
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Abstract

Because the real world evolves over time, nu-
merous relations between entities written in
presently available texts are already obsolete
or will potentially evolve in the future. This
study aims at resolving the intricacy in con-
sistently compiling relations extracted from
text, and presents a method for identifying
constancy and uniqueness of the relations in
the context of supervised learning. We ex-
ploit massive time-series web texts to induce
features on the basis of time-series frequency
and linguistic cues. Experimental results con-
firmed that the time-series frequency distribu-
tions contributed much to the recall of con-
stancy identification and the precision of the
uniqueness identification.

1 Introduction

We have witnessed a number of success stories in
acquiring semantic relations between entities from
ever-increasing text on the web (Pantel and Pennac-
chiotti, 2006; Banko et al., 2007; Suchanek et al.,
2007; Wu et al., 2008; Zhu et al., 2009; Mintz et al.,
2009; Wu and Weld, 2010). These studies have suc-
cessfully revealed to us millions of relations between
real-world entities, which have been proven to be
beneficial in solving knowledge-rich problems such
as question answering and textual entailment (Fer-
rucci et al., 2010).

∗This work was conducted while the first author was a grad-
uate student at University of Tokyo.

There exists, however, a great challenge to com-
pile consistently relations extracted from text by
these methods, because they assume a simplifying
assumption that relations are time-invariant. In other
words, they implicitly disregard the fact that state-
ments in texts actually reflect the state of the world
at the time when they were written, which follows
that relations extracted from such texts eventually
become outdated as the real world evolves over time.

Let us consider that relations are extracted from
the following sentences:1

(1) a. 1Q84 is written by Haruki Murakami.

b. Moselle river flows through Germany.

c. U.S.’s president is George Bush.

d. Pentax sells K-5, a digital SLR.

Here, italicized predicates represent the relations,
while underlined entities are their arguments. The
relations in statements 1a and 1b are true across
time, so we can simply accumulate all the relation
instances. The relations in 1c and 1d in contrast
evolve over time. The relation written in 1c be-
comes outdated when the other person takes the
position, so we need to supersede it when a new
relation is extracted from text (e.g., U.S’s president
is Barack Obama). For the relation in 1d, we do not
always need to supersede it with a new relation.

This study is motivated from the above consider-
1Since our task settings are language-independent, we here-

after employ English examples as much as possible to widen
the potential readership of the paper, although we conducted
experiments with relations between entities in Japanese.
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ations and proposes a method for identifying con-
stancy and uniqueness of relations in order to se-
lect an appropriate strategy to maintain relation in-
stances extracted from text. For example, the rela-
tions written in statements 1a and 1b are constant,
while those in 1c and 1d are non-constant; the re-
lation in 1c is unique,2 whereas the relation in 1d
is non-unique. With these properties of relations in
mind, we can accumulate constant relations while
appropriately superseding non-constant, unique re-
lations with newly acquired relations.

We locate each identification task in the context
of supervised classification. The key challenge in
solving these classification tasks is how to induce an
effective feature that identifies unique, non-constant
relations (statement 1c) that seemingly appear as
non-unique relations on text (statement 1b). We ex-
ploit massive time-series web text to observe actual
evolutions of relation instances and induce features
from the relation instances taken from a time sliding
window and linguistic cues modifying the predicate
and arguments of the target relation.

We evaluated our method on 1000 relations ex-
tracted from 6-year’s worth of Japanese blog posts
with 2.3-billion sentences. We have thereby con-
firmed that the features induced from this time-series
text contributed much to improve the classification
accuracy.

The main contributions of this paper are twofold:

• We have introduced a novel task for identify-
ing constancy relations. Since most of the ex-
isting studies assume that relations are time-
invariant as discussed by Weikum et al. (2011),
non-constant relations prevalent in their out-
come incur a serious problem in maintaining
the acquired relations. The notion of constancy
is meant to resolve this stalemate.

• We have for the first time demonstrated the
usefulness of a time-series text in relation ac-
quisition and confirmed its impact in the two
relation classification tasks. The features in-
duced from the time-series text have greatly
contributed to the accuracy of the classification
based on uniqueness as well as the recall of the
classification based on constancy.

2This kind of relation is referred to as functional relation in
the literature (Ritter et al., 2008; Lin et al., 2010).

Constant Non-constant
arg1 was born in arg2 arg1’s president is arg2

arg1 is a father of arg2 arg1 belongs to arg2
arg1 is written by arg2 arg1 lives in arg2

Table 1: Examples of constant, non-constant relations.

The reminder of this paper is structured as fol-
lows. Section 2 introduces the two properties of
relations (constancy and uniqueness) and then de-
fines the task setting of this study. Sections 3 and 4
describe the features induced from time-series text
for constancy and uniqueness classification, respec-
tively. Section 5 reports experimental results. Sec-
tion 6 addresses work related to this study. Section 7
concludes this study and mentions future work.

2 Classification of Relations based on
Constancy and Uniqueness

2.1 Constancy and uniqueness
We introduce two properties of relations: constancy
and uniqueness.

A relation is constant if, for most values of arg1,
the value of arg2 is independent of time (Table 1).
For example, 〈arg1 was born in arg2〉 is a constant
relation since one’s birthplace never changes. On the
other hand, 〈arg1 ’s president is arg2〉 is an example
of non-constant relations. This can be checked by
noting that, for example, the president of the United
States was Barack Obama in 2011 but was previ-
ously George Bush and Bill Clinton before him.

A relation is unique if, for most values of arg1,
there exists, at any given point in time, only one
value of arg2 that satisfies the relation (Table 2). For
example, 〈arg1 was born in arg2〉 is obviously a
unique relation. The relation 〈arg1 is headquartered
in arg2〉 is also unique, while it is non-constant. No-
tice that there is usually only one headquarters at any
point in time, although the location of a headquarters
can change. In contrast, the relation 〈arg1 is funded
by arg2〉 is a non-unique relation since it is likely
that there exist more than one funder.

2.2 Discussion
Both constancy and uniqueness are properties that
usually, not always, hold for most, not all, of the
arg1’s values. To see this, let us examine the relation
〈arg1 ’s president is arg2〉. Although this relation is
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Unique Non-unique
arg1 was born in arg2 arg1 is funded by arg2

arg1 is headquartered in arg2 arg1 consists of arg2
arg1’s president is arg2 arg1 borders on arg2

Table 2: Examples of unique and non-unique relations.

non-constant and unique (Table 1 and 2), it is still
possible to find exceptional cases. For example, a
country might exist in which the president has never
changed; a country might have more than one pres-
ident at the same time during civil war. However,
since such situations are rare, the relation 〈arg1 ’s
president is arg2〉 is considered as neither constant
nor non-unique.

The above discussion implies that the constancy
and uniqueness of relations can not be determined
completely objectively. We, nevertheless, claim that
these properties of relations are intuitively accept-
able and thus they can be identified with moderate
agreement by different people (see section 5).

2.3 Task and our approach

This paper explores classifying given relations on
the basis of constancy and uniqueness. We treat
the problem as two independent binary classification
tasks, and train supervised classifiers.

The technical challenge we address in this paper
is how to design features for the two tasks. Section
3 presents features based on time-series frequency
and linguistic cues for classifying constant and non-
constant relations. Similarly, section 4 presents
analogous features for classifying unique and non-
unique relations.

3 Features for Constancy Classification

3.1 Time-series frequency

It is intuitive to identify constant relations by com-
paring frequency distributions over arg2 in different
time periods. This idea leads us to use frequency
estimates from time-series text as features.

Time-series text For a time-series text, we used
Japanese blog posts that had been gathered from
Feb. 2006 to Sep. 2011 (68 months). These data in-
clude 2.3 billions of sentences. These posts were ag-
gregated on a monthly basis by using time stamps at-
tached with them, i.e., the unit of time is one month
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Figure 1: Time-series frequency distribution of 〈arg1 be-
longs to arg2〉 when arg1 takes Keisuke Honda.

in our corpus.

Basic idea For constant relations (e.g., 〈arg1 was
born in arg2〉), we can expect that the frequency dis-
tributions over arg2 for a given arg1 (e.g., Mozart)
are similar to each other irrespective of the time win-
dows that are used to estimate frequency.

In the case of non-constant relations (e.g., 〈arg1
belongs to arg2〉), on the other hand, the frequency
distributions over arg2 for a given arg1 significantly
differ depending on the time window. For exam-
ple, Figure 1 illustrates the frequency distributions
of arg2s for 〈arg1 belongs to arg2〉 in which arg1
takes Keisuke Honda, a famous football player. We
can clearly observe that due to Keisuke Honda being
sold from VVV Venlo to CSKA Moscow, the distri-
butions differ greatly between 2008 and 2010.

As is evident from the above discussions, the sta-
bility/change in the distribution over arg2 is a good
indicator of constant/non-constant relations. The
following subsection addresses how to encode such
information as features.

Feature computation Let us examine using as
features the cosine similarity between frequency dis-
tributions over arg2. Averaging such similarities
over representative values of arg1, we have

1
N

∑
e∈EN (r)

cos(Fw1(r, e), Fw2(r, e)),

where r is a relation (e.g., 〈arg1 ’s president is
arg2〉), e is a named entity (e.g., United States) ap-
pearing in arg1, and Fw(r, e) is the frequency distri-
bution over arg2 when arg1 takes e. The subscripts
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w1 and w2 denote the time window (e.g., from Jan.
2011 to Feb. 2011) used to estimate the frequency
distribution. EN (r) denotes a set of top N frequent
entities appearing in arg1. We use the entire time-
series text to obtain EN (r).

Unfortunately, this idea is not suitable for our pur-
pose. The problem is that it is not clear how to deter-
mine the two time windows, w1 and w2. To identify
non-constant relations, arg2 must have different val-
ues in the two time periods. Such time windows are,
however, impossible to know of in advance.

We propose avoiding this difficulty by using av-
erage, maximum and minimum similarity over all
possible time windows:

1
N

∑
e∈EN (r)

ave
w1,w2∈WT

cos(Fw1(r, e), Fw2(r, e)),

1
N

∑
e∈EN (r)

max
w1,w2∈WT

cos(Fw1(r, e), Fw2(r, e)),

1
N

∑
e∈EN (r)

min
w1,w2∈WT

cos(Fw1(r, e), Fw2(r, e)),

where WT is a set of all time windows of the size
T . For example, if we set T to 3 (months) in the
68-month’s worth of blog posts, WT consists of 66
(= 68−3+1) time windows. Although we still have
to specify the number of entities N and the window
size T , this is not a serious problem in practice. We
set N to 100. We use four window sizes (1, 3, 6, and
12 months) and induce different features for each
window size. As a result, we have 12 real-valued
features.

3.2 Linguistic cues
This subsection presents two types of linguistically-
motivated features for discriminating between con-
stant and non-constant relations.

Nominal modifiers We observe that non-constant
relations could be indicated by some nominal modi-
fiers:

(2) a. George Bush, ex-president of USA.

b. Lincoln is the first president of the USA.

The use of the prefix ex- and the adjective first im-
plies that the president changes, and hence the rela-
tion 〈arg1 ’s president is arg2〉 is not constant.

前 (ex-),現 (present),次期 (next),元 (former),新 (new),
旧 (old),歴代 (successive),初代 (first),初 (first)

Table 3: Japanese prefixes and adjectives indicating non-
constant relations. The translations are provided in the
parentheses.

We propose making use of such modifiers as fea-
tures. Although the above examples are in English,
we think modifiers also exist that have similar mean-
ings in other languages including Japanese, our tar-
get language.

Our new features are induced as follows:

• First, we manually list eight nominal modifiers
that indicate the non-constancy (Table 3).

• Next, we extract nouns from a relation to
be classified (e.g., president), and count the
frequency with which each modifier modifies
those nouns. We use the same blog posts as in
section 3.1 for counting the frequency. Since
time information is not important in this case,
the frequency is simply accumulated over the
entire time span.

• We then generate eight features, one for each of
the eight modifiers. The value of the features
is one if the frequency exceeds threshold θ1,3

otherwise it is zero. Note that the value of this
feature is always zero if the relation includes no
nouns.

Tense and aspect Tense and aspect of verbs are
also important indicators of the non-constancy:

(3) The U.S. president was George Bush.

If a relation, such as 〈arg1 ’s president is arg2〉, can
often be rephrased in the past tense as in (3), it is
likely to be, if not always, a non-constant relation.

It is, fortunately, straightforward to recognize
tense and aspect in Japanese, because they are ex-
pressed by attaching suffixes to verbs. In this study,
we use three common suffixes: “た”, “ている”, and
“てる”. The first suffix expresses past tense, while
the other two express present continuous or progres-
sive aspects depending on context.

3θ1 = 10 in our experiment.
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A given relation is transformed into different
forms by attaching the suffixes to a verb in the rela-
tion, and their frequencies are counted. By using the
frequency estimates, we generate three new features,
each of which corresponds to one of the three suf-
fixes. The value of the new features is one if the fre-
quency exceeds threshold θ2,4 otherwise it is zero.

The frequency is counted in the same way as in
the case of the nominal modifiers. The value of
this feature is always zero if the relation includes no
verbs.

4 Features for Uniqueness Classification

This section provides features for identifying unique
relations. These features are also based on the time-
series text and linguistic cues, as in the case of con-
stancy classification.

4.1 Time-series frequency

Number of entity types A straightforward ap-
proach to identifying unique relations is, for a given
arg1, to count the number of entity types appear-
ing in arg2 (Lin et al., 2010). For unique relations,
the number of entity types should be one in an ideal
noiseless situation. Even if the estimate is contam-
inated by noise, a small number of entity types can
still be considered to indicate the uniqueness of the
relation.

A shortcoming of such a simple approach is that
it never considers the (non-)constancy of relations.
Presume counting the number of entity types in arg2
of the relation 〈arg1 is headquartered in arg2〉,
which is non-constant and unique. If we use large
size of time window to obtain counts, we will ob-
serve multiple types of entities in arg2, not because
the relation is non-unique, but because it is non-
constant. This problem cannot be resolved by triv-
ially using very small windows, since a time win-
dow that is too small in turn causes a data sparseness
problem.

This problem is attributed to the difficulty in de-
termining the appropriate size of the time window.
We tackle this problem by using the same technique
presented in section 3.1. Specifically, we use the fol-

4θ2 = 3000 in our experiment.

lowing three measures as features:

1
N

∑
e∈EN (r)

ave
w∈WT

#type(Fw(r, e)),

1
N

∑
e∈EN (r)

max
w∈WT

#type(Fw(r, e)),

1
N

∑
e∈EN (r)

min
w∈WT

#type(Fw(r, e)),

where the function #type(·) denotes the number of
entity types appearing in arg2.

Ratio of entity frequency Since it is not reliable
enough to use only the number of entity types, we
also exploit the frequency of the entity. Let e1st and
e2nd be the most and the second most frequent enti-
ties found in arg2. If the frequency of e1st is much
larger than that of e2nd, the relation is likely to be
constant.

To encode this intuition, the following measures
are used as features:

1
N

∑
e∈EN (r)

ave
w∈WT

fw(e, r, e1st)
fw(e, r, e2nd)

1
N

∑
e∈EN (r)

max
w∈WT

fw(e, r, e1st)
fw(e, r, e2nd)

1
N

∑
e∈EN (r)

min
w∈WT

fw(e, r, e1st)
fw(e, r, e2nd)

where the fw(e, r, e′) is the frequency of the relation
r in which arg1 and arg2 take e and e′, respectively.
The subscript w denotes the time window.

4.2 Linguistic cues

Coordination structures and some keywords indicate
non-unique relations:

(4) a. France borders on Italy and Spain.

b. France borders on Italy etc.

The coordination structure in the first example im-
plies an entity can border on more than one entity,
and hence the relation 〈arg1 borders on arg2〉 is not
unique. The keyword etc. in the second example also
indicates the non-uniqueness.
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と,とか,や,やら,だの,なり,か

Table 4: List of Japanese particles that are used to form
coordination structures.

To capture this intuition, we introduce two types
of linguistic features for classifying unique and non-
unique relations. The first feature checks whether
entities in arg2 form coordination structures. The
feature is fired if the number of times that coordina-
tion structures are found in arg2 exceeds threshold
θ3.5 Coordination structures are identified by a list
of Japanese particles, which roughly correspond to
and or or in English (Table 4). If two entities are
connected by one of those particles, they are seen as
forming a coordination structure.

The second feature exploits such keywords as etc.
for identifying non-unique relations. We list four
Japanese keywords that have similar meaning to the
English word etc., and induce another binary fea-
ture6. The feature is fired if the number of times that
an entity in arg2 is followed by one of the four key-
words exceeds threshold θ3.

5 Experiments and discussions

We built labeled data and examine the classification
performance of the proposed method. We also an-
alyzed the influence of window size T on the per-
formance, as well as major errors caused by our
method.

5.1 Data

We built a dataset for evaluation by extracting rela-
tions from the time-series text (section 3.1) and then
manually annotating 1000 relations. The detailed
procedure is as follows.

First, we parsed the time-series text and extracted
as relation dependency paths connecting two named
entities. We used J.DepP,7 an efficient shift-reduce
parser with feature sequence trie (Yoshinaga and
Kitsuregawa, 2009; Yoshinaga and Kitsuregawa,
2010), for parsing. All Japanese words that conju-
gate were normalized into standard forms.

5θ3 = 10 in our experiment.
6The keywords we used are等,ら,たち, and達.
7http://www.tkl.iis.u-tokyo.ac.jp/

∼ynaga/jdepp/
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Figure 2: Recall-precision curve (constancy classifica-
tion).

Then, annotators were asked to label 1000 rela-
tions as not only constant or non-constant but also
unique or non-unique. Three annotators were as-
signed to each relation, and the goldstandard label
is determined by majority vote. The Fleiss kappa
(Fleiss, 1971) was 0.346 for constancy classification
and was 0.428 for uniqueness classification. They
indicate fair and moderate agreement, respectively
(Landis and Koch, 1977).

We have briefly investigated the relations whose
labels assigned by the annotators conflicted. The
major cause was that the annotators sometimes as-
sumed different types of named entities as values
of arguments. A typical case in which this problem
arises is that the relation has polysemous meanings,
e.g., 〈arg1 was born in arg2〉, or a vague meaning,
e.g., 〈arg1 makes arg2〉. For example, arg2 of 〈arg1
was born in arg2〉 can be filled with different types
of entities such as date and place. We can address
this problem by typing arguments (Lin et al., 2010).

5.2 Result

Using the dataset, we performed 5-fold cross-
validation for both classification tasks. We used
the passive-aggressive algorithm for our classifier
(Crammer et al., 2006).

Constancy classification Figure 2 illustrates the
recall-precision curve in constancy classification.
Because we are unaware of any previous methods
for classifying constant and non-constant relations,
a simple method based on the cosine similarity was
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Figure 3: Recall-precision curve (uniqueness classifica-
tion).

used as a baseline:

1
N

∑
e∈EN (r)

cos(Fw1(r, e), Fw2(r, e)),

where the time windows w1 and w2 are determined
as the first and last month in which the relation r
is observed. A given relation is classified as non-
constant if the above similarity exceeds a threshold.
The recall-precision curve was drawn by changing
the threshold.

The results demonstrated that our method outper-
forms the baseline. This indicates the effectiveness
of using time-series frequency and linguistic cues as
features.

The poor performance of the baseline was mainly
due to data sparseness. Since the baseline method is
dependent on the frequency estimates obtained from
only two months of texts, it is less reliable than the
proposed method.

Uniqueness classification Figure 3 illustrates the
recall-precision curve in uniqueness classification.
As a baseline we implemented the method proposed
by Lin et al. (2010). While they have presented
three methods (KLFUNC, KLDIFF, and their aver-
age), we report the results of the last one because it
performed the best among the three in our experi-
ment.

From the figure, we can again see that the pro-
posed method outperforms the baseline method.
Lin’s method is similar to ours, but differs in that
they do not exploit time-series information at all.

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

P
r
e
c
is

io
n

Recall

N = 2

N = 10

N = 20

N = 100

Figure 4: Comparison with the methods varying a value
of N for constancy classification.

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

P
r
e
c
is

io
n

Recall

N = 2

N = 10

N = 20

N = 100

Figure 5: Comparison with the methods varying a value
of N for uniqueness classification.

We hence conclude time-series information is use-
ful for classifying not only constant but also unique
relations.

5.3 Investigation into the number of entities, N

We ranged the value of N in {2, 10, 20, 100}. Set-
ting N to a larger value yields the better recall for
constancy classification and the better precision for
uniqueness classification (Figures 4 and 5). These
results meet our expectations, since features derived
from frequency distributions of arg2 over various
arg1s capture the generic nature of the target rela-
tion.
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Figure 6: Comparison with the methods using only a sin-
gle value of T for constancy classification.
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Figure 7: Comparison with the methods using only a sin-
gle value of T for uniqueness classification.

5.4 Investigation into the window size, T

Our method uses multiple time windows of different
sizes (i.e., different values of T ) to induce features,
as detailed in sections 3.1 and 4.1. To confirm the
effect of this technique, we investigated the perfor-
mance when we use only a single value of T (Fig-
ures 6 and 7).

The results in the uniqueness classification task
demonstrated that our method achieves better over-
all results than the methods using a single value of
T . We can therefore consider that using multiple
values of T as features is a reasonable strategy. On
the other hand, we could not confirm the effect of
using multiple time windows of different sizes in the
constancy classification task.

5.5 Error analysis

We randomly selected and analyzed 200 misclassi-
fied relations for both tasks. The analysis revealed
four types of errors.

Paraphrases We observed that constant relations
are prone to be miss-classified as non-constant when
more than one paraphrase appear in arg2 and thus
the value of arg2 is pretended to change. For exam-
ple, America was also referred to as USA or United
States of America. A similar problem was observed
for unique relations as well.

Topical bias Topics mentioned in the blog posts
are sometimes biased, and such bias can have a neg-
ative effect on classification, especially when a rela-
tion takes a small number of entity types in arg2 for
given arg1. For example, Jaden Smith, who is one
of Will Smith’s sons, is frequently mentioned in our
time-series text because he co-starred with his father
in a movie, while Will Smith’s other sons never ap-
peared in our text. We consider this a possible rea-
son for our method wrongly identifying 〈arg1 ’s son
is arg2〉 as a unique relation.

Short-/Long-term evolution Since we have ag-
gregated on a monthly basis the 6-year’s worth of
blog posts, the induced features cannot capture evo-
lutions that occur in shorter or longer intervals. For
example, consider relation 〈arg1 beats arg2〉 tak-
ing Real Madrid as arg1. Since Real Madrid usually
have more than one football match in a month, they
can beat several teams in a month, which misleads
the classifier to recognize the relation as non-unique.
Similarly when a relation takes more than 6 years to
evolve, it will be regarded as constant.

Reference to past, future, or speculative facts
The blog authors sometimes refer to relations that do
not occur around when they write their posts; such
relations actually occurred in the past, will occur in
the future, or even speculative. Since our method
exploits the time stamps attached to the posts to as-
sociate the relations with time, those relations in-
troduce noises in the frequency distributions. Al-
though our robust feature induction could in most
cases avoid an adverse effect caused by these noises,
they sometimes leaded to misclassification.
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6 Related Work

In recent years, much attention has been given to
extracting relations from a massive amount of tex-
tual data, especially the web (cf. section 1). Most of
those studies, however, explored just extracting re-
lations from text. Only a few studies, as described
below, have discussed classifying those relations.

There has been no previous work on identify-
ing the constancy of relations. The most relevant
research topic is the temporal information extrac-
tion (Verhagen et al., 2007; Verhagen et al., 2010;
Ling and Weld, 2010; Wang et al., 2010; Hovy et
al., 2012). This is the task of extracting from textual
data an event and the time it happened, e.g., Othello
was written by Shakespeare in 1602. Such tempo-
ral information alone is not sufficient for identifying
the constancy of relations, while we think it would
be helpful.

On the other hand, the uniqueness of relations has
so far been discussed in some studies. Ritter et al.
(2008) have pointed out the importance of identi-
fying unique relations for various NLP tasks such
as contradiction detection, quantifier scope disam-
biguation, and synonym resolution. They proposed
an EM-style algorithm for scoring the uniqueness
of relations. Lin et al. (2010) also proposed three
algorithms for identifying unique relations. While
those studies discussed the same problem as this pa-
per, they did not point out the importance of the
constancy in identifying unique relations (cf. sec-
tion 4.1).

7 Conclusion

This paper discussed that the notion of constancy
is essential in compiling relations between enti-
ties extracted from real-world text and proposed a
method for classifying relations on the basis of con-
stancy and uniqueness. The time-series web text
was fully exploited to induce frequency-based fea-
tures from time-series frequency distribution on re-
lation instances as well as language-based features
tailored for individual classification tasks. Exper-
imental results confirmed that the frequency-based
features contributed much to the precision and recall
in both identification tasks.

We will utilize the identified properties of the re-
lations to adopt an appropriate strategy to compile

their instances. We also plan to start a spin-off re-
search that acquires paraphrases by grouping values
of arg2s for each value of arg1 in a constant, unique
relation.

We consider that the notion of constancy will even
be beneficial in acquiring world knowledge, other
than relations between entities, from text; we aim
at extending the notion of constancy to other types
of knowledge involving real-world entities, such as
concept-instance relations.
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Abstract

Entity linking systems link noun-phrase men-
tions in text to their corresponding Wikipedia
articles. However, NLP applications would
gain from the ability to detect and type all
entities mentioned in text, including the long
tail of entities not prominent enough to have
their own Wikipedia articles. In this paper we
show that once the Wikipedia entities men-
tioned in a corpus of textual assertions are
linked, this can further enable the detection
and fine-grained typing of the unlinkable en-
tities. Our proposed method for detecting un-
linkable entities achieves 24% greater accu-
racy than a Named Entity Recognition base-
line, and our method for fine-grained typing is
able to propagate over 1,000 types from linked
Wikipedia entities to unlinkable entities. De-
tection and typing of unlinkable entities can
increase yield for NLP applications such as
typed question answering.

1 Introduction

A key challenge in machine reading (Etzioni et al.,
2006) is to identify the entities mentioned in text,
and associate them with appropriate background in-
formation such as their type. Consider the sentence
“Some people think that pineapple juice is good for
vitamin C.” To analyze this sentence, a machine
should know that “pineapple juice” refers to a bev-
erage, while “vitamin C” refers to a nutrient.

Entity linking (Bunescu and Paşca, 2006;
Cucerzan, 2007) addresses this problem by link-
ing noun phrases within the sentence to entries
in a large, fixed entity catalog (almost always

example noun phrases status

“apple juice” “orange juice” present
“prune juice” “wheatgrass juice” absent

“radiation exposure” “workplace stress” present
“asbestos exposure” “financial stress” absent

“IJCAI” “OOPSLA” present
“EMNLP” “ICAPS” absent

Table 1: Wikipedia has entries for prominent entities,
while missing tail and new entities of the same types.

Wikipedia). Thus, entity linking has a limited and
somewhat arbitrary range. In our example, systems
by (Ferragina and Scaiella, 2010) and (Ratinov et
al., 2011) both link “vitamin C” correctly, but link
“pineapple juice” to “pineapple.” “Pineapple juice”
is not entity linked as a beverage because it is not
prominent enough to have its own Wikipedia entry.
As Table 1 shows, Wikipedia often has prominent
entities, while missing tail and new entities of the
same types.1 (Wang et al., 2012) notes that there
are more than 900 different active shoe brands, but
only 82 exist in Wikipedia. In scenarios such as in-
telligence analysis and local search, non-Wikipedia
entities are often the most important.

Hence, we introduce the unlinkable noun phrase
problem: Given a noun phrase that does not link
into Wikipedia, return whether it is an entity, as well
its fine-grained semantic types. Deciding if a non-
Wikipedia noun phrase is an entity is challenging
because many of them are not entities (e.g., “Some
people,” “an addition” and “nearly half”). Predict-

1The same problem occurs with Freebase, which is also
missing the same Table 1 entities.
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ing semantic types is a challenge because of the di-
versity of entity types in general text. In our experi-
ments, we utilized the Freebase type system, which
contains over 1,000 semantic types.

The first part of this paper proposes a novel
method for detecting entities by observing that enti-
ties often have different usage-over-time character-
istics than non-entities. Evaluation shows that our
method achieves 24% relative accuracy gain over
a NER baseline. The second part of this paper
shows how instance-to-instance class propagation
(Kozareva et al., 2011) can be adapted and scaled to
semantically type general noun-phrase entities using
types from linked entities, by leveraging over one
million different possible textual relations.

Contributions of our research include:

• We motivate and introduce the unlinkable noun
phrase problem, which extends previous work
in entity linking.
• We propose a novel method for discriminating

entities from arbitrary noun phrases, utilizing
features derived from Google Books ngrams.
• We adapt and scale instance-to-instance class

propagation in order to associate types with
non-Wikipedia entities.
• We implement and evaluate our methods, em-

pirically verifying improvement over appropri-
ate baselines.

2 Background

In this section we provide an overview of entity link-
ing, how we entity link our data set, and describe
how our problem and approach differ from related
areas such as NER and Web extraction.

2.1 Entity Linking
Given text, the task of entity linking (Bunescu
and Paşca, 2006; Cucerzan, 2007; Milne and Wit-
ten, 2008; Kulkarni et al., 2009) is to identify the
Wikipedia entities within the text, and mark them
with which Wikipedia entity they correspond to. En-
tity linking elevates us from plain text into mean-
ingful entities that have properties, semantic types,
and relationships with each other. Other entity cata-
logs can be used in place of Wikipedia, especially in
domain-specific contexts, but general purpose link-
ing systems all use Wikipedia because of its broad

general coverage, and to leverage its article texts and
link structure during the linking process.

A problem we observed when using entity link-
ing systems is that despite containing over 3 million
entities, Wikipedia does not cover a significant num-
ber of entities. This occurs with entities that are not
prominent enough to have their own dedicated arti-
cle and with entities that are very new. For exam-
ple, Facebook has over 600 million users, and each
of them could be considered an entity. The REVERB

extractor (Fader et al., 2011) on the ClueWeb09 Web
corpus found over 1.4 billion noun phrases partic-
ipating in textual relationships, and a sizable por-
tion of these noun phrases are entities. While re-
cent research has used NIL features to determine
whether they are being asked to link an entity not in
Wikipedia (Dredze et al., 2010; Ploch, 2011), there
has been no research on whether given noun phrases
that are unlinkable (for not being in Wikipedia) are
entities, and how to make them usable if they are.

Our goal is to address this problem of learning
whether non-Wikipedia noun phrases are entities,
and assigning semantic types to them to make them
useful. We begin with a corpus of 15 million “(noun
phrase subject, textual relation, noun phrase object)”
assertions from the Web that were extracted by RE-
VERB (Fader et al., 2011).2 REVERB already filters
out relative pronouns, WHO-adverbs, and existential
“there” noun phrases that do not make meaningful
arguments. We then employ standard entity linking
techniques including string matching, prominence
priors (Fader et al., 2009), and context matching
(Bunescu and Paşca, 2006) to link the noun phrase
subjects into Wikipedia.

In this manner, we were able to entity link the
noun phrase subject of 9,699,967 extractions, while
the remaining 5,028,301 extractions had no matches
(mostly due to no close string matches). There were
1,401,713 distinct noun phrase subjects in the 5 mil-
lion extractions that had no matches. These are the
unlinkable noun phrases we will study here.

2.2 Named Entity Recognition

Named Entity Recognition (NER) is the task of
identifying named entities in text. A key difference
between our final goals and NER is that in the con-

2available at http://reverb.cs.washington.edu
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text of entity linking and Wikipedia, there are many
more entities than just the named entities. For ex-
ample, “apple juice” and “television” are Wikipedia
entities (with Wikipedia articles), but are not tradi-
tional named entities. Still, as named entities do
comprise a sizable portion of our unlinkable noun
phrases, we compare against a NER baseline in our
entity detection step.

Fine-grained NER (Sekine and Nobata, 2004; Lee
et al., 2007) has studied scaling NER to up to 200 se-
mantic types. This differs from our semantic typing
of unlinked entities because our approach assumes
access to corpora-level relationships between a large
set of linked entities (with semantic types) and the
unlinked entities. As a result we are able to propa-
gate 1,339 Freebase semantic types from the linked
entities to the unlinked entities, which is substan-
tially more types than fine-grained NER.

2.3 Extracting Entity Sets

There is a line of research in using Web extraction
(Etzioni et al., 2005) and entity set expansion (Pantel
et al., 2009) to extract lists of typed entities from the
Web (e.g., a list of every city). Our problem instead
focuses on determining whether any individual noun
phrase is an entity, and what semantic types it holds.
Given a noun phrase representing a person name, we
return that this is a person entity even if it is not in a
list of people names harvested from the Web.

3 Architecture

Our goal is: given (1) a large set of linked assertions
L and (2) a large set of unlinked assertions U , for
each unlinkable noun phrase subject n ∈ U , predict:
(1) whether n is an entity, and if so, then (2) the set
of Freebase semantic types for n. For L we use the
9.7 million assertions whose subject argument we
were able to link in Section 2.1, and for U we use
the 5 million assertions that we could not link.

We divide the system into two components. The
first component (described in Section 4) takes any
unlinkable noun phrase and outputs whether it is an
entity. All n ∈ U classified as entities are placed in
a set E. The second component (described in Sec-
tion 5) uses L and U to predict the semantic types
for each entity e ∈ E.

Figure 1: Usage over time in Google books for the noun
phrase “Prices quoted” (e.g., from “Prices quoted are for
2 adults”) which is not an entity.

Figure 2: Usage over time for the unlinkable noun phrase
“Soluble fibre,” which is an entity. The best fit line has
steeper slope compared to Figure 1.

4 Detecting Unlinkable Entities

This first task takes in any unlinkable noun phrase
and outputs whether it is an entity. There is a long
history of discussion in analytic philosophy litera-
ture on the question of what exists (e.g., (Quine,
1948)). We adopt a more pragmatic view, defin-
ing an “entity” as a noun phrase that could have a
Wikipedia-style article if there were no notability or
newness considerations, and which would have se-
mantic types. We are interested in entities that could
help populate an entity store. “EMNLP 2012” is an
example of an entity, while “The method” and “12
cats” are examples of noun phrases that are not en-
tities. This is challenging because at a surface level,
many entities and non-entities look similar: “Sex
and the City” is an entity, while “John and David”
is not. “Eminem” is an entity, while “Youd” (a typo
from “You’d”) is not.

We address this task by training a classifier with
features primarily derived from a timestamped cor-
pus. An intuition here is that when considering
only unlinkable noun phrases, usage patterns across
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Figure 3: Plot of R2 vs Slope for the usage over time of a collection of noun phrases selected for illustrative purposes.
Many of the non-entities occur at lower Slope and higher R2, while the entities often have higher slope and/or lower
R2. “Bluetooth technology” actually has even higher slope, but was adjusted left to fit in this figure.

time often differ for entities and non-entities. Noun
phrase entities that are observed in text going back
hundreds of years (e.g., “Europe”) almost all have
their own Wikipedia entries, so in unlinkable noun
phrase space, the remaining noun phrases that are
observed in text going back hundreds of years tend
to be all the textual references and expressions that
are not entities. We plan to use this signal to help
separate the entities from the non-entities.

4.1 Classifier Features

We use the Google Books ngram corpus (Michel
et al., 2010), which contains timestamped usage
of 1-grams through 5-grams in millions of digi-
tized books for each year from 1500 to 2007.3 We
use ngram match count values from case-insensitive
matching. To avoid sparsity anomalies we observed
in years before 1740, we use the data from 1740 on-
ward. While it has not been used for our task before,
this corpus is a rich resource that enables reason-
ing about knowledge (Evans and Foster, 2011) and

3available at http://books.google.com/ngrams/datasets

understanding semantic changes of words over time
(Wijaya and Yeniterzi, 2011). Talukdar et al. (2012)
recently used it to effectively temporally scope rela-
tional facts.

Our first feature is the slope of the least-squares
best fit line for usage over time. For example, if a
term appears 25 times in books in 1950, 30 times in
1951, ..., 100 times in 2007, then we compute the
straight line that best fits {(1950, 25), (1951, 31), ...,
(2007, 100)}, and examine the slope. We have ob-
served cases of non-entity noun phrases (e.g., Fig-
ure 1) having lower slopes than entity noun phrases
(e.g., Figure 2). Note that we do not normalize
match counts by yearly total frequency, but we do
normalize counts for each term to range from 0 to 1
(setting the max count for each term to 1) to avoid
bias from entity prominence. To capture the current
usage, in cases where there exists a ≥ 5 year gap in
usage of a term we only use the data after the gap.

Another feature is the R2 fit of the best fit line.
Higher R2 indicates that the data is closer to a
straight line. Figure 3 plots R2 vs Slope values
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Figure 4: UsageSinceYear of example unlinked terms.

for some sample noun phrases. We observed that
along with their lower Slope, the non-entities often
also had higher R2, indicating that their usage does
not vary wildly from year to year. This contrasts
with certain entities (e.g., “FY 99” for “Fiscal Year
1999”) whose usage sometimes varied sharply from
year to year based on their prominence in those spe-
cific years.

A third feature is UsageSinceYear, which finds the
year from when a term last started continually being
used. For example, a UsageSinceYear value of 1920
would indicate that the term was used in books ev-
ery year from 1920 through 2007. Figure 4 shows
examples of where various terms fall along this di-
mension.

From the books ngram corpus, we also calcu-
late features for: PercentProperCaps - the percent-
age of case-insensitive matches for the term where
all words began with a capital letter, PercentExact-
Match - the percentage of case-insensitive matches
for the term that matched the capitalization in the
assertion exactly, and Frequency - the total number
of case-insensitive occurrences of the term in the
book ngrams data, summed across all years, which
reflects prominence. Last, we also include a sim-
ple numeric feature to detect the presence of leading
numeric words (e.g., “5” in “5 days” or “Three” in
“Three choices”).

4.2 Evaluation
From the corpus of 15 million REVERB assertions,
there were 1.4 million unlinked noun phrases includ-
ing 17% unigrams, 51% bigrams, 21% trigrams, and
11% 4-grams or longer. Bigrams comprise over half
the noun phrases and the books bigram data is a self-
contained download that is easier to obtain and store

system correctly classified

Majority class baseline 50.4%

Named Entity Recognition 63.3%

Slope feature only 61.1%
PUF feature combination 69.1%
ALL features 78.4%

Table 2: Our classifier using all features (ALL) outper-
forms majority class and NER baselines.

than the full books ngram corpus, so we focus on
bigrams in our evaluation. In a random sample of
unlinked bigrams, we found that 73% were present
in the books ngram data (65% exact match, 8% case-
insensitive match only), while 27% were not (these
were mostly entities or errors with non-alphabetic
characters). Coverage is a greater issue with longer
ngrams (e.g., there are many more possible 5-grams
than bigrams, so any individual 5-gram is less likely
to reach the minimum threshold to be included in the
books data), but as mentioned earlier, only 11% of
unlinkable noun phrases were 4-grams or longer.

We randomly sampled 250 unlinked bigrams that
had books ngram data, and asked 2 annotators to la-
bel each as “entity,” “non-entity,” or “unclear.” Our
goal is to separate noun phrases that are clearly en-
tities (e.g., “prune juice”) from those that are clearly
not entities (e.g., “prices quoted”), rather than to de-
bate phrases that may be in some entity store defi-
nitions but not others, so we asked the annotators to
choose “unclear” when there was any doubt. There
were 151 bigrams that both annotators believed to
be very clear labels, including 69 that both annota-
tors labeled as entities, 70 that both annotators la-
beled as non-entities, and 12 with label disagree-
ment. Cohen’s kappa was 0.84, indicating excellent
agreement. Our experiment is now to separate the
69 clear entities from the 70 clear non-entities.

For experiment baselines we use the majority
class baseline MAJ, as well as a Named Entity
Recognition baseline NER. For NER we used the
Illinois Named Entity Tagger (Ratinov and Roth,
2009) on the highest setting (that achieved 90.5 F1

score on the CoNLL03 shared task). NER expects a
sentence, so we use the longest assertion in the cor-
pus that the noun phrase was observed in. We eval-
uate several combinations of our features to test dif-
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ferent aspects of our system: Slope uses only Slope,
PUF uses PercentProperCaps + UsageSinceYear +
Frequency, and ALL uses all features. We evaluate
using the WEKA J48 Decision Tree on default set-
tings, with leave-one-out cross validation.

Table 2 shows the results. MAJ correctly classifies
50.4% of instances, NER correctly classifies 63.3%
and ALL correctly classifies 78.4%.

4.3 Analysis

Overall, 78.4% correctly classified instances is fairly
strong performance on this task. By using the de-
scribed features, our classifier was able to detect and
filter many of the non-entity noun phrases in this
scenario. Compared to the 63.3% of NER, it is an
absolute gain of 15.1%, a relative gain of 24%, and a
reduction in error of 41.1% (from 36.7% to 21.6%).
Student’s t-test at 95% confidence verified that the
difference was significant.

We found that while low Slope (especially with
higher R2) often indicated non-entity, there were nu-
merous cases where higher Slope did not necessarily
indicate entity. For example, the noun phrase “sev-
eral websites” has fairly sharp slope, but still does
not denote a clear entity. In these cases, the addi-
tion of other features can serve as additional useful
signal. One error from ALL is the term “Analyst esti-
mates,” which the annotators labeled as a non-entity,
but which occasionally appears in text (especially ti-
tles) as “Analyst Estimates,” and is a relatively re-
cent phrase. NER misses entities such as “synthetic
cubism” and “hunter orange” that occur in our data
but are not traditional named entities. We observed
that while none of our features achieves over 70%
accuracy by themselves, they perform well in con-
junction with each other.

5 Propagating Semantic Types

This second task uses a set of linked assertions L and
set of unlinked assertions U to predict the semantic
types for each entity e ∈ E. If the previous step
output that “Sun Microsystems” is likely to be an
entity, then the goal of this step is to further predict
that it has the Freebase types such as organization
and software developer.

From L we use the set of linked entities and the
textual relations they occur with. For example, L

might contain that the entity Microsoft links to a par-
ticular Wikipedia article, and also that it occurs with
textual relations such as “has already announced”
and “has released updates for.” For each Wikipedia-
linked entity in L, we further look up its exact set
of Freebase types.4 From U we obtain the set of
textual relations that each e ∈ E is in the domain
of. We now have a large set of class-labeled in-
stances (all entities in L), a large set of unlabeled
instances (E), and a method to connect the unla-
beled instances with the class-labeled instances (via
any shared textual relations), so we cast this task
as an instance-to-instance class propagation problem
(Kozareva et al., 2011) for propagating class labels
from labeled to unlabeled instances.

We build on the recent work of Kozareva et al.
(2011), and adapt their approach to leverage the
scale and resources of our scenario. While they use
only one type of edge between instances, namely
shared presence in the high precision DAP pattern
(Hovy et al., 2009), our final system uses 1.3 mil-
lion textual relations from |L ∪ U |, corresponding
to 1.3 million potential edge types. Their evaluation
involved only 20 semantic classes, while we use all
1,339 Freebase types covered by our entities in L.

There is a rich history of other approaches for
predicting semantic types. (Talukdar et al., 2008)
and (Talukdar and Pereira, 2010) model relation-
ships between instances and classes, but our un-
linked entities do not come with any class informa-
tion. Pattern-based approaches (Paşca, 2004; Pantel
and Ravichandran, 2004) are popular, but (Kozareva
et al., 2011) notes that they “are constraint to the in-
formation matched by the pattern and often suffer
from recall,” meaning that they do not cover many
instances. Classifiers have also been trained for fine-
grained semantic typing, but for noticeably fewer
types than we work with. (Rahman and Ng, 2010)
studied hierarchical and collective classification us-
ing 92 types, and FIGER (Ling and Weld, 2012) re-
cently used an adapted perceptron for multi-class
multi-label classification into 112 types.

5.1 Algorithm

Given an entity e, our algorithm involves: (1) find-
ing the textual relations that e is in the domain of, (2)

4data available at http://download.freebase.com/wex
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Figure 5: This example illustrates the set of Freebase type predictions for the noun phrase “Sun Microsystems.” We
predict the semantic type of a noun phrase by: (1) finding the textual relations it is in the domain of, (2) finding linked
entities that are also in the domain of those textual relations, and (3) observing their semantic types.

finding linked entities that are also in the domain of
those textual relations, and then (3) predicting types
by observing the types of those linked entities. Fig-
ure 5 illustrates how we would predict the semantic
types of the noun phrase “Sun Microsystems.”

Find Relations: Obtain the set R of all textual re-
lations in U that e is in the domain of. For example,
if U contains the assertion “(Sun Microsystems, has
released a minor update to, Java 1.4.2),” then the tex-
tual relation “has released a minor update to” should
be added to R when typing “Sun Microsystems.”

Find Similar Entities: Find the linked entities in
L that are in the domain of the most relations in
R. In our example, entities such as “Microsoft” and
“Apple Inc.” have the greatest overlap in textual re-
lations because they are most often in the domain
of the same textual relations, e.g., (“Microsoft, has
released a minor update to, Windows Live Essen-
tials”). Create a set S of the entities that share the
most textual relations. We found keeping 10 similar
entities (|S| = 10) is generally enough to predict the
original entity’s types in the final step.

Predict Types: Return the most frequent Freebase
types of the entities in S as the prediction. To
avoid penalizing very small types, if there are n in-
stances of semantic class C in S, then we rank C us-
ing a type score T (n, C, S) = max(n/|S|, n/|C|),
which we found to perform better than T (n, C, S) =
avg(n/|S|, n/|C|). For “Sun Microsystems,” busi-
ness operation was the top predicted type because
all entities in S were observed to include business
operation type.

5.2 Edge Validity

This algorithm will only be effective if entities that
share textual relation strings are more likely to be
of the same semantic types. To verify this, we sam-
pled 30,000 linked entities from L that had at least
30 textual relations each, and associated each with
their 30 most frequent relations. From the 900 mil-
lion possible entity pairs, we then randomly sample
500 entity pairs that shared exactly k out of 30 rela-
tions, for each k from 0 to 15. At each k we then use
our sampled pairs to estimate the probability that any
two entities sharing exactly k relations (out of their
30 possible) will share at least one type.

The results are shown in Figure 6. We found that
entities sharing more textual relations were in fact
more likely to have semantic types in common. Two
entities that shared exactly 0 of 30 textual relations
were only 11% likely to share a semantic type, while
two entities that shared exactly 10 of 30 relations
were 80% likely to share a semantic type. This vali-
dates our use of textual relations as a signal-bearing
edge in instance-to-instance class propagation.

5.3 Weighting Textual Relations

The algorithm as currently described treats all tex-
tual relations equally, when in reality some are
stronger signal to entity type than others. For exam-
ple, two entities in the domain of the “came with”
relation often will not share semantic types, but two
entities in the domain of the “autographed” relation
will almost always share a type. To capture this intu-
ition, we define relation weight w(r) as the observed
probability (among the linked entities) that two en-
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Figure 6: Entities that share more textual relations are
more likely to have semantic types in common.

tities will share a Freebase type if they both occur
in the domain of r. If D(r) = all entities observed
in the domain of relation r and T (e) = all Freebase
types listed for entity e, then weight w(r) of a tex-
tual relation string r is:

w(r) =
∑

e1,e2∈D(r), e1 6=e2

I(e1, e2)

|D(r)| · (|D(r)| − 1)

I(e1, e2) =

{
1, if |T (e1) ∩ T (e2)| > 0

0, otherwise.

Table 3 shows examples of high weight relations,
and Table 4 shows low weight relations. We now
modify the Find Similar Entities step such that if
a linked entity shares a set of relations Q with the
entity being typed, then it receives a score which
considers all shared relations q ∈ Q but uses the
high weight relations more. On a development set
we found that a score of

∑
q∈Q 104·w(q) was effec-

tive, as higher weight signifies much stronger signal.
This score then determines which entities to place in
S.

5.4 Evaluation
The goal of the evaluation is to judge how well our
method can predict the Freebase semantic types of
entities in our scenario. Our linked entities cov-
ered 1,339 Freebase types, including many interest-
ing types such as computer operating system, reli-
gious text, airline and baseball team. Human judges
would have trouble manually annotating new enti-
ties with all these types because there are too many
to keep in mind and understand the characteristics

“is a highway in”
“is a university located in”
“became the president of”
“turned down the role of”
“has an embassy in”

Table 3: Example relations found to have high weight.

“comes with”
“is a generic term for”
“works best on”
“can be made from”
“is almost identical to”

Table 4: Example relations found to have low weight.

of. Instead, we automatically generate testing data
by sampling entities from L, and then test on abil-
ity to recover the actual Freebase types (which we
know).

We sample a HEAD set of distinct 500 Freebase
entities (drawn randomly from our set of linked ex-
tractions), and a TAIL set of 500 entities (drawn ran-
domly from our set of linked entities). An entity
that occurs in many extractions is more likely to be
in HEAD than TAIL. Our sampling also picks only
entities that occur with at least 10 relations, which
is appropriate for the Web scenario where more in-
stances can always be queried for.

For baselines we use random baseline BRandom

and a frequency baseline BFrequency which always
returns types in order of their frequency among
all linked entities (e.g., always person, then loca-
tion, etc). We evaluate our system without rela-
tion weighting (SNoWeight) and also with relation
weighting (SWeighted). For SWeighted we leave all
the test set entities out when calculating global re-
lation weights. Our metrics are Precision at 1 and
F1 score. Precision at 1 measures how often the top
returned type is a correct type, and is useful for ap-
plications that want one type per entity. F1 mea-
sures how well the method recovers the full set of
Freebase types (for each test case we graph preci-
sion/recall and take the max F1), and is useful for
applications such as typed question answering.

Table 5 shows the results. BRandom performs
poorly because there are so many semantic types,
and very few of them are correct for each test
case. BFrequency performs slightly better on TAIL
than HEAD because TAIL contains more entities of
the most frequent types. SNoWeight performance
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HEAD TAIL
Prec@1 F1 Prec@1 F1

BRandom 0.008 0.028 0.004 0.023

BFrequency 0.244 0.302 0.298 0.322

SNoWeight 0.542† 0.465† 0.510† 0.456†

SWeighted 0.610‡ 0.521‡ 0.598‡ 0.522‡

Table 5: Evaluation on HEAD and TAIL, 500 elements each. † indicates statistical significance over BFrequency, and
‡ over both BFrequency and SNoWeight. Significance is measured using the Student’s t-test at 95% confidence. The
top type predicted by our SWeighted method is correct about 60% of the time, while the top type predicted by the
BFrequency baseline is correct under 30% of the time.

is statistically significant above all baselines, and
SWeighted is statistically significant over SNoWeight

on both test sets and metrics.

5.5 Analysis

SWeighted was successful at recovering the correct
Freebase types of many entities. For example, it
finds that “Atherosclerosis” is a medical risk fac-
tor by connecting it to “obesity” and “diabetes,” that
“Supernatural” is a TV program and a Netflix title
by connecting it to “House” and “30 Rock,” and that
“America West” is an aircraft owner and an airline
by connecting it to “Etihad Airways” and “China
Eastern Airlines.” While precision at 1 around 60%
may not be high enough yet for certain applications,
it is significantly better than competing approaches,
which are under 30%, and we hope that our values
can serve as a non-trivial baseline on this task for
future systems.

One example where SWeighted made some mis-
takes is fictional characters. Many fictional charac-
ters participate in a textual relations that make them
look like people (e.g., “was born on”), but predicting
that they belong to people class is incorrect. Some
performance hit was also due to entity linking errors.
From an assertion like “The Four Seasons is located
in Hamamatsu,” our entity linker (and other entity
linkers we tried) prefer linking “The Four Seasons”
to Vivaldi’s music composition rather than the hotel
chain. We are then unable to recover music compo-
sition type from relations like “is located in.” Our
algorithm relies on accurate entity linking in L, but
there is a precision/recall tradeoff to consider here
because it also benefits from higher coverage of en-
tities and relations in L.

As a general reference for performance of
state-of-the-art fine-grained entity classification, the

FIGER system (Ling and Weld, 2012) for classify-
ing into 112 types reported F1 scores ranging from
0.471 to 0.693 in their experiments. It is important to
note that these numbers are not directly comparable
to us because they used different data, different (and
fewer) types, and different evaluation methodology.

6 Discussion

This paper presented an approach for working with
non-Wikipedia entities in text. Consider the follow-
ing possibilities for a noun phrase in a text corpus:

Wikipedia Entity: (e.g., “Computer Science,”
“South America,” “apple juice”) - Entity linking
techniques can identify and type these.

Non-Wikipedia, Non-Entity: (e.g., “strange
things,” “Early studies,” “A link”) - Our classifier
from Section 4 is able to filter these.

Non-Wikipedia, Entity: (e.g., “Safflower oil,”
“prune juice,” “Amazon UK”) - We identify these
as entities, then propagate semantic types to them.
Our technique finds that “Safflower oil” occurs with
high weight relations such as “is sometimes used to
treat” and “can be substituted for,” making it similar
to linked entities such as “Phentermine” and “Dan-
delion,” and then correctly predicts semantic types
including food ingredient and medical treatment.

6.1 Typed Question Answering

From our set of 15 million assertions, we found and
typed many non-Wikipedia entities. In food while
Wikipedia has “crab meat,” we find it is missing oth-
ers such as “rabbit meat” and “goat milk.” In job ti-
tles it has “scientist” and “lawyer,” but we find it is
missing “PhD student,” “fashion designer,” and oth-
ers. We find many of the people and employers not
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prominent enough for Wikipedia.
One application of this research is to increase the

yield of applications such as Typed Question An-
swering (Buscaldi and Rosso, 2006). For example,
consider the query “What computer game is a lot of
fun?” A search for assertions matching “* is a lot
of fun” in the data yields around 1,000 results such
as “camping,” “David Sedaris” and “Hawaii.” En-
tity linking allows us to identify just the computer
games in Wikipedia that match the query, such as
“Civilization.” However, around 400 query matches
could not be entity linked. Our noun-phrase clas-
sifier filters out non-entities such as “actual play,”
“Just this” and “Two kids.” After predicting types
for the matches that did not get filtered, we find ad-
ditional non-Wikipedia computer games that match
the query, including “Cooking Dash,” “Delicious
Deluxe” and “Slingo Supreme.”

7 Future Work

An area we are continuing to improve the system
on is textual ambiguity. For example, an unlinkable
noun phrase might simultaneously be the name of a
film, a car, and a person. Instead of outputting that
the noun phrase holds all of those types, a stronger
output would be to realize that the noun phrase is
ambiguous, determine how many senses it has, and
determine which sense is being referred to in each
instance. We have ideas for how to detect ambiguous
entities using mutual exclusion (Carlson, 2010) and
functional relations. For example, if we predict that
a noun phrase has film and car types but we also
observe in our linked instances that these types are
mutually exclusive, then this is good evidence that
the noun phrase refers to multiple terms.

We also plan to continue improving our tech-
niques, as there is still plenty of room for improve-
ment on both subtasks. For detecting new entities,
we are interested in seeing if timestamped Twitter
data could be analyzed to increase both recall and
precision. For predicting semantic types, (Kozareva
et al., 2011) proposed additional techniques which
we have not fully explored. Also, we can incor-
porate additional signals such as shared term heads
when they are available, in order to help find terms
that are likely to share types. Last, we would like
to feed back our system output to improve system

performance. For example, non-entity noun phrases
that make it to the typing step might lead to particu-
lar predicted type distributions that indicate an error
occurred earlier in the process.

8 Conclusion

In this paper we showed that while entity linking
cannot link to entities outside of Wikipedia, once a
large text corpus has been entity linked, the presence
and content of the existing links can be leveraged to
help detect and semantically type the non-Wikipedia
entities as well. We designed techniques for de-
tecting whether unlinkable noun phrases are entities,
and if they are, then propagating semantic types to
them from the linked entities. In our evaluations, we
showed that our techniques achieve statistically sig-
nificant improvement over baseline methods.

Our research here takes initial steps toward a fu-
ture where the vast universe of entities that are not
prominent enough to include in manually-authored
knowledge bases is analyzed automatically instead
of being left behind.
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Abstract

We propose a complete probabilistic discrim-
inative framework for performing sentence-
level discourse analysis. Our framework com-
prises a discourse segmenter, based on a bi-
nary classifier, and a discourse parser, which
applies an optimal CKY-like parsing algo-
rithm to probabilities inferred from a Dynamic
Conditional Random Field. We show on two
corpora that our approach outperforms the
state-of-the-art, often by a wide margin.

1 Introduction

Automatic discourse analysis has been shown to
be critical in several fundamental Natural Lan-
guage Processing (NLP) tasks including text gener-
ation (Prasad et al., 2005), summarization (Marcu,
2000b), sentence compression (Sporleder and Lap-
ata, 2005) and question answering (Verberne et al.,
2007). Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988), one of the most influential
theories of discourse, posits a tree representation of
a discourse, known as a Discourse Tree (DT), as
exemplified by the sample DT shown in Figure 1.
The leaves of a DT correspond to contiguous atomic
text spans, also called Elementary Discourse Units
(EDUs) (three in the example). The adjacent EDUs
are connected by arhetorical relation (e.g., ELAB-
ORATION), and the resulting larger text spans are
recursively also subject to this relation linking. A
span linked by a rhetorical relation can be either
a NUCLEUS or a SATELLITE depending on how
central the message is to the author. Discourse anal-
ysis in RST involves two subtasks: (i) breaking the

text into EDUs (known asdiscourse segmentation)
and (ii) linking the EDUs into a labeled hierarchical
tree structure (known asdiscourse parsing).

Figure 1: Discourse structure of a sentence in RST-DT.

Previous studies on discourse analysis have been
quite successful in identifying what machine learn-
ing approaches and what features are more useful for
automatic discourse segmentation and parsing (Sori-
cut and Marcu, 2003; Subba and Eugenio, 2009; du-
Verle and Prendinger, 2009). However, all the pro-
posed solutions suffer from at least one of the fol-
lowing two key limitations: first, they make strong
independence assumptions on the structure and the
labels of the resulting DT, and typically model the
construction of the DT and the labeling of the rela-
tions separately; second, they apply a greedy, sub-
optimal algorithm to build the structure of the DT.

In this paper, we propose a newsentence-level
discourse parser that addresses both limitations. The
crucial component is a probabilistic discriminative
parsing model, expressed as a Dynamic Conditional
Random Field (DCRF) (Sutton et al., 2007). By
representing thestructure and therelation of each
discourse tree constituent jointly and by explicitly
capturing thesequential andhierarchical dependen-
cies between constituents of a discourse tree, our
DCRF model does not make any independence as-
sumption among these properties. Furthermore, our
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parsing model supports a bottom-up parsing algo-
rithm which is non-greedy and provably optimal.

The discourse parser assumes that the input text
has been already segmented into EDUs. As an addi-
tional contribution of this paper, we propose a novel
discriminative approach to discourse segmentation
that not only achieves state-of-the-art performance,
but also reduces the time and space complexities by
using fewer features. Notice that the combination
of our segmenter with our parser forms a complete
probabilistic discriminative framework for perform-
ing sentence-level discourse analysis.

Our framework was tested in a series of experi-
ments. The empirical evaluation indicates that our
approach to discourse parsing outperforms the state-
of-the-art by a wide margin. Moreover, we show this
to be the case on two very different genres: news ar-
ticles and instructional how-to-do manuals.

In the rest of the paper, after discussing related
work, we present our discourse parser. Then, we
describe our segmenter. The experiments and the
corpora we used are described next, followed by a
discussion of the key results and some error analysis.

2 Related work

Automatic discourse analysis has a long history;
see (Stede, 2011) for a detailed overview. Sori-
cut and Marcu (2003) present the publicly available
SPADE1 system that comes with probabilistic mod-
els for sentence-level discourse segmentation and
parsing based on lexical and syntactic features de-
rived from the lexicalized syntactic tree of a sen-
tence. Their parsing algorithm finds the most proba-
ble DT for a sentence, where the probabilities of the
constituents are estimated by their parsing model.
A constituent (e.g., ATTRIBUTION-NS[(1,2),3] in
Figure 1) in a DT has two components, first, thela-
bel denoting the relation and second, thestructure
indicating which spans are being linked by the rela-
tion. The nuclearity statuses of the spans are built
into the relation labels (e.g., NS[(1,2),3] means that
span (1,2) is the NUCLEUS and it comes before
span 3 which is the SATELLITE). SPADE is limited
in several ways. It makes an independence assump-
tion between the label and the structure while mod-
eling a constituent, and it ignores the sequential and

1http://www.isi.edu/licensed-sw/spade/

hierarchical dependencies between the constituents
in the parsing model. Furthermore, SPADE relies
only on lexico-syntactic features, and it follows a
generative approach to estimate the model param-
eters for the segmentation and the parsing models.
SPADE was trained and tested on the RST-DT cor-
pus (Carlson et al., 2002), which contains human-
annotated discourse trees for news articles.

Subsequent research addresses the question of
how much syntax one really needs in discourse
analysis. Sporleder and Lapata (2005) focus on
discourse chunking, comprising the two subtasks
of segmentation and non-hierarchical nuclearity as-
signment. More specifically, they examine whether
features derived via part of speech (POS) and chunk
taggers would be sufficient for these purposes. Their
results on RST-DT turn out to be comparable to
SPADE without using any features from the syntac-
tic tree. Later, Fisher and Roark (2007) demonstrate
over 4% absolute “performance gain” in segmenta-
tion, by combining the features extracted from the
syntactic tree with the ones derived via taggers. Us-
ing quite a large number of features in a binary log-
linear model they achieve the state-of-the-art seg-
mentation performance on the RST-DT test set.

On the different genre ofinstructional manuals,
Subba and Eugenio (2009) propose a shift-reduce
parser that relies on a classifier to find the appro-
priate relation between two text segments. Their
classifier is based on Inductive Logic Programming
(ILP), which learns first-order logic rules from a
large set of features including the linguistically rich
compositional semantics coming from a semantic
parser. They show that the compositional seman-
tics improves the classification performance. How-
ever, their discourse parser implements a greedy ap-
proach (hence not optimal) and their classifier disre-
gards the sequence and hierarchical dependencies.

Using RST-DT, Hernault et al. (2010) present
the HILDA system that comes with a segmenter
and a parser based on Support Vector Machines
(SVMs). The segmenter is a binary SVM classi-
fier which relies on the same lexico-syntactic fea-
tures used in SPADE, but with more context. The
discourse parser builds a DT iteratively utilizing two
SVM classifiers in each iteration: (i) a binary classi-
fier decides which of the two adjacent spans to link,
and (ii) a multi-class classifier then connects the se-
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lected spans with the appropriate relation. They use
a very large set of features in their parser. How-
ever, taking a radically-greedy approach, they model
structure and relations separately, and ignore the se-
quence dependencies in their models.

Recently, there has been an explosion of interest
in Conditional Random Fields (CRFs) (Lafferty et
al., 2001) for solving structured output classification
problems, with many successful applications in NLP
including syntactic parsing (Finkel et al., 2008), syn-
tactic chunking (Sha and Pereira, 2003) and dis-
course chunking (Ghosh et al., 2011) in Penn Dis-
course Treebank (Prasad et al., 2008). CRFs being a
discriminative approach to sequence modeling (i.e.,
directly models the conditionalp(y|x,Θ)), have sev-
eral advantages over its generative counterparts such
as Hidden Markov Models (HMMs) and Markov
Random Fields (MRFs), which first model the joint
p(y, x|Θ), then infer the conditionalp(y|x,Θ)). Key
advantages include the ability to incorporate arbi-
trary overlapping local and global features, and the
ability to relax strong independence assumptions. It
has been advocated that CRFs are generally more
accurate since they do not “waste effort” modeling
complex distributions (i.e.,p(x)) that are not rele-
vant for the target task (Murphy, 2012).

3 The Discourse Parser

Assuming that a sentence is already segmented into
a sequence of EDUse1, e2, . . . en manually or by an
automatic segmenter (see Section 4), the discourse
parsing problem is to decide which spans to con-
nect (i.e.,structure of the DT) and which relations
(i.e., labels of the internal nodes) to use in the pro-
cess of building the hierarchical DT. To build the
DTs effectively, a common assumption is that they
arebinary trees (Soricut and Marcu, 2003; duVerle
and Prendinger, 2009). That is, multi-nuclear re-
lations (e.g., LIST, JOINT, SEQUENCE) involving
more than two EDUs are mapped to a hierarchi-
cal right-branching binary tree. For example, a flat
LIST (e1, e2, e3, e4) is mapped to a right-branching
binary treeLIST (e1, LIST (e2, LIST (e3, e4))).

Our discourse parser has two components. The
first component, theparsing model, assigns a proba-
bility to every possible DT. The second component,
the parsing algorithm, finds the most probable DT

among the candidate discourse trees.

3.1 Parsing Model

A DT can be represented as a set of constituents
of the formR[i,m, j], which denotes a rhetorical
relationR that holds between the span containing
EDUs i throughm, and the span containing EDUs
m+1 throughj. For example, the DT in Figure 1
can be written as{ELABORATION-NS[1,1,2],
ATTRIBUTION-NS[1,2,3]}. Notice that a rela-
tion R also indicates the nuclearity assignments
of the spans being connected, which can be one
of NUCLEUS-SATELLITE (NS), SATELLITE-
NUCLEUS (SN) and NUCLEUS-NUCLEUS (NN).

Given the model parametersΘ and a candi-
date DT T , for all the constituentsc in T , our
parsing model estimates theconditional probabil-
ity P (c|C,Θ), which specifies the joint probabil-
ity of the relation R and the structure[i,m, j]
associated with the constituentc, given that c
has a set of sub-constituentsC. For instance,
for the DT shown in Figure 1, our model
would estimateP (R′[1, 1, 2]|Θ), P (R′[2, 2, 3]|Θ),
P (R′[1, 2, 3]|R′′[1, 1, 2],Θ) etc. for allR′ andR′′

ranging on the set of relations. In what follows we
describe our probabilistic parsing model to compute
all these conditional probabilitiesP (c|C,Θ). We
will demonstrate how our approach not only models
the structure and the relation jointly, but it also cap-
tureslinear sequence dependencies andhierarchical
dependencies between constituents of a DT.

Our novel parsing model is the Dynamic Condi-
tional Random Field (DCRF) (Sutton et al., 2007)
shown in Figure 2. A DCRF is a generalization
of linear-chain CRFs to represent complex interac-
tion between labels, such as when performing mul-
tiple labeling tasks on the same sequence. Theob-
served nodesWj in the figure are the text spans.
A text span can be either an EDU or a concatena-
tion of a sequence of EDUs. Thestructure nodes
Sj∈{0, 1} in the figure represent whether text spans
Wj−1 andWj should be connected or not. There-
lation nodesRj∈{1 . . .M} denote the discourse re-
lation between spansWj−1 andWj , given thatM is
the total number of relations in our relation set. No-
tice that we now model the structure and the relation
jointly and also take the sequential dependencies be-
tween adjacent constituents into consideration.
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Figure 2: A Dynamic CRF as a discourse parsing model.

We can obtain the conditional probabilities of
the constituents (i.e.,P (c|C,Θ)) of all candidate
DTs for a sentence by applying the DCRF pars-
ing model recursively at different levels, and by
computing the posterior marginals of the relation-
structure pairs. To illustrate, consider the example
sentence in Figure 1 where we have three EDUs
e1, e2 and e3. The DCRF model for the first
level is shown in Figure 3(a), where the (observed)
EDUs are the spans in the span sequence. Given
this model, we obtain the probabilities of the con-
stituentsR[1, 1, 2] andR[2, 2, 3] by computing the
posterior marginalsP (R2, S2=1|e1, e2, e3,Θ) and
P (R3, S3=1|e1, e2, e3,Θ), respectively. At the sec-
ond level (see Figure 3(b)), there are two possi-
ble span sequences(e1:2, e3) and (e1, e2:3). In the
first sequence, EDUse1 and e2 are linked into
a larger span, and in the second one, EDUse2
and e3 are connected into a larger span. We ap-
ply our DCRF model to the two possible span se-
quences and obtain the probabilities of the con-
stituents R[1, 2, 3] and R[1, 1, 3] by computing
the posterior marginalsP (R3, S3=1|e1:2, e3,Θ) and
P (R2:3, S2:3=1|e1, e2:3,Θ), respectively.

Figure 3: DCRF model applied to the sequences at differ-
ent levels in the example in Fig. 1. (a) A sequence at the
first level (b) Two possible sequences at the second level.

To further clarify the process, let us as-
sume that the sentence contains four EDUs
e1, e2, e3 and e4. At the first level (Fig-
ure 4(a)), there is only one possible span se-

quence to which we apply our DCRF model.
We obtain the probabilities of the constituents
R[1, 1, 2], R[2, 2, 3] andR[3, 3, 4] by computing the
posterior marginalsP (R2, S2=1|e1, e2, e3, e4,Θ),
P (R3, S3=1|e1, e2, e3, e4,Θ) and P (R4, S4=1|e1,
e2, e3, e4,Θ), respectively. At the second level
(Figure 4(b)), there are three possible sequences
(e1:2, e3, e4), (e1, e2:3, e4) and(e1, e2, e3:4). When
the DCRF model is applied to the sequence
(e1:2, e3, e4), we obtain the probabilities of the
constituentR[1, 2, 3] by computing the posterior
marginalP (R3, S3=1|e1:2, e3, e4,Θ). Likewise, the
posterior marginalsP (R2:3, S2:3=1|e1, e2:3, e4,Θ)
andP (R4, S4=1|e1, e2:3, e4,Θ) in the DCRF model
applied to the sequence(e1, e2:3, e4) represents
the probabilities of the constituentsR[1, 1, 3]
and R[2, 3, 4], respectively. Similarly, we at-
tain the probabilities of the constituentR[2, 2, 4]
from the DCRF model applied to the sequence
(e1, e2, e3:4) by computing the posterior marginal
P (R3:4, S3:4=1|e1, e2, e3:4,Θ). At the third level
(Figure 4(c)), there are three possible sequences
(e1:3, e4), (e1, e2:4) and(e1:2, e3:4), to which we ap-
ply our model and acquire the probabilities of the
constituentsR[1, 3, 4], R[1, 1, 4] and R[1, 2, 4] by
computing their respective posterior marginals.

Figure 4: DCRF model applied to the sequences at differ-
ent levels of a discourse tree. (a) A sequence at the first
level, (b) Three possible sequences at the second level,
(c) Two possible sequences at the third level.

Our DCRF model is designed using MALLET
(McCallum, 2002). In order to avoid overfitting we
regularize the DCRF model withl2 regularization
and learn the model parameters using the limited-
memory BFGS (L-BFGS) fitting algorithm. Since
exact inference can be intractable in DCRF models,
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we perform approximate inference (to compute the
posterior marginals) using tree-based reparameteri-
zation (Wainwright et al., 2002).

3.1.1 Features Used in the Parsing Model

Crucial to parsing performance is the set of fea-
tures used, as summarized in Table 1. Note that
these features are defined on two consecutive spans
Wj−1 andWj of a span sequence. Most of the fea-
tures have been explored in previous studies. How-
ever, we improve some of these as explained below.

Organizational features encode useful informa-
tion about the surface structure of a sentence as
shown by (duVerle and Prendinger, 2009). We mea-
sure the length of the spans in terms of the number of
EDUs and tokens in it. However, in order to better
adjust to the length variations, rather than comput-
ing their absolute numbers in a span, we choose to
measure theirrelative numbers with respect to their
total numbers in the sentence. For example, in a sen-
tence containing three EDUs, a span containing two
of these EDUs will have a relative EDU number of
0.67. We also measure thedistances of the spans
from the beginning and to the end of the sentence in
terms of the number of EDUs.

8 organizational features
Relative number of EDUs inspan 1 andspan 2.
Relative number of tokens inspan 1 andspan 2.
Distances of span 1 in EDUs to thebeginning and to theend.
Distances of span 2 in EDUs to thebeginning and to theend.
8 N-gram features
Beginning andend lexical N-grams in span 1.
Beginning andend lexical N-grams in span 2.
Beginning andend POS N-grams in span 1.
Beginning andend POS N-grams in span 2.
5 dominance set features
Syntactic labels of thehead node and theattachment node.
Lexical heads of thehead node and theattachment node.
Dominance relationship between the two text spans.
2 contextual features
Previous andnext feature vectors.
2 substructure features
Root nodes of theleft andright rhetorical subtrees.

Table 1: Features used in the DCRF parsing model.

Discourse connectives (e.g.,because, but), when
present, signal rhetorical relations between two text
segments (Knott and Dale, 1994; Marcu, 2000a).
However, previous studies (e.g., Hernault et al.
(2010), Biran and Rambow (2011)) suggest that an

empirically acquired lexical N-gram dictionary is
more effective than a fixed list of connectives, since
this approach is domain independent and capable
of capturing non-lexical cues such as punctuations.
To build thelexical N-gram dictionary empirically
from the training corpus we consider the first and
last N tokens (N∈{1, 2}) of each span and rank
them according to their mutual information2 with
the two labels,Structure andRelation. Intuitively,
the most informative cues are not only the most fre-
quent, but also the ones that are indicative of the la-
bels in the training data (Blitzer, 2008). In addition
to the lexical N-grams we also encodePOS tags of
the first and lastN tokens (N∈{1, 2}) as features.

Figure 5: A discourse segmented lexicalized syntactic
tree. Boxed nodes form the dominance setD.

Dominance setextracted from the Discourse Seg-
mented Lexicalized Syntactic Tree (DS-LST) (Sori-
cut and Marcu, 2003) has been shown to be a very
effective feature in SPADE. Figure 5 shows the DS-
LST for our running example (see Figure 1 and 3).
In a DS-LST, each EDU except the one with the root
node must have ahead node NH that is attached to
anattachment node NA residing in a separate EDU.
A dominance setD (shown at the bottom of Figure 5
for our example) contains theseattachment points of
the EDUs in a DS-LST. In addition to the syntactic
and lexical information of the head and attachment
nodes, each element inD also represents a domi-
nance relationship between the EDUs involved. The
EDU with NA dominates the EDU withNH . In or-

2In contrast, HILDA ranks the N-grams by frequencies.
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der to extract dominance set features for two consec-
utive spansei:j andej+1:k, we first computeD from
the DS-LST of the sentence. We then extract the
element fromD that holds across the EDUsj and
j + 1. In our running example, for the spanse1 and
e2 (Figure 3(a)), the relevant dominance set element
is (1, efforts/NP)>(2, to/S). We encode the syntac-
tic labels and lexical heads ofNH andNA and the
dominance relationship (i.e., which of the two spans
is dominating) as features in our model.

We also incorporate morecontextual information
by including the above features computed for the
neighboring span pairs in the current feature vector.

We incorporatehierarchical dependencies be-
tween constituents in a DT by means of thesub-
structure features. For the two adjacent spansei:j
and ej+1:k, we extract the roots of the rhetorical
subtrees spanning overei:j (left) andej+1:k (right).
In our example (see Figure 1 and Figure 3 (b)),
the root of the rhetorical subtree spanning overe1:2
is ELABORATION-NS. However, this assumes the
presence of a labeled DT which is not the case when
we apply the parser to a new sentence. This problem
can be easily solved by looping twice through build-
ing the model and the parsing algorithm (described
below). We first build the model without considering
the substructure features. Then we find the optimal
DT employing our parsing algorithm. This interme-
diate DT will now provide labels for the substruc-
tures. Next we can build a new, more accurate model
by including the substructure features, and run again
the parsing algorithm to find the final optimal DT.

3.2 Parsing Algorithm

Our parsing model above assigns a conditional prob-
ability to every possible DT constituent for a sen-
tence, the job of the parsing algorithm is to find the
most probable DT. Formally, this can be written as,
DT ∗ = argmax DTP (DT |Θ)

Our discourse parser implements a probabilistic
CKY-like bottom-up algorithm for computing the
most likely parse of a sentence using dynamic pro-
gramming; see (Jurafsky and Martin, 2008) for a
description. Specifically, withn number of EDUs
in a sentence, we use the upper-triangular por-
tion of the n × n Dynamic Programming Table
(DPT). The cell [i, j] in the DPT represents the
span containing EDUsi through j and stores the

probability of a constituentR[i,m, j], wherem =
argmax i≤k≤jP (R[i, k, j]).

In contrast to HILDA which implements a greedy
algorithm, our approach finds a DT that is glob-
ally optimal. Our approach is also different from
SPADE’s implementation. SPADE first finds the
tree structure that is globally optimal, then it assigns
the most probablerelations to the internal nodes.
More specifically, the cell[i, j] in SPADE’s DPT
stores the probability of a constituentR[i,m, j],
wherem = argmax i≤k≤jP ([i, k, j]). Disregard-
ing the relation labelR while building the DPT, this
approach may find a tree that isnot globally optimal.

4 The Discourse Segmenter

Our discourse parser above assumes that the input
sentences have been already segmented into EDUs.
Since it has been shown that discourse segmentation
is a primary source of inaccuracy for discourse pars-
ing (Soricut and Marcu, 2003), we have developed
our own segmenter, that not only achieves state-of-
the-art performance as shown later, but also reduces
the time complexity by using fewer features.

Our segmenter implements a binary classifier to
decide for each word (except the last word) in a sen-
tence, whether to put an EDU boundaryafter that
word. We use a Logistic Regression (LR) (i.e., dis-
criminative) model withl2 regularization and learn
the model parameters using the L-BFGS algorithm,
which gives quadratic convergence rate. To avoid
overfitting, we use 5-fold cross validation to learn
the regularization strength parameter from the train-
ing data. We also use a simplebagging technique
(Breiman, 1996) to deal with the sparsity ofbound-
ary tags. Note that, our first attempt at this task im-
plemented a linear-chain CRF model to capture the
sequence dependencies between the tags in a dis-
criminative way. However, the binary LR classifier,
using the same features, not only outperforms the
CRF model, but also reduces the space complexity.

4.1 Features Used in the Segmentation Model

Our set of features for discourse segmentation are
mostly inspired from previous studies but used in a
novel way as we describe below.

Our first subset of features which we callSPADE
features, includes the lexico-syntactic patterns ex-
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tracted from the lexicalized syntactic tree for the
given sentence. These features replicates the fea-
tures used in SPADE, but used in a discriminative
way. To decide on an EDU boundary after a token
wk, we find the lowest constituent in the lexicalized
syntactic tree that spans over tokenswi . . . wj such
that i≤k<j. The production that expands this con-
stituent in the tree and its different variations, form
the feature set. For example in Figure 5, the produc-
tion NP(efforts)→PRP$(its)NNS(efforts)↑S(to) and
its different variations depending on whether they
include the lexical heads and how many non-
terminals (up to two) to consider before and after
the potential EDU boundary (↑), are used to de-
termine the existence of a boundary after the word
efforts (see (Fisher and Roark, 2007) for details).
SPADE uses these features in a generative way,
meaning that, it inserts an EDU boundary if the rela-
tive frequency (i.e., Maximum Likelihood Estimate
(MLE)) of a potential boundary given the production
in the training corpus is greater than0.5. If the pro-
duction has not been observed frequently enough, it
uses its other variations to perform further smooth-
ing. In contrast, we compute the MLE estimates for
a production and its other variations, and use those
as features with/without binarizing the values.

Shallow syntactic parse (orChunk) andPOS tags
have been shown to possess valuable cues for dis-
course segmentation (Fisher and Roark, 2007). For
example, it is less likely that an EDU boundary oc-
curs within a chunk. We, therefore, annotate the to-
kens of a sentence with chunk and POS tags by a
state-of-the-art tagger3 and encode these as features.

EDUs are normally multi-word strings. Thus, a
token near the beginning or end of a sentence is un-
likely to be the end of a segment. Therefore, for each
token we include itsrelative position in the sentence
anddistances to the beginning and end as features.

It is unlikely that two consecutive tokens are
tagged with EDU boundaries. We incorporatecon-
textual information for a token by including the
above features computed for its neighboring tokens.

We also experimented with different N-gram
(N∈{1, 2, 3}) features extracted from the token se-
quence, POS sequence and chunk sequence. How-
ever, since such features did not improve the seg-

3http://cogcomp.cs.illinois.edu/page/software

mentation accuracy on the development set, they
were excluded from our final set of features.

5 Experiments

5.1 Corpora

To demonstrate the generality of our model, we ex-
periment with two different genres. First, we use the
standardRST-DT corpus (Carlson et al., 2002) that
contains discourse annotations for385 Wall Street
Journal news articles from the Penn Treebank (Mar-
cus et al., 1994). Second, we use theInstructional
corpus developed by Subba and Eugenio (2009) that
contains discourse annotations for176 instructional
how-to-do manuals on home-repair.

The RST-DT corpus is partitioned into a training
set of347 documents (7673 sentences) and a test set
of 38 documents (991 sentences), and53 documents
(1208 sentences) have been (doubly) annotated by
two human annotators, based on which we compute
the human agreement. We use the human-annotated
syntactic trees from Penn Treebank to train SPADE
in our experiments using RST-DT as done in (Sori-
cut and Marcu, 2003). We extracted a sentence-level
DT from a document-level DT by finding the subtree
that exactly spans over the sentence. By our count,
7321 sentences in the training set,951 sentences
in the test set and1114 sentences in the doubly-
annotated set have a well-formed DT in RST-DT.
The Instructional corpus contains3430 sentences in
total, out of which3032 have a well-formed DT.
This forms our sentence-level corpora for discourse
parsing. However, the existence of a well-formed
DT in not a necessity for discourse segmentation,
therefore, we do not exclude any sentence in our dis-
course segmentation experiments.

5.2 Experimental Setup

We perform our experiments on discourse pars-
ing in RST-DT with the18 coarser relations (see
Figure 6) defined in (Carlson and Marcu, 2001)
and also used in SPADE and HILDA. By attach-
ing the nuclearity statuses (i.e., NS, SN, NN) to
these relations we get39 distinct relations4. Our
experiments on the Instructional corpus consider
the same26 primary relations (e.g., GOAL:ACT,
CAUSE:EFFECT, GENERAL-SPECIFIC) used in

4Not all relations take all the possible nuclearity statuses.

910



(Subba and Eugenio, 2009) and also treat the re-
versals of non-commutative relations as separate re-
lations. That is, PREPARATION-ACT and ACT-
PREPARATION are two different relations. Attach-
ing the nuclearity statuses to these relations gives70
distinct relations in the Instructional corpus.

We use SPADE as our baseline model and apply
the same modifications to its default setting as de-
scribed in (Fisher and Roark, 2007), which delivers
improved performance. Specifically, in testing, we
replace the Charniak parser (Charniak, 2000) with a
more accurate reranking parser (Charniak and John-
son, 2005). We use the reranking parser in all our
models to generate the syntactic trees. This parser
was trained on the sections of the Penn Treebank not
included in the test set. For a fair comparison, we ap-
ply the same canonical lexical head projection rules
(Magerman, 1995; Collins, 2003) to lexicalize the
syntactic trees as done in SPADE and HILDA. Note
that, all the previous works described in Section 2,
report their models’ performance on a particular test
set of a specific corpus. To compare our results with
the previous studies, we test our models on those
specific test sets. In addition, we show more general
performance based on10-fold cross validation.

5.3 Parsing based on Manual Segmentation

First, we present the results of our discourse parser
based onmanual segmentation. The parsing perfor-
mance is assessed using the unlabeled (i.e., span)
and labeled (i.e., nuclearity, relation) precision, re-
call and F-score as described in (Marcu, 2000b, page
143). For brevity, we report only the F-scores in Ta-
ble 2. Notice that, our parser (DCRF) consistently
outperforms SPADE (SP) on the RST-DT test set5.
Especially, on relation labeling, which is the hardest
among the three tasks, we get an absolute F-score
improvement of9.5%, which represents a relative
error rate reduction of29.3%. Our F-score of77.1
in relation labeling is also close to the human agree-
ment (i.e., F-score of83.0) on the doubly-annotated
data. Our results on the RST-DT test set are con-
sistent with the mean scores over 10-folds, when we
perform 10-fold cross validation on RST-DT.

The improvement is even larger on the Instruc-
tional corpus, where we compare our mean results

5The improvements are statistically significant (p < 0.01).

over 10-folds with the results reported in Subba and
Eugenio (S&E) (2009) on a test set6, giving ab-
solute F-score improvements of4.8%, 15.5% and
10.6% in span, nuclearity and relations, respectively.
Our parser reduces the errors by67.6%, 54.6% and
28.6% in span, nuclearity and relations, respectively.

RST-DT Instructional
Test set 10-fold Doubly S&E 10-fold

Scores SP DCRF DCRF Human ILP DCRF
Span 93.5 94.6 93.7 95.7 92.9 97.7
Nuc. 85.8 86.9 85.2 90.4 71.8 87.2
Rel. 67.6 77.1 75.4 83.0 63.0 73.6

Table 2: Parsing results usingmanual segmentation.

If we compare the performance of our model on
the two corpora, we see that our model is more accu-
rate in finding the right tree structure (see Span) on
the Instructional corpus. This may be due to the fact
that sentences in the Instructional domain are rela-
tively short and contain fewer EDUs than sentences
in the News domain, thus making it easier to find
the right tree structure. However, when we compare
the performance on the relation labeling task, we ob-
serve a decrease on the Instructional corpus. This
may be due to the small amount of data available for
training and the imbalanced distribution of a large
number of discourse relations in this corpus.

To analyze the features, Table 3 presents the pars-
ing results on the RST-DT test set using different
subsets of features. Every new subset of features
appears to improve the accuracy. More specifically,
when we add theorganizational features with the
dominance set features (seeS2), we get about2%
absolute improvement in nuclearity and relations.
With N-gram features (S3), the gain is even higher;
6% in relations and3.5% in nuclearity, demonstrat-
ing the utility of the N-gram features. This is con-
sistent with the findings of (duVerle and Prendinger,
2009; Schilder, 2002). Including theContextual fea-
tures (S4), we get further3% and 2.2% improve-
ments in nuclearity and relations, respectively. No-
tice that, adding thesubstructure features (S5) does
not help much in sentence-level parsing, giving only

6Subba and Eugenio (2009) report their results based on an
arbitrary split between a training set and a test set. We asked the
authors for their particular split. However, since we could not
obtain that information, we compare our model’s performance
based on 10-fold cross validation with their reported results.
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an improvement of0.8% in relations. Therefore, one
may choose to avoid using this computationally ex-
pensive feature in time-constrained scenarios. How-
ever, in the future, it will be interesting to see its im-
portance in document-level parsing with large trees.

Scores S1 S2 S3 S4 S5

Span 91.3 92.1 93.3 94.6 94.6
Nuclearity 78.2 80.3 83.8 86.8 86.9
Relation 66.2 68.1 74.1 76.3 77.1

Table 3: Parsing results based on manual segmentation
using different subsets of features on RST-DT test set.
Feature subsetsS1 = {Dominance set},S2 = {Dominance
set, Organizational}, S3 = {Dominance set, Organiza-
tional, N-gram}, S4 = {Dominance set, Organizational,
N-gram, Contextual}, S5 (all) = {Dominance set, Orga-
nizational, N-gram, Contextual, Substructure}.

5.4 Evaluation of the Discourse Segmenter

We evaluate the segmentation accuracy with respect
to the intra-sentential segment boundaries following
(Fisher and Roark, 2007). Specifically, if a sen-
tence containsn EDUs, which corresponds ton− 1
intra-sentence segment boundaries, we measure the
model’s ability to correctly identify thesen − 1
boundaries. Human agreement for this task is quite
high (F-score of98.3) on RST-DT.

Table 4 shows the results of different models in
(P)recision, (R)ecall, and (F)-score on the two cor-
pora. We compare our model’s (LR) results with
HILDA (HIL), SPADE (SP) and the results reported
in Fisher and Roark (F&R) (2007) on the RST-DT
test set. HILDA gives the weakest performance7.
Our results are also much better than SPADE8, with
an absolute F-score improvement of4.9%, and com-
parable to the results of F&R, even though we use
fewer features. Furthermore, we perform 10-fold
cross validation on both corpora and compare with
SPADE. However, SPADE does not come with a
training module for its segmenter. We reimple-
mented this module and verified it on the RST-DT
test set. Due to the lack of human-annotated syntac-
tic trees in theInstructional corpus, we train SPADE
in this corpus using the syntactic trees produced

7Note that, the high segmentation accuracy reported in (Her-
nault et al., 2010) is due to a less stringent evaluation metric.

8The improvements are statistically significant (p<2.4e-06)

by the reranking parser. Our model delivers abso-
lute F-score improvements of3.8% and8.1% on the
RST-DT and the Instructional corpora, respectively,
which is statistically significant in both cases (p<
3.0e-06). However, when we compare our results on
the two corpora, we observe a substantial decrease in
performance on the Instructional corpus. This could
be due to a smaller amount of data in this corpus and
the inaccuracies in the syntactic parser and taggers,
which are trained on news articles.

RST-DT Instructional
Test Set 10-fold 10-fold 10-fold

HIL SP F&R LR SP LR SP LR
P 77.9 83.8 91.3 88.0 83.7 87.5 65.1 73.9
R 70.6 86.8 89.7 92.3 86.2 89.9 82.8 89.7
F 74.1 85.2 90.5 90.1 84.9 88.7 72.8 80.9

Table 4: Segmentation results of different models.

5.5 Parsing based on Automatic Segmentation

In order to evaluate our full system, we feed our
discourse parser the output of our discourse seg-
menter. Table 5 shows the F-score results. We com-
pare our results with SPADE on the RST-DT test set.
We achieve absolute F-score improvements of3.6%,
3.4% and7.4% in span, nuclearity and relation, re-
spectively. These improvements are statistically sig-
nificant (p<0.001). Our system, therefore, reduces
the errors by15.5%, 11.4%, and17.6% in span, nu-
clearity and relations, respectively. These results are
also consistent with the mean results over 10-folds.

RST-DT Instructional
Test set 10-fold 10-fold

Scores SPADE DCRF DCRF DCRF
Span 76.7 80.3 78.7 71.9
Nuclearity 70.2 73.6 72.2 64.3
Relation 58.0 65.4 64.2 54.8

Table 5: Parsing results usingautomatic segmentation.

For the Instructional corpus, the last column of
Table 5 shows the mean 10-fold cross validation re-
sults. We cannot compare with S&E because no re-
sults were reported using an automatic segmenter.
However, it is interesting to observe how much our
full system is affected by an automatic segmenter
on both RST-DT and the Instructional corpus (see
Table 2 and Table 5). Nevertheless, taking into ac-
count the segmentation results in Table 4, this is
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not surprising because previous studies (Soricut and
Marcu, 2003) have already shown that automatic
segmentation is the primary impediment to high ac-
curacy discourse parsing. This demonstrates the
need for a more accurate segmentation model in the
Instructional genre. A promising future direction
would be to apply effective domain adaptation meth-
ods (e.g.,easyadapt (Daume, 2007)) to improve
the segmentation performance in the Instructional
domain by leveraging the rich data in RST-DT.

5.6 Error Analysis and Discussion

The results in Table 2 suggest that given a manually
segmented discourse, our sentence-level discourse
parser finds the unlabeled (i.e., span) discourse tree
and assigns the nuclearity statuses to the spans at a
performance level close to human annotators. We,
therefore, look more closely into the performance of
our parser on the hardest task ofrelation labeling.

Figure 6 shows the confusion matrix for the rela-
tion labeling task using manual segmentation on the
RST-DT test set. The relation labels are ordered ac-
cording to their frequency in the RST-DT training
set and represented by their initial letters. For exam-
ple, EL represents ELABORATION and CA repre-
sents CAUSE. In general, errors can be explained by
two different phenomena acting together: (i) the fre-
quency of the relations in the training data, and (ii)
the semantic (or pragmatic) similarity between the
relations. The most frequent relations (e.g., ELAB-
ORATION) tend to confuse the less frequent ones
(e.g., SUMMARY), and the relations which are se-
mantically similar (e.g., CAUSE, EXPLANATION)
confuse each other, making it hard to distinguish for
the computational models. Notice that, the confu-
sions caused by JOINT appears to be high consid-
ering its frequency. The confusion between JOINT
and TEMPORAL may be due to the fact that both of
these coarser relations9 contain finer relations (i.e.,
list in JOINT andsequence in TEMPORAL), which
are semantically similar, as pointed out by Carlson
and Marcu (2001). The confusion between JOINT
and BACKGROUND may be explained by their dif-
ferent (semantic vs. pragmatic) interpretation in the
RST theory (Stede, 2011, page 85).

9JOINT is actually not a relation, but is characterized by
juxtaposition of two EDUs without a relation.

Figure 6: Confusion matrix for the relation labels on
the RST-DT test set. Y-axis representstrue and X-axis
representspredicted labels. The relation labels areTOPIC-
COMMENT, EVALUATION, SUMMARY, MA NNER-MEANS,
COMPARISON, EXPLANATION, CONDITION, TEMPORAL,
CAUSE, ENABLEMENT, BACKGROUND, CONTRAST, JOINT,
SAME-UNIT, ATTRIBUTION, ELABORATION.

Based on these observations we will pursue two
ways to improve our discourse parser. We need a
more robust (e.g.,bagging) method to deal with the
imbalanced distribution of relations, along with a
better representation of semantic knowledge. For
example,compositional semantics (Subba and Eu-
genio, 2009) andsubjectivity (Somasundaran, 2010)
can be quite relevant for identifying relations.

6 Conclusion

In this paper, we have described a complete prob-
abilistic discriminative framework for performing
sentence-level discourse analysis. Experiments indi-
cate that our approach outperforms the state-of-the-
art on two corpora, often by a wide margin.

In ongoing work, we plan to generalize our
DCRF-based parser to multi-sentential text and also
verify to what extent parsing and segmentation can
be jointly performed. A longer term goal is to extend
our framework to also work with graph structures
of discourse, as recommended by several recent dis-
course theories (Wolf and Gibson, 2005). Once we
achieve similar performance on graph structures, we
will perform extrinsic evaluation to determine their
relative utility for various NLP tasks.
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Abstract

Previous work on paraphrase extraction us-
ing parallel or comparable corpora has gener-
ally not considered the documents’ discourse
structure as a useful information source. We
propose a novel method for collecting para-
phrases relying on the sequential event or-
der in the discourse, using multiple sequence
alignment with a semantic similarity measure.
We show that adding discourse information
boosts the performance of sentence-level para-
phrase acquisition, which consequently gives
a tremendous advantage for extracting phrase-
level paraphrase fragments from matched sen-
tences. Our system beats an informed baseline
by a margin of 50%.

1 Introduction

It is widely agreed that identifying paraphrases is a
core task for natural language processing, including
applications like document summarization (Barzilay
et al., 1999), Recognizing Textual Entailment (Da-
gan et al., 2005), natural language generation (Zhao
et al., 2010; Ganitkevitch et al., 2011), and machine
translation (Marton et al., 2009). As a consequence,
many methods have been proposed for generating
large paraphrase resources (Lin and Pantel, 2001;
Szpektor et al., 2004; Dolan et al., 2004). One of
the intuitively appropriate data sources for such col-
lections are parallel or comparable corpora: if two
texts are translations of the same foreign document,
or if they describe the same underlying scenario,
they should contain a reasonable number of sentence
pairs that convey the same meaning.

Most approaches that extract paraphrases from
parallel texts employ some type of pattern match-

ing: sentences with the same meaning are assumed
to share many n-grams (Barzilay and Lee, 2003;
Callison-Burch, 2008, among others), many words
in their context (Barzilay and McKeown, 2001) or
certain slots in a dependency path (Lin and Pantel,
2001; Szpektor et al., 2004). Discourse structure
has only marginally been considered for this task:
For example, Dolan et al. (2004) extract the first
sentences from comparable articles and take them
as paraphrases. Another approach (Deléger and
Zweigenbaum, 2009) matches similar paragraphs in
comparable texts, creating smaller comparable doc-
uments for paraphrase extraction.

We believe that discourse structure delivers im-
portant information for the extraction of para-
phrases. Sentences that play the same role in a cer-
tain discourse and have a similar discourse context
can be paraphrases, even if a semantic similarity
model does not consider them very similar. This ex-
tends the widely applied distributional hypothesis to
the discourse level: According to the distributional
hypothesis, entities are similar if they share similar
contexts. In our case, entities are whole sentences,
and contexts are discourse units.

Based on this assumption, we propose a novel
method for collecting paraphrases from parallel texts
using discourse information. We create a new type
of parallel corpus by collecting multiple summaries
for several TV show episodes. The discourse struc-
tures of those summaries are easy to compare: they
all contain the events in the same order as they
have appeared on the screen. This allows us to
take sentence order as event-based discourse struc-
ture, which is highly parallel for recaps of the same
episode.

In its first step, our system uses a sequence align-
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ment algorithm combined with a state-of-the-art
similarity measure. The approach outperforms in-
formed baselines on the task of sentential paraphrase
identification. The usage of discourse information
even contributes more to the final performance than
the sentence similarity measure.

As second step, we extract phrase-level para-
phrase fragments from the matched sentences. This
step relies on the alignment algorithm’s output, and
we show that discourse information makes a big dif-
ference for the precision of the extraction. We then
add more discourse-based information by prepro-
cessing the text with a coreference resolution sys-
tem, which results in additional performance im-
provement.

The paper is structured as follows: first we sum-
marize related work (Sec. 2), and then we give an
overview over our perspective on the task and sketch
our system pipeline (Sec. 3). The following two sec-
tions describe the details of the sentence matching
step (Sec. 4) and the subsequent paraphrase frag-
ment extraction (Sec. 5). We present both automatic
and manual evaluation of the two system compo-
nents (Sec. 6). Finally, we conclude the paper and
give some hints for future work (Sec. 7).

2 Related Work

Previous paraphrase extraction approaches can be
roughly characterized under two aspects: 1) data
source and 2) granularity of the output.

Both parallel corpora and comparable corpora
have been quite well studied. Barzilay and McK-
eown (2001) use different English translations of
the same novels (i.e., monolingual parallel corpora),
while others (Quirk et al., 2004) experiment on mul-
tiple sources of the same news/events, i.e., mono-
lingual comparable corpora. Commonly used (can-
didate) comparable corpora are news articles writ-
ten by different news agencies within a limited time
window (Wang and Callison-Burch, 2011). Other
studies focus on extracting paraphrases from large
bilingual parallel corpora, which the machine trans-
lation (MT) community provides in many varieties.
Bannard and Callison-Burch (2005) as well as Zhao
et al. (2008) take one language as the pivot and
match two possible translations in the other lan-
guages as paraphrases if they share a common pivot

phrase. As parallel corpora have many alternative
ways of expressing the same foreign language con-
cept, large quantities of paraphrase pairs can be ex-
tracted.

The paraphrasing task is also strongly related to
cross-document event coreference resolution, which
is tackled by similar techniques used by the available
paraphrasing systems (Bagga and Baldwin, 1999;
Tomadaki and Salway, 2005).

Most work in paraphrase acquisition has dealt
with sentence-level paraphrases, e.g., (Barzilay and
McKeown, 2001; Barzilay and Lee, 2003; Dolan et
al., 2004; Quirk et al., 2004). Our approach for sen-
tential paraphrase extraction is related to the one in-
troduced by Barzilay and Lee (2003), who also em-
ploy multiple sequence alignment (MSA). However,
they use MSA at the sentence level rather than at the
discourse level.

We take some core ideas from our previous work
on mining script information (Regneri et al., 2010).
In this earlier work, we focused on event structures
and their possible realizations in natural language.
The corpus used in those experiments were short
crowd-sourced descriptions of everyday tasks writ-
ten in bullet point style. We aligned them with a
hand-crafted similarity measure that was specifically
designed for this text type. In this current work,
we target the general task of extracting paraphrases
for events rather than the much more specific script-
related task. The current approach uses a domain-
independent similarity measure instead of a specific
hand-crafted similarity score and is thus applicable
to standard texts.

From an applicational point of view, senten-
tial paraphrases are difficult to use in other NLP
tasks. At the phrasal level, interchangeable patterns
(Shinyama et al., 2002; Shinyama and Sekine, 2003)
or inference rules (Lin and Pantel, 2001) are ex-
tracted. In both cases, each pattern or rule contains
one or several slots, which are restricted to certain
type of words, e.g., named entities (NE) or content
words. They are quite successful in NE-centered
tasks, like information extraction, but their level of
generalization or coverage is insufficient for appli-
cations like Recognizing Textual Entailment (Dinu
and Wang, 2009).

The research on general paraphrase fragment ex-
traction at the sub-sentential level is mainly based
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on phrase pair extraction techniques from the MT
literature. Munteanu and Marcu (2006) extract sub-
sentential translation pairs from comparable corpora
using the log-likelihood-ratio of word translation
probability. Quirk et al. (2007) extract fragments
using a generative model of noisy translations. Our
own work (Wang and Callison-Burch, 2011) extends
the first idea to paraphrase fragment extraction on
monolingual parallel and comparable corpora. Our
current approach also uses word-word alignment,
however, we use syntactic dependency trees to com-
pute grammatical fragments. Our use of dependency
trees is inspired by the constituent-tree-based exper-
iments of Callison-Burch (2008).

3 Paraphrases and Discourse

Previous approaches have shown that comparable
texts provide a good basis for paraphrase extrac-
tion. We want to show that discourse structure is
highly useful for precise and high-yield paraphrase
collection from such corpora. Consider the follow-
ing (made-up) example:

(1) [House keeps focusing on his aching leg.1.1.]
[The psychiatrist suggests him to get a hobby
1.2.] [House joins a cooking class.1.3]

(2) [He tells him that the Ibuprofen is not helping
with the pain.2.1.] [Nolan tells House to take up
a hobby.2.2] [Together with Wilson he goes to a
cookery course.2.3]

Read as a whole, it is clear that the two texts de-
scribe the same three events, in the same order, and
thus, e.g., 1.2 and 2.2 are paraphrases. However,
they share very few n-grams, nor named entities. We
determine three factors that can help to identify such
paraphrases:

1. Consider the sequence of events. A system
which recognizes that the three sentence pairs
occur in the same sequential event order would
have a chance of actually matching the sen-
tences.

2. Do coreference resolution. To determine
which sentence parts actually carry the same
meaning, pronoun resolution is essential (e.g.,
to match “suggest him” and “tells House”).

recaps 
of House 

M.D.

parallel corpus 
with parallel 

discourse 
structures

The psychiatrist suggests 
him to get a hobby 

Nolan tells House to take 
up a hobby.

sentence-level paraphrases

 + discourse information
 + semantic similarity 

 + word alignments 
 + coref. resolution
 + dependency trees 

 get a hobby 

take up a hobby

paraphrase 
fragments

1
2 3

Figure 1: System pipeline

3. Try a generic sentence similarity model. Pat-
tern matching or n-gram overlap might not be
sufficient to solve this problem.

Our system pipeline is sketched in Fig. 1:

1. Create a corpus: First, we create a compara-
ble corpus of texts with highly comparable dis-
course structures. Complete discourse struc-
tures like in the RST Discourse Treebank (Carl-
son et al., 2002) may be very useful for para-
phrase computation, however, they are hard to
obtain. Discourse annotation is difficult and
work-intensive, and full-blown automatic dis-
course parsers are neither robust nor very pre-
cise. To circumvent this problem, we assemble
documents that have parallel discourse struc-
tures by default: We compile multiple plot
summaries of TV show episodes. The textual
order of those summaries typically mirrors the
underlying event order of the episodes, in the
same sequence they happened on screen. We
take sentence sequences of recaps as parallel
discourse structures.

2. Extract sentence-level paraphrases: Our sys-
tem finds sentence pairs that are either para-
phrases themselves, or at least contain para-
phrase fragments. This procedure crucially re-
lies on discourse knowledge: A Multiple Se-
quence Alignment (MSA) algorithm matches
sentences if both their inherent semantic sim-
ilarities and the overall similarity score of their
discourse contexts are high enough.

3. Extract paraphrase fragments: Sentence-
level paraphrases may be too specific for fur-
ther domain-independent applications, as they
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row recap 1 recap 2 recap 3 recap 4 recap 5

34 She gives Fore-
man one shot.

Cuddy tells Fore-
man he has one
chance to prove to
her he can run the
team.

�

Cuddy agrees
to give him one
chance to prove
himself.

Foreman insists he de-
serves a chance and
Cuddy gives in, warn-
ing him he gets one
shot.

35 � � �

Foreman, Hadley,
and Taub get the
conference room
ready and Foreman
explains that he’ll
be in charge.

Foreman gives the
news to Thirteen
and Taub and they
unpack the conference
room and go with a
diagnosis of CRPS.

36

They decide that
it might be CRPS
and Foreman or-
ders a spinal stim-
ulation.

�

Foreman says to
treat him for com-
plex regional pain
syndrome with a
spinal stimulation.

� �

Figure 2: Excerpt from an alignment table for 5 exemplary recaps of Episode 2 (Season 6).

contain specific NEs (e.g. “House”) or time ref-
erences. Thus we take a necessary second step
and extract finer-grained paraphrase fragments
from the sentence pairs matched in step 2. The
resulting matched phrases should be grammat-
ical and interchangeable regardless of context.
We propose and compare different fragment ex-
traction algorithms.

The remainder of the paper shows how both of
the paraphrasing steps benefit from using a corpus
with highly parallel discourse structures: The sys-
tem components employ discourse information ei-
ther directly by using MSA (step 1) or coreference
resolution (step 2), or indirectly, because using MSA
in step 1 results in a high precision gain for the sub-
sequent second step.

4 Sentence Matching with MSA

This section explains how we apply MSA to ex-
tract sentence-level paraphrases from a comparable
corpus. As our input data, we manually collect re-
caps for House M.D. episodes from different sources
on the web1. House episodes have an intermediate
length (∼45 min), which results in recaps of a con-

1e.g. http://house.wikia.com – for a detailed list of
URLs, please check the supplementary material or contact the
authors.

venient size (40 to 150 sentences). The result is one
comparable document collection per episode. We
applied a sentence splitter (Gillick, 2009) to the doc-
uments and treat them as sequences of sentences for
further processing.

Sequence alignment takes as its input two se-
quences consisting of elements of some alphabet,
and an alphabet-specific score function cm over
pairs of sequence elements. For insertions and dele-
tions, the algorithm additionally takes gap costs
(cgap). Multiple Sequence Alignment generalizes
pairwise alignment to arbitrarily many sequences.
MSA has its main application area in bioinformat-
ics, where it is used to identify equivalent parts of
DNA (Durbin et al., 1998). Our alphabet consists of
sentences, and a sequence is an ordered sentence list
constituting a recap.

A Multiple Sequence Alignment results in a table
like Fig. 2. Each column contains the sentences of
one recap, possibly intermitted with gaps (“�”), and
each row contains at least one non-gap. If two sen-
tences end up in the same row, they are aligned; we
take aligned sentence to be paraphrases. Aligning a
sentence with a gap can be thought of as an insertion
or deletion. Each alignment has a score which is the
sum of all scores for substitutions and all costs for
insertions and deletions. Informally, the alignment
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score is the sum of all scores for each pair of cells
(c1, c2), if c1 and c2 are in the same row. If either c1
or c2 is a gap, the pair’s score is cgap. If both cells
contain sentences, the score is cm(c1, c2).

Fern and Stevenson (2009) showed that sophis-
ticated similarity measures improve paraphrasing,
so we apply a state-of-the-art vector space model
(Thater et al., 2011) as our score function. The vec-
tor space model provides contextualized similarities
of words, i.e. the vector of each word is disam-
biguated by the context the current instance occurs
in. cm(c1, c2) returns the model’s similarity score
for c1 and c2.

We re-implement a standard MSA algorithm
(Needleman and Wunsch, 1970) which approxi-
mates the best MSA given the input sequences, cm
and cgap. This algorithm recursively aligns two se-
quences at a time, treating the resulting alignment
as a new sequence. This does not necessarily result
in the globally optimal alignment, because the order
in which sequences are aligned can change the final
output. Given this constraint, the algorithm finds the
best alignment, which - in our case - is the alignment
with the maximal score. Intuitively, we are looking
for the alignment where the most similar sentences
with the most similar preceding and trailing contexts
end up as paraphrases.

5 Paraphrase Fragment Extraction

Taking the output of the sentence alignment as in-
put, we next extract shorter phrase-level paraphrases
(paraphrase fragments) from the matched sentence
pairs. We try different algorithms for this step, all
relying on word-word alignments.

5.1 Preprocessing
Before extracting paraphrase fragments, we first pre-
process all documents as follows:

Stanford CoreNLP 2 provides a set of natural lan-
guage analysis tools. We use the part-of-
speech (POS) tagger, the named-entity recog-
nizer, the parser (Klein and Manning, 2003),
and the coreference resolution system (Lee et
al., 2011). In particular, the dependency struc-
tures of the parser’s output are used for VP-

2http://nlp.stanford.edu/software/
corenlp.shtml

fragment extraction (Sec. 5.3). The output from
the coreference resolution system is used to
cluster all mentions referring to the same en-
tity and to select one as the representative men-
tion. If the representative mention is not a pro-
noun, we modify the original texts by replac-
ing all pronoun mentions in the cluster with the
syntactic head of the representative mention.
Note that the coreference resolution system is
applied to each recap as a whole.

GIZA++ (Och and Ney, 2003) is a widely used
word aligner for MT systems. We amend the
input data by copying identical word pairs 10
times and adding them as additional ‘sentence’
pairs (Byrne et al., 2003), in order to emphasize
the higher alignment probability between iden-
tical words. We run GIZA++ for bi-directional
word alignment and obtain a lexical translation
table.

5.2 Fragment Extraction
As mentioned in Sec. 2, we choose to use alignment-
based approaches to this task, which allows us to use
many existing MT techniques and tools. We mainly
follow our previous approach (Wang and Callison-
Burch, 2011), which is a modified version of an ap-
proach by Munteanu and Marcu (2006) on trans-
lation fragment extraction. We briefly review the
three-step procedure here and refer the reader to the
original paper for more details:

1. Establish word-word alignment between each
sentence pair using GIZA++;

2. Smooth the alignment based on lexical occur-
rence likelihood;

3. Extract fragment pairs using different heuris-
tics, e.g., non-overlapping n-grams, chunk
boundaries, or dependency trees.

After obtaining a lexical translation table by run-
ning GIZA++, for each word pair, w1 and w2, we
use both positive and negative lexical associations
for the alignment, which are defined as the condi-
tional probabilities p(w1|w2) and p(w1|¬w2), re-
spectively. The resulting alignment can be further
constrained by a modified longest common sub-
string (LCS) algorithm, which takes sequences of
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words instead of letters as input. Smoothing (step 2)
is done for each word by taking the average score of
it and its four neighbor words. All the word align-
ments (excluding stop-words) with positive scores
are selected as candidate fragment elements.

Provided with the candidate fragment elements,
we previously (Wang and Callison-Burch, 2011)
used a chunker3 to finalize the output fragments, in
order to follow the linguistic definition of a (para-)
phrase. We extend this step in the current system
by applying a dependency parser to constrain the
boundary of the fragments (Sec. 5.3). Finally, we
filter out trivial fragment pairs, such as identical or
the original sentence pairs.

5.3 VP-fragment Extraction
To obtain more grammatical output fragments, we
add another layer of linguistic information to our
input sentences. Based on the dependency parses
produced during preprocessing, we extract phrases
containing verbs and their complements. More pre-
cisely, we match two phrases if their respective sub-
trees t1 and t2 satisfy the following conditions:

• The subtrees mirror a complete subset of
the GIZA++ word alignment, i.e., all words
aligned to a given word in t1 are contained in
t2, and vice versa. For empty alignments, we
require an overlap of at least one lemma (ig-
noring stop words).

• The root nodes of t1 and t2 have the same
roles within their trees, e.g., we match clauses
with an xcomp-label only with other xcomp-
labelled clauses.

• Both t1 and t2 contain at least one verb with
at least one complement. To enhance recall,
we additionally extract complete prepositional
phrases.

• We exclude trivial fragment pairs that are pre-
fixes or suffixes of each other (or identical).

The main advantage of this approach lies in the out-
put’s grammaticality, because the subtrees always
match complete phrases. This method also functions
as a filtering mechanism for mistakenly aligned sen-
tences: If only the two sentence nodes are returned

3We use the same OpenNLP chunker (http:
//opennlp.sourceforge.net/) for consistency.

as possible matching partners, the pair is discarded
from the results.

6 Evaluation

We evaluate both sentential paraphrase matching
and paraphrase fragment extraction using manually
labelled gold standards (provided in the supplemen-
tary material). We collect recaps for all 20 episodes
of season 6 of House M.D., taking 8 summaries per
episode (the supplementary material contains a list
of all URLs). This results in 160 documents con-
taining 14735 sentences. For evaluation, we use all
episodes except no. 2, which is held out for parame-
ter optimizations and other development purposes.

6.1 Sentential Paraphrase Evaluation
To evaluate sentence matching, we adapt the base-
lines from our earlier work (Regneri et al., 2010) and
create a new gold standard. We compute precision,
recall and accuracy of our main system and suggest
baselines that separately show the influence of both
the MSA and the semantic scoring function.

Gold-Standard
We aim to create an evaluation set that contains

a sufficient amount of genuine paraphrases. Find-
ing such sentence pairs with random sampling and
manual annotation is infeasible: There are more than
200, 000, 000 possible sentence pairs, and we ex-
pect less than 1% of them to be paraphrases. We
thus sample pairs that either the system or the base-
lines recognized as paraphrases and try to create an
evaluation set that is not biased towards the actual
system or any of the baselines. The evaluation set
consists of 2000 sentence pairs: 400 that the system
recognized as paraphrases, 400 positively labelled
pairs for each of the three baselines (described in the
following section) and 400 randomly selected pairs.
For the final evaluation, we compute precision, re-
call, f-score and accuracy for our main system and
each baseline on this set.

Two annotators labelled each sentence pair
(S1, S2) with one of the following labels:

1. paraphrases: S1 and S2 refer to exactly the
same event(s).

2. containment: S1 contains all the event infor-
mation mentioned in S2, but refers to at least
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one additional event, or vice versa.

3. related: S1 and S2 overlap in at least one event
reference, but both refer to at least one addi-
tional event.

4. unrelated: S1 and S2 do not overlap at all.

This scheme has a double purpose: The main objec-
tive is judging whether two sentences contain para-
phrases (1-3) or if they are unrelated (4). We use
this coarser distinction for system evaluation by col-
lapsing the categories 1-3 in one paraphrasecoll cat-
egory. Secondly, the annotation shows how well the
sentences fit each other’s content (1 vs. 2&3), and
how much work needs to be done to extract the sen-
tence parts with the same meaning (2 vs. 3).

The inter-annotator agreement according to Co-
hen’s Kappa (Cohen, 1960) is κ = 0.55 (“mod-
erate agreement”). The distinction between unre-
lated cases and elements of paraphrasecoll reaches
κ = 0.71 (“substantial agreement”). For the final
gold standard, a third annotator resolved all conflict
cases.

Among all gold standard sentence pairs, we find
158 paraphrases, 238 containment cases, 194 re-
lated ones and 1402 unrelated. We had to discard 8
sentence pairs because one of the items was invalid
or empty. The high proportion of ’unrelated’ cases
results from the 400 random pairs and the low pre-
cision of the baselines. Looking at the paraphrases,
27% of the 590 instances in the paraphrasecoll cate-
gory are proper paraphrases, and 73% of them con-
tain additional information that does not belong to
the paraphrased part.

Experimental Setup

We compute precision, recall and f-score with re-
spect to the gold standard (paraphrases are members
of paraphrasecoll), taking f-score as follows:

f -score =
2 ∗ precision ∗ recall
precision+ recall

We also compute accuracy as the overall fraction of
correct labels (negative and positive ones).

Our main system uses MSA (denoted by MSA af-
terwards) with vector-based similarities (VEC) as a

scoring function. The gap costs are optimized for
f-score, resulting in cgap = 0.4

To show the contribution of MSA’s structural
component and compare it to the vector model’s
contribution, we create a second MSA-based sys-
tem that uses MSA with BLEU scores (Papineni et
al., 2002) as scoring function (MSA+BLEU). BLEU
establishes the average 1-to-4-gram overlap of two
sentences. The gap costs for this baseline were opti-
mized separately, ending up with cgap = 1.

In order to quantify the contribution of the align-
ment, we create a discourse-unaware baseline by
dropping the MSA and using a state-of-the-art clus-
tering algorithm (Noack, 2007) fed with the vec-
tor space model scores (CLUSTER+VEC). The algo-
rithm partitions the set of sentences into paraphrase
clusters such that the most similar sentences end up
in one cluster. This does not require any parameter
tuning.

We also show a baseline that uses the cluster-
ing algorithm with BLEU scores (CLUSTER+BLEU).
The comparison of this baseline with the other
clustering-baseline that uses vector similarities helps
to underline the sentence similarities’ advantage
compared to pure word overlap. Note that the CLUS-
TER+BLEU system resembles popular n-gram over-
lap measures for paraphrase classification.

We also show the results completely random label
assignment, which constitutes a lower bound for the
baselines and the system.

Results
Overall, our system extracts 20379 paraphrase

pairs. Tab. 1 shows the evaluation results on our
gold-standard.

The MSA based system variants outperform the
two clustering baselines significantly (all levels refer
to p = 0.01 and were tested with a resampling test
(Edgington, 1986)).

The clustering baselines perform significantly
better than a random baseline, especially consider-
ing recall. The more elaborated vector-space mea-
sure even gives 10% more in precision and accu-
racy, and overall 14% more in f-score. This is al-

4Gap costs directly influence precision and recall: “cheap”
gaps lead to a more restrictive system with higher precision, and
more expensive gaps give more recall. We chose f-score as our
objective.
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System Prec. Recall F-score Acc.

RANDOM 0.30 0.49 0.37 0.51

CLUSTER+BLEU 0.35 0.63 0.45 0.54
CLUSTER+VEC 0.40 0.68 0.51 0.61

MSA+BLEU 0.73 0.74 0.73 0.84
MSA+VEC 0.79 0.66 0.72 0.85

Table 1: Results for sentence matching.

ready a remarkable improvement compared to the
random baseline, and still a significant one com-
pared to CLUSTER+BLEU.

Adding structural knowledge with MSA im-
proves the clustering’s accuracy performance by
24% (CLUSTER+VEC vs. MSA+VEC), precision
even goes up by 39%.

Intuitively we expected the MSA-based systems
to end up with a higher recall than the clustering
baselines, because sentences can be matched even
if their similarity is moderate or low, but their dis-
course context is highly similar. However, this is
only the case for the system using BLEU scores, but
not for the system based on the vector space model.
One possible explanation lies in picking f-score as
objective for the optimization of the gap costs for
MSA: For the naturally more restrictive word over-
lap measure, this leads to a more recall-oriented
system with a low threshold for aligning sentences,
whereas the gap costs for the vector-based system
favors a more restrictive alignment with more pre-
cise results.

The comparison of the two MSA-based sys-
tems highlights the great benefit of using structural
knowledge: Both MSA+BLEU and MSA+VEC have
comparable f-scores and accuracy. The advantage
from using the vector-space model that is still obvi-
ous for the clustering baselines is nearly evened out
when adding discourse knowledge as a backbone.
However, the vector model still results in nominally
higher precision and accuracy.

It is hard to do a direct comparison with state-
of-the-art paraphrase recognition systems, because
most are evaluated on different corpora, e.g., the
Microsoft paraphrase corpus (Dolan and Brockett,
2005, MSR). We cannot apply our system to the
MSR corpus, because we take complete texts as in-

put, while the MSR corpus solely delivers sentence
pairs. While the MSR corpus is larger than our
collection, the wording variations in its paraphrase
pairs are usually lower than for our examples. Thus
the final numbers of previous approaches might be
vaguely comparable with our results: Das and Smith
(2009) present two systems reaching f-scores of 0.82
and 0.83, with a precision of 0.75 and 0.80. Both
precision and f-scores of our msa-based systems lie
within the same range. Heilman and Smith (2010)
introduce a recall-oriented system, which reaches an
f-score of 0.81 by a precision of 0.76. Compared to
this system, our approach results in better precision
values.

All further computations bases on the system us-
ing MSA and the vector space model (MSA+VEC),
because it achieves the highest precision and accu-
racy values.

6.2 Paraphrase Fragment Evaluation
We also manually evaluate precision on paraphrase
fragments, and additionally describe the productiv-
ity of the different setups, providing some intuition
about the methods’ recall.

Gold-Standard
We randomly collect 150 fragment pairs for each

of the five system configurations (explained in the
following section). Each fragment pair (f1, f2) is
annotated with one of the following categories:

1. paraphrases: f1 and f2 convey the same
meaning, i.e., they are well-formed and good
matches on the content level.

2. related: f1 and f2 overlap in their meaning, but
one or both phrases have additional unmatched
information.

3. irrelevant: f1 and f2 are unrelated.

This labeling scheme again assesses precision as
well as paraphrase granularity. For precision rating,
we collapse categories 1&2 into one paraphrasecoll

category. Each pair is labelled by two annotators,
who were shown both the fragments and the whole
sentences they originate from. Overall, the raters
had an agreement of κ = 0.67 (“substantial agree-
ment”), which suggests that the task was easier than
sentence level annotation. The agreement for the
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distinction between the paraphrasecoll categories
and irrelevant instances reaches a level of κ = 0.88
(also “substantial agreement”). All conflicts were
again adjudicated by a third annotator. Overall, the
gold standard contains 190 paraphrases, 258 related
pairs and 302 irrelevant instances. Unlike previ-
ous approaches to fragment extraction, we do not
evaluate grammaticality, given that the VP-fragment
method implicitly constrains the output fragments to
be complete phrases.

Configurations & Results
We take the output of the sentence matching sys-

tem MSA+VEC as input for paraphrase fragment ex-
traction. As detailed in Sec. 5, our core fragment
module uses the word-word alignments provided by
GIZA++ and uses a chunker for fragment extrac-
tion. We successively enrich this core module with
more information, either by longest common sub-
string (LCS) matching or by operating on depen-
dency trees (VP). In addition, we evaluate the in-
fluence of coreference resolution by preprocessing
the input to the best performing configuration with
pronoun resolution (COREF).

We mainly compute precision for this task, as the
recall of paraphrase fragments is difficult to define.
However, we do include a measure we call produc-
tivity to indicate the algorithm’s completeness. It is
defined as the ratio between the number of result-
ing fragment pairs and the number of sentence pairs
used as input.

Extraction Method Precision Productivity

MSA 0.57 0.76

MSA+LCS 0.45 0.30

MSA+VP 0.81 0.42

MSA+VP+COREF 0.84 0.45

Table 2: Results of paraphrase fragment extraction.

Tab. 2 shows the evaluation results. We reach
our best precision by using the VP-fragment heuris-
tics, which is still more productive than the LCS
method. The grammatical filter gives us a higher
precision compared to the purely alignment-based
approaches. Enhancing the system with corefer-
ence resolution raises the score even further. We

cannot directly compare this performance to other
systems, as all other approaches have different data
sources. However, precision is usually manually
evaluated, so the figures are at least indicative for
a comparison with previous work: One state-of-the-
art system introduced by Zhao et al. (2008) extracts
paraphrase fragments from bilingual parallel cor-
pora and reaches a precision of 0.67. We found the
same number using our previous approach (Wang
and Callison-Burch, 2011), which is roughly equiv-
alent to our core module. Our approach outperforms
both by 17% with similar estimated productivity.

As a final comparison, we show how the perfor-
mance of the sentence matching methods directly af-
fects the fragment extraction. We use the VP-based
fragment extraction system (VP), and compare the
performances by using either the outputs from our
main system (MSA+VP) or alternatively the base-
line that replaces MSA with a clustering algorithm
(CLUSTER+VP). Both variants use the vector-based
semantic similarity measure.

Sentence matching Precision Productivity

CLUSTER+VP 0.31 0.04

MSA+VP 0.81 0.42

Table 3: Impact of MSA on fragment extraction

As shown in Tab. 3, the precision gain from using
MSA becomes tremendous during further process-
ing: We beat the baseline by 50% here, and produc-
tivity increases by a factor of 10. This means that the
baseline produces on average 0.01 good fragment
pairs per matched sentence pair, and the final sys-
tem extracts 0.3 of them. Those numbers show that
for any application that acquires paraphrases of arbi-
trary granularity, sequential event information pro-
vides an invaluable source to achieve a lean para-
phrasing method with high precision.

6.3 Example output

Fig. 3 shows exemplary results from our system
pipeline, using the VP–FRAGMENTS method with
full coreference resolution on the sentence pairs ex-
tracted by MSA. The results reflect the importance
of discourse information for this task: Sentences are
correctly matched in spite of not having common de-
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Sentence 1 [with fragment 1] Sentence 2 [with fragment 2]

1 Taub meets House for dinner and claims [that
Rachel had a pottery class].

Taub shows up for his dinner with House without
Rachel, explaining [that she’s at a ceramics class].

2 House doesn’t want her to go and she doesn’t want
to go either, but [she can’t leave her family.]

Lydia admits that she doesn’t want to leave House but
[she has to stay with her family].

3 Thirteen is in a cab to the airport when she finds
out that [her trip had been canceled].

Hadley discovers that [her reservation has been can-
celled].

4 Nash asks House [for the extra morphine]. The patient is ready [for more morphine].

5 House comes in to tell Wilson that Tucker has can-
cer and [shows him the test results].

House comes in and [informs Wilson that the tests have
proven positive]: Tucker has cancer.

6 Foreman tells him [to confide in Cameron]. When Chase points out they can’t move Donny with-
out alerting Cameron, Foreman tells Chase [to be honest
with his wife].

7 Thirteen breaks [into the old residence] and tells
Taub that she realizes that he’s been with Maya.

Taub and Thirteen break [into Ted’s former residence].

8 He finds [a darkened patch on his right foot near
the big toe].

House finally finds [a tumorous mole on his toe].

Figure 3: Example results; fragments extracted from aligned sentences are bracketed and emphasized.

pendency patterns (e.g., Example 4) or sharing many
n-grams (6-8). Additionally, the coreference resolu-
tion allows us to match Rachel (1) and Wilson (5) to
the correct corresponding pronouns. All examples
show that this technique of matching sentence could
even help to make coreference resolution better, be-
cause we can easily identify Cameron with his wife,
Lydia with the respective pronouns, Nash with The
Patient or the nickname Thirteen with Hadley, the
character’s actual name.

7 Conclusion and Future Work

We presented our work on paraphrase extraction us-
ing discourse information, on a corpus consisting
of recaps of TV show episodes. Our approach first
uses MSA to extract sentential paraphrases, which
are then further processed to compute finer-grained
paraphrase fragments using dependency trees and
pronoun resolution. The experimental results show
great advantages from using discourse information,
beating informed baselines and performing compet-
itively with state-of-the-art systems.

For future work, we plan to use MSA to align
single clauses rather than whole sentences. This
can also help to define the fragment boundaries
more clearly. Additionally, we plan to generalize

the method for other parallel texts by preprocessing
them with a temporal classifier. In a more advanced
step, we will also use the aligned paraphrases to help
resolving discourse structure, e.g. for coreference
resolution, which could lead to a high-performance
bootstrapping system. In a long-term view, it would
be interesting to see how aligned discourse trees
could help to extract paraphrases from arbitrary par-
allel text.
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Abstract

We propose a technique to generate non-
projective word orders in an efficient statisti-
cal linearization system. Our approach pre-
dicts liftings of edges in an unordered syntac-
tic tree by means of a classifier, and uses a
projective algorithm for tree linearization. We
obtain statistically significant improvements
on six typologically different languages: En-
glish, German, Dutch, Danish, Hungarian, and
Czech.

1 Introduction

There is a growing interest in language-independent
data-driven approaches to natural language genera-
tion (NLG). An important subtask of NLG is sur-
face realization, which was recently addressed in the
2011 Shared Task on Surface Realisation (Belz et
al., 2011). Here, the input is a linguistic representa-
tion, such as a syntactic dependency tree lacking all
precedence information, and the task is to determine
a natural, coherent linearization of the words.

The standard data-driven approach is to traverse
the dependency tree deciding locally at each node on
the relative order of the head and its children. The
shared task results have proven this approach to be
both effective and efficient when applied to English.

It is what federal support should try to achieve
SBJ

ROOT OBJ

NMOD SBJ
PRD

VC OPRD IM

Figure 1: A non-projective example from the CoNLL
2009 Shared Task data set for parsing (Hajič et al., 2009).

However, the approach can only generate pro-
jective word orders (which can be drawn with-
out any crossing edges). Figure 1 shows a non-
projective word order: the edge connecting the ex-
tracted wh-pronoun with its head crosses another
edge. Once what has been ordered relative to
achieve, there are no ways of inserting intervening
material. In this case, only ungrammatical lineariza-
tions can be produced from the unordered input tree:

(1) a. *It is federal support should try to what achieve
b. *It is federal support should try to achieve what
c. *It is try to achieve what federal support should

Although rather infrequent in English, non-
projective word orders are quite common in lan-
guages with a less restrictive word order. In these
languages, it is often possible to find a grammati-
cally correct projective linearization for a given in-
put tree, but discourse coherence, information struc-
ture, and stylistic factors will often make speak-
ers prefer some non-projective word order.1 Figure
2 shows an object fronting example from German
where the edge between the subject and the finite
verb crosses the edge between the object and the full
verb. Various other constructions, such as extraposi-
tion of (relative) clauses or scrambling, can lead to
non-projectivity. In languages where word order is
driven to an even larger degree by information struc-
ture, such as Czech and Hungarian, non-projectivity
can likewise result from various ordering decisions.
These phenomena have been studied extensively in

1A categorization of non-projective edges in the Prague
Dependency Treebank (Böhmová et al., 2000) is presented in
Hajičová et al. (2004).
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the linguistic literature, and for certain languages,
work on rule-based generation has addressed certain
aspects of the problem.

Das Mandat will er zurückgeben .
the.ACC mandate.ACC want.3SG he.NOM return.INF .

NK

OA#
–

SB
OC

–

’He wants to return the mandate.’

Figure 2: German object fronting with complex verb in-
troducing a non-projective edge.

In this paper, we aim for a general data-driven ap-
proach that can deal with various causes for non-
projectivity and will work for typologically dif-
ferent languages. Our technique is inspired by
work in data-driven multilingual parsing, where
non-projectivity has received considerable attention.
In pseudo-projective parsing (Kahane et al., 1998;
Nivre and Nilsson, 2005), the parsing algorithm is
restricted to projective structures, but the issue is
side-stepped by converting non-projective structures
to projective ones prior to training and application,
and then restoring the original structure afterwards.

Similarly, we split the linearization task in two
stages: initially, the input tree is modified by lifting
certain edges in such a way that new orderings be-
come possible even under a projectivity constraint;
the second stage is the original, projective lineariza-
tion step. In parsing, projectivization is a determin-
istic process that lifts edges based on the linear or-
der of a sentence. Since the linear order is exactly
what we aim to produce, this deterministic conver-
sion cannot be applied before linearization. There-
fore, we use a statistical classifier as our initial lift-
ing component. This classifier has to be trained on
suitable data, and it is an empirical question whether
the projective linearizer can take advantage of this
preceding lifting step.

We present experiments on six languages with
varying degrees of non-projective structures: En-
glish, German, Dutch, Danish, Czech and Hungar-
ian, which exhibit substantially different word order
properties. Our approach achieves significant im-
provements on all six languages. On German, we
also report results of a pilot human evaluation.

2 Related Work

An important concept for tree linearization are word
order domains (Reape, 1989). The domains are bags
of words (constituents) that are not allowed to be dis-
continuous. A straightforward method to obtain the
word order domains from dependency trees and to
order the words in the tree is to use each word and
its children as domain and then to order the domains
and contained words recursively. As outlined in the
introduction, the direct mapping of syntactic trees to
domains does not provide the possibility to obtain
all possible correct word orders.

Linearization systems can be roughly distin-
guished as either rule-based or statistical systems. In
the 2011 Shared Task on Surface Realisation (Belz
et al., 2011), the top performing systems were all
statistical dependency realizers (Bohnet et al., 2011;
Guo et al., 2011; Stent, 2011).

Grammar-based approaches map dependency
structures or phrase structures to a tree that repre-
sents the linear precedence. These approaches are
mostly able to generate non-projective word orders.
Early work was nearly exclusively applied to phrase
structure grammars (e.g. (Kathol and Pollard, 1995;
Rambow and Joshi, 1994; Langkilde and Knight,
1998)). Concerning dependency-based frameworks,
Bröker (1998) used the concept of word order do-
mains to separate surface realization from linear
precedence trees. Similarly, Duchier and Debus-
mann (2001) differentiate Immediate Dominance
trees (ID-trees) from Linear Precedence trees (LP-
trees). Gerdes and Kahane (2001) apply a hierarchi-
cal topological model for generating German word
order. Bohnet (2004) employs graph grammars to
map between dependency trees and linear prece-
dence trees represented as hierarchical graphs. In the
frameworks of HPSG, LFG, and CCG, a grammar-
based generator produces word order candidates that
might be non-projective, and a ranker is used to se-
lect the best surface realization (Cahill et al., 2007;
White and Rajkumar, 2009).

Statistical methods for linearization have recently
become more popular (Langkilde and Knight, 1998;
Ringger et al., 2004; Filippova and Strube, 2009;
Wan et al., 2009; He et al., 2009; Bohnet et al., 2010;
Guo et al., 2011). They typically work by travers-
ing the syntactic structure either bottom-up (Filip-
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pova and Strube, 2007; Bohnet et al., 2010) or top-
down (Guo et al., 2011; Bohnet et al., 2011). These
linearizers are mostly applied to English and do not
deal with non-projective word orders. An excep-
tion is Filippova and Strube (2007), who contribute
a study on the treatment of preverbal and postver-
bal constituents for German focusing on constituent
order at the sentence level. The work most similar
to ours is that of Gamon et al. (2002). They use
machine-learning techniques to lift edges in a pre-
processing step to a surface realizer. Their objec-
tive is the same as ours: by lifting, they avoid cross-
ing edges. However, contrary to our work, they use
phrase-structure syntax and focus on a limited num-
ber of cases of crossing branches in German only.

3 Lifting Dependency Edges

In this section, we describe the first of the two stages
in our approach, namely the classifier that lifts edges
in dependency trees. The classifier we aim to train
is meant to predict liftings on a given unordered de-
pendency tree, yielding a tree that, with a perfect lin-
earization, would not have any non-projective edges.

3.1 Preliminaries

The dependency trees we consider are of the form
displayed in Figure 1. More precisely, all words (or
nodes) form a rooted tree, where every node has ex-
actly one parent (or head). Edges point from head
to dependent, denoted in the text by h→ d, where h
is the head and d the dependent. All nodes directly
or transitively depend on an artificial root node (de-
picted in Figure 1 as the incoming edge to is).

We say that a node a dominates a node d if a is
an ancestor of d. An edge h → d is projective iff
h dominates all nodes in the linear span between h
and d. Otherwise it is non-projective. Moreover,
a dependency tree is projective iff all its edges are
projective. Otherwise it is non-projective.

A lifting of an edge h→ d (or simply of the node
d) is an operation that replaces h → d with g → d,
given that there exists an edge g → h in the tree, and
undefined otherwise (i.e. the dependent d is reat-
tached to the head of its head).2 When the lifting

2The undefined case occurs only when d depends on the
root, and hence cannot be lifted further; but these edges are by
definition projective, since the root dominates the entire tree.

operation is applied n successive times to the same
node, we say the node was lifted n steps.

3.2 Training

During training we make use of the projectivization
algorithm described by Nivre and Nilsson (2005).
It works by iteratively lifting the shortest non-
projective edges until the tree is projective. Here,
shortest edge refers to the edge spanning over the
fewest number of words. Since finding the shortest
edge relies on the linear order, instead of lifting the
shortest edge, we lift non-projective edges ordered
by depth in the tree, starting with the deepest nested
edge. A lifted version of the tree from Figure 1 is
shown in Figure 3. The edge of what has been lifted
three steps (the original edge is dotted), and the tree
is no longer non-projective.

It is what federal support should try to achieve
SBJ

ROOT OBJ
OBJ

NMOD SBJ
PRD

VC OPRD IM

Figure 3: The sentence from Figure 1, where what has
been assigned a new head (solid line). The original edge
is dotted.

We model the edge lifting problem as a multi-
class classification problem and consider nodes one
at a time and ask the question “How far should this
edge be lifted?”, where classes correspond to lifting
0, 1, 2, ..., n steps. To create training instances we
use the projectivization algorithm mentioned above.
We traverse the nodes of the tree sorted by depth.
For multiple nodes at the same depth, ties are broken
by linear order, i.e. for multiple nodes at the same
depth, the leftmost is visited first. When a node is
visited, we create a training instance out of it. Its
class is determined by the number of steps it would
be lifted by the projectivization algorithm given the
linear order (in most cases the class corresponds to
no lifting, since most edges are projective). As we
traverse the nodes, we also execute the liftings (if
any) and update the tree on the fly.

The training instances derived are used to train a
logistic regression classifier using the LIBLINEAR

package (Fan et al., 2008). The features used for
the lifting classifier are described in Table 1. Since
we use linear classifiers, our feature set also con-
tains conjunctions of atomic features. The features
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Atomic features
∀x ∈ {w,wp, wgp, wch, ws, wun} morph(x), label(x), lemma(x), PoS(x)
∀x ∈ {wgc, wne, wco} label(x), lemma(x), PoS(x)

Complex features
∀x ∈ {w,wp, wgp} lemma(x)+PoS(x), label(x)+PoS(x), label(x)+lemma(x)
∀x ∈ {wch, ws, wun}, y = w lemma(x)+lemma(y), PoS(y)+lemma(x), PoS(y)+lemma(x)
∀x ∈ {w,wp, wgp}, y = HEAD(x) lemma(x)+lemma(y), lemma(x)+PoS(y), PoS(x)+lemma(y)
∀x ∈ {w,wp, wgp}, y = HEAD(x), z = HEAD(y) PoS(x)+PoS(y)+PoS(z), label(x)+label(y)+label(z)
∀x ∈ {wch, ws, wun}, y = HEAD(x), z = HEAD(y) PoS(x)+PoS(y)+PoS(z), label(x)+label(y)+label(z)

Non-binary features
∀x ∈ {w,wp, wgp} SUBTREESIZE(x), RELSUBTREESIZE(x)

Table 1: Features used for lifting. w refers to the word (dependent) in question. And with respect to w, wp is the
parent; wgp is the grandparent; wch are children; ws are siblings; wun are uncles (i.e. children of the grandparent,
excluding the parent); wgc are grandchildren; wne are nephews (i.e. grandchildren of the parent that are not children
of w); wco are cousins (i.e. grandchildren of the grandparent that are not w or siblings of w). The non-binary feature
functions refer to: SUBTREESIZE – the absolute number of nodes below x, RELSUBTREESIZE – the relative size of
the subtree rooted at x with respect to the whole tree.

involve the lemma, dependency edge label, part-of-
speech tag, and morphological features of the node
in question, and of several neighboring nodes in the
dependency tree. We also have a few non-binary fea-
tures that encode the size of the subtree headed by
the node and its ancestors.

We ran preliminary experiments to determine the
optimal architecture. First, other ways of modeling
the liftings are conceivable. To find new reattach-
ment points, Gamon et al. (2002) propose two other
ways, both using a binary classifier: applying the
classifier to each node x along the path to the root
asking “Should d be reattached to x?”; or lifting one
step at a time and applying the classifier iteratively
until it says stop. They found that the latter outper-
formed the former. We tried this method, but found
that it was inferior to the multi-class model and more
frequently over- or underlifted.

Second, to avoid data sparseness for infrequent
lifting distances, we introduce a maximum number
of liftings. We found that a maximum of 3 gave the
best performance. In the pseudocode below, we re-
fer to this number as maxsteps.3 This means that we
are able to predict the correct lifting for most (but
not all) of the non-projective edges in our data sets
(cf. Table 3).

Third, as Nivre and Nilsson (2005) do for pars-

3During training, nodes that are lifted further than maxsteps
are assigned to the class corresponding to maxsteps. This ap-
proach worked better than ignoring the training instance or
treating it as a non-lifting (i.e. a lifting of 0 steps).

ing, we experimented with marking edges that were
lifted by indicating this on the edge labels. In the
case of parsing, this step is necessary in order to re-
verse the liftings in the parser output. In our case,
it could potentially be beneficial for both the lifting
classifier, and for the linearizer. However, we found
that marking liftings at best gave similar results as
not marking, so we kept the original labels without
marking.

3.3 Decoding

In the decoding stage, an unordered tree is given and
the goal is to lift edges that would be non-projective
with respect to the gold linear order. Similarly to
how training instances are derived, the decoding al-
gorithm traverses the tree bottom-up and visits every
node once. Ties between nodes at the same depth are
broken in an arbitrary but deterministic way. When
a node is visited, the classifier is applied and the cor-
responding lifting is executed. Pseudocode is given
in Algorithm 1.4

Different orderings of nodes at the same depth
can lead to different lifts. The reason is that lift-
ings are applied immediately and this influences the
features when subsequent nodes are considered. For
instance, consider two sibling nodes ni and nj . If
ni is visited before nj , and ni is lifted, this means

4The MIN function is used to guarantee that the edge is not
lifted beyond the root node of the tree. This does not happen
in practice though, since the feature set of the classifier include
features that implicitly encode the proximity to the root node.
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that at the time we visit nj , ni is no longer a sibling
of nj , but rather an uncle. An obvious extension of
the decoding algorithm presented above is to apply
beam search. This allows us to consider nj both in
the context where ni has been lifted and when it has
not been lifted.

1 N← NODES(T )
2 SORT-BY-DEPTH-BREAK-TIES-ARBITRARILY(N,T )
3 foreach node ∈ N do
4 feats← EXTRACT-FEATURES(node, T )
5 steps← CLASSIFY(feats)
6 steps← MIN(steps,ROOT-DIST(node))
7 LIFT(node, T, steps)
8 return T

Algorithm 1: Greedy decoding for lifting.

Pseudocode for the beam search decoder is given
in Algorithm 2. The algorithm keeps an agenda of
trees to explore as each node is visited. For every
node, it clones the current tree and applies every pos-
sible lifting. Every tree also has an associated score,
which is the sum of the scores of each lifting so far.
The score of a lifting is defined to be the log proba-
bility returned from the logistic classifier. After ex-
ploring all trees in the agenda, the k-best new trees
from the beam are extracted and put back into the
agenda. When all nodes have been visited, the best
tree in the agenda is returned. For the experiments
the beam size (k in Algorithm 2) was set to 20.

1 N← NODES(T )
2 SORT-BY-DEPTH-BREAK-TIES-ARBITRARILY(N,T )
3 Tscore ← 0
4 Agenda← {T}
5 foreach node ∈ N do
6 Beam← ∅
7 foreach tree ∈ Agenda do
8 feats← EXTRACT-FEATURES(node, tree)
9 m← MIN(maxsteps,ROOT-DIST(node))

10 foreach s ∈ 0 .. maxsteps do
11 t← CLONE(tree)
12 score← GET-LIFT-SCORE(feats, s)
13 tscore = tscore + score
14 LIFT(node, t, s)
15 Beam← Beam ∪ {t}
16 Agenda← EXTRACTKBEST(Beam, k)
17 return EXTRACTKBEST(Agenda, 1)

Algorithm 2: Beam decoding for lifting.

While beam search allows us to explore the search
space somewhat more thoroughly, a large number of

possibilities remain unaccounted for. Again, con-
sider the sibling nodes ni and nj when ni is visited
before nj . The beam allows us to consider nj both
when ni is lifted and when it is not. However, the
situation where nj is visited before ni is still never
considered. Ideally, all permutations of nodes at the
same depth should be explored before moving on.
Unfortunately this leads to a combinatorial explo-
sion of permutations, and exhaustive search is not
tractable. As an approximation, we create two or-
derings and run the beam search twice. The dif-
ference between the orderings is that in the second
one all ties are reversed. As this bibeam consistently
improved over the beam in Algorithm 2, we only
present these results in Section 5 (there denoted sim-
ply Beam).

4 Linearization

A linearizer searches for the optimal word order
given an unordered dependency tree, where the op-
timal word order is defined as the single reference
order of the dependency tree in the gold standard.
We employ a statistical linearizer that is trained on a
corpus of pairs consisting of unordered dependency
trees and their corresponding sentences. The lin-
earization method consists of the following steps:

Creating word order domains. In the first step,
we build the word order domains dh for all nodes
h ∈ y of a dependency tree y. A domain is defined
as a node and all of its direct dependents. For ex-
ample, the tree shown in Figure 3 has the following
domains: {it, be, should}, {what, support, should, try},
{federal, support}, {try, to}, {to, achieve}

If an edge was lifted before the linearization, the
lifted node will end up in the word order domain of
its new head rather than in the domain of its original
head. This way, the linearizer can deduce word or-
ders that would result in non-projective structures in
the non-lifted tree.

Ordering the words of the domains. In the sec-
ond step, the linearizer orders the words of each do-
main. The position of a subtree is determined by the
position of the head of the subtree in the enclosing
domain. Algorithm 3 shows the tree linearization
algorithm. In our implementation, the linearizer tra-
verses the tree either top-down or bottom-up.
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1 // T is the dependency tree with lifted nodes
2 beam-size← 1000
3 for h ∈ T do
4 domainh← GET-DOMAIN(T ,h)
5 // initialize the beam with a empty word list
6 Agendah← (ε)
7 foreach w ∈ domainh do
8 // beam for extending word order lists
9 Beam← ()

10 foreach l ∈ Agendah do
11 // clone list l and append the word w
12 if w 6∈ l then
13 l′ ← APPEND(l,m)
14 Beam← Beam ⊕ l′
15 score[l′]← COMPUTE-SCORE(l′)
16 if | Beam | > beam-size then
17 SORT-LISTS-DESCENDING-TO-

SCORE(Beam,score)
18 Agendah← SUBLIST(0,beam-size,Beam)
19 else
20 Agendah← Beam
21 foreach l ∈ Beam do
22 SCOREg[l]← SCORE[l] +

GLOBAL-SCORE(l)
23 Agendah← Beam
24 return Beam

Algorithm 3: Dependency Tree Linearization.

The linearization algorithm initializes the word
order beam (agendah) with an empty order (ε) (line
6). It then iterates over the words of a domain (lines
7-20). In the first iteration, the algorithm clones and
extends the empty word order list (ε) by each word
of the sentence (line 12-15). If the beam (beam)
exceeds a certain size (beam-size), it is sorted by
score and pruned to maximum beam size (beam-
size) (lines 16-20). The following example illus-
trates the extensions of the beam for the top domain
shown in Figure 3.

Iter. agendabe

0: (ε)
1: ((it) (be) (should))
2: ((it be) (it should) (be it) (be should) ...)

The beam enables us to apply features that encode
information about the first tokens and the last token,
which are important for generating, e.g. the word
order of questions, i. e. if the last token is a question
mark then the sentence should probably be a ques-
tion (cf. feature set shown in Table 2). Furthermore,
the beam enables us to generate alternative lineariza-
tions. For this, the algorithm iterates over the alter-

native word orders of the domains in order to as-
semble different word orders on the sentence level.5

Finally, when traversing the tree bottom-up, the al-
gorithm has to use the different orders of the already
ordered subtrees as context, which also requires a
search over alternative word orders of the domains.

Training of the Linearizer. We use MIRA
(Crammer et al., 2006) for the training of the lin-
earizer. The classifier provides a score that we use to
rank the alternative word orders. Algorithm 3 calls
two functions to compute the score: compute-score
(line 15) for features based on pairs of words and tri-
grams and compute-global-score for features based
on word patterns of a domain. Table 2 shows the
feature set for the two functions. In the case that the
linearization of a word order domain is incorrect the
algorithm updates its weight vector w. The follow-
ing equation shows the update function of the weight
vector:

w = w + τh(φ(dh, T, xg)− φ(dh, T, xp))

We update the weight vector w by adding the dif-
ference of the feature vector representation of the
correct linearization xg and the wrongly predicted
linearization xp, multiplied by τ . τ is the passive-
aggressive update factor as defined below. The suf-
fered lossh is φ(dh, T, xp)− φ(dh, T, xg).

τ = lossh
||φ(dh,T,xg)−φ(dh,T,xp)||2

Creating the word order of a sentence. The lin-
earizer traverses the tree either top-down or bottom-
up and assembles the results in the surface order.
The bottom-up linearization algorithm can take into
account features drawn from the already ordered
subtrees while the top-down algorithm can employ
as context only the unordered nodes. However, the
bottom-up algorithm additionally has to carry out a
search over the alternative linearization of the sub-
domains, as different orders of the subdomain pro-
vide different context features. This leads to a higher
linearization time. We implemented both, but could
only find a rather small accuracy difference. In the
following, we therefore present results only for the
top-down method.

5The beam also makes it possible to employ a generative
language model to rerank alternative linearizations.
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Atomic features
For nodes w ∈
domainh

lemma(w), label(w), PoS(w), num-children(w), num-grandchildren(w), label-children(w),
PoS-children(w)

For domain
domainh

head(w1,w2), head(w1,w2,w3), label(head), PoS(head), PoS(w1), label(wn), label(wn−1),
contains-?(domainh)

Complex features

For bigrams
(w1, w2) ∈
domainh

feat2: label(w1)+label(w2), label(w1)+lemma(w2), lemma(w1)+lemma(w2), PoSw1+PoSw2

feat3: label(w1)+num-children(w2)+num-children(w1),PoS-child(w1)+label(w1)+label(w2)
feat4: label(w1)+label(w2)+lemma(w2)+PoS(w1), label(w1)+label(w2)+PoS(head)+head(w1,w2)
feat5: label(w1)+label(w2)+PoS(head)+label(head)+head(w1,w2)

For trigrams
(w1, w2, w3) ∈
domainh

feat3: lemma(w1)+lemma(w2)+lemma(w3)
feat4: PoS(w1)+PoS(w2)+PoS(w3)+head(w1,w2,w3)
feat5: label(w1)+label(w2)+label(w3)+PoS(w1)+head(w1,w2,w3)

For sentence s feat6: label(w1)+label(wn−1)+lemma(head)+lemma(w1)+lemma(wn−1)
feat7: PoS(w1)+PoS(w2)+PoS(w3)+PoS(wn−1)+PoS(wn−2)+PoS(wn−3)+contains-?(s)

Table 2: Exemplified features used for scoring linearizations of a word order domain (see Algorithm 3). Atomic
features which represent properties of a node or a domain are conjoined into feature vectors of different lengths.
Linearizations are scored based on bigrams, trigrams, and global sentence-level features.

5 Experiments

We conduct experiments on six European languages
with varying degrees of word order restrictions:
While English word order is very restrictive, Czech
and Hungarian exhibit few word order constraints.
Danish, Dutch, and German (so-called V2, i. e.
verb-second, languages) show a relatively free word
order that is however more restrictive than in Hun-
garian or Czech. The English and the Czech data
are from the CoNLL 2009 Shared Task data sets
(Hajič et al., 2009). The Danish and the Dutch data
are from the CoNLL 2006 Shared Task data sets
(Buchholz and Marsi, 2006). For Hungarian, we use
the Hungarian Dependency Treebank (Vincze et al.,
2010), and for German, we use a dependency con-
version by Seeker and Kuhn (2012).

# sent’s np sent’s np edges np ≤ 3 lifts
English 39,279 7.63 % 0.39% 98.39%
German 36,000 28.71% 2.34% 94.98%
Dutch 13,349 36.44% 5.42% 99.80%
Danish 5,190 15.62 % 1.00% 96.72%
Hungarian 61,034 15.81% 1.45% 99.82%
Czech 38,727 22.42% 1.86% 99.84%

Table 3: Size of training sets, percentage of non-
projective (np) sentences and edges, percentage of np
edges covered by 3 lifting steps.

Table 3 shows the sizes of the training corpora
and the percentage of non-projective sentences and
edges in the data. Note that the data sets for Dan-

ish and Dutch are quite small. English has the least
percentage of non-projective edges. Czech, Ger-
man, and Dutch show the highest percentage of non-
projective edges. The last column shows the per-
centage of non-projective edges that can be made
projective by at most 3 lifting steps.

5.1 Setup
In our two-stage approach, we first train the lifting
classifier. The results for this classifier are reported
in Section 5.2.

Second, we train the linearizer on the output of
the lifting classifier. To assess the impact of the
lifting technique on linearization, we built four sys-
tems on each language: (a) a linearizer trained on
the original, non-lifted dependency structures (No-
lift), two trained on the automatically lifted edges
(comparing (b) the beam and (c) greedy decoding),
(d) one trained on the oracle, i. e. gold-lifted struc-
tures, which gives us an upper bound for the lifting
technique. The linearization results are reported in
Section 5.3.

In this two-stage setup, we have the problem that,
if we re-apply the lifting classifier on the data it was
trained on, the input for the linearizer will be better
during training than during testing. To provide real-
istic training data for the linearizer, we make a 10-
fold cross-validation of the lifting classifier on the
training set, and use this as training data for the lin-
earizer. The lifting classifier that is applied to the
test set is trained on the entire training set.
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5.2 Lifting results
To evaluate the performance of the lifting classifier,
we present precision, recall, and F-measure results
for each language. We also compute the percentage
of sentences that were handled perfectly by the lift-
ing classifier. Precision and recall are defined the
usual way in terms of true positives, false positives,
and false negatives, where true positives are edges
that should be lifted and were lifted correctly; false
positives are edges that should not be lifted but were
and edges that should be lifted and were lifted, but
were reattached in the wrong place; false negatives
are edges that should be lifted but were not.

The performance of both the greedy decoder and
the bibeam decoder are shown in Table 4. The scores
are taken on the cross-validation on the training set,
as this provides more reliable figures. The scores
are micro-averaged, i.e. all folds are concatenated
and compared to the entire training set.

Although the major evaluation of the lifting is
given by the performance of the linearizer, Table 4
gives us some clues about the lifting. We see that
precision is generally much higher than recall. We
believe this is related to the fact that some phenom-
ena encoded by non-projective edges are more sys-
tematic and thus easier to learn than others (e. g. wh-
extraction vs. relative clause extraposition). We also
find that beam search consistently yields modest in-
creases in performance.

Greedy Beam
P R F1 Perfect P R F1 Perfect

Eng 77.31 50.45 61.05 95.76 78.85 50.63 61.66 95.83
Ger 72.33 63.59 67.68 81.91 72.05 64.41 68.02 81.97
Dut 76.66 74.89 75.77 79.28 78.07 76.49 77.27 80.34
Dan 85.90 58.55 69.64 92.76 85.90 58.55 69.64 92.74
Hun 72.60 61.61 66.66 88.46 73.06 64.77 68.67 88.73
Cze 77.79 55.00 64.44 86.28 77.31 55.68 64.74 86.33

Table 4: Precision, recall, F-measure and perfect projec-
tivization results for the lifting classifier.

5.3 Linearization Results and Discussion
We evaluate the linearizer with standard metrics: n-
gram overlap measures (BLEU, NIST), edit distance
(Edit), and the proportion of exactly linearized sen-
tences (Exact). As a means to assess the impact of
lifting more precisely, we propose the word-based
measure Exactlift which only looks at the words
with an incoming lifted edge. The Exactlift score

then corresponds to the percentage of these words
that has been realized in the exact same position as
in the original sentence.

LangLift BLEU NIST Edit Exact Exactlift Nlift

EngNolift 0.911 15.09 0.922 56.40 0.00 0
EngGreedy 0.914 15.10 0.923 57.27 59.87 152
EngBeam 0.916 15.11 0.925 58.48 62.82 156
EngOracle 0.923 15.14 0.928 60.73 70.42 240
GerNolift 0.792 13.76 0.844 40.4 0.00 0
GerGreedy 0.811 13.86 0.864 42.9 55.21 480
GerBeam 0.813 13.86 0.866 43.3 56.47 487
GerOracle 0.843 13.97 0.889 49.95 72.87 634
DutNolift 0.743 11.31 0.796 30.05 0.00 0
DutGreedy 0.784 11.47 0.797 37.56 41.02 256
DutBeam 0.778 11.46 0.8 37.05 47.45 255
DutOracle 0.825 11.63 0.848 44.82 70.55 292
DanNolift 0.836 11.80 0.886 44.41 0.00 0
DanGreedy 0.852 11.88 0.90 45.96 67.65 34
DanBeam 0.858 11.90 0.90 48.76 67.65 34
DanOracle 0.865 11.92 0.90 50.93 74.42 43
HunNolift 0.755 15.70 0.839 30.71 0.00 0
HunGreedy 0.764 15.71 0.844 31.98 41,81 1,538
HunBeam 0.764 15.71 0.844 31.98 41.37 1,581
HunOracle 0.777 15.79 0.849 34.30 57.53 1,933
CzeNolift 0.693 14.32 0.789 25.14 0.00 0
CzeGreedy 0.711 14.45 0.797 26.85 42.04 923
CzeBeam 0.712 14.45 0.795 26.37 41.34 941
CzeOracle 0.729 14.52 0.806 28.79 53.12 1,282

Table 5: Performance of linearizers using different lift-
ings, Exactlift is the exact match for words with an in-
coming lifted edge, Nlift is the total number of lifted
edges.

The results are presented in Table 5. On each
language, the predicted liftings significantly im-
prove on the non-lifted baseline (except the greedy
decoding in English).6 The differences between
the beam and the greedy decoding are not signif-
icant. The scores on the oracle liftings suggest
that the impact of lifting on linearization is heav-
ily language-dependent: It is highest on the V2-
languages, and somewhat smaller on English, Hun-
garian, and Czech. This is not surprising since the
V2-languages (especially German and Dutch) have
the highest proportion of non-projective edges and
sentences (see Table 3). On the other hand, En-
glish has a very small number of non-projective
edges, such that the BLEU score (which captures
the n-gram level) reflects the improvement by only

6We used a t-test, with α = 0.01.
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a small increase. However, note that, on the sen-
tence level, the percentage of exactly regenerated
sentences increases by 2 points which suggests that
a non-negligible amount of non-projective sentences
can now be generated more fluently.
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Figure 4: Accuracy for the linearization of the sentences’
left and right periphery, the bars are upper and lower
bounds of the non-lifted and the gold-lifted baseline.

The Exactlift measure refines this picture: The
linearization of the non-projective edges is relatively
exact in English, and much less precise in Hungarian
and Czech where Exactlift is even low on the gold-
lifted edges. The linearization quality is also quite
moderate on Dutch where the lifting leads to con-
siderable improvements. These tendencies point to
some important underlying distinctions in the non-
projective word order phenomena over which we
are generalizing: In certain cases, the linearization
seems to systematically follow from the fact that the
edge has to be lifted, such as wh-extraction in En-
glish (Figure 1). In other cases, the non-projective
linearization is just an alternative to other grammati-
cal, but maybe less appropriate, realizations, such as
the prefield-occupation in German (Figure 2).

Since a lot of non-projective word orders affect
the clause-initial or clause-final position, we evalu-
ate the exact match of the left periphery (first three
words) and the right periphery (last three words) of
the sentence. The accuracies obtained are plotted
in Figure 4, where the lower and upper bars corre-
spond to the lower and upper bound from the non-
lifted and the gold-lifted baseline. It clearly emerges
from this figure that the range of improvements ob-
tainable from lifting is closely tied to the general

linearization quality, and also to word order prop-
erties of the languages. Thus, the range of sentences
affected by the lifting is clearly largest for the V2-
languages. The accuracies are high, but the ranges
are small for English, whereas the accuracies are low
and the ranges quite small for Czech and Hungarian.

System BLEU NIST
(Bohnet et al., 2011) (ranked 1st) 0.896 13.93
(Guo et al., 2011) (ranked 2nd) 0.862 13.68
Baseline-Non-Lifted + LM 0.896 13.94
Beam-Lifted + LM 0.901 13.96

Table 6: Results on the development set of the 2011
Shared Task on Surface Realisation data, (the test set was
not officially released).

We also evaluated our linearizer on the data of
2011 Shared Task on Surface Realisation, which is
based on the English CoNLL 2009 data (like our
previous evaluations) but excludes information on
morphological realization. For training and evalu-
ation, we used the exact set up of the Shared Task.
For the morphological realization, we used the mor-
phological realizer of Bohnet et al. (2010) that pre-
dicts the word form using shortest edit scripts. For
the language model (LM), we use a 5-gram model
with Kneser-Ney (Kneser and Ney, 1995) smoothing
derived from 11 million sentences of the Wikipedia.

In Table 6, we compare our two linearizers (with
and without lifting) to the two top systems of the
2011 Shared Task on Surface Realisation, (Bohnet et
al., 2011) and (Guo et al., 2011). Without the lifting,
our system reaches a score comparable to the top-
ranked system in the Shared Task. With the lifting,
we get a small7 but statistically significant improve-
ment in BLEU such that our system reaches a higher
score than the top ranked systems. This shows that
the improvements we obtain from the lifting carry
over to more complex generation tasks which in-
clude morphological realization.

5.4 Human Evaluation

We have carried out a pilot human evaluation on the
German data in order to see whether human judges
prefer word orders obtained from the lifting-based

7Remember that English has the least percentage of non-
projective edges in our data sets, which are however important
to linearize correctly (see Figure 1).
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linearizer. In particular, we wanted to check whether
the lifting-based linearizer produces more natural
word orders for sentences that had a non-projective
tree in the corpus, and maybe less natural word or-
ders on originally projective sentences. Therefore,
we divided the evaluated items into originally pro-
jective and non-projective sentences.

We asked four annotators to judge 60 sentence
pairs comparing the lifting-based against the non-
lifted linearizer using the toolkit by Kow and Belz
(2012). All annotators are students, two of them
have a background in linguistics. The items were
randomly sampled from the subset of the develop-
ment set containing those sentences where the lin-
earizers produced different surface realizations. The
items are subdivided into 30 originally projective
and 30 originally non-projective sentences.

For each item, we presented the original context
sentence from the corpus and the pair of automat-
ically produced linearizations for the current sen-
tence. The annotators had to decide on two crite-
ria: (i) which sentence do they prefer? (ii) how flu-
ent is that sentence? In both cases, we used con-
tinuous sliders as rating tools, since humans seem
to prefer them (Belz and Kow, 2011). For the first
criterion, the slider positions were mapped to values
from -50 (preference for left sentence) to 50 (pref-
erence for right sentence). If the slider position is
zero, both sentences are equally preferred. For the
second criterion, the slider positions were mapped
to values from 0 (absolutely broken sentence) to 100
(perfectly fluent sentence).

Sentences Scores Equal Lifted Non-lifted

All
% selected 44.58% 35.0% 20.42%
Fluency 56.14 75.77 72.78
Preference 0 34.75 31.06

Non-
Proj.

% selected 29.63% 58.33% 12.04%
Fluency 43.06 76.27 68.85
Preference 0 37.52 24.46

Proj.
% selected 56.82% 15.91% 27.27%
Fluency 61.72 74.29 74.19
Preference 0 26.43 33.44

Table 7: Results from human evaluation.

Table 7 presents the results averaged over all sen-
tences, as well as for the subsets of non-projective
and projective sentences. We report the percentage
of items where the judges selected both, the lifted, or
non-lifted sentence, alongside with the average flu-

ency score (0-100) and preference strength (0-50).
On the entire set of items, the judges selected both

sentences in almost half of the cases. However, on
the subset of non-projective sentences, the lifted ver-
sion is clearly preferred and has a higher average
fluency and preference strength. The percentage of
zero preference items is much higher on the sub-
set of projective sentences. Moreover, the average
fluency of the zero preference items is remarkably
higher on the projective sentences than on the non-
projective subset. We conclude that humans have
a strong preference for lifting-based linearizations
on non-projective sentences. We attribute the low
fluency score on the non-projective zero preference
items to cases where the linearizer did not get a cor-
rect lifting or could not linearize the lifting correctly
such that the lifted and the non-lifted version were
not appropriate. On the other hand, incorrect lift-
ings on projective sentences do not necessarily seem
to result in deprecated linearizations, which leads to
the high percentage of zero preferences with a good
average fluency on this subset.

6 Conclusion

We have presented a novel technique to linearize
sentences for a range of languages that exhibit non-
projective word order. Our approach deals with non-
projectivity by lifting edges in an unordered input
tree which can then be linearized by a standard pro-
jective linearization algorithm.

We obtain significant improvements for the
lifting-based linearization on English, German,
Dutch, Danish, Czech and Hungarian, and show that
lifting has the largest impact on the V2-languages.
In a human evaluation carried out on German we
also show that human judges clearly prefer lifting-
based linearizations on originally non-projective
sentences, and, on the other hand, that incorrect lift-
ings do not necessarily result in bad realizations of
the sentence.
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Abstract

We investigate paradigmatic representations
of word context in the domain of unsupervised
syntactic category acquisition. Paradigmatic
representations of word context are based on
potential substitutes of a word in contrast to
syntagmatic representations based on prop-
erties of neighboring words. We compare
a bigram based baseline model with several
paradigmatic models and demonstrate signif-
icant gains in accuracy. Our best model based
on Euclidean co-occurrence embedding com-
bines the paradigmatic context representation
with morphological and orthographic features
and achieves 80% many-to-one accuracy on a
45-tag 1M word corpus.

1 Introduction

Grammar rules apply not to individual words (e.g.
dog, eat) but to syntactic categories of words (e.g.
noun, verb). Thus constructing syntactic categories
(also known as lexical or part-of-speech categories)
is one of the fundamental problems in language ac-
quisition.

Syntactic categories represent groups of words
that can be substituted for one another without alter-
ing the grammaticality of a sentence. Linguists iden-
tify syntactic categories based on semantic, syntac-
tic, and morphological properties of words. There is
also evidence that children use prosodic and phono-
logical features to bootstrap syntactic category ac-
quisition (Ambridge and Lieven, 2011). However
there is as yet no satisfactory computational model
that can match human performance. Thus identify-

ing the best set of features and best learning algo-
rithms for syntactic category acquisition is still an
open problem.

Relationships between linguistic units can be
classified into two types: syntagmatic (concerning
positioning), and paradigmatic (concerning substitu-
tion). Syntagmatic relations determine which units
can combine to create larger groups and paradig-
matic relations determine which units can be sub-
stituted for one another. Figure 1 illustrates the
paradigmatic vs syntagmatic axes for words in a
simple sentence and their possible substitutes.

In this study, we represent the paradigmatic axis
directly by building substitute vectors for each word
position in the text. The dimensions of a substi-
tute vector represent words in the vocabulary, and
the magnitudes represent the probability of occur-
rence in the given position. Note that the substitute
vector for a word position (e.g. the second word in
Fig. 1) is a function of the context only (i.e. “the

cried”), and does not depend on the word that
does actually appear there (i.e. “man”). Thus substi-

Figure 1: Syntagmatic vs. paradigmatic axes for words
in a simple sentence (Chandler, 2007).
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tute vectors represent individual word contexts, not
word types. We refer to the use of features based on
substitute vectors as paradigmatic representations of
word context.

Our preliminary experiments indicated that using
context information alone without the identity or the
features of the target word (e.g. using dimension-
ality reduction and clustering on substitute vectors)
has limited success and modeling the co-occurrence
of word and context types is essential for inducing
syntactic categories. In the models presented in this
paper, we combine paradigmatic representations of
word context with features of co-occurring words
within the co-occurrence data embedding (CODE)
framework (Globerson et al., 2007; Maron et al.,
2010). The resulting embeddings for word types are
split into 45 clusters using k-means and the clusters
are compared to the 45 gold tags in the 1M word
Penn Treebank Wall Street Journal corpus (Mar-
cus et al., 1999). We obtain many-to-one accura-
cies up to .7680 using only distributional informa-
tion (the identity of the word and a representation of
its context) and .8023 using morphological and or-
thographic features of words improving the state-of-
the-art in unsupervised part-of-speech tagging per-
formance.

The high probability substitutes reflect both se-
mantic and syntactic properties of the context as
seen in the example below (the numbers in paren-
theses give substitute probabilities):

“Pierre Vinken, 61 years old, will join the
board as a nonexecutive director Nov. 29.”

the: its (.9011), the (.0981), a (.0006), . . .
board: board (.4288), company (.2584),
firm (.2024), bank (.0731), . . .

Top substitutes for the word “the” consist of
words that can act as determiners. Top substitutes
for “board” are not only nouns, but specifically
nouns compatible with the semantic context.

This example illustrates two concerns inherent in
all distributional methods: (i) words that are gener-
ally substitutable like “the” and “its” are placed in
separate categories (DT and PRP$) by the gold stan-
dard, (ii) words that are generally not substitutable
like “do” and “put” are placed in the same category

(VB). Freudenthal et al. (2005) point out that cat-
egories with unsubstitutable words fail the standard
linguistic definition of a syntactic category and chil-
dren do not seem to make errors of substituting such
words in utterances (e.g. “What do you want?” vs.
*“What put you want?”). Whether gold standard
part-of-speech tags or distributional categories are
better suited to applications like parsing or machine
translation can be best decided using extrinsic eval-
uation. However in this study we follow previous
work and evaluate our results by comparing them to
gold standard part-of-speech tags.

Section 2 gives a detailed review of related work.
Section 3 describes the dataset and the construction
of the substitute vectors. Section 4 describes co-
occurrence data embedding, the learning algorithm
used in our experiments. Section 5 describes our
experiments and compares our results with previ-
ous work. Section 6 gives a brief error analysis
and Section 7 summarizes our contributions. All the
data and the code to replicate the results given in
this paper is available from the authors’ website at
http://goo.gl/RoqEh.

2 Related Work

There are several good reviews of algorithms
for unsupervised part-of-speech induction
(Christodoulopoulos et al., 2010; Gao and Johnson,
2008) and models of syntactic category acquisition
(Ambridge and Lieven, 2011).

This work is to be distinguished from supervised
part-of-speech disambiguation systems, which use
labeled training data (Church, 1988), unsupervised
disambiguation systems, which use a dictionary of
possible tags for each word (Merialdo, 1994), or
prototype driven systems which use a small set
of prototypes for each class (Haghighi and Klein,
2006). The problem of induction is important for
studying under-resourced languages that lack la-
beled corpora and high quality dictionaries. It is also
essential in modeling child language acquisition be-
cause every child manages to induce syntactic cat-
egories without access to labeled sentences, labeled
prototypes, or dictionary constraints.

Models of unsupervised part-of-speech induction
fall into two broad groups based on the information
they utilize. Distributional models only use word
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types and their context statistics. Word-feature mod-
els incorporate additional morphological and ortho-
graphic features.

2.1 Distributional models

Distributional models can be further categorized into
three subgroups based on the learning algorithm.
The first subgroup represents each word type with its
context vector and clusters these vectors accordingly
(Schütze, 1995). Work in modeling child syntac-
tic category acquisition has generally followed this
clustering approach (Redington et al., 1998; Mintz,
2003). The second subgroup consists of proba-
bilistic models based on the Hidden Markov Model
(HMM) framework (Brown et al., 1992). A third
group of algorithms constructs a low dimensional
representation of the data that represents the empir-
ical co-occurrence statistics of word types (Glober-
son et al., 2007), which is covered in more detail in
Section 4.

Clustering: Clustering based methods represent
context using neighboring words, typically a sin-
gle word on the left and a single word on the right
called a “frame” (e.g., the dog is; the cat is). They
cluster word types rather than word tokens based on
the frames they occupy thus employing one-tag-per-
word assumption from the beginning (with the ex-
ception of some methods in (Schütze, 1995)). They
may suffer from data sparsity caused by infrequent
words and infrequent contexts. The solutions sug-
gested either restrict the set of words and set of con-
texts to be clustered to the most frequently observed,
or use dimensionality reduction. Redington et al.
(1998) define context similarity based on the num-
ber of common frames bypassing the data sparsity
problem but achieve mediocre results. Mintz (2003)
only uses the most frequent 45 frames and Biemann
(2006) clusters the most frequent 10,000 words us-
ing contexts formed from the most frequent 150-200
words. Schütze (1995) and Lamar et al. (2010b)
employ SVD to enhance similarity between less fre-
quently observed words and contexts. Lamar et al.
(2010a) represent each context by the currently as-
signed left and right tag (which eliminates data spar-
sity) and cluster word types using a soft k-means
style iterative algorithm. They report the best clus-
tering result to date of .708 many-to-one accuracy

on a 45-tag 1M word corpus.

HMMs: The prototypical bitag HMM model max-
imizes the likelihood of the corpus w1 . . . wn

expressed as P (w1|c1)
∏n

i=2 P (wi|ci)P (ci|ci−1)
where wi are the word tokens and ci are their (hid-
den) tags. One problem with such a model is its ten-
dency to distribute probabilities equally and the re-
sulting inability to model highly skewed word-tag
distributions observed in hand-labeled data (John-
son, 2007). To favor sparse word-tag distributions
one can enforce a strict one-tag-per-word solution
(Brown et al., 1992; Clark, 2003), use sparse pri-
ors in a Bayesian setting (Goldwater and Griffiths,
2007; Johnson, 2007), or use posterior regulariza-
tion (Ganchev et al., 2010). Each of these techniques
provide significant improvements over the standard
HMM model: for example Gao and Johnson (2008)
show that sparse priors can gain from 4% (.62 to .66
with a 1M word corpus) in cross-validated many-
to-one accuracy. However Christodoulopoulos et al.
(2010) show that the older one-tag-per-word models
such as (Brown et al., 1992) outperform the more
sophisticated sparse prior and posterior regulariza-
tion methods both in speed and accuracy (the Brown
model gets .68 many-to-one accuracy with a 1M
word corpus). Given that close to 95% of the word
occurrences in human labeled data are tagged with
their most frequent part of speech (Lee et al., 2010),
this is probably not surprising; one-tag-per-word is
a fairly good first approximation for induction.

2.2 Word-feature models

One problem with the algorithms in the previous
section is the poverty of their input features. Of the
syntactic, semantic, and morphological information
linguists claim underlie syntactic categories, con-
text vectors or bitag HMMs only represent limited
syntactic information in their input. Experiments
incorporating morphological and orthographic fea-
tures into HMM based models demonstrate signifi-
cant improvements. (Clark, 2003; Berg-Kirkpatrick
and Klein, 2010; Blunsom and Cohn, 2011) incor-
porate similar orthographic features and report im-
provements of 3, 7, and 10% respectively over the
baseline Brown model. Christodoulopoulos et al.
(2010) use prototype based features as described in
(Haghighi and Klein, 2006) with automatically in-
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duced prototypes and report an 8% improvement
over the baseline Brown model. Christodoulopou-
los et al. (2011) define a type-based Bayesian multi-
nomial mixture model in which each word instance
is generated from the corresponding word type mix-
ture component and word contexts are represented
as features. They achieve a .728 MTO score by ex-
tending their model with additional morphological
and alignment features gathered from parallel cor-
pora. To our knowledge, nobody has yet tried to
incorporate phonological or prosodic features in a
computational model for syntactic category acquisi-
tion.

2.3 Paradigmatic representations

Sahlgren (2006) gives a detailed analysis of paradig-
matic and syntagmatic relations in the context of
word-space models used to represent word mean-
ing. Sahlgren’s paradigmatic model represents word
types using co-occurrence counts of their frequent
neighbors, in contrast to his syntagmatic model that
represents word types using counts of contexts (doc-
uments, sentences) they occur in. Our substitute
vectors do not represent word types at all, but con-
texts of word tokens using probabilities of likely sub-
stitutes. Sahlgren finds that in word-spaces built by
frequent neighbor vectors, more nearest neighbors
share the same part-of-speech compared to word-
spaces built by context vectors. We find that rep-
resenting the paradigmatic axis more directly using
substitute vectors rather than frequent neighbors im-
prove part-of-speech induction.

Our paradigmatic representation is also related to
the second order co-occurrences used in (Schütze,
1995). Schütze concatenates the left and right con-
text vectors for the target word type with the left con-
text vector of the right neighbor and the right con-
text vector of the left neighbor. The vectors from the
neighbors include potential substitutes. Our method
improves on his foundation by using a 4-gram lan-
guage model rather than bigram statistics, using the
whole 78,498 word vocabulary rather than the most
frequent 250 words. More importantly, rather than
simply concatenating vectors that represent the tar-
get word with vectors that represent the context we
use S-CODE to model their co-occurrence statistics.

2.4 Evaluation

We report many-to-one and V-measure scores for
our experiments as suggested in (Christodoulopou-
los et al., 2010). The many-to-one (MTO) evaluation
maps each cluster to its most frequent gold tag and
reports the percentage of correctly tagged instances.
The MTO score naturally gets higher with increas-
ing number of clusters but it is an intuitive met-
ric when comparing results with the same number
of clusters. The V-measure (VM) (Rosenberg and
Hirschberg, 2007) is an information theoretic met-
ric that reports the harmonic mean of homogeneity
(each cluster should contain only instances of a sin-
gle class) and completeness (all instances of a class
should be members of the same cluster). In Sec-
tion 6 we argue that homogeneity is perhaps more
important in part-of-speech induction and suggest
MTO with a fixed number of clusters as a more in-
tuitive metric.

3 Substitute Vectors

In this study, we predict the part of speech of a word
in a given context based on its substitute vector. The
dimensions of the substitute vector represent words
in the vocabulary, and the entries in the substitute
vector represent the probability of those words be-
ing used in the given context. Note that the substi-
tute vector is a function of the context only and is
indifferent to the target word. This section details
the choice of the data set, the vocabulary and the es-
timation of substitute vector probabilities.

The Wall Street Journal Section of the Penn Tree-
bank (Marcus et al., 1999) was used as the test cor-
pus (1,173,766 tokens, 49,206 types). The tree-
bank uses 45 part-of-speech tags which is the set we
used as the gold standard for comparison in our ex-
periments. To compute substitute probabilities we
trained a language model using approximately 126
million tokens of Wall Street Journal data (1987-
1994) extracted from CSR-III Text (Graff et al.,
1995) (we excluded the test corpus). We used
SRILM (Stolcke, 2002) to build a 4-gram language
model with Kneser-Ney discounting. Words that
were observed less than 20 times in the language
model training data were replaced by UNK tags,
which gave us a vocabulary size of 78,498. The per-
plexity of the 4-gram language model on the test cor-
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pus is 96.

It is best to use both left and right context when
estimating the probabilities for potential lexical sub-
stitutes. For example, in “He lived in San Francisco
suburbs.”, the token San would be difficult to guess
from the left context but it is almost certain look-
ing at the right context. We define cw as the 2n − 1
word window centered around the target word posi-
tion: w−n+1 . . . w0 . . . wn−1 (n = 4 is the n-gram
order). The probability of a substitute word w in a
given context cw can be estimated as:

P (w0 = w|cw) ∝ P (w−n+1 . . . w0 . . . wn−1)(1)

= P (w−n+1)P (w−n+2|w−n+1)

. . . P (wn−1|wn−2
−n+1) (2)

≈ P (w0|w−1
−n+1)P (w1|w0

−n+2)

. . . P (wn−1|wn−2
0 ) (3)

where wj
i represents the sequence of words

wiwi+1 . . . wj . In Equation 1, P (w|cw) is pro-
portional to P (w−n+1 . . . w0 . . . wn+1) because the
words of the context are fixed. Terms without w0

are identical for each substitute in Equation 2 there-
fore they have been dropped in Equation 3. Finally,
because of the Markov property of n-gram language
model, only the closest n − 1 words are used in the
experiments.

Near the sentence boundaries the appropriate
terms were truncated in Equation 3. Specifically, at
the beginning of the sentence shorter n-gram con-
texts were used and at the end of the sentence terms
beyond the end-of-sentence token were dropped.

For computational efficiency only the top 100
substitutes and their unnormalized probabilities
were computed for each of the 1,173,766 positions
in the test set1. The probability vectors for each po-
sition were normalized to add up to 1.0 giving us the
final substitute vectors used in the rest of this study.

1The substitutes with unnormalized log probabilities can be
downloaded from http://goo.gl/jzKH0. For a descrip-
tion of the FASTSUBS algorithm used to generate the substitutes
please see http://arxiv.org/abs/1205.5407v1.
FASTSUBS accomplishes this task in about 5 hours, a naive
algorithm that looks at the whole vocabulary would take more
than 6 days on a typical 2012 workstation.

4 Co-occurrence Data Embedding

The general strategy we follow for unsupervised
syntactic category acquisition is to combine features
of the context with the identity and features of the
target word. Our preliminary experiments indicated
that using the context information alone (e.g. clus-
tering substitute vectors) without the target word
identity and features had limited success.2 It is the
co-occurrence of a target word with a particular type
of context that best predicts the syntactic category.
In this section we review the unsupervised meth-
ods we used to model co-occurrence statistics: the
Co-occurrence Data Embedding (CODE) method
(Globerson et al., 2007) and its spherical extension
(S-CODE) introduced by (Maron et al., 2010).

Let X and Y be two categorical variables with fi-
nite cardinalities |X| and |Y |. We observe a set of
pairs {xi, yi}ni=1 drawn IID from the joint distribu-
tion of X and Y . The basic idea behind CODE and
related methods is to represent (embed) each value
of X and each value of Y as points in a common
low dimensional Euclidean space Rd such that val-
ues that frequently co-occur lie close to each other.
There are several ways to formalize the relationship
between the distances and co-occurrence statistics,
in this paper we use the following:

p(x, y) =
1

Z
p̄(x)p̄(y)e−d2

x,y (4)

where d2
x,y is the squared distance between the em-

beddings of x and y, p̄(x) and p̄(y) are empirical
probabilities, and Z =

∑
x,y p̄(x)p̄(y)e−d2

x,y is a
normalization term. If we use the notation φx for
the point corresponding to x and ψy for the point
corresponding to y then d2

x,y = ‖φx − ψy‖2. The
log-likelihood of a given embedding `(φ, ψ) can be

2A 10-nearest-neighbor supervised baseline using cosine
distance between substitute vectors gives .7213 accuracy. Clus-
tering substitute vectors using various distance metrics and di-
mensionality reduction methods give results inferior to this up-
per bound.
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expressed as:

`(φ, ψ) =
∑
x,y

p̄(x, y) log p(x, y) (5)

=
∑
x,y

p̄(x, y)(− logZ + log p̄(x)p̄(y)− d2
x,y)

= − logZ + const −
∑
x,y

p̄(x, y)d2
x,y

The likelihood is not convex in φ and ψ. We use
gradient ascent to find an approximate solution for
a set of φx, ψy that maximize the likelihood. The
gradient of the d2

x,y term pulls neighbors closer in
proportion to the empirical joint probability:

∂

∂φx

∑
x,y

−p̄(x, y)d2
x,y =

∑
y

2p̄(x, y)(ψy − φx)

(6)
The gradient of the Z term pushes neighbors apart
in proportion to the estimated joint probability:

∂

∂φx
(− logZ) =

∑
y

2p(x, y)(φx − ψy) (7)

Thus the net effect is to pull pairs together if their
estimated probability is less than the empirical prob-
ability and to push them apart otherwise. The gradi-
ents with respect to ψy are similar.

S-CODE (Maron et al., 2010) additionally re-
stricts all φx and ψy to lie on the unit sphere. With
this restriction, Z stays around a fixed value dur-
ing gradient ascent. This allows S-CODE to sub-
stitute an approximate constant Z̃ in gradient calcu-
lations for the real Z for computational efficiency.
In our experiments, we used S-CODE with its sam-
pling based stochastic gradient ascent algorithm and
smoothly decreasing learning rate.

5 Experiments

In this section we present experiments that evaluate
substitute vectors as representations of word con-
text within the S-CODE framework. Section 5.1
replicates the bigram based S-CODE results from
(Maron et al., 2010) as a baseline. The S-CODE
algorithm works with discrete inputs. The substi-
tute vectors as described in Section 3 are high di-
mensional and continuous. We experimented with
two approaches to use substitute vectors in a dis-
crete setting. Section 5.2 presents an algorithm that

partitions the high dimensional space of substitute
vectors into small neighborhoods and uses the par-
tition id as a discrete context representation. Sec-
tion 5.3 presents an even simpler model which pairs
each word with a random substitute. When the left-
word – right-word pairs used in the bigram model
are replaced with word – partition-id or word – sub-
stitute pairs we see significant gains in accuracy.
These results support our running hypothesis that
paradigmatic features, i.e. potential substitutes of
a word, are better determiners of syntactic category
compared to left and right neighbors. Section 5.4
explores morphologic and orthographic features as
additional sources of information and its results im-
prove the state-of-the-art in the field of unsupervised
syntactic category acquisition.

Each experiment was repeated 10 times with dif-
ferent random seeds and the results are reported
with standard errors in parentheses or error bars in
graphs. Table 1 summarizes all the results reported
in this paper and the ones we cite from the literature.

5.1 Bigram model

In (Maron et al., 2010) adjacent word pairs (bi-
grams) in the corpus are fed into the S-CODE algo-
rithm as X,Y samples. The algorithm uses stochas-
tic gradient ascent to find the φx, ψy embeddings for
left and right words in these bigrams on a single 25-
dimensional sphere. At the end each word w in the
vocabulary ends up with two points on the sphere,
a φw point representing the behavior of w as the
left word of a bigram and a ψw point representing
it as the right word. The two vectors for w are con-
catenated to create a 50-dimensional representation
at the end. These 50-dimensional vectors are clus-
tered using an instance weighted k-means algorithm
and the resulting groups are compared to the cor-
rect part-of-speech tags. Maron et al. (2010) report
many-to-one scores of .6880 (.0016) for 45 clusters
and .7150 (.0060) for 50 clusters (on the full PTB45
tag-set). If only φw vectors are clustered without
concatenation we found the performance drops sig-
nificantly to about .62.

To make a meaningful comparison we re-ran the
bigram experiments using our default settings and
obtained a many-to-one score of .7314 (.0096) and
the V-measure is .6558 (.0052) for 45 clusters. The
following default settings were used: (i) each word
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Distributional Models MTO VM
(Lamar et al., 2010a) .708 -
(Brown et al., 1992)* .678 .630
(Goldwater et al., 2007) .632 .562
(Ganchev et al., 2010)* .625 .548
(Maron et al., 2010) .688 (.0016) -
Bigrams (Sec. 5.1) .7314 (.0096) .6558 (.0052)
Partitions (Sec. 5.2) .7554 (.0055) .6703 (.0037)
Substitutes (Sec. 5.3) .7680 (.0038) .6822 (.0029)

Models with Additional Features MTO VM
(Clark, 2003)* .712 .655
(Christodoulopoulos et al., 2011) .728 .661
(Berg-Kirkpatrick and Klein, 2010) .755 -
(Christodoulopoulos et al., 2010) .761 .688
(Blunsom and Cohn, 2011) .775 .697
Substitutes and Features (Sec. 5.4) .8023 (.0070) .7207 (.0041)

Table 1: Summary of results in terms of the MTO and VM scores. Standard errors are given in parentheses when
available. Starred entries have been reported in the review paper (Christodoulopoulos et al., 2010). Distributional
models use only the identity of the target word and its context. The models on the right incorporate orthographic and
morphological features.

was kept with its original capitalization, (ii) the
learning rate parameters were adjusted to ϕ0 =
50, η0 = 0.2 for faster convergence in log likeli-
hood, (iii) the number of s-code iterations were in-
creased from 12 to 50 million, (iv) k-means initial-
ization was improved using (Arthur and Vassilvit-
skii, 2007), and (v) the number of k-means restarts
were increased to 128 to improve clustering and re-
duce variance.

5.2 Random partitions

Instead of using left-word – right-word pairs as in-
puts to S-CODE we wanted to pair each word with a
paradigmatic representation of its context to get a di-
rect comparison of the two context representations.
To obtain a discrete representation of the context,
the random–partitions algorithm first designates a
random subset of substitute vectors as centroids to
partition the space, and then associates each context
with the partition defined by the closest centroid in
cosine distance. Each partition thus defined gets a
unique id, and word (X) – partition-id (Y ) pairs are
given to S-CODE as input. The algorithm cycles
through the data until we get approximately 50 mil-
lion updates. The resulting φx vectors are clustered
using the k-means algorithm (no vector concatena-
tion is necessary). Using default settings (64K ran-
dom partitions, 25 s-code dimensions, Z = 0.166)
the many-to-one accuracy is .7554 (.0055) and the
V-measure is .6703 (.0037).

To analyze the sensitivity of this result to our spe-
cific parameter settings we ran a number of experi-
ments where each parameter was varied over a range
of values.

Figure 2 gives results where the number of initial

 0.7
 0.71
 0.72
 0.73
 0.74
 0.75
 0.76
 0.77
 0.78
 0.79

 0.8

 10000  100000

number of random partitions

m2o

Figure 2: MTO is not sensitive to the number of partitions
used to discretize the substitute vector space within our
experimental range.

random partitions is varied over a large range and
shows the results to be fairly stable across two orders
of magnitude.

Figure 3 shows that at least 10 embedding dimen-
sions are necessary to get within 1% of the best re-
sult, but there is no significant gain from using more
than 25 dimensions.

Figure 4 shows that the constant Z̃ approximation
can be varied within two orders of magnitude with-
out a significant performance drop in the many-to-
one score. For uniformly distributed points on a 25
dimensional sphere, the expected Z ≈ 0.146. In the
experiments where we tested we found the real Z al-
ways to be in the 0.140-0.170 range. When the con-
stant Z̃ estimate is too small the attraction in Eq. 6
dominates the repulsion in Eq. 7 and all points tend
to converge to the same location. When Z̃ is too
high, it prevents meaningful clusters from coalesc-
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Figure 3: MTO falls sharply for less than 10 S-CODE
dimensions, but more than 25 do not help.
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Figure 4: MTO is fairly stable as long as the Z̃ constant
is within an order of magnitude of the real Z value.

ing.
We find the random partition algorithm to be

fairly robust to different parameter settings and the
resulting many-to-one score significantly better than
the bigram baseline.

5.3 Random substitutes
Another way to use substitute vectors in a dis-
crete setting is simply to sample individual substi-
tute words from them. The random-substitutes al-
gorithm cycles through the test data and pairs each
word with a random substitute picked from the pre-
computed substitute vectors (see Section 3). We ran
the random-substitutes algorithm to generate 14 mil-
lion word (X) – random-substitute (Y ) pairs (12
substitutes for each token) as input to S-CODE.
Clustering the resulting φx vectors yields a many-
to-one score of .7680 (.0038) and a V-measure of

.6822 (.0029).
This result is close to the previous result by the

random-partition algorithm, .7554 (.0055), demon-
strating that two very different discrete represen-
tations of context based on paradigmatic features
give consistent results. Both results are significantly
above the bigram baseline, .7314 (.0096). Figure 5
illustrates that the random-substitute result is fairly
robust as long as the training algorithm can observe
more than a few random substitutes per word.

 0.7
 0.71
 0.72
 0.73
 0.74
 0.75
 0.76
 0.77
 0.78
 0.79

 0.8

 1  10  100

number of random substitutes per word

m2o

Figure 5: MTO is not sensitive to the number of random
substitutes sampled per word token.

5.4 Morphological and orthographic features

Clark (2003) demonstrates that using morpholog-
ical and orthographic features significantly im-
proves part-of-speech induction with an HMM
based model. Section 2 describes a number other ap-
proaches that show similar improvements. This sec-
tion describes one way to integrate additional fea-
tures to the random-substitute model.

The orthographic features we used are similar to
the ones in (Berg-Kirkpatrick et al., 2010) with small
modifications:

• Initial-Capital: this feature is generated for cap-
italized words with the exception of sentence
initial words.

• Number: this feature is generated when the to-
ken starts with a digit.

• Contains-Hyphen: this feature is generated for
lowercase words with an internal hyphen.
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• Initial-Apostrophe: this feature is generated for
tokens that start with an apostrophe.

We generated morphological features using the
unsupervised algorithm Morfessor (Creutz and La-
gus, 2005). Morfessor was trained on the WSJ sec-
tion of the Penn Treebank using default settings, and
a perplexity threshold of 300. The program induced
5 suffix types that are present in a total of 10,484
word types. These suffixes were input to S-CODE
as morphological features whenever the associated
word types were sampled.

In order to incorporate morphological and ortho-
graphic features into S-CODE we modified its in-
put. For each word – random-substitute pair gen-
erated as in the previous section, we added word –
feature pairs to the input for each morphological and
orthographic feature of the word. Words on average
have 0.25 features associated with them. This in-
creased the number of pairs input to S-CODE from
14.1 million (12 substitutes per word) to 17.7 mil-
lion (additional 0.25 features on average for each of
the 14.1 million words).

Using similar training settings as the previous
section, the addition of morphological and ortho-
graphic features increased the many-to-one score of
the random-substitute model to .8023 (.0070) and
V-measure to .7207 (.0041). Both these results im-
prove the state-of-the-art in part-of-speech induction
significantly as seen in Table 1.

6 Error Analysis

Figure 6 is the Hinton diagram showing the rela-
tionship between the most frequent tags and clusters
from the experiment in Section 5.4. In general the
errors seem to be the lack of completeness (multi-
ple large entries in a row), rather than lack of ho-
mogeneity (multiple large entries in a column). The
algorithm tends to split large word classes into sev-
eral clusters. Some examples are:

• Titles like Mr., Mrs., and Dr. are split from the
rest of the proper nouns in cluster (39).

• Auxiliary verbs (10) and the verb “say” (22)
have been split from the general verb clusters
(12) and (7).

• Determiners “the” (40), “a” (15), and capital-
ized “The”, “A” (6) have been split into their
own clusters.

• Prepositions “of” (19), and “by”, “at” (17) have
been split from the general preposition cluster
(8).

Nevertheless there are some homogeneity errors as
well:

• The adjective cluster (5) also has some noun
members probably due to the difficulty of sep-
arating noun-noun compounds from adjective
modification.

• Cluster (6) contains capitalized words that span
a number of categories.

Most closed-class items are cleanly separated into
their own clusters as seen in the lower right hand
corner of the diagram. The completeness errors are
not surprising given that the words that have been
split are not generally substitutable with the other
members of their Penn Treebank category. Thus it
can be argued that metrics that emphasize homo-
geneity such as MTO are more appropriate in this
context than metrics that average homogeneity and
completeness such as VM as long as the number of
clusters is controlled.

7 Contributions

Our main contributions can be summarized as fol-
lows:

• We introduced substitute vectors as paradig-
matic representations of word context and
demonstrated their use in syntactic category ac-
quisition.

• We demonstrated that using paradigmatic rep-
resentations of word context and modeling co-
occurrences of word and context types with
the S-CODE learning framework give superior
results when compared to a baseline bigram
model.

• We extended the S-CODE framework to in-
corporate morphological and orthographic fea-
tures and improved the state-of-the-art in un-
supervised part-of-speech induction to 80%
many-to-one accuracy.
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Figure 6: Hinton diagram comparing most frequent tags and clusters.

• All our code and data, including the sub-
stitute vectors for the one million word
Penn Treebank Wall Street Journal dataset,
is available at the authors’ website at
http://goo.gl/RoqEh.
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John DeNero, and Dan Klein. 2010. Painless unsu-
pervised learning with features. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 582–590, Los Angeles,
California, June. Association for Computational Lin-
guistics.

C. Biemann. 2006. Unsupervised part-of-speech tagging
employing efficient graph clustering. In Proceedings

of the 21st International Conference on computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics: Student Research
Workshop, pages 7–12. Association for Computational
Linguistics.

Phil Blunsom and Trevor Cohn. 2011. A hierarchi-
cal pitman-yor process hmm for unsupervised part of
speech induction. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 865–874,
Portland, Oregon, USA, June. Association for Compu-
tational Linguistics.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Comput.
Linguist., 18:467–479, December.

D. Chandler. 2007. Semiotics: the basics. The Basics
Series. Routledge.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2010. Two decades of unsupervised
pos induction: how far have we come? In Proceedings
of the 2010 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP ’10, pages 575–
584, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Christos Christodoulopoulos, Sharon Goldwater, and
Mark Steedman. 2011. A bayesian mixture model
for pos induction using multiple features. In Proceed-
ings of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 638–647, Edin-
burgh, Scotland, UK., July. Association for Computa-
tional Linguistics.

949



Kenneth Ward Church. 1988. A stochastic parts pro-
gram and noun phrase parser for unrestricted text. In
Proceedings of the second conference on Applied nat-
ural language processing, ANLC ’88, pages 136–143,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Alexander Clark. 2003. Combining distributional and
morphological information for part of speech induc-
tion. In Proceedings of the tenth conference on Eu-
ropean chapter of the Association for Computational
Linguistics - Volume 1, EACL ’03, pages 59–66,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Mathias Creutz and Krista Lagus. 2005. Inducing
the morphological lexicon of a natural language from
unannotated text. In Proceedings of AKRR’05, Inter-
national and Interdisciplinary Conference on Adap-
tive Knowledge Representation and Reasoning, pages
106–113, Espoo, Finland, June.

D. Freudenthal, J.M. Pine, and F. Gobet. 2005. On the
resolution of ambiguities in the extraction of syntactic
categories through chunking. Cognitive Systems Re-
search, 6(1):17–25.

Kuzman Ganchev, João Graça, Jennifer Gillenwater, and
Ben Taskar. 2010. Posterior regularization for struc-
tured latent variable models. J. Mach. Learn. Res.,
99:2001–2049, August.

Jianfeng Gao and Mark Johnson. 2008. A comparison of
bayesian estimators for unsupervised hidden markov
model pos taggers. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP ’08, pages 344–352, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Amir Globerson, Gal Chechik, Fernando Pereira, and
Naftali Tishby. 2007. Euclidean embedding of co-
occurrence data. J. Mach. Learn. Res., 8:2265–2295,
December.

Sharon Goldwater and Tom Griffiths. 2007. A fully
bayesian approach to unsupervised part-of-speech tag-
ging. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
744–751, Prague, Czech Republic, June. Association
for Computational Linguistics.

David Graff, Roni Rosenfeld, and Doug Paul. 1995. Csr-
iii text. Linguistic Data Consortium, Philadelphia.

Aria Haghighi and Dan Klein. 2006. Prototype-driven
learning for sequence models. In Proceedings of
the main conference on Human Language Technology
Conference of the North American Chapter of the As-
sociation of Computational Linguistics, HLT-NAACL
’06, pages 320–327, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Mark Johnson. 2007. Why doesn’t EM find good
HMM POS-taggers? In Proceedings of the 2007 Joint

Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 296–305,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Michael Lamar, Yariv Maron, and Elie Bienenstock.
2010a. Latent-descriptor clustering for unsupervised
pos induction. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP ’10, pages 799–809, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Michael Lamar, Yariv Maron, Mark Johnson, and Elie
Bienenstock. 2010b. Svd and clustering for unsuper-
vised pos tagging. In Proceedings of the ACL 2010
Conference Short Papers, pages 215–219, Uppsala,
Sweden, July. Association for Computational Linguis-
tics.

Yoong Keok Lee, Aria Haghighi, and Regina Barzilay.
2010. Simple type-level unsupervised pos tagging.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP
’10, pages 853–861, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-3.
Linguistic Data Consortium, Philadelphia.

Yariv Maron, Michael Lamar, and Elie Bienenstock.
2010. Sphere embedding: An application to part-of-
speech induction. In J. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems
23, pages 1567–1575.

Bernard Merialdo. 1994. Tagging english text with a
probabilistic model. Comput. Linguist., 20:155–171,
June.

T.H. Mintz. 2003. Frequent frames as a cue for gram-
matical categories in child directed speech. Cognition,
90(1):91–117.

M. Redington, N. Crater, and S. Finch. 1998. Distribu-
tional information: A powerful cue for acquiring syn-
tactic categories. Cognitive Science, 22(4):425–469.

A. Rosenberg and J. Hirschberg. 2007. V-measure: A
conditional entropy-based external cluster evaluation
measure. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 410–420.

Magnus Sahlgren. 2006. The Word-Space Model: Us-
ing distributional analysis to represent syntagmatic
and paradigmatic relations between words in high-
dimensional vector spaces. Ph.D. thesis, Stockholm
University.

Hinrich Schütze. 1995. Distributional part-of-speech
tagging. In Proceedings of the seventh conference

950



on European chapter of the Association for Compu-
tational Linguistics, EACL ’95, pages 141–148, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Andreas Stolcke. 2002. Srilm-an extensible language
modeling toolkit. In Proceedings International Con-
ference on Spoken Language Processing, pages 257–
286, November.

951



Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 952–961, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Exploring Topic Coherence over many models and many topics

Keith Stevens1,2 Philip Kegelmeyer3 David Andrzejewski2 David Buttler2

1University of California Los Angeles; Los Angeles , California, USA
2Lawrence Livermore National Lab; Livermore, California, USA

3Sandia National Lab; Livermore, California, USA
{stevens35,andrzejewski1,buttler1}@llnl.gov

wpk@sandia.gov

Abstract

We apply two new automated semantic eval-
uations to three distinct latent topic models.
Both metrics have been shown to align with
human evaluations and provide a balance be-
tween internal measures of information gain
and comparisons to human ratings of coher-
ent topics. We improve upon the measures
by introducing new aggregate measures that
allows for comparing complete topic models.
We further compare the automated measures
to other metrics for topic models, compar-
ison to manually crafted semantic tests and
document classification. Our experiments re-
veal that LDA and LSA each have different
strengths; LDA best learns descriptive topics
while LSA is best at creating a compact se-
mantic representation of documents and words
in a corpus.

1 Introduction

Topic models learn bags of related words from large
corpora without any supervision. Based on the
words used within a document, they mine topic level
relations by assuming that a single document cov-
ers a small set of concise topics. Once learned,
these topics often correlate well with human con-
cepts. For example, one model might produce topics
that cover ideas such as government affairs, sports,
and movies. With these unsupervised methods, we
can extract useful semantic information in a variety
of tasks that depend on identifying unique topics or
concepts, such as distributional semantics (Jurgens
and Stevens, 2010), word sense induction (Van de
Cruys and Apidianaki, 2011; Brody and Lapata,
2009), and information retrieval (Andrzejewski and
Buttler, 2011).

When using a topic model, we are primarily con-
cerned with the degree to which the learned top-
ics match human judgments and help us differen-
tiate between ideas. But until recently, the evalua-
tion of these models has been ad hoc and applica-
tion specific. Evaluations have ranged from fully
automated intrinsic evaluations to manually crafted
extrinsic evaluations. Previous extrinsic evaluations
have used the learned topics to compactly represent
a small fixed vocabulary and compared this distribu-
tional space to human judgments of similarity (Jur-
gens and Stevens, 2010). But these evaluations are
hand constructed and often costly to perform for
domain-specific topics. Conversely, intrinsic mea-
sures have evaluated the amount of information en-
coded by the topics, where perplexity is one com-
mon example(Wallach et al., 2009), however, Chang
et al. (2009) found that these intrinsic measures do
not always correlate with semantically interpretable
topics. Furthermore, few evaluations have used the
same metrics to compare distinct approaches such
as Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), Latent Semantic Analysis (LSA) (Landauer
and Dutnais, 1997), and Non-negative Matrix Fac-
torization (NMF) (Lee and Seung, 2000). This has
made it difficult to know which method is most use-
ful for a given application, or in terms of extracting
useful topics.

We now provide a comprehensive and automated
evaluation of these three distinct models (LDA,
LSA, NMF), for automatically learning semantic
topics. While these models have seen significant im-
provements, they still represent the core differences
between each approach to modeling topics. For our
evaluation, we use two recent automated coherence
measures (Mimno et al., 2011; Newman et al., 2010)
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originally designed for LDA that bridge the gap be-
tween comparisons to human judgments and intrin-
sic measures such as perplexity. We consider several
key questions:

1. How many topics should be learned?
2. How many learned topics are useful?
3. How do these topics relate to often used semantic tests?

4. How well do these topics identify similar documents?

We begin by summarizing the three topic mod-
els and highlighting their key differences. We then
describe the two metrics. Afterwards, we focus on
a series of experiments that address our four key
questions and finally conclude with some overall re-
marks.

2 Topic Models

We evaluate three latent factor models that have seen
widespread usage:

1. Latent Dirichlet Allocation
2. Latent Semantic Analysis with Singular Value De-

composition
3. Latent Semantic Analysis with Non-negative Ma-

trix Factorization

Each of these models were designed with differ-
ent goals and are supported by different statistical
theories. We consider both LSA models as topic
models as they have been used in a variety of sim-
ilar contexts such as distributional similarity (Jur-
gens and Stevens, 2010) and word sense induction
(Van de Cruys and Apidianaki, 2011; Brody and
Lapata, 2009). We evaluate these distinct models
on two shared tasks (1) grouping together similar
words while separating unrelated words and (2) dis-
tinguishing between documents focusing on differ-
ent concepts.

We distill the different models into a shared repre-
sentation consisting of two sets of learned relations:
how words interact with topics and how topics inter-
act with documents. For a corpus with D documents
and V words, we denote these relations in terms of
T topics as

(1) a V × T matrix, W , that indicates the strength
each word has in each topic, and

(2) a T × D matrix, H , that indicates the strength
each topic has in each document.

T serves as a common parameter to each model.

2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (Blei et al., 2003) learns
the relationships between words, topics, and docu-
ments by assuming documents are generated by a
particular probabilistic model. It first assumes that
there are a fixed set of topics, T used throughout the
corpus, and each topic z is associated with a multi-
nomial distribution over the vocabulary Φz , which is
drawn from a Dirichlet prior Dir(β). A given docu-
ment Di is then generated by the following process

1. Choose Θi ∼ Dir(α), a topic distribution for Di

2. For each word wj ∈ Di:

(a) Select a topic zj ∼ Θi

(b) Select the word wj ∼ Φzj

In this model, the Θ distributions represent the
probability of each topic appearing in each docu-
ment and the Φ distributions represent the proba-
bility of words being used for each topic. These
two sets of distributions correspond to our H and W
matrices, respectively. The process above defines a
generative model; given the observed corpus, we use
collapsed Gibbs sampling implementation found in
Mallet1 to infer the values of the latent variables Φ
and Θ (Griffiths and Steyvers, 2004). The model re-
lies only on two additional hyper parameters, α and
β, that guide the distributions.

2.2 Latent Semantic Analysis

Latent Semantic Analysis (Landauer and Dutnais,
1997; Landauer et al., 1998) learns topics by first
forming a traditional term by document matrix used
in information retrieval and then smoothing the
counts to enhance the weight of informative words.
Based on the original LSA model, we use the Log-
Entropy transform. LSA then decomposes this
smoothed, term by document matrix in order to gen-
eralize observed relations between words and docu-
ments. For both LSA models, we used implementa-
tions found in the S-Space package.2

Traditionally, LSA has used the Singular Value
Decomposition, but we also consider Non-negative
Matrix Factorization as we’ve seen NMF applied
in similar situations (Pauca et al., 2004) and others

1http://mallet.cs.umass.edu/
2https://github.com/fozziethebeat/S-Space
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Model Label Top Words UMass UCI
High Quality Topics

LDA
interview told asked wanted interview people made thought time called knew -2.52 1.29
wine wine wines bottle grapes made winery cabernet grape pinot red -1.97 1.30

NMF
grilling grilled sweet spicy fried pork dish shrimp menu dishes sauce -1.01 1.98
cloning embryonic cloned embryo human research stem embryos cell cloning cells -1.84 1.46

SVD
cooking sauce food restaurant water oil salt chicken pepper wine cup -1.87 -1.21
stocks fund funds investors weapons stocks mutual stock movie film show -2.30 -1.88

Low Quality Topics

LDA
rates 10-yr rate 3-month percent 6-month bds bd 30-yr funds robot -1.94 -12.32
charity fund contributions .com family apartment charities rent 22d children assistance -2.43 -8.88

NMF
plants stem fruitful stems trunk fruiting currants branches fence currant espalier -3.12 -12.59
farming buzzards groundhog prune hoof pruned pruning vines wheelbarrow tree clematis -1.90 -12.56

SVD
city building city area buildings p.m. floors house listed eat-in a.m. -2.70 -8.03
time p.m. system study a.m. office political found school night yesterday -1.67 -7.02

Table 1: Top 10 words from several high and low quality topics when ordered by the UCI Coherence
Measure. Topic labels were chosen in an ad hoc manner only to briefly summarize the topic’s focus.

have found a connection between NMF and Proba-
bilistic Latent Semantic Analysis (Ding et al., 2008),
an extension to LSA. We later refer to these two LSA
models simply as SVD and NMF to emphasize the
difference in factorization method.

Singular Value Decomposition decomposes M
into three smaller matrices

M = UΣV T

and minimizes Frobenius norm of M ’s reconstruc-
tion error with the constraint that the rows of U and
V are orthonormal eigenvectors. Interestingly, the
decomposition is agnostic to the number of desired
dimensions. Instead, the rows and columns in U and
V T are ordered based on their descriptive power, i.e.
how well they remove noise, which is encoded by
the diagonal singular value matrix Σ. As such, re-
duction is done by retaining the first T rows and
columns from U and V T . For our generalization,
we use W = UΣ and H = ΣV T . We note that
values in U and V T can be both negative and pos-
itive, preventing a straightforward interpretation as
unnormalized probabilities

Non-negative Matrix Factorization also factor-
izes M by minimizing the reconstruction error, but
with only one constraint: the decomposed matrices
consist of only non-negative values. In this respect,
we can consider it to be learning an unnormalized
probability distributions over topics. We use the

original Euclidean least squares definition of NMF3.
Formally, NMF is defined as

M = WH

where H and W map directly onto our generaliza-
tion. As in the original NMF work, we learn these
unnormalized probabilities by initializing each set of
probabilities at random and update them according
to the following iterative update rules

W = W MHT

WHHT H = H W T M
W T WH

3 Coherence Measures

Topic Coherence measures score a single topic by
measuring the degree of semantic similarity between
high scoring words in the topic. These measure-
ments help distinguish between topics that are se-
mantically interpretable topics and topics that are ar-
tifacts of statistical inference, see Table 1 for exam-
ples ordered by the UCI measure. For our evalua-
tions, we consider two new coherence measures de-
signed for LDA, both of which have been shown to
match well with human judgements of topic quality:
(1) The UCI measure (Newman et al., 2010) and (2)
The UMass measure (Mimno et al., 2011).

Both measures compute the coherence of a topic
as the sum of pairwise distributional similarity

3We note that the alternative KL-Divergence form of NMF
has been directly linked to PLSA (Ding et al., 2008)
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scores over the set of topic words, V . We generalize
this as

coherence(V ) =
∑

(vi,vj)∈V

score(vi, vj , ε)

where V is a set of word describing the topic and ε
indicates a smoothing factor which guarantees that
score returns real numbers. (We will be exploring
the effect of the choice of ε; the original authors used
ε = 1.)

The UCI metric defines a word pair’s score to
be the pointwise mutual information (PMI) between
two words, i.e.

score(vi, vj , ε) = log
p(vi, vj) + ε

p(vi)p(vj)

The word probabilities are computed by counting
word co-occurrence frequencies in a sliding window
over an external corpus, such as Wikipedia. To some
degree, this metric can be thought of as an external
comparison to known semantic evaluations.

The UMass metric defines the score to be based
on document co-occurrence:

score(vi, vj , ε) = log
D(vi, vj) + ε

D(vj)

where D(x, y) counts the number of documents con-
taining words x and y and D(x) counts the num-
ber of documents containing x. Significantly, the
UMass metric computes these counts over the orig-
inal corpus used to train the topic models, rather
than an external corpus. This metric is more intrin-
sic in nature. It attempts to confirm that the models
learned data known to be in the corpus.

4 Evaluation

We evaluate the quality of our three topic models
(LDA, SVD, and NMF) with three experiments. We
focus first on evaluating aggregate coherence meth-
ods for a complete topic model and consider the
differences between each model as we learn an in-
creasing number of topics. Secondly, we compare
coherence scores to previous semantic evaluations.

Lastly, we use the learned topics in a classifica-
tion task and evaluate whether or not coherent top-
ics are equally informative when discriminating be-
tween documents.

For all our experiments, we trained our models on
92,600 New York Times articles from 2003 (Sand-
haus, 2008). For all articles, we removed stop words
and any words occurring less than 200 times in the
corpus, which left 35,836 unique tokens. All doc-
uments were tokenized with OpenNLP’s MaxEnt4

tokenizer. For the UCI measure, we compute the
PMI between words using a 20 word sliding win-
dow passed over the WaCkypedia corpus (Baroni et
al., 2009). In all experiments, we compute the co-
herence with the top 10 words from each topic that
had the highest weight, in terms of LDA and NMF
this corresponds with a high probability of the term
describing the topic but for SVD there is no clear
semantic interpretation.

4.1 Aggregate methods for topic coherence

Before we can compare topic models, we require an
aggregate measure that represents the quality of a
complete model, rather than individual topics. We
consider two aggregates methods: (1) the average
coherence of all topics and (2) the entropy of the co-
herence for all topics. The average coherence pro-
vides a quick summarization of a model’s quality
whereas the entropy provides an alternate summa-
rization that differentiates between two interesting
situations. Since entropy measures the complexity
of a probability distribution, it can easily differenti-
ate between uniform distributions and multimodal,
distributions. This distinction is relevant when users
prefer to have roughly uniform topic quality instead
of a wide gap between high- and low-quality topics,
or vice versa. We compute the entropy by dropping
the log and ε factor from each scoring function.

Figure 1 shows the average coherence scores for
each model as we vary the number of topics. These
average scores indicate some simple relationships
between the models: LDA and NMF have approx-
imately the same performance and both models are
consistently better than SVD. All of the models
quickly reach a stable average score at around 100
topics. This initially suggests that learning more

4http://incubator.apache.org/opennlp/
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Figure 1: Average Topic Coherence for each model
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Figure 2: Entropy of the Topic Coherence for each model

topics neither increases or decreases the quality of
the model, but Figure 2 indicates otherwise. While
the entropy for the UMass score stays stable for all
models, NMF produces erratic entropy results under
the UCI score as we learn more topics. As entropy is
higher for even distributions and lower for all other
distributions, these results suggest that the NMF is
learning topics with drastically different levels of
quality, i.e. some with high quality and some with
very low quality, but the average coherence over all
topics do not account for this.

Low quality topics may be composed of highly
unrelated words that can’t be fit into another topic,
and in this case, our smoothing factor, ε, may be ar-

tificially increasing the score for unrelated words.
Following the practice of the original use of these
metrics, in Figures 1 and 2 we set ε = 1. In Fig-
ure 3, we consider ε = 10−12, which should sig-
nificantly reduce the score for completely unrelated
words. Here, we see a significant change in the per-
formance of NMF, the average coherence decreases
dramatically as we learn more topics. Similarly, per-
formance of SVD drops dramatically and well below
the other models. In figure 4 we lastly compute the
average coherence using only the top 10% most co-
herence topics with ε = 10−12. Here, NMF again
performs on par with LDA. With the top 10% topics
still having a high average coherence but the full set
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Figure 3: Average Topic Coherence with ε = 10−12
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Figure 4: Average Topic Coherence of the top 10% topics with ε = 10−12

of topics having a low coherence, NMF appears to
be learning more low quality topics once it’s learned
the first 100 topics, whereas LDA learns fewer low
quality topics in general.

4.2 Word Similarity Tasks

The initial evaluations for each coherence mea-
sure asked human judges to directly evaluate top-
ics (Newman et al., 2010; Mimno et al., 2011). We
expand upon this comparison to human judgments
by considering word similarity tasks that have of-
ten been used to evaluate distributional semantic
spaces (Jurgens and Stevens, 2010). Here, we use
the learned topics as generalized semantics describ-

ing our knowledge about words. If a model’s topics
generalize the knowledge accurately, we would ex-
pect similar words, such as “cat” and “dog”, to be
represented with a similar set of topics. Rather than
evaluating individual topics, this similarity task con-
siders the knowledge within the entire set of topics,
the topics act as more compact representation for the
known words in a corpus.

We use the Rubenstein and Goodenough (1965)
and Finkelstein et al. (2002) word similarity tasks.
In each task, human judges were asked to evaluate
the similarity or relatedness between different sets of
word pairs. Fifty-One Evaluators for the Rubenstein
and Goodenough (1965) dataset were given 65 pairs
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Figure 5: Word Similarity Evaluations for each model
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Figure 7: Correlation between topic coherence and topic ranking in classification

of words and asked to rate their similarity on a scale
from 0 to 4, where a higher score indicates a more
similar word pair. Finkelstein et al. (2002) broadens
the word similarity evaluation and asked 13 to 16
different subjects to rate 353 word pairs on a scale
from 0 to 10 based on their relatedness, where relat-
edness includes similarity and other semantic rela-
tions. We can evaluate each topic model by comput-
ing the cosine similarity between each pair of words
in the evaluate set and then compare the model’s
ratings to the human ratings by ranked correlation.
A high correlation signifies that the topics closely
model human judgments.

Figure 5 displays the results. SVD and LDA

both surpass NMF on the Rubenstein & Goode-
nough test while SVD is clearly the best model on
the Finklestein et. al test. While our first experi-
ment showed that SVD was the worst model in terms
of topic coherence scores, this experiment indicates
that SVD provides an accurate, stable, and reliable
approximation to human judgements of similarity
and relatedness between word pairs in comparison
to other topic models.

4.3 Coherence versus Classification

For our final experiment, we examine the relation-
ship between topic coherence and classification ac-
curacy for each topic model. We suspect that highly
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Figure 8: Comparison between topic coherence and topic rank with 500 topics
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Figure 6: Classification accuracy for each model

coherent topics, and coherent topic models, will per-
form better for classification. We address this ques-
tion by performing a document classification task
using the topic representations of documents as in-
put features and examine the relationship between
topic coherence and the usefulness of the corre-
sponding feature for classification.

We trained each topic model with all 92,600 New
York Times articles as before. We use the sec-
tion labels provided for each article as class labels,
where each label indicates the on-line section(s) un-
der which the article was published and should thus
be related to the topics contained in each article. To
reduce the noise in our data set we narrow down the
articles to those that have only one label and whose

label is applied to at least 2000 documents. This re-
sults in 57,696 articles with label distributions listed
in Table 2. We then represent each document using
columns in the topic by document matrix H learned
for each topic model.

Label Count Label Count
New York and Region 11219 U.S. 3675
Paid Death Notices 11152 Arts 3437
Opinion 8038 World 3330
Business 7494 Style 2137
Sports 7214

Table 2: Section label counts for New York Times
articles used for classification

For each topic model trained on N topics, we
performed stratified 10-fold cross-validation on the
57,696 labeled articles. In each fold, we build an
automatically-sized bagged ensemble of unpruned
CART-style decision trees(Banfield et al., 2007) on
90% of the dataset5, use that ensemble to assign la-
bels to the other 10%, and measure the accuracy of
that assignment. Figure 6 shows the average classifi-
cation accuracy over all ten folds for each model. In-
terestingly, SVD has slightly, but statistically signif-
icantly, higher accuracy results than both NMF and
LDA. Furthermore, performance quickly increases

5The precise choice of the classifier scheme matters little, as
long as it is accurate, speedy, and robust to label noise; all of
which is true of the choice here.
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and plateaus with well under 50 topics.
Our bagged decision trees can also determine the

importance of each feature during classification. We
evaluate the strength of each topic during classifi-
cation by tracking the number of times each node
in our decision trees observe each topic, please see
(Caruana et al., 2006) for more details. Figure 8 plot
the relationship between this feature ranking and the
topic coherence for each topic when training LDA,
SVD, and NMF on 500 topics. Most topics for each
model provide little classification information, but
SVD shows a much higher rank for several topics
with a relatively higher coherence score. Interest-
ingly, for all models, the most coherent topics are not
the most informative. Figure 7 plots a more compact
view of this same relationship: the Spearman rank
correlation between classification feature rank and
topic coherence. NMF shows the highest correlation
between rank and coherence, but none of the mod-
els show a high correlation when using more than
100 topics. SVD has the lowest correlation, which
is probably due to the model’s overall low coherence
yet high classification accuracy.

5 Discussion and Conclusion

Through our experiments, we made several excit-
ing and interesting discoveries. First, we discov-
ered that the coherence metrics depend heavily on
the smoothing factor ε. The original value, 1.0 cre-
ated a positive bias towards NMF from both met-
rics even when NMF generated incoherent topics.
The high smoothing factor also gave a significant in-
crease to SVD scores. We suspect that this was not
an issue in previous studies with the coherence mea-
sures as LDA prefers to form topics from words that
co-occur frequently, whereas NMF and SVD have
no such preferences and often create low quality top-
ics from completely unrelated words. Therefore, we
suggest a smaller ε value in general.

We also found that the UCI measure often agreed
with the UMass measure, but the UCI-entropy ag-
gregate method induced more separation between
LSA, SVD, and NMF in terms of topic coherence.
This measure also revealed the importance of the
smoothing factor for topic coherence measures.

With respects to human judgements, we found
that coherence scores do not always indicate a bet-

ter representation of distributional information. The
SVD model consistently out performed both LDA
and NMF models, which each had higher coherence
scores, when attempting to predict human judge-
ments of similarity.

Lastly, we found all models capable of producing
topics that improved document classification. At the
same time, SVD provided the most information dur-
ing classification and outperformed the other mod-
els, which again had more coherent topics. Our com-
parison between topic coherence scores and feature
importance in classification revealed that relatively
high quality topics, but not the most coherent topics,
drive most of the classification decisions, and most
topics do not affect the accuracy.

Overall, we see that each topic model paradigm
has it’s own strengths and weaknesses. Latent Se-
mantic Analysis with Singular Value Decomposition
fails to form individual topics that aggregate similar
words, but it does remarkably well when consider-
ing all the learned topics as similar words develop
a similar topic representation. These topics simi-
larly perform well during classification. Conversely,
both Non Negative Matrix factorization and Latent
Dirichlet Allocation learn concise and coherent top-
ics and achieved similar performance on our evalua-
tions. However, NMF learns more incoherent topics
than LDA and SVD. For applications in which a hu-
man end-user will interact with learned topics, the
flexibility of LDA and the coherence advantages of
LDA warrant strong consideration. All of code for
this work will be made available through an open
source project.6
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Abstract

Phrase-based machine translation models
have shown to yield better translations than
Word-based models, since phrase pairs en-
code the contextual information that is needed
for a more accurate translation. However,
many phrase pairs do not encode any rele-
vant context, which means that the transla-
tion event encoded in that phrase pair is led
by smaller translation events that are indepen-
dent from each other, and can be found on
smaller phrase pairs, with little or no loss in
translation accuracy. In this work, we pro-
pose a relative entropy model for translation
models, that measures how likely a phrase pair
encodes a translation event that is derivable
using smaller translation events with similar
probabilities. This model is then applied to
phrase table pruning. Tests show that con-
siderable amounts of phrase pairs can be ex-
cluded, without much impact on the transla-
tion quality. In fact, we show that better trans-
lations can be obtained using our pruned mod-
els, due to the compression of the search space
during decoding.

1 Introduction

Phrase-based Machine Translation Models (Koehn
et al., 2003) model n-to-m translations of n source
words to m target words, which are encoded in
phrase pairs and stored in the translation model.
This approach has an advantage over Word-based
Translation Models (Brown et al., 1993), since trans-
lating multiple source words allows the context for
each source word to be considered during trans-

lation. For instance, the translation of the En-
glish word “in” by itself to Portuguese is not ob-
vious, since we do not have any context for the
word. This word can be translated in the con-
text of “in (the box)” to “dentro”, or in the con-
text of “in (China)” as “na”. In fact, the lexical
entry for “in” has more than 10 good translations
in Portuguese. Consequently, the lexical translation
entry for Word-based models splits the probabilis-
tic mass between different translations, leaving the
choice based on context to the language model. On
the other hand, in Phrase-based Models, we would
have a phrase pair p(in the box, dentro da caixa)
and p(in china, na china), where the words “in the
box” and “in China” can be translated together to
“dentro da caixa” and “na China”, which substan-
tially reduces the ambiguity. In this case, both the
translation and language models contribute to find
the best translation based on the local context, which
generally leads to better translations.

However, not all words add the same amount of
contextual information. Using the same example for
“in”, if we add the context “(hid the key) in”, it is
still not possible to accurately identify the best trans-
lation for the word “in”. The phrase extraction algo-
rithm (Ling et al., 2010) does not discriminate which
phrases pairs encode contextual information, and ex-
tracts all phrase pairs with consistent alignments.
Hence, phrases that add no contextual information,
such as, p(hid the key in, escondeu a chave na)
and p(hid the key in, escondeu a chave dentro)
are extracted. This is undesirable because we are
populating translation models with redundant phrase
pairs, whose translations can be obtained using com-
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binations of other phrases with the same probabil-
ities, namely p(hid the key, escondeu a chave),
p(in, dentro) and p(in, na). This is a problem
that is also found in language modeling, where
large amounts of redundant higher-order n-grams
can make the model needlessly large. For backoff
language models, multiple pruning strategies based
on relative entropy have been proposed (Seymore
and Rosenfeld, 1996) (Stolcke, 1998), where the ob-
jective is to prune n-grams in a way to minimize the
relative entropy between the model before and after
pruning.

While the concept of using relative entropy for
pruning is not new and frequently used in backoff
language models, there are no such models for ma-
chine translation. Thus, the main contribution of
our work is to propose a relative entropy pruning
model for translation models used in Phrase-based
Machine Translation. It is shown that our pruning
algorithm can eliminate phrase pairs with little or
no impact in the predictions made in our translation
model. In fact, by reducing the search space, less
search errors are made during decoding, which leads
to improvements in translation quality.

This paper is organized as follows. We describe
and contrast the state of the art pruning algorithms
in section 2. In section 3, we describe our relative-
entropy model for machine translation. Afterwards,
in section 4, we apply our model for pruning in
Phrase-based Machine Translation systems. We per-
form experiments with our pruning algorithm based
on phrase pair independence and analyse the results
in section 5. Finally, we conclude in section 6.

2 Phrase Table Pruning

Phrase table pruning algorithms are important in
translation, since they efficiently reduce the size of
the translation model, without having a large nega-
tive impact in the translation quality. This is espe-
cially relevant in environments where memory con-
straints are imposed, such as translation systems for
small devices like cellphones, and also when time
constraints for the translation are defined, such as
online Speech-to-Speech systems.

2.1 Significance Pruning

A relevant reference in phrase table pruning is the
work of (Johnson and Martin, 2007), where it is
shown that a significant portion of the phrase ta-
ble can be discarded without a considerable negative
impact on translation quality, or even positive one.
This work computes the probability, named p-value,
that the joint occurrence event of the source phrase
s and target phrase t occurring in same sentence pair
happens by chance, and are actually statistically in-
dependent. Phrase pairs that have a high p-value,
are more likely to be spurious and more prone to
be pruned. This work is followed in (Tomeh et al.,
2009), where phrase pairs are treated discriminately
based on their complexity. Significance-based prun-
ing has also been successfully applied in language
modeling in (Moore and Quirk, 2009).

Our work has a similar objective, but instead
of trying to predict the independence between the
source and target phrases in each phrase pair, we at-
tempt to predict the independence between a phrase
pair and other phrase pairs in the model.

2.2 Relevance Pruning

Another proposed approach (Matthias Eck and
Waibel, 2007) consists at collecting usage statistics
for phrase pairs. This algorithm decodes the train-
ing corpora and extracts the number of times each
phrase pair is used in the 1-best translation hypoth-
esis. Thus, phrase pairs that are rarely used during
decoding are excluded first during pruning.

This method considers the relationship between
phrase pairs in the model, since it tests whether
the decoder is more prone to use some phrase pairs
than others. However, it leads to some undesirable
pruning choices. Let us consider a source phrase
“the box in China” and 2 translation hypotheses,
where the first hypothesis uses the phrase transla-
tion p(the key in China, a chave na China) with
probability 70%, and the second hypothesis uses
two phrase translations p(the key, a chave) and
p(in China, na China) with probability 65%. This
approach will lean towards pruning the phrase pairs
in the second hypothesis, since the decoder will use
the first hypothesis. This is generally not desired,
since the 2 smaller phrase pairs can be used to trans-
late the same source sentence with a small probabil-
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ity loss (5%), even if the longer phrase is pruned.
On the other hand, if the smaller phrases are pruned,
the longer phrase can not be used to translate smaller
chunks, such as “the key in Portugal”. This matter is
aggravated due to the fact that the training corpora is
used to decode, so longer phrase pairs will be used
more frequently than when translating unseen sen-
tences, which will make the model more biased into
pruning shorter phrase pairs.

3 Relative Entropy Model For
Phrase-based Translation Models

In this section, we shall define our entropy model
for phrase pairs. We start by introducing some no-
tation to distinguish different types of phrase pairs
and show why some phrase pairs are more redun-
dant than others. Afterwards, we illustrate our no-
tion of relative entropy between phrase pairs. Then,
we describe our entropy model, its computation and
its application to phrase table pruning.

3.1 Atomic and Composite Phrase Pairs

We discriminate between 2 types of phrase pairs:
atomic phrase pairs and composite phrase pairs.

Atomic phrase pairs define the smallest transla-
tion units, such that given an atomic phrase pair that
translates from s to t, the same translation cannot
be obtained using any combination of other phrase
pairs. Removing these phrase pairs reduces the
range of translations that our model is capable of
translating and also the possible translations.

Composite phrase pairs define translations of a
given sequence of words that can also be obtained
using atomic or other smaller composite phrase
pairs. Each combination is called a derivation or
translation hypothesis. Removing these phrase pairs
does not change the amount of sentences that the
model can translate, since all translations encoded
in these phrases can still be translated using other
phrases, but these will lead to different translation
probabilities.

Considering table 1, we can see that atomic
phrases encode one elementary translation event,
while composite phrases encode joint events that are
encoded in atomic phrase pairs. If we look at the
source phrase “in”, there is a multitude of possible
translations for this word in most target languages.

Taking Portuguese as the target language, the proba-
bility that “in” is translated to “em” is relatively low,
since it can also be translated to “no”, “na”, “den-
tro”, “dentro de” and many others.

However, if we add another word such as “Por-
tugal” forming “in Portugal”, it is more likely that
“in” is translated to “em”. Thus, we define the
joint event of “in” translating to “em” (A1) and
“Portugal” to “Portugal” (B1), denoted as A1 ∩ B1,
in the phrase pair p(in Portugal, em Portugal).
Without this phrase pair it is assumed that these
are independent events with probability given by
P (A1)P (B1)

1, which would be 10%, leading to a
60% reduction. In this case, it would be more likely,
that in Portugal is translated to no Portugal or
na Portugal, which would be incorrect.

Some words, such as “John”, forming “John in”,
do not influence the translations for the word “in”,
since it can still be translated to “em”, “no”, “na”,
“dentro” or “dentro de” depending on the word that
follows. By definition, if the presence of phrase
p(John, John) does not influence the translation of
p(in, em) and viceversa, we can say that probability
of the joint event P (A1∩C1) is equal to the product
of the probabilities of the events P (A1)P (C1).

If we were given a choice of pruning either the
composite phrase pairs p(John in, John em) or
p(in Portugal, em Portugal), the obvious choice
would be the former, since the probability of the
event encoded in that phrase pair is composed by 2
independent events, in which case the decoder will
inherently consider the hypothesis that “John in” is
translated to “John em” with the same probability. In
another words, the model’s predictions even, with-
out this phrase pair will remain the same.

The example above shows an extreme case,
where the event encoded in the phrase pair
p(John in, John em) is decomposed into indepen-
dent events, and can be removed without chang-
ing the model’s prediction. However, finding and
pruning phrase pairs that are independent, based on
smaller events is impractical, since most translation
events are not strictly independent. However, many
phrase pairs can be replaced with derivations using
smaller phrases with a small loss in the model’s pre-

1For simplicity, we assume at this stage that no reordering
model is used
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Phrase Pair Prob Event
Atomic Phrase Pairs

in→ em 10% A1

in→ na 20% A2

in→ no 20% A3

in→ dentro 5% A4

in→ dentro de 5% A5

Portugal→ Portugal 100% B1

John→ John 100% C1

Composite Phrase Pairs
in Portugal→ em Portugal 70% A1 ∩B1

John in→ John em 10% C1 ∩A1

John in→ John na 20% C1 ∩A2

John in→ John no 20% C1 ∩A3

John in→ John dentro 5% C1 ∩A4

John in→ John dentro de 5% C1 ∩A5

Table 1: Phrase Translation Table with associated events

dictions.
Hence, we would like to define a metric for phrase

pairs that allows us evaluate how discarding each
phrase pair will affect the pruned model’s predic-
tions. By removing phrase pairs that can be derived
using smaller phrase pairs with similar probability,
it is possible to discard a significant portion of the
translation model, while minimizing the impact on
the model’s predictions.

3.2 Relative Entropy Model for Machine
Translation

For each phrase pair pa, we define the supporting
set SP (pa(s, t)) = S1, ..., Sk, where each element
Si = pi, ..., pj is a distinct derivation of pa(s, t) that
translates s to t, with probability P (Si) = P (pi) ×
...×P (pj). A phrase pair can have multiple elements
in its supporting set. For instance, the phrase pair
p(John in Portugal, John em Portugal), has 3
elements in the support set:

• S1 = {p(John, John), p(in, em), p(Portugal, Portugal)}

• S2 = {p(John, John), p(in Portugal, em Portugal)}

• S3 = {p(John in, John em), p(Portugal, Portugal)}

S1, S2 and S3 encode 3 different assumptions
about the event of translating “John in Portugal”
to “John em Portugal”. S1 assumes that the event
is composed by 3 independent events A1, B1 and
C1, S2 assumes that A1 and B1 are dependent, and

groups them into a single composite event A1 ∩B1,
which is independent from C1, and S3 groups A1

and C1 independently from B1. As expected, the
event encoded in the phrase pair p itself isA1∩B1∩
C1, which assumes thatA1,B1 andC1 are all depen-
dent. We can see that if any of the events S1, S2 or
S3 has a “similar probability” as the event coded in
the phrase pair, we can remove this phrase pair with
a minimal impact in the phrase prediction.

To formalize our notion of “similar probabil-
ity”, we apply the relative entropy or the Kullback-
Leibler divergence, and define the divergence be-
tween a pruned translation model Pp(s, t) and the
unpruned model P (s, t) as:

D(Pp||P ) = −
∑
s,t

P (s, t)log
Pp(t|s)
P (t|s)

(1)

Where Pp(t|s)
P (t|s) , measures the deviation from the

probability emission from the pruned model and the
original probability from the unpruned model, for
each source-target pair s, t. This is weighted by
the frequency that the pair s, t is observed, given by
P (s, t).

Our objective is to minimize D(Pp||P ), which
can be done locally by removing phrase pairs p(s, t)
with the lowest values for −P (s, t)log

Pp(t|s)
P (t|s) . Ide-

ally, we would want to minimize the relative entropy
for all possible source and target sentences, rather
than all phrases in our model. However, minimiz-
ing such an objective function would be intractable
due to reordering, since the probability assigned to a
phrase pair in a sentence pair by each model would
depend on the positioning of all other phrase pairs
used in the sentence. Because of these dependen-
cies, we would not be able to reduce this problem to
a local minimization problem. Thus, we assume that
all phrase pairs have the same probability regardless
of their context in a sentence.

Thus, our pruning algorithm takes a threshold δ
and prunes all phrase pairs that fail to meet the fol-
lowing criteria:

−P (s, t)log
Pp(t|s)
P (t|s)

> δ (2)

The main components of this function is the ratio
between the emission from the pruned model and
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unpruned models given by Pp(t|s)
P (t|s) , and the weight

given to each s, t pair given by P (s, t). In the re-
mainder of this section, we will focus on how to
model each of these components in equation 2.

3.3 Computing P (s, t)

The term P (s, t) can be seen as a weighting function
for each s, t pair. There is no obvious optimal dis-
tribution to model P (s, t). In this work, we apply 2
different distributions for P (s, t). First, an uniform
distribution, where all phrases are weighted equally.
Secondly, a multinomial function defined as:

P (s, t) =
N(s, t)

N
(3)

whereN is the number of sentence pairs in the paral-
lel data, and N(s, t) is the number of sentence pairs
where s was observed in the source sentence and t
was observed in the target sentence. Using this dis-
tribution, the model is more biased in pruning phrase
pairs with s, t pairs that do not occur frequently.

3.4 Computing Pp(t|s)
P (t|s)

The computation of Pp(t|s)
P (t|s) depends on how the de-

coder adapts when a phrase pair is pruned from the
model. In the case of back-off language models,
this can be solved by calculating the difference of
the logs between the n-gram estimate and the back-
off estimate. However, a translation decoder gen-
erally functions differently. In our work, we will
assume that the decoding will be performed using
a Viterbi decoder, such as MOSES (Koehn et al.,
2007), where the translation with the highest score
is chosen.

In the example above, where s=”John in Portu-
gal” and t=”John em Portugal”, the decoder would
choose the derivation with the highest probability
from s to t. Using the unpruned model, the possi-
ble derivations are either using phrase p(s, t) or one
element of its support set S1, S2 or S3. On the other
hand, on the pruned model where p(s, t) does not
exist, only S1, S2 and S3 can be used. Thus, given
a s, t pair one of three situations may occur. First, if
the probability of the phrase pair p(s, t) is lower than
the highest probability element in SP (p(s, t)), then
both the models will choose that element, in which
case, Pp(t|s)

P (t|s) = 1. This can happen, if we define

features that penalize longer phrase pairs, such as
lexical weighting, or if we apply smoothing (Foster
et al., 2006). Secondly, if the probability of p(s, t)
is equal to the most likely element in SP (p(s, t)),
regardless of whether the unpruned model choses to
use p(s, t) or that element, the probability emissions
of the pruned and unpruned model will be identi-
cal. Thus, for this case Pp(t|s)

P (t|s) = 1. Finally, if the
probability of p(s, t) is higher than other possible
derivations, the unpruned model will choose to emit
the probability of p(s, t), while the pruned model
will emit the most likely element in SP (p(s, t)).
Hence, the probability loss between the 2 models,
will be the ratio between the probability of p(s, t)
and the probability of the most likely element in
SP (p(s, t)).

From the example above, we can generalize the
function for Pp(t|s)

P (t|s) as:∏
p′∈argmax(SP (p(s,t))) P (p′)

P (p(s, t))
(4)

Where P (p(s, t)) denotes the probability of
p(s, t) and

∏
p′∈argmax(SP (p(s,t))) P (p′) the most

likely sequence of phrasal translations that translates
s to t, with the probability equal to the product of all
phrase translation probabilities in that sequence.

Replacing in equation 2, our final condition that
must be satisfied for keeping a phrase pair is:

−P (s, t)log

∏
p′∈argmax(SP (p(s,t))) P (p′)

P (p(s, t))
> δ (5)

4 Application for Phrase-based Machine
Translation

We will now show how we apply our entropy prun-
ing model in the state-of-the-art phrase-based trans-
lation system MOSES and describe the problems
that need to be addressed during the implementation
of this model.

4.1 Translation Model

The translation model in Moses is composed by
a phrase translation model and a phrase reorder-
ing model. The first one models, for each phrase
pair p(s, t), the probability of translating the s to
t by combining multiple features φi, weighted by
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wT
i , as PT (p) =

∏n
i=1 φi(p)

wT
i . The reordering

model is similar, but models the local reordering be-
tween p, given the previous and next phrase accord-
ing to the target side, pP and pN , or more formally,
PR(p|pP , pN ) =

∏m
i=1 ψi(p|pP , pP )wR

i

4.2 Building the Support Set
Essentially, implementing our model is equiva-
lent to calculating the components described in
equation 5. These are P (s, t), P (p(s|t)) and
argmax(SP (p(s, t))). Calculating the uniform dis-
tribution and multinomial distributions for P (s, t)
is simple, the uniform distribution just assumes the
same value for all s and t, and the multinomial dis-
tribution can be modeled by extracting counts from
the parallel corpora.

Calculating P (s|t) is also trivial, since it only en-
volves calculating PT (p(s, t)), which can be done
by retrieving the translation features of p and apply-
ing the weights for each feature.

The most challenging task is to calculate
argmax(SP (p(s, t))), which is similar to the de-
coding task in machine translation, where we need to
find the best translation t̂ for a sentence s, that is, t̂ =
argmaxtP (s|t)P (t). In practice, we are not search-
ing in the space of possible translations, but in the
space of possible derivations, which are sequences
of phrase translations p1(s1, t1), ..., pn(sn, tn) that
can be applied to s to generate an output t with the
score given by P (t)

∏n
i=1 P (si, ti).

Our algorithm to determine SP (p(s, t)) can be
described as an adaptation to the decoding algorithm
in Moses, where we restrict the search space to the
subspace SP (p(s, t)), that is, our search space is
only composed by derivations that output t, with-
out using p itself. This can be done using the forced
decoding algorithm proposed in (Schwartz, 2008).
Secondly, the score of a given translation hypothesis
does not depend on the language model probability
P (t), since all derivations in this search space have
the same t, thus we discard this probability from
the score function. Finally, rather than using beam
search, we exhaustively search all the search space,
to reduce the hypothesis of incurring a search error
at this stage. This is possible, since phrase pairs are
generally smaller than text (less than 8 words), and
because we are constraining the search space to t,
which is an order of magnitude smaller than the reg-

ular search space with all possible translations.

4.3 Pruning Algorithm
The algorithm to generate a pruned translation
model is shown in 1. We iterate over all phrase pairs
p1(s1, t1), ..., pn(sn, tn), decode using our forced
decoding algorithm from si to ti, to obtain the best
path S. If no path is found then it means that the pi

is atomic. Then, we prune pi based on condition 5.

Algorithm 1 Independence Pruning
Require: pruning threshold δ,

unpruned model {p1(s1, t1), ..., pn(sn, tn)}
for pi(si, ti) ∈ {p1(s1, t1), ..., pn(sn, tn)} do
S := argmax(SP (pi)) \ pi

score :=∞
if S 6= {} then
score := −P (s, t)log

∏
p′(s′,t′)∈S P (s′|t′)

P (s|t)
end if
if score ≤ δ then
prune(pi)

end if
end for
return pruned model

The main bottle neck in this algorithm is find-
ing argmax(SP (pi)). While this appears relatively
simple and similar to a document decoding task, the
size of our task is on a different order of magni-
tude, since we need to decode every phrase pair in
the translation model, which might not be tractable
for large models with millions of phrase pairs. We
address this problem in section 5.3.

Another problem with this algorithm is that the
decision to prune each phrase pair is made assuming
that all other phrase pairs will remain in the model.
Thus, there is a chance a phrase pair p1 is pruned
because of a derivation using p2 and p3 that leads to
the same translation. However, if p3 also happens to
be pruned, such a derivation will no longer be pos-
sible. One possible solution to address this problem
is to perform pruning iteratively, from the smallest
phrase pairs (number of words) and increase the size
at each iteration. However, we find this undesirable,
since the model will be biased into removing smaller
phrase pairs, which are generally more useful, since
they can be used in multiple derivation to replace
larger phrase pairs. In the example above, the model
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would eliminate p3 and keep p1, yet the best deci-
sion could be to keep p3 and remove p1, if p3 is also
frequently used in derivations of other phrase pairs.
Thus, we leave the problem of finding the best set of
phrases to prune as future work.

5 Experiments

We tested the performance of our system under two
different environments. The first is the small scale
DIALOG translation task for IWSLT 2010 evalua-
tion (Paul et al., 2010) using a small corpora for
the Chinese-English language pair (henceforth re-
ferred to as “IWSLT”). The second one is a large
scale test using the complete EUROPARL (Koehn,
2005) corpora for the Portuguese-English language
pair, which we will denote by “EUROPARL”.

5.1 Corpus

The IWSLT model was trained with 30K training
sentences. The development corpus and test corpus
were taken from the evaluation dataset in IWSLT
2006 (489 tuning and 500 test sentences with 7 ref-
erences). The EUROPARL model was trained using
the EUROPARL corpora with approximately 1.3M
sentence pairs, leaving out 1K sentences for tuning
and another 1K sentences for tests.

5.2 Setup

In the IWSLT experiment, word alignments were
generated using an HMM model (Vogel et al., 1996),
with symmetric posterior constraints (V. Graça et
al., 2010), using the Geppetto toolkit2. This setup
was used in the official evaluation in (Ling et al.,
2010). For the EUROPARL experiment the word
alignments were generated using IBM model 4. In
both experiments, the translation model was built
using the phrase extraction algorithm (Paul et al.,
2010), with commonly used features in Moses (Ex:
probability, lexical weighting, lexicalized reordering
model). The optimization of the translation model
weights was done using MERT tuning (Och, 2003)
and the results were evaluated using BLEU-4.

5.3 Pruning Setup

Our pruning algorithm is applied after the translation
model weight optimization with MERT. We gener-

2http://code.google.com/p/geppetto/

ate multiple translation models by setting different
values for δ, so that translation models of different
sizes are generated at intervals of 5%. We also run
the significance pruning (Johnson and Martin, 2007)
algorithm in these conditions.

While the IWSLT translation model has only
88,424 phrase pairs, for the EUROPARL exper-
iment, the translation model was composed by
48,762,372 phrase pairs, which had to be decoded.
The average time to decode each phrase pair us-
ing the full translation model is 4 seconds per sen-
tence, since the table must be read from disk due to
its size. This would make translating 48M phrase
pairs unfeasible. To address this problem, we di-
vide the phrase pairs in the translation model into
blocks of K phrase pairs, that are processed sepa-
rately. For each block, we resort to the approach
used in MERT tuning, where the model is filtered to
only include the phrase pairs that are used for trans-
lating tuning sentences. We filter each block with
phrase pairs fromK to 2K with the source sentences
sK , ..., s2K . Furthermore, since we are force de-
coding using the target sentences, we also filter the
remaining translation models using the target sen-
tences tK , ..., t2K . We used blocks of 10,000 phrase
pairs and each filtered table was reduced to less than
1% of the translation table on average, reducing the
average decoding time to 0.03 seconds per sentence.
Furthermore, each block can be processed in parallel
allowing multiple processes to be used for the task,
depending on the resources that are available.

5.4 Results

Figure 1 shows the BLEU results for different sizes
of the translation model for the IWSLT experiment
using the uniform and multinomial distributions for
P (s, t). We observe that there is a range of values
from 65% to 95% where we actually observe im-
provements caused by our pruning algorithm, with
the peak at 85% for the uniform distribution, where
we improve from 15.68 to 15.82 (0.9% improve-
ment). Between 26% and 65%, the BLEU score is
lower than the baseline at 100%, with the minimum
at 26% with 15.54, where only atomic phrase pairs
remain and both the multinomial and uniform distri-
bution have the same performance, obviously. This
is a considerable reduction in phrase table size by
sacrificing 0.14 BLEU points. Regarding the com-
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Figure 1: Results for the IWSLT experiment. The x-
axis shows the percentage of the phrase table used. The
BLEU scores are shown in the y-axis. Two distributions
for P (s, t) were tested Uniform and Multinomial.

parison between the uniform and multinomial distri-
bution, we can see that both distributions yield sim-
ilar results, specially when a low number of phrase
pairs is pruned. In theory, the multinomial distri-
bution should yield better results, since the pruning
model will prefer to prune phrase pairs that are more
likely to be observed. However, longer phrase pairs,
which tend compete with other long phrase pairs on
which get pruned first. These phrase pairs gener-
ally occur only once or twice, so the multinomial
model will act similarly to the uniform model re-
garding longer phrase pairs. On the other hand, as
the model size reduces, we can see that using multi-
nomial distribution seems to start to improve over
the uniform distribution.

The comparison between our pruning model and
pruning based on significance is shown in table 2.
These models are hard to compare, since not all
phrase table sizes can be obtained using both met-
rics. For instance, the significance metric can ei-
ther keep or remove all phrase pairs that only appear
once, leaving a large gap of phrase table sizes that
cannot be attained. In the EUROPARL experiment
the sizes of the table suddenly drops from 60% to
8%. The same happens with our metric that cannot
distinguish atomic phrase pairs. In the EUROPARL
experiment, we cannot generate phrase tables with
sizes smaller than 15%. Thus, we only show re-
sults at points where both algorithms can produce
a phrase table.

Significant improvements are observed in the

Table size Significance Entropy (u) Entropy (m)
Pruning Pruning Pruning

IWSLT
57K (65%) 14.82 15.77 15.78
71K (80%) 15.14 15.76 15.77
80K (90%) 15.31 15.73 15.72

88K (100%) 15.68 15.68 15.68
EUROPARL
29M (60%) 28.64 28.82 28.91
34M (70%) 28.84 28.94 28.99
39M (80%) 28.86 28.99 28.99
44M (90%) 28.91 29.00 29.02

49M (100%) 29.18 29.18 29.18

Table 2: Comparison between Significance Pruning (Sig-
nificance Pruning) and Entropy-based pruning using the
uniform (Entropy (u) Pruning) and multinomial distribu-
tions (Entropy (m) Pruning).

IWSLT experiment, where significance pruning
does not perform as well. On the other hand, on the
EUROPARL experiment, our model only achieves
slightly higher results. We believe that this is re-
lated by the fact the EUROPARL corpora is gener-
ated from automatically aligning documents, which
means that there are misaligned sentence pairs.
Thus, many spurious phrase pairs are extracted. Sig-
nificance pruning performs well under these condi-
tions, since the measure is designed for this purpose.
In our metric, we do not have any means for detect-
ing spurious phrase pairs, in fact, spurious phrase
pairs are probably kept in the phrase table, since
each distinct spurious phrase pair is only extracted
once, and thus, they have very few derivations in
its support set. This suggests, that the significance
score can be integrated in our model to improve our
model, which we leave as future work.

John married Portugal

married 
in

in 
Portugal

married 

married 
in

John 

in 
Portugal

Portugal

a)

b)

Figure 2: Translation order in for different reordering
starting from left to right.

We believe that in language pairs such as Chinese-
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English with large distance reorderings between
phrases are more prone to search errors and benefit
more from our pruning algorithm. To illustrate this,
let us consider the source sentence “John married
in Portugal”, and translating either using the blocks
“John”, “married” and “in Portugal” or the blocks
“John”, “married in”, “Portugal”, the first hypoth-
esis would be much more viable, since the word
“Portugal” is more relevant as the context for the
word “in”. Thus, the key choice for the decoder is
to decide whether to translate using “married” with
or without “in”, and it is only able to predict that
it is better to translate “married” by itself until it
finds that “in” is better translated with “Portugal”.
Thus, a search error occurs if the hypothesis where
“married” is translated by itself is removed. In fig-
ure 2, we can see the order that blocks are consid-
ered for different reorderings, starting from left to
right. In a), we illustrate the case for a monotonous
translation. We observe that the correct decision be-
tween translating “married in” or just “married” is
found immediately, since the blocks “Portugal” and
“in Portugal” are considered right afterwards. In this
case, it is unlikely that the hypothesis using “mar-
ried” is removed. However, if we consider that due
to reordering, “John” is translated after “married”
and before “Portugal”, which is shown in b). Then,
the correct decision can only be found after consid-
ering “John”. In this case, “John” does not have
many translations, so the likelihood of eliminating
the correct hypothesis. However, if there were many
translations for John, it is highly likely that the cor-
rect partial hypothesis is eliminated. Furthermore,
the more words exist between “married” and “Portu-
gal”, the more likely will the correct hypothesis not
exist when we reach “Portugal”. By pruning the hy-
pothesis “married in” a priori, we contribute in pre-
venting such search errors.

We observe that some categories of phrase pairs
that are systematically pruned, but these cannot
be generalized in rules, since there are many ex-
ceptions. The most obvious type of phrase pairs
are phrases with punctuations, such as “谢谢.” to
“thanks .” and “. 谢谢” to “thanks .”, since “.”
is translated independently from most contextual
words. However, this rule should not be general-
ized, since in some cases “.” is a relevant contextual
marker. For instance, the word “please” is translated

to “请” in the sentence ‘open the door, please.” and
translated to “使高兴” in “please my advisors”. An-
other example are sequences of numbers, which are
generally translated literally. For instance, “八(8)
三(3)八(8)” is translated to “eight three eight” (Ex:
“room eight three eight”). Thus, phrase pairs for
number sequences can be removed, since those num-
bers can be translated one by one. However, for se-
quences such as “一(1)八(8)”, we need a phrase pair
to represent this specifically. This is because “一(1)”
can be translated to “one”, but also to “a”, “an”, “sin-
gle”. Other exceptions include “一(1)一(1)”, which
tends to be translated as “eleven”, and which tends to
be translated to “o”, rather than “zero” in sequences
(“room eleven o five”).

6 Conclusions

We present a pruning algorithm for Machine Trans-
lation based on relative entropy, where we assess
whether the translation event encoded in a phrase
pair can be decomposed into combinations of events
encoded in other phrase pairs. We show that such
phrase pairs can be removed from the translation
model with little negative impact or even a positive
one in the overall translation quality. Tests show that
our method yields comparable or better results with
state of the art pruning algorithms.

As future work, we would like to combine our
approach with significance pruning, since both ap-
proaches are orthogonal and address different issues.
We also plan to improve the pruning step of our algo-
rithm to find the optimal set of phrase pairs to prune
given the pruning threshold.

The code used in this work will be made available.
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Abstract

When trained on very large parallel corpora,
the phrase table component of a machine
translation system grows to consume vast
computational resources. In this paper, we in-
troduce a novel pruning criterion that places
phrase table pruning on a sound theoretical
foundation. Systematic experiments on four
language pairs under various data conditions
show that our principled approach is superior
to existing ad hoc pruning methods.

1 Introduction

Over the last years, statistical machine translation
has become the dominant approach to machine
translation. This is not only due to improved mod-
eling, but also due to a significant increase in the
availability of monolingual and bilingual data. Here
are just two examples of very large data resources
that are publicly available:

• The Google Web 1T 5-gram corpus available
from the Linguistic Data Consortium consist-
ing of the 5-gram counts of about one trillion
words of web data.1

• The 109-French-English bilingual corpus with
about one billion tokens from the Workshop on
Statistical Machine Translation (WMT).2

These enormous data sets yield translation models
that are expensive to store and process. Even with

1LDC catalog No. LDC2006T13
2http://www.statmt.org/wmt11/translation-task.html

modern computers, these large models lead to a long
experiment cycle that hinders progress. The situa-
tion is even more severe if computational resources
are limited, for instance when translating on hand-
held devices. Then, reducing the model size is of
the utmost importance.

The most resource-intensive components of a sta-
tistical machine translation system are the language
model and the phrase table. Recently, compact rep-
resentations of the language model have attracted
the attention of the research community, for instance
in Talbot and Osborne (2007), Brants et al. (2007),
Pauls and Klein (2011) or Heafield (2011), to name
a few. In this paper, we address the other problem
of any statistical machine translation system: large
phrase tables.

Johnson et al. (2007) has shown that large por-
tions of the phrase table can be removed without loss
in translation quality. This motivated us to perform
a systematic comparison of different pruning meth-
ods. However, we found that many existing methods
employ ad-hoc heuristics without theoretical foun-
dation.

The pruning criterion introduced in this work is
inspired by the very successful and still state-of-the-
art language model pruning criterion based on en-
tropy measures (Stolcke, 1998). We motivate its
derivation by stating the desiderata for a good phrase
table pruning criterion:

• Soundness: The criterion should optimize
some well-understood information-theoretic
measure of translation model quality.

972



• Efficiency: Pruning should be fast, i. e., run lin-
early in the size of the phrase table.

• Self-containedness: As a practical considera-
tion, we want to prune phrases from an existing
phrase table. This means pruning should use
only information contained in the model itself.

• Good empirical behavior: We would like to
be able to prune large parts of the phrase table
without significant loss in translation quality.

Analyzing existing pruning techniques based on
these objectives, we found that they are commonly
deficient in at least one of them. We thus designed
a novel pruning criterion that not only meets these
objectives, it also performs very well in empirical
evaluations.

The novel contributions of this paper are:

1. a systematic description of existing phrase table
pruning methods.

2. a new, theoretically sound phrase table pruning
criterion.

3. an experimental comparison of several pruning
methods for several language pairs.

2 Related Work

The most basic pruning methods rely on probabil-
ity and count cutoffs. We will cover the techniques
that are implemented in the Moses toolkit (Koehn et
al., 2007) and the Pharaoh decoder (Koehn, 2004) in
Section 3. We are not aware of any work that ana-
lyzes their efficacy in a systematic way. It is thus not
surprising that some of them perform poorly, as our
experimental results will show.

The work of Johnson et al. (2007) is promis-
ing as it shows that large parts of the phrase ta-
ble can be removed without affecting translation
quality. Their pruning criterion relies on statisti-
cal significance tests. However, it is unclear how
this significance-based pruning criterion is related to
translation model quality. Furthermore, a compari-
son to other methods is missing. Here we close this
gap and perform a systematic comparison. The same
idea of significance-based pruning was exploited in
(Yang and Zheng, 2009; Tomeh et al., 2009) for hi-
erarchical statistical machine translation.

A different approach to phrase table pruning was
undertaken by Eck et al. (2007a; 2007b). They rely
on usage statistics from translating sample data, so it
is not self-contained. However, it could be combined
with the methods proposed here.

Another approach to phrase table pruning is trian-
gulation (Chen et al., 2008; Chen et al., 2009). This
requires additional bilingual corpora, namely from
the source language as well as from the target lan-
guage to a third bridge language. In many situations
this does not exist or would be costly to generate.

Duan et al. (2011), Sanchis-Trilles et al. (2011)
and Tomeh et al. (2011) modify the phrase extrac-
tion methods in order to reduce the phrase table size.
The work in this paper is independent of the way the
phrase extraction is done, so those approaches are
complementary to our work.

3 Pruning Using Simple Statistics

In this section, we will review existing pruning
methods based on simple phrase table statistics.
There are two common classes of these methods: ab-
solute phrase table pruning and relative phrase table
pruning.

3.1 Absolute pruning

Absolute pruning methods rely only on the statistics
of a single phrase pair (f̃ , ẽ). Hence, they are in-
dependent of other phrases in the phrase table. As
opposed to relative pruning methods (Section 3.2),
they may prune all translations of a source phrase.
Their application is easy and efficient.

• Count-based pruning. This method prunes
a phrase pair (f̃ , ẽ) if its observation count
N(f̃ , ẽ) is below a threshold τc:

N(f̃ , ẽ) < τc (1)

• Probability-based pruning. This method
prunes a phrase pair (f̃ , ẽ) if its probability is
below a threshold τp:

p(ẽ|f̃) < τp (2)

Here the probability p(ẽ|f̃) is estimated via rel-
ative frequencies.
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3.2 Relative pruning

A potential problem with the absolute pruning meth-
ods is that it can prune all occurrences of a source
phrase f̃ .3 Relative pruning methods avoid this by
considering the full set of target phrases for a spe-
cific source phrase f̃ .

• Threshold pruning. This method discards
those phrases that are far worse than the best
target phrase for a given source phrase f̃ . Given
a pruning threshold τt, a phrase pair (f̃ , ẽ) is
discarded if:

p(ẽ|f̃) < τt ·max
ẽ

{
p(ẽ|f̃)

}
(3)

• Histogram pruning. An alternative to thresh-
old pruning is histogram pruning. For each
source phrase f̃ , this method preserves the K
target phrases with highest probability p(ẽ|f̃)
or, equivalently, their count N(f̃ , ẽ).

Note that, except for count-based pruning, none of
the methods take the frequency of the source phrase
into account. As we will confirm in the empirical
evaluation, this will likely cause drops in translation
quality, since frequent source phrases are more use-
ful than the infrequent ones.

4 Significance Pruning

In this section, we briefly review significance prun-
ing following Johnson et al. (2007). The idea of sig-
nificance pruning is to test whether a source phrase
f̃ and a target phrase ẽ co-occur more frequently in
a bilingual corpus than they should just by chance.
Using some simple statistics derived from the bilin-
gual corpus, namely

• N(f̃) the count of the source phrase f̃

• N(ẽ) the count of the target phrase ẽ

• N(f̃ , ẽ) the co-occurence count of the source
phrase f̃ and the target phrase ẽ

• N the number of sentences in the bilingual cor-
pus

3Note that it has never been systematically investigated
whether this is a real problem or just speculation.

we can compute the two-by-two contingency table
in Table 1.

Following Fisher’s exact test, we can calculate the
probability of the contingency table via the hyperge-
ometric distribution:

ph(N(f̃ , ẽ)) =

(
N(f̃)

N(f̃ ,ẽ)

)
·
(

N−N(f̃)

N(ẽ)−N(f̃ ,ẽ)

)
(

N
N(ẽ)

) (4)

The p-value is then calculated as the sum of all
probabilities that are at least as extreme. The lower
the p-value, the less likely this phrase pair occurred
with the observed frequency by chance; we thus
prune a phrase pair (f̃ , ẽ) if: ∞∑

k=N(f̃ ,ẽ)

ph(k)

 > τF (5)

for some pruning threshold τF . More details of this
approach can be found in Johnson et al. (2007). The
idea of using Fisher’s exact test was first explored by
Moore (2004) in the context of word alignment.

5 Entropy-based Pruning

In this section, we will derive a novel entropy-based
pruning criterion.

5.1 Motivational Example
In general, pruning the phrase table can be consid-
ered as selecting a subset of the original phrase table.
When doing so, we would like to alter the original
translation model distribution as little as possible.
This is a key difference to previous approaches: Our
goal is to remove redundant phrases, whereas previ-
ous approaches usually try to remove low-quality or
unreliable phrases. We believe this to be an advan-
tage of our method as it is certainly easier to measure
the redundancy of phrases than it is to estimate their
quality.

In Table 2, we show some example phrases
from the learned French-English WMT phrase table,
along with their counts and probabilities. For the
French phrase le gouvernement français, we have,
among others, two translations: the French govern-
ment and the government of France. If we have
to prune one of those translations, we can ask our-
selves: how would the translation cost change if the
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N(f̃ , ẽ) N(f̃)−N(f̃ , ẽ) N(f̃)

N(ẽ)−N(f̃ , ẽ) N −N(f̃)−N(ẽ) +N(f̃ , ẽ) N −N(f̃)

N(ẽ) N −N(ẽ) N

Table 1: Two-by-two contingency table for a phrase pair (f̃ , ẽ).

Source Phrase f̃ Target Phrase ẽ N(f̃ , ẽ) p(ẽ|f̃)

le the 7.6 M 0.7189

gouvernement government 245 K 0.4106

français French 51 K 0.6440

of France 695 0.0046

le gouvernement français the French government 148 0.1686

the government of France 11 0.0128

Table 2: Example phrases from the French-English phrase table (K=thousands, M=millions).

same translation were generated from the remain-
ing, shorter, phrases? Removing the phrase the gov-
ernment of France would increase this cost dramat-
ically. Given the shorter phrases from the table, the
probability would be 0.7189 · 0.4106 · 0.0046 =
0.0014∗, which is about an order of a magnitude
smaller than the original probability of 0.0128.

On the other hand, composing the phrase the
French government out of shorter phrases has prob-
ability 0.7189 · 0.4106 · 0.6440 = 0.1901, which is
very close to the original probability of 0.1686. This
means it is safe to discard the phrase the French gov-
ernment, since the translation cost remains essen-
tially unchanged. By contrast, discarding the phrase
the government of France does not have this effect:
it leads to a large change in translation cost.

Note that here the pruning criterion only considers
redundancy of the phrases, not the quality. Thus, we
are not saying that the government of France is a
better translation than the French government, only
that it is less redundant.

∗We use the assumption that we can simply multiply the
probabilities of the shorter phrases.

5.2 Entropy Criterion

Now, we are going to formalize the notion of re-
dundancy. We would like the pruned model p′(ẽ|f̃)
to be as similar as possible to the original model
p(ẽ|f̃). We use conditional Kullback-Leibler di-
vergence, also called conditional relative entropy
(Cover and Thomas, 2006), to measure the model
similarity:

D(p(ẽ|f̃)||p′(ẽ|f̃))

=
∑
f̃

p(f̃)
∑
ẽ

p(ẽ|f̃) log

[
p(ẽ|f̃)

p′(ẽ|f̃)

]
(6)

=
∑
f̃ ,ẽ

p(ẽ, f̃)
[
log p(ẽ|f̃)− log p′(ẽ|f̃)

]
(7)

Computing the best pruned model of a given size
would require optimizing over all subsets with that
size. Since that is computationally infeasible, we in-
stead apply the equivalent approximation that Stol-
cke (1998) uses for language modeling. This as-
sumes that phrase pairs affect the relative entropy
roughly independently.

We can then choose a pruning threshold τE and
prune those phrase pairs with a contribution to the
relative entropy below that threshold. Thus, we
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prune a phrase pair (f̃ , ẽ), if

p(ẽ, f̃)
[
log p(ẽ|f̃)− log p′(ẽ|f̃)

]
< τE (8)

We now address how to assign the probability
p′(ẽ|f̃) under the pruned model. A phrase-based
system selects among different segmentations of the
source language sentence into phrases. If a segmen-
tation into longer phrases does not exist, the system
has to compose a translation out of shorter phrases.
Thus, if a phrase pair (f̃ , ẽ) is no longer available,
the decoder has to use shorter phrases to produce
the same translation. We can therefore decompose
the pruned model score p′(ẽ|f̃) by summing over all
segmentations sK1 and all reorderings πK1 :

p′(ẽ|f̃) =
∑
sK
1 ,π

K
1

p(sK1 , π
K
1 |f̃) · p(ẽ|sK1 , πK1 , f̃) (9)

Here the segmentation sK1 divides both the source
and target phrases into K sub-phrases:

f̃ = f̄π1 ...f̄πK and ẽ = ē1...ēK (10)

The permutation πK1 describes the alignment of
those sub-phrases, such that the sub-phrase ēk is
aligned to f̄πk

. Using the normal phrase translation
model, we obtain:

p′(ẽ|f̃) =
∑
sK
1 ,π

K
1

p(sK1 , π
K
1 |f̃)

K∏
k=1

p(ēk|f̄πk
) (11)

Virtually all phrase-based decoders use the so-
called maximum-approximation, i. e. the sum is re-
placed with the maximum. As we would like the
pruning criterion to be similar to the search criterion
used during decoding, we do the same and obtain:

p′(ẽ|f̃) ≈ max
sK
1 ,π

K
1

K∏
k=1

p(ēk|f̄πk
) (12)

Note that we also drop the segmentation probabil-
ity, as this is not used at decoding time. This leaves
the pruning criterion a function only of the model
p(ẽ|f̃) as stored in the phrase table. There is no need
for a special development or adaptation set. We can
determine the best segmentation using dynamic pro-
gramming, similar to decoding with a phrase-based

model. However, here the target side is constrained
to the given phrase ẽ.

It can happen that a phrase is not compositional,
i. e., we cannot find a segmentation into shorter
phrases. In these cases, we assign a small, constant
probability:

p′(ẽ|f̃) = pc (13)

We found that the value pc = e−10 works well for
many language pairs.

5.3 Computation

In our experiments, it was more efficient to vary the
pruning threshold τE without having to re-compute
the entire phrase table. Therefore, we computed the
entropy criterion in Equation (8) once for the whole
phrase table. This introduces an approximation for
the pruned model score p′(ẽ|f̃). It might happen
that we prune short phrases that were used as part
of the best segmentation of longer phrases. As these
shorter phrases should not be available, the pruned
model score might be inaccurate. Although we be-
lieve this effect is minor, we leave a detailed experi-
mental analysis for future work.

One way to avoid this approximation would be
to perform entropy pruning with increasing phrase
length. Starting with one-word phrases, which are
trivially non-compositional, the entropy criterion
would be straightforward to compute. Proceed-
ing to two-word phrases, one would decompose the
phrases into sub-phrases by looking up the proba-
bilities of some of the unpruned one-word phrases.
Once the set of unpruned two-word phrases was ob-
tained, one would continue with three-word phrases,
etc.

6 Experimental Evaluation

6.1 Data Sets

In this section, we describe the data sets used for the
experiments. We perform experiments on the pub-
licly available WMT shared translation task for the
following four language pairs:

• German-English

• Czech-English

• Spanish-English
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Number of Words
Language Pair Foreign English
German - English 42 M 45 M
Czech - English 56 M 65 M
Spanish - English 232 M 210 M
French - English 962 M 827 M

Table 3: Training data statistics. Number of words in the
training data (M=millions).

• French-English

For each pair, we train two separate system, one for
each direction. Thus it can happen that a phrase is
pruned for X-to-Y, but not for Y-to-X.

These four language pairs represent a nice range
of training corpora sizes, as shown in Table 3.

6.2 Baseline System
Pruning experiments were performed on top of the
following baseline system. We used a phrase-
based statistical machine translation system similar
to (Zens et al., 2002; Koehn et al., 2003; Och and
Ney, 2004; Zens and Ney, 2008). We trained a 4-
gram language model on the target side of the bilin-
gual corpora and a second 4-gram language model
on the provided monolingual news data. All lan-
guage models used Kneser-Ney smoothing.

The baseline system uses the common phrase
translation models, such as p(ẽ|f̃) and p(f̃ |ẽ), lex-
ical models, word and phrase penalty, distortion
penalty as well as a lexicalized reordering model
(Zens and Ney, 2006).

The word alignment was trained with six itera-
tions of IBM model 1 (Brown et al., 1993) and 6 it-
erations of the HMM alignment model (Vogel et al.,
1996) using a symmetric lexicon (Zens et al., 2004).

The feature weights were tuned on a development
set by applying minimum error rate training (MERT)
under the Bleu criterion (Och, 2003; Macherey et al.,
2008). We ran MERT once with the full phrase table
and then kept the feature weights fixed, i. e., we did
not rerun MERT after pruning to avoid adding un-
necessary noise. We extract phrases up to a length
of six words. The baseline system already includes
phrase table pruning by removing singletons and
keeping up to 30 target language phrases per source
phrase. We found that this does not affect transla-
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Figure 1: Comparison of probability-based pruning
methods for German-English.

tion quality significantly4. All pruning experiments
are done on top of this.

6.3 Results
In this section, we present the experimental results.
Translation results are reported on the WMT’07
news commentary blind set.

We will show translation quality measured with
the Bleu score (Papineni et al., 2002) as a function
of the phrase table size (number of phrases). Being
in the upper left corner of these figures is desirable.

First, we show a comparison of several
probability-based pruning methods in Figure 1.
We compare

• Prob. Absolute pruning based on Eq. (2).

• Thres. Threshold pruning based on Eq. (3).

• Hist. Histogram pruning as described in Sec-
tion 3.2.5

We observe that these three methods perform
equally well. There is no difference between abso-
lute and relative pruning methods, except that the
two relative methods (Thres and Hist) are limited by

4The Bleu score drops are as follows: English-French 0.3%,
French-English 0.4%, Czech-English 0.3%, all other are less
than 0.1%.

5Instead of using p(ẽ|f̃) one could use the weighted model
score including p(f̃ |ẽ), lexical weightings etc.; however, we
found that this does not give significantly different results; but
it does introduce a undesirable dependance between feature
weights and phrase table pruning.
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the number of source phrases. Thus, they reach a
point where they cannot prune the phrase table any
further. The results shown are for German-English;
the results for the other languages are very similar.
The results that follow use only the absolute prun-
ing method as a representative for probability-based
pruning.

In Figures 2 through 5, we show the transla-
tion quality as a function of the phrase table size.
We vary the pruning thresholds to obtain different
phrase table sizes. We compare four pruning meth-
ods:

• Count. Pruning based on the frequency of a
phrase pair, c.f. Equation (1).

• Prob. Pruning based on the absolute probabil-
ity of a phrase pair, c.f. Equation (2).

• Fisher. Pruning using significance tests, c.f.
Equation (5).

• Entropy. Pruning using the novel entropy cri-
terion, c.f. Equation (8).

Note that the x-axis of these figures is on a logarith-
mic scale, so the differences between the methods
can be quite dramatic. For instance, entropy pruning
requires less than a quarter of the number of phrases
needed by count- or significance-based pruning to
achieve a Spanish-English Bleu score of 34 (0.4 mil-
lion phrases compared to 1.7 million phrases).

These results clearly show how the pruning meth-
ods compare:

1. Probability-based pruning performs poorly. It
should be used only to prune small fractions of
the phrase table.

2. Count-based pruning and significance-based
pruning perform equally well. They are much
better than probability-based pruning.

3. Entropy pruning consistently outperforms the
other methods across translation directions and
language pairs.

Figures 6 and 7 show compositionality statistics
for the pruned Spanish-English phrase table (we ob-
served similar results for the other language pairs).

Total number of phrases 4 137 M
Compositional 3 970 M
Non-compositional 167 M
of those: one-word phrases 85 M

no segmentation 82 M

Table 4: Statistics of phrase compositionality
(M=millions).

Each figure shows the composition of the phrase ta-
ble for a type of pruning for different phrase tables
sizes. Along the x-axis, we plotted the phrase ta-
ble size. These are the same phrase tables used to
obtain the Bleu scores in Figure 2 (left). The dif-
ferent shades of grey correspond to different phrase
lengths. For instance, in case of the smallest phrase
table for count-based pruning, the 1-word phrases
account for about 30% of all phrases, the 2-word
phrases account for about 35% of all phrases, etc.

With the exception of the probability-based prun-
ing, the plots look comparable. The more aggres-
sive the pruning, the larger the percentage of short
phrases. We observe that entropy-based pruning re-
moves many more long phrases than any of the other
methods. The plot for probability-based pruning is
different in that the percentage of long phrases ac-
tually increases with more aggressive pruning (i. e.
smaller phrase tables). A possible explanation is
that probability-based pruning does not take the fre-
quency of the source phrase into account. This
difference might explain the poor performance of
probability-based pruning.

To analyze how many phrases are compositional,
we collect statistics during the computation of the
entropy criterion. These are shown in Table 4, ac-
cumulated across all language pairs and all phrases,
i. e., including singleton phrases. We see that 96%
of all phrases are compositional (3 970 million out
of 4 137 million phrases). Furthermore, out of
the 167 million non-compositional phrases, more
than half (85 million phrases), are trivially non-
compositional: they consist only of a single source
or target language word. The number of non-trivial
non-compositional phrases is, with 82 million or 2%
of the total number of phrases, very small.

In Figure 8, we show the effect of the constant
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Figure 2: Translation quality as a function of the phrase table size for Spanish-English (left) and English-Spanish
(right).
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Figure 3: Translation quality as a function of the phrase table size for French-English (left) and English-French (right).
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Figure 4: Translation quality as a function of the phrase table size for Czech-English (left) and English-Czech (right).
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Figure 5: Translation quality as a function of the phrase table size for German-English (left) and English-German
(right).
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Figure 6: Phrase length statistics for Spanish-English for probability-based (left) and count-based pruning (right).
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Figure 7: Phrase length statistics for Spanish-English for significance-based (left) and entropy-based pruning (right).

pc for non-compositional phrases.6 The results
shown are for Spanish-English; additional experi-
ments for the other languages and translation direc-
tions showed very similar results. Overall, there is
no big difference between the values. Hence, we
chose a value of 10 for all experiments.

The results in Figure 2 to Figure 5 show that
entropy-based pruning clearly outperforms the al-
ternative pruning methods. However, it is a bit
hard to see from the graphs exactly how much ad-
ditional savings it offers over other methods. In Ta-
ble 5, we show how much of the phrase table we
have to retain under various pruning criteria with-
out losing more than one Bleu point in translation
quality. We see that probability-based pruning al-
lows only for marginal savings. Count-based and
significance-based pruning results in larger savings
between 70% and 90%, albeit with fairly high vari-

6The values are in neg-log-space, i. e., a value of 10 corre-
sponds to pc = e−10.

ability. Entropy-based pruning achieves consistently
high savings between 85% and 95% of the phrase ta-
ble. It always outperforms the other pruning meth-
ods and yields significant savings on top of count-
based or significance-based pruning methods. Of-
ten, we can cut the required phrase table size in half
compared to count or significance based pruning.

As a last experiment, we want to confirm that
phrase-table pruning methods are actually better
than simply reducing the maximum phrase length.
In Figure 9, we show a comparison of different
pruning methods and a length-based approach for
Spanish-English. For the ’Length’ curve, we first
drop all 6-word phrases, then all 5-word phrases, etc.
until we are left with only single-word phrases; the
phrase length is measured as the number of source
language words. We observe that entropy-based,
count-based and significance-based pruning indeed
outperform the length-based approach. We obtained
similar results for the other languages.
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Method ES-EN EN-ES DE-EN EN-DE FR-EN EN-FR CS-EN EN-CS
Prob 77.3 % 82.7 % 61.2 % 67.3 % 84.8 % 94.1 % 85.6 % 86.3 %
Count 24.9 % 11.9 % 19.9 % 14.3 % 11.4 % 9.0 % 20.2 % 10.4 %
Fisher 23.5 % 12.6 % 21.7 % 14.0 % 14.5 % 13.6 % 31.9 % 9.9 %
Entropy 7.2 % 6.0 % 10.2 % 11.1 % 7.1 % 8.1 % 14.8 % 6.4 %

Table 5: To what degree can we prune the phrase table without losing more than 1 Bleu point? The table shows
percentage of phrases that we have to retain. ES=Spanish, EN=English, FR=French, CS=Czech, DE=German.
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Figure 8: Translation quality (Bleu) as a function of the
phrase table size for Spanish-English for entropy pruning
with different constants pc.

7 Conclusions

Phrase table pruning is often addressed in an ad-hoc
way using the heuristics described in Section 3. We
have shown that some of those do not work well.
Choosing the wrong technique can result in sig-
nificant drops in translation quality without saving
much in terms of phrase table size. We introduced
a novel entropy-based criterion and put phrase ta-
ble pruning on a sound theoretical foundation. Fur-
thermore, we performed a systematic experimental
comparison of existing methods and the new entropy
criterion. The experiments were carried out for four
language pairs under small, medium and large data
conditions. We can summarize our conclusions as
follows:

• Probability-based pruning performs poorly
when pruning large parts of the phrase table.
This might be because it does not take the fre-
quency of the source phrase into account.

• Count-based pruning performs as well as
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Figure 9: Translation quality (Bleu) as a function of the
phrase table size for Spanish-English.

significance-based pruning.

• Entropy-based pruning gives significantly
larger savings in phrase table size than any
other pruning method.

• Compared to previous work, the novel entropy-
based pruning often achieves the same Bleu
score with only half the number of phrases.

8 Future Work

Currently, we take only the model p(ẽ|f̃) into ac-
count when looking for the best segmentation. We
might obtain a better estimate by also consider-
ing the distortion costs, which penalize reordering.
We could also include other phrase models such as
p(f̃ |ẽ) and the language model.

The entropy pruning criterion could be applied
to hierarchical machine translation systems (Chiang,
2007). Here, we might observe even larger reduc-
tions in phrase table size as there are many more en-
tries.
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Abstract

Accurate and robust metrics for automatic eval-
uation are key to the development of statistical
machine translation (MT) systems. We first
introduce a new regression model that uses a
probabilistic finite state machine (pFSM) to
compute weighted edit distance as predictions
of translation quality. We also propose a novel
pushdown automaton extension of the pFSM
model for modeling word swapping and cross
alignments that cannot be captured by stan-
dard edit distance models. Our models can eas-
ily incorporate a rich set of linguistic features,
and automatically learn their weights, elimi-
nating the need for ad-hoc parameter tuning.
Our methods achieve state-of-the-art correla-
tion with human judgments on two different
prediction tasks across a diverse set of standard
evaluations (NIST OpenMT06,08; WMT06-
08).

1 Introduction

Research in automatic machine translation (MT) eval-
uation metrics has been a key driving force behind
the recent advances of statistical machine transla-
tion (SMT) systems. The early seminal work on
automatic MT metrics (e.g., BLEU and NIST) is
largely based on n-gram matches (Papineni et al.,
2002; Doddington, 2002). Despite their simplicity,
these measures have shown good correlation with hu-
man judgments, and enabled large-scale evaluations
across many different MT systems, without incurring
the huge labor cost of human evaluation (Callison-
Burch et al. (2009; 2010; 2011), inter alia). Recent
studies have also confirmed that tuning MT systems
against better MT metrics — using algorithms like

MERT (Och, 2003) — leads to better system perfor-
mance (He and Way, 2009; Liu et al., 2011).

Later metrics that move beyond n-grams achieve
higher accuracy and improved robustness from re-
sources like WordNet synonyms (Miller et al., 1990),
and paraphrasing (Snover et al., 2009; Denkowski
and Lavie, 2010). But a common problem in these
metrics is they typically resort to ad-hoc tuning
methods instead of principled approaches to incor-
porate linguistic features. Recent models use linear
or SVM regression and train them against human
judgments to automatic learn feature weights, and
have shown state-of-the-art correlation with human
judgments (Kulesza and Shieber, 2004; Albrecht and
Hwa, 2007a; Albrecht and Hwa, 2007b; Sun et al.,
2008; Pado et al., 2009). The drawback, however,
is they rely on time-consuming preprocessing mod-
ules to extract linguistic features (e.g., a full end-to-
end textual entailment system was needed in Pado et
al. (2009)), which severely limits their practical use.
Furthermore, these models employ a large number
of features (on the order of hundreds), and conse-
quently make the model predictions opaque and hard
to analyze.

In this paper, we propose a simple yet powerful
probabilistic Finite State Machine (pFSM) for the
task of MT evaluation. It is built on the backbone of
weighted edit distance models, but learns to weight
edit operations in a probabilistic regression frame-
work. One of the major contributions of this pa-
per is a novel extension of the pFSM model into a
probabilistic Pushdown Automaton (pPDA), which
enhances traditional edit-distance models with the
ability to model phrase shift and word swapping. Fur-
thermore, we give a new log-linear parameterization
to the pFSM model, which allows it to easily incor-
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porate rich linguistic features. We experiment with a
set of simple features based on labeled head-modifier
dependency structure, in order to test the hypothesis
that modeling overall sentence structure can lead to
more accurate evaluation measures.

We conducted extensive experiments on a di-
verse set of standard evaluation data sets (NIST
OpenMT06, 08; WMT06, 07, 08). Our model
achieves or surpasses state-of-the-art results on all
test sets.

2 pFSMs for MT Regression

We start off by framing the problem of machine trans-
lation evaluation in terms of weighted edit distances
calculated using probabilistic finite state machines
(pFSMs). A FSM defines a language by accepting
a string of input tokens in the language, and reject-
ing those that are not. A probabilistic FSM defines
the probability that a string is in a language, extend-
ing on the concept of a FSM. Commonly used mod-
els such as HMMs, n-gram models, Markov Chains
and probabilistic finite state transducers all fall in
the broad family of pFSMs (Knight and Al-Onaizan,
1998; Eisner, 2002; Kumar and Byrne, 2003; Vidal
et al., 2005). Unlike all the other applications of
FSMs where tokens in the language are words, in
our language tokens are edit operations. A string of
tokens that our pFSM accepts is an edit sequence that
transforms a reference translation (denoted as ref )
into a system translation (sys).

Our pFSM has a unique start and stop state, and
one state per edit operation (i.e., Insert, Delete, Sub-
stitution). The probability of an edit sequence e is
generated by the model is the product of the state tran-
sition probabilities in the pFSM, formally described
as:

w(e | s,r) =
∏

|e|
k=1 exp θ · f(ek−1,ek,s,r)

Z
(1)

We featurize each of the state changes with a log-
linear parameterization; f is a set of binary feature
functions defined over pairs of neighboring states
(by the Markov assumption) and the input sentences,
and θ are the associated feature weights; r and s are
shorthand for ref and sys; Z is a partition function.
In this basic pFSM model, the feature functions are
simply identity functions that emit the current state,

and the state transition sequence of the previous state
and the current state.

The feature weights are then automatically learned
by training a global regression model where some
translational equivalence judgment score (e.g., hu-
man assessment score, or HTER (Snover et al.,
2006)) for each sys and ref translation pair is the
regression target (ŷ). We introduce a new regression
variable y ∈ R which is the log-sum of the unnormal-
ized weights (Eqn. (1)) of all edit sequences, formally
expressed as:

y = log ∑
e′⊆e∗

|e′ |

∏
k=1

exp θ · f(ek−1,ek,s,r) (2)

e∗ denotes a valid edit sequence. Since the “gold”
edit sequence are not given at training or prediction
time, we treat the edit sequences as hidden variables
and sum them out. The sum over an exponential
number of edit sequences in e∗ is solved efficiently
using a forward-backward style dynamic program.
Any edit sequence that does not lead to a complete
transformation of the translation pair has a probability
of zero in our model. Our regression target then seeks
to minimize the least squares error with respect to ŷ,
plus a L2-norm regularizer term parameterized by λ :

θ
∗ = min

θ
{∑

si,ri

[ŷi − (
yi

|si|+ |ri|
+α)]2 +λ‖θ‖2}

(3)
The |si|+ |ri| is a length normalization term for the
ith training instance, and α is a scaling constant for
adjusting to different scoring standards (e.g., 7-point
scale vs. 5-point scale), whose value is automatically
learned. At test time, y/(|s|+ |r|)+ α is computed
as the predicted score.

We replaced the standard substitution edit opera-
tion with three new operations: Sword for same word
substitution, Slemma for same lemma substitution, and
Spunc for same punctuation substitution. In other
words, all but the three matching-based substitutions
are disallowed. The start state can transition into any
of the edit states with a constant unit cost, and each
edit state can transition into any other edit state if
and only if the edit operation involved is valid at the
current edit position (e.g., the model cannot transi-
tion into Delete state if it is already at the end of ref ;
similarly it cannot transition into Slemma unless the
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Figure 1: This diagram illustrates an example translation pair in the Chinese-English portion of OpenMT08 data set
(Doc:AFP CMN 20070703.0005, system09, sent 1). The three rows below are the best state transition sequences
according to the three proposed models. The corresponding alignments generated by the models (pFSM, pPDA,
pPDA+f ) are shown with different styled lines, with later models in the order generating strictly more alignments than
earlier ones. The gold human evaluation score is 6.5 (on a 7-point scale), and model predictions are: pPDA+f 5.5, pPDA
4.3, pFSM 3.1, METEORR 3.2, TERR 2.8.

lemma of the two words under edit in sys and ref
match). When the end of both sentences are reached,
the model transitions into the stop state and ends
the edit sequence. The first row in Figure 1 starting
with pFSM shows a state transition sequence for an
example sys/ref translation pair. 1 There exists a one-
to-one correspondence between substitution edits and
word alignments. Therefore this example state tran-
sition sequence correctly generates an alignment for
the word 43 and people.

It is helpful to compare with the TER met-
ric (Snover et al., 2006), which is based on the idea
of word error rate measured in terms of edit distance,
to better understand the intuition behind our model.
There are two major improvements in our model: 1)
the edit operations in our model are weighted, as
defined by the feature functions and weights; 2) the
weights are automatically learned, instead of being
uniform or manually set; and 3) we model state transi-
tions, which can be understood as a bigram extension
of the unigram edit distance model used in TER. For
example, if in our learned model the feature for two
consecutive Sword states has a positive weight, then
our model would favor consecutive same word sub-

1It is safe to ignore the second and third row in Figure 1 for
now, their explanations are forthcoming in Section 2.2.

stitutions, whereas in the TER model the order of
the substitution does not matter. The extended TER-
plus (Snover et al., 2009) metric addresses the first
problem but not the other two.

2.1 Soft-max Interpretation
There is also an alternative interpretation of the model
as a simple soft-max approximation that is very intu-
itive and easy to understand. For ease of illustration,
we introduce a quantity Q(e | s,r) to be the score of
an edit sequence, defined simply as the sum of the
dot product of feature values and feature weights:

Q(e | s,r) =
|e|

∑
i=1

θ · f(ei−1,ei,s,r)

For the regression task, the intuition is that we want
y to take on the score (Q) of the best edit sequence:

y = max
e⊆e∗

Q(e | s,r)

But since the max function is non-differentiable, we
replace it with a softmax:

y = log ∑
e⊆e∗

exp︸ ︷︷ ︸
softmax

Q(e | s,r)

Substituting in Q, we arrive at the same objective
function as (2).
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2.2 Restricted pPDA Extension

A shortcoming of edit distance models is that they
cannot handle long-distance word swapping — a
pervasive phenomenon found in most natural lan-
guages. 2 Edit operations in standard edit distance
models need to obey strict incremental order in their
edit position, in order to admit efficient dynamic pro-
gramming solutions. The same limitation is shared
by our pFSM model, where the Markov assumption
is made based on the incremental order of edit po-
sitions. Although there is no known solution to the
general problem of computing edit distance where
long-distance swapping is permitted (Dombb et al.,
2010), approximate algorithms do exist. We present
a simple but novel extension of the pFSM model to a
restricted probabilistic pushdown automaton (pPDA),
to capture non-nested word swapping within limited
distance, which covers a majority of word swapping
in observed in real data (Wu, 2010).

A pPDA, in its simplest form, is a pFSM where
each control state is equipped with a stack (Esparza
and Kucera, 2005). The addition of stacks for each
transition state endows the machine with memory,
extending its expressiveness beyond that of context-
free formalisms. By construction, at any stage in a
normal edit sequence, the pPDA model can “jump”
forward within a fixed distance (controlled by a max
distance parameter) to a new edit position on either
side of the sentence pair, and start a new edit subse-
quence from there. Assuming the jump was made on
the sys side, 3 the machine remembers its current edit
position in sys as Jstart , and the destination position
on sys after the jump as Jlanding.

We constrain our model so that the only edit op-
erations that are allowed immediately following a
“jump” are from the set of substitution operations
(e.g., Sword). And after at least one substitution
has been made, the device can now “jump” back
to Jstart , remembering the current edit position as
Jend . Another constraint here is that after the back-
ward “jump”, all edit operations are permitted except
for Insert, which cannot take place until at least one

2The edit distance algorithm described in Cormen et
al. (2001) can only handle adjacent word swapping (transpo-
sition), but not long-distance swapping.

3Recall that we transform ref into sys, and thus on the sys
side, we can only insert but not delete. The argument applies
equally to the case where the jump was made on the other side.

substitution has been made. When the edit sequence
advances to position Jlanding, the only operation al-
lowed at that point is another “jump” forward opera-
tion to position Jend , at which point we also clear all
memory about jump positions and reset.

An intuitive explanation is that when pPDA makes
the first forward jump, a gap is left in sys that has
not been edited yet. It remembers where it left off,
and comes back to it after some substitutions have
been made to complete the edit sequence. The sec-
ond row in Figure 1 (starting with pPDA) illustrates
an edit sequence in a pPDA model that involves three
“jump” operations, which are annotated and indexed
by number 1-3 in the example. “Jump 1” creates an
un-edited gap between word 43 and western, after
two substitutions, the model makes “jump 2” to go
back and edit the gap. The only edit permitted im-
mediately after “jump 2” is deleting the comma in
ref, since inserting the word 43 in sys before any sub-
stitution is disallowed. Once the gap is completed,
the model resumes at position Jend by making “jump
3”, and completes the jump sequence. The “jumps”
allowed the model to align words such as western In-
dia, in addition to the alignments of 43 people found
by the pFSM.

In a general pPDA model without the limited dis-
tance and non-nestedness jump constraints, there
could be recursive jump structures, which violates
the finite state property that we are looking for. The
constraints we introduced upper-bounds possible re-
ordering, and the resulting model is finite state. In
practice, we found that our extension gives a big
boost to model performance (cf. Section 4.1), with
only a modest increase in computation time. 4

2.3 Parameter Estimation
Since the least squares operator preserves convexity,
and the inner log-sum-exponential function is con-
vex, the resulting objective function is also convex.
For parameter learning, we used the limited memory
quasi-newton method (Liu and Nocedal, 1989) to
find the optimal feature weights and scaling constant
for the objective. We initialized θ =~0, α = 0, and
λ = 5. We also threw away features occurring fewer
than five times in training corpus. Two variants of the

4The length of the longest edit sequence with jumps only
increased by 0.5 ∗max(|s|, |r|) in the worst case, and on the
whole swapping is rare in comparison to basic edits.
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forward-backward style dynamic programming algo-
rithm were used for computing gradients in the pFSM
and pPDA models, similar to other sequence models
such as HMMs and CRFs. Details are omitted here
for brevity.

3 Rich Linguistic Features

In this section we will add new substitution opera-
tions beyond those introduced in Section 2, to capture
various linguistic phenomena. These new substitu-
tion operations correspond to new transition states in
the pPDA.

3.1 Synonyms

Our first set of features matches words that have
synonym relations according to WordNet (Miller et
al., 1990). Synonyms have been found to be very
useful in METEOR and TERplus, and can be easily
built into our model as a new substitution operation
Ssyn.

3.2 Paraphrasing

Newer versions of METEOR and TERplus both
found that inclusion of phrase-based matching greatly
improves model robustness and accuracy (Denkowski
and Lavie, 2010; Snover et al., 2009). We add a sub-
stitution operator (Spara) that matches words that are
paraphrases. To better take advantage of paraphrase
information at the multi-word phrase level, we ex-
tended our substitution operations to match longer
phrases by adding one-to-many and many-to-many
n-gram block substitutions. In preliminary experi-
ments, we found that most of the gain came from
unigrams and bigrams, with little to no additional
gains from trigrams. Therefore, we limited our ex-
periments to bigram pFSM and pPDA models, and
pruned the paraphrase table adopted from TERplus 5

to unigrams and bigrams, resulting in 2.5 million
paraphrase pairs.

3.3 Sentence Structure

A problem that remains largely unaddressed by most
popular MT evaluation metrics is the overall good-
ness of the translated sentence’s structure (Liu et al.,
2005; Owczarzak et al., 2008). Translations with

5Available from www.umiacs.umd.edu/~snover/terp.

good local n-gram coverage but horrible global syn-
tactic ordering are not unusual in SMT outputs. Such
translations usually score well with existing metrics
but poorly among human evaluators.

In our model, when we detect consecutive bigram
substitutions in the state transition, we examine the
head-modifier dependency between the two words on
each side of the sentence pair. A feature is triggered if
and only if there is a head-modifier relation between
the two words on each side, the labeled dependency
on the two sides match, and it is one of subject, ob-
ject or predicative relations. We deliberately left out
features that model mismatches of dependency labels,
because we found parsing output from translations
to be usually very poor. Since parsing results are
generally more reliable for more fluent translations,
our hope is that by only modeling parse matches, our
model will be able to pick them up as positive signals,
indicating good translation quality.

4 Experiments

The goal of our experiments is to test both the ac-
curacy and robustness of the proposed new models.
We then show that modeling word swapping and rich
linguistics features further improve our results.

To better situate our work among past research
and to draw meaningful comparison, we use exactly
the same standard evaluation data sets and metrics
as Pado et al. (2009), which is currently the state-
of-the-art result for regression-based MT evaluation.
We consider four widely used MT metrics (BLEU,
NIST, METEOR (v0.7), and TER) as our baselines.
Since our models are trained to regress human eval-
uation scores, to make a direct comparison in the
same regression setting, we also train a small lin-
ear regression model for each baseline metric in the
same way as described in Pado et al. (2009). These
regression models are strictly more powerful than
the baseline metrics and show higher robustness and
better correlation with human judgments. 6 We also
compare our models with the state-of-the-art linear
regression models reported in Pado et al. (2009) that

6The baseline metric (e.g., BLEU) computes its raw score by
taking the geometric mean of n-gram precision scores (1≤ n≤ 4)
scaled by a brevity penalty. The regression model learns to com-
bine these fine-grained scores more intelligently, by optimizing
their weights to regress human judgments. See Pado et al. (2009)
for more discussion.
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combine features from multiple MT evaluation met-
rics (MT), as well as rich linguistic features from a
textual entailment system (RTE).

In all of our experiments, each reference and sys-
tem translation sentence pair is tokenized using the
Penn Treebank (Marcus et al., 1993) tokenization
script, and lemmatized by the Porter Stemmer (Porter,
1980). For the overall sentence structure experi-
ment, translations are additionally part-of-speech
tagged with MXPOST tagger (Ratnaparkhi, 1996),
and parsed with MSTParser (McDonald et al., 2005) 7

labeled dependency parser. Statistical significance
tests are performed using the paired bootstrap resam-
pling method (Koehn, 2004).

We divide our experiments into two sections, based
on two different prediction tasks — predicting abso-
lute scores and predicting pairwise preference.

4.1 Exp. 1: Predicting Absolute Scores

The first task is to evaluate a system translation
on a seven point Likert scale against a single ref-
erence. Higher scores indicate translations that are
closer to the meaning intended by the reference. Hu-
man ratings in the form of absolute scores are avail-
able for standard evaluation data sets such as NIST
OpenMT06,08.8 Since our model makes predictions
at the granularity of a whole sentence, we focus on
sentence-level evaluation. A metric’s goodness is
judged by how well it correlates with human judg-
ments, and Spearman’s rank correlation (ρ) is re-
ported for all experiments in this section.

We used the NIST OpenMT06 corpus for develop-
ment purposes, and reserved the NIST OpenMT08
corpus for post-development evaluation. The
OpenMT06 data set contains 1,992 English trans-
lations of Arabic newswire text from 8 MT systems.
For development, we used a 2-fold cross-validation
scheme with splits at the first 1,000 and last 992 sen-
tences. The OpenMT08 data set contains English
translations of newswire text from three languages
(Arabic has 2,769 pairs from 13 MT systems; Chi-
nese has 1,815 pairs from 15; and Urdu has 1,519
pairs, from 7). We followed the same experimental
setup as Pado et al. (2009), using a “round robin”
training/testing scheme, i.e., we train a model on data

7Trained on the entire Penn Treebank.
8Available from http://www.nist.gov.

from two languages, making predictions for the third.
We also show results of models trained on the entire
OpenMT08 data set and tested on OpenMT06.

4.1.1 pFSM vs. pPDA

Data Set pFSM pPDA
tr te n1 n2 j1 j2 j5 j10
A+C U 54.6 54.8 55.6 55.0 55.3 55.3
A+U C 59.9 59.8 58.0 61.4 63.8 64.0
C+U A 61.2 61.2 60.2 59.9 60.4 60.2

Table 1: pFSM vs. pPDA results for the round-robin
approach on OpenMT08 data set over three languages
(A=Arabic, C=Chinese, U=Urdu). Numbers in this table
are Spearman’s ρ for correlation between human assess-
ment scores and model predictions; tr stands for training
set, and te stands for test set. nx means the model has
x-gram block edits. jy means the model has jump distance
limit y. The Best result for each test set row is highlighted
in bold.

The second and third columns under the pFSM
label in Table 1 compares our bigram block edit ex-
tension for the pFSM model. Although we do not
yet see a significant performance gain (or loss) from
adding block edits, they will enable longer paraphrase
matches in later experiments.

Columns 5 through 8 in Table 1 show experimental
results validating the contribution of our pPDA ex-
tension to the pFSM model (cf. Section 2.2). We can
see that the pPDA extension gave modest improve-
ments on the Urdu test set, but at a small decrease
in performance on the Arabic data. However, for
Chinese, there is a substantial gain, particularly with
jump distances of five or longer. This trend is even
more pronounced at the long jump distance of 10,
consistent with the observation that Chinese-English
translations exhibit much more medium and long dis-
tance reordering than languages like Arabic (Birch et
al., 2009).

4.1.2 Evaluating Linguistic Features
Experimental results evaluating the benefits of

each linguistic feature set are presented in Table 3.
The first row is the pPDA model with jump distance
limit 5, without other additional features. The next
three rows are the results of adding each of the three
feature sets described in Section 3.

Overall, we observed that only paraphrase match-
ing features gave a significant boost to performance.
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Data Set Our Metrics Baseline Metrics Combined Metrics
train test pFSM pPDA pPDA+f BLEUR NISTR TERR METR MTR RTER MT+RTER
A+C U 54.6 55.3 57.2 49.9 49.5 50.1 49.1 50.1 54.5 55.6
A+U C 59.9 63.8 65.8 53.9 53.1 50.3 61.1 57.3 58.0 62.7
C+U A 61.2 60.4 59.8 52.5 50.4 54.5 60.1 55.2 59.9 61.1
MT08 MT06 65.2 63.4 64.5 57.6 55.1 63.8 62.1 62.6 62.2 65.2

Table 2: Overall Comparison: Results from OpenMT08 and OpenMT06 evaluation data sets. The R (as in BLEUR)
refers to the regression model trained for each baseline metric, same as Pado et al. (2009). The first three rows are
round-robin train/test results over three languages on OpenMT08 (A=Arabic, C=Chinese, U=Urdu). The last row are
results trained on entire OpenMT08 (A+C+U) and tested on OpenMT06. Numbers in this table are Spearman’s rank
correlation ρ between human assessment scores and model predictions. The pPDA column describes our pPDA model
with jump distance limit 5. METR is shorthand for METEORR. +f means the model includes synonyms, paraphrase
and parsing features (cf. Section 3). Best results and scores that are not statistically significantly worse are highlighted
in bold in each row.

Urdu Chinese Arabic
pPDA 55.3 63.8 60.4
+Synonym 55.6 63.7 60.7
+Tree 55.3 63.8 60.3
+Paraphrase 57.1 65.4 60.0
+Syn+Tree+Para 57.2 65.8 59.8

Table 3: Results for OpenMT08 with linguistic features,
using the same round robin scheme as in Table 1. Numbers
in this table are Spearman’s rank correlation ρ between
human assessment scores and model predictions. Best
results on each test set are highlighted in bold.

The row starting with pPDA+f in Figure 1 shows
an example where adding paraphrase features allow
pPDA+f to find more correct alignments and make
better predictions than pPDA.

No significant improvements from synonym and
dependency tree matching features are evident from
the results. An examination of the feature statistics in
training data showed that the parse tree features have
very low occurrence counts. On the Chinese+Urdu
training set, for example, the features for subject,
object and predicative labeled dependency matches
fired only 55, 784 and 13 times, respectively. As a
reference point for the scale of feature counts, the
“same word” match feature fired 875,375 times on
the same data set. And our qualitative assessment of
the labeled dependency parser outputs was that the
quality is very poor on system translations. For future
work, more elaborate parse feature engineering could
be a promising direction, but is outside the scope of
our study.

In combination, the joint feature set of synonym,

paraphrase and parse tree features gave modest im-
provements over the paraphrase feature alone on the
Chinese test set.

4.1.3 Overall Comparison
Results of our proposed models compared against

the baseline models described in Pado et al. (2009)
are shown in Table 2. The pPDA+f model has access
to paraphrase information, which is not available
to the baselines, so it should not be directly com-
pared with. But the pFSM and pPDA models do
not use any additional information other than words
and lemmas, and thus make a fair comparison with
the baseline metrics. 9 We can see from the table
that pFSM significantly outperforms all baselines on
Urdu and Arabic, but trails behind METEORR on
Chinese by a small margin (1.2 point in Spearman’s
ρ). On Chinese data set, the pPDA extension gives
results significantly better than the best baseline met-
rics for Chinese (2.7 better than METEORR). Both
the pFSM and pPDA models also significantly outper-
form the MTR linear regression model that combines
the outputs of all four baselines, on all three source
languages. This demonstrates that our regression
model is more robust and accurate than a state-of-
the-art system combination linear-regression model.
Both pFSM and pPDA learned to assign a lower neg-
ative feature weight for deletion than insertion (i.e.,
it is bad to insert an unseen word into system trans-

9METEORR actually has an unfair advantage in this compari-
son, since it uses synonym information from WordNet; TERR
on the other hand has a disadvantage because it does not use
lemmas. Lemma is added later in the TERplus extension (Snover
et al., 2009).
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lation, but worse if words from reference translation
are deleted), which corresponds to the setting in ME-
TEOR where recall is given more importance than
precision (Banerjee and Lavie, 2005).

The RTER and MT+RTER linear regression mod-
els benefit from the rich linguistic features in the
textual entailment system’s output. It has access to
all the features in pPDA+f such as paraphrase and de-
pendency parse relations, and many more (e.g., Norm
Bank, part-of-speech, negation, antonyms). However,
our pPDA+f model rivals the performance of RTER
and MT+RTER on Arabic (with no statistically sig-
nificant difference from RTER), and greatly improve
over these two models on Urdu and Chinese. Most
noticeably, pPDA+f is 7.7 points better than RTER
on Chinese.

Consistent with our earlier observation on
OpenMT08 data set that the pPDA model performs
slightly worse than the pFSM model on Arabic, the
same performance decrease is seen in OpenMT06
data set, which is also Arabic-to-English.

As shown earlier in Table 3, the combined set of
paraphrase, parsing and synonym features in pPDA+f
helps for Urdu and Chinese, but not for Arabic. Here
we found that even though the pPDA+f model is still
worse than pFSM on OpenMT06 tests, it did give a
decent improvement to pPDA model, closing up the
gap with pFSM.

Other than robustness and accuracy, simplicity is
also an important trait we seek in good MT met-
rics. Our models only have a few tens of features
(instead of hundreds of features as found in RTER
and MT+RTER), which makes interpretation of the
model’s prediction relatively easy. On an important
practical note, our model is much more lightweight
than the RTER or MTR system. It runs at a much
faster speed with a smaller memory footprint, hence
potentially useable in MERT training.

4.2 Exp. 2: Predicting Pairwise Preferences
To further test our model’s robustness, we evaluate
it on WMT data sets with a different prediction task
in which metrics make pairwise preference judg-
ments between translation systems. The WMT06-
08 data sets are much larger in comparison to the
OpenMT06 and 08 data. They contain MT outputs of
over 40 systems from five different source languages
(French, German, Spanish, Czech, and Hungarian).

The WMT06, 07 and 08 sets contains 10,159, 5,472
and 6,856 sentence pairs, respectively. We used por-
tions of WMT 06 and 07 data sets 10 that are anno-
tated with absolute scores on a five point scale for
training, and the WMT08 data set annotated with
pairwise preference for testing.

To generate pairwise preference predictions, we
first predict an absolute score for each system trans-
lation, then compare the scores between each system
pair, and give preference to the higher score. We
adopt the sentence-level evaluation metric used in
Pado et al. (2009), which measures the consistency
(accuracy) of metric predictions with human prefer-
ences. The random baseline for this task on WMT08
data set is 39.8%. 11

Models WMT06 WMT07 WMT06+07
pPDA+f 51.6 52.4 52.0
BLEUR 49.7 49.5 49.6
METEORR 51.4 51.4 51.5
NISTR 50.0 50.3 50.2
TERR 50.9 51.0 51.2
MTR 50.8 51.5 51.5
RTER 51.8 50.7 51.9
MT+RTER 52.3 51.8 52.5

Table 4: Pairwise preference prediction results on WMT08
test set. Each column shows a different training data set.
Numbers in this table are model’s consistency with human
pairwise preference judgments. Best result on each test
set is highlighted in bold.

Results are shown in Table 4. Similar to the results
on OpenMT experiments, our model consistently out-
performed BLEUR, METEORR, NISTR and TERR.
Our model also gives better performance than the
MTR ensemble model on all three tests; and ties with
RTER in two out of the three tests but performs sig-
nificantly better on the other test. The MT+RTER
ensemble model is better on two tests, but worse
on the other. But overall the two systems are quite
comparable, with less than 0.6% accuracy difference.
The results also show that our method is stable across
different training sets, with test accuracy differences
less than 0.4%.

10Available from http://www.statmt.org.
11The random baseline is not 50% for two reasons: (1) human

judgments include contradictory and tie annotations; (2) tran-
sitivity constraints need to be respected in total ordering. For
details, see Pado et al. (2009).
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4.3 Qualitative Analysis
Example (1) shows a system and reference translation
pair in the Chinese test portion of OpenMT08.

(1) REF: Two Jordanese sentenced1 for plotting2
an attack3 on Americans4

SYS: The name of Jordan plotting2 attacks3
Americans4 were sentenced1 to death

Human annotators give this example a score of 4.0,
but TERR and METEORR both assigned erroneously
low scores (1.0 and 2.2, respectively). Words with the
same subscript index were aligned by pPDA model.
This example exhibits a word swapping phenomenon,
and our model was able to capture it correctly. TERR
clearly suffered from not being able to model word
swapping in this case. It also missed out the word
pair attack and attacks due to the lack of lemma sup-
port. The reason why METEORR assigned such a low
score for this example is because none of the matched
words in the reference were adjacent to each other,
causing a high fragmentation penalty. The fragmenta-
tion penalty term has two parameters that need to be
manually tuned, and has a high variance across exam-
ples and data sets. This example illustrates models
that require ad-hoc tuning tend not to be robust. Our
pPDA model (without linguistic feature) was able
to make a prediction of 3.7, much closer to human
judgment.

4.4 MetricsMATR10 and WMT12 Results
An earlier version of the pFSM model that was
trained on the OpenMT08 data set was submitted
to the single reference sentence level track at Met-
ricsMATR10 (Peterson and Przybocki, 2010) NIST
evaluation. Even though our system was not in the
most ideal state at the time of the evaluation, 12 and
was trained on a small amount of data, the pFSM
model still performed competitively against other
metrics. Noticeably, we achieved second best results
for Human-targeted Translation Edit Rate (HTER)
assessment, trailing behind TERplus with no statisti-
cally significant difference. On average, our system
made 5th place among 15 different sites and 7th place
among 25 different metrics, averaged across 9 assess-
ment types.

12Unfortunately the version we submitted in 2010 was plagued
with a critical bug. More general enhancements have been made
to the model since.

We submitted the version of the pPDA+f model
trained on the WMT07 dataset to the “into English”
segment-leval track of the WMT 2012 Shared Eval-
uation Metrics Task (Callison-Burch et al., 2012).
Our model achieved the highest score (measured by
Kendall’s tau correlation) on all four language pairs
(Fr-En, De-En, Es-En and Cs-En), and tied for the
first place with METEOR v1.3 on average correla-
tion.

5 Related Work

Features and Representation

One of the findings in our experimentation is that
paraphrasing helps boosting model accuracy, and
the idea of using paraphrases in MT evaluation was
first proposed by Zhou et al. (2006). Several re-
cent studies have introduced metrics over dependency
parses (Liu et al., 2005; Owczarzak et al., 2008; He et
al., 2010), but their improvements over n-gram mod-
els at the sentence level are not always consistent (Liu
et al., 2005; Peterson and Przybocki, 2010). Other
than string-based methods, recent work has explored
more alternative representations for MT evaluation,
such as network properties (Amancio et al., 2011),
semantic role structures (Lo and Wu, 2011), and the
quality of word order (Birch and Osborne, 2011).

Modeling

The idea of using extended edit distance models with
block movements was also explored in Leusch et
al. (2003). However, their model is largely empirical
and not in a probabilistic learning setting. The line
of work on probabilistic tree-edit distance models
bears a strong connection to this work (McCallum
et al., 2005; Bernard et al., 2008; Wang and Man-
ning, 2010; Emms, 2012). In particular, our pFSM
model and the log-linear parameterization were in-
spired by Wang and Manning (2010). Another body
of literature that is closely related to this work is
FSM models for word alignment (Vogel et al., 1996;
Saers et al., 2010; Berg-Kirkpatrick et al., 2010). The
stochastic Inversion Transduction Grammar in Saers
et al. (2010) for instance, is a pFSM with special
constraints. More recently, Saers and Wu (2011) fur-
ther explored the connection between Linear Trans-
duction Grammars and FSMs. There is a close tie
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between our pFSM model and the HMM model in
Berg-Kirkpatrick et al. (2010). Both models adopted
a log-linear parameterization for the state transition
distribution, 13 but in their case the HMM model and
the pFSM arc weights are normalized locally, and the
objective is non-convex.

6 Conclusion

We described a probabilistic finite state machine
based on string edits and a novel pushdown automa-
ton extension for the task of machine translation eval-
uation. The models admit a rich set of linguistic
features, and are trained to learn feature weights auto-
matically by optimizing a regression objective. The
proposed models achieve state-of-the-art results on
a wide range of standard evaluations, and are much
more lightweight than previous regression models,
making them suitable candidates to be used in MERT
training.
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Abstract

We investigate two aspects of the empirical
behavior of paired significance tests for NLP
systems. First, when one system appears
to outperform another, how does significance
level relate in practice to the magnitude of the
gain, to the size of the test set, to the similar-
ity of the systems, and so on? Is it true that for
each task there is a gain which roughly implies
significance? We explore these issues across
a range of NLP tasks using both large collec-
tions of past systems’ outputs and variants of
single systems. Next, once significance lev-
els are computed, how well does the standard
i.i.d. notion of significance hold up in practical
settings where future distributions are neither
independent nor identically distributed, such
as across domains? We explore this question
using a range of test set variations for con-
stituency parsing.

1 Introduction

It is, or at least should be, nearly universal that NLP
evaluations include statistical significance tests to
validate metric gains. As important as significance
testing is, relatively few papers have empirically in-
vestigated its practical properties. Those that do
focus on single tasks (Koehn, 2004; Zhang et al.,
2004) or on the comparison of alternative hypothe-
sis tests (Gillick and Cox, 1989; Yeh, 2000; Bisani
and Ney, 2004; Riezler and Maxwell, 2005).

In this paper, we investigate two aspects of the
empirical behavior of paired significance tests for
NLP systems. For example, all else equal, larger
metric gains will tend to be more significant. How-
ever, what does this relationship look like and how
reliable is it? What should be made of the conven-
tional wisdom that often springs up that a certain
metric gain is roughly the point of significance for
a given task (e.g. 0.4 F1 in parsing or 0.5 BLEU

in machine translation)? We show that, with heavy
caveats, there are such thresholds, though we also
discuss the hazards in their use. In particular, many
other factors contribute to the significance level, and
we investigate several of them. For example, what
is the effect of the similarity between the two sys-
tems? Here, we show that more similar systems tend
to achieve significance with smaller metric gains, re-
flecting the fact that their outputs are more corre-
lated. What about the size of the test set? For ex-
ample, in designing a shared task it is important to
know how large the test set must be in order for sig-
nificance tests to be sensitive to small gains in the
performance metric. Here, we show that test size
plays the largest role in determining discrimination
ability, but that we get diminishing returns. For ex-
ample, doubling the test size will not obviate the
need for significance testing.

In order for our results to be meaningful, we must
have access to the outputs of many of NLP sys-
tems. Public competitions, such as the well-known
CoNLL shared tasks, provide one natural way to ob-
tain a variety of system outputs on the same test
set. However, for most NLP tasks, obtaining out-
puts from a large variety of systems is not feasible.
Thus, in the course of our investigations, we propose
a very simple method for automatically generating
arbitrary numbers of comparable system outputs and
we then validate the trends revealed by our synthetic
method against data from public competitions. This
methodology itself could be of value in, for exam-
ple, the design of new shared tasks.

Finally, we consider a related and perhaps even
more important question that can only be answered
empirically: to what extent is statistical significance
on a test corpus predictive of performance on other
test corpora, in-domain or otherwise? Focusing on
constituency parsing, we investigate the relationship
between significance levels and actual performance
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on data from outside the test set. We show that when
the test set is (artificially) drawn i.i.d. from the same
distribution that generates new data, then signifi-
cance levels are remarkably well-calibrated. How-
ever, as the domain of the new data diverges from
that of the test set, the predictive ability of signifi-
cance level drops off dramatically.

2 Statistical Significance Testing in NLP

First, we review notation and standard practice in
significance testing to set up our empirical investi-
gation.

2.1 Hypothesis Tests
When comparing a new system A to a baseline sys-
tem B, we want to know if A is better than B on
some large population of data. Imagine that we sam-
ple a small test set x = x1, . . . , xn on which A
beats B by δ(x). Hypothesis testing guards against
the case where A’s victory over B was an unlikely
event, due merely to chance. We would therefore
like to know how likely it would be that a new, in-
dependent test set x′ would show a similar victory
for A assuming that A is no better than B on the
population as a whole; this assumption is the null
hypothesis, denoted H0.

Hypothesis testing consists of attempting to esti-
mate this likelihood, written p(δ(X) > δ(x)|H0),
where X is a random variable over possible test sets
of size n that we could have drawn, and δ(x) is a
constant, the metric gain we actually observed. Tra-
ditionally, if p(δ(X) > δ(x)|H0) < 0.05, we say
that the observed value of δ(x) is sufficiently un-
likely that we should reject H0 (i.e. accept that A’s
victory was real and not just a random fluke). We
refer to p(δ(X) > δ(x)|H0) as p-value(x).

In most cases p-value(x) is not easily computable
and must be approximated. The type of approxi-
mation depends on the particular hypothesis testing
method. Various methods have been used in the NLP
community (Gillick and Cox, 1989; Yeh, 2000; Rie-
zler and Maxwell, 2005). We use the paired boot-
strap1 (Efron and Tibshirani, 1993) because it is one

1Riezler and Maxwell (2005) argue the benefits of approx-
imate randomization testing, introduced by Noreen (1989).
However, this method is ill-suited to the type of hypothesis we
are testing. Our null hypothesis does not condition on the test
data, and therefore the bootstrap is a better choice.

1. Draw b bootstrap samples x(i) of size n by
sampling with replacement from x.

2. Initialize s = 0.
3. For each x(i) increment s if δ(x(i)) > 2δ(x).
4. Estimate p-value(x) ≈ s

b

Figure 1: The bootstrap procedure. In all of our experiments
we use b = 106, which is more than sufficient for the bootstrap
estimate of p-value(x) to stabilize.

of the most widely used (Och, 2003; Bisani and Ney,
2004; Zhang et al., 2004; Koehn, 2004), and be-
cause it can be easily applied to any performance
metric, even complex metrics like F1-measure or
BLEU (Papineni et al., 2002). Note that we could
perform the experiments described in this paper us-
ing another method, such as the paired Student’s t-
test. To the extent that the assumptions of the t-test
are met, it is likely that the results would be very
similar to those we present here.

2.2 The Bootstrap

The bootstrap estimates p-value(x) though a com-
bination of simulation and approximation, drawing
many simulated test sets x(i) and counting how often
A sees an accidental advantage of δ(x) or greater.
How can we get sample test sets x(i)? We lack the
ability to actually draw new test sets from the un-
derlying population because all we have is our data
x. The bootstrap therefore draws each x(i) from x
itself, sampling n items from x with replacement;
these new test sets are called bootstrap samples.

Naively, it might seem like we would then check
how often A beats B by more than δ(x) on x(i).
However, there’s something seriously wrong with
these x(i) as far as the null hypothesis is concerned:
the x(i) were sampled from x, and so their average
δ(x(i)) won’t be zero like the null hypothesis de-
mands; the average will instead be around δ(x). If
we ask how many of these x(i) have A winning by
δ(x), about half of them will. The solution is a re-
centering of the mean – we want to know how often
A does more than δ(x) better than expected. We ex-
pect it to beat B by δ(x). Therefore, we count up
how many of the x(i) have A beating B by at least
2δ(x).2 The pseudocode is shown in Figure 1.

2Note that many authors have used a variant where the event
tallied on the x(i) is whether δ(x(i)) < 0, rather than δ(x(i)) >
2δ(x). If the mean of δ(x(i)) is δ(x), and if the distribution of
δ(x(i)) is symmetric, then these two versions will be equivalent.
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As mentioned, a major benefit of the bootstrap is
that any evaluation metric can be used to compute
δ(x).3 We run the bootstrap using several metrics:
F1-measure for constituency parsing, unlabeled de-
pendency accuracy for dependency parsing, align-
ment error rate (AER) for word alignment, ROUGE
score (Lin, 2004) for summarization, and BLEU
score for machine translation.4 We report all met-
rics as percentages.

3 Experiments

Our first goal is to explore the relationship be-
tween metric gain, δ(x), and statistical significance,
p-value(x), for a range of NLP tasks. In order to say
anything meaningful, we will need to see both δ(x)
and p-value(x) for many pairs of systems.

3.1 Natural Comparisons

Ideally, for a given task and test set we could obtain
outputs from all systems that have been evaluated
in published work. For each pair of these systems
we could run a comparison and compute both δ(x)
and p-value(x). While obtaining such data is not
generally feasible, for several tasks there are pub-
lic competitions to which systems are submitted by
many researchers. Some of these competitions make
system outputs publicly available. We obtained sys-
tem outputs from the TAC 2008 workshop on auto-
matic summarization (Dang and Owczarzak, 2008),
the CoNLL 2007 shared task on dependency parsing
(Nivre et al., 2007), and the WMT 2010 workshop
on machine translation (Callison-Burch et al., 2010).

For cases where the metric linearly decomposes over sentences,
the mean of δ(x(i)) is δ(x). By the central limit theorem, the
distribution will be symmetric for large test sets; for small test
sets it may not.

3Note that the bootstrap procedure given only approximates
the true significance level, with multiple sources of approxima-
tion error. One is the error introduced from using a finite num-
ber of bootstrap samples. Another comes from the assumption
that the bootstrap samples reflect the underlying population dis-
tribution. A third is the assumption that the mean bootstrap gain
is the test gain (which could be further corrected for if the metric
is sufficiently ill-behaved).

4To save time, we can compute δ(x) for each bootstrap sam-
ple without having to rerun the evaluation metric. For our met-
rics, sufficient statistics can be recorded for each sentence and
then sampled along with the sentences when constructing each
x(i) (e.g. size of gold, size of guess, and number correct are suf-
ficient for F1). This makes the bootstrap very fast in practice.
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Figure 2: TAC 2008 Summarization: Confidence vs.
ROUGE improvement on TAC 2008 test set for comparisons
between all pairs of the 58 participating systems at TAC 2008.
Comparisons between systems entered by the same research
group and comparisons between systems entered by different
research groups are shown separately.

3.1.1 TAC 2008 Summarization
In our first experiment, we use the outputs of the

58 systems that participated in the TAC 2008 work-
shop on automatic summarization. For each possi-
ble pairing, we compute δ(x) and p-value(x) on the
non-update portion of the TAC 2008 test set (we or-
der each pair so that the gain, δ(x), is always pos-
itive).5 For this task, test instances correspond to
document collections. The test set consists of 48
document collections, each with a human produced
summary. Figure 2 plots the ROUGE gain against
1 − p-value, which we refer to as confidence. Each
point on the graph corresponds to an individual pair
of systems.

As expected, larger gains in ROUGE correspond
to higher confidences. The curved shape of the plot
is interesting. It suggests that relatively quickly we
reach ROUGE gains for which, in practice, signif-
icance tests will most likely be positive. We might
expect that systems whose outputs are highly corre-
lated will achieve higher confidence at lower met-
ric gains. To test this hypothesis, in Figure 2 we

5In order to run bootstraps between all pairs of systems
quickly, we reuse a random sample counts matrix between boot-
strap runs. As a result, we no longer need to perform quadrat-
ically many corpus resamplings. The speed-up from this ap-
proach is enormous, but one undesirable effect is that the boot-
strap estimation noise between different runs is correlated. As a
remedy, we set b so large that the correlated noise is not visible
in plots.
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Figure 3: CoNLL 2007 Dependency parsing: Confidence vs.
unlabeled dependency accuracy improvement on the Chinese
CoNLL 2007 test set for comparisons between all pairs of the
21 participating systems in CoNLL 2007 shared task. Com-
parisons between systems entered by the same research group
and comparisons between systems entered by different research
groups are shown separately.

separately show the comparisons between systems
entered by the same research group and compar-
isons between systems entered by different research
groups, with the expectation that systems entered by
the same group are likely to have more correlated
outputs. Many of the comparisons between systems
submitted by the same group are offset from the
main curve. It appears that they do achieve higher
confidences at lower metric gains.

Given the huge number of system comparisons in
Figure 2, one obvious question to ask is whether
we can take the results of all these statistical sig-
nificance tests and estimate a ROUGE improvement
threshold that predicts when future statistical sig-
nificance tests will probably be significant at the
p-value(x) < 0.05 level. For example, let’s say we
take all the comparisons with p-value between 0.04
and 0.06 (47 comparisons in all in this case). Each
of these comparisons has an associated metric gain,
and by taking, say, the 95th percentile of these met-
ric gains, we get a potentially useful threshold. In
this case, the computed threshold is 1.10 ROUGE.

What does this threshold mean? Well, based on
the way we computed it, it suggests that if somebody
reports a ROUGE increase of around 1.10 on the ex-
act same test set, there is a pretty good chance that a
statistical significance test would show significance
at the p-value(x) < 0.05 level. After all, 95% of

the borderline significant differences that we’ve al-
ready seen showed an increase of even less than 1.10
ROUGE. If we’re evaluating past work, or are in
some other setting where system outputs just aren’t
available, the threshold could guide our interpreta-
tion of reports containing only summary scores.

That being said, it is important that we don’t over-
interpret the meaning of the 1.10 ROUGE threshold.
We have already seen that pairs of systems submit-
ted by the same research group and by different re-
search groups follow different trends, and we will
soon see more evidence demonstrating the impor-
tance of system correlation in determining the rela-
tionship between metric gain and confidence. Addi-
tionally, in Section 4, we will see that properties of
the test corpus have a large effect on the trend. There
are many factors are at work, and so, of course, met-
ric gain alone will not fully determine the outcome
of a paired significance test.

3.1.2 CoNLL 2007 Dependency Parsing
Next, we run an experiment for dependency pars-

ing. We use the outputs of the 21 systems that par-
ticipated in the CoNLL 2007 shared task on depen-
dency parsing. In Figure 3, we plot, for all pairs,
the gain in unlabeled dependency accuracy against
confidence on the CoNLL 2007 Chinese test set,
which consists of 690 sentences and parses. We
again separate comparisons between systems sub-
mitted by the same research group and those submit-
ted by different groups, although for this task there
were fewer cases of multiple submission. The re-
sults resemble the plot for summarization; we again
see a curve-shaped trend, and comparisons between
systems from the same group (few that they are)
achieve higher confidences at lower metric gains.

3.1.3 WMT 2010 Machine Translation
Our final task for which system outputs are pub-

licly available is machine translation. We run an ex-
periment using the outputs of the 31 systems par-
ticipating in WMT 2010 on the system combination
portion of the German-English WMT 2010 news test
set, which consists of 2,034 German sentences and
English translations. We again run comparisons for
pairs of participating systems. We plot gain in test
BLEU score against confidence in Figure 4. In this
experiment there is an additional class of compar-
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Figure 4: WMT 2010 Machine translation: Confidence vs.
BLEU improvement on the system combination portion of the
German-English WMT 2010 news test set for comparisons be-
tween pairs of the 31 participating systems at WMT 2010.
Comparisons between systems entered by the same research
group, comparisons between systems entered by different re-
search groups, and comparisons between system combination
entries are shown separately.

isons that are likely to have specially correlated sys-
tems: 13 of the submitted systems are system com-
binations, and each take into account the same set
of proposed translations. We separate comparisons
into three sets: comparisons between non-combined
systems entered by different research groups, com-
parisons between non-combined systems entered by
the same research group, and comparisons between
system-combinations.

We see the same curve-shaped trend we saw for
summarization and dependency parsing. Differ-
ent group comparisons, same group comparisons,
and system combination comparisons form distinct
curves. This indicates, again, that comparisons be-
tween systems that are expected to be specially cor-
related achieve high confidence at lower metric gain
levels.

3.2 Synthetic Comparisons

So far, we have seen a clear empirical effect, but, be-
cause of the limited availability of system outputs,
we have only considered a few tasks. We now pro-
pose a simple method that captures the shape of the
effect, and use it to extend our analysis.

3.2.1 Training Set Resampling
Another way of obtaining many different sys-

tems’ outputs is to obtain implementations of a

handful of systems, and then vary some aspect of
the training procedure in order to produce many dif-
ferent systems from each implementation. Koehn
(2004) uses this sort of amplification; he uses a sin-
gle machine translation implementation, and then
trains it from different source languages. We take
a slightly different approach. For each task we pick
some fixed training set. Then we generate resampled
training sets by sampling sentences with replace-
ment from the original. In this way, we can gen-
erate as many new training sets as we like, each of
which is similar to the original, but with some vari-
ation. For each base implementation, we train a new
system on each resampled training set. This results
in slightly tweaked trained systems, and is intended
to very roughly approximate the variance introduced
by incremental system changes during research. We
validate this method by comparing plots obtained by
the synthetic approach with plots obtained from nat-
ural comparisons.

We expect that each new system will be differ-
ent, but that systems originating from the same base
model will be highly correlated. This provides a use-
ful division of comparisons: those between systems
built with the same model, and those between sys-
tems built with different models. The first class can
be used to approximate comparisons of systems that
are expected to be specially correlated, and the latter
for comparisons of systems that are not.

3.2.2 Dependency Parsing
We use three base models for dependency parsing:

MST parser (McDonald et al., 2005), Maltparser
(Nivre et al., 2006), and the ensemble parser of Sur-
deanu and Manning (2010). We use the CoNLL
2007 Chinese training set, which consists of 57K
sentences. We resample 5 training sets of 57K sen-
tences, 10 training sets of 28K sentences, and 10
training sets of 14K sentences. Together, this yields
a total of 75 system outputs on the CoNLL 2007
Chinese test set, 25 systems for each base model
type. The score ranges of all the base models over-
lap. This ensures that for each pair of model types
we will be able to see comparisons where the metric
gains are small. The results of the pairwise compar-
isons of all 75 system outputs are shown in Figure
5, along with the results of the CoNLL 2007 shared
task system comparisons from Figure 3.
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Figure 5: Dependency parsing: Confidence vs. unlabeled de-
pendency accuracy improvement on the Chinese CoNLL 2007
test set for comparisons between all pairs of systems gener-
ated by using resampled training sets to train either MST parser,
Maltparser, or the ensemble parser. Comparisons between sys-
tems generated using the same base model type and compar-
isons between systems generated using different base model
types are shown separately. The CoNLL 2007 shared task com-
parisons from Figure 3 are also shown.

The overlay of the natural comparisons suggests
that the synthetic approach reasonably models the
relationship between metric gain and confidence.
Additionally, the different model type and same
model type comparisons exhibit the behavior we
would expect, matching the curves corresponding to
comparisons between specially correlated systems
and standard comparisons respectively.

Since our synthetic approach yields a large num-
ber of system outputs, we can use the procedure
described in Section 3.1.1 to compute the thresh-
old above which the metric gain is probably signifi-
cant. For comparisons between systems of the same
model type, the threshold is 1.20 unlabeled depen-
dency accuracy. For comparisons between systems
of different model types, the threshold is 1.51 un-
labeled dependency accuracy. These results indi-
cate that the similarity of the systems being com-
pared is an important factor. As mentioned, rules-
of-thumb derived from such thresholds cannot be
applied blindly, but, in special cases where two sys-
tems are known to be correlated, the former thresh-
old should be preferred over the latter. For example,
during development most comparisons are made be-
tween incremental variants of the same system. If
adding a feature to a supervised parser increases un-
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Figure 6: Machine translation: Confidence vs. BLEU im-
provement on the system combination portion of the German-
English WMT 2010 news test set for comparisons between all
pairs of systems generated by using resampled training sets to
train either Moses or Joshua. Comparisons between systems
generated using the same base model type and comparisons be-
tween systems generated using different base model types are
shown separately. The WMT 2010 workshop comparisons from
Figure 4 are also shown.

labeled accuracy by 1.3, it is useful to be able to
quickly estimate that the improvement is probably
significant. This still isn’t the full story; we will
soon see that properties of the test set also play a
major role. But first, we carry our analysis to sev-
eral more tasks.

3.2.3 Machine Translation
Our two base models for machine translation

are Moses (Koehn et al., 2007) and Joshua (Li et
al., 2009). We use 1.4M sentence pairs from the
German-English portion of the WMT-provided Eu-
roparl (Koehn, 2005) and news commentary corpora
as the original training set. We resample 75 training
sets, 20 of 1.4M sentence pairs, 29 of 350K sentence
pairs, and 26 of 88K sentence pairs. This yields a
total of 150 system outputs on the system combi-
nation portion of the German-English WMT 2010
news test set. The results of the pairwise compar-
isons of all 150 system outputs are shown in Figure
6, along with the results of the WMT 2010 workshop
system comparisons from Figure 4.

The natural comparisons from the WMT 2010
workshop align well with the comparisons between
synthetically varied models. Again, the different
model type and same model type comparisons form
distinct curves. For comparisons between systems
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Figure 7: Word alignment: Confidence vs. AER improve-
ment on the Hansard test set for comparisons between all pairs
of systems generated by using resampled training sets to train
either the ITG aligner, the joint HMM aligner, or GIZA++.
Comparisons between systems generated using the same base
model type and comparisons between systems generated using
different base model types are shown separately.

of the same model type the computed p-value <
0.05 threshold is 0.28 BLEU. For comparisons be-
tween systems of different model types the threshold
is 0.37 BLEU.

3.2.4 Word Alignment
Now that we have validated our simple model of

system variation on two tasks, we go on to gen-
erate plots for tasks that do not have competitions
with publicly available system outputs. The first
task is English-French word alignment, where we
use three base models: the ITG aligner of Haghighi
et al. (2009), the joint HMM aligner of Liang et al.
(2006), and GIZA++ (Och and Ney, 2003). The last
two aligners are unsupervised, while the first is su-
pervised. We train the unsupervised word aligners
using the 1.1M sentence pair Hansard training cor-
pus, resampling 20 training sets of the same size.6

Following Haghighi et al. (2009), we train the super-
vised ITG aligner using the first 337 sentence pairs
of the hand-aligned Hansard test set; again, we re-
sample 20 training sets of the same size as the origi-
nal data. We test on the remaining 100 hand-aligned
sentence pairs from the Hansard test set.

Unlike previous plots, the points corresponding
to comparisons between systems with different base

6GIZA++ failed to produce reasonable output when trained
with some of these training sets, so there are fewer than 20
GIZA++ systems in our comparisons.
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Figure 8: Constituency parsing: Confidence vs. F1 improve-
ment on section 23 of the WSJ corpus for comparisons between
all pairs of systems generated by using resampled training sets
to train either the Berkeley parser, the Stanford parser, or the
Collins parser. Comparisons between systems generated us-
ing the same base model type and comparisons between sys-
tems generated using different base model types are shown sep-
arately.

model types form two distinct curves. It turns out
that the upper curve consists only of comparisons
between ITG and HMM aligners. This is likely due
to the fact that the ITG aligner uses posteriors from
the HMM aligner for some of its features, so the
two models are particularly correlated. Overall, the
spread of this plot is larger than previous ones. This
may be due to the small size of the test set, or possi-
bly some additional variance introduced by unsuper-
vised training. For comparisons between systems of
the same model type the p-value < 0.05 threshold
is 0.50 AER. For comparisons between systems of
different model types the threshold is 1.12 AER.

3.2.5 Constituency Parsing
Finally, before we move on to further types of

analysis, we run an experiment for the task of con-
stituency parsing. We use three base models: the
Berkeley parser (Petrov et al., 2006), the Stanford
parser (Klein and Manning, 2003), and Dan Bikel’s
implementation (Bikel, 2004) of the Collins parser
(Collins, 1999). We use sections 2-21 of the WSJ
corpus (Marcus et al., 1993), which consists of 38K
sentences and parses, as a training set. We resample
10 training sets of size 38K, 10 of size 19K, and 10
of size 9K, and use these to train systems. We test
on section 23. The results are shown in Figure 8.

For comparisons between systems of the same
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model type, the p-value < 0.05 threshold is 0.47
F1. For comparisons between systems of different
model types the threshold is 0.57 F1.

4 Properties of the Test Corpus

For five tasks, we have seen a trend relating met-
ric gain and confidence, and we have seen that the
level of correlation between the systems being com-
pared affects the location of the curve. Next, we
look at how the size and domain of the test set play
a role, and, finally, how significance level predicts
performance on held out data. In this section, we
carry out experiments for both machine translation
and constituency parsing, but mainly focus on the
latter because of the availability of large test corpora
that span more than one domain: the Brown corpus
and the held out portions of the WSJ corpus.

4.1 Varying the Size

Figure 9 plots comparisons for machine translation
on variously sized initial segments of the WMT
2010 news test set. Similarly, Figure 10 plots com-
parisons for constituency parsing on initial segments
of the Brown corpus. As might be expected, the
size of the test corpus has a large effect. For both
machine translation and constituency parsing, the
larger the corpus size, the lower the threshold for
p-value < 0.05 and the smaller the spread of the
plot. At one extreme, the entire Brown corpus,
which consists of approximately 24K sentences, has
a threshold of 0.22 F1, while at the other extreme,
the first 100 sentences of the Brown corpus have a
threshold of 3.00 F1. Notice that we see diminishing
returns as we increase the size of the test set. This
phenomenon follows the general shape of the cen-
tral limit theorem, which predicts that variances of
observed metric gains will shrink according to the
square root of the test size. Even using the entire
Brown corpus as a test set there is a small range
where the result of a paired significance test was not
completely determined by metric gain.

It is interesting to note that for a fixed test size,
the domain has only a small effect on the shape of
the curve. Figure 11 plots comparisons for a fixed
test size, but with various test corpora.
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Figure 9: Machine translation; varying test size: Confidence
vs. BLEU improvement on portions of the German-English
WMT 2010 news test set.
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Figure 10: Constituency parsing; varying test size: Con-
fidence vs. F1 improvement on portions of the Brown corpus.
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Figure 11: Constituency parsing; varying domain: Confi-
dence vs. F1 improvement on the first 1,600 sentences of sec-
tions 22, 23, and 24 of the WSJ corpus, and the Brown corpus.
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4.2 Empirical Calibration across Domains

Now that we have a way of generating outputs for
thousands of pairs of systems, we can check empir-
ically the practical reliability of significance testing.
Recall that the bootstrap p-value(x) is an approxi-
mation to p(δ(X) > δ(x)|H0). However, we often
really want to determine the probability that the new
system is better than the baseline on the underlying
test distribution or even the distribution from another
domain. There is no reason a priori to expect these
numbers to coincide.

In our next experiment, we treat the entire Brown
corpus, which consists of 24K sentences, as the true
population of English sentences. For each system
generated in the way described in Section 3.2.5 we
compute F1 on all of Brown. Since we are treat-
ing the Brown corpus as the actual population of En-
glish sentences, for each pair of parsers we can say
that the sign of the F1 difference indicates which is
the truly better system. Now, we repeatedly resam-
ple small test sets from Brown, each consisting of
1,600 sentences, drawn by sampling sentences with
replacement. For each pair of systems, and for each
resampled test set, we compute p-value(x) using the
bootstrap. Out of the 4K bootstraps computed in this
way, 942 had p-value between 0.04 and 0.06, 869
of which agreed with the sign of the F1 difference
we saw on the entire Brown corpus. Thus, 92% of
the significance tests with p-value in a tight range
around 0.05 correctly identified the better system.

This result is encouraging. It suggests that sta-
tistical significance computed using the bootstrap is
reasonably well calibrated. However, test sets are
almost never drawn i.i.d. from the distribution of in-
stances the system will encounter in practical use.
Thus, we also wish to compute how calibration de-
grades as the domain of the test set changes. In an-
other experiment, we look at how significance near
p-value = 0.05 on section 23 of the WSJ corpus
predicts performance on sections 22 and 24 and the
Brown corpus. This time, for each pair of generated
systems we run a bootstrap on section 23. Out of
all these bootstraps, 58 system pairs had p-value be-
tween 0.04 and 0.06. Of these, only 83% had the
same sign of F1 difference on section 23 as they did
on section 22, 71% the had the same sign on sec-
tion 23 as on section 24, and 48% the same sign on

Sec. 23 p-value % Sys. A > Sys. B
Sec. 22 Sec. 24 Brown

0.00125 - 0.0025 97% 95% 73%
0.0025 - 0.005 92% 92% 60%
0.005 - 0.01 92% 85% 56%
0.01 - 0.02 88% 92% 54%
0.02 - 0.04 87% 78% 51%
0.04 - 0.08 83% 74% 48%

Table 1: Empirical calibration: p-value on section 23 of the
WSJ corpus vs. fraction of comparisons where system A beats
system B on section 22, section 24, and the Brown corpus. Note
that system pairs are ordered so that A always outperforms B on
section 23.

section 23 as on the Brown corpus. This indicates
that reliability degrades as we switch the domain. In
the extreme, achieving a p-value near 0.05 on sec-
tion 23 provides no information about performance
on the Brown corpus.

If we intend to use our system on out-of-domain
data, these results are somewhat discouraging. How
low does p-value(x) have to get before we start get-
ting good information about out-of-domain perfor-
mance? We try to answer this question for this par-
ticular parsing task by running the same domain cal-
ibration experiment for several different ranges of
p-value. The results are shown in Table 1. From
these results, it appears that for constituency pars-
ing, when testing on section 23, a p-value level be-
low 0.00125 is required to reasonably predict perfor-
mance on the Brown corpus.

It should be considered a good practice to include
statistical significance testing results with empiri-
cal evaluations. The bootstrap in particular is easy
to run and makes relatively few assumptions about
the task or evaluation metric. However, we have
demonstrated some limitations of statistical signifi-
cance testing for NLP. In particular, while statistical
significance is usually a minimum necessary condi-
tion to demonstrate that a performance difference is
real, it’s also important to consider the relationship
between test set performance and the actual goals
of the systems being tested, especially if the system
will eventually be used on data from a different do-
main than the test set used for evaluation.

5 Conclusion
We have demonstrated trends relating several im-
portant factors to significance level, which include
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both properties of the systems being compared and
properties of the test corpus, and have presented a
simple approach to approximating the response of
these factors for tasks where large numbers of sys-
tem outputs are not available. Our results reveal
that the relationship between metric gain and sta-
tistical significance is complex, and therefore sim-
ple thresholds are not a replacement for significance
tests. Indeed, we strongly advocate the use of statis-
tical significance testing to validate metric gains in
NLP, but also note that informal rules-of-thumb do
arise in popular discussion and that, for some set-
tings when previous systems are unavailable, these
empirical results can supplement less sensitive un-
paired tests (e.g. bar-overlaps-point test) in evalua-
tion of progress. Finally, even formal testing has its
limits. We provide cautionary evidence to this ef-
fect, showing that the information provided by a test
quickly degrades as the target corpus shifts domain.
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Abstract 

Current Chinese event extraction systems suffer 

much from two problems in trigger 

identification: unknown triggers and word 

segmentation errors to known triggers. To 

resolve these problems, this paper proposes two 

novel inference mechanisms to explore special 

characteristics in Chinese via compositional 

semantics inside Chinese triggers and discourse 

consistency between Chinese trigger mentions. 

Evaluation on the ACE 2005 Chinese corpus 

justifies the effectiveness of our approach over 

a strong baseline. 

1 Introduction 

Event extraction, a classic information extraction 

task, is to identify instances of a predefined event 

type and can be typically divided into four subtasks: 

trigger identification, trigger type determination, 

argument identification and argument role 

determination. In the literature, most studies focus 

on English event extraction and have achieved 

certain success (e.g. Grishman et al., 2005; Ahn, 

2006; Hardy et al., 2006; Maslennikov and Chua, 

2007; Finkel et al., 2005; Ji and Grishman, 2008; 

Patwardhan and Riloff, 2009, 2011; Liao and 

Grishman 2010; Hong et al., 2011).  

In comparison, there are few successful stories 

regarding Chinese event extraction due to special 

characteristics in Chinese trigger identification. In 

particular, there are two major reasons for the low 

performance: unknown triggers
1

 and word 

segmentation errors to known triggers. Table 1 

gives the statistics of unknown triggers and word 

segmentation errors to known triggers in both the 

                                                           
1 In this paper, a trigger word/phrase occurring in the training 

data is called a known trigger and otherwise, an unknown 

trigger.  

ACE 2005 Chinese and English corpora
2
 using 10-

fold cross-validation. In each validation, we leave 

10% trigger mentions as the test set and the 

remaining ones as the training set. If a mention in 

the test set doesn’t occurred in the training set, we 

regard it as an unknown trigger. It shows that these 

two cases cover almost 30% of Chinese trigger 

mentions while this figure reduces to only about 

9% in English. It also shows that given the same 

number of event mentions, there are 30% more 

different triggers in Chinese than that in English. 

This justifies the low performance (specifically, 

the recall) of a Chinese event extraction system, 

which normally extracts those known triggers 

occurring in the training data as candidate 

instances and uses a classifier to distinguish correct 

triggers from wrong ones. 

 
Language Chinese English 

%unknown triggers 33.7% 18.5% 

%unknown trigger mentions 20.9% 8.9% 

%word segmentation errors 

to known trigger mentions 

8.7% 0% 

#triggers 763 586 

Table 1. Statistics: a comparison between Chinese and 

English event extraction with regard to unknown 

triggers and word segmentation errors to known triggers. 

Note that word segmentation only applies to Chinese. 

 

In this paper, we propose two novel inference 

mechanisms to Chinese trigger identification by 

employing compositional semantics inside Chinese 

triggers and discourse consistency between 

Chinese trigger mentions.  

The first mechanism is motivated by the 

compositional nature of Chinese words, whose 

semantics can be often determined by the 

component characters. Hence, it is natural to infer 

                                                           
2  The whole Chinese ACE corpus has about 3300 event 

mentions. For the sake of fair comparison, we choose the same 

number of event mentions from the English corpus as the 

cross-validation data. 
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unknown triggers by employing compositional 

semantics inside Chinese triggers.  

The second mechanism is enlightened by the 

wide use of discourse consistency in natural 

languages, particularly for Chinese, due to its 

discourse-driven nature (Zhu, 1980). Very often, 

distinguishing true trigger mentions from pseudo 

ones is only possible with contextual information.  

The rest of this paper is organized as follows. 

Section 2 overviews the related work. Section 3 

introduces a state-of-the-art baseline system for 

Chinese event extraction. Sections 4 and 5 describe 

two novel inference mechanisms to Chinese trigger 

identification by employing compositional 

semantics inside Chinese triggers and discourse 

consistency between Chinese trigger mentions. 

Section 6 presents the experimental results. Section 

7 concludes the paper and points out future work. 

2 Related Work 

Almost all the existing studies on event extraction 

concern English. While earlier studies focus on 

sentence-level extraction (Grishman et al., 2005; 

Ahn, 2006; Hardy et al., 2006), later ones turn to 

employ high-level information, such as document 

(Maslennikov and Chua, 2007; Finkel et al., 2005; 

Patwardhan and Riloff, 2009), cross-document (Ji 

and Grishman, 2008), cross-event (Liao and 

Grishman, 2010; Gupta and Ji, 2009) and cross-

entity (Hong et al., 2011) information. 

2.1 Chinese Event Extraction  

Compared with tremendous efforts in English 

event extraction, there are only a few studies on 

Chinese event extraction.  

Tan et al. (2008) modeled event extraction as a 

pipeline of classification tasks. Specially, they used 

a local feature selection approach to ensure the 

performance of trigger classification (trigger 

identification + trigger type determination) and 

applied multiple levels of patterns to improve the 

coverage of patterns in argument classification 

(argument identification + argument role 

determination). Chen and Ji (2009a) proposed a 

bootstrapping framework, which exploited extra 

information captured by an English event 

extraction system. Chen and Ji (2009b) applied 

various kinds of lexical, syntactic and semantic 

features to address the specific issues in Chinese. 

They also constructed a global errata table to 

record the inconsistency in the training set and 

used it to correct the inconsistency in the test set. Ji 

(2009) extracted cross-lingual predicate clusters 

using bilingual parallel corpora and a cross-lingual 

information extraction system, and then used the 

derived clusters to improve the performance of 

Chinese event extraction. 

2.2 Compositional Semantics 

Almost all the related studies on compositional 

semantics focus on how to combine words together 

to convey complex meanings, such as semantic 

parser (Zettlemoyer and Collins, 2007; Wong and 

Mooney, 2007; Liang et al., 2011). However, the 

compositional semantics mentioned in this paper is 

more fined-grained and focuses on how to 

construct Chinese characters into a word and mine 

the semantics of words from the word structures, 

especially of verbs as event triggers.  

To our knowledge, there is only one paper 

associated with compositional semantics inside 

Chinese words. Li (2011) discussed the internal 

structures inside Chinese nouns and used it in word 

segmentation.  

2.3 Discourse Consistency 

Discourse consistency is an important hypothesis 

in natural languages and has been applied to many 

natural language processing applications, such as 

named entity recognition and coreference 

resolution. Specially, several studies have 

successfully incorporated trigger or entity 

consistency constraint into event extraction.  

Yarowsky (1995) and Yangarber et al. 

(Yangarber and Jokipii, 2005; Yangarber et al., 

2007) applied cross-document inference to refine 

local extraction results for disease name, location 

and start/end time. Mann (2007) proposed some 

specific inference rules to improve extraction of 

personal information. Ji and Grishman (2008) 

employed a rule-based approach to propagate 

consistent triggers and arguments across topic-

related documents. Gupta and Ji (2009) used a 

similar approach to recover implicit time 

information for events. Liao and Grishman (2011) 

also used a similar approach and a self-training 

strategy to extract events. Liao and Grishman 

(2010) employed cross-event consistency 

information to improve sentence-level event 

extraction. Hong et al. (2011) regarded entity type 
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consistency as a key feature to predict event 

mentions and adopted this inference method to 

improve the traditional event extraction system.  

3 Baseline 

As a baseline, we re-implement a state-of-the-art 

system, which consists of four typical components 

(trigger identification, trigger type determination, 

argument identification and argument role 

determination), in a pipeline way and employ the 

same set of features as described in Chen and Ji 

(2009b). 

Besides, the Maximum-Entropy (ME) model is 

employed to train individual component classifiers 

for the above four components. During testing, 

each word in the test set is first scanned for 

instances of known triggers from the training set. 

When an instance is found, the trigger identifier is 

applied to distinguish true trigger mentions from 

pseudo ones. If true, the trigger type determiner is 

then applied to recognize its event type. For any 

entity mentions in the sentence, the argument 

identifier is employed to assign possible arguments 

to them afterwards. Finally, the argument role 

determiner is introduced to assign a role to each 

argument.  

One problem with Chen and Ji’s system is its 

ignoring effective long-distance features. In order 

to resolve this problem and provide a stronger 

baseline, we introduce more refined and 

dependency features in four components:  

 Trigger Identification and Trigger Type 

Determination: 1) syntactic features: path to 

the root of the governing clause, 2) nearest 

entity information: entity type of left 

syntactically/physically nearest entity to the 

trigger + entity, entity type of right 

syntactically/physically nearest entity to the 

trigger mention in the sentence + entity; 3) 

dependency features: the subject and the object 

of the trigger when they are entities. 

 Argument Identification and Argument Role 

Determination: 1) basic features: POS of 

trigger; 2) neighboring words: left neighboring 

word of the entity + its POS, right neighbor 

word of the entity + its POS, left neighbor word 

of the trigger + its POS, right neighbor word of 

the trigger + its POS; 3) dependency feature: 

dependency path from the entity to the trigger; 

4) semantic role features: Arg0 and Arg1 which 

tagged by semantic role labeling tool (Li, et al., 

2010). 

3.1 Experimental Setting 

The ACE 2005 Chinese corpus (only the training 

data is available) is used in all our experiments. 

The corpus contains 633 Chinese documents 

annotated with 8 predefined event types and 33 

predefined subtypes. Similar to previous studies, 

we treat these subtypes simply as 33 separate event 

types and do not consider the hierarchical structure 

among them. 

Following Chen and Ji (2009b), we randomly 

select 567 documents as the training set and the 

remaining 66 documents as the test set. Besides, 

we reserve 33 documents in the training set as the 

development set, and follow the setting of ACE 

diagnostic tasks and use the ground truth entities, 

times and values for our training and testing. 

For evaluation, we follow the standards as 

defined in Ji (2009):  

 A trigger is correctly identified if its position in 

the document matches a reference trigger; 

 A trigger type is correctly determined if its 

event type and position in the document match 

a reference trigger; 

 An argument is correctly identified if its 

involved event type and position in the 

document match any of the reference argument 

mentions; 

 An argument role is correctly determined if its 

involved event type, position in the document, 

and role match any of the reference argument 

mentions. 

Finally, all sentences in the corpus are divided 

into words using a word segmentation tool 

ICTCLAS
3
 with all entities annotated in the corpus 

kept. Besides, we use Stanford Parser (Levy and 

Manning, 2003, Chang, et al., 2009) to create the 

constituent and dependency parse trees and employ 

the ME model to train individual component 

classifiers. 

3.2 Experimental Results 

Table 2 and 3 show the Precision (P), Recall (R) 

and F1-Measure (F) on the held-out test set. It 

shows that our baseline system outperforms Chen 

and Ji (2009b) by 1.8, 2.2, 3.9 and 2.3 in F1-

measure on trigger identification, trigger type 

                                                           
3 http://ictclas.org/ 
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determination, argument identification and 

argument role determination, respectively, with 

both gains in precision and recall. This is simply 

due to contribution of the newly-added refined and 

dependency features. 

 
Performance 

 

System 

Trigger 

Identification 

Trigger Type 

Determination 

P(%) R(%) F P(%) R(%) F 

Chen and Ji 

(2009b) 

71.5 51.2 59.7 66.5 47.7 55.6 

Our Baseline 75.2 52.0 61.5 70.3 49.0 57.8 

Table 2. Performance of trigger identification and 

trigger type determination  

 

Performance 

 

System 

Argument 

Identification 

Argument Role 

Determination 

P(%) R(%) F P(%) R(%) F 

Chen and Ji 

(2009b) 

56.1 38.2 45.4 53.1 36.2 43.1 

Our Baseline 58.4 42.7 49.3 55.2 38.6 45.4 

Table 3. Performance of argument identification and 

argument role determination 

 

For our baseline system, given the small 

performance gaps between trigger identification 

and trigger type determination (3.7 in F1-measure: 

61.5 vs. 57.8) and between argument identification 

and argument role determination (3.9 in F1-

measure: 49.3 vs. 45.4), the performance 

bottlenecks of our baseline system mainly exist in 

trigger identification and argument identification, 

particularly for the former one. While argument 

identification has the performance gap of 8.5 in 

F1-measure compared to trigger type 

determination (49.3 vs. 57.8), the former one, 

trigger identification, can only achieve the 

performance of 61.5 in F1-measure (in particular 

the recall with only 52.0). In this paper, we will 

focus on trigger identification to improve its 

performance, particularly for the recall, via 

compositional semantics inside Chinese triggers 

and discourse consistency between Chinese trigger 

mentions.  

4 Employing Compositional Semantics 

inside Chinese Triggers  

Language is perhaps the only communicative 

system in nature, which compositionally builds 

structured meanings from smaller pieces, and this 

compositionality is the cognitive mechanism that 

allows for what Humboldt called language’s 

“infinite use of finite means.” As usual, the lexical 

semantics is the smallest piece in most Chinese 

language processing applications. In this section, 

we introduce a more fine-grained semantics - the 

compositional semantics in Chinese verb structure 

- and unveil its effect and usage in Chinese 

language processing by employing it into Chinese 

event extraction. 

4.1 Compositional Semantics inside Chinese 

Triggers 

In English, a component character is just the basic 

unit to form a word instead of a semantics unit. In 

comparison, almost all Chinese characters have 

their own meanings and can be formed as SCWs 

(Single Character Words) themselves. If a Chinese 

word contains more than one character, its 

meaning can be often inferred from the meanings 

of its component characters (Yuan, 1998). Actually, 

it is the normal way of understanding a new 

Chinese word in everyday life of a Chinese native 

speaker. A general method to this problem is to 

systematically explore the morphological 

structures in Chinese words. In this paper, 

compositional semantics provides a simple but 

effective compromise to the general method and 

we leave the general method in the future work. 

Table 4 shows samples of such compositional 

semantics in Chinese words. For example, “会见” 

is composed of two characters: “会” and “见” 

which have their own semantics and the semantics 

of “ 会见 ” comes from that of its component 

characters “会” and “见”.  

 
Words Characters 

会见 (interview
4
) 会 (meet) 见(meet) 

击毙 (shoot and kill) 击(shoot) 毙 (kill) 

来到(come)  

私信 (private letter) 

来 (come) 到 (to) 

私(private) 信(letter) 

Table 4. Examples of compositional semantics in 

Chinese words 

 

Therefore, it is natural to infer unknown triggers 

by employing compositional semantics inside 

Chinese triggers. Take following two sentences as 

examples: 

(1) 4 名学生被玻璃划伤。(Known trigger) 
                                                           
4  Most Chinese words have more than one sense. Here, we 

just give the one when it acts as a trigger. 
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(Four students were scratched by the glass.) 

(2)  1 名乘客被刺伤。(Unknown trigger) 

(A passenger was stabbed.) 

where “划伤” is a known trigger and “刺伤” is an 

unknown one.  

In above examples, the semantics of “划伤” 

(injure by scratching) can be largely determined 

from those of its component characters “ 划 ” 

(scratch) and “伤” (injure) while the semantics of 

“刺伤 ” (injure by stabbing) from those of its 

component characters “刺” (stab) and “伤” (injure). 

Since these two triggers have similar internal 

structures, we can easily infer that “刺伤” is a 

trigger of injure event if “划伤” is known as a 

trigger of injure event. Similarly, we can infer 

more triggers for injure event, such as “灼伤” 

(injure by burning), “撞伤” (injure by hitting), “压

伤 ” (injure by pressing), all with component 

character “伤” (injure) as the head and the other 

component character as the way of causing injury.  

Since most triggers in Chinese event extraction 

are verbs
5

, we focus on the compositional 

semantics in the verb structure. Statistics on the 

training set shows that 3.3% triggers (e.g. “公开

信” (open letter), “事件” (event), “病情” (patient's 

condition), etc.) don’t contain a BV and all of them 

are nouns. Normally, almost all verbs contain one 

or more single-character verbs as the basic element 

to construct a verb (we call it basic verb, shorted as 

BV) and the semantics of such a verb thus can be 

inferred from its BV. There are some studies on the 

Chinese verb structure in linguistics. However, 

their structures are much more complex and there 

are no annotated corpora available. We define 

following six main structures from our empirical 

observations: 

(1) BV (e.g. “看” (see), “杀” (kill)) 

(2) BV + verb (e.g. “会见” (meet)) 

(3) verb + BV (e.g. “解雇” (fire) ) 

(4) BV + complementation (e.g. “杀了” (kill) ) 

(5) BV + noun/adj. (e.g. “回家” (go to home)) 

(6) noun/adj. +BV (e.g. “枪击” (shoot using 

gun)). 

                                                           
5 Actually, in the ACE 2005 Chinese (training) corpus, more 

than 90% of triggers are either verbs al or verbal nouns (those 

verbs which act as nouns). For simplicity, we don’t 

differentiate these two types in this paper. 

From above structures, a BV plays an important 

role in the verb structure and most of semantics of 

a verb can be interred from its contained BV and 

two words normally have very similar semantics if 

they have the same BV (e.g. “会见” (meet) and 

“会晤” (meet)). Actually, sometime the verb can 

be shortened to its contained BV (e.g. “我见王教

授 ” and “ 我 会 见 王 教 授 ” have the same 

semantics.).  

4.2 Inferring via Compositional Semantics 

inside Chinese Triggers 

Here a simple rule is employed to infer triggers via 

compositional semantics inside Chinese triggers: a 

verb is a trigger if it contains a BV which occurs 

as a known trigger or is contained in a known 

trigger. Table 5 shows the distribution of the set of 

triggers (contains the same BV
6
) classified by 

number of triggers.  

From Table 5, we can find out that 85.3% of 

BVs occur in more than one trigger and 56.2% of 

them in more than 4 triggers. As for trigger 

mentions, these percentages become 89.1% and 

65.2% respectively. A extreme example is that 

85.2% (75/88) of triggers of Trial-Hearing event 

mentions contain “审” (trial) and 85.4% (117/138) 

of triggers of injure event mentions contains “伤” 

(injure).  

 
Number  Distribution over 

Triggers 

Distribution over 

Trigger Mentions 

1 14.7% 10.9% 

2~4 29.1% 23.9% 

5~9 28.1% 32.9% 

>=10 28.1% 32.3% 

Table 5. Distribution of BVs in the number of 

triggers/trigger mentions  

 

In this paper, the inference is done as follows: 

 Add all single-character triggers into the BV set 

if it’s a verb; 

 Split all other triggers in the training set into a 

set of single characters and include all single 

characters into the BV set if it’s a verb; 

 For each word in the test set, it is identified as a 

trigger if it contains a BV. 

It is worthwhile to note that such inference 

works for unknown triggers and word 

                                                           
6 We didn’t tag BVs in the training set and regards all single-

character verbs contained in triggers as BVs. 
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segmentation errors to known triggers since in both 

cases, their BVs will always exist as either a SCW 

or a component of a word. 

4.3 Noise Filtering  

One problem with above inference is that while it 

is able to recover some true triggers and increase 

the recall, it may introduce many pseudo ones and 

harm the precision. To filter out those pseudo 

triggers, we propose following rules according to 

our intuition and statistics over the training set. 

Non-trigger Filtering 

A Chinese word will not be a trigger if it 

appears in the training set but never trigger an 

event. Statistics on the training set shows that this 

rule applies at 99.7% of cases. 

POS filtering 

A Chinese word will not be a trigger if it has a 

different POS from that of the same known 

trigger or similar known triggers
7

 in the 

training set. In Chinese, a single-character verb 

has very high probability of composing words (e.g. 

“到” (come), “为” (act as), “并” (combine), etc) 

with different POS from the single-character verb 

itself, such as preposition (e.g. “为了 ” (for)), 

conjunction (e.g. “并且” (and)), etc. Statistics on 

the training set shows that this rule applies at 

97.3% of cases.  

Verb structure filtering 

A Chinese word will not be a trigger if its verb 

structure is different from that of the same 

known trigger or similar known triggers in the 

training set. Figure 1 shows different distributions 

of three BVs over six verb structures as described 

in subsection 4.1. For example, we can find that all 

triggers including “解” (unbind) (e.g. “解聘” (fire), 

“解雇” (fire), “解散” (disband)) just have one verb 

structure (BV + verb) and those of “杀” (kill) have 

4 structures. Obviously, we can use such 

distribution information to filter out pseudo 

triggers. For example, although both word “劝解” 

(console) and “分解” (decompose) are constructed 

form verb “解”, their verb structure (verb + BV) 

does not appear in the training set. Therefore, they 

will be filtered our via verb structure filtering. 

                                                           
7 Similar triggers are those ones which have the same BV and 

verb structure. 

Statistics on the training set shows that this rule 

applies at 95.5% of cases. 
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Figure 1. Distribution of three BVs (“解” (unbind), “审” 

(trial) and “杀” (kill)) over six verb structures in 

constructing triggers 

5 Employing Discourse Consistency 

between Chinese Trigger Mentions  

Chinese event extraction may suffer much from the 

errors propagated from upstream processing such 

as part-of-speech tagging and parsing, especially 

word segmentation. To alleviate word 

segmentation errors to known triggers, Chen and Ji 

(2009b) constructed a global errata table to record 

the inconsistency in the training set and proved its 

effectiveness. In this paper, a merge and split 

method is applied to recover those known triggers. 

In this way, word segmentation errors can be 

alleviated to certain extent.  

For unknown triggers, we can merge two or 

more neighboring short words or single characters 

as a trigger candidate. In this paper, for each 

single-character verb in a document after word 

segmentation, this single-character verb can be 

merged with either previous SCW or next SCW to 

form a trigger candidate if this single-character 

verb has occurred in the training set with the same 

verb structure. 

Given above recovered triggers for both known 

and unknown triggers, the key issue here is how to 

distinguish true triggers from pseudo ones. In this 

paper, we employ discourse consistency between 

Chinese trigger mentions for Chinese event 

extraction. Previous studies on English event 

extraction have proved the effectiveness of both 

cross-entity and cross-document consistency.  

5.1 Discourse Consistency between Chinese 

Trigger Mentions  

As a discourse-driven language, the syntax of 
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Chinese is not as strict as English and sometime 

we must infer from the discourse-level information 

to understand the meaning of a sentence. Kim 

(2000) compared the use of overt subjects in 

English and Chinese and he found that overt 

subjects occupy over 96% in English, while this 

percentage drops to only 64% in Chinese. 

Similarly, argument missing is another issue in 

Chinese event extraction and almost 55% of 

arguments are missing in the ACE 2005 Chinese 

corpus. Normally, using a feature-based approach 

to distinguish true triggers from pseudo ones is 

very difficult from the sentence level if some of 

related arguments are missing from the trigger-

occurring sentence. Take following two contingent 

sentences as examples: 

(3) 美国与北韩 3 号在吉隆坡结束飞弹会谈。  

(The United States and the Democratic 

People's Republic of Korea finished missile 

talks in Kuala Lumpur.) 

(4) 会谈的气氛严肃。 

(The talks are serious.) 

While it is relatively easy to determine that 

mention “会谈” in sentence (3) indicates a meet 

event from the contained information in itself 

(there are many entities, such as agents, time and 

place in the sentence) and difficult to determine 

that mention “会谈” in sentence (4) is a meet event 

from the contained information in itself, we can 

easily infer from sentence (3) that sentence (4) also 

indicates a meet event, using discourse consistency: 

if one instance of a word is a trigger mention, other 

instances in the same discourse will be a trigger 

mention with high probability.  

 
Language Discourse-based Instance-based 

English 70.2% 87.5% 

Chinese 90.5% 95.4% 

Table 6. Comparison of discourse consistency between 

Chinese and English trigger mentions 

 

Table 6 compares the probabilities of discourse 

consistency between Chinese and English trigger 

mentions in the ACE 2005 Chinese and English 

corpora. A trigger may appear many times in a 

discourse. It’s considered discourse-consistent 

when all the appearances of a trigger have the 

same event type while instance-based consistency 

refers to pair-wired cases. It shows that within the 

discourse, there is a strong consistency in both 

Chinese and English between trigger mentions: if 

one instance of a word is a trigger, other instances 

in the same discourse will be a trigger of the same 

event type with very high probability. 
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Figure 2. Probabilities of discourse-level consistency of 

top 10 frequent triggers 

It also shows that discourse consistency in 

Chinese triggers holds much more likely than the 

English counterpart. Figure 2 give the probabilities 

of discourse-level consistency of top 10 frequent 

triggers, which occupy 18% of event mentions in 

the ACE 2005 Chinese corpus. 

5.2 Inference via Discourse Consistency 

between Chinese Trigger Mentions  

Given a discourse and different mentions of a 

trigger returned by the trigger identifier, we can 

simply accept those mentions with high probability 

as true mentions of the trigger and discard those 

with low probability8. However, for those mentions 

in-between, an additional discourse-level trigger 

identifier is further employed to determine whether 

a trigger mention is true or not from the discourse 

level by augmenting the normal trigger identifier 

with several features to explore the consistency 

information between trigger mentions in the 

discourse (first three features) and the related 

information returned from the trigger type 

identifier (last two features).  

 Probability of the discourse consistency of the 

candidate trigger mention in the training set. If 

it doesn’t exist in the training set, we infer its 

probability from that of all of its similar triggers 

 Number of candidate trigger mentions being a 

trigger in the same discourse via trigger 

identification 

 Number of candidate trigger mentions being a 

non-trigger in the same discourse via trigger 

identification 

                                                           
8 The high and low probability thresholds are fine-tuned to 

95% and 5% respectively, using the development set. 
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 Event type of candidate trigger mention via 

trigger type determination 

 Confidence of trigger type determination 

6 Experiments 

In this section, we evaluate our two inference 

mechanisms in Chinese trigger identification and 

its application to overall Chinese event extraction, 

using the same experimental settings as described 

in Subsection 3.1. 

6.1 Chinese Trigger Identification 

Table 7 shows the impact of compositional 

semantics in trigger identification. Here, the 

baseline just extracts those triggers occurring in the 

training data. It justifies the effectiveness of our 

compositional semantics-based inference 

mechanism in recovering true triggers and its three 

filtering rules in removing pseudo triggers.  

 
                    Numbers 

Approaches 

Triggers Non-triggers 

Baseline 266 629 

+Compositional semantics 

without filtering 

334 1885 

+ Non-trigger filtering 328 1062 

+ POS filtering 325 974 

+ Verb structure filtering 302 444 

Gold 367 - 

Table 7. Impact of compositional semantics in trigger 

identification 

 

To reduce those pseudo triggers after above 

inference process, three rules are introduced.  

The first rule, the non-trigger filtering rule, 

filters out those pseudo ones in the test set which 

do not frequently occur as trigger mentions in the 

training set. In particular, to keep true triggers in 

our candidate set as many as possible, we just filter 

out those candidates which occur as non-triggers 

more than 5 times in the training set according to 

our validation on the development set. Table 7 

shows that 43.7% (823) of pseudo triggers are 

filtered out while only 1.8% (6) of true ones is 

wrongly filtered out.  

The second rule, the POS filtering rule, just 

filters out 8.3% (88) of pseudo triggers, due to 

POS errors in word segmentation and constituent 

parsing (e.g. 9.4% of candidate triggers have 

wrong POS tags in the development set.). Manual 

inspection shows that if we correct those wrong 

POS tags, that percentage will be increased to 

14.5%. 

The third rule, the verb structure filtering rule, is 

deployed in following steps: 1) keeping all 

candidates if they act as a trigger in the training set; 

2) if the candidate is a SCW, removing it when it 

does not occur as a BV in any triggers in the 

training set; 3) if the candidate is not a SCW, 

calculating the condition probability of its similar 

trigger words as triggers in the training set
9
 and 

then deleting all candidates whose conditional 

probabilities are less than a threshold θ , which is 

fine-tuned to 0.5. Figure 3 shows the effect on 

precision, recall and F1-measure of varying the 

thresholdθ  on the development set. 
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Figure 3. Effect of threshold θ  on the development 

set 

 
                Performance 

System 

Trigger Identification 

P(%) R(%) F 

Baseline 75.2 52.0 61.5 

+Compositional semantics 

without filtering 

34.8 66.8 45.8 

+ Non-trigger filtering 49.4 66.5 56.7 

+ POS filtering 50.2 65.9 57.0 

+ Verb structure filtering 73.5 62.1 67.4 

+Discourse consistency 79.3 63.5 70.5 

Table 8. Contribution to Chinese triggers identification 

(incremental) 

 

Table 8 shows the contribution of employing 

compositional semantics and discourse consistency 

to trigger identification on the held-out test set. We 

can find out that our approach dramatically 

enhances F1-measure by 9.0 units, largely due to a 

dramatic increase of 11.5% in recall, benefiting 

from both compositional semantics and discourse 

consistency mechanisms. We expect that the 

precision will also increase since our filtering 

approach successfully filters out almost 30% more 

                                                           
9 If there are more than one BV in a candidate, we calculate 

the average one. 
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non-triggers and the number of non-trigger 

mentions is less than that of the baseline. 

Unfortunately, the resulting set of 444 non-trigger 

mentions (after all filtering) is not a subset of 

original 629 non-trigger ones. Our observation 

shows that our compositional semantics inference 

adds almost 10% new non-triggers into candidates 

which are very hard to distinguish.  

Table 8 also justifies the impact of the discourse 

consistency between trigger mentions in trigger 

identification and the effect of the additional 

discourse-level trigger identifier, with a big gain of 

5.8% in precision and a small gain of 1.4% in 

recall. 

6.2 Chinese Event Extraction 

Table 9 shows the contribution of trigger 

identification with compositional semantics and 

discourse consistency to overall event extraction 

on the held-out test set. In addition, we also report 

the performance of two human annotators (The 

human annotator 1 is a first year postgraduate 

student with no background to Chinese event 

extraction while the human annotator 2 is a third 

year postgraduate student working on Chinese 

event extraction) on 33 texts (a subset of the held-

out test set). From the results presented in Table 9, 

we can find that our approach can improve the F1-

measure for trigger identification by 9.0 units, 

trigger type determination by 9.1 units, argument 

identification by 6.0 units and argument role 

determination (i.e. overall event extraction) by 5.4 

units, largely due to the dramatic increase in recall 

of 11.5%, 11.2%, 7.5% and 7.2%.  

 

                        Performance 

 

System/Human 

Trigger 

Identification 

Trigger Type 

Determination 

Argument 

Identification 

Argument Role 

Determination 
P(%) R(%) F P(%) R(%) F P(%) R(%) F P(%) R(%) F 

Our Baseline 75.2 52.0 61.5 70.3 49.0 57.8 58.4 42.7 49.3 55.2 38.6 45.4 

+Compositional semantics 73.5 62.1 67.4 70.2 59.1 64.2 58.0 48.9 53.0 54.7 44.5 49.1 

+Discourse consistency 79.3 63.5 70.5 75.2 60.2 66.9 61.6 50.2 55.3 56.9 45.8 50.8 

Human annotator1(blind) 63.3 62.9 63.1 61.7 59.5 60.6 64.6 54.1 58.9 60.9 48.2 53.8 

Human annotator2(familiar) 72.6 74.3 73.4 69.1 70.2 69.6 71.5 65.9 68.6 66.4 54.6 59.9 

Inter-Annotator Agreement 45.8 42.9 44.3 45.3 42.5 43.8 60.4 49.7 54.5 55.1 45.9 50.1 

Table 9: Overall contribution to Chinese event extraction  

 

In addition, the results of two annotators show 

that Chinese event extraction is really challenging 

even for a well-educated human being. As shown 

in Table 9, the inter-annotator agreement on trigger 

identification and trigger type determination is 

even less than 45%. Although this figure is very 

low, it is not surprising: the results on the English 

ACE 2005 corpus show that the inter-annotator 

agreement on trigger identification is only about 

40% (Ji and Grishman, 2008). Detailed analysis 

shows that a human annotator tends to make more 

mistakes in trigger identification for two reasons. 

The first reason is that a human annotator always 

misses some event mentions when a sentence 

contains more than one event mention. The second 

reason is that it is hard to identify an event mention 

due to the failure of following specified annotation 

guidelines, as mentioned in Ji and Grishman 

(2008). Table 9 also shows the performance gaps 

of human annotators between trigger identification 

and trigger type determination is very small (2.5% 

and 3.8% in F1-measure). It ensures that trigger 

identification is the most important step in Chinese 

event extraction for a human being. For human 

annotators, it’s much easier to determine the event 

type of a trigger, identify its arguments and 

determine the role of each argument, all with more 

than 90% in accuracy, once a trigger is identified 

correctly.  

6.3 Discussion 

Compared with English, the word structures in 

Chinese are much more complex and diverse, 

causing a lot of troubles in Chinese language 

processing. We ensure that compositional 

semantics in Chinese words is very useful for 

many Chinese language processing applications, 

such as machine translation, semantic parser, etc. 

For example, many actions (e.g. “砍” (hack), “咬” 

(bite), “踢” (kick), etc) can combine with “伤” 

(injure) to form words and most of those words 

have similar semantics. The results in table 8 show 

its contribution in Chinese event extraction. 

Although our approach is simple, the result is 
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promising enough for further efforts in this 

direction.  

This paper shows that the compositional 

semantics in the verb structure provides an ideal 

way to expand the coverage of triggers. As a 

discourse-driven language, ellipsis is very common 

in Chinese, causing inference from the discourse-

level information is a fundamental requirement to 

understand the meaning of a clause, sentence or 

discourse. 

7 Conclusion 

In this paper we propose two novel inference 

mechanisms to Chinese trigger identification. In 

particular, compositional semantics inside Chinese 

triggers and discourse consistency between 

Chinese trigger mentions are used to resolve two 

critical issues in Chinese trigger identification: 

unknown triggers and word segmentation errors to 

known triggers. We give good reasons why this 

should be done, and present effective methods how 

this could be done. It shows that such novel 

inference mechanisms for Chinese event extraction 

are linguistically justified and pragmatically 

beneficial to real world applications.  

In future work, we will focus on how to 

introduce the discourse information into the 

individual classifiers to capture those long-distance 

features and joint learning of subtasks in Chinese 

event extraction. 
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Abstract

We study how to extend a large knowledge
base (Freebase) by reading relational informa-
tion from a large Web text corpus. Previous
studies on extracting relational knowledge
from text show the potential of syntactic
patterns for extraction, but they do not exploit
background knowledge of other relations
in the knowledge base. We describe a
distributed, Web-scale implementation of a
path-constrained random walk model that
learns syntactic-semantic inference rules for
binary relations from a graph representation
of the parsed text and the knowledge base.
Experiments show significant accuracy im-
provements in binary relation prediction over
methods that consider only text, or only the
existing knowledge base.

1 Introduction

Manually-created knowledge bases (KBs) often lack
basic information about some entities and their
relationships, either because the information was
missing in the initial sources used to create the
KB, or because human curators were not confident
about the status of some putative fact, and so they
excluded it from the KB. For instance, as we will
see in more detail later, many person entries in
Freebase (Bollacker et al., 2008) lack nationality
information. To fill those KB gaps, we might use
general rules, ideally automatically learned, such as
“if person was born in town and town is in country

∗This research was carried out during an internship at
Google Research

then the person is a national of the country.” Of
course, rules like this may be defeasible, in this case
for example because of naturalization or political
changes. Nevertheless, many such imperfect rules
can be learned and combined to yield useful KB
completions, as demonstrated in particular with the
Path-Ranking Algorithm (PRA) (Lao and Cohen,
2010; Lao et al., 2011), which learns such rules on
heterogenous graphs for link prediction tasks.

Alternatively, we may attempt to fill KB gaps by
applying relation extraction rules to free text. For
instance, Snow et al. (2005) and Suchanek et al.
(2006) showed the value of syntactic patterns in
extracting specific relations. In those approaches,
KB tuples of the relation to be extracted serve as
positive training examples to the extraction rule
induction algorithm. However, the KB contains
much more knowledge about other relations that
could potentially be helpful in improving relation
extraction accuracy and coverage, but that is not
used in such purely text-based approaches.

In this work, we use PRA to learn weighted
rules (represented as graph path patterns) that
combine both semantic (KB) and syntactic infor-
mation encoded respectively as edges in a graph-
structured KB, and as syntactic dependency edges
in dependency-parsed Web text. Our approach can
easily incorporate existing knowledge in extraction
tasks, and its distributed implementation scales to
the whole of the Freebase KB and 60 million parsed
documents. To the best of our knowledge, this is the
first successful attempt to apply relational learning
methods to heterogeneous data with this scale.
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1.1 Terminology and Notation

In this study, we use a simplified KB consisting of a
set C of concepts and a set R of labels. Each label r
denotes some binary relation partially represented in
the KB. The concrete KB is a directed, edge-labeled
graph G = (C, T ) where T ⊆ C × R × C is the
set of labeled edges (also known as triples) (c, r, c′).
Each triple represents an instance r(c, c′) of the
relation r ∈ R. The KB may be incomplete, that
is, r(c, c′) holds in the real world but (c, r, c′) 6∈ T .
Our method will attempt to learn rules to infer such
missing relation instances by combining the KB
with parsed text.

We denote by r−1 the inverse relation of r:
r(c, c′) ⇔ r−1(c′, c). For instance Parent−1 is
equivalent to Children. It is convenient to take G
as containing triple (c′, r−1, c) whenever it contains
triple (c, r, c′).

A path type in G is a sequence π = 〈r1, . . . , rm〉.
An instance of the path type is a sequence of nodes
c0, . . . , cm such that ri(ci−1, ci). For instance, “the
persons who were born in the same town as the
query person”, and “the nationalities of persons who
were born in the same town as the query person” can
be reached respectively through paths matching the
following types

π1 :
〈
BornIn,BornIn−1

〉
π2 :

〈
BornIn,BornIn−1,Nationality

〉
1.2 Learning Syntactic-Semantic Rules with

Path-Constrained Random Walks

Given a query concept s ∈ C and a relation
r ∈ R, PRA begins by enumerating a large set of
bounded-length path types. These path types are
treated as ranking “experts,” each generating some
random instance of the path type starting from s, and
ranking end nodes t by their weights in the resulting
distribution. Finally, PRA combines the weights
contributed by different “experts” by using logistic
regression to predict the probability that the relation
r(s, t) holds.

In this study, we test the hypothesis that PRA can
be used to find useful “syntactic-semantic patterns”
– that is, patterns that exploit both semantic
and syntactic relationships, thereby using semantic
knowledge as background in interpreting syntactic

 

wrote

She

Mention

dobj

Charlotte

was

nsubj
nsubj

Jane Eyre

Charlotte

Bronte

Mention

Jane Eyre

Mention

Coreference Resolution

Entity 

Resolution

Freebase

News Corpus

Dependency Trees

Write

Patrick BrontëHasFather

?

Profession

Writer

Figure 1: Knowledge base and parsed text as a labeled
graph. For clarity, some word nodes are omitted.

relationships. As shown in Figure 1, we extend the
KB graph G with nodes and edges from text that
has been syntactically analyzed with a dependency
parser1 and where pronouns and other anaphoric
referring expressions have been clustered with their
antecedents. The text nodes are word/phrase
instances, and the edges are syntactic dependencies
labeled by the corresponding dependency type.
Mentions of entities in the text are linked to KB
concepts by mention edges created by an entity
resolution process.

Given for instance the query
Profession(CharlotteBronte, ?), PRA produces
a ranked list of answers that may have the relation
Profession with the query node CharlotteBronte.
The features used to score answers are the
random walk probabilities of reaching a certain
profession node from the query node by paths
with particular path types. PRA can learn path
types that combine background knowledge in
the database with syntactic patterns in the text
corpus. We now exemplify some path types
involving relations described in Table 3. Type〈
M, conj,M−1,Profession

〉
is active (matches

paths) for professions of persons who are mentioned
in conjunction with the query person as in
“collaboration between McDougall and Simon

1Stanford dependencies (de Marneffe and Manning, 2008).
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Philips”. For a somewhat subtler example, type〈
M,TW,CW−1,Profession−1,Profession

〉
is active

for persons who are mentioned by their titles as in
“President Barack Obama”. The type subsequence〈
Profession−1,Profession

〉
ensures that only

profession concepts are activated. The features
generated from these path types combine syntactic
dependency relations (conj) and textual information
relations (TW and CW) with semantic relations in
the KB (Profession).

Experiments on three Freebase relations (profes-
sion, nationality and parents) show that exploiting
existing background knowledge as path features
can significantly improve the quality of extraction
compared with using either Freebase or the text
corpus alone.

1.3 Related Work

Information extraction from varied unstructured and
structured sources involves both complex relational
structure and uncertainty at all levels of the extrac-
tion process. Statistical Relational Learning (SRL)
seeks to combine statistical and relational learning
methods to address such tasks. However, most SRL
approaches (Friedman et al., 1999; Richardson and
Domingos, 2006) suffer the complexity of inference
and learning when applied to large scale problems.
Recently, Lao and Cohen (2010) introduced Path
Ranking algorithm, which is applicable to larger
scale problems such as literature recommendation
(Lao and Cohen, 2010) and inference on a large
knowledge base (Lao et al., 2011).

Much of the previous work on automatic relation
extraction was based on certain lexico-syntactic
patterns. Hearst (1992) first noticed that patterns
such as “NP and other NP” and “NP such as NP”
often imply hyponym relations (NP here refers to
a noun phrase). However, such approaches to
relation extraction are limited by the availability of
domain knowledge. Later systems for extracting
arbitrary relations from text mostly use shallow
surface text patterns (Etzioni et al., 2004; Agichtein
and Gravano, 2000; Ravichandran and Hovy, 2002).
The idea of using sequences of dependency edges
as features for relation extraction was explored by
Snow et al. (2005) and Suchanek et al. (2006). They
define features to be shortest paths on dependency
trees which connect pairs of NP candidates.

This study is most closely related to work of
Mintz et al. (2009), who also study the problem of
extending Freebase with extraction from parsed text.
As in our work, they use a logistic regression model
with path features. However, their approach does not
exploit existing knowledge in the KB. Furthermore,
their path patterns are used as binary-values features.
We show experimentally that fractional-valued
features generated by random walks provide much
higher accuracy than binary-valued ones.

Culotta et al. (2006)’s work is similar to our
approach in the sense of relation extraction by
discovering relational patterns. However while
they focus on identifying relation mentions in text
(microreading),this work attempts to infer new
tuples by gathering path evidence over the whole
corpus (macroreading). In addition, their work
involves a few thousand examples, while we aim for
Web-scale extraction.

Do and Roth (2010) use a KB (YAGO) to
aid the generation of features from free text.
However their method is designed specifically for
extracting hierarchical taxonomic structures, while
our algorithm can be used to discover relations for
general general graph-based KBs.

In this paper we extend the PRA algorithm along
two dimensions: combining syntactic and semantic
cues in text with existing knowledge in the KB;
and a distributed implementation of the learning and
inference algorithms that works at Web scale.

2 Path Ranking Algorithm

We briefly review the Path Ranking algorithm
(PRA), described in more detail by Lao and Cohen
(2010). Each path type π = 〈r1, r2, ..., r`〉 specifies
a real-valued feature. For a given query-answer node
pair (s, t), the value of the feature π is P (s→ t;π),
the probability of reaching t from s by a random
walk that instantiates the type. More specifically,
suppose that the random walk has just reached vi by
traversing edges labeled r1, . . . , ri with s=v0. Then
vi+1 is drawn at random from all nodes reachable
from vi by edges labeled ri+1. A path type π is
active for pair (s, t) if P (s→ t;π) > 0.

Let B = {⊥, π1, ..., πn} be the set of all path
types of length no greater than ` that occur in
the graph together with the dummy type ⊥, which
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represents the bias feature. For convenience, we set
P (s → t;⊥) = 1 for any nodes s, t. The score for
whether query node s is related to another node t by
relation r is given by

score(s, t) =
∑
π∈B

P (s→ t;π)θπ ,

where θπ is the weight of feature π. The model
parameters to be learned are the vector θ =
〈θπ〉π∈B . The procedures used to discover B and
estimate θ are described in the following. Finally,
note that we train a separate PRA model for each
relation r.

Path Discovery: Given a graph and a target
relation r, the total number of path types is an
exponential function of the maximum path length
` and considering all possible paths would be
computationally very expensive. As a result, B is
constructed using only path types that satisfy the
following two constraints:

1. the path type is active for more than K training
query nodes, and

2. the probability of reaching any correct target
node t is larger than a threshold α on average
for the training query nodes s.

We will discuss how K, α and the training queries
are chosen in Section 5. In addition to making the
training more efficient, these constraints are also
helpful in removing low quality path types.

Training Examples: For each relation r of inter-
est, we start with a set of node pairs Sr = {(si, ti)}.
From Sr, we create the training setDr = {(xi, yi)},
where xi = 〈P (si → ti;π)〉π∈B is the vector
of path feature values for the pair (si, ti), and yi
indicates whether r(si, ti) holds.

Following previous work (Lao and Cohen, 2010;
Mintz et al., 2009), node pairs that are in r in
the KB are legitimate positive training examples2.
One can generate negative training examples by
considering all possible pairs of concepts whose
type is compatible with r (as given by the schema)
and are not present in the KB. However this

2In our experiments we subsample the positive examples.
See section 3.2 for more details.

procedure leads to a very large number of negative
examples (e.g., for the parents relation, any pair of
person concepts which are related by this relation
would be valid negative examples) which not only
makes training very expensive but also introduces
an incorrect bias in the training set. Following
Lao and Cohen (2010) we use a simple biased
sampling procedure to generate negative examples:
first, the path types discovered in the previous (path
discovery) step are used to construct an initial PRA
model (all feature weights are set to 1.0); then, for
each query node si, this model is used to retrieve
candidate answer nodes, which are then sorted in
descending order by their scores; finally, nodes at
the k(k + 1)/2-th positions are selected as negative
samples, where k = 0, 1, 2, ....

Logistic Regression Training: Given a training
set D, we estimate parameters θ by maximizing the
following objective

F(θ) =
1

|D|
∑

(x,y)∈D

f(x, y; θ)− λ1‖θ‖1 − λ2‖θ‖22

where λ1 and λ2 control the strength of the L1-
regularization which helps with structure selection
and L2

2-regularization which prevents overfitting.
The log-likelihood f(x, y; θ) of example (x, y) is
given by

f(x, y,θ) = y ln p(x,θ) + (1− y) ln(1− p(x,θ))

p(x,θ) =
exp(θTx)

1 + exp(θTx)
.

Inference: After a model is trained for a relation
r in the knowledge base, it can be used to produce
new instances of r. We first generate unlabeled
queries s which belong to the domain of r. Queries
which appear in the training set are excluded. For
each unlabeled query node s, we apply the trained
PRA model to generate a list of candidate t nodes
together with their scores. We then sort all the
predictions (s, t) by their scores in descending order,
and evaluate the top ones.

3 Extending PRA

As described in the previous section, the PRA model
is trained on positive and negative queries generated
from the KB. As Freebase contains millions of
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concepts and edges, training on all the generated
queries is computationally challenging. Further,
we extend the Freebase graph with parse paths of
mentions of concepts in Freebase in millions of Web
pages. Yet another issue is that the training queries
generated using Freebase are inherently biased
towards the distribution of concepts in Freebase
and may not reflect the distribution of mentions of
these concepts in text data. As one of the goals of
our approach is to learn relation instances that are
missing in Freebase, training on such a set biased
towards the distribution of concepts in Freebase may
not lead to good performance. In this section we
explain how we modified the PRA algorithm to
address those issues.

3.1 Scaling Up

Most relations in Freebase have a large set of
existing triples. For example, for the profession
relation, there are around 2 million persons in
Freebase, and about 0.3 million of them have known
professions. This results in more than 0.3 million
training queries (persons), each with one or more
positive answers (professions), and many negative
answers, which make training computationally
challenging. Generating all the paths for millions
of queries over a graph with millions of concepts
and edges further complicates the computational
issues. Incorporating the parse path features from
the text only exacerbates the matter. Finally once we
have trained a PRA model for a given relation, say
profession, we would like to infer the professions for
all the 1.7 million persons whose professions are not
known to Freebase (and possibly predict changes to
the profession information of the 0.3 million people
whose professions were given).

We use distributed computing to deal with the
large number of training and prediction queries
over a large graph. A key observation is that the
different stages of the PRA algorithm are based
on independent computations involving individual
queries. Therefore, we can use the MapReduce
framework to distribute the computation (Dean and
Ghemawat, 2008). For path discovery, we modify
Lao et al.’s path finding (2011) approach to decouple
the queries: instead of using one depth-first search
that involves all the queries, we first find all paths
up to certain length for each query node in the

map stage, and then collect statistics for each path
from all the query nodes in the reduce stage. We
used a 500-machine, 8GB/machine cluster for these
computations.

Another challenge associated with applying PRA
to a graph constructed using a large amounts of
text is that we cannot load the entire graph on a
single machine. To circumvent this problem, we first
index all parsed sentences by the concepts that they
mention. Therefore, to perform a random walk for a
query concept s, we only load the sentences which
mention s.

3.2 Sampling Training Data
Using the r-edges in the KB as positive examples
distorts the training set. For example, for the
profession relation, there are 0.3 million persons
for whom Freebase has profession information, and
amongst these 0.24 million are either politicians
or actors. This may not reflect the distribution
of professions of persons mentioned in Web data.
Using all of these as training queries will most
certainly bias the trained model towards these
professions as PRA is trained discriminatively. In
other words, training directly with this data would
lead to a model that is more likely to predict
professions that are popular in Freebase. To avoid
this distortion, we use stratified sampling. For each
relation r and concept t ∈ C, we count the number
of r edges pointing to t

Nr,t = |{(s, r, t) ∈ T}| .

Given a training query (s, r, t) we sample it
according to

Pr,t = min

(
1,

√
m+Nr,t

Nr,t

)
We fix m = 100 in our experiments. If we take the
profession relation as an example, the above implies
that for popular professions, we only sample about√
Nr,t out of the Nr,t possible queries that end in t,

whereas for the less popular professions we would
accept all the training queries.

3.3 Text Graph Construction
As we are processing Web text data (see following
section for more detail), the number of mentions
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of a concept follows a somewhat heavy-tailed
distribution: there are a small number of very
popular concepts (head) and a large number of not
so popular concepts (tail). For instance the concept
BarackObama is mentioned about 8.9 million times
in our text corpus. To prevent the text graph from
being dominated by the head concepts, for each
sentence that mentions concept c ∈ C, we accept
it as part of the text graph with probability:

Pc = min

(
1,

√
k + Sc
Sc

)
where Sc is the number of sentences in which c is
mentioned in the whole corpus. In our experiments
we use k = 105. This means that if Sc � k, then we
only sample about

√
Sc of the sentences that contain

a mention of the concept, while if Sc � k, then all
mentions of that concept will likely be included.

4 Datasets

We use Freebase as our knowledge base. Freebase
data is harvested from many sources, including
Wikipedia, AMG, and IMDB.3 As of this writing,
it contains more than 21 million concepts and 70
million labeled edges. For a large majority of con-
cepts that appear both in Freebase and Wikipedia,
Freebase maintains a link to the Wikipedia page of
that concept.

We also collect a large Web corpus and identify
60 million pages that mention concepts relevant
to this study. The free text on those pages
are POS-tagged and dependency parsed with an
accuracy comparable to that of the current Stanford
dependency parser (Klein and Manning, 2003). The
parser produces a dependency tree for each sentence
with each edge labeled with a standard dependency
tag (see Figure 1).

In each of the parsed documents, we use POS tags
and dependency edges to identify potential referring
noun phrases (NPs). We then use a within-document
coreference resolver comparable to that of Haghighi
and Klein (2009) to group referring NPs into
co-referring clusters. For each cluster that contains a
proper-name mention, we find the Freebase concept
or concepts, if any, with a name or alias that matches

3www.wikipedia.org, www.allmusic.com, www.
imdb.com.

Table 1: Size of training and test sets for each relation.
Task Training Set Test Set

Profession 22,829 15,219
Nationality 14,431 9,620

Parents 21,232 14,155

the mention. If a cluster has multiple possible
matching Freebase concepts, we choose a single
sense based on the following simple model. For
each Freebase concept c ∈ C, we computeN(c,m),
the number of times the concept c is referred by
mention m by using both the alias information
in Freebase and the anchors of the corresponding
Wikipedia page for that concept. Based on N(c,m)
we can calculate the empirical probability p(c|m) =
N(c,m)/

∑
c′ N(c′,m). If u is a cluster with

mention set M(u) in the document, and C(m) the
set of concepts in KB with name or alias m, we
assign u to concept c∗ = argmax

c∈C(m),m∈M(u)
p(c|m),

provided that there exists at least one c ∈ C(m) and
m ∈ M(u) such that p(c|m) > 0. Note that M(c)
only contains the proper-name mentions in cluster c.

5 Results

We use three relations profession, nationality and
parents for our experiments. For each relation, we
select its current set of triples in Freebase, and apply
the stratified sampling (Section 3.2) to each of the
three triple sets. The resulting triple sets are then
randomly split into training (60% of the triples) and
test (the remaining triples). However, the parents
relation yields 350k triples after stratified sampling,
so to reduce experimental effort we further randomly
sub-sample 10% of that as input to the train-test
split. Table 1 shows the sizes of the training and
test sets for each relation.

To encourage PRA to find paths involving the
text corpus, we do not count relation M (which
connects concepts to their mentions) or M−1 when
calculating path lengths. We use L1/L

2
2-regularized

logistic regression to learn feature weights. The
PRA hyperparameters (α and K as defined in
Section 2) and regularizer hyperparameters are
tuned by threefold cross validation (CV) on the
training set. We average the models across all
the folds and choose the model that gives the best
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Table 2: Mean Reciprocal Rank (MRR) for different approaches under closed-world assumption. Here KB, Text and
KB+Text columns represent results obtained by training a PRA model with only the KB, only text, and both KB and
text. KB+Text[b] is the binarized PRA approach trained on both KB and text. The best performing system (results
shown in bold font) is significant at 0.0001 level over its nearest competitor according to a difference of proportions
significance test.

Task KB Text KB+Text KB+Text[b]
Profession 0.532 0.516 0.583 0.453
Nationality 0.734 0.729 0.812 0.693
Parents 0.329 0.332 0.392 0.319

performance on the training set for each relation.
We report results of two evaluations. First, we

evaluate the performance of the PRA algorithm
when trained on a subset of existing Freebase facts
and tested on the rest. Second, we had human
annotators verify facts proposed by PRA that are not
in Freebase.

5.1 Evaluation with Existing Knowledge
Previous work in relation extraction from parsed
text (Mintz et al., 2009) has mostly used binary
features to indicate whether a pattern is present in
the sentences where two concepts are mentioned.
To investigate the benefit of having fractional valued
features generated by random walks (as in PRA), we
also evaluate a binarized PRA approach, for which
we use the same syntactic-semantic pattern features
as PRA does, but binarize the feature values from
PRA: if the original fractional feature value was
zero, the feature value is set to zero (equivalent to
not having the feature in that example), otherwise it
is set to 1.

Table 2 shows a comparison of the results
obtained using the PRA algorithm trained using
only Freebase (KB), using only the text corpus
graph (Text), trained with both Freebase and the
text corpus (KB+Text) and the binarized PRA
algorithm using both Freebase and the text corpus
(KB+Text[b]). We report Mean Reciprocal Rank
(MRR) where, given a set of queries Q,

MRR =
1

|Q|
∑
q∈Q

1

rank of q’s first correct answer
.

Comparing the results of first three columns we
see that combining Freebase and text achieves
significantly better results than using either Freebase
or text alone. Further comparing the results of last

two columns we also observe a significant drop in
MRR for the binarized version of PRA. This clearly
shows the importance of using the random walk
probabilities. It can also be seen that the MRR for
the parents relation is lower than those for other
relations. This is mainly because there are larger
number of potential answers for each query node of
Parent relation than for each query node of the other
two relations – all persons in Freebase versus all
professions or nationalities. Finally, it is important
to point out that our evaluations are actually lower
bounds of actual performance, because, for instance,
a person might have a profession besides the ones in
Freebase and in such cases, this evaluation does not
give any credit for predicting those professions —
they are treated as errors. We try to address this issue
with the manual evaluations in the next section.

Table 2 only reports results for the maximum path
length ` = 4 case. We found that shorter maximum
path lengths give worse results: for instance, with
` = 3 for the profession relation, MRR drops to
0.542, from 0.583 for ` = 4 when using both
Freebase and text. This difference is significant
at the 0.0001 level according to a difference of
proportions test. Further we find that using longer
path length takes much longer time to train and test,
but does not lead to significant improvements over
the ` = 4 case. For example, for profession, ` = 5
gives a MRR of 0.589.

Table 3 shows the top weighted features that
involve text edges for PRA models trained on both
Freebase and the text corpus. To make them
easier to understand, we group them based on their
functionality. For the profession and nationality
tasks, the conjunction dependency relation (in group
1,4) plays an important role: these features first find
persons mentioned in conjunction with the query
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Table 3: Top weighted path types involving text edges for each task grouped according to functionality. M relations
connect each concept in knowledge base to its mentions in the corpus. TW relations connect each token in a sentence to
the words in the text representation of this token. CW relations connect each concept in knowledge base to the words
in the text representation of this concept. We use lower case names to denote dependency edges, word capitalized
names to denote KB edges, and “−1 ” to denote the inverse of a relation.

Profession Top Weighted Features Comments
1

〈
M, conj,M−1,Profession

〉
Professions of persons mentioned in conjunction
with the query person: “McDougall and Simon
Phillips collaborated ...”

〈
M, conj−1,M−1,Profession

〉
2

〈
M,TW,CW−1,Profession−1,Profession

〉
Active if a person is mentioned by his profession:
“The president said ...”

3
〈
M,TW,TW−1,M−1,Children,Profession

〉
First find persons with similar names or
mentioned in similar ways, then aggregate the
professions of their children/parents/advisors:
starting from the concept BarackObama, words
such as “Obama”, “leader”, “president”, and
“he” are reachable through path 〈M,TW〉

〈
M,TW,TW−1,M−1,Parents,Profession

〉〈
M,TW,TW−1,M−1,Advisors,Profession

〉

Nationality Top Weighted Features Comments
4

〈
M, conj,TW,CW−1,Nationality

〉
The nationalities of persons mentioned in
conjunction with the query person: “McDougall
and Simon Phillips collaborated ...”

〈
M, conj−1,TW,CW−1,Nationality

〉
5

〈
M, nc−1,TW,CW−1,Nationality

〉
The nationalities of persons mentioned close to
the query person through other dependency
relations.

〈
M, tmod−1,TW,CW−1,Nationality

〉〈
M, nn,TW,CW−1,Nationality

〉
6

〈
M, poss, poss−1,M−1,PlaceOfBirth,ContainedBy

〉
The birth/death places of the query person with
restrictions to different syntactic constructions.

〈
M, title, title−1,M−1,PlaceOfDeath,ContainedBy

〉
Parents Top Weighted Features Comments

7
〈
M,TW,CW−1,Parents

〉
The parents of persons with similar names or
mentioned in similar ways: starting from the
concept CharlotteBronte words such as
“Bronte”, “Charlotte”, “Patrick’’, and “she” are
reachable through path 〈M,TW〉.

8
〈
M, nsubj, nsubj−1,TW,CW−1

〉
Persons with similar names or mentioned in
similar ways to the query person with various
restrictions or expansions.

〈
nsubj, nsubj−1

〉
and〈

nc−1, nc
〉

require the query to be subject and
noun compound respectively.

〈
TW−1,TW

〉
expands further by word similarities.

〈
M, nsubj, nsubj−1,M−1,CW,CW−1

〉〈
M, nc−1, nc,TW,CW−1

〉〈
M,TW,CW−1

〉〈
M,TW,TW−1,TW,CW−1

〉
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person, and then find their professions or nation-
alities. The features in group 2 capture the fact
that sometimes people are mentioned by their pro-
fessions. The subpath

〈
Profession−1,Profession

〉
ensures that only profession related concepts are
activated. Features in group 3 first find persons
with similar names or mentioned in similar ways
to the query person, and then aggregate the
professions of their children, parents, or advisors.
Features in group 6 can be seen as special
versions of feature 〈PlaceOfBirth,ContainedBy〉
and 〈PlaceOfDeath,ContainedBy〉. The subpaths〈
M, poss, poss−1,M−1

〉
and

〈
M, title, title−1,M−1

〉
return the random walks back to the query node only
if the mentions of the query node have poss (stands
for possessive modifier, e.g. “Bill’s clothes”) or title
(stands for person’s title, e.g. “President Obama”)
edges in text; otherwise these features are inactive.
Therefore, these features are active only for specific
subsets of queries. Features in group 8 generally find
persons with similar names or mentioned in similar
ways to the query person. However, they further
expand or restrict this person set in various ways.

Typically, each trained model includes hundreds
of paths with non-zero weights, so the bulk of
classifications are not based on a few high-precision-
recall patterns, but rather on the combination of
a large number of lower-precision high-recall or
high-precision lower-recall rules.

5.2 Manual Evaluation

We performed two sets of manual evaluations. In
each case, an annotator is presented with the triples
predicted by PRA, and asked if they are correct. The
annotator has access to the Freebase and Wikipedia
pages for the concepts (and is able to issue search
queries about the concepts).

In the first evaluation, we compared the perfor-
mance of two PRA models, one trained using the
stratified sampled queries and another trained using
a randomly sampled set of queries for the profession
relation. For each model, we randomly sample 100
predictions from the top 1000 predictions (sorted by
the scores returned by the model). We found that the
PRA model trained with stratified sampled queries
has 0.92 precision, while the other model has only
0.84 precision (significant at the 0.02 level). This
shows that stratified sampling leads to improved

Table 4: Human judgement for predicted new beliefs.
Task p@100 p@1k p@10k

Profession 0.97 0.92 0.84
Nationality 0.98 0.97 0.90

Parents 0.86 0.81 0.79

performance.
We also evaluated the new beliefs proposed by

the models trained for all the three relations using
stratified sampled queries. We estimated precision
for the top 100 predictions and randomly sampled
100 predictions each from the top 1,000 and 10,000
predictions. Here we use the PRA model trained
using both KB and text. The results of this
evaluation are shown in Table 4. It can be seen
that the PRA model is able to produce very high
precision predications even when one considers the
top 10,000 predictions.

Finally, note that our model is inductive. For
instance, for the profession relation, we are able to
predict professions for the around 2 million persons
in Freebase. The top 1000 profession facts extracted
by our system involve 970 distinct people, the top
10,000 facts involve 8,726 distinct people, and the
top 100,000 facts involve 79,885 people.

6 Conclusion

We have shown that path constrained random walk
models can effectively infer new beliefs from a
large scale parsed text corpus with background
knowledge. Evaluation by human annotators shows
that by combining syntactic patterns in parsed
text with semantic patterns in the background
knowledge, our model can propose new beliefs
with high accuracy. Thus, the proposed random
walk model can be an effective way to automate
knowledge acquisition from the web.

There are several interesting directions to con-
tinue this line of work. First, bidirectional search
from both query and target nodes can be an efficient
way to discover long paths. This would especially
useful for parsed text. Second, relation paths that
contain constant nodes (lexicalized features) and
conjunction of random walk features are potentially
very useful for extraction tasks.
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Abstract 

Discovering significant types of relations 
from the web is challenging because of its 
open nature. Unsupervised algorithms are 
developed to extract relations from a cor-
pus without knowing the relations in ad-
vance, but most of them rely on tagging 
arguments of predefined types. Recently, 
a new algorithm was proposed to jointly 
extract relations and their argument se-
mantic classes, taking a set of relation in-
stances extracted by an open IE algorithm 
as input. However, it cannot handle poly-
semy of relation phrases and fails to 
group many similar (“synonymous”) rela-
tion instances because of the sparseness of 
features. In this paper, we present a novel 
unsupervised algorithm that provides a 
more general treatment of the polysemy 
and synonymy problems. The algorithm 
incorporates various knowledge sources 
which we will show to be very effective 
for unsupervised extraction. Moreover, it 
explicitly disambiguates polysemous rela-
tion phrases and groups synonymous 
ones. While maintaining approximately 
the same precision, the algorithm achieves 
significant improvement on recall com-
pared to the previous method. It is also 
very efficient. Experiments on a real-
world dataset show that it can handle 14.7 
million relation instances and extract a 
very large set of relations from the web.  

1 Introduction 

Relation extraction aims at discovering semantic 
relations between entities. It is an important task 

that has many applications in answering factoid 
questions, building knowledge bases and improv-
ing search engine relevance. The web has become 
a massive potential source of such relations. How-
ever, its open nature brings an open-ended set of 
relation types. To extract these relations, a system 
should not assume a fixed set of relation types, nor 
rely on a fixed set of relation argument types.  

The past decade has seen some promising solu-
tions, unsupervised relation extraction (URE) algo-
rithms that extract relations from a corpus without 
knowing the relations in advance. However, most 
algorithms (Hasegawa et al., 2004, Shinyama and 
Sekine, 2006, Chen et. al, 2005) rely on tagging 
predefined types of entities as relation arguments, 
and thus are not well-suited for the open domain.  

Recently, Kok and Domingos (2008) proposed 
Semantic Network Extractor (SNE), which gener-
ates argument semantic classes and sets of synon-
ymous relation phrases at the same time, thus 
avoiding the requirement of tagging relation argu-
ments of predefined types. However, SNE has 2 
limitations: 1) Following previous URE algo-
rithms, it only uses features from the set of input 
relation instances for clustering.  Empirically we 
found that it fails to group many relevant relation 
instances. These features, such as the surface forms 
of arguments and lexical sequences in between, are 
very sparse in practice. In contrast, there exist sev-
eral well-known corpus-level semantic resources 
that can be automatically derived from a source 
corpus and are shown to be useful for generating 
the key elements of a relation: its 2 argument se-
mantic classes and a set of synonymous phrases. 
For example, semantic classes can be derived from 
a source corpus with contextual distributional simi-
larity and web table co-occurrences. The “synony-
my” 1  problem for clustering relation instances 

                                                           
* Work done during an internship at Microsoft Research Asia 
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could potentially be better solved by adding these 
resources. 2) SNE assumes that each entity or rela-
tion phrase belongs to exactly one cluster, thus is 
not able to effectively handle polysemy of relation 
phrases2. An example of a polysemous phrase is be 
the currency of  as in 2 triples <Euro, be the cur-
rency of, Germany> and <authorship, be the cur-
rency of, science>. As the target corpus expands 
from mostly news to the open web, polysemy be-
comes more important as input covers a wider 
range of domains. In practice, around 22% (section 
3) of relation phrases are polysemous. Failure to 
handle these cases significantly limits its effective-
ness. 
    To move towards a more general treatment of 
the polysemy and synonymy problems, we present a 
novel algorithm WEBRE for open-domain large-
scale unsupervised relation extraction without pre-
defined relation or argument types. The contribu-
tions are: 

• WEBRE incorporates a wide range of cor-
pus-level semantic resources for improving rela-
tion extraction. The effectiveness of each 
knowledge source and their combination are stud-
ied and compared. To the best of our knowledge, it 
is the first to combine and compare them for unsu-
pervised relation extraction. 

• WEBRE explicitly disambiguates polyse-
mous relation phrases and groups synonymous 
phrases, thus fundamentally it avoids the limitation 
of previous methods. 

• Experiments on the Clueweb09 dataset 
(lemurproject.org/clueweb09.php) show that 
WEBRE is effective and efficient. We present a 
large-scale evaluation and show that WEBRE can 
extract a very large set of high-quality relations. 
Compared to the closest prior work, WEBRE sig-
nificantly improves recall while maintaining the 
same level of precision. WEBRE is efficient. To 
the best of our knowledge, it handles the largest 
triple set to date (7-fold larger than largest previous 
effort). Taking 14.7 million triples as input, a com-
plete run with one CPU core takes about a day.  
 
 
 

                                                                                           
1 We use the term synonymy broadly as defined in Section 3. 
2 A cluster of relation phrases can, however, act as a whole as 
the phrase cluster for 2 different relations in SNE. However, 
this only accounts for 4.8% of the polysemous cases. 

2 Related Work 

Unsupervised relation extraction (URE) algorithms 
(Hasegawa et al., 2004; Chen et al., 2005; Shinya-
ma and Sekine, 2006) collect pairs of co-occurring 
entities as relation instances, extract features for 
instances and then apply unsupervised clustering 
techniques to find the major relations of a corpus. 
These UREs rely on tagging a predefined set of 
argument types, such as Person, Organization, and 
Location, in advance. Yao et al. 2011 learns fine-
grained argument classes with generative models, 
but they share the similar requirement of tagging 
coarse-grained argument types. Most UREs use a 
quadratic clustering algorithm such as Hierarchical 
Agglomerate Clustering (Hasegawa et al., 2004, 
Shinyama and Sekine, 2006), K-Means (Chen et 
al., 2005), or both (Rosenfeld and Feldman, 2007); 
thus they are not scalable to very large corpora.  

As the target domain shifts to the web, new 
methods are proposed without requiring predefined 
entity types. Resolver (Yates and Etzioni, 2007) 
resolves objects and relation synonyms. Kok and 
Domingos (2008) proposed Semantic Network Ex-
tractor (SNE) to extract concepts and relations. 
Based on second-order Markov logic, SNE used a 
bottom-up agglomerative clustering algorithm to 
jointly cluster relation phrases and argument enti-
ties. However, both Resolver and SNE require 
each entity and relation phrase to belong to exactly 
one cluster. This limits their ability to handle poly-
semous relation phrases. Moreover, SNE only uses 
features in the input set of relation instances for 
clustering, thus it fails to group many relevant in-
stances. Resolver has the same sparseness problem 
but it is not affected as much as SNE because of its 
different goal (synonym resolution).  

As the preprocessing instance-detection step for 
the problem studied in this paper, open IE extracts 
relation instances (in the form of triples) from the 
open domain (Etzioni et al., 2004; Banko et al., 
2007; Fader et al., 2011; Wang et al. 2011). For 
efficiency, they only use shallow features. Reverb 
(Fader et al., 2011) is a state-of-the-art open do-
main extractor that targets verb-centric relations, 
which have been shown in Banko and Etzioni 
(2008) to cover over 70% of open domain rela-
tions. Taking their output as input, algorithms have 
been proposed to resolve objects and relation syn-
onyms (Resolver),  extract semantic networks 
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(SNE), and map extracted relations into an existing 
ontology (Soderland and Mandhani, 2007).  

Recent work shows that it is possible to con-
struct semantic classes and sets of similar phrases 
automatically with data-driven approaches. For 
generating semantic classes, previous work applies 
distributional similarity (Pasca, 2007; Pantel et al., 
2009), uses a few linguistic patterns (Pasca 2004; 
Sarmento et al., 2007), makes use of structure in 
webpages (Wang and Cohen 2007, 2009), or com-
bines all of them (Shi et al., 2010). Pennacchiotti 
and Pantel (2009) combines several sources and 
features. To find similar phrases, there are 2 close-
ly related tasks: paraphrase discovery and recog-
nizing textual entailment. Data-driven paraphrase 
discovery methods (Lin and Pantel, 2001; Pasca 
and Dienes, 2005; Wu and Zhou, 2003; Sekine, 
2005) extends the idea of distributional similarity 
to phrases. The Recognizing Textual Entailment 
algorithms (Berant et al. 2011) can also be used to 
find related phrases since they find pairs of phrases 
in which one entails the other.  

To efficiently cluster high-dimensional datasets, 
canopy clustering (McCallum et al., 2000) uses a 
cheap, approximate distance measure to divide da-
ta into smaller subsets, and then cluster each subset 
using an exact distance measure. It has been ap-
plied to reference matching. The second phase of 
WEBRE applies the similar high-level idea of par-
tition-then-cluster for speeding up relation cluster-
ing. We design a graph-based partitioning 
subroutine that uses various types of evidence, 
such as shared hypernyms.  

3 Problem Analysis 

The basic input is a collection of relation instances 
(triples) of the form <ent1, ctx, ent2>. For each tri-
ple, ctx is a relational phrase expressing the rela-
tion between the first argument ent1 and the second 
argument ent2. An example triple is <Obama, win 
in, NY>. The triples can be generated by an open 
IE extractor such as TextRunner or Reverb. Our 
goal is to automatically build a list of relations 
𝑅 = {< ent1, 𝑐𝑡𝑥, ent2 >} ≈ 3 < 𝐶1,𝑃,𝐶2 >  where P 
is the set of relation phrases, and 𝐶1  and  𝐶2  are 
two argument classes. Examples of triples and rela-
tions R (as Type B) are shown in Figure 1. 
                                                           
3 This approximately equal sign connects 2 possible represen-
tations of a relation: as a set of triple instances or a triple with 
2 entity classes and a relation phrase class. 

The first problem is the polysemy of relation 
phrases, which means that a relation phrase ctx can 
express different relations in different triples. For 
example, the meaning of be the currency of in the 
following two triples is quite different: <Euro, be 
the currency of, Germany> and <authorship, be 
the currency of, science>. It is more appropriate to 
assign these 2 triples to 2 relations “a currency is 
the currency of a country” and “a factor is im-
portant in an area” than to merge them into one. 
Formally, a relation phrase ctx is polysemous if 
there exist 2 different relations < 𝐶1,𝑃,𝐶2 >  and 
< 𝐶1

′,𝑃′,𝐶2
′ > where 𝑐𝑡𝑥 ∈ 𝑃 ∩ 𝑃′. In the previ-

ous example, be the currency of  is polysemous 
because it appears in 2 different relations.  

Polysemy of relation phrases is not uncommon. 
We generate clusters from a large sample of triples 
with the assistance of a soft clustering algorithm, 
and found that around 22% of relation phrases can 
be put into at least 2 disjoint clusters that represent 
different relations. More importantly, manual in-
spection reveals that some common phrases are 
polysemous. For example, be part of can be put 
into a relation “a city is located in a country” when 
connecting Cities to Countries, and another rela-
tion “a company is a subsidiary of a parent com-
pany” when connecting Companies to Companies. 
Failure to handle polysemous relation phrases fun-
damentally limits the effectiveness of an algorithm. 
The WEBRE algorithm described later explicitly 
handles polysemy and synonymy of relation 
phrases in its first and second phase respectively. 

The second problem is the “synonymy” of rela-
tion instances. We use the term synonymy broadly 
and we say 2 relation instances are synonymous if 
they express the same semantic relation between 
the same pair of semantic classes. For example, 
both <Euro, be the currency used in, Germany> 
and <Dinar, be legal tender in, Iraq> express the 
relation <Currencies, be currency of, Countries>. 
Solving this problem requires grouping synony-
mous relation phrases and identifying argument 
semantic classes for the relation.  

Various knowledge sources can be derived from 
the source corpus for this purpose. In this paper we 
pay special attention to incorporating various se-
mantic resources for relation extraction. We will 
show that these semantic sources can significantly 
improve the coverage of extracted relations and the  
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Figure 1. Overview of the WEBRE algorithm (Illustrated with examples sampled from experiment results). The tables and rec-
tangles with a database sign show knowledge sources, shaded rectangles show the 2 phases, and the dotted shapes show the sys-
tem output, a set of Type A relations and a set of Type B relations. The orange arrows denote resources used in phase 1 and the 
green arrows show the resources used in phase 2. 
 

best performance is achieved when various re-
sources are combined together.  

4 Mining Relations from the Web 

We first describe relevant knowledge sources, and 
then introduce the WEBRE algorithm, followed by 
a briefly analysis on its computational complexity.  

4.1 Knowledge Sources 

Entity similarity graph We build two similarity 
graphs for entities: a distributional similarity (DS) 
graph and a pattern-similarity (PS) graph. The DS 
graph is based on the distributional hypothesis 
(Harris, 1985), saying that terms sharing similar 
contexts tend to be similar. We use a text window 
of size 4 as the context of a term, use Pointwise 
Mutual Information (PMI) to weight context fea-
tures, and use Jaccard similarity to measure the 
similarity of term vectors. The PS graph is gener-
ated by adopting both sentence lexical patterns and 
HTML tag patterns (Hearst, 1992; Kozareva et al., 
2008; Zhang et al., 2009; Shi et al., 2010). Two 
terms (T) tend to be semantically similar if they co-
occur in multiple patterns. One example of sen-
tence lexical patterns is (such as | including) 
T{,T}* (and|,|.). HTML tag patterns include tables, 
dropdown boxes, etc. In these two graphs, nodes 
are entities and the edge weights indicate entity 
similarity. In all there are about 29.6 million nodes 
and 1.16 billion edges. 

Hypernymy graph Hypernymy relations are 
very useful for finding semantically similar term 
pairs. For example, we observed that a small city 
in UK and another small city in Germany share 
common hypernyms such as city, location, and 
place. Therefore the similarity between the two 
cities is large according to the hypernymy graph, 
while their similarity in the DS graph and the PS 
graph may be very small. Following existing work 
(Hearst, 1992, Pantel & Ravichandran 2004; Snow 
et al., 2005; Talukdar et al., 2008; Zhang et al., 
2011), we adopt a list of lexical patterns to extract 
hypernyms. The patterns include NP {,} (such as) 
{NP,}* {and|or} NP, NP (is|are|was|were|being) 
(a|an|the) NP, etc. The hypernymy graph is a bi-
partite graph with two types of nodes: entity nodes 
and label (hypernym) nodes. There is an edge (T, 
L) with weight w if L is a hypernym of entity T 
with probability w. There are about 8.2 million 
nodes and 42.4 million edges in the hypernymy 
graph. In this paper, we use the terms hypernym 
and label interchangeably. 
Relation phrase similarity: To generate the pair-
wise similarity graph for relation phrases with re-
gard to the probability of expressing the same 
relation, we apply a variant of the DIRT algorithm 
(Lin and Pantel, 2001). Like DIRT, the paraphrase 
discovery relies on the distributional hypothesis, 
but there are a few differences: 1) we use stemmed 
lexical sequences (relation phrases) instead of de-
pendency paths as phrase candidates because of the 
very large scale of the corpus. 2) We used ordered 
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pairs of arguments as features of phrases while 
DIRT uses them as independent features. We em-
pirically tested both feature schemes and found 
that using ordered pairs results in likely para-
phrases but using independent features the result 
contains general inference rules4. 

4.2 WEBRE for Relation Extraction 

WEBRE consists of two phases. In the first 
phase, a set of semantic classes are discovered and 
used as argument classes for each relation phrase. 
This results in a large collection of relations whose 
arguments are pairs of semantic classes and which 
have exactly one relation phrase. We call these 
relations the Type A relations. An example Type A 
relation is <{New York, London…}, be locate in, 
{USA, England, …}>. During this phase, polyse-
mous relation phrases are disambiguated and 
placed into multiple Type A relations. The second 
phase is an efficient algorithm which groups simi-
lar Type A relations together. This step enriches 
the argument semantic classes and groups synon-
ymous relation phrases to form relations with mul-
tiple expressions, which we called Type B 
relations. Both Type A and Type B relations are 
system outputs since both are valuable resources 
for downstream applications such as QA and Web 
Search. An overview of the algorithm is shown in 
Figure 1. Here we first briefly describe a clustering 
subroutine that is used in both phases, and then 
describe the algorithm in detail. 

To handle polysemy of objects (e.g., entities or 
relations) during the clustering procedure, a key 
building block is an effective Multi-Membership 
Clustering algorithm (MMClustering). For simplic-
ity and effectiveness, we use a variant of Hierar-
chical Agglomerative Clustering (HAC), in which 
we first cluster objects with HAC, and then reas-
sign each object to additional clusters when its 
similarities with these clusters exceed a certain 
threshold5. In the remainder of this paper, we use 
{C} = MMClustering({object}, SimFunc, α) to rep-
resent running MMClustering over a set of objects, 
                                                           
4 For example, be part of  has ordered argument pairs <A, B> 
and <C, D>, and be not part of has ordered argument pairs 
<A, D> and <B, C>. If arguments are used as independent 
features, these two phrases shared the same set of features {A, 
B, C, D}. However, they are inferential (complement relation-
ship) rather than being similar phrases. 
5 This threshold should be slightly greater than the clustering 
threshold for HAC to avoid generating duplicated clusters. 

with threshold α to generate a list of clusters {C} of 
the objects, given the pairwise object similarity 
function SimFunc. Our implementation uses HAC 
with average linkage since empirically it performs 
well. 

Discovering Type A Relations The first phase 
of the relation extraction algorithm generates Type 
A relations, which have exactly one relation phrase 
and two argument entity semantic classes. For each 
relation phrase, we apply a clustering algorithm on 
each of its two argument sets to generate argument 
semantic classes. The Phase 1 algorithm processes 
relation phrases one by one. For each relation 
phrase ctx, step 4 clusters the set {ent1} using 
MMClustering to find left-hand-side argument se-
mantic classes {C1}. Then for each cluster C in 
{C1}, it gathers the right-hand-side arguments 
which appeared in some triple whose left hand-
side-side argument is in C, and puts them into 
{ent2’}. Following this, it clusters {ent2’} to find 
right-hand-side argument semantic classes. This 
results in pairs of semantic classes which are ar-
guments of ctx. Each relation phrase can appear in 
multiple non-overlapping Type A relations. For 
example, <Cities, be part of, Countries> and 
<Companies, be part of, Companies> are different 
Type A relations which share the same relation 
phrase be part of. In the pseudo code, SimEntFunc 
is encoded in the entity similarity graphs.  

 

Algorithm Phase 1: Discovering Type A relations 
Input:  set of triples T={<ent1, ctx, ent2>} 
 entity similarity function SimEntFunc 
 Similarity threshold α 
Output:  list of Type A relations {<C1, ctx, C2>} 
Steps:  
01. For each relation phrase ctx 
02.     {ent1, ctx, ent2} = set of triples sharing ctx 
03.     {ent1} = set of ent1 in {ent1, ctx, ent2} 
04.     {C1} = MMClustering({ent1}, SimEntFunc, α) 
05.     For each C in { C1} 
06.         {ent2’} = set of 𝑒𝑛𝑡2 𝑠. 𝑡.∃< 𝑒𝑛𝑡1, 𝑐𝑡𝑥, 𝑒𝑛𝑡2 > ∈

 𝑇 ⋀ 𝑒𝑛𝑡1 ∈ 𝐶1 
07.         {C2} = MMClustering({ent2’}, SimEntFunc, α) 
08.         For each C2 in {C2} 
09.             Add <C1, ctx, C2> into {<C1, ctx, C2>} 
10. Return {<C1, ctx, C2>} 

 

    Discovering Type B Relations  The goal of 
phase 2 is to merge similar Type A relations, such 
as <Cities, be locate in, Countries> and <Cities, 
be city of, Countries>, to produce Type B relations, 
which have a set of synonymous relation phrases 
and more complete argument entity classes. The 
challenge for this phase is to cluster a very large 
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set of Type A relations, on which it is infeasible to 
run a clustering algorithm that does pairwise all 
pair comparison. Therefore, we designed an evi-
dence-based partition-then-cluster algorithm. 

The basic idea is to heuristically partition the 
large set of Type A relations into small subsets, 
and run clustering algorithms on each subset. It is 
based on the observation that most pairs of Type A 
relations are not similar because of the sparseness 
in the entity class and the relation semantic space. 
If there is little or no evidence showing that two 
Type A relations are similar, they can be put into 
different partitions. Once partitioned, the clustering 
algorithm only has to be run on each much smaller 
subset, thus computation complexity is reduced.  

The 2 types of evidence we used are shared 
members and shared hypernyms of relation argu-
ments. For example, 2 Type A relations 
r1=<Cities, be city of, Countries> and r2=<Cities, 
be locate in, Countries> share a pair of arguments 
<Tokyo, Japan>, and a pair of hypernyms <”city”, 
“country”>. These pieces of evidence give us hints 
that they are likely to be similar. As shown in the 
pseudo code, shared arguments and hypernyms are 
used as independent evidence to reduce sparseness. 

 

Algorithm Phase 2: Discovering Type B relations 
Input:  Set of Type A relations {r}={<C1, ctx, C2>} 
 Relation similarity function SimRelationFunc 
 Map from entities to their hypernyms: Mentity2label 
 Similarity threshold α 

Edge weight threshold µ 
Variables G(V, E) = weighted graph in which V={r} 
Output:  Set of Type B relations {<C1, P, C2>} 
Steps:  
01. {<ent, {r’}>} = build  inverted index from argument 

ent to set of Type A relations {r’} on {<C1, ctx, C2>}  
02 {<l, {r’}>} = build  inverted index from hypernym l 

of arguments to set of Type A relations {r’} on {<C1, 
ctx, C2>} with map Mentity2label  

03. For each ent in {<ent, {r’}>} 
04.     For each pair of r1 and r2  s.t. 𝑟1 ∈ {𝑟′} ⋀ 𝑟2 ∈ {𝑟′}    
05.        weight_edge(<r1, r2>) += weight (ent) 
06. For each l in {<l, {r’}>} 
07.     For each pair of r1 and r2  s.t. 𝑟1 ∈ {𝑟′} ⋀ 𝑟2 ∈ {𝑟′}    
08.        weight_edge(<r1, r2>) += weight (l) 
09. For each edge <r1, r2> in G 
10.     If weight_edge(<r1, r2>) < µ 
11.         Remove edge <r1, r2> from G 
12. {CC}= DFS(G) 
13. For each connected component CC in {CC} 
14.     {<C1, ctx, C2>} = vertices in CC 
15. {<C1’, P’, C2’>} = MMClustering({<C1, ctx, C2>},  

  SimRelationFunc, α) 
16.     Add {<C1’, P’, C2’>} into {<C1, P, C2>} 
17. Return {<C1, P, C2>} 
 

Steps 1 and 2 build an inverted index from evi-
dence to sets of Type A relations. On the graph G 
whose vertices are Type A relations, steps 3 to 8 
set the value of edge weights based on the strength 
of evidence that shows the end-points are related. 
The weight of evidence E is calculated as follows: 

 

𝑤𝑒𝑖𝑔ℎ𝑡(𝐸) =
# 𝑠ℎ𝑎𝑟𝑒𝑑 𝑡𝑢𝑝𝑙𝑒𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝐸 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 

max(# 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝐸 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛)  
 

The idea behind this weighting scheme is similar 
to that of TF-IDF in that the weight of evidence is 
higher if it appears more frequently and is less am-
biguous (appeared in fewer semantic classes during 
clustering of phase 1). The weighting scheme is 
applied to both shared arguments and labels. 

After collecting evidence, we prune (steps 9 to 
11) the edges with a weight less than a threshold µ 
to remove noise. Then a Depth-First Search (DFS) 
is called on G to find all Connected Components 
CC of the graph. These CCs are the partitions of 
likely-similar Type A relations. We run MMClus-
tering on each CC in {CC} and generate Type B  
relations (step 13 to step 16).  The similarity of 2 
relations (SimRelationFunc) is defined as follows: 

𝑠𝑖𝑚(< 𝐶1,𝑃,𝐶2 >, < 𝐶1′,𝑃′,𝐶2′ >) 
 

= �
0,     𝑖𝑓 𝑠𝑖𝑚(𝑃,𝑃′) <  𝜎

min�𝑠𝑖𝑚(𝐶1,𝐶1′), 𝑠𝑖𝑚(𝐶2,𝐶2′)� ,   𝑒𝑙𝑠𝑒   

4.3 Computational Complexity 

WEBRE is very efficient since both phases de-
compose the large-clustering task into much small-
er clustering tasks over partitions. Given n objects 
for clustering, a hierarchical agglomerative cluster-
ing algorithm requires 𝑂(𝑛2)  pairwise compari-
sons. Assuming the clustering task is split into 
subtasks of size 𝑛1, 𝑛2, …, 𝑛𝑘, thus the computa-
tional complexity is reduced to 𝑂(∑ 𝑛𝑖2𝑘

1 ). Ideally 
each subtask has an equal size of 𝑛/𝑘, so the com-
putational complexity is reduced to O(𝑛2/𝑘) , a 
factor of 𝑘 speed up. In practice, the sizes of parti-
tions are not equal. Taking the partition sizes ob-
served in the experiment with 0.2 million Type A 
relations as input, the phase 2 algorithm achieves 
around a 100-fold reduction in pairwise compari-
sons compared to the agglomerative clustering al-
gorithm. The combination of phase 1 and phase 2 
achieves more than a 1000-fold reduction in pair-
wise comparison, compared to running an agglom-
erative clustering algorithm directly on 14.7 
million triples. This reduction of computational 
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complexity makes the unsupervised extraction of 
relations on a large dataset a reality. In the experi-
ments with 14.7 million triples as input, phase 1 
finished in 22 hours, and the phase 2 algorithm 
finished in 4 hours with one CPU core. 

Furthermore, both phases can be run in parallel 
in a distributed computing environment because 
data is partitioned. Therefore it is scalable and effi-
cient for clustering a very large number of relation 
instances from a large-scale corpus like the web.  

5 Experiment 

Data preparation We tested WEBRE on re-
sources extracted from the English subset of the 
Clueweb09 Dataset, which contains 503 million 
webpages. For building knowledge resources, all 
webpages are cleaned and then POS tagged and 
chunked with in-house tools. We implemented the 
algorithms described in section 4.1 to generate the 
knowledge sources, including a hypernym graph, 
two entity similarity graphs and a relation phrase 
similarity graph. 

We used Reverb Clueweb09 Extractions 1.1 
(downloaded from reverb.cs.washington.edu) as 
the triple store (relation instances). It is the com-
plete extraction of Reverb over Clueweb09 after 
filtering low confidence and low frequency triples. 
It contains 14.7 million distinct triples with 3.3 
million entities and 1.3 million relation phrases. 
We choose it because 1) it is extracted by a state-
of-the-art open IE extractor from the open-domain, 
and 2) to the best of our knowledge, it contains the 
largest number of distinct triples extracted from the 
open-domain and which is publicly available. 
 

Evaluation setup The evaluations are organized as 
follows: we evaluate Type A relation extraction 
and Type B relation extraction separately, and then 
we compare WEBRE to its closest prior work 
SNE.  Since both phases are essentially clustering 
algorithms, we compare the output clusters with 
human labeled gold standards and report perfor-
mance measures, following most previous work 
such as Kok and Domingos (2008) and Hasegawa 
et al. (2004). Three gold standards are created for 
evaluating Type A relations, Type B relations and 
the comparison to SNE, respectively. In the exper-
iments, we set α=0.6, µ=0.1 and 𝜎=0.02 based on 
trial runs on a small development set of 10k rela-
tion instances. We filtered out the Type A relations 
and Type B relations which only contain 1 or 2 

triples since most of these relations are not differ-
ent from a single relation instance and are not very 
interesting. Overall, 0.2 million Type A relations 
and 84,000 Type B relations are extracted. 
 

Evaluating Type A relations To understand the 
effectiveness of knowledge sources, we run Phase 
1 multiple times taking entity similarity graphs 
(matrices) constructed with resources listed below: 
• TS: Distributional similarity based on the triple 

store. For each triple <ent1, ctx, ent2>, features 
of ent1 are {ctx} and {ctx ent2}; features of ent2 
are {ctx} and {ent1 ctx}. Features are weighted 
with PMI. Cosine is used as similarity measure.  

• LABEL: The similarity between two entities is 
computed according to the percentage of top 
hypernyms they share. 

• SIM: The similarity between two entities is the 
linear combination of their similarity scores in 
the distributional similarity graph and in the 
pattern similarity graph. 

• SIM+LABEL SIM and LABEL are combined. 
Observing that SIM generates high quality but 
overly fine-grained semantic classes, we modify 
the entity clustering procedure to cluster argu-
ment entities based on SIM first, and then fur-
ther clustering the results based on LABEL. 
The outputs of these runs are pooled and mixed 

for labeling. We randomly sampled 60 relation 
phrases. For each phrase, we select the 5 most fre-
quent Type A relations from each run (4×5=206 
Type A relations in all). For each relation phrase, 
we ask a human labeler to label the mixed pool of 
Type A relations that share the phrase: 1) The la-
belers7 are asked to first determine the major se-
mantic relation of each Type A relation, and then 
label the triples as good, fair or bad based on 
whether they express the major relation. 2) The 
labeler also reads all Type A relations and manual-
ly merges the ones that express the same relation. 
These 2 steps are repeated for each phrase. After 
labeling, we create a gold standard GS1, which 
contains roughly 10,000 triples for 60 relation 
phrases. On average, close to 200 triples are manu-

                                                           
6  Here 4 means the 4 methods (the bullet items above) of 
computing similarity. 
7 4 human labelers perform the task. A portion of the judg-
ments were independently dual annotated; inter-annotator 
agreement is 79%. Moreover, each judgment is cross-checked 
by at least one more annotator, further improving quality. 
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ally labeled and clustered for each phrase. This 
creates a large data set for evaluation.  

We report micro-average of precision, recall and 
F1 on the 60 relation phrases for each method. Pre-
cision (P) and Recall (R) of a given relation phrase 
is defined as follows. Here 𝑅𝐴 and 𝑅𝐴′  represents a 
Type A relation in the algorithm output and GS1, 
respectively. We use t for triples and s(t) to repre-
sent the score of the labeled triple t. s(t) is set to 
1.0, 0.5 or 0 for t labeled as good, fair and bad, 
respectively. 
 

𝑃 =
∑ ∑ 𝑠(𝑡) 𝑡∈𝑅𝐴  𝑅𝐴

∑ |𝑅𝐴|𝑅𝐴
, 𝑅 =

∑ ∑ 𝑠(𝑡) 𝑡∈𝑅𝐴  𝑅𝐴
∑ ∑ 𝑠(𝑡′) 𝑡′∈𝑅𝐴

′𝑅𝐴
′

 
 

The results are in table 1. Overall, LABEL per-
forms 53% better than TS in F-measure, and 
SIM+LABEL performs the best, 8% better than 
LABEL. Applying a simple sign test shows both 
differences are clearly significant (p<0.001). Sur-
prisingly, SIM, which uses the similarity matrix 
extracted from full text, has a F1 of 0.277, which is 
lower than TS. We also tried combining TS and 
LABEL but did not find encouraging performance 
compared to SIM+LABEL. 
 

Algorithm Precision Recall F1 
TS 0.842 (0.886) 0.266 0.388 

LABEL 0.855 (0.870) 0.481 0.596 
SIM 0.755 (0.964) 0.178 0.277 

SIM+LABEL 0.843 (0.872) 0.540 0.643 
 

Table 1. Phase 1 performance (averaged on multiple runs) of 
the 4 methods. The highest performance numbers are in bold. 
(The number in parenthesis is the micro-average when empty-
result relation phrases are not considered for the method). 
 

Among the 4 methods, SIM has the highest preci-
sion (0.964) when relation phrases for which it 
fails to generate any Type A relations are exclud-
ed, but its recall is low. Manual checking shows 
that SIM tends to generate overly fine-grained ar-
gument classes. If fine-grained argument classes or 
extremely high-precision Type A relations are pre-
ferred, SIM is a good choice. LABEL performs 
significantly better than TS, which shows that hy-
pernymy information is very useful for finding ar-
gument semantic classes. However, it has coverage 
problems in that the hypernym finding algorithm 
failed to find any hypernym from the corpus for 
some entities. Following up, we found that 
SIM+LABEL has similar precision and the highest 
recall. This shows that the combination of semantic 
spaces is very helpful. The significant recall im-
provement from TS to SIM+LABEL shows that 
the corpus-based knowledge resources significant-

ly reduce the data sparseness, compared to using 
features extracted from the triple store only. The 
result of the phase 1 algorithm with SIM+LABEL 
is used as input for phase 2. 
 

Evaluating Type B relations The goal is 2-fold: 
1) to evaluate the phase 2 algorithm. This involves 
comparing system output to a gold standard con-
structed by hand, and reporting performance; 2) to 
evaluate the quality of Type B relations. For this, 
we will also report triple-level precision. 
    We construct a gold standard GS28 for evaluat-
ing Type B relations as follows: We randomly 
sampled 178 Type B relations, which contain 1547 
Type A relations and more than 100,000 triples. 
Since the number of triples is very large, it is in-
feasible for labelers to manually cluster triples to 
construct a gold standard. To report precision, we 
asked the labelers to label each Type A relation 
contained in this Type B relation as good, fair or 
bad based on whether it expresses the same rela-
tion. For recall evaluation, we need to know how 
many Type A relations are missing from each Type 
B relation. We provide the full data set of Type A 
relations along with three additional resources: 1) a 
tool which, given a Type A relation, returns a 
ranked list of similar Type A relations based on the 
pairwise relation similarity metric in section 4, 2) 
DIRT paraphrase collection, 3) WordNet (Fell-
baum, 1998) synsets. The labelers are asked to find 
similar phrases by checking phrases which contain 
synonyms of the tokens in the query phrase. Given 
a Type B relation, ideally we expect the labelers to 
find all missing Type A relations using these re-
sources. We report precision (P) and recall (R) as 
follows. Here 𝑅𝐵  and 𝑅𝐵′  represent Type B rela-
tions in the algorithm output and GS2, respective-
ly. 𝑅𝐴  and 𝑅𝐴′  represent Type A relations. 𝑠(𝑅𝐴) 
denotes the score of 𝑅𝐴. It is set to 1.0, 0.5 and 0 
for good, fair or bad respectively.  
 

𝑃 =
∑ ∑ |𝑅𝐴|∙𝑠(𝑅𝐴) 𝑅𝐴∈𝑅𝐵𝑅𝐵

∑ ∑ |𝑅𝐴|  𝑅𝐴∈𝑅𝐵𝑅𝐵
, 𝑅 =

∑ ∑ |𝑅𝐴|∙𝑠(𝑅𝐴)  𝑅𝐴∈𝑅𝐵𝑅𝐵
∑ ∑ �𝑅𝐴

′ �𝑅𝐴
′ ∈𝑅𝐵

′𝑅𝐵
′

 
 

We also ask the labeler to label at most 50 ran-
domly sampled triples from each Type B relation, 
and calculate triple-level precision as the ratio of 
the sum of scores of triples over the number of  
                                                           
8 3 human labelers performed the task. A portion of the judg-
ments were independently dual annotated; inter-annotator 
agreement is 73%. Similar to labeling Type A relations, each 
judgment is cross-checked by at least one more annotator, 
further improving quality. 
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Argument 1 Relation phrase Argument 2 
marijuana, caffeine, nicotine… result in, be risk factor for, be major cause of… insomnia, emphysema, breast cancer,… 

C# 2.0, php5, java, c++, … allow the use of, also use, introduce the concept of… destructors, interfaces, template,… 
clinton, obama, mccain, … win, win in, take, be lead in,… ca, dc, fl, nh, pa, va, ga, il, nc,… 

Table 3. Sample Type B relations extracted. 
 

sampled triples. We use 𝑃𝑖𝑛𝑠 to represent the preci-
sion calculated based on labeled triples. Moreover, 
as we are interested in how many phrases are 
found by our algorithm, we also include 𝑅𝑝ℎ𝑟𝑎𝑠𝑒, 
which is the recall of synonymous phrases. Results 
are shown in Table 2.  
 

Interval P R (𝑅𝑝ℎ𝑟𝑎𝑠𝑒) F1 𝑃𝑖𝑛𝑠 count 
[3, 5) 0.913 0.426 (0.026) 0.581 0.872 52149 

[5, 10) 0.834 0.514 (0.074) 0.636 0.863 21981 
[10, 20) 0.854 0.569 (0.066) 0.683 0.883 6277 
[20, 50) 0.899 0.675 (0.406) 0.771 0.894 2630 

[50, +∞) 0.922 0.825 (0.594) 0.871 0.929 1089 
Overall 0.897 0.684 (0.324) 0.776 0.898 84126 

Table 2. Performance for Type B relation extraction. The first 
column shows the range of the maximum sizes of Type A 
relations in the Type B relation. The last column shows the 
number of Type B relations that are in this range. The number 
in parenthesis in the third column is the recall of phrases.  
 

The result shows that WEBRE can extract Type B 
relations at high precision (both P and 𝑃𝑖𝑛𝑠). The 
overall recall is 0.684. Table 2 also shows a trend 
that if the maximum number of Type A relation in 
the target Type B relation is larger, the recall is 
better. This shows that the recall of Type B rela-
tions depends on the amount of data available for 
that relation. Some examples of Type B relations 
extracted are shown in Table 3. 

  

Comparison with SNE We compare WEBRE’s 
extracted Type B relations to the relations extract-
ed by its closest prior work SNE9. We found SNE 
is not able to handle the 14.7 million triples in a 
foreseeable amount of time, so we randomly sam-
pled 1 million (1M) triples 10 and test both algo-
rithms on this set. We also filtered out result 
clusters which have only 1 or 2 triples from both 
system outputs. For comparison purposes, we con-
structed a gold standard GS3 as follows: randomly 
select 30 clusters from both system outputs, and 
then find similar clusters from the other system 
output, followed by manually refining the clusters 
                                                           
9 Obtained from alchemy.cs.washington.edu/papers/kok08 
10 We found that SNE’s runtime on 1M triples varies from 
several hours to over a week, depending on the parameters. 
The best performance is achieved with runtime of approxi-
mately 3 days. We also tried SNE with 2M triples, on which 
many runs take several days and show no sign of convergence. 
For fairness, the comparison was done on 1M triples. 

by merging similar ones and splitting non-coherent 
clusters. GS3 contains 742 triples and 135 clusters. 
We report triple-level pairwise precision, recall 
and F1 for both algorithms against GS3, and report 
results in Table 4. We fine-tuned SNE (using grid 
search, internal cross-validation, and coarse-to-fine 
parameter tuning), and report its best performance. 

 

Algorithm Precision Recall F1 
WEBRE 0.848 0.734 0.787 

SNE 0.850 0.080 0.146 
 

Table 4. Pairwise precision/recall/F1 of WEBRE and SNE.  
 

Table 4 shows that WEBRE outperforms SNE 
significantly in pairwise recall while having similar 
precision. There are two reasons. First, WEBRE 
makes use of several corpus-level semantic sources 
extracted from the corpus for clustering entities 
and phrases while SNE uses only features in the 
triple store. These semantic resources significantly 
reduced data sparseness. Examination of the output 
shows that SNE is unable to group many triples 
from the same generally-recognized fine-grained 
relations. For example, SNE placed relation in-
stances <Barbara, grow up in, Santa Fe> and 
<John, be raised mostly in, Santa Barbara> into 2 
different clusters because the arguments and 
phrases do not share features nor could be grouped 
by SNE’s mutual clustering. In contrast, WEBRE 
groups them together. Second, SNE assumes a re-
lation phrase to be in exactly one cluster. For ex-
ample, SNE placed be part of in the phrase cluster 
be city of and failed to place it in another cluster be 
subsidiary of. This limits SNE’s ability to placing 
relation instances with polysemous phrases into 
correct relation clusters. 

It should be emphasized that we use pairwise 
precision and recall in table 4 to be consistent with 
the original SNE paper. Pairwise metrics are much 
more sensitive than instance-level metrics, and pe-
nalize recall exponentially in the worst case11 if an 
algorithm incorrectly splits a coherent cluster; 
therefore the absolute pairwise recall difference 
                                                           
11 Pairwise precision and recall are calculated on all pairs that 
are in the same cluster, thus are very sensitive. For example, if 
an algorithm incorrectly split a cluster of size N to a smaller 
main cluster of size N/2 and some constant-size clusters, pair-
wise recall could drop to as much as ¼ of its original value. 
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should not be interpreted as the same as the in-
stance-level recall reported in previous experi-
ments. On 1 million triples, WEBRE generates 
12179 triple clusters with an average size12 of 13 
while SNE generate 53270 clusters with an aver-
age size 5.1. In consequence, pairwise recall drops 
significantly. Nonetheless, at above 80% pairwise 
precision, it demonstrates that WEBRE can group 
more related triples by adding rich semantics har-
vested from the web and employing a more general 
treatment of polysemous relation phrases.  On 1M 
triples, WEBRE finished in 40 minutes, while the 
run time of SNE varies from 3 hours to a few days. 

6 Conclusion 

We present a fully unsupervised algorithm 
WEBRE for large-scale open-domain relation ex-
traction. WEBRE explicitly handles polysemy rela-
tions and achieves a significant improvement on 
recall by incorporating rich corpus-based semantic 
resources. Experiments on a large data set show 
that it can extract a very large set of high-quality 
relations. 
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Abstract

We propose the subtree ranking approach to
parse forest reranking which is a general-
ization of current perceptron-based reranking
methods. For the training of the reranker,
we extract competing local subtrees, hence
the training instances (candidate subtree sets)
are very similar to those used during beam-
search parsing. This leads to better param-
eter optimization. Another chief advantage
of the framework is that arbitrary learning to
rank methods can be applied. We evaluated
our reranking approach on German and En-
glish phrase structure parsing tasks and com-
pared it to various state-of-the-art reranking
approaches such as the perceptron-based for-
est reranker. The subtree ranking approach
with a Maximum Entropy model significantly
outperformed the other approaches.

1 Introduction

Reranking has become a popular technique for
solving various structured prediction tasks, such
as phrase-structure (Collins, 2000) and depen-
dency parsing (Hall, 2007), semantic role labeling
(Toutanova et al., 2008) and machine translation
(Shen et al., 2004). The idea is to (re)rank candi-
dates extracted by a base system exploiting a rich
feature set and operating at a global (usually sen-
tence) level. Reranking achieved significant gains
over the base system in many tasks because it has
access to information/features which are not com-
putable in the base system. Reranking also outper-
forms discriminative approaches which try to han-
dle the entire candidate universe (cf. Turian et al.

(2006)) because the base system effectively and ef-
ficiently filters out many bad candidates and makes
the problem tractable.

The standard approach for reranking is the n-best
list ranking procedure, where the base system ex-
tracts its top n global-level candidates with associ-
ated goodness scores that define an initial ranking.
Then the task is to rerank these candidates by us-
ing a rich feature set. The bottleneck of this ap-
proach is the small number of candidates consid-
ered. Compared to n-best lists, packed parse forests
encode more candidates in a compact way. For-
est reranking methods have been proposed, which
can exploit the richer set of candidates and they
have been successfully applied for phrase-structure
(Huang, 2008), dependency (Hayashi et al., 2011)
parsing and machine translation (Li and Khudanpur,
2009) as well.

Huang (2008) introduced the perceptron-based
forest reranking approach. The core of the algo-
rithm is a beam-search based decoder operating on
the packed forest in a bottom-up manner. It follows
the assumption that the feature values of the whole
structure are the sum of the feature values of the lo-
cal elements and they are designed to the usage of
the perceptron update. Under these assumptions a
1-best Viterbi or beam-search decoder can be effi-
ciently employed at parsing and training time. Dur-
ing training, it decodes the 1-best complete parse
then it makes the perceptron update against the or-
acle parse, i.e. the perceptron is trained at the global
(sentence) level.

We propose here a subtree ranker approach
which can be regarded as a generalization of this for-
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est reranking procedure. In contrast to updating on
a single (sub)tree per sentence using only the 1-best
parse (perceptron-based forest reranking), the sub-
tree ranker exploits subtrees of all sizes from a sen-
tence and trains a (re)ranker utilising several deriva-
tions of the constituent in question. During parsing
we conduct a beam-search extraction by asking the
ranker to select the k best subtrees among the pos-
sible candidates of each forest node. The chief mo-
tivation for this approach is that in this way, train-
ing and prediction are carried out on similar local
candidate lists which we expect to be favorable to
the learning mechanism. We empirically prove that
the trained discriminative rankers benefit from hav-
ing access to a larger amount of subtree candidates.
Moreover, in this framework any kind of learning
to rank methods can be chosen as ranker, including
pair-wise and list-wise classifiers (Li, 2011).

The contributions of this paper are the following:

• We extend the perceptron-based forest
rerankers to the subtree ranker forest reranking
framework which allows to replace the per-
ceptron update by any kind of learning to rank
procedure.

• We report experimental results on German
and English phrase-structure parsing compar-
ing subtree rerankers to various other rerankers
showing a significant improvement over the
perceptron-based forest reranker approach.

2 Related Work

Our method is closely related to the work of Huang
(2008), who introduced forest-based reranking for
phrase structure parsing. The proposed frame-
work can be regarded as an extension of this ap-
proach. It has several advantages compared with
the perceptron-based forest reranker. In this paper
we focus on the most important one – and briefly
discuss two others in Section 5 – which is enabling
the use of any kind of learning to rank approaches.
While the perceptron is fast to train, other machine
learning approaches usually outperform it. Most of
the existing learning to rank approaches are built on
linear models and evaluate the candidates indepen-
dently of each other (such as MaxEnt (Charniak and
Johnson, 2005), SVMRank (Joachims, 2002), Soft-
Rank (Guiver and Snelson, 2008)). Thus the choice

of the learning method does not influence parsing
time. We believe that the real bottleneck of parsing
applications is parsing time and not training time.
On the other hand, they can learn a better model
(at the cost of higher training time) than the Per-
ceptron. In theory, we can imagine learning to rank
approaches which can not be reduced to the indi-
vidual scoring of candidates at prediction time, for
instance a decision tree-based pairwise ranker. Al-
though such methods would also fit into the general
subtree framework, they are not employed in prac-
tice (Li, 2011).

The subtree ranking approach is a generalization
of the perceptron-based approach. If the ranking
algorithm is the Averaged Perceptron, the parsing
algorithm reduces to perceptron-based forest pars-
ing. If the “selection strategy” utilizes the base sys-
tem ranking and training starts with a filtering step
which keeps only candidate sets from the root node
of the forest we get the offline version of the training
procedure of the perceptron-based forest reranker of
Huang (2008).

As our approach is based on local ranking (local
update in the online learning literature), it is highly
related to early update which looks for the first lo-
cal decision point where the oracle parse falls out
from the beam. Early update was introduced by
Collins and Roark (2004) for incremental parsing
and adopted to forest reranking by Wang and Zong
(2011).

Besides phrase structure parsing, the forest
reranking approach was successfully applied for de-
pendency parsing as well. Hayashi et al. (2011) in-
troduced a procedure where the interpolation of a
generative and a forest-based discriminative parser
is exploited.

From the algorithmic point of view, our approach
is probably most closely related to Searn (Daumé
et al., 2009) and Magerman (1995) as we also em-
ploy a particular machine learned model for a se-
quence of local decisions. The topological order of
the parse forest nodes can form the “sequence of
choices” of Searn. The biggest differences between
our approach and Searn are that we propose an ap-
proach employing beam search and the “policy” is a
ranker in our framework instead of a multiclass clas-
sifier as there are no “actions” here, instead we have
to choose from candidate sets in the forest reranking
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framework. In a wider sense, our approach can be
regarded – like Searn – as an Inverse Reinforcement
Learning approach where “one is given an environ-
ment and a set of trajectories and the problem is to
find a reward function such that an agent acting opti-
mally with respect to the reward function would fol-
low trajectories that match those in the training set”
(Neu and Szepesvári, 2009). Neu and Szepesvári
(2009) introduced the top-down parsing Markov De-
cision Processes and experiment with several inverse
reinforcement learning methods. The forest rerank-
ing approaches are bottom-up parsers which would
require a new (non-straightforward) definition of a
corresponding Markov Decision Process.

3 Subtree Ranking-based Forest
Reranking

A packed parse forest is a compact representation
of possible parses for a given sentence. A forest has
the structure of a hypergraph, whose nodes V are the
elementary units of the underlying structured predic-
tion problem and the hyperedges E are the possible
deductive steps from the nodes. In this paper we
experimented with phrase-structure parse reranking.
In this framework nodes correspond to constituents
spanning a certain scope of the input sentence and a
hyperedge e links a parent node head(e) to its chil-
dren tails(e) (i.e. a hyperedge is a CFG rule in con-
text).

The forest is extracted from the chart of a base
PCFG parser, usually employing a heavy pruning
strategy. Then the goal of a forest reranker is to find
the best parse of the input sentence exploiting a fea-
ture representation of (sub)trees.

We sketch the parsing procedure of the subtree
ranker in Algorithm 1. It is a bottom-up beam-
search parser operating on the hypergraph. At each
node v we store the k best subtrees S(v) headed by
the node. The S(v) lists contain the k top-ranked
subtrees by the ranker R among the candidates in the
beam. The set of candidate subtrees at a node is the
union of the candidates at the different hyperedges.
The set of candidate subtrees at a certain hyperedge,
in turn, is formed by the Cartesian product ⊗S(vi)
of the k-best subtrees stored at the child nodes vi.
The final output of forest ranking is the 1-best sub-
tree headed by the goal node S1(vgoal).

Algorithm 1 Subtree Ranking
Require: 〈V,E〉 forest, R ranker

for all v ∈ V in bottom-up topological order do
C ← ∅
for all e ∈ E, head(e) = v do

C ← C ∪ (⊗S(vi)) , vi ∈ tails(e)
end for
S(v)← Rk(C)

end for
return S1(vgoal)

For training the ranker we propose to extract lo-
cal candidate lists from the forests which share the
characteristics of the candidates at parsing time. Al-
gorithm 2 depicts the training procedure of the sub-
tree ranker.

As forests sometimes do not contain the gold stan-
dard tree, we extract an oracle tree instead, which
is the closest derivable tree in the forest to the gold
standard tree (Collins, 2000). Then we optimize the
parser for ranking the oracle tree at the top. This pro-
cedure is beneficial to training since the objective is
a reachable state. In Algorithm 2, we extract the ora-
cle tree from the parses encoded in the forest 〈V,E〉i
for the ith training sentence, which is the tree with
the highest F-score when compared to the gold stan-
dard tree yi. For each of the training sentences we
calculate the oracle subtrees for each node {Ov} of
the corresponding parse forest. We follow the dy-
namic programming approach of Huang (2008) for
the extraction of the forest oracle. The goal of this
algorithm is to extract the full oracle tree, but as a
side product it calculates the best possible subtree
for all nodes including the nodes outside of the full
oracle tree as well.

After computing the oracle subtrees, we crawl
the forests bottom-up and extract a training instance
〈C, Ov〉 at each node v which consists of the candi-
date set C and the oracle Ov at that node. The cre-
ation of candidate lists is exactly the same as it was
at parsing time. Then we create training instances
from each of the candidate lists and form the set of
subtrees S(v) which is stored for candidate extrac-
tion at the higher levels of the forest (later steps in
the training instance extraction).

A crucial design question is how to form the S(v)
sets during training, which is the task of the selection
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Algorithm 2 Subtree Ranker Training
Require: {〈V,E〉i, yi}N1 , SS selection strategy

T ← ∅
for all i← 1...N do

O ← oracle extractor(〈V,E〉i, yi)
for all v ∈ Vi in bottom-up topological order
do

C ← ∅
for all e ∈ E, head(e) = v do

C ← C ∪ (⊗S(vj)) , vj ∈ tails(e)
end for
T ← T ∪ 〈C, Ov〉
S(v)← SS(C, Ov)

end for
end for
R← train reranker(T )
return R

strategy SS. One possible solution is to keep the k
best oracle subtrees, i.e. the k subtrees closest to the
gold standard parse, which is analogous to using the
gold standard labels in Maximum Entropy Markov
Models for sequence labeling problems (we refer
this selection strategy as ’oracle subtree’ later on).
The problem with this solution is that if the rankers
have been trained on the oracle subtrees potentially
leads to a suboptimal performance as the outputs of
the ranker at prediction time are noisy. Note that
this approach is not a classical beam-based decod-
ing anymore as the “beam” is maintained according
to the oracle parses and there is no model which in-
fluences that. An alternative solution – beam-based
decoding – is to use a ranker model to extract the
S(v) set in training time as well. In the general
reranking approach, we assume that the ranking of
the base parser is reliable. So we store the k best
subtrees according to the base system in S(v) (the
’base system ranking’ selection strategy). Note that
the general framework keeps this question open and
lets the implementations define a selection strategy
SS.

After extracting the training instances T we can
train an arbitrary ranker R offline. Note that the
extraction of candidate lists is exactly the same in
Algorithm 1 and 2 while the creation of Sv can be
different.

4 Experiments

We carried out experiments on English and German
phrase-structure reranking. As evaluation metric, we
used the standard evalb implementation of PAR-
SEVAL on every sentence without length limitation
and we start from raw sentences without gold stan-
dard POS tagging. As the grammatical functions of
constituents are important from a downstream ap-
plication point of view – especially in German – we
also report PARSEVAL scores on the conflation of
constituent labels and grammatical functions. These
scores are shown in brackets in Table 2.

4.1 Datasets

We used the Wall Street Journal subcorpus of the
Ontonotes v4.0 corpus (Weischedel et al., 2011)1 for
English. As usual sections 2-21, 23 and 24 served as
training set (30,060 sentences), test set (1,640 sen-
tences), and development set (1,336 sentences), re-
spectively. Using the Ontonotes version enables us
to assess parser robustness. To this end, we eval-
uated our models also on the weblog subcorpus of
the Ontonotes v4.0 corpus which consists of 15,103
sentences.

For German we used the Tiger treebank (Brants
et al., 2002). We take the first 40,474 sentences of
the Tiger treebank as training data, the next 5,000
sentences as development data, and the last 5,000
sentences as test data.

4.2 Implementation of the Generic Framework

We investigate the Averaged Perceptron and a Maxi-
mum Entropy ranker as the reranker R in the subtree
ranking framework. The Maximum Entropy ranker
model is optimized with a loss function which is
the negative log conditional likelihood of the ora-
cle trees relative to the candidate sets. In the case of
multiple oracles we optimize for the sum of the ora-
cle trees’ posterior probabilities (Charniak and John-
son, 2005).

In our setup the parsing algorithm is identical
to the perceptron-based forest reranker of Huang
(2008) because both the Averaged Perceptron and
the Maximum Entropy rankers score the local sub-
tree candidates independently of each other using

1Note that it contains less sentences and a slightly modified
annotation schema than the Penn Treebank.
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a linear model. There is no need to compute the
global normalization constant of the Maximum En-
tropy model because we only need the ranking and
not the probabilities. Hence the difference is in how
to train the ranker model.

We experimented with both the ’oracle subtree’
and the ’base system ranking’ selection strategies
(see Section 3).

4.3 Five Methods for Forest-based Reranking
We conducted comparative experiments employing
the proposed subtree ranking approach and state-of-
the-art methods for forest reranking. Note that they
are equivalent in parsing time as each of them uses
beam-search with a linear classifier, on the other
hand they are radically different in their training.

• The original perceptron-based forest reranker
of Huang (2008) (’perceptron with global train-
ing’).

• The same method employing the early-update
updating mechanism instead of the global up-
date. Wang and Zong (2011) reported a signif-
icant gain using this update over the standard
global update (’perceptron with early update’).

• Similar to learning a perceptron at the global
level and then applying it at local decisions,
we can train a Maximum Entropy ranker at the
global level utilizing the n-best full parse can-
didates of the base parser, then use this model
for local decision making. So we train the
standard n-best rerankers (Charniak and John-
son, 2005) and then apply them in the beam-
search-based Viterbi parser (’n-best list train-
ing’). Applying the feature weights adjusted in
this approach in the forest-based decoding out-
performs the standard n-best list decoding by
an F-score of 0.3 on the German dataset.

• The subtree ranker method using the Averaged
Perceptron reranker. This is different from the
’perceptron with global training’ as we conduct
updates at every local decision point and we do
offline training (’subtree ranking by AvgPer’).

• The subtree ranker method using Maximum
Entropy training (’subtree ranking by Max-
Ent’).

We (re)implemented these methods and used the
same forests and the same feature sets for the com-
parative experiments.

4.4 Implementation Details

We used the first-stage PCFG parser of Charniak
and Johnson (2005) for English and BitPar (Schmid,
2004) for German. BitPar employs a grammar engi-
neered for German (for details please refer to Farkas
et al. (2011)). These two parsers are state-of-the-art
PCFG parsers for English and German, respectively.
For German the base parser and the reranker oper-
ate on the conflation of constituent labels and gram-
matical functions. For English, we used the forest
extraction and pruning code of Huang (2008). The
pruning removes hyperedges where the difference
between the cost of the best derivation using this hy-
peredge and the cost of the globally best derivation
is above some threshold. For German, we used the
pruned parse forest of Bitpar (Schmid, 2004). Af-
ter computing the posterior probability of each hy-
peredge given the input sentence, Bitpar prunes the
parse forest by deleting hyperedges whose posterior
probability is below some threshold. (We used the
threshold 0.01).

We employed an Averaged Perceptron (for ’per-
ceptron with global training’, ’perceptron with early
update’ and ’subtree ranking by AvgPer’) and a
Maximum Entropy reranker (for ’subtree ranking
by MaxEnt’ and ’n-best list training’). For the per-
ceptron reranker, we used the Joshua implementa-
tion2. The optimal number of iterations was deter-
mined on the development set. For the Maximum
Entropy reranker we used the RankMaxEnt imple-
mentation of the Mallet package (McCallum, 2002)
modified to use the objective function of Charniak
and Johnson (2005) and we optimized the L2 regu-
larizer coefficient on the development set.

The beam-size were set to 15 (the value suggested
by Huang (2008)) during parsing and the training
of the ’perceptron with global training’ and ’percep-
tron with early update’ models. We used k = 3 for
training the ’subtree ranking by AvgPer’ and ’sub-
tree ranking by MaxEnt’ rankers (see Section 5 for
a discussion on this).

In the English experiments, we followed (Huang,

2http://joshua.sourceforge.net/Joshua/

1042



Tiger test WSJ dev WSJ test WB
base system (1-best) 76.84 (65.91) 89.29 88.63 81.86
oracle tree 90.66 (80.38) 97.31 97.30 94.18

Table 1: The lower and upper bounds for rerankers on the four evaluation datasets. The numbers in brackets refers to
evaluation with grammatical function labels on the German dataset.

Tiger test WSJ dev WSJ test WB
perceptron with global training 78.39 (67.79) 90.58 89.60 82.87
perceptron with early update 78.83 (68.05) 90.81† 90.01 83.03†
n-best list training 78.75 (68.04) 90.89 90.11 83.55
subtree ranking by AvgPer 78.54† (67.97†) 90.65† 89.97 83.04†
subtree ranking by MaxEnt 79.36 (68.72) 91.14 90.32 83.83

Table 2: The results achieved by various forest rerankers. The difference between the scores marked by † and the
’perceptron with global training’ were not statistically significant with p < 0.005 according to the the McNemar test.
All other results are statistically different from this baseline.

2008) and selectively re-implemented feature tem-
plates from (Collins, 2000) and Charniak and John-
son (2005). For German we re-implemented the
feature templates of Versley and Rehbein (2009)
which is the state-of-the-art feature set for German.
It consists of features constructed from the lexical-
ized parse tree and its typed dependencies along
with features based on external statistical informa-
tion (such as the clustering of unknown words ac-
cording to their context of occurrence and PP attach-
ment statistics gathered from the automatically POS
tagged DE-WaC corpus, a 1.7G words sample of the
German-language WWW). We filtered out rare fea-
tures which occurred in less than 10 forests (we used
the same non-tuned threshold for the English and
German training sets as well).

We also re-implemented the oracle extraction pro-
cedure of Huang (2008) and extended its convolu-
tion and translation operators for using the base sys-
tem score as tie breaker.

4.5 Results

Table 1 shows the results of the 1-best parse of the
base system and the oracle scores – i.e. the lower
and upper bounds for the rerankers – for the four
evaluation datasets used in our experiments. The
German and the weblog datasets are more difficult
for the parsers.

The following table summarizes the characteris-
tics of the subtree ranker’s training sample of the

German and English datasets by employing the ’or-
acle subtree’ selection strategy:

Tiger train WSJ train
#candidate lists 266,808 1,431,058
avg. size of cand. lists 3.2 5.7
#features before filtering 2,683,552 22,164,931
#features after filtering 94,164 858,610

Table 3: The sizes of the subtree ranker training datasets
at k = 3.

Using this selection strategy the training dataset
is smaller than the training dataset of the n-best list
rankers – where offline trainers are employed as well
– as the total number of candidates is similar (and
even less in the Tiger corpus) while there are fewer
firing features at the subtrees than at full trees.

Table 2 summarizes the results achieved by vari-
ous forest rerankers. Both subtree rankers used the
oracle subtrees as the selection strategy of Algo-
rithm 2. The ’subtree ranking by MaxEnt’ method
significantly outperformed the perceptron-based for-
est reranking algorithms at each of the datasets and
seems to be more robust as its advantage on the out-
domain data ’WB’ is higher compared with the in-
domain ’WSJ’ datasets. The early update improves
the perceptron based forest rerankers which is in line
with the results reported by Wang and Zong (2011).
The ’n-best list training’ method works surprisingly
well. It outperforms both perceptron-based forest
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rerankers on the English datasets (while achieving a
smaller F-score than the perceptron with early up-
date on the Tiger corpus) which demonstrates the
potential of utilizing larger candidate lists for dis-
criminative training of rerankers. The comparison of
the ’subtree ranking by AvgPer’ row and the ’subtree
ranking by MaxEnt’ row shows a clear advantage of
the Maximum Entropy training mechanism over the
Averaged Perceptron.

Besides the ’oracle subtree’ selection strategy we
also experimented with the ’base system ranking’
selection strategy with subtree Maximum Entropy
ranker. Table 4 compares the accuracies of the two
strategies. The difference between the two strate-
gies varies among datasets. In the German dataset,
they are competitive and the prediction of grammati-
cal functions benefits from the ’base system ranking’
strategy, while it performs considerably worse at the
English datasets.

Tiger test WSJ test WB
oracle SS 79.36 (68.72) 90.32 83.83
base sys SS 79.34 (68.84) 89.97 83.34

Table 4: The results of the two selection strategies. Using
the oracle trees proved to be better on each of the datasets.

Extracting candidate lists from each of the local
decision points might seem to be redundant. To gain
some insight into this question, we investigated the
effect of training instance filtering strategies on the
Tiger treebank. We removed the training instances
from the training sample T where the F-score of
the oracle (sub)tree against the gold standard tree is
less than a certain threshold (this data selection pro-
cedure was inspired by Li and Khudanpur (2008)).
The idea behind this data selection is to eliminate
bad training examples which might push the learner
into the wrong direction. Figure 1 depicts the results
on the Tiger treebank as a function of this data se-
lection threshold.

With this data selection strategy we could further
gain 0.22 F-score percentage points achieving 79.58
(68.87) and we can conclude that omitting candidate
sets far from the gold-standard tree helps training.
Figure 1 also shows that too strict filtering hurts the
performance. The result with threshold=90 is worse
than the result without filtering. We should note
that similar data selection methods can be applied
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Figure 1: The effect of data selection on the Tiger test set.

to each of the baseline systems and the comparison
to them would be fair with conducting that. Thus
we consider our results without data selection to be
final.

5 Discussion

We experimentally showed in the previous section
that the subtree forest reranking approach with Max-
imum Entropy models significantly outperforms the
perceptron-based forest reranking approach. This
improvement must be the result of differences in the
training algorithms because there is no difference
between the two approaches at parse time, as we dis-
cussed in Section 4.2.

There are two sources of these improvements.
(i) We use local subtrees as training instances in-
stead of using the global parses exclusively. The
most important difference between the training of
the perceptron-based forest reranker and the subtree
forest reranker is that we train on subtrees (extract
candidate sets) outside of the Viterbi parses as well,
i.e. our intuition is that the training of the discrimi-
native model can benefit from seeing good and bad
subtrees far from the best parses as well. (ii) The
subtree ranker framework enables us to employ the
Maximum Entropy ranker on multiple candidates,
which usually outperforms the Averaged Perceptron.

The results of Table 2 can be considered as two
paths from the ’perceptron with global training’
to the ’subtree ranking by MaxEnt’ applying these
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sources of improvements. If we use (i) and stay with
the Averaged Perceptron as learning algorithm we
get ’subtree ranking by AvgPer’. If we additionally
replace the Averaged Perceptron by Maximum En-
tropy – i.e. follow (ii) – we arrive at ’subtree ranking
by MaxEnt’. On the other hand, the ’n-best training’
uses global trees and Maximum Entropy for train-
ing, so the reason of the difference between ’per-
ceptron with global training’ and ’n-best training’ is
(ii). Then we arrive at ’subtree ranking by MaxEnt’
by (i). This line of thoughts and the figures of Ta-
ble 2 indicate that the added value of (i) and (ii) are
similar in magnitude.

5.1 Error Analysis

For understanding the added value of the proposed
subtree ranking method, we manually investigated
sentences from the German development set and
compared the parses of the ’perceptron with global
training’ with the ’subtree ranking by MaxEnt’. We
could not found any linguistic phenomena which
was handled clearly better by the subtree ranker3,
but it made considerably more fixes than errors in
the following cases:

• the attachment of adverbs,

• the unary branching verbal phrases and

• extremely short sentences which does not con-
tain any verb (fragments).

5.2 Novel Opportunities with the Subtree
Ranking Framework

A generalization issue of the subtree ranking ap-
proach is that it allows to use any kind of feature
representation and arbitrary aggregation of local
features. The basic assumption of training on the
global (sentence) level in the perceptron reranking
framework is that the feature vector of a subtree is
the sum of the feature vectors of the children and
the features extracted from the root of the subtree
in question. This decomposability assumption pro-
vides a fine framework in the case of binary features
which fire if a certain linguistic phenomenon occurs.
On the other hand, this is not straightforward in the

3We believe that this might be the case only if we would
introduce new information (e.g. features) for the system.

presence of real valued features. For example, Ver-
sley and Rehbein (2009) introduce real-valued fea-
tures for supporting German PP-attachment recogni-
tion – the mutual information of noun and preposi-
tion co-occurrence estimated from a huge unlabeled
corpus – and this single feature template (about 80
features) could achieve a gain of 1 point in phrase
structure parsing accuracy while the same improve-
ment can be achieved by several feature templates
and millions of binary features. The aggregation of
such feature values can be different from summing,
for instance the semantics of the feature can demand
averaging, minimum, maximum or introducing new
features etc. Another opportunity for extending cur-
rent approaches is to employ utility functions on top
of the sum of the binary feature values. Each of these
extensions fits into the proposed framework.

The subtree ranking framework also enables the
usage of different models at different kinds of
nodes. For example, different models can be trained
for ranking subtress headed by noun phrases and for
verb phrases. This is not feasible in the perceptron-
based forest ranker which sums up features and up-
dates feature weights at the sentence level while the
ranker R in Algorithm 2 can refer to several models
because we handle local decisions separately. This
approach would not hurt parsing speed as one par-
ticular model is asked at each node, but it multiplies
memory requirements. This is an approach which
the subtree ranking framework allows, but which
would not fit to the global level updates of the per-
ceptron forest rerankers.

As a first step in this direction of research we ex-
perimented with training three different Maximum
Entropy models using the same feature representa-
tion, the first only on candidate lists extracted from
noun phrase nodes, the second on verb phrase nodes
and the third on all nodes (i.e. the third model is
equivalent to the ’subtree MaxEnt’ model). Then at
prediction time, we ask that model (out of the three)
which is responsible for ranking the candidates of
the current type of node. This approach performed
worse than the single model approach achieving an
F-scores of 79.24 (68.46) on the Tiger test dataset.
This negative results – compared with 79.36 (68.72)
achieved by a single model – is probably due to data
sparsity problems. The amount of training samples
for noun phrases is 6% of the full training sample
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and it seems that a better model can be learned from
a much bigger but more heterogeneous dataset.

5.3 On the Efficiency of Subtree Ranking

In subtree ranking, we extract a larger number
of training instances (candidate lists) than the
perceptron-based approach which extracts exactly
one instance from a sentence. Moreover, the can-
didate lists are longer than the perceptron-based ap-
proach (where 2 “candidates” are compared against
each other). Training on this larger set (refer Table 3
for concrete figures) consumes more space and time.

In our implementation, we keep the whole train-
ing dataset in the memory. With this implementation
the whole training process (feature extraction, can-
didate extraction and training the Maximum Entropy
ranker) takes 3 hours and uses 10GB of memory at
k = 1 and it takes 20 hours and uses 60GB of mem-
ory at k = 3 ((Huang, 2008) reported 5.3 and 27.3
hours at beam-sizes of 1 and 15 respectively but it
used only 1.2GB of memory). The in-depth investi-
gation of the effect of k is among our future plans.

6 Conclusions

We presented a subtree ranking approach to parse
forest reranking, which is a generalization of current
reranking methods. The main advantages of our ap-
proach are: (i) The candidate lists used during train-
ing are very similar to those used during parsing,
which leads to better parameter optimization. (ii)
Arbitrary ranking methods can be applied in our ap-
proach. (iii) The reranking models need not to be
decomposable.

We evaluated our parse reranking approach on
German and English phrase structure parsing tasks
and compared it to various state-of-the-art rerank-
ing approaches such as the perceptron-based for-
est reranker (Huang, 2008). The subtree reranking
approach with a Maximum Entropy model signifi-
cantly outperformed the other approaches.

We conjecture two reasons for this result: (i) By
training on all subtrees instead of Viterbi parses or
n-best parses only, we use the available training
data more effectively. (ii) The subtree ranker frame-
work allows us to use a standard Maximum Entropy
learner in parse-forest training instead of the Percep-
tron, which is usually superior.
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Abstract

Constituency parser performance is primarily
interpreted through a single metric, F-score
on WSJ section 23, that conveys no linguis-
tic information regarding the remaining errors.
We classify errors within a set of linguisti-
cally meaningful types using tree transforma-
tions that repair groups of errors together. We
use this analysis to answer a range of ques-
tions about parser behaviour, including what
linguistic constructions are difficult for state-
of-the-art parsers, what types of errors are be-
ing resolved by rerankers, and what types are
introduced when parsing out-of-domain text.

1 Introduction

Parsing has been a major area of research within
computational linguistics for decades, and con-
stituent parser F-scores onWSJ section 23 have ex-
ceeded90% (Petrov and Klein, 2007), and92%
when using self-training and reranking (McClosky
et al., 2006; Charniak and Johnson, 2005). While
these results give a useful measure of overall per-
formance, they provide no information about the na-
ture, or relative importance, of the remaining errors.

Broad investigations of parser errors beyond the
PARSEVAL metric (Abney et al., 1991) have either
focused on specific parsers, e.g. Collins (2003), or
have involved conversion to dependencies (Carroll
et al., 1998; King et al., 2003). In all of these cases,
the analysis has not taken into consideration how a
set of errors can have a common cause, e.g. a single
mis-attachment can create multiple node errors.

We propose a new method of error classifica-
tion using tree transformations. Errors in the parse

tree are repaired using subtree movement, node cre-
ation, and node deletion. Each step in the process is
then associated with a linguistically meaningful er-
ror type, based on factors such as the node that is
moved, its siblings, and parents.

Using our method we analyse the output of thir-
teen constituency parsers on newswire. Some of
the frequent error types that we identify are widely
recognised as challenging, such as prepositional
phrase (PP) attachment. However, other significant
types have not received as much attention, such as
clause attachment and modifier attachment.

Our method also enables us to investigate where
reranking and self-training improve parsing. Pre-
viously, these developments were analysed only in
terms of their impact on F-score. Similarly, the chal-
lenge of out-of-domain parsing has only been ex-
pressed in terms of this single objective. We are able
to decompose the drop in performance and show that
a disproportionate number of the extra errors are due
to coordination and clause attachment.

This work presents a comprehensive investigation
of parser behaviour in terms of linguistically mean-
ingful errors. By applying our method to multiple
parsers and domains we are able to answer questions
about parser behaviour that were previously only ap-
proachable through approximate measures, such as
counts of node errors. We show which errors have
been reduced over the past fifteen years of parsing
research; where rerankers are making their gains and
where they are not exploiting the full potential of k-
best lists; and what types of errors arise when mov-
ing out-of-domain. We have released our system1 to
enable future work to apply our methodology.

1http://code.google.com/p/berkeley-parser-analyser/
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2 Background

Most attempts to understand the behaviour of con-
stituency parsers have focused on overall evaluation
metrics. The three main methods are intrinsic eval-
uation withPARSEVAL, evaluation on dependencies
extracted from the constituency parse, and evalua-
tion on downstream tasks that rely on parsing.

Intrinsic evaluation withPARSEVAL, which calcu-
lates precision and recall over labeled tree nodes, is
a useful indicator of overall performance, but does
not pinpoint which structures the parser has most
difficulty with. Even when the breakdown for par-
ticular node types is presented (e.g. Collins, 2003),
the interaction between node errors is not taken into
account. For example, a VP node could be missing
because of incorrect PP attachment, a coordination
error, or a unary production mistake. There has been
some work that addresses these issues by analysing
the output of constituency parsers on linguistically
motivated error types, but only by hand on sets of
around 100 sentences (Hara et al., 2007; Yu et al.,
2011). By automatically classifying parse errors we
are able to consider the output of multiple parsers on
thousands of sentences.

The second major parser evaluation method in-
volves extraction of grammatical relations (King et
al., 2003; Briscoe and Carroll, 2006) or dependen-
cies (Lin, 1998; Briscoe et al., 2002). These met-
rics have been argued to be more informative and
generally applicable (Carroll et al., 1998), and have
the advantage that the breakdown over dependency
types is more informative than over node types.
There have been comparisons of multiple parsers
(Foster and van Genabith, 2008; Nivre et al., 2010;
Cer et al., 2010), as well as work on finding rela-
tions between errors (Hara et al., 2009), and break-
ing down errors by a range of factors (McDonald and
Nivre, 2007). However, one challenge is that results
for constituency parsers are strongly influenced by
the dependency scheme being used and how easy it
is to extract the dependencies from a given parser’s
output (Clark and Hockenmaier, 2002). Our ap-
proach does not have this disadvantage, as we anal-
yse parser output directly.

The third major approach involves extrinsic eval-
uation, where the parser’s output is used in a down-
stream task, such as machine translation (Quirk

and Corston-Oliver, 2006), information extraction
(Miyao et al., 2008), textual entailment (Yuret et
al., 2010), or semantic dependencies (Dridan and
Oepen, 2011). While some of these approaches give
a better sense of the impact of parse errors, they re-
quire integration into a larger system, making it less
clear where a given error originates.

The work we present here differs from existing
approaches by directly and automatically classifying
errors into meaningful types. This enables the first
very broad, yet detailed, study of parser behaviour,
evaluating the output of thirteen parsers over thou-
sands of sentences.

3 Parsers

Our evaluation is over a wide range ofPTB con-
stituency parsers and their variants from the past fif-
teen years. For all parsers we used the publicly avail-
able version, with the standard parameter settings.

Berkeley (Petrov et al., 2006; Petrov and Klein,
2007). An unlexicalised parser with a grammar
constructed with automatic state splitting.

Bikel (2004) implementation of Collins (1997).

BUBS (Dunlop et al., 2011; Bodenstab et al.,
2011). A ‘grammar-agnostic constituent
parser,’ which uses a Berkeley Parser grammar,
but parses with various pruning techniques to
improve speed, at the cost of accuracy.

Charniak (2000). A generative parser with a max-
imum entropy-inspired model. We also use the
reranker (Charniak and Johnson, 2005), and the
self-trained model (McClosky et al., 2006).

Collins (1997). A generative lexicalised parser,
with three models, a base model, a model that
uses subcategorisation frames for head words,
and a model that takes into account traces.

SSN (Henderson, 2003; Henderson, 2004). A sta-
tistical left-corner parser, with probabilities es-
timated by a neural network.

Stanford (Klein and Manning, 2003a; Klein and
Manning, 2003b). We consider both the un-
lexicalised PCFG parser (-U) and the factored
parser (-F), which combines the PCFG parser
with a lexicalised dependency parser.
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System F P R Exact Speed

ENHANCED TRAINING / SYSTEMS

Charniak-SR 92.07 92.44 91.70 44.87 1.8
Charniak-R 91.41 91.78 91.04 44.04 1.8
Charniak-S 91.02 91.16 90.89 40.77 1.8

STANDARD PARSERS

Berkeley 90.06 90.30 89.81 36.59 4.2
Charniak 89.71 89.88 89.55 37.25 1.8
SSN 89.42 89.96 88.89 32.74 1.8
BUBS 88.50 88.57 88.43 31.62 27.6
Bikel 88.16 88.23 88.10 32.33 0.8
Collins-3 87.66 87.82 87.50 32.22 2.0
Collins-2 87.62 87.77 87.48 32.51 2.2
Collins-1 87.09 87.29 86.90 30.35 3.3
Stanford-L 86.42 86.35 86.49 27.65 0.7
Stanford-U 85.78 86.48 85.09 28.35 2.7

Table 1: PARSEVAL results onWSJ section 23 for the
parsers we consider. The columns are F-score, precision,
recall, exact sentence match, and speed (sents/sec). Cov-
erage was left out as it was above 99.8% for all parsers.
In the ENHANCED TRAINING / SYSTEMSsection we in-
clude the Charniak parser with reranking (R), with a self-
trained model (S), and both (SR).

Table 1 shows the standard performance metrics,
measured on section 23 of theWSJ, using all sen-
tences. Speeds were measured using a Quad-Core
Xeon CPU (2.33GHz 4MB L2 cache) with 16GB
of RAM. These results clearly show the variation in
parsing performance, but they do not show which
constructions are the source of those variations.

4 Error Classification

While the statistics in Table 1 give a sense of over-
all parser performance they do not provide linguisti-
cally meaningful intuition for the source of remain-
ing errors. Breaking down the remaining errors by
node type is not particularly informative, as a sin-
gle attachment error can cause multiple node errors,
many of which are for unrelated node types. For
example, in Figure 1 there is a PP attachment error
that causes seven bracket errors (extra S, NP, PP, and
NP, missing S, NP, and PP). Determining that these
correspond to a PP attachment error from just the la-
bels of the missing and extra nodes is difficult. In
contrast, the approach we describe below takes into
consideration the relations between errors, grouping
them into linguistically meaningful sets.

We classify node errors in two phases. First, we
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NP

PP
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NP
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(a) Parser output

S

VP

VP

PP
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S

NP

PP

NP

NNP
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IN

of

NP

chief executive officer

VBN

named

VBD

was

NP

PRP

He

(b) Gold tree

Figure 1: Grouping errors by node type is of limited use-
fulness. In this figure and those that follow the top tree
is the incorrect parse and the bottom tree is the correct
parse. Bold, boxed nodes are either extra (marked in the
incorrect tree) or missing (marked in the correct tree).
This is an example ofPP Attachment (in 1986 is too
low), but that is not at all clear from the set of incorrect
nodes (extra S, NP, PP, and NP, missing S, NP, and PP).

find a set of tree transformations that convert the out-
put tree into the gold tree. Second, the transforma-
tion are classified into error types such as PP attach-
ment and coordination. Pseudocode for our method
is shown in Algorithm 1. The tree transformation
stage corresponds to the main loop, while the sec-
ond stage corresponds to the final loop.

4.1 Tree Transformation

The core of our transformation process is a set of op-
erations that move subtrees, create nodes, and delete
nodes. Searching for the shortest path to transform
one tree into another is prohibitively slow.2 We find

2We implemented various search procedures and found sim-
ilar results on the sentences that could be processed in a reason-
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Algorithm 1 Tree transformation error classification
U = initial set of node errors
SortU by the depth of the error in the tree, deepest first
G = ∅
repeat

for all errorse ∈ U do
if e fits an environment templatet then

g = new error group
Correcte as specified byt
for all errorsf thatt correctsdo

Removef fromU

Insertf into g

end for
Add g toG

end if
end for

until unable to correct any further errors
for all remaining errorse ∈ U do

Insert a group intoG containinge
end for
for all groupsg ∈ G do

Classifyg based on properties of the group
end for

a path by applying a greedy bottom–up approach,
iterating through the errors in order of tree depth.

We match each error with a template based on
nearby tree structure and errors. For example, in
Figure 1 there are four extra nodes that all cover
spans ending atApplied in 1986: S, NP, PP, NP.
There are also three missing nodes with spans end-
ing betweenAppliedandin: PP, NP, and S. Figure 2
depicts these errors as spans, showing that this case
fits three criteria: (1) there are a set of extra spans all
ending at the same point, (2) there are a set of miss-
ing spans all ending at the same point, and (3) the ex-
tra spans cross the missing spans, extending beyond
their end-point. This indicates that the node start-
ing afterApplied is attaching too low and should be
moved up, outside all of the extra nodes. Together,
the criteria and transformation form a template.

Once a suitable template is identified we correct
the error by moving subtrees, adding nodes and re-
moving nodes. In the example this is done by mov-
ing the node spanningin 1986up in the tree until it
is outside of all the extra spans. Since moving the PP
leaves a unary production from an NP to an NP, we
also collapse that level. In total this corrects seven

able amount of time.

named chief executive officer of Applied in 1986

Figure 2: Templates are defined in terms of extra and
missing spans, shown here with unbroken lines above and
dashed lines below, respectively. This is an example of a
set of extra spans that cross a set of missing spans (which
in both cases all end at the same position). If the last two
words are moved, two of the extra spans will match the
two missing spans. The other extra span is deleted during
the move as it creates an NP→NP unary production.

errors, as there are three cases in which an extra node
is present that matches a missing node once the PP
is moved. All of these errors are placed in a single
group and information about the nearby tree struc-
ture before and after the transformation is recorded.

We continue to make passes through the list until
no errors are corrected on a pass. For each remaining
node error an individual error group is created.

The templates were constructed by hand based on
manual analysis of parser output. They cover a range
of combinations of extra and missing spans, with
further variation for whether crossing is occurring
and if so whether the crossing bracket starts or ends
in the middle of the correct bracket. Errors that do
not match any of our templates are left uncorrected.

4.2 Transformation Classification

We began with a large set of node errors, in the first
stage they were placed into groups, one group per
tree transformation used to get from the test tree to
the gold tree. Next we classify each group as one of
the error types below.

PP Attachment Any case in which the transforma-
tion involved moving a Prepositional Phrase, or
the incorrect bracket is over a PP, e.g.
He was(VP named chief executive officer of
fill (NPApplied(PPin 1986)))
where (PPin 1986) should modify the entire
VP, rather than justApplied.

NP Attachment Several cases in which NPs had to
be moved, particularly for mistakes in appos-
itive constructions and incorrect attachments
within a verb phrase, e.g.
The bonds(VP go (PPon sale(NPOct. 19)))
whereOct. 19should be an argument ofgo.
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Figure 3: NP Attachment: today is too high, it should
be the argument ofappearing, rather thanwrote. This
causes three node errors (extra NP, missing NP and VP).
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(a) Parser output
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(b) Gold tree

Figure 4: Modifier Attachment : ahead of timeis too
high, it should modifythink, not had. This causes six
node errors (extra S, VP, and VP, missing S, VP, and VP).

Modifier Attachment Cases involving incorrectly
placed adjectives and adverbs, including errors
corrected by subtree movement and errors re-
quiring only creation of a node, e.g.
(NP (ADVPeven more) severe setbacks)
where there should be an extra ADVP node
overeven more severe.

Clause Attachment Any group that involves move-
ment of some form of S node.

VP
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VP

VP

SBAR
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NP

the RTC to . . .

VB

restrict

TO

to

VBZ

intends

(a) Parser output
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unless the agency . . .

S

VP

VP

NP

the RTC to . . .

VB

restrict

TO

to

VBZ

intends

(b) Gold tree

Figure 5: Clause Attachment: unless the agency re-
ceives specific congressional authorizationis attaching
too low. This causes six node errors (extra S, VP, and
VP, missing S, VP and VP).
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(a) Parser output

SINV

NP

NP

PP

of major market activity

NP

a breakdown

VBZ

is

S

VP

VBG

Following

(b) Gold tree

SINV

:

:

NP-SBJ-1

NP

PP

of major market activity

NP
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VBZ

is

S-ADV

VP

VBG

Following

NP-SBJ

-NONE-

*-1

(c) Gold tree with traces and function tags

Figure 6: TwoUnary errors, a missing S and a missing
NP. The third tree is thePTB tree before traces and func-
tion tags are removed. Note that the missing NP is over
another NP, a production that does occur widely in the
treebank, particularly over the wordit.
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Figure 7: Coordination: and Dresdner AG’s 10% de-
cline is too low. This causes four node errors (extra PP
and NP, missing NP and PP).

Unary Mistakes involving unary productions that
are not linked to a nearby error such as a match-
ing extra or missing node. We do not include a
breakdown by unary type, though we did find
that clause labeling (S, SINV, etc) accounted
for a large proportion of the errors.

Coordination Cases in which a conjunction is an
immediate sibling of the nodes being moved, or
is the leftmost or rightmost node being moved.

NP Internal Structure While most NP structure is
not annotated in thePTB, there is some use of
ADJP, NX, NAC and QP nodes. We form a
single group for each NP that has one or more
errors involving these types of nodes.

Different label In many cases a node is present in
the tree that spans the correct set of words, but
has the wrong label, in which case we group the
two node errors, (one extra, one missing), as a
single error.

Single word phrase A range of node errors that
span a single word, with checks to ensure this
is not linked to another error (e.g. one part of a
set of internal noun phrase errors).

Other There is a long tail of other errors. Some
could be placed within the categories above,
but would require far more specific rules.

For many of these error types it would be diffi-
cult to extract a meaningful understanding from only

NP
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NNP
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IN
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NNP
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(a) Parser output
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NNP

Secretary

(b) Gold tree

Figure 8:NP Internal Structure : Bakeris too low, caus-
ing four errors (extra PP and NP, missing PP and NP).

the list of node errors involved. Even for error types
that can be measured by counting node errors or rule
production errors, our approach has the advantage
that we identify groups of errors with a single cause.
For example, a missing unary production may corre-
spond to an extra bracket that contains a subtree that
attached incorrectly.

4.3 Methodology

We used sections 00 and 24 as development data
while constructing the tree transformation and error
group classification methods. All of our examples
in text come from these sections as well, but for all
tables of results we ran our system on section 23.
We chose to run our analysis on section 23 as it is
the only section we are sure was not used in the de-
velopment of any of the parsers, either for tuning or
feature development. Our evaluation is entirely fo-
cused on the errors of the parsers, so unless there is
a particular construction that is unusually prevalent
in section 23, we are not revealing any information
about the test set that could bias future work.

5 Results

Our system enables us to answer questions about
parser behaviour that could previously only be
probed indirectly. We demonstrate its usefulness by
applying it to a range of parsers (here), to reranked
K-best lists of various lengths, and to output for out-
of-domain parsing (following sections).

In Table 2 we consider the breakdown of parser
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PP Clause Diff Mod NP 1-Word NP
Parser F-score Attach Attach Label Attach Attach Co-ord Span Unary aInt.a Other

Best 0.60 0.38 0.31 0.25 0.25 0.23 0.20 0.14 0.14 0.50
Charniak-RS 92.07
Charniak-R 91.41
Charniak-S 91.02
Berkeley 90.06
Charniak 89.71
SSN 89.42
BUBS 88.63
Bikel 88.16
Collins-3 87.66
Collins-2 87.62
Collins-1 87.09
Stanford-F 86.42
Stanford-U 85.78
Worst 1.12 0.61 0.51 0.39 0.45 0.40 0.42 0.27 0.27 1.13

Table 2: Average number of bracket errors per sentence due tothe top ten error types. For instance, Stanford-U
produces output that has, on average, 1.12 bracket errors per sentence that are due to PP attachment. The scale for
each column is indicated by the Best and Worst values.

Nodes
Error Type Occurrences Involved Ratio

PP Attachment 846 1455 1.7
Single word phrase 490 490 1.0
Clause Attachment 385 913 2.4
Modifier Attachment 383 599 1.6
Different Label 377 754 2.0
Unary 347 349 1.0
NP Attachment 321 597 1.9
NP Internal Structure 299 352 1.2
Coordination 209 557 2.7
Unary Clause Label 185 200 1.1
VP Attachment 64 159 2.5
Parenthetical Attachment 31 74 2.4
Missing Parenthetical 12 17 1.4
Unclassified 655 734 1.1

Table 3: Breakdown of errors on section 23 for the Char-
niak parser with self-trained model and reranker. Errors
are sorted by the number of times they occur. Ratio is the
average number of node errors caused by each error we
identify (i.e. Nodes Involved / Occurrences).

errors on WSJ section 23. The shaded area of
each bar indicates the frequency of parse errors (i.e.
empty means fewest errors). The area filled in is
determined by the expected number of node errors
per sentence that are attributed to that type of error.
The average number of node errors per sentence for
a completely full bar is indicated by the Worst row,
and the value for a completely empty bar is indicated
by the Best row. Exact error counts are available at

http://code.google.com/p/berkeley-parser-analyser/.
We use counts of node errors to make the con-

tributions of each type of error more interpretable.
As Table 3 shows, some errors typically cause only
a single node error, where as others, such as co-
ordination, generally cause several. This means
that considering counts of error groups would over-
emphasise some error types, e.g. single word phrase
errors are second most important by number of
groups (in Table 3), but seventh by total number of
node errors (in Table 2).

As expected, PP attachment is the largest contrib-
utor to errors, across all parsers. Interestingly, coor-
dination is sixth on the list, though that is partly due
to the fact that there are fewer coordination decisions
to be made in the treebank.3

By looking at the performance of the Collins
parser we can see the development over the past
fifteen years. There has been improvement across
the board, but in some cases, e.g. clause attach-
ment errors and different label errors, the change has
been more limited (24% and 29% reductions respec-
tively). We investigated the breakdown of the differ-
ent label errors by label, but no particular cases of la-

3This is indicated by the frequency of CCs and PPs in sec-
tions 02–21 of the treebank, 16,844 and 95,581 respectively.
These counts are only an indicator of the number of decisions
as the nodes can be used in ways that do not involve a decision,
such as sentences that start with a conjunction.
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PP Clause Diff Mod NP 1-Word NP
System K F-score Attach Attach Label Attach Attach Co-ord Span Unary aInt.a Other

Best 0.08 0.04 0.08 0.05 0.06 0.04 0.08 0.04 0.04 0.11
1000 98.30
100 97.54
50 97.18

Oracle 20 96.40
10 95.66
5 94.61
2 92.59

1000 92.07
100 92.08
50 92.07

Charniak 20 92.05
10 92.16
5 91.94
2 91.56
1 91.02

Worst 0.66 0.43 0.33 0.26 0.28 0.26 0.23 0.16 0.19 0.60

Table 4: Average number of bracket errors per sentence for a range of K-best list lengths using the Charniak parser
with reranking and the self-trained model. The oracle results are determined by taking the parse in each K-best list
with the highest F-score.

bel confusion stand out, and we found that the most
common cases remained the same between Collins
and the top results.

It is also interesting to compare pairs of parsers
that share aspects of their architecture. One such
pair is the Stanford parser, where the factored parser
combines the unlexicalised parser with a lexicalised
dependency parser. The main sources of the 0.64
gain in F-score are PP attachment and coordination.

Another interesting pair is the Berkeley parser and
the BUBS parser, which uses a Berkeley grammar,
but improves speed by pruning. The pruning meth-
ods used in BUBS are particularly damaging for PP
attachment errors and unary errors.

Various comparisons can be made between Char-
niak parser variants. We discuss the reranker be-
low. For the self-trained model McClosky et al.
(2006) performed some error analysis, considering
variations in F-score depending on the frequency of
tags such as PP, IN and CC in sentences. Here we
see gains on all error types, though particularly for
clause attachment, modifier attachment and coordi-
nation, which fits with their observations.

5.1 Reranking

The standard dynamic programming approach to
parsing limits the range of features that can be em-

ployed. One way to deal with this issue is to mod-
ify the parser to produce the topK parses, rather
than just the 1-best, then use a model with more so-
phisticated features to choose the best parse from
this list (Collins, 2000). While re-ranking has led to
gains in performance (Charniak and Johnson, 2005),
there has been limited analysis of how effectively
rerankers are using the set of available options. Re-
cent work has explored this question in more depth,
but focusing on how variation in the parameters
impacts performance on standard metrics (Huang,
2008; Ng et al., 2010; Auli and Lopez, 2011; Ng
and Curran, 2012).

In Table 4 we present a breakdown over error
types for the Charniak parser, using the self-trained
model and reranker. The oracle results use the parse
in each K-best list with the highest F-score. While
this may not give the true oracle result, as F-score
does not factor over sentences, it gives a close ap-
proximation. The table has the same columns as Ta-
ble 2, but the ranges on the bars now reflect the min
and max for these sets.

While there is improvement on all errors when us-
ing the reranker, there is very little additional gain
beyond the first 5-10 parses. Even for the oracle
results, most of the improvement occurs within the
first 5-10 parses. The limited utility of extra parses
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PP Clause Diff Mod NP 1-Word NP
Corpus F-score Attach Attach Label Attach Attach Co-ord Span Unary aInt.a Other

Best 0.022 0.016 0.013 0.011 0.011 0.010 0.009 0.006 0.005 0.021
WSJ23 92.07
Brown-F 85.91
Brown-G 84.56
Brown-K 84.09
Brown-L 83.95
Brown-M 84.65
Brown-N 85.20
Brown-P 84.09
Brown-R 83.60
G-Web Blogs 84.15
G-Web Email 81.18
Worst 0.040 0.035 0.053 0.020 0.034 0.023 0.046 0.009 0.029 0.073

Table 5: Average number of node errors per word for a range of domains using the Charniak parser with reranking and
the self-trained model. We use per word error rates here rather than per sentence as there is great variation in average
sentence length across the domains, skewing the per sentence results.

for the reranker may be due to the importance of
the base parser output probability feature (which, by
definition, decreases within the K-best list).

Interestingly, the oracle performance improves
across all error types, even at the 2-best level. This
indicates that the base parser model is not particu-
larly biased against a single error. Focusing on the
rows forK = 2 we can also see two interesting out-
liers. The PP attachment improvement of the ora-
cle is considerably higher than that of the reranker,
particularly compared to the differences for other er-
rors, suggesting that the reranker lacks the features
necessary to make the decision better than the parser.
The other interesting outlier is NP internal structure,
which continues to make improvements for longer
lists, unlike the other error types.

5.2 Out-of-Domain

Parsing performance drops considerably when shift-
ing outside of the domain a parser was trained on
(Gildea, 2001). Clegg and Shepherd (2005) evalu-
ated parsers qualitatively on node types and rule pro-
ductions. Bender et al. (2011) designed a Wikipedia
test set to evaluate parsers on dependencies repre-
senting ten specific linguistic phenomena.

To provide a deeper understanding of the er-
rors arising when parsing outside of the newswire
domain, we analyse performance of the Charniak
parser with reranker and self-trained model on the
eight parts of the Brown corpus (Marcus et al.,

Corpus Description Sentences Av. Length

WSJ23 Newswire 2416 23.5
Brown F Popular 3164 23.4
Brown G Biographies 3279 25.5
Brown K General 3881 17.2
Brown L Mystery 3714 15.7
Brown M Science 881 16.6
Brown N Adventure 4415 16.0
Brown P Romance 3942 17.4
Brown R Humour 967 22.7
G-Web Blogs Blogs 1016 23.6
G-Web Email E-mail 2450 11.9

Table 6: Variation in size and contents of the domains we
consider. The variation in average sentence lengths skews
the results for errors per sentences, and so in Table 5 we
consider errors per word.

1993), and two parts of the Google Web corpus
(Petrov and McDonald, 2012). Table 6 shows statis-
tics for the corpora. The variation in average sen-
tence lengths skew the results for errors per sen-
tence. To handle this we divide by the number of
words to determine the results in Table 5, rather than
by the number of sentences, as in previous figures.

There are several interesting features in the table.
First, on the Brown datasets, while the general trend
is towards worse performance on all errors, NP in-
ternal structure is a notable exception and in some
cases PP attachment and unaries are as well.

In the other errors we see similar patterns across
the corpora, except humour (Brown R), on which the
parser is particularly bad at coordination and clause
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attachment. This makes sense, as the colloquial na-
ture of the text includes more unusual uses of con-
junctions, for example:

She was a living doll and no mistake – the ...

Comparing the Brown corpora and the Google
Web corpora, there are much larger divergences. We
see a particularly large decrease in NP internal struc-
ture. Looking at some of the instances of this error, it
appears to be largely caused by incorrect handling of
structures such as URLs and phone numbers, which
do not appear in thePTB. There are also some more
difficult cases, for example:

... going up for sale in the next month or do .

whereor do is a QP. This typographical error is ex-
tremely difficult to handle for a parser trained only
on well-formed text.

For e-mail there is a substantial drop on single
word phrases. Breaking the errors down by label we
found that the majority of the new errors are miss-
ing or extra NPs over single words. Here the main
problem appears to be temporal expressions, though
there also appear to be a substantial number of errors
that are also at the POS level, such as when NNP is
assigned tota in this case:

... let you know that I ’m out ta here !

Some of these issues, such as URL handling,
could be resolved with suitable training data. Other
issues, such as ungrammatical language and uncon-
ventional use of words, pose a greater challenge.

6 Conclusion

The single F-score objective over brackets or depen-
dencies obscures important differences between sta-
tistical parsers. For instance, a single attachment er-
ror can lead to one or many mismatched brackets.

We have created a novel tree-transformation
methodology for evaluating parsers that categorises
errors into linguistically meaningful types. Using
this approach, we presented the first detailed exam-
ination of the errors produced by a wide range of
constituency parsers for English. We found that PP
attachment and clause attachment are the most chal-
lenging constructions, while coordination turns out
to be less problematic than previously thought. We

also noted interesting variations in error types for
parsers variants.

We investigated the errors resolved in reranking,
and introduced by changing domains. We found that
the Charniak rerankers improved most error types,
but made little headway on improving PP attach-
ment. Changing domain has an impact on all error
types, except NP internal structure.

We have released our system so that future con-
stituent parsers can be evaluated using our method-
ology. Our analysis provides new insight into the
development of parsers over the past fifteen years,
and the challenges that remain.
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Abstract

This paper proposes the utilization of lexical
cohesion to facilitate evaluation of machine
translation at the document level. As a linguis-
tic means to achieve text coherence, lexical
cohesion ties sentences together into a mean-
ingfully interwoven structure through words
with the same or related meaning. A compar-
ison between machine and human translation
is conducted to illustrate one of their critical
distinctions that human translators tend to use
more cohesion devices than machine. Various
ways to apply this feature to evaluate machine-
translated documents are presented, including
one without reliance on reference translation.
Experimental results show that incorporating
this feature into sentence-level evaluation met-
rics can enhance their correlation with human
judgements.

1 Introduction

Machine translation (MT) has benefited a lot from
the advancement of automatic evaluation in the past
decade. To a certain degree, its progress is also con-
fined to the limitations of evaluation metrics in use.
Most efforts devoted to evaluate the quality of MT
output so far have still focused on the sentence level
without sufficient attention to how a larger text is
structured. This is notably reflected in the represen-
tative MT evaluation metrics, such as BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005) and TER (Snover et al., 2006), that adopt a
sentence-by-sentence fashion to score MT outputs.
The evaluation result for a document by any of them
is usually a simple average of its sentence scores. A

drawback of this kind of sentence-based evaluation
is the neglect of document structure. There is no
guarantee for the coherence of a text if it is produced
by simply putting together stand-alone sentences, no
matter how well-translated, without adequate inter-
sentential connection. As a consequence, MT sys-
tem optimized this way to any of these metrics can
only have a very dim chance of producing translated
document that reads as natural as human writing.

The accuracy of MT output at the document level
is particularly important to MT users, for they care
about the overall meaning of a text in question more
than the grammatical correctness of each sentence
(Visser and Fuji, 1996). Post-editors particularly
need to ensure the quality of a whole document of
MT output when revising its sentences. The con-
nectivity of sentences is surely a significant factor
contributing to the understandability of a text as a
whole.

This paper studies the inter-sentential linguistic
features of cohesion and coherence and presents
plausible ways to incorporate them into the
sentence-based metrics to support MT evaluation at
the document level. In the Framework for MT Eval-
uation in the International Standards of Language
Engineering (FEMTI) (King et al., 2003), coherence
is defined as “the degree to which the reader can de-
scribe the role of each individual sentence (or group
of sentences) with respect to the text as a whole”.
The measurement of coherence has to rely on cohe-
sion, referring to the “relations of meaning that exist
within the text” (Halliday and Hasan, 1976). Cohe-
sion is realized via the interlinkage of grammatical
and lexical elements across sentences. Grammatical
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cohesion refers to the syntactic links between text
items, while lexical cohesion is achieved through the
word choices in a text. This paper focuses on the
latter. A quantitative comparison of lexical cohesion
devices between MT output and human translation
is first conducted, to examine the weakness of cur-
rent MT systems in handling this feature. Different
ways of exploiting lexical cohesion devices for MT
evaluation at the document level are then illustrated.

2 Related Works

Cohesion and coherence are both necessary mono-
lingual features in a target text. They can hardly
be evaluated in isolation and have to be conjoined
with other quality criteria such as adequacy and flu-
ency. A survey of MT post-editing (Vasconcellos,
1989) suggests that cohesion and coherence serve
as higher level quality criteria beyond many others
such as syntactic well-formedness. Post-editors tend
to correct syntactic errors first before any amend-
ment for improving the cohesion and coherence of
an MT output. Also, as Wilks (1978)1 noted, it
is rather unlikely for a sufficiently large sample of
translations to be coherent and totally wrong at the
same time. Cohesion and coherence are appropri-
ate to serve as criteria for the overall quality of MT
output.

Previous researches in MT predominantly focus
on specific types of cohesion devices. For grammat-
ical cohesion, a series of works, including Nakaiwa
and Ikehara (1992), Nakaiwa et al. (1995), and
Nakaiwa and Shirai (1996), present approaches to
resolving Japanese zero pronouns and to integrat-
ing them into a Japanese-English transferred-based
MT system. Peral et al. (1999) propose an inter-
lingual mechanism for pronominal anaphora gen-
eration by exploiting a rich set of lexical, syntac-
tic, morphologic and semantic information. Mu-
rata and Nagao (1993) and Murata et al. (2001) de-
velop a rule base to identify the referential prop-
erties of Japanese noun phrases, so as to facilitate
anaphora resolution for Japanese and article gen-
eration for English during translation. A recent
COMTIS project (Cartoni et al., 2011) begins to ex-
ploit inter-sentential information for statistical MT.
A phase of its work is to have grammatical devices,

1As cited in van Slype (1979).

such as verbal tense/aspect/mode, discourse connec-
tives and pronouns, manually annotated in multilin-
gual corpora, in hopes of laying a foundation for the
development of automatic labelers for them that can
be integrated into an MT model.

For lexical cohesion, it has been only partially and
indirectly addressed in terms of translation consis-
tency in MT output. Different approaches to main-
taining consistency in target word choices are pro-
posed (Itagaki et al., 2007; Gong et al., 2011; Xiao
et al., 2011). Carpuat (2009) also observes a general
tendency in human translation that a given sense is
usually lexicalized in a consistent manner through-
out the whole translation.

Nevertheless there are only a few evaluation
methods explicitly targeting on the quality of a docu-
ment. Miller and Vanni (2001) devise a human eval-
uation approach to measure the comprehensibility
of a text as a whole, based on the Rhetorical Struc-
ture Theory (Mann and Thompson, 1988), a theory
of text organization specifying coherence relations
in an authentic text. Snover et al. (2006) proposes
HTER to assess post-editing effort through human
annotation. Its automatic versions TER and TERp
(Snover et al., 2009), however, remain sentence-
based metrics. Comelles et al. (2010) present a
family of automatic MT evaluation measures, based
on the Discourse Representation Theory (Kamp and
Reyle, 1993), that generate semantic trees to put to-
gether different text entities for the same referent ac-
cording to their contexts and grammatical connec-
tions. Apart from MT evaluation, automated essay
scoring programs such as E-rater (Burstein, 2003)
also employ a rich set of discourse features for as-
sessment. However, the parsing process needed for
these linguistic-heavy approaches may suffer seri-
ously from grammatical errors, which are unavoid-
able in MT output. Hence their accuracy and reli-
ability inevitably fluctuate in accord with different
evaluation data.

Lexical cohesion has far been neglected in both
MT and MT evaluation, even though it is the single
most important form of cohesion devices, account-
ing for nearly half of the cohesion devices in En-
glish (Halliday and Hasan, 1976). It is also a signif-
icant feature contributing to translation equivalence
of texts by preserving their texture (Lotfipour-Saedi,
1997). The lexical cohesion devices in a text can be
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represented as lexical chains conjoining related en-
tities. There are many methods of computing lexical
chains for various purposes, e.g., Morris and Hirst
(1991), Barzilay and Elhadad (1997), Chan (2004),
Li et al. (2007), among many others. Contrary to
grammatical cohesion highly depending on syntac-
tic well-formedness of a text, lexical cohesion is less
affected by grammatical errors. Its computation has
to rely on a thesaurus, which is usually available for
almost every language. In this research, a number
of formulations of lexical cohesion, with or without
reliance on external language resource, will be ex-
plored for the purpose of MT evaluation.

3 Lexical Cohesion in Machine and
Human Translation

This section presents a comparative study of MT and
human translation (HT) in terms of the use of lexi-
cal cohesion devices. It is an intuition that more co-
hesion devices are used by humans than machines
in translation, as part of the superior quality of HT.
Two different datasets are used to ensure the relia-
bility and generality of the comparison. The results
confirm the incapability of MT in handling this fea-
ture and the necessity of using lexical cohesion in
MT evaluation.

3.1 Data

The MetricsMATR 2008 development set (Przy-
bocki et al., 2009) and the Multiple-Translation Chi-
nese (MTC) part 4 (Ma, 2006) are used for this
study. They consist of MT outputs of different
source languages in company with reference trans-
lations. The data of MetricsMATR is selected from
the NIST Open MT 2006 evaluation, while MTC4 is
from the TIDES 2003 MT evaluation. Both datasets
include human assessments of MT output, from
which the part of adequacy assessment is selected
for this study. Table 1 provides overall statistics of
the datasets.

3.2 Identification of Lexical Cohesion Devices

Lexical cohesion is achieved through word choices
of two major types: reiteration and collocation. Re-
iteration can be realized in a continuum or a cline of
specificity, with repetition of the same lexical item at
one end and the use of a general noun to point to the

MetricsMATR MTC4
Number of systems 8 6
Number of documents 25 100
Number of segments 249 919
Number of references 4 4
Source language Arabic Chinese
Genre Newswire Newswire

Table 1: Information about the datasets in use

same referent at the other. In between the two ends
is to use a synonym (or near-synonym) and superor-
dinate. Collocation refers to those lexical items that
share the same or similar semantic relations, includ-
ing complementarity, antonym, converse, coordinate
term, meronym, troponym, and so on.

In this study, lexical cohesion devices are defined
as content words (i.e., tokens after stopword having
been removed) that reiterate once or more times in
a document, including synonym, near-synonym and
superordinate, besides those repetition and colloca-
tion. Repetition refers to the same words or stems
in a document. Stems are identified with the aid of
Porter stemmer (1980).

To classify the semantic relationships of words,
WordNet (Fellbaum, 1998) is used as a lexical re-
source, which clusters words of the same sense (i.e.,
synonyms) into a semantic group, namely a synset.
Synsets are interlinked in WordNet according to
their semantic relationships. Superordinate and col-
location are formed by words in a proximate se-
mantic relationship, such as bicycle and vehicle (hy-
pernym), bicycle and wheel (meronym), bicycle and
car (coordinate term), and so on. They are defined
as synset pairs with a distance of 1 in WordNet.
The measure of semantic distance (Wu and Palmer,
1994) is also applied to identify near-synonyms, i.e.,
words that are synonyms in a broad sense but not
grouped in the same synset. It quantifies the seman-
tic similarity of word pairs as a real number in be-
tween 0 and 1 (the higher the more similar) as

sim(c1, c2) =
2 d(lcs(c1, c2))

d(c1) + d(c2)

where c1 and c2 are the concepts (synsets) that the
two words in question belong to, d is the distance
in terms of the shortest path from a concept to the
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Word type
MetricsMATR MTC4

MT HT Difference (%) MT HT Difference (%)
Content word 4428 4636 208 (4.7) 16162 16982 830 (5.1)
- Not lexical cohesion device 2403 2381 -22 (-1.0) 8657 8814 157 (1.8)
- Lexical cohesion device 2025 2255 230 (11.4) 7505 8168 663 (8.9)

- Repetition 1297 1445 148 (11.4) 4888 5509 621 (12.7)
- Synonym and near-synonym 318 350 32 (10.1) 1323 1311 -12 (-0.9)
- Superordinate and collocation 410 460 50 (12.4) 1294 1348 54 (4.2)

Table 2: Statistics of lexical cohesion devices in machine versus human translation (average frequencies per version
of MT/HT)
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Figure 1: Use of lexical cohesion devices in machine versus human translation

global root node in WordNet, and lcs is the least
common subsumer (i.e., the most specific ancestor
concept) of c1 and c2. A threshold is set to 0.96
for words to be considered near-synonyms of each
other, based on the empirical observation in a previ-
ous study (Wong, 2010).

3.3 Results

The difference between MT and HT (reference
translation) in terms of the frequencies of lexical co-
hesion devices in MetricsMATR and MTC4 datasets
is presented in Table 2. The frequencies are aver-
aged by the number of MT/HT versions. A further
categorization breaks down content words into lex-
ical cohesion devices and those that are not. The
count of each type of lexical cohesion device is also
provided. In general the two datasets provide highly
similar statistics. There are 4.7–5.1% more content
words in HT than in MT. The numbers of ordinary
content words (i.e., not lexical cohesion devices) are
close in MT and HT. The difference of content words

in HT and MT is mostly due to that of lexical co-
hesion devices, which are mostly repetition. 8.9–
11.4% more lexical cohesion devices are found in
HT than in MT in the datasets.

A further analysis is carried out to investigate into
the use of lexical cohesion devices in each version
of MT and HT in terms of the following two ratios,
LC = lexical cohesion devices / content words,
RC = repetition / content words.

A higher LC or RC ratio means that a greater pro-
portion of content words are used as lexical cohesion
devices.

Figure 1 illustrates the RC and LC ratios in the
two datasets. The ratios of different MT systems
are presented in an ascending order in each graph
from left to right, according to their human assess-
ment results. The distributions of these values show
a strong similarity between the two datasets. First,
most of the RC and LC ratios are within an observ-
able range, i.e., 0.25–0.35 for the former and 0.40–
0.50 for the latter, except a particularly low LC for
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MT 1
1 Chine scrambled research on 16 key technical
2 These techniques are from within headline everyones boosting science and technology and achiev-

ing goals and contend of delivered on time bound through achieving breakthroughs in essential
technology and complimentarity resources . national

BLEU: 0.224 (1-gram:7, 2-gram:0, 3-gram:2, 4-gram:1)
LC: 0.107 (number of lexical cohesion devices: 5)
Human assessment: 2.67

MT 2
1 China is accelerating research 16 main technologies
2 These technologies are within the important realm to promote sciences and technology and

achieve national goals and must be completed in a timely manner through achieving main dis-
coveries in technology and integration of resources .

BLEU: 0.213 (1-gram:5, 2-gram:3, 3-gram:2, 4-gram:1)
LC: 0.231 (number of lexical cohesion devices: 9)
Human assessment: 4.33

Reference
1 China Accelerates Research on 16 Main Technologies
2 These technologies represent a significant part in the development of science and technology and

the achievement of national goals. They must be accomplished within a fixed period of time by
realizing breakthroughs in essential technologies and integration of resources.

Table 3: An example of MT outputs of different quality (underlined: matched n-grams; italic: lexical cohesion devices)

one MT system. Second, the ratios in those differ-
ent HT versions are very stable in comparison with
those of MT. Especially, all four HT versions in the
MetricsMATR dataset share the sameRC ratio 0.31.
This shows a typical level of the use of lexical cohe-
sion device. Third, the ratios in MT are lower than or
at most equal to those in HT, suggesting their corre-
lation with translation quality: the closer their RC
and LC ratios to those in HT, the better the MT.
These results verify our assumption that lexical co-
hesion can serve as an effective proxy of the level of
translation quality.

4 MT Evaluation at Document Level

As a feature at the discourse level, lexical cohesion
is a good complement to current evaluation met-
rics focusing on features at the sentence level. Ta-
ble 3 illustrates an example selected from the Met-
ricsMATR dataset, consisting two versions of MT
output for a short document of two segments only.
The n-grams matched with the reference are under-

lined, while the lexical cohesion devices are itali-
cized. The two MT outputs have a similar num-
ber of matched n-grams and hence receive similar
BLEU scores. These scores, however, do not reflect
their real difference in quality: the second version is
better, according to human assessment of adequacy.
Instead, their LC ratios seem to represent such a
variation more accurately. The theme of the second
output is also highlighted through the lexical chains,
including main/important, technology/technologies
and achieve/achieving, which create a tight texture
between the two sentences, a crucial factor of text
quality.

To perform MT evaluation at the document level,
the LC and RC ratios can be used alone or in-
tegrated into a sentence-level metric. The former
way has an advantage that it does not have to rely
on any reference translation. LC mainly requires
a thesaurus for computing semantic relation, while
RC only needs a morphological processor such as
stemmer, both of which are available for most lan-
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guages. Its drawback, however, lies in the risk of
relying on a single discourse feature. Although lex-
ical cohesion gives a strong indication of text co-
herence, it is not indispensable, because a text can
be coherent without any surface cohesive clue. Fur-
thermore, the quality of a document is also reflected
in that of its sentences. A coherent translation may
be mistranslated, and on the other hand, a text con-
taining lots of sentence-level errors would make it
difficult to determine its document-level quality. A
previous study comparing MT evaluation at the sen-
tence versus document level (Wong et al., 2011) re-
ports a poor consistency in the evaluation results at
these two levels when the sentence-level scores of
MT output are low. In regard of these, how to inte-
grate these two levels of MT evaluation is particu-
larly worth studying.

5 Experiments

We examine, through experiments, the effectiveness
of using LC and RC ratios alone and integrating
them into other evaluation metrics for MT evalua-
tion at the document and system levels. Three evalu-
ation metrics, namely BLEU, TER and METEOR,2

are selected for testing. They represent three dis-
tinctive types of evaluation metrics: n-gram, edit-
distance, and unigram with external language re-
sources, respectively. These metrics are evaluated in
terms of their correlation with human assessments,
using Pearson’s r correlation coefficient. The Met-
ricsMATR and MTC4 datasets and their adequacy
assessments are used as evaluation data. Note that
the adequacy assessment is in fact an evaluation
method for the sentence level. We have to rely on
an assumption that this evaluation data may emulate
document-level quality, since its MT outputs were
assessed sentence by sentence in sequence as in a
document. All experiments are performed under a
setting of multiple reference translations.

The integration of the two ratios into an evaluation
metric follows a simple weighted average approach.
A hybrid metric H is formulated as

H = α mdoc + (1− α) mseg

where mdoc refers to the document-level feature in
2METEOR 1.0 with default parameters optimized over the

adequacy assessments.

use (i.e., LC or RC), mseg to a sentence-level met-
ric, and α to a weight controlling their proportion.
The MetricsMATR dataset is used as training data to
optimize the values of α for different metrics, while
the MTC4 is used as evaluation data. Table 4 shows
the optimized weights for the metrics for evaluation
at the document level.

Metrics RC LC

BLEU 0.28 0.29
TER 0.40 0.38
METEOR 0.19 0.18

Table 4: Optimized weights for the integration of dis-
course feature into sentence-level metrics

Table 5 presents the correlation rates of evalua-
tion metrics obtained in our experiments under dif-
ferent settings, with their 95% conference intervals
(CI) provided. The LC and RC ratios are found to
have strong correlations with human assessments at
the system level even when used alone, highly com-
parable to BLEU and TER. At the document level,
however, they are not as good as the others. They
show their advantages when integrated into other
metrics, especially BLEU and TER. LC raises the
correlation of BLEU from 0.447 to 0.472 and from
0.861 to 0.905 at the document and system levels,
respectively. It improves TER even more signifi-
cantly, in that the correlation rates are boosted up
from -0.326 to -0.390 at the document level, and
even from -0.601 to -0.763 at the system level. Since
there are only six systems in the MTC4 data, such a
dramatic change may not be as meaningful as the
smooth improvement at the document level. ME-
TEOR is a special case in this experiment. Its corre-
lation cannot be improved by integrating LC orRC,
and is even slightly dropped at the document level.
The cause for this is yet to be identified. Neverthe-
less, these results confirm the close relationship of
an MT system’s capability to appropriately generate
lexical cohesion devices with the quality of its out-
put.

Table 6 presents the Pearson correlations between
evaluation results at the document level using dif-
ferent evaluation metrics in the MTC4 data. It il-
lustrates the homogeneity/heterogeneity of different
metrics and helps explain the performance change
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Document System
Metrics Correlation 95% CI Correlation 95% CI
RC 0.243 (0.167, 0.316) 0.873 (0.211, 0.985)
LC 0.267 (0.192, 0.339) 0.818 (0.020, 0.979)
BLEU 0.447 (0.381, 0.508) 0.861 (0.165, 0.984)
BLEU+RC 0.463 (0.398, 0.523) 0.890 (0.283, 0.987)
BLEU+LC 0.472 (0.408, 0.531) 0.905 (0.352, 0.989)
TER -0.326 (-0.253, -0.395) -0.601 (-0.411, -0.949)
TER+RC -0.370 (-0.299, -0.437) -0.740 (-0.179, -0.969)
TER+LC -0.390 (-0.320, -0.455) -0.763 (-0.127, -0.972)
METEOR 0.557 (0.500, 0.609) 0.961 (0.679, 0.995)
METEOR+RC 0.555 (0.498, 0.608) 0.960 (0.672, 0.995)
METEOR+LC 0.556 (0.499, 0.609) 0.962 (0.687, 0.995)

Table 5: Correlation of different metrics with adequacy assessment in MTC4 data

BLEU 1
TER -0.699 1
METEOR 0.834 -0.510 1
RC 0.287 -0.204 0.405 1
LC 0.263 -0.097 0.437 0.736 1

BLEU TER METEOR RC LC

Table 6: Correlation between the evaluation results of different metrics

by combining sentence- and document-level met-
rics. The table shows that the two ratios LC and
RC highly correlate with each other, as if they are
two variants of quantifying lexical cohesion devices.
The three sentence-level metrics, BLEU, TER and
METEOR, also show strong correlations with each
other, especially between BLEU and METEOR. The
correlations are generally weaker between sentence-
and document-level metrics, for instance, 0.263 be-
tween BLEU and LC and only -0.097 between TER
and LC, showing that they are quite heterogeneous
in nature. This accounts for the significant perfor-
mance gain from their combination: their difference
allows them to complement each other. It is also
worth noting that between METEOR and LC the
correlation of 0.437 is mildly strong, explaining the
negative result of their integration. On the one hand,
lexical cohesion is word choice oriented, which is
only sensitive to the reiteration and semantic relat-
edness of words in MT output. On the other hand,
METEOR is strong in unigram matching, with mul-
tiple strategies to maximize the matching rate be-

tween MT output and reference translation. In this
sense they are homogeneous to a certain extent, ex-
plaining the null effect of their combination.

6 Discussion and Conclusion

In this study we have attempted to address the prob-
lem that most existing MT evaluation metrics dis-
regard the connectivity of sentences in a document.
By focusing on a typical type of cohesion, i.e., lexi-
cal cohesion, we have shown that its use frequency is
a significant factor to differentiate HT from MT and
MT outputs of different quality from each other. The
high correlation rate of its use with translation ade-
quacy also suggests that the more lexical cohesion
devices in use, the better the quality of MT output.
Accordingly we have used two ratios, LC and RC,
to capture such correlativity. Our experimental re-
sults have confirmed the effectiveness of this feature
in accounting for the document-level quality of MT
output. The performance of two evaluation metrics,
BLEU and TER, is highly improved through incor-
porating this document-level feature, in terms of the
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change of their correlation with human assessments.
This finding is positive and sheds light on a region

of MT research that is still severely under-explored.
Our approach to extending the granularity of MT
evaluation from sentence to document through lex-
ical cohesion is highly applicable to different lan-
guages. It has a relatively weak demand for lan-
guage resource in comparison with the processing of
other discourse features like grammatical cohesion.
It is also much unaffected by grammatical problems
or errors commonly seen in natural languages and,
in particular, MT outputs.

Our future work will continue to explore the re-
lationship of lexical cohesion to translation quality,
so as to identify, apart from its use frequency, other
significant aspects for MT evaluation at the docu-
ment level. A frequent use of cohesion devices in
a text is not necessarily appropriate, because an ex-
cess of them may decrease the quality and readabil-
ity of a text. Human writers can strategically change
the ways of expression to achieve appropriate coher-
ence and also avoid overuse of the same lexical item.
To a certain extent, this is one of the causes for the
unnaturalness of MT output: it may contain a large
number of lexical cohesion devices which are sim-
ply direct translation of those in a source text that
do not fit in the target context. How to use lexical
cohesion devices appropriately instead of frequently
is thus an important issue to tackle before we can
adopt them in MT and MT evaluation by a suitable
means.
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Dept. of Computer Science

University of Maryland
College Park, MD

{amit,hal}@umiacs.umd.edu

Raul Guerra
Dept. of Computer Science

University of Maryland
College Park, MD

rguerra@cs.umd.edu

Abstract

Many natural language processing problems
involve constructing large nearest-neighbor
graphs. We propose a system called FLAG
to construct such graphs approximately from
large data sets. To handle the large amount
of data, our algorithm maintains approximate
counts based on sketching algorithms. To
find the approximate nearest neighbors, our
algorithm pairs a new distributed online-PMI
algorithm with novel fast approximate near-
est neighbor search algorithms (variants of
PLEB). These algorithms return the approxi-
mate nearest neighbors quickly. We show our
system’s efficiency in both intrinsic and ex-
trinsic experiments. We further evaluate our
fast search algorithms both quantitatively and
qualitatively on two NLP applications.

1 Introduction

Many natural language processing (NLP) prob-
lems involve graph construction. Examples in-
clude constructing polarity lexicons based on lexi-
cal graphs from WordNet (Rao and Ravichandran,
2009), constructing polarity lexicons from web data
(Velikovich et al., 2010) and unsupervised part-of-
speech tagging using label propagation (Das and
Petrov, 2011). The later two approaches con-
struct nearest-neighbor graphs between word pairs
by computing nearest neighbors between word pairs
from large corpora. These nearest neighbors form
the edges of the graph, with weights given by the
distributional similarity (Turney and Pantel, 2010)
between terms. Unfortunately, computing the distri-
butional similarity between all words in a large vo-
cabulary is computationally and memory intensive

when working with large amounts of data (Pantel et
al., 2009). This bottleneck is typically addressed by
means of commodity clusters. For example, Pantel
et al. (2009) compute distributional similarity be-
tween 500 million terms over a 200 billion words in
50 hours using 100 quad-core nodes, explicitly stor-
ing a similarity matrix between 500 million terms.

In this work, we propose Fast Large-Scale Ap-
proximate Graph (FLAG) construction, a sys-
tem that constructs a fast large-scale approximate
nearest-neighbor graph from a large text corpus. To
build this system, we exploit recent developments
in the area of approximation, randomization and
streaming for large-scale NLP problems (Ravichan-
dran et al., 2005; Goyal et al., 2009; Levenberg et
al., 2010). More specifically we exploit work on Lo-
cality Sensitive Hashing (LSH) (Charikar, 2002) for
computing word-pair similarities from large text col-
lections (Ravichandran et al., 2005; Van Durme and
Lall, 2010). However, Ravichandran et al. (2005)
approach stored an enormous matrix of all unique
words and their contexts in main memory, which is
infeasible for very large data sets. A more efficient
online framework to locality sensitive hashing (Van
Durme and Lall, 2010; Van Durme and Lall, 2011)
computes distributional similarity in a streaming set-
ting. Unfortunately, their approach can handle only
additive features like raw-counts, and not non-linear
association scores like pointwise mutual information
(PMI), which generates better context vectors for
distributional similarity (Ravichandran et al., 2005;
Pantel et al., 2009; Turney and Pantel, 2010).

In FLAG, we first propose a novel distributed
online-PMI algorithm (Section 3.1). It is a stream-
ing method that processes large data sets in one pass
while distributing the data over commodity clusters
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and returns context vectors weighted by pointwise
mutual information (PMI) for all the words. Our
distributed online-PMI algorithm makes use of the
Count-Min (CM) sketch algorithm (Cormode and
Muthukrishnan, 2004) (previously shown effective
for computing distributional similarity in our ear-
lier work (Goyal and Daumé III, 2011)) to store the
counts of all words, contexts and word-context pairs
using only 8GB of main memory. The main motiva-
tion for using the CM sketch comes from its linear-
ity property (see last paragraph of Section 2) which
makes CM sketch to be implemented in distributed
setting for large data sets. In our implementation,
FLAG scaled up to 110 GB of web data with 866
million sentences in less than 2 days using 100 quad-
core nodes. Our intrinsic and extrinsic experiments
demonstrate the effectiveness of distributed online-
PMI.

After generating context vectors from distributed
online-PMI algorithm, our goal is to use them to find
fast approximate nearest neighbors for all words. To
achieve this goal, we exploit recent developments in
the area of existing randomized algorithms for ran-
dom projections (Achlioptas, 2003; Li et al., 2006),
Locality Sensitive Hashing (LSH) (Charikar, 2002)
and improve on previous work done on PLEB (Point
Location in Equal Balls) (Indyk and Motwani, 1998;
Charikar, 2002). We propose novel variants of PLEB

to address the issue of reducing the pre-processing
time for PLEB. One of the variants of PLEB (FAST-
PLEB) with considerably less pre-processing time
has effectiveness comparable to PLEB. We evaluate
these variants of PLEB both quantitatively and qual-
itatively on large data sets. Finally, we show the ap-
plicability of large-scale graphs built from FLAG on
two applications: the Google-Sets problem (Ghahra-
mani and Heller, 2005), and learning concrete and
abstract words (Turney et al., 2011).

2 Count-Min sketch

The Count-Min (CM) sketch (Cormode and
Muthukrishnan, 2004) belongs to a class of ‘sketch’
algorithms that represents a large data set with a
compact summary, typically much smaller than the
full size of the input by processing the data in
one pass. The following surveys comprehensively
review the streaming literature (Rusu and Dobra,

2007; Cormode and Hadjieleftheriou, 2008) and
sketch techniques (Charikar et al., 2004; Li et al.,
2008; Cormode and Muthukrishnan, 2004; Rusu
and Dobra, 2007). In our another recent paper
(Goyal et al., 2012), we conducted a systematic
study and compare many sketch techniques which
answer point queries with focus on large-scale NLP
tasks. In that paper, we empirically demonstrated
that CM sketch performs the best among all the
sketches on three large-scale NLP tasks.

CM sketch uses hashing to store the approximate
frequencies of all items from the large data set onto a
small sketch vector that can be updated and queried
in constant time. CM has two parameters ε and δ: ε
controls the amount of tolerable error in the returned
count and δ controls the probability with which the
error exceeds the bound ε.

CM sketch with parameters (ε,δ) is represented
as a two-dimensional array with width w and depth
d; where w and d depends on ε and δ respectively.
We set w=2

ε and d=log(1
δ ). The depth d denotes

the number of pairwise-independent hash functions
employed by the CM sketch; and the width w de-
notes the range of the hash functions. Given an
input stream of items of length N (x1, x2 . . . xN ),
each of the hash functions hk:{x1, x2 . . . xN} →
{1 . . . w},∀1 ≤ k ≤ d, takes an item from the in-
put stream and maps it into a position indexed by the
corresponding hash function.

UPDATE: For each new item “x” with count c, the
sketch is updated as:

sketch[k, hk(x)]← sketch[k, hk(x)]+c, ∀1 ≤ k ≤ d.
QUERY: Since multiple items can be hashed to the
same index for each row of the array, hence the
stored frequency in each row is guaranteed to over-
estimate the true count, which makes it a biased esti-
mator. Therefore, to answer the point query (QUERY

(x)), CM returns the minimum over all the d posi-
tions indexed by the hash functions.

ĉ(x) = mink sketch[k, hk(x)], ∀1 ≤ k ≤ d.

All reported frequencies by CM exceed the true
frequencies by at most εN with probability of at
least 1 − δ. The space used by the algorithm is
O(1

ε log 1
δ ). Constant time of O(log(1

δ )) per each
update and query operation.

CM sketch has a linearity property which states
that: Given two sketches s1 and s2 computed (us-
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ing the same parameters w and d, and the same set
of d hash functions) over different input streams; the
sketch of the combined data stream can be easily ob-
tained by adding the individual sketches in O(d×w)
time which is independent of the stream size. This
property enables sketches to be implemented in dis-
tributed setting, where each machine computes the
sketch over a small portion of the corpus and makes
it scalable to large datasets.

The idea of conservative update (Estan and Vargh-
ese, 2002) is to only increase counts in the sketch
by the minimum amount needed to ensure that the
estimate remains accurate. We (Goyal and Daumé
III, 2011) used CM sketch with conservative update
(CM-CU sketch) to show that the update reduces
the amount of over-estimation error by a factor of
at least 1.5 on NLP data and showed the effective-
ness of CM-CU on three important NLP tasks. The
QUERY procedure for CM-CU is identical to Count-
Min. However, to UPDATE an item “x” with fre-
quency c, first we compute the frequency ĉ(x) of this
item from the existing data structure:

(∀1 ≤ k ≤ d, ĉ(x) = mink sketch[k, hk(x)])
and the counts are updated according to:
sketch[k, hk(x)]← max{sketch[k, hk(x)], ĉ(x) + c}.

The intuition is that, since the point query returns
the minimum of all the d values, we will update
a counter only if it is necessary as indicated by
the above equation. This heuristic avoids the
unnecessary updating of counter values to reduce
the over-estimation error.

3 FLAG: Fast Large-Scale Approximate
Graph Construction

We describe a system, FLAG, for generating a near-
est neighbor graph from a large corpus. For ev-
ery node (word), our system returns top l approxi-
mate nearest neighbors, which implicitly defines the
graph. Our system operates in four steps. First, for
every word “z”, our system generates a sparse con-
text vector (〈(c1, v1); (c2, v2) . . . ; (cd, vd)〉) of size
d where cd denotes the context and vd denotes the
PMI (strength of association) between the context
cd and the word “z”. The context can be lexical,
semantic, syntactic, and/or dependency units that
co-occur with the word “z”. We compute this ef-

ficiently using a new distributed online Pointwise
Mutual Information algorithm (Section 3.1). Sec-
ond, we project all the words with context vector
size d onto k random vectors and then binarize these
random projection vectors (Section 3.2). Third, we
propose novel variants of PLEB (Section 3.3) with
less pre-processing time to represent data for fast
query retrieval. Fourth, using the output of vari-
ants of PLEB, we generate a small set of potential
nearest neighbors for every word “z” (Section 3.4).
From this small set, we can compute the Hamming
distance between every word “z” and its potential
nearest neighbors to return the l nearest-neighbors
for all unique words.

3.1 Distributed online-PMI

We propose a new distributed online Pointwise Mu-
tual Information (PMI) algorithm motivated by the
online-PMI algorithm (Van Durme and Lall, 2009b)
(page 5). This is a streaming algorithm which pro-
cesses the input corpus in one pass. After one
pass over the data set, it returns the context vec-
tors for all query words. The original online-PMI
algorithm was used to find the top-d verbs for a
query verb using the highest approximate online-
PMI values using a Talbot-Osborne-Morris-Bloom1

(TOMB) Counter (Van Durme and Lall, 2009a).
Unfortunately, this algorithm is prohibitively slow
when computing contexts for all words, rather than
just a small query set. This motivates us to propose
a distributed variant that enables us to scale to large
data and large vocabularies.2

We make three modifications to the original
online-PMI algorithm and refer to it as the “modified
online-PMI algorithm” shown in Algorithm 1. First,
we use Count-Min with conservative update (CM-
CU) sketch (Goyal and Daumé III, 2011) instead of
TOMB. We prefer CM because it enables distribu-
tion due to its linearity property (Section 2) and foot-
note #1. Distribution using TOMB is not known in
literature and we will like to explore that direction in
future. Second, we store the counts of words (“z”),
contexts (“y”) and word-context pairs all together in

1TOMB is a variant of CM sketch which focuses on reduc-
ing the bit size of each counter (in addition to the number of
counters) at the cost of incurring more error in the counts.

2The serialized online-PMI algorithm took a week to gener-
ate context vectors for all the words from GW (Section 4.1).
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Algorithm 1 Modified online-PMI
Require: Data set D, buffer size B
Ensure: context vectors V , mapping word z to d-best

contexts in priority queue 〈 y,PMI(z, y)〉
1: initialize CM-CU sketch to store approximate counts

of words, context and word-context pairs
2: for each buffer B in the data set D do
3: initialize S to store 〈z,y〉 observed in B
4: for 〈z,y〉 in B do
5: set S (〈z,y〉) =1
6: insert z, y and pair 〈z,y〉 in sketch
7: end for
8: for x in set S do
9: recompute vectors V(x) using current contexts

in priority queue and {y|S(〈z,y〉)=1}
10: end for
11: end for
12: return context vectors V

the CM-CU sketch (in the original online-PMI al-
gorithm, exact counts of words and contexts were
stored in a hash table; only the pairs were stored in
the TOMB data structure). Third, in the original al-
gorithm, for each “z” a vector of top-d contexts are
modified at the end of each buffer (refer Algorithm
1). However, in our algorithm, we only modify the
list of those “z”’s which appeared in the recent buffer
rather than modifying for all the “z”’s (Note, if “z”
does not appear in the recent buffer, then its top-d
contexts cannot be changed. Hence, we only modify
those “z”s which appear in the recent buffer).

In our distributed online-PMI algorithm, first we
split the data into chunks of 10 million sentences.
Second, we run the modified online-PMI algorithm
on each chunk in distributed setting. This stores
counts of all words (“z”), contexts (“y”) and word-
context pairs in the CM-CU sketch, and store top-d
contexts for each word in priority queues. In third
step, we merge all the sketches using linearity prop-
erty to sum the counts of the words, contexts and
word-context pairs. Additionally we merge the lists
of top-d contexts for each word. In the last step, we
use the single merged sketch and merged top-d con-
texts list to generate the final distributed online-PMI
top-d contexts list.

It takes around one day to compute context vec-
tors for all the words from a chunk of 10 million
sentences using first step of distributed online-PMI.
We generated context vectors for all the 87 chunks

(110 GB data with 866 million sentences: see Table
1) in one day by running one process per chunk over
a cluster. The first step of the algorithm involves
traversing the data set and is the most time intensive
step. For the second step, the merging of sketches is
fast, since sketches are two dimensional array data
structures (we used the sketch of size 2 billion coun-
ters with 3 hash functions). Merging the lists of top-
d contexts for each word is embarrassingly parallel
and fast. The last step to generate the final top-d
contexts list is again embarrassingly parallel and fast
and takes couple of hours to generate the top-d con-
texts for all the words from all the chunks. If im-
plemented serially the “modified online-PMI algo-
rithm” on 110 GB data with 866 million sentences
would take approximately 3 months.

The downside of the distributed online-PMI is that
it splits the data into small chunks and loses infor-
mation about the global best contexts for a word
over all the chunks. The algorithm locally computes
the best contexts for each chunk, that can be bad if
the algorithm misses out globally good contexts and
that can affect the accuracy of downstream applica-
tion. We will demonstrate in our experiments (Sec-
tion 4.2) by using distributed online-PMI, we do not
lose any significant information about global con-
texts and perform comparable to offline-PMI over
an intrinsic and extrinsic evaluation.

3.2 Dimensionality Reduction from RD to Rk

We are given context vectors for Z words, our goal
is to use k random projections to project the con-
text vectors from RD to Rk. There are total D
unique contexts (D >> k) for all Z words. Let
(〈(c1, v1); (c2, v2) . . . ; (cd, vd)〉) be sparse context
vectors of size d for Z words. For each word, we use
hashing to project the context vectors onto k direc-
tions. We use k pairwise independent hash functions
that maps each of the d context (cd) dimensions onto
βd,k ∈ {−1,+1}; and compute inner product be-
tween βd,k and vd. Next, ∀k,

∑
d βd,k.vd returns the

k random projections for each word “z”. We store
the k random projections for all words (mapped to
integers) as a matrix A of size of k × Z.

The mechanism described above generates ran-
dom projections by implicitly creating a random
projection matrix from a set of {−1,+1}. This
idea of creating implicit random projection matrix
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1 2 · · · Z

k1 〈z1, 26〉 〈z2, 80〉 · · · 〈zZ , 3〉
k2 〈z1,−28〉 〈z2, 6〉 · · · 〈zZ , 111〉
...

...
...

. . .
...

kK 〈z1, 78〉 〈z2, 69〉 · · · 〈zZ , 92〉

 Sort
=⇒

(a) Matrix A


Smallest to Largest

〈zZ , 3〉 〈z1, 26〉 · · · 〈zm, 700〉
〈zr,−50〉 〈z2, 6〉 · · · 〈zZ , 111〉

...
...

. . .
...

〈z1, 78〉 〈zZ , 92〉 · · · 〈zu, 432〉

 ⇒

(b) Matrix A


1 2 · · · Z

zZ z1 · · · zm
zr z2 · · · zZ
...

...
. . .

...
z1 zZ · · · zu

 ⇒

(c) Matrix A


z1 z2 · · · zZ

2 60 · · · 1
55 2 · · · Z
...

...
. . .

...
1 90 · · · 2


(d) Matrix C

Figure 1: First matrix pairs the words 1 · · ·Z and their random projection values. Second matrix sorts each row by the random
projection values from smallest to largest. Third matrix throws away the projection values leaving only the words. Fourth matrix
maps the words 1 · · ·Z to their sorted position in the third matrix for each k. This allows constant query time for all the words.

is motivated by the work on stable random projec-
tions (Li et al., 2006; Li et al., 2008), Count sketch
(Charikar et al., 2004), feature hashing (Weinberger
et al., 2009) and online Locality Sensitive Hashing
(LSH) (Van Durme and Lall, 2010). The idea of gen-
erating random projections from the set {−1,+1}
was originally proposed by Achlioptas (2003).

Next we create a binary matrix B using matrix
A by taking sign of each of the entries of the ma-
trix A. If A(i, j) ≥ 0, then B(i, j) = 1; else
B(i, j) = 0. This binarization creates Locality Sen-
sitive Hash (LSH) function that preserves the cosine
similarity between every pair of word vectors. This
idea was first proposed by Charikar (2002) and used
in NLP for large-scale noun clustering (Ravichan-
dran et al., 2005). However, in large-scale noun
clustering work, their approach had to store the ran-
dom projection matrix of size D × k; where D de-
notes the number of all unique contexts (which is
generally large and D >> Z) and in this paper, we
do not explicitly require storing a random projection
matrix.

3.3 Representation for Fast-Search
We describe three approaches to represent the data
(matrix A and B from Section 3.2) in such a manner
that finding nearest neighbors is fast. These three
approaches differ in amount of pre-processing time.
First, we propose a naive baseline approach using
random projections independently with the best pre-
processing time. Second, we describe PLEB (Point
Location in Equal Balls) (Indyk and Motwani, 1998;
Charikar, 2002) with the worst pre-processing time.
Third, we propose a variant of PLEB to reduce its
pre-processing time.

3.3.1 Independent Random Projections (IRP)
Here, we describe a naive baseline approach to

arrange nearest neighbors next to each other by us-

ing Independent Random Projections (IRP). In this
approach, we pre-process the matrix A. First for
matrix A, we pair the words z1 · · · zZ and their ran-
dom projection values as shown in Fig. 1(a). Sec-
ond, we sort the elements of each row of matrix A
by their random projection values from smallest to
largest (shown in Fig. 1(b)). The sorting step takes
O(ZlogZ) time (We can assume k to be a constant).
The sorting operation puts all the nearest neighbor
words (for each k independent projections) next to
each other. After sorting the matrix A, we throw
away the projection values leaving only the words
(see Fig. 1(c)). To search for a word in matrix A
in constant time, we create another matrix C of size
(k × Z) (see Fig. 1(d)). Matrix C maps the words
z1 · · · zZ to their sorted position in the matrix A (see
Fig. 1(c)) for each k.

3.3.2 PLEB

PLEB (Point Location in Equal Balls) was first
proposed by Indyk and Motwani (1998) and further
improved by Charikar (2002). The improved PLEB

algorithm puts in operation all k random projections
together. It randomly permutes the ordering of k bi-
nary LSH bits (stored in matrix B) for all the words
p times. For each permutation it sorts all the words
lexicographically based on their permuted LSH rep-
resentation of size k. The sorting operation puts all
the nearest neighbor words (using k projections to-
gether) next to each other for all the permutations.
In practice p is generally large, Ravichandran et al.
(2005) used p = 1000 in their work.

In our implementation of PLEB, we have a matrix
A of size (p × Z) similar to the first matrix in Fig.
1(a). The main difference to the first matrix in Fig.
1(a) is that bit vectors of size k are used for sorting
rather than using scalar projection values. Similar to
Fig. 1(c) after sorting, bit vectors are discarded and
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a matrix C of size (p× Z) is used to map the words
1 · · ·Z to their sorted position in the matrixA. Note,
in IRP approach, the size of A and C matrix is (k ×
Z). In PLEB generating random permutations and
sorting the bit vectors of size k involves worse pre-
processing time than using IRP. However, spending
more time in pre-processing leads to finding better
approximate nearest neighbors.

3.3.3 FAST-PLEB

To reduce the pre-processing time for PLEB, we
propose a variant of PLEB (FAST-PLEB). In PLEB,
while generating random permutations, it uses all
the k bits. In this variant, for each random permu-
tation we randomly sample without replacement q
(q << k) bits out of k. We use q bits to repre-
sent each permutation and sort based on these q bits.
This makes pre-processing faster for PLEB. Section
4.3 shows that FAST-PLEB only needs q = 10 to
perform comparable to PLEB with q = 3000 (that
makes FAST-PLEB 300 times faster than PLEB).
Here, again we store matrices A and C of size
(p× Z).

3.4 Finding Approximate Nearest Neighbors

The goal here is to exploit three representations dis-
cussed in Section 3.3 to find approximate nearest
neighbors quickly. For all the three methods (IRP,
PLEB, FAST-PLEB), we can use the same fast ap-
proximate search which is simple and fast. To search
a word “z”, first, we can look up matrix C to locate
the k positions where “z” is stored in matrix A. This
can be done in constant time (Again assuming k (for
IRP) and p (for PLEB and FAST-PLEB) to be a con-
stant.). Once, we find “z” in each row, we can select
b (beam parameter) neighbors (b/2 neighbors from
left and b/2 neighbors from right of the query word.)
for all the k or p rows. This can be done in constant
time (Assuming k, p and b to be constants.). This
search procedure produces a set of bk (IRP) or bp
(PLEB and FAST-PLEB) potential nearest neighbors
for a query word “z”. Next, we compute Hamming
distance between query word “z” and the set of po-
tential nearest neighbors from matrix B to return l
closest nearest neighbors. For computing hamming
distance, all the approaches discussed in Section 3.3
require all k random projection bits.

4 Experiments

We evaluate our system FLAG for fast large-scale
approximate graph construction. First, we show that
using distributed online-PMI algorithm is as effec-
tive as offline-PMI. Second, we compare the approx-
imate nearest neighbors lists generated by FLAG
against the exact nearest neighbor lists. Finally, we
show the quality of our approximate similarity lists
generated by FLAG from the web corpus.

4.1 Experimental Setup
Data sets: We use two data sets: Gigaword (Graff,
2003) and a copy of news web (Ravichandran et
al., 2005). For both the corpora, we split the text
into sentences, tokenize and convert into lower-case.
To evaluate our approximate graph construction, we
evaluate on three data sets: Gigaword (GW), Giga-
word + 50% of web data (GWB50) and Gigaword
+ 100% ((GWB100)) of web data. Corpus statistics
are shown in Table 1. We define the context for a
given word “z” as the surrounding words appearing
in a window of 2 words to the left and 2 words to
the right. The context words are concatenated along
with their positions -2, -1, +1, and +2.

Corpus GW GWB50 GWB100
Unzipped 12 60 110
Size (GB)

# of sentences 57 463 866
(Million)
# of tokens 2.1 10.9 20.0
(Billion)

Table 1: Corpus Description

4.2 Evaluating Distributed online-PMI
Experimental Setup: First we do an intrinsic
evaluation to quantitatively evaluate the distributed
online-PMI vectors against the offline-PMI vectors
computed from Gigaword (GW). Offline-PMI com-
puted from the sketches have been shown as effec-
tive as exact PMI by Goyal and Daumé III (2011).
To compute offline-PMI vectors, we do two passes
over the corpus. In the first pass, we store the counts
of words, contexts and word-context pairs computed
from GW in the Count-Min with conservative up-
date (CM-CU) sketch. We use the CM-CU sketch
of size 2 billion counters (bounded 8 GB memory)
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with 3 hash functions. In second pass, using the
aggregated counts from the sketch, we generate the
offline-PMI vectors of size d = 1000 for every word.
For rest of this paper for distributed online-PMI, we
set d = 1000 and the size of the buffer=10, 000 and
we split the data sets into small chunks of 10 million
sentences.

Intrinsic Evaluation: We use four kinds of mea-
sures: precision (P), recall (R), f-measure (F1) and
Pearson’s correlation (ρ) to measure the overlap in
the context vectors obtained using online and offline
PMI. ρ is computed between contexts that are found
in offline and online context vectors. We do this
evaluation on 447 words selected from the concate-
nation of four test-sets mentioned in the next para-
graph. On these 447 words, we achieve an average P
of .97, average R of .96 and average F1 of .97 and a
perfect average ρ of 1. This evaluation show that the
vectors obtained using online-PMI are as effective
as offline-PMI.

Extrinsic Evaluation: We also compare online-
PMI effectiveness on four test sets which consist of
word pairs, and their corresponding human rank-
ings. We generate the word pair rankings using
online-PMI and offline-PMI strategies. We report
the Pearson’s correlation (ρ) between the human and
system generated similarity rankings. The four test
sets are: WS-353 (Finkelstein et al., 2002) is a set
of 353 word pairs. WS-203: A subset of WS-353
with 203 word pairs (Agirre et al., 2009). RG-65:
(Rubenstein and Goodenough, 1965) has 65 word
pairs. MC-30: A subset of RG-65 dataset with 30
word pairs (Miller and Charles, 1991).

The results in Table 2 shows that by using dis-
tributed online-PMI (by making a single pass over
the corpus) is comparable to offline-PMI (which is
computed by making two passes over the corpus).

For generating context vectors from GW, for both
offline-PMI and online-PMI, we use a frequency
cutoff of 5 for word-context pairs to throw away the
rare terms as they are sensitive to PMI (Church and
Hanks, 1989). Next, FLAG generates online-PMI
vectors from GWB50 and GWB100 and uses fre-
quency cutoffs of 15 and 25. The higher frequency
cutoffs are selected based on the intuition that, with
more data, we get more noise, and hence not con-
sidering word-context pairs with frequency less than
25 will be better for the system. As FLAG is go-

ing to use the context vectors to find nearest neigh-
bors, we also throw away all those words which have
≤ 50 contexts associated with them. This generates
context vectors for 57, 930 words from GW; 95, 626
from GWB50 and 106, 733 from GWB100.

Test Set WS-353 WS-203 RG-65 MC-30
Offline-PMI .41 .55 .40 .52
Online-PMI .41 .56 .39 .51

Table 2: Evaluating word pairs ranking with online and offline
PMI. Scores are evaluated using ρ metric.

10 25 50 100
R ρ R ρ R ρ R ρ

IRP .40 .53 .38 .51 .35 .54 .34 .51
q=1 .24 .62 .20 .63 .18 .59 .17 .54
q=5 .47 .60 .43 .57 .40 .57 .37 .53
q=10 .53 .58 .49 .56 .45 .55 .42 .53
q=100 .53 .60 .50 .59 .46 .56 .43 .53
q=3000 .54 .58 .50 .59 .46 .56 .43 .54

Table 4: Varying parameter q for FAST-PLEB with fixed p =
1000, k = 3000 and b = 40. Results reported on recall and ρ.

4.3 Evaluating Approximate Nearest Neighbor
Experimental Setup: To evaluate approximate
nearest neighbor similarity lists generated by
FLAG, we conduct three experiments. We evaluate
all the three experiments on 447 words (test set) as
used in Section 4.2. For each word, both exact and
approximate methods return l = 100 nearest neigh-
bors. The exact similarity lists for 447 test words is
computed by calculating cosine similarity between
447 test words with respect to all other words. We
also compare the LSH (computed using Hamming
distance between all words and test set.) approxi-
mate nearest neighbor similarity lists against the ex-
act similarity lists. LSH provides an upper bound
on the performance of our approximate search rep-
resentations (IRP, PLEB, and FAST-PLEB) for fast-
search from Section 3.3) . We set the number of
projections k = 3000 for all three methods and for
PLEB and FAST-PLEB, we set number of permuta-
tions p = 1000 as used in large-scale noun cluster-
ing work (Ravichandran et al., 2005).

Evaluation Metric: We use two kinds of mea-
sures, recall and Pearson’s correlation to measure
the overlap in the approximate and exact similarity
lists. Intuitively, recall (R) captures the number of
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IRP PLEB FAST-PLEB
10 25 50 100 10 25 50 100 10 25 50 100

R ρ R ρ R ρ R ρ R ρ R ρ R ρ R ρ R ρ R ρ R ρ R ρ
LSH .55 .57 .52 .56 .49 .54 .46 .52 .55 .57 .52 .56 .49 .54 .46 .52 .55 .57 .52 .56 .49 .54 .46 .52
20 .29 .50 .26 .55 .25 .54 .24 .50 .50 .59 .45 .60 .41 .57 .37 .55 .48 .58 .42 .58 .38 .58 .35 .55
30 .36 .55 .33 .56 .31 .55 .30 .52 .53 .59 .48 .59 .44 .56 .41 .54 .51 .57 .47 .57 .42 .56 .40 .54
40 .40 .53 .38 .51 .35 .54 .34 .51 .54 .58 .50 .59 .46 .56 .43 .54 .53 .58 .49 .56 .45 .55 .42 .53
50 .44 .56 .42 .54 .39 .54 .37 .52 .54 .58 .51 .57 .47 .56 .44 .53 .54 .58 .50 .56 .46 .55 .44 .53
100 .53 .59 .49 .54 .46 .55 .43 .53 .55 .56 .52 .56 .48 .54 .46 .53 .55 .57 .52 .56 .48 .54 .46 .53

Table 3: Evaluation results on comparing LSH, IRP, PLEB, and FAST-PLEB with k = 3000 and b = {20, 30, 40, 50, 100} with
exact nearest neighbors over GW data set. For PLEB and FAST-PLEB, we set p = 1000 and for FAST-PLEB, we set q = 10. We
report results on recall (R) and ρ metric. For IRP, we sample first p rows and only use p rows rather than k.

GW GWB50 GWB100
10 25 50 100 10 25 50 100 10 25 50 100

R ρ R ρ R ρ R ρ R ρ R ρ R ρ R ρ R ρ R ρ R ρ R ρ
LSH .55 .57 .52 .56 .49 .54 .46 .52 .51 .55 .46 .54 .44 .52 .42 .48 .48 .58 .45 .52 .42 .49 .40 .47
IRP .40 .53 .37 .53 .35 .54 .34 .51 .29 .50 .27 .51 .25 .51 .24 .47 .26 .57 .24 .49 .23 .48 .22 .45

PLEB .54 .58 .50 .59 .46 .56 .43 .54 .46 .58 .42 .56 .38 .53 .36 .51 .44 .57 .40 .56 .36 .52 .33 .49
FAST-PLEB .53 .58 .49 .56 .45 .55 .42 .53 .46 .56 .41 .56 .37 .54 .35 .51 .43 .57 .38 .55 .35 .52 .32 .50

Table 5: Evaluation results on comparing LSH, IRP, PLEB, and FAST-PLEB with k = 3000, b = 40, p = 1000 and q = 10 with
exact nearest neighbors across three different data sets: GW, GWB50, and GWB100. We report results on recall (R) and ρ metric.
The gray color row is the system that we use for further evaluations.

nearest neighbors that are found in both the lists and
then Pearson’s (ρ) correlation captures if the rela-
tive order of these lists is preserved in both the sim-
ilarity lists. We also compute R and ρ at various
l = {10, 25, 50, 100}.

Results: For the first experiment, we evaluate
IRP, PLEB, and FAST-PLEB against the exact near-
est neighbor similarity lists. For IRP, we sample
first p rows and only use p rather than k, this en-
sures that all the three methods (IRP, PLEB, and
FAST-PLEB) take the same query time. We vary
the approximate nearest neighbor beam parameter
b = {20, 30, 40, 50, 100} that controls the number
of closest neighbors for a word with respect to each
independent random projection. Note, with increas-
ing b, our algorithm approaches towards LSH (com-
puting Hamming distance with respect to all the
words). For FAST-PLEB, we set q = 10 (q << k)
that is the number of random bits selected out of k to
generate p permuted bit vectors of size q. The results
are reported in Table 3, where the first row com-
pares the LSH approach against the exact similar-
ity list for test set words. Across three columns we
compare IRP, PLEB, and FAST-PLEB. For all meth-
ods, increasing b means better recall. If we move
down the table, with b = 100, IRP, PLEB, and FAST-

PLEB get results comparable to LSH (reaches an up-
per bound). However, using large b implies gener-
ating a long potential nearest neighbor list close to
the size of the unique context vectors. If we focus
on the gray color row with b = 40 (This will have
comparatively small potential list and return nearest
neighbors in less time), IRP has worse recall with
best pre-processing time. FAST-PLEB (q = 10) is
comparable to PLEB (using all bits q = 3000) with
pre-processing time 300 times faster than PLEB. For
rest of this work, FLAG will use FAST-PLEB as it
has best recall and pre-processing time with fixed
b = 40.

For the second experiment, we vary parameter
q = {1, 5, 10, 100, 3000} for FAST-PLEB in Table
4. Table 4 demonstrates using q = {1, 5} result in
worse recall, however using q = 5 for FAST-PLEB

is better than IRP. q = 10 has comparable recall
to q = {100, 3000}. For rest of this work, we fix
q = 10 as it has best recall and pre-processing time.

For the third experiment, we increase the size of
the data set across the Table 5. With the increase
in size of the data set, LSH, IRP, PLEB, and FAST-
PLEB (q = 10) have worse recall. The reason for
such a behavior is that the number of unique context
vectors is greater for big data sets. Across all the
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jazz yale soccer physics wednesday
reggae harvard basketball chemistry tuesday

rockabilly cornell hockey mathematics thursday
rock fordham lacrosse biology monday

bluegrass rutgers handball biochemistry friday
indie dartmouth badminton science saturday

baroque nyu softball microbiology sunday
ska ucla football geophysics yesterday

funk princeton tennis economics tues
banjo stanford wrestling psychology october
blues loyola rugby neuroscience week

Table 6: Sample Top 10 similarity lists returned by FAST-PLEB

with k = 3000, p = 1000, b = 40 and q = 10 from GWB100.

three data sets, FAST-PLEB has recall comparable to
PLEB with best pre-processing time. Hence, for the
next evaluation to show the quality of final lists we
use FAST-PLEB with q = 10 for GWB100 data set.

In Table 6, we list the top 10 most similar words
for some words found by our system FLAG using
GWB100 data set. Even though FLAG’s approxi-
mate nearest neighbor algorithm has less recall with
respect to exact but still the quality of these nearest
neighbor lists is excellent.

For the final experiment, we demonstrate the pre-
processing and query time results comparing LSH,
IRP, PLEB, and FAST-PLEB with k = 3000, p =
1000, b = 40 and q = 10 parameter settings. For
pre-processing timing results, we perform all the ex-
periments (averaged over 5 runs) on GWB100 data
set with 106, 733 words. The second pre-processing
step of the system FLAG (Section 3.2) that is di-
mensionality reduction from RD to Rk took 8.8
hours. The pre-processing time differences among
IRP, PLEB, and FAST-PLEB from third step (Section
3.3) are shown in second column of Table 7. Ex-
perimental results show that the naive baseline IRP

is the fastest and FAST-PLEB has 120 times faster
pre-processing time compared to PLEB.

For comparing query time among several meth-
ods, we evaluate over 447 words (Section 4.2). We
report average timing results (averaged over 10 runs
and 447 words) to find top 100 nearest neighbors for
single query word. The results are shown in third
column of Table 7. Comparing first and second rows
show that LSH is 87 times faster than computing
exact top-100 (cosine similarity) nearest neighbors.
Comparing second, third, fourth and fifth rows of the
table demonstrate that IRP, PLEB and FAST-PLEB

Methods Preprocessing Query (seconds)
Exact n/a 87
LSH 8.8 hours 0.59
IRP 7.5 minutes 0.28
PLEB 1.8 days 0.28
FAST-PLEB 22 minutes 0.26

Table 7: Preprocessing and query time results compar-
ing exact, LSH, IRP, PLEB, and FAST-PLEB methods on
GWB100 data set.

Language english chinese japanese spanish russian
Place africa america washington london pacific

Nationality american european french british western
Date january may december october june

Organization ford microsoft sony disneyland google

Table 8: Query terms for Google Sets Problem evaluation

methods are twice as fast as LSH.

5 Applications

We use the graph constructed by FLAG from
GWB100 data set (110 GB) by applying FAST-
PLEB with parameters k = 3000, p = 1000, q = 10
and b = 40. The graph has 106, 733 nodes (words),
with each node having 100 edges that denote the top
l = 100 approximate nearest neighbors associated
with each node. However, FLAG applied FAST-
PLEB (approximate search) to find these neighbors.
Therefore many of these edges can be noisy for our
applications. Hence for each node, we only consider
top 10 edges. In general for graph-based NLP prob-
lems; for example, constructing web-derived polar-
ity lexicons (Velikovich et al., 2010), top 25 edges
were used, and for unsupervised part-of-speech tag-
ging using label propagation (Das and Petrov, 2011),
top 5 edges were used.

5.1 Google Sets Problem

Google Sets problem (Ghahramani and Heller,
2005) can be defined as: given a set of query words,
return top t similar words with respect to query
words. To evaluate the quality of our approximate
large-scale graph, we return top 25 words which
have best aggregated similarity scores with respect
to query words. We take 5 classes and their query
terms (McIntosh and Curran, 2008) shown in Table
8 and our goal is to learn 25 new words which are
similar with these 5 query words.
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Language: german, french, estonian, hungarian, bulgarian
Place: scandinavia, mongolia, mozambique, zambia, namibia
Nationality: german, hungarian, estonian, latvian, lithuanian
Date: september, february, august, july, november
Organization: looksmart, hotbot, lycos, webcrawler, alltheweb

Table 9: Learned terms for Google Sets Problem

Concrete car, house, tree, horse, animal
seeds man, table, bottle, woman, computer

Abstract idea, bravery, deceit, trust, dedication
seeds anger, humour, luck, inflation, honesty

Table 10: Example seeds for bootstrapping.

We conduct a manual evaluation to directly mea-
sure the quality of returned words. We recruited 1
annotator and developed annotation guidelines that
instructed each recruiter to judge whether learned
values are similar to query words or not. Overall the
annotator found almost all the learned words to be
similar to the query words. However, the algorithm
can not differentiate between different senses of the
word. For example, “French” can be a language and
a nationality. Table 9 shows the top ranked words
with respect to query words.

5.2 Learning Concrete and Abstract Words

Our goal is to automatically learn concrete and ab-
stract words (Turney et al., 2011). We apply boot-
strapping (Kozareva et al., 2008) on the word graphs
by manually selecting 10 seeds for concrete and ab-
stract words (see Table 10). We use in-degree (sum
of weights of incoming edges) to compute the score
for each node which has connections with known
(seeds) or automatically labeled nodes, previously
exploited to learn hyponymy relations from the web
(Kozareva et al., 2008). We learn concrete and ab-
stract words together (known as mutual exclusion
principle in bootstrapping (Thelen and Riloff, 2002;
McIntosh and Curran, 2008)), and each word is as-
signed to only one class. Moreover, after each it-
eration, we harmonically decrease the weight of the
in-degree associated with instances learned in later
iterations. We add 25 new instances at each itera-
tion and ran 100 iterations of bootstrapping, yielding
2506 concrete nouns and 2498 abstract nouns. To
evaluate our learned words, we searched in WordNet
whether they had ‘abstraction’ or ’physical’ as their
hypernym. Out of 2506 learned concrete nouns,

Concrete: girl, person, bottles, wife, gentleman, mi-
crocomputer, neighbor, boy, foreigner, housewives,
texan, granny, bartender, tables, policeman, chubby,
mature, trees, mainframe, backbone, truck
Abstract: perseverance, tenacity, sincerity, profes-
sionalism, generosity, heroism, compassion, commit-
ment, openness, resentment, treachery, deception, no-
tion, jealousy, loathing, hurry, valour

Table 11: Learned concrete/abstract words.

1655 were found in WordNet. According to Word-
Net, 74% of those are concrete and 26% are ab-
stract. Out of 2498 learned abstract nouns, 942 were
found in WordNet. According to WordNet, 5% of
those are concrete and 95% are abstract. Table 11
shows the top ranked concrete and abstract words.

6 Conclusion

We proposed a system, FLAG which constructs
fast large-scale approximate graphs from large data
sets. To build this system we proposed a distributed
online-PMI algorithm that scaled up to 110 GB of
web data with 866 million sentences in less than 2
days using 100 quad-core nodes. Our both intrinsic
and extrinsic experiments demonstrated that online-
PMI algorithm not at all loses globally good con-
texts and perform comparable to offline-PMI. Next,
we proposed FAST-PLEB (a variant of PLEB) and
empirically demonstrated that it has recall compa-
rable to PLEB with 120 times faster pre-processing
time. Finally, we show the applicability of FLAG on
two applications: Google-Sets problem and learning
concrete and abstract words.

In future, we will apply FLAG to construct graphs
using several kinds of contexts like lexical, seman-
tic, syntactic and dependency relations or a combi-
nation of them. Moreover, we will apply graph theo-
retic models on graphs constructed using FLAG for
solving a large variety of NLP applications.
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Abstract

Short listings such as classified ads or product
listings abound on the web. If a computer can
reliably extract information from them, it will
greatly benefit a variety of applications. Short
listings are, however, challenging to process
due to their informal styles. In this paper, we
present an unsupervised information extrac-
tion system for short listings. Given a cor-
pus of listings, the system builds a seman-
tic model that represents typical objects and
their attributes in the domain of the corpus,
and then uses the model to extract informa-
tion. Two key features in the system are a se-
mantic parser that extracts objects and their at-
tributes and a listing-focused clustering mod-
ule that helps group together extracted tokens
of same type. Our evaluation shows that the
semantic model learned by these two modules
is effective across multiple domains.

1 Introduction

Short listings such as classified ads or product list-
ings are prevalent on the web. These texts are gen-
erally concise – around 10 words in length. Fig. 1
shows some example listings. Due to the recent ex-
plosive growth of such listings, extracting informa-
tion from them becomes crucial for tasks such as
faceted search and reasoning. For example, con-
sider an online shopping site on which information
about merchandises for sale is posted. Detecting
brands/styles/features that are frequently mentioned
in the postings would allow a company to design a
better marketing strategy.

Most Information Extraction (IE) techniques de-
veloped for formal texts, however, would be inap-
plicable to listings because of their informal and id-
iosyncratic styles. For example, typos, abbreviations
and synonyms often appear and should be resolved
(e.g., apartment/apt, bike/bicycle). Symbols could
have the special meanings (e.g., x in 2x2 in Fig. 1
indicates number of bedrooms and bathrooms). To-
kenization based only on space is insufficient (e.g.,
RawlingBaseball in Fig. 1). Multiwords such as
granite top should also be detected. Applying off-
the-shelf parsers is infeasible because of unusual
phrasal forms in most listings, such as a long se-
quence of nouns/adjectives (e.g., “New Paint Wood
Floors New Windows Gated Complex”)

To address these challenges, several approaches
have applied machine learning algorithms (Ghani et
al., 2006) (Putthividhya and Hu, 2011) or an external
knowledge base (Michelson and Knoblock, 2005).
These approaches, however, commonly require hu-
man supervision to produce training data or to build
a knowledge base. This is expensive, requiring re-
peated manual effort whenever a new domain or a
new set of information to be extracted is introduced.

In this paper, we present an unsupervised IE sys-
tem for listings. The system extracts tokens from
a corpus of listings and then clusters tokens of
the same types, where each resulting cluster cor-
responds to an information type (e.g., size, brand,
etc.). For formal texts, contexts (e.g., surrounding
words) have been a major feature for word cluster-
ing (Turney and Pantel, 2010). This feature alone,
however, is insufficient for short listings because of
lack of contextual clues in short listings.
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2x2 Charming Condo – 1515 Martin Av-
enue near Downtown (from Craigslist)

HousingType: Condo, BedroomNum: 2, BathroomNum: 2, Lo-
cation: 1515 Martin Avenue, Neighborhood: Downtown

RawlingsBaseball Gloves Pro Preferred
Black 12” (from EBay)

ProductType: Gloves, Brand: Rawlings, Sport: Baseball, Color:
Black, Size: 12”, SeriesName: Pro Preferred

LG 32” 1080p LCD TV – $329 @
BestBuy (from FatWallet)

Product Type: TV, Brand: Panasonic, Size: 32”, Resolution :
1080P, DisplayTechnology: LCD, Price 329$, Seller: Best Buy

Figure 1: Example short listings and the information extracted from them.

To address this limitation of context-based clus-
tering, we first identify common types of informa-
tion (main objects and their attributes) represented
in listings and apply customized clustering for these
types. Specifically, we define a semantic model
to explicitly represent these information types, and
based on the semantic model, develop two compo-
nents to improve clustering – a shallow semantic
parser and listing-focused clustering module. The
semantic parser specifically focuses on extracting
main objects and the listing-focused clustering mod-
ule helps group together extracted tokens of the
same type.

Our evaluation shows that our two main con-
tributions (shallow semantic parser and listing-
focused clustering) significantly improve perfor-
mance across three different domains – Craigslist,
EBay, and FatWallet. Our system achieves .50∼.65
F1-score for the EBay and the FatWallet datasets
based on gold standards constructed by human an-
notators. For the Craigslist dataset, which is more
difficult than the other two, F1-score is .35.

2 Related Work

IE on Listings. (Ghani et al., 2006) (Putthividhya
and Hu, 2011) propose semi-supervised approaches
to extract product types and their attributes from
product listings. (Ghani et al., 2006) applies the
EM (Expectation-Maximization) algorithm to incor-
porate unlabelled data. (Putthividhya and Hu, 2011)
uses unlabelled data to build dictionaries of values to
be extracted (e.g., brand or model names), which are
then used as a feature for a machine learning system.
(Michelson and Knoblock, 2005) uses a manually-
crafted knowledge base called reference set to de-
fine standard forms of values to be extracted. Using
a string edit function, the system then identifies to-
kens in listings that have a low distance score with

the values defined in the reference set. They also
propose a semi-supervised method to building ref-
erence sets (Michelson and Knoblock, 2009).Unlike
these systems, our approach is unsupervised.
Unsupervised Information Extraction. Most un-
supervised IE systems produce clusters for tokens
of same type extracted from a corpus of unlabelled
texts. (Chambers and Jurafsky, 2011) (Poon and
Domingos, 2010) (Chen et al., 2011) focus on ex-
tracting frame-like structures (Baker et al., 1998)
by defining two types of clusters, event clusters and
role clusters. Event clusters define an event (a sit-
uation or a frame) such as BOMBING by clustering
verbs/nominalized verbs such as {kill, explosion}.
Role clusters define the semantic roles of the event
(e.g., {terrorist, gunman} for the Perpetrator role in
BOMBING). Similarly, our system defines two types
of clusters – the main concept clusters (e.g., TV or
book) and the attribute clusters (e.g., size, color).
(Chambers and Jurafsky, 2011) is similar to our ap-
proach in that it learns a semantic model, called tem-
plate, from unlabelled news articles and then uses
the template to extract information.

Our system is different because it focuses on in-
formal listings, which the components (such as a
parser) used by these systems cannot handle.
Field Segmentation (Sequence Modelling). This
task focuses on segmenting a short text, such as
bibliographies or listings. (Grenager et al., 2005)
presents an unsupervised HMM based on the obser-
vation that the segmented fields tend to be of mul-
tiple words length. (Haghighi and Klein, 2006)
exploits prototype words (e.g., close, near, shop-
ing for the NEIGHBORHOOD attribute) in an un-
supervised setting. (Chang et al., 2007) incorpo-
rates domain specific constraints in semi-supervised
learning. Our task is different than these systems be-
cause we focus on extracting information to enable
a variety of automated applications such as business
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intelligence reporting, faceted search or automated
reasoning, rather than segmenting the text. The seg-
mented fields are often a long unstructured text (e.g.,
2 bath 1 bed for size rather than 2 for BathroomNum
and 1 for BedroomNum).
IE on Informal Texts. IE on informal texts is get-
ting much attention because of the recent explosive
growth of these texts. The informal texts that are
attempted for IE include online forums (Gruhl et
al., 2009), SMS (Beaufort et al., 2010), twitter mes-
sages (Liu et al., 2011).

3 Our Approach

Given a corpus of listings for a domain of interest,
our system constructs a semantic model that repre-
sents the types of information and their values to be
extracted. Our system then uses the resulting model
to extract both the type and value from the corpus 1.

We first describe the semantic model and then the
two key steps for creating this model – shallow se-
mantic parsing and listing-focused clustering. Fig. 3
illustrates these two steps with example listings.

3.1 Semantic Model

Our semantic model captures two important pieces
of information – the main concept and its attributes.
This representation is based on the observation that
most listings (e.g. rentals, products) describe the
attributes of a single object (i.e. the main concept
in our model). Our system takes advantage of this
observation by applying customized clustering for
each type of information in the model, which results
in better performance compared to a one-size-fits-all
algorithm. Moreover, this model is general enough
to be applicable across a wide range of domains. We
quantitatively show both benefits in our evaluation.

Fig. 2 illustrates our model along with an instanti-
ation for rental listings. The main concept is a clus-
ter containing tokens referencing the main object in
the listing. For example, in the rental listing, the
main concept cluster includes tokens such as house,
condo, and townhouse.

Each attribute of the main concept (e.g. Address,
BedroomNum, etc.) is also a cluster, and two types

1To handle string variations (e.g., typos) during extraction,
our system uses a string edit distance function, Jaro-Winkler
distance (Winkler, 1990) with a threshold, 0.9.

* Main Concept

{house, condo, apt., apartment, townhouse, …}

* Quantitative Attribute+

{bedroom, bdrm, bd, 

bed,…}

* Qualitative Attribute+

{washer, dryer, w/d, washer 

hookup, d hookup,…}

Figure 2: Semantic model and its instantiation for rental
listings. + indicates multiple clusters can be created.

of attributes are defined in our model – quantita-
tive attributes and qualitative ones. Quantitative at-
tributes capture numeric values (e.g. 1 bedroom, 150
Hz, and 70 kg), and are generally a number followed
by a token indicating the attribute (e.g., unit of mea-
surement). Hence, clusters for quantitative attributes
include these indicator tokens (see Fig. 2).

Qualitative attributes capture descriptions about
the main concept (e.g., address, shipping informa-
tion, condition). The values of these attributes gen-
erally appear in listings without explicitly mention-
ing the names of these attributes. Hence, the clusters
for qualitative attributes include tokens correspond-
ing to the values themselves (e.g. washer hookup).

3.2 Shallow Semantic Parser

Our Shallow Semantic Parser (SSP) analyzes an in-
put corpus to produce a partial semantic model. SSP
first performs preprocessing and multiword detec-
tion. SSP then identifies which resulting tokens are
the main concepts and which are their attributes.

3.2.1 Preprocessing and Multiword Detection
SSP preprocesses the corpus through three steps.

(1) SSP cleans the corpus by removing duplicate
listings and HTML expressions/tags. (2) SSP tok-
enizes each listing based on spaces along with cus-
tom heuristics – e.g., handling alpha-numeric to-
kens starting with numbers (e.g., 3bedroom to 3 bed-
room) and mixed case tokens (e.g., NikeShoes to
Nike Shoes). (3) SSP performs POS tagging using an
off-the-shelf tagger (Tsuruoka and Tsujii, 2005). To
improve accuracy, SSP assigns to a token the most
frequent POS across all occurrences of that token.
This heuristic works well because most tokens in fo-
cused domains, like listings, have only one POS.

SSP then detects multiword tokens based on the
following rules:
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A corpus of listings Semantically analyzed listings Semantic model

• Brentwood Apt. with 3 bedroom

• 2 BD/ 2 BA +Den – Open Sun 2/12

• Affordable Rental Apartments-

Come take a Look!

• [brentwood/ATTR] [apt./MC] with 3 

[bedroom/ATTR]

• 2 [BD/ATTR]/ 2 [BA/ATTR] +[den/ATTR] – [open 

sun 2/12/ATTR]

• [affordable rental/ATTR] [apartments/MC]-

come take a look!

* Main Concept      

{apt., apartment}

* Location 

{brentwood}

* BedroomNum

{bedroom, bd}

Shallow Semantic 

Parser

Listing-Focused 

Clustering

Figure 3: Steps of our system: The parser tokenizes listings (multiword detection) and then identifies main concepts
and attributes (marked as MC and ATTR). The clustering module then clusters tokens of the same type. The tags (such
as Location, BedroomNum) are included to help understand the figure. They are not produced by the system.

1. If a bigram (e.g., top floor) in a listing fre-
quently appears as either a single or dashed token
(e.g., TopFloor or top-floor) in other listings, then
the bigram is regarded as a multiword.

2. For each bigram, w1 w2 (excluding symbols
and numbers), if the conditional probability of the
bigram given either w1 or w2 (i.e., p(w1w2 |
w1(or w2)) is high (over 0.75 in our system)), the
bigram is considered as a candidate multiword. This
rule tests the tendency of two tokens appearing to-
gether when either one appears.

However, this test alone is insufficient, as it of-
ten generates coarse-grained results – e.g., baseball
glove, softball glove, and Hi-Def TV 2. To prevent
this problem, for each w2, we measure the entropy
over the distribution of the tokens in the w1 position.
Our intuition is that high variability in the w1 posi-
tion (i.e., high entropy) indicates that the multiword
is likely a breakable phrase. Hence, those candidates
with high entropy are removed.

SPP repeatedly applies the above rules to acquire
multiwords of arbitrary length. In our implementa-
tion, we limit multiword detection up to four-gram.

3.2.2 Main Concept Identification
SSP then identifies the main concepts (mc words)

and their attributes (attrs) to produce a partial se-
mantic model. This process is guided by the ob-
servation that main concepts tend to appear as head
nouns in a listing and attributes as the modifiers of
these head nouns (see the examples in Fig. 3).

2Even though these examples are legitimate multiwords,
they overlook useful information such as baseball and softball
are types of gloves and Hi-Def is an attribute of TV.

Algorithm 1 describes the discovery process of
mc words and attrs. First, SSP initializes attrs with
tokens that are likely to be a modifier (line 2), by
choosing tokens that frequently appear as the object
of a preposition within the corpus – e.g., for rent,
with washer and dryer, for baseball.

SSP then iteratively performs two steps – PARSE

and EXPANDMODEL (lines 3 ∼ 6) – in a boot-
strap manner (see Fig. 4). PARSE tags the noun to-
kens in each listing as either head nouns or modi-
fiers. Specifically, PARSE first assesses if a listing
is “hard” to parse (line 10) based on two criteria – (1)
the listing contains a long sequence of nouns (seven
words or longer in our system) without any prepo-
sitions (e.g., worth shutout series 12” womens fast-
pitch softball fielders glove s0120 lefty); and (2) the
majority of these nouns do not appear in mc words
and attrs (e.g., over 70% in our system). The listings
meeting these criteria are generally difficult to rec-
ognize the head noun without any semantic knowl-
edge. PARSE will revisit these listings in the next
round as more mc words and attrs are identified.

If a listing does not meet these criteria, PARSE
tags nouns appearing in mc words and attrs as
head nouns and modifiers respectively (line 11). If
this step fails to recognize a head noun, a heuris-
tic is used to identify the head noun – it identi-
fies the first noun phrase by finding a sequence of
nouns/adjectives/numbers, and then tags as the head
noun the last noun in the phrase that is not tagged as
a modifier (line 13). For example, in the first listing
of Fig. 3, brentwood apts. is the first noun phrase
that meets the condition above; and hence apt. is
tagged as the head noun. The remaining untagged
nouns in the listing are tagged as modifiers (line 15).
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Algorithm 1 Extracting main concepts
1: Input: POS-tagged corpus, corp
2: Initialize attrs
3: repeat
4: (hn,mod) = Parse(corp, mc words, attrs)
5: (mc words,attrs) = ExpandModel(hn,mod)
6: until mc words, attrs not changed
7:

8: function PARSE(mc words, attrs)
9: for all each listing do

10: if parsible then
11: Parse with mc words, attrs
12: if headnoun is not tagged then
13: Tag the last noun in the first noun

phrase that are not a modifier as hn
14: end if
15: Tag the other nouns as mod
16: end if
17: end for
18: end function
19:

20: function EXPANDMODEL(corp)
21: For each token, calculate a ratio of as a head

noun to as a modifier
22: Add tokens with high ratio to mc words
23: Add tokens with low ratio to attrs
24: end function

EXPANDMODEL assigns tokens to either
mc words or attrs based on the tags generated
by PARSE. For each token, EXPANDMODEL
counts the frequency of the token being tagged as a
head noun and as a modifier. If a token is predom-
inately tagged as a head noun (or a modifier), the
token is added to mc words (or attrs) 3.

This bootstrap method is advantageous 4 be-
cause SSP can initially focus on easy cases –
i.e., mc words and attrs that can be detected with
high confidence, such as condo(mc words) and bed-
room(attrs), which often appear as a head noun and
a modifier in the easy-to-parse listings. These re-
sults can help the system to parse more difficult

3In our system, if the ratio of the frequency of the head noun
to the frequency of the modifier is over .55, the token is added
to mc words. If less than .35, it is added to attrs.

4The bootstrapping cycle generally ends within 3∼4 itera-
tions.

• mc_words

• attributes

ExpandModel

• Listings with head noun 

and modifiers detected 

Parse

Figure 4: Bootstrapped PARSE and EXPANDMODEL

listings. For example, identifying condo(mc words)
helps parsing the following more difficult listing,
“2 bedroom 1 bathroom condo large patio washer
dryer available” – condo would be tagged as a head
noun and the rest of the nouns as modifiers.

The result of this step is a partial semantic model
that contains a cluster for the main concept and a list
of candidate attribute tokens.

3.3 Listing-Focused Clustering

Listing-Focused Clustering (LFC) further expands
the partial semantic model (constructed by SSP) by
grouping the remaining candidate attribute tokens
into attribute clusters – i.e. one cluster for each at-
tribute of the main concept. LFC may also add a
token to the main concept cluster if appropriate.

For formal texts, distributional similarity is
widely used for clustering words because the con-
textual clues in these texts are sufficiently discrimi-
native (Lin and Pantel, 2001). This feature alone,
however, is insufficient for listings because they
lack discriminative contexts due to the short length.
Hence, our approach augments context-based sim-
ilarity with the following rules (presented in order
of precedence), based on general properties we ob-
served from listing data across various domains.

• Two quantitative attribute tokens cannot be
placed into the same cluster if they frequently
appear together in a listing. For example, bed
and bath should not be clustered because they
frequently appear together (e.g. 2 bed / 2bath).
This rule is based on the observation that a
quantitative attribute is likely to appear only
once in a listing. To enforce this restriction, for
all pairs of tokens, t1 and t2, LFC measures the
conditional probability of the pair appearing to-
gether in a listing given the appearance of either
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t1 and t2. If any of these conditional probabili-
ties are high, t1 and t2 are not clustered.

• Attribute types are strongly enforced by never
clustering together a quantitative attribute to-
ken and a qualitative attribute token. The type
of a token is determined by analyzing the im-
mediate preceding tokens throughout the cor-
pus. If the preceding tokens are generally num-
bers, then LFC regards the token as a quantita-
tive attribute. Otherwise, the token is regarded
as a qualitative attribute.

• Two tokens are similar if the characters in one
token appear in the other, preserving the order
(e.g., bdrm and bedroom)

If the above rules fail to determine the similarity
between two tokens, LFC reverts to context-based
similarity. For each token, LFC creates a context
vector containing frequencies of the context words
around the token with a window size of two. For
example, in the first sentence in Fig. 3, the context
words around apts. are l-start (beginning of the sen-
tence), l-brentwood, r-with, and r-3 5. The frequen-
cies in these vectors are also weighted using PMI
scores (pointwise mutual information) between a to-
ken and its context words, as suggested by (Turney
and Pantel, 2010). The intuition is that a high PMI
indicates a context word is strongly associated with a
token and hence has high discriminative power. We
also apply a smoothing function suggested in (Tur-
ney and Pantel, 2010) to mitigate PMI’s bias towards
infrequent events. The similarity score is based on a
cosine similarity between the two weighted vectors.

Based on this similarity function, LFC applies ag-
glomerative clustering (with average linkage) to pro-
duce attribute clusters (or to expand the main con-
cept cluster). However, calculating similarity scores
for all pairs of tokens is expensive. To address
this problem, LFC performs clustering in two steps.
First, LFC performs agglomerative clustering on all
pairs of tokens with high frequency 6. LFC then cal-
culates the similarity between each low-frequency
token and the clusters resulting from the previous
step. If the similarity score is over a user-specified

5l and r indicates the left or right window.
6The threshold for stopping clustering is determined with

the development dataset.

Dataset Dev Test Avg word
Rent Ad 8,950 9,400 9.44
Glove 8,600 9,500 10.56
TV Deal - 900 15.60

Table 1: Dev/Test indicates the number of listings used
for development/testing. Avg word indicates the average
number of words in a listing. The development dataset is
used to tune the parameters.

threshold, then LFC addes the token to the cluster.
If the score is less than the threshold but the token
still appears relatively frequently, then LFC creates
a new cluster for the token.

4 Evaluation

We perform two evaluations to assess the perfor-
mance of our approach. First, we evaluate how
well our approach extracts the correct type (e.g.,
BedroomNum) and value (e.g., 2) across multiple
domains. Next, we evaluate the contribution of
each main component in our approach – i.e., shal-
low semantic parsing and listing-focused clustering
– through an ablation study. We also provide an
in-depth error analysis along with how our system’s
performance is affected by the corpus size.

4.1 Evaluation Setup
We first assemble three different listing datasets for
our evaluation – housing rental advertisements from
Craigslist (Rent Ad), auction listings of baseball
gloves from EBay (Glove), and hot deal postings of
TV/Projector from FatWallet (TV Deal) 7. Table 1
shows the size of each dataset, and example listings
are shown in Fig. 1 8. We also include example ex-
tractions for each domain in Table. 3.

We then construct a gold standard by employing
two independent human annotators. To do this, we
first define the information types (i.e. main concept
and attribute) for each dataset (and hence the tar-
gets for extraction). We use attributes from EBay

7The datasets are available at https://sites.
google.com/site/2soonk/

8The parameters were tuned by the development set. Our
system is sensitive to the similarity score threshold in agglom-
erative clustering but less sensitive to the other parameters.
Hence, we tuned the similarity threshold for each domain while
fixing the values for the other parameters across different do-
mains.
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Rent Ad housing type (.70/.93), num bedroom (.94/.99), num bathroom (.97/1), location (-.64/.82),
neighborhood (.55/.79), others(14 types)

Glove product type (.71/1.00), brand (.58/.98), sport (.71/1.00), size (.87/.99), series name
(.51/.77), others(10 types)

TV Deal product type (.98/1.00), size (.85/1.00), display technology (.93/1.00), resolution (.89/.99),
seller (.73/1.00), others(14 types)

Table 2: Information types for each domain. See Fig. 1 for the examples of each type. Due to space limitation, we
show only top five types in terms of the number of extractions made by the annotators. The parentheses indicate inter-
annotator agreement based on exact match between two annotators (first number) and partial match (second number).
Exact agreement for qualitative attributes (e.g., location, neighborhood, series name) is found to be difficult.

Rent Ad
housing type studio, townhome, condo, townhouse, cottage,
num bedroom bd, bed, br, bedroom, bdrm, bedrooms
neighborhood downtown, San Francisco, china town

Glove
product type mitt, base mitt, glove, glove mitt

size ”, inch, in
brand rawlings, louisville slugger, mizuno, wilson

TV Deal
product type hdtv, wall mount, monitor

size ”, inch
seller wallmart, amazon, newegg, best buy

Table 3: Examples of positive extractions for the main concept attributes (e.g., housing type, product type), the
qualitative attributes (e.g., num bedroom, size) and the quantitative attributes (e.g., neighborhood, brand, seller)
used in the experiment

as the starting point for Glove and TV Deal; and
attributes from Rent.com9 for Rent Ad. We review
these attributes with two independent Subject Mat-
ter Experts (SMEs) to identify (and include) addi-
tional, missing attributes that are useful for analyt-
ics and reporting. In total, 19 types (Rent Ad), 15
types (Glove) and 19 types (TV Deal) are defined.
For each dataset, we randomly select 100 listings
from the Test listings, and instruct each annotator
to extract values from these listings, based on the
information types for the dataset. Table 2 shows
the defined attributes of each data set and the inter-
annotator agreement across the attributes 10.

Finally, we apply our system to the Test listings
in each dataset; and evaluate the extraction results

9http://www.rent.com
10We use Cohen’s kappa, P (a)−P (e)

1−P (e)
. P(a), the agree-

ment probability, is calculated by the number of list-
ings in which the two annotators agree divided by 100.
P(e), the chance agreement probability, is calculated by∑

(Ti,vi)
P1((Ti, vi)) ∗ P2((Ti, vi)) in which Pj((Ti, vi)) de-

notes a probability of extracting vi of the type Ti by the anno-
tator j. P ((Ti, vi)) is calculated by the frequency of (Ti, vi)
extracted divided by the frequency of Ti extracted.

against the gold standards using the metrics of preci-
sion (P), recall (R), and F1-score (a harmonic mean
of precision and recall). Each extraction result is a
tuple (Ti, vi) where Ti is the information type (e.g.,
BedroomNum) and vi is the value (e.g. 2).

P =
# correct extractions by our system
Total # extractions by our system

R =
# correct extractions by our system
Total # extractions by an annotator

We say that an extraction result is correct if vi

matches exactly the value extracted by the annotator
and Ti matches the information type assigned to vi

by the annotator. To enforce this criteria, we match
the attribute clusters produced by our system to the
information types. This matching step is needed be-
cause our approach is unsupervised and hence the
clusters are unlabelled. We use two methods for this
matching step – many-to-one mapping and one-to-
one mapping. For many-to-one mapping (as used
in (Chen et al., 2011)), we match an attribute cluster
to the information type whose values (as extracted
by the annotator) have the highest overlap with the
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values of the cluster. Hence, many attribute clusters
can map to the same information type. This method,
however, has one major disadvantage: high perfor-
mance can be easily achieved by creating small-
sized clusters – e.g., singleton clusters in the extreme
case. To mitigate this problem, we also use a one-
to-one mapping method – i.e. at most one attribute
cluster (i.e. the one with the best overlap) can be
mapped to one information type.

We report results for both methods. We also re-
port results for partial matches using the same met-
rics above. We say that an extraction result is par-
tially correct if vi partially matches the value ex-
tracted by the annotator (hardwood vs. hardwood
floors) and Ti matches the information type assigned
to vi by the annotator. 11

4.2 Performance Across Multiple Domains
Table 4 shows the system performance result across
the domains. Considering our approach is unsuper-
vised, the result is encouraging. For the baseball
glove and the TV dataset, F-score is .51 and .66 (in
one-to-one mapping). For the rent ad, which is more
difficult, F-score is .39. We hypothesize that the low
F1-score in the rent ad dataset is the result of poor
extraction due to spurious tokens (e.g., our commu-
nity, this weather). To test this hypothesis, we mea-
sure the performance of our system only on the ex-
traction task (i.e., excluding the information type as-
signment task). Table 5 shows that the performance
on extraction for the rent ad dataset is the lowest,
confirming our hypothesis.

We also measure the performance per each infor-
mation type. Fig. 5 shows the result, revealing sev-
eral facts. First, the main concept clusters (hous-
ing type and product type) achieve a high F1-score,
showing the benefit of our semantic parser. Sec-

11We could not compare our system to other systems for sev-
eral reasons. First, to the best of our knowledge, no unsuper-
vised IE system has been built specifically for short listings.
Second, semi-supervised systems such as (Putthividhya and
Hu, 2011) (Michelson and Knoblock, 2005) require domain-
specific dictionaries, which are expensive to build and scale.
Third, even developing a supervised IE system is non-trivial. In
our preliminary evaluation with the (linear chain) conditional
random field (170/30 training/testing listings) using basic fea-
tures (the lexemes and POS of the current word and words in the
two left/right windows), precision/recall/F1-score are .5/.33/.4.
This result is no better than our system. More training data
and/or better features seem to be required.

Full Full(Par)
P R F P R F

Rent Ad 0.3 0.41 0.35 0.43 0.55 0.48
(302/219) 0.34 0.46 0.39 0.65 0.69 0.67

Glove 0.54 0.48 0.51 0.72 0.58 0.64
(563/631) 0.57 0.51 0.54 0.81 0.65 0.72
TV Deal 0.7 0.63 0.66 0.81 0.7 0.75
(765/851) 0.74 0.67 0.7 0.86 0.74 0.79

Table 4: Performance based on one-to-one (first row) and
many-to-one mappings (second row) combined across
both annotators. Full indicates exact match between sys-
tem’s extraction and annotators’ extraction. (Par) indi-
cates partial match. The parentheses indicate the total
number of extraction made by our system and the anno-
tators (averaged) respectively.

Full Full(Par) Ext Ext(Par)
Rent Ad 0.35 0.48 0.42 0.58
Glove 0.51 0.64 0.62 0.69

TV Deal 0.66 0.75 0.75 0.77

Table 5: F1-score when considering only extraction task
(Ext and Ext(Par)). Ext(Par) is based on partial match.

ond, the quantitative attributes (e.g., num bedroom,
glove size, screen size) generally have a higher F1
than the qualitative attributes (e.g., location, neigh-
borhood, series name). These qualitative attributes,
in fact, have a low inter-annotator agreement (e.g., -
.64, .55 for location and neighborhood in Rent Ad
and .51 for series name in Glove), indicating the
difficulty of exactly predicting the extractions made
by the annotators. If we consider the partial match or
the extraction only match (Ext) for those qualitative
attributes, their F1-scores are significantly higher
than the exact match in the Full task.

4.3 Ablation Study

To evaluate our semantic parser and listing-focused
clustering module, we ablate these two components
to create four versions of our system for compari-
son – Baseline, Baseline+LFC, Baseline+SSP and
Full System. Baseline performs a space-based tok-
enization followed by clustering based only on the
context feature. Baseline+LFC and Baseline+SSP
add listing-focused clustering and shallow semantic
parser features respectively. The Full system uses
both features.
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Figure 5: F1-score across the attribute types shown in Table 2. The parentheses indicate the number of extractions
made by our system and the annotators respectively.

Rent Ad Glove TV Deal
P R F P R F P R F

Full

Baseline 0.10 0.27 0.14 0.26 0.34 0.29 0.42 0.51 0.46
Baseline+LFC 0.11 0.30 0.16 0.30† 0.39† 0.34 0.42 0.51 0.46
Baseline+SSP 0.21∗ 0.37∗ 0.26 0.46∗ 0.47∗ 0.46 0.65∗ 0.59∗ 0.62

Full System 0.30 ∗ 0.41 ∗ 0.35 0.54 ∗ 0.48 ∗ 0.51 0.70 ∗ 0.63 ∗ 0.66

Full(Par)

Baseline 0.15 0.40 0.22 0.37 0.50 0.42 0.59 0.69 0.63
Baseline+SSP 0.15 0.43 0.22 0.44∗ 0.56∗ 0.49 0.59 0.69 0.63
Baseline+LFC 0.39∗ 0.55∗ 0.46 0.37 0.34 0.35 0.79∗ 0.69 0.73

Full System 0.43 ∗ 0.55 ∗ 0.48 0.72 ∗ 0.58 ∗ 0.64 0.81 ∗ 0.70 0.75

Table 6: Based on one-to-one mapping. * indicates two-tail statistically significant difference (p < 0.05) against
Baseline in Fisher’s test. † indicates one-tail difference. The Fisher’s test is inapplicable to F1-scores.

Rent Ad Glove TV Deal
NOT IN MAPPING 0.42 NOT IN MAPPING 0.27 NOT IN MAPPING 0.33

WRONG EXT 0.25 WRONG EXT 0.16 WRONG EXT 0.20
TK-neighborhood 0.05 WRONG TYPE 0.15 TK-display technology 0.13
TK-housing type 0.05 TK-series name 0.13 TK-shipping info 0.07

TK-location 0.03 TK-dexterity 0.12 WRONG TYPE 0.07

Table 7: The top five errors based on the one-to-one mapping.
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The results shown in Table 6 lead to the fol-
lowing observations. First, the use of SSP (Base-
line+SSP) makes an improvement for all categories
except Full(Par) in the glove dataset. This is because
SSP identifies main concepts accurately. Second,
while LFC by itself (Bseline+LFC) is effective only
in the glove dataset, it has the best F1-score in all
three domains when combined with SSP (Full Sys-
tem). The result also shows that the simple space-
based tokenization and the context-based clustering
(Baseline) is insufficient for handling short listings.

4.4 Error Analysis and Corpus Size Effect

We analyze the error types for the wrong extraction
made by our system. Specifically, for each error, we
assign it to one (or more) of the following causes:
(1) a cluster (and hence attribute type) was excluded
due to the 1-to-1 mapping methodology described
above (NOT IN MAPPING); (2) the value extracted
by the system was not extracted by any of the anno-
tators (WRONG EXT); (3) wrong information type –
i.e., the token belonged to a wrong cluster (WRONG
TYPE); (4) incorrect tokenization for an information
type (TK-<type name>).

Table 7 shows the result. In all three domains,
NOT IN MAPPING is a major source of error, indi-
cating the system’s clusters are too fine-grained as
compared to the gold standard. WRONG EXT is
another source of error (especially in the housing
rental), indicating the system should extract more
informative tokens. Tokenization on the qualitative
attributes (neighborhood, series name, display tech-
nology in Table 7) should be improved also.

Finally, we measure the effect of the corpus size
on the system performance. Fig. 6 shows how the
F1-score varies with the corpus size 12. It shows that
a small corpus size is sufficient for achieving good
performance. We hypothesize that, for focused do-
mains such as our dataset, only a couple of hundred
listings are sufficient to acquire meaningful statis-
tics.

5 Conclusion and Future Work

We presented an unsupervised IE system on short
listings. The key features in our system are a shal-

12Due to the space limitation, we include only the rent do-
main result. However, all three datasets follow a similar pattern.
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Figure 6: F1-score of our system over varying corpus size
for the rent domain

low semantic parser and a listing-focused clustering
module. Our evaluation shows the benefits of the
two features across multiple domains. To improve
our system further, we plan the following works.

First, we plan to compare our system with super-
vised systems to identify the gap between the two
systems. Second, as in (Poon and Domingos, 2010),
we plan to explore a joint learning method to com-
bine the tasks of tokenization, forming the main con-
cept cluster and forming the attribute clusters; these
tasks depend on the outputs of one another. Fi-
nally, we plan to explore that external knowledge
resources such as DBPedia (Auer et al., 2007) and
FreeBase (Bollacker et al., 2008) can be used to fur-
ther improve performance.
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Abstract

Many NLP tasks rely on accurate statis-
tics from large corpora. Tracking com-
plete statistics is memory intensive, so recent
work has proposed using compact approx-
imate “sketches” of frequency distributions.
We describe 10 sketch methods, including ex-
isting and novel variants. We compare and
study the errors (over-estimation and under-
estimation) made by the sketches. We evaluate
several sketches on three important NLP prob-
lems. Our experiments show that one sketch
performs best for all the three tasks.

1 Introduction
Since the emergence of the World Wide Web, so-
cial media and mobile devices, we have ever larger
and richer examples of text data. Such vast cor-
pora have led to leaps in the performance of many
language-based tasks: the concept is that simple
models trained on big data can outperform more
complex models with fewer examples. However,
this new view comes with its own challenges: prin-
cipally, how to effectively represent such large data
sets so that model parameters can be efficiently ex-
tracted? One answer is to adopt compact summaries
of corpora in the form of probabilistic “sketches”.

In recent years, the field of Natural Language Pro-
cessing (NLP) has seen tremendous growth and in-
terest in the use of approximation, randomization,
and streaming techniques for large-scale problems
(Brants et al., 2007; Turney, 2008). Much of this
work relies on tracking very many statistics. For ex-
ample, storing approximate counts (Talbot and Os-
borne, 2007; Van Durme and Lall, 2009a; Goyal
and Daumé III, 2011a), computing approximate as-

sociation scores like Pointwise Mutual Information
(Li et al., 2008; Van Durme and Lall, 2009b; Goyal
and Daumé III, 2011a), finding frequent items (like
n-grams) (Goyal et al., 2009), building streaming
language models (Talbot and Brants, 2008; Leven-
berg and Osborne, 2009), and distributional similar-
ity (Ravichandran et al., 2005; Van Durme and Lall,
2010). All these problems ultimately depend on ap-
proximate counts of items (such as n-grams, word
pairs and word-context pairs). Thus we focus on
solving this central problem in the context of NLP
applications.

Sketch algorithms (Charikar et al., 2004; Cor-
mode, 2011) are a memory- and time-efficient so-
lution to answering point queries. Recently in NLP,
we (Goyal and Daumé III, 2011a) demonstrated that
a version of the Count-Min sketch (Cormode and
Muthukrishnan, 2004) accurately solves three large-
scale NLP problems using small bounded memory
footprint. However, there are several other sketch al-
gorithms, and it is not clear why this instance should
be preferred amongst these. In this work, we con-
duct a systematic study and compare many sketch
techniques which answer point queries with focus
on large-scale NLP tasks. While sketches have been
evaluated within the database community for find-
ing frequent items (Cormode and Hadjieleftheriou,
2008) and join-size estimation (Rusu and Dobra,
2007), this is the first comparative study for NLP
problems.

Our work includes three contributions: (1)
We propose novel variants of existing sketches
by extending the idea of conservative update to
them. We propose Count sketch (Charikar et al.,
2004) with conservative update (COUNT-CU) and
Count-mean-min sketch with conservative update
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(CMM-CU). The motivation behind proposing new
sketches is inspired by the success of Count-Min
sketch with conservative update in our earlier work
(Goyal and Daumé III, 2011a). (2) We empirically
compare and study the errors in approximate counts
for several sketches. Errors can be over-estimation,
under-estimation, or a combination of the two. We
also evaluate their performance via Pointwise Mu-
tual Information and LogLikelihood Ratio. (3) We
use sketches to solve three important NLP problems.
Our experiments show that sketches can be very ef-
fective for these tasks, and that the best results are
obtained using the “conservative update” technique.
Across all the three tasks, one sketch (CM-CU) per-
forms best.

2 Sketches

In this section, we review existing sketch algorithms
from the literature, and propose novel variants based
on the idea of conservative update (Estan and Vargh-
ese, 2002). The term ‘sketch’ refers to a class of
algorithm that represents a large data set with a
compact summary, typically much smaller than the
full size of the input. Given an input of N items
(x1, x2 . . . xN ), each item x (where x is drawn from
some domain U ) is mapped via hash functions into
a small sketch vector that records frequency infor-
mation. Thus, the sketch does not store the items
explicitly, but only information about the frequency
distribution. Sketches support fundamental queries
on their input such as point, range and inner product
queries to be quickly answered approximately. In
this paper, we focus on point queries, which ask for
the (approximate) count of a given item.

The algorithms we consider are randomized and
approximate. They have two user-chosen parame-
ters ε and δ. ε controls the amount of tolerable error
in the returned count and δ controls the probability
with which the error exceeds the bound ε. These
values of ε and δ determine respectively the width
w and depth d of a two-dimensional array sk[·, ·] of
count information. The depth d denotes the num-
ber of hash functions employed by the sketch algo-
rithms.

Sketch Operations. Every sketch has two opera-
tions: UPDATE and QUERY to update and estimate
the count of an item. They all guarantee essentially

constant time operation (technically, this grows as
O(log(1

δ ) but in practice this is set to a constant)
per UPDATE and QUERY. Moreover, sketches can be
combined: given two sketches s1 and s2 computed
(using the same parameters w and d, and same set
of d hash functions) over different inputs, a sketch
of the combined input is obtained by adding the in-
dividual sketches, entry-wise. The time to perform
the COMBINE operation on sketches is O(d × w),
independent of the data size. This property enables
sketches to be implemented in distributed setting,
where each machine computes the sketch over a
small portion of the corpus and makes it scalable
to large datasets.

2.1 Existing sketch algorithms

This section describes sketches from the literature:
Count-Min sketch (CM): The CM (Cormode and
Muthukrishnan, 2004) sketch has been used effec-
tively for many large scale problems across sev-
eral areas, such as Security (Schechter et al., 2010),
Machine Learning (Shi et al., 2009; Aggarwal
and Yu, 2010), Privacy (Dwork et al., 2010), and
NLP (Goyal and Daumé III, 2011a). The sketch
stores an array of size d × w counters, along with d
hash functions (drawn from a pairwise-independent
family), one for each row of the array. Given an in-
put ofN items (x1, x2 . . . xN ), each of the hash func-
tions hk:U → {1 . . . w}, ∀1 ≤ k ≤ d, takes an item
from the input and maps it into a counter indexed by
the corresponding hash function.
UPDATE: For each new item “x” with count c, the
sketch is updated as:

sk[k, hk(x)]← sk[k, hk(x)] + c, ∀1 ≤ k ≤ d.

QUERY: Since multiple items are hashed to the
same index for each array row, the stored frequency
in each row is guaranteed to overestimate the true
count, making it a biased estimator. Therefore, to
answer the point query (QUERY (x)), CM returns the
minimum over all the d positions x is stored.

ĉ(x) = mink sk[k, hk(x)], ∀1 ≤ k ≤ d.
Setting w=2

ε and d=log(1
δ ) ensures all reported

frequencies by CM exceed the true frequencies by
at most εN with probability of at least 1 − δ. This
makes the space used by the algorithm O(1

ε log 1
δ ).

Spectral Bloom Filters (SBF): Cohen and Matias
(2003) proposed SBF, an extension to Bloom
Filters (Bloom, 1970) to answer point queries. The
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UPDATE and QUERY procedures for SBF are the
same as Count-Min (CM) sketch, except that the
range of all the hash functions for SBF are the full
array: hk:U → {1 . . . w × d},∀1 ≤ k ≤ d. While
CM and SBF are very similar, only CM provides
guarantees on the query error.
Count-mean-min (CMM): The motivation behind
the CMM (Deng and Rafiei, 2007) sketch is to
provide an unbiased estimator for Count-Min
(CM) sketch. The construction of CMM sketch
is identical to the CM sketch, while the QUERY

procedure differs. Instead of returning the minimum
value over the d counters (indexed by d hash
functions), CMM deducts the value of estimated
noise from each of the d counters, and return the
median of the d residues. The noise is estimated
as (N − sk[k, hk(x)])/(w − 1). Nevertheless,
the median estimate (f̂1) over the d residues can
overestimate more than the original CM sketch min
estimate (f̂2), so we return min (f̂1,f̂2) as the final
estimate for CMM sketch. CMM gives the same
theoretical guarantees as Count sketch (below).
Count sketch (COUNT) (Charikar et al., 2004):
COUNT (aka Fast-AGMS) keeps two hash
functions for each row, hk maps items onto
[1, w], and gk maps items onto {−1,+1}. UP-
DATE: For each new item “x” with count c:

sk[k, hk(x)]← sk[k, hk(x)] + c · gk(x), ∀1 ≤ k ≤ d.
QUERY: the median over the d rows is an unbiased
estimator of the point query:

ˆc(x) = mediank sk[k, hk(x)] · gk(x), ∀1 ≤ k ≤ d.
Setting w= 2

ε2
and d=log(4

δ ) ensures that all re-
ported frequencies have error at most ε(

∑N
i=1 f

2
i )

1/2

≤ εN with probability at least 1−δ. The space used
by the algorithm is O( 1

ε2
log 1

δ ).

2.2 Conservative Update sketch algorithms

In this section, we propose novel variants of existing
sketches (see Section 2) by combining them with the
conservative update process (Estan and Varghese,
2002). The idea of conservative update (also known
as Minimal Increase (Cohen and Matias, 2003)) is to
only increase counts in the sketch by the minimum
amount needed to ensure the estimate remains accu-
rate. It can easily be applied to Count-Min (CM)
sketch and Spectral Bloom Filters (SBF) to further
improve the estimate of a point query. Goyal and
Daumé III (2011a) showed that CM sketch with

conservative update reduces the amount of over-
estimation error by a factor of at least 1.5, and also
improves performance on three NLP tasks.

Note that while conservative update for CM and
SBF never increases the error, there is no guaranteed
improvement. The method relies on seeing multiple
updates in sequence. When a large corpus is being
summarized in a distributed setting, we can apply
conservative update on each sketch independently
before combining the sketches together (see “Sketch
Operations” in Section 2).
Count-Min sketch with conservative update
(CM-CU): The QUERY procedure for CM-CU
(Cormode, 2009; Goyal and Daumé III, 2011a) is
identical to Count-Min. However, to UPDATE an
item “x” with frequency c, we first compute the fre-
quency ĉ(x) of this item from the existing data struc-
ture (∀1 ≤ k ≤ d, ĉ(x) = mink sk[k, hk(x)]) and
the counts are updated according to:

sk[k, hk(x)]← max{sk[k, hk(x)], ĉ(x) + c} (∗).
The intuition is that, since the point query returns

the minimum of all the d values, we update a
counter only if it is necessary as indicated by (∗).
This heuristic avoids unnecessarily updating counter
values to reduce the over-estimation error.
Spectral Bloom Filters with conservative update
(SBF-CU): The QUERY procedure for SBF-CU
(Cohen and Matias, 2003) is identical to SBF.
SBF-CU UPDATE procedure is similar to CM-CU,
with the difference that all d hash functions have the
common range d× w.
Count-mean-min with conservative update
(CMM-CU): We propose a new variant to reduce
the over-estimation error for CMM sketch. The
construction of CMM-CU is identical to CM-CU.
However, due to conservative update, each row of
the sketch is not updated for every update, hence
the sum of counts over each row (

∑
i sk[k, i],

∀1 ≤ k ≤ d) is not equal to input size N .
Hence, the estimated noise to be subtracted here is
(
∑

i sk[k, i]− sk[k, hk(x)]) / (w − 1). CMM-CU
deducts the value of estimated noise from each of
the d counters, and returns the median of the d
residues as the point query.
Count sketch with conservative update (COUNT-
CU): We propose a new variant to reduce over-
estimation error for the COUNT sketch. The
QUERY procedure for COUNT-CU is the same as
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COUNT. The UPDATE procedure follows the same
outline as CM-CU, but uses the current estimate
ĉ(x) from the COUNT sketch, i.e.
ĉ(x) = mediank sk[k, hk(x)] · gk(x), ∀1 ≤ k ≤ d.

Note, this heuristic is not as strong as for CM-CU
and SBF-CU because COUNT can have both over-
estimate and under-estimate errors.
Lossy counting with conservative update (LCU-
WS): LCU-WS (Goyal and Daumé III, 2011b) was
proposed to reduce the amount of over-estimation
error for CM-CU sketch, without incurring too
much under-estimation error. This scheme is in-
spired by lossy counting (Manku and Motwani,
2002). In this approach, the input sequence is con-
ceptually divided into windows, each containing 1/γ
items. The size of each window is equal to size of
the sketch i.e. d × w. Note that there are γN win-
dows; let t denote the index of current window. At
window boundaries, ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ w,
if (sk[i, j] > 0 and sk[i, j] ≤ t), then sk[i, j] ←
sk[i, j]−1. The idea is to remove the contribution of
small items colliding in the same entry, while not al-
tering the count of frequent items. The current win-
dow index is used to draw this distinction. Here, all
reported frequencies f̂ have both under and over es-
timation error: f − γN ≤ f̂ ≤ f + εN .
Lossy counting with conservative update II
(LCU-SWS): This is a variant of the previous
scheme, where the counts of the sketch are de-
creased more conservatively. Hence, this scheme
has worse over-estimation error compared to LCU-
WS, with better under-estimation. Here, only those
counts are decremented which are at most the square
root of current window index, t. At window bound-
aries, ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ w, if (sk[i, j] > 0 and
sk[i, j] ≤ d

√
te), then sk[i, j]← sk[i, j]− 1. LCU-

SWS has similar analytical bounds to LCU-WS.

3 Intrinsic Evaluations

We empirically compare and study the errors in ap-
proximate counts for all 10 sketches. Errors can be
over-estimation, under-estimation, or a combination
of the two. We also study the behavior of approxi-
mate Pointwise Mutual Information and Log Likeli-
hood Ratio for the sketches.

3.1 Experimental Setup

DATA: We took 50 million random sentences from
Gigaword (Graff, 2003). We split this data in
10 chunks of 5 million sentences each. Since all
sketches have probabilistic bounds, we report aver-
age results over these 10 chunks. For each chunk,
we generate counts of all word pairs within a win-
dow size 7. This results in an average stream size of
194 million word pair tokens and 33.5 million word
pair types per chunk.

To compare error in various sketch counts, first we
compute the exact counts of all the word pairs. Sec-
ond, we store the counts of all the word pairs in all
the sketches. Third, we query sketches to generate
approximate counts of all the word pairs. Recall, we
do not store the word pairs explicitly in sketches but
only a compact summary of the associated counts.

We fix the size of each sketch to be w = 20×106

3
and d = 3. We keep the size of sketches equal
to allow fair comparison among them. Prior work
(Deng and Rafiei, 2007; Goyal and Daumé III,
2011a) showed with fixed sketch size, a small num-
ber of hash functions (d=number of hash functions)
with large w (or range) give rise to small error over
counts. Next, we group all word pairs with the
same true frequency into a single bucket. We then
compute the Mean Relative Error (MRE) in each of
these buckets. Because different sketches have dif-
ferent accuracy behavior on low, mid, and high fre-
quency counts, making this distinction based on fre-
quency lets us determine the regions in which dif-
ferent sketches perform best. Mean Relative Error
(MRE) is defined as the average of absolute differ-
ence between the predicted and the exact value di-
vided by the exact value over all the word pairs in
each bucket.

3.2 Studying the Error in Counts

We study the errors produced by all 10 sketches.
Since various sketches result in different errors on
low, mid, and high frequency counts, we plot the re-
sults with a linear error scale (Fig. 1(a)) to highlight
the performance for low frequency counts, and with
a log error scale (Fig. 1(b)) for mid and high fre-
quency counts.

We make several observations on low frequency
counts from Fig. 1(a). (1) Count-Min (CM) and
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Figure 1: Comparing several sketches for input size of 75 million word pairs. Size of each sketch: w = 20×106

3
and d = 3. All

items with same exact count are put in one bucket and we plot Mean Relative Error on the y-axis with exact counts on the x-axis.

Spectral Bloom Filters (SBF) have identical MRE
for word pairs. Using conservative update with CM
(CM-CU) and SBF (SBF-CU) reduces the MRE
by a factor of 1.5. MRE for CM-CU and SBF-
CU is also identical. (2) COUNT has better MRE
than CM-CU and using conservative update with
COUNT (COUNT-CU) further reduces the MRE.
(3) CMM has better MRE than COUNT and using
conservative update with CMM (CMM-CU) fur-
ther reduces the MRE. (4) Lossy counting with con-
servative update variants (LCU-SWS, LCU-WS)
have comparable MRE to COUNT-CU and CMM-
CU respectively.

In Fig. 1(b), we do not plot the SBF variants
as SBF and CM variants had identical MRE in
Fig. 1(a). From Figure 1(b), we observe that,
CM, COUNT, COUNT-CU, CMM, CMM-CU
sketches have worse MRE than CM-CU, LCU-
SWS, and LCU-WS for mid and high frequency
counts. CM-CU, LCU-SWS, and LCU-WS have
zero MRE for all the counts > 1000.

To summarize the above observations, for those
NLP problems where we cannot afford to make
errors on mid and high frequency counts, we
should employ CM-CU, LCU-SWS, and LCU-
WS sketches. If we want to reduce the error on
low frequency counts, LCU-WS generates least er-
ror. For NLP tasks where we can allow error on mid
and high frequency counts but not on low frequency
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Figure 2: Compare several sketches on over-estimation and
under-estimation errors with respect to exact counts.

counts, CMM-CU sketch is best.

3.3 Examining OE and UE errors

In many NLP applications, we are willing to tolerate
either over-estimation or under-estimation errors.
Hence we breakdown the error into over-estimation
(OE) and under-estimation (UE) errors for the six
best-performing sketches (COUNT, COUNT-CU,
CMM, CMM-CU, LCU-SWS, and LCU-WS). To
accomplish that, rather than using absolute error val-
ues, we divide the values into over-estimation (pos-
itive), and under-estimation (negative) error buck-
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Figure 3: Evaluate the approximate PMI and LLR rankings (obtained using various sketches) with the exact rankings.

ets. Hence, to compute the over-estimation MRE,
we take the average of positive values over all the
items in each bucket. For under-estimation, we
take the average over the negative values. We
can make several interesting observations from Fig-
ure 2: (1) Comparing COUNT-CU and LCU-
SWS, we learn that both have the same over-
estimation errors. However, LCU-SWS has less
under-estimation error than COUNT-CU. There-
fore, LCU-SWS is always better than COUNT-
CU. (2) LCU-WS has less over-estimation than
LCU-SWS but with more under-estimation error on
mid frequency counts. LCU-WS has less under-
estimation error than COUNT-CU. (3) CMM-CU
has the least over-estimation error and most under-
estimation error among all the compared sketches.

From the above experiments, we conclude that
tasks sensitive to under-estimation should use the
CM-CU sketch, which guarantees over-estimation.
However, if we are willing to make some under-
estimation error with less over-estimation error,
then LCU-WS and LCU-SWS are recommended.
Lastly, to have minimal over-estimation error with
willingness to accept large under-estimation error,
CMM-CU is recommended.

3.4 Evaluating association scores ranking

Last, in many NLP problems, we are interested in as-
sociation rankings obtained using Pointwise Mutual
Information (PMI) and Log Likelihood Ratio (LLR).
In this experiment, we compare the word pairs asso-
ciation rankings obtained using PMI and LLR from
several sketches and exact word pair counts. We use

recall to measure the number of top-K sorted word
pairs that are found in both the rankings.

In Figure 3(a), we compute the recall for CM-
CU, COUNT-CU, CMM-CU, LCU-SWS, and
LCU-WS sketches at several top-K thresholds of
word pairs for approximate PMI ranking. We
can make several observations from Figure 3(a).
COUNT-CU has the worst recall for almost all the
top-K settings. For top-K values less than 750, all
sketches except COUNT-CU have comparable re-
call. Meanwhile, for K greater than 750, LCU-WS
has the best recall. The is because PMI is sensitive
to low frequency counts (Church and Hanks, 1989),
over-estimation of the counts of low frequency word
pairs can make their approximate PMI scores worse.

In Figure 3(b), we compare the LLR rankings. For
top-K values less than 1000, all the sketches have
comparable recall. For top-K values greater than
1000, CM-CU, LCU-SWS, and LCU-WS perform
better. The reason for such a behavior is due to LLR
favoring high frequency word pairs, and COUNT-
CU and CMM-CU making under-estimation error
on high frequency word pairs.

To summarize, to maintain top-K PMI rank-
ings making over-estimation error is not desirable.
Hence, LCU-WS is recommended for PMI rank-
ings. For LLR, producing under-estimation error is
not preferable and therefore, CM-CU, LCU-WS,
and LCU-SWS are recommended.
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Test Set Random Buckets Neighbor
Model CM-CU CMM-CU LCU-WS CM-CU CMM-CU LCU-WS CM-CU CMM-CU LCU-WS
50M 87.2 74.3 86.5 83.9 72.9 83.2 71.7 64.7 72.1

100M 90.4 79.0 91.0 86.5 76.9 86.9 73.4 67.2 74.7
200M 93.3 83.1 92.9 88.3 80.1 88.4 75.0 69.0 75.4
500M 94.4 86.6 94.1 89.3 83.4 89.3 75.7 70.8 75.5

1B 94.4 88.7 94.4 89.5 85.1 89.5 75.8 71.9 75.8
Exact 94.5 89.5 75.8

Table 1: Pseudo-words evaluation on accuracy metric for selectional preferences using several sketches of different sizes against
the exact. There is no statistically significant difference (at p < 0.05 using bootstrap resampling) among bolded numbers.

4 Extrinsic Evaluation

4.1 Experimental Setup

We study three important NLP applications, and
compare the three best-performing sketches: Count-
Min sketch with conservative update (CM-CU),
Count-mean-min with conservative update (CMM-
CU), and Lossy counting with conservative update
(LCU-WS). The above mentioned 3 sketches are se-
lected from 10 sketches (see Section 2) considering
these sketches make errors on different ranges of the
counts: low, mid and, high frequency counts as seen
in our intrinsic evaluations in Section 3. The goal
of this experiment is to show the effectiveness of
sketches on large-scale language processing tasks.

These adhere to the premise that simple methods
using large data can dominate more complex mod-
els. We purposefully select simple methods as they
use approximate counts and associations directly to
solve these tasks. This allows us to have a fair com-
parison among different sketches, and to more di-
rectly see the impact of different choices of sketch
on the task outcome. Of course, sketches are still
broadly applicable to many NLP problems where we
want to count (many) items or compute associations:
e.g. language models, Statistical Machine Transla-
tion, paraphrasing, bootstrapping and label propaga-
tion for automatically creating a knowledge base and
finding interesting patterns in social media.

Data: We use Gigaword (Graff, 2003) and a 50%
portion of a copy of news web (GWB50) crawled
by (Ravichandran et al., 2005). The raw size of
Gigaword (GW) and GWB50 is 9.8 GB and 49
GB with 56.78 million and 462.60 sentences respec-
tively. For both the corpora, we split the text into
sentences, tokenize and convert into lower-case.

4.2 Pseudo-Words Evaluation

In NLP, it is difficult and time consuming to create
annotated test sets. This problem has motivated the
use of pseudo-words to automatically create the test
sets without human annotation. The pseudo-words
are a common way to evaluate selectional prefer-
ences models (Erk, 2007; Bergsma et al., 2008) that
measure the strength of association between a predi-
cate and its argument filler, e.g., that the noun “song”
is likely to be the object of the verb “sing”.

A pseudo-word is the conflation of two words
(e.g. song/dance). One word is the original in a sen-
tence, and the second is the confounder. For exam-
ple, in our task of selectional preferences, the system
has to decide for the verb “sing” which is the correct
object between “song”/“dance”. Recently, Cham-
bers and Jurafsky (2010) proposed a simple baseline
based on co-occurrence counts of words, which has
state-of-the-art performance on pseudo-words eval-
uation for selectional preferences.

We use a simple approach (without any typed de-
pendency data) similar to Chambers and Jurafsky
(2010), where we count all word pairs (except word
pairs involving stop words) that appear within a win-
dow of size 3 from Gigaword (9.8 GB). That gen-
erates 970 million word pair tokens (stream size)
and 94 million word pair types. Counts of all the
94 million unique word pairs are stored in CM-
CU, CMM-CU, and LCU-WS. For a target verb,
we return that noun which has higher co-occurrence
count with it, as the correct selectional preference.
We evaluate on Chambers and Jurafsky’s three test
sets1 (excluding instances involving stop words) that
are based on different strategies in selecting con-
founders: Random (4081 instances), Buckets (4028

1http://www.usna.edu/Users/cs/nchamber/
data/pseudowords/
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Figure 4: Determining the proportion of low, mid and high
frequency test word pairs in Gigaword (GW).

instances), and Neighbor (3881 instances). To eval-
uate against the exact counts, we compute exact
counts for only those word pairs that are present in
the test sets. Accuracy is used for evaluation and
is defined as the percentage of number of correctly
identified pseudo words.

In Fig. 4, we plot the cumulative proportion of
true frequency counts of all word pairs (from the
three tests) in Gigaword (GW). To include unseen
word pairs from test set in GW on log-scale in Fig.
4, we increment the true counts of all the word pairs
by 1. This plot demonstrates that 45% of word-
pairs are unseen in GW, and 67% of word pairs have
counts less than 10. Hence, to perform better on this
task, it is essential to accurately maintain counts of
rare word pairs.

In Table 1, we vary the size of all sketches (50
million (M ), 100M , 200M , 500M and 1 billion
(1B) counters) with 3 hash functions to compare
them against the exact counts. It takes 1.8 GB un-
compressed space to maintain the exact counts on
the disk. Table 1 shows that with sketches of size
> 200M on all the three test sets, CM-CU and
LCU-WS are comparable to exact. However, the
CMM-CU sketch performs less well. We conjec-
ture the reason for such a behavior is due to loss of
recall (information about low frequency word pairs)
by under-estimation error. For this task CM-CU and
LCU-WS scales to storing 94M unique word pairs
using 200M integer (4 bytes each) counters (using
800 MB) < 1.8 GB to maintain exact counts. More-
over, these results are comparable to Chambers and
Jurafsky’s state-of-the-art framework.

Data Exact CM-CU CMM-CU LCU-WS
GW 74.2 74.0 65.3 72.9

GWB50 81.2 80.9 74.9 78.3

Table 2: Evaluating Semantic Orientation on accuracy metric
using several sketches of 2 billion counters against exact. Bold
and italic numbers denote no statistically significant difference.

4.3 Finding Semantic Orientation of a word

Given a word, the task of finding its Semantic Ori-
entation (SO) (Turney and Littman, 2003) is to de-
termine if the word is more probable to be used in
positive or negative connotation. We use Turney and
Littman’s (2003) state-of-the-art framework to com-
pute the SO of a word. We use same seven pos-
itive words (good, nice, excellent, positive, fortu-
nate, correct, and superior) and same seven nega-
tive words (bad, nasty, poor, negative, unfortunate,
wrong, and inferior) from their framework as seeds.
The SO of a given word is computed based on the
strength of its association with the seven positive
words and the seven negative words. Association
scores are computed via Pointwise Mutual Informa-
tion (PMI). We compute the SO of a word “w” as:

SO(W) =
∑

p∈Pos PMI(p,w)−
∑

n∈Neg PMI(n,w)

where, Pos and Neg denote the seven positive and
negative seeds respectively. If this score is negative,
we predict the word as negative; otherwise, we pre-
dict it as positive. We use the General Inquirer lex-
icon2 (Stone et al., 1966) as a benchmark to eval-
uate the semantic orientation similar to Turney and
Littman’s (2003) work. Our test set consists of 1611
positive and 1987 negative words. Accuracy is used
for evaluation and is defined as the percentage of
number of correctly identified SO words.

We evaluate SO of words on two different
sized corpora (see Section 4.1): Gigaword (GW)
(9.8GB), and GW with 50% news web corpus
(GWB50) (49GB). We fix the size of all sketches
to 2 billion (2B) counters with 5 hash functions. We
store exact counts of all words in a hash table for
both GW and GWB50. We count all word pairs
(except word pairs involving stop words) that appear
within a window of size 7 from GW and GWB50.
This yields 2.67 billion(B) tokens and .19B types

2The General Inquirer lexicon is freely available at http:
//www.wjh.harvard.edu/˜inquirer/
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Test Set WS-203 MC-30

Model C
M

-C
U

C
M

M
-C

U

LC
U

-W
S

C
M

-C
U

C
M

M
-C

U

LC
U

-W
S

PM
I

10M .58 .25 .28 .67 .20 .16
50M .44 .23 .41 .61 .22 .31
200M .53 .44 .47 .57 .28 .43
Exact .52 .50

L
L

R

10M .47 .27 .29 .50 .29 .10
50M .42 .31 .34 .48 .32 .35
200M .41 .35 .39 .40 .31 .40
Exact .42 .41

Table 3: Evaluating distributional similarity using sketches.
Scores are evaluated using rank correlation ρ. Bold and italic
numbers denote no statistically significant difference.

from GW and 13.20B tokens and 0.8B types from
GWB50. Next, we compare the sketches against the
exact counts over two different size corpora.

Table 2 shows that increasing the amount of data
improves the accuracy of identifying the SO of a
word. We get an absolute increase of 7 percentage
points (with exact counts) in accuracy (The 95% sta-
tistical significance boundary for accuracy is about
± 1.5.), when we add 50% web data (GWB50).
CM-CU results are equivalent to exact counts for all
the corpus sizes. These results are also comparable
to Turney’s (2003) accuracy of 82.84%. However,
CMM-CU results are worse by absolute 8.7 points
and 6 points on GW and GWB50 respectively with
respect to CM-CU. LCU-WS is better than CMM-
CU but worse than CM-CU. Using 2B integer (4
bytes each) counters (bounded memory footprint of
8 GB), CM-CU scales to 0.8B word pair types (It
takes 16 GB uncompressed disk space to store exact
counts of all the unique word pair types.).

Figure 4 has similar frequency distribution of
word pairs3 in SO test set as pseudo-words evalu-
ation test sets word pairs. Hence, CMM-CU again
has substantially worse results than CM-CU due to
loss of recall (information about low frequency word
pairs) by under-estimation error. We can conclude
that for this task CM-CU is best.

4.4 Distributional Similarity

Distributional similarity is based on the distribu-
tional hypothesis that similar terms appear in simi-

3Consider only those pairs in which one word appears in the
seed list and the other word appears in the test set.

lar contexts (Firth, 1968; Harris, 1954). The context
vector for each term is represented by the strength
of association between the term and each of the lex-
ical, semantic, syntactic, and/or dependency units
that co-occur with it. For this work, we define con-
text for a given term as the surrounding words ap-
pearing in a window of 2 words to the left and 2
words to the right. The context words are concate-
nated along with their positions -2, -1, +1, and +2.
We use PMI and LLR to compute the association
score (AS) between the term and each of the context
to generate the context vector. We use the cosine
similarity measure to find the distributional similar-
ity between the context vectors for each of the terms.

We use two test sets which consist of word pairs,
and their corresponding human rankings. We gener-
ate the word pair rankings using distributional sim-
ilarity. We report the Spearman’s rank correlation
coefficient (ρ) between the human and distributional
similarity rankings. We report results on two test
sets: WS-203: A set of 203 word pairs marked ac-
cording to similarity (Agirre et al., 2009). MC-30:
A set of 30 noun pairs (Miller and Charles, 1991).

We evaluate distributional similarity on Giga-
word (GW) (9.8GB) (see Section 4.1). First, we
store exact counts of all words and contexts in a hash
table from GW. Next, we count all the word-context
pairs and store them in CM-CU, CMM-CU, and
LCU-WS sketches. That generates a stream of
size 3.35 billion (3.35B) word-context pair tokens
and 215 million unique word-context pair types (It
takes 4.6 GB uncompressed disk space to store exact
counts of all these unique word-context pair types.).
For every target word in the test set, we maintain
top-1000 approximate AS scores contexts using a
priority queue, by passing over the corpus a second
time. Finally, we use cosine similarity with these
approximate top-K context vectors to compute dis-
tributional similarity.

In Table 3, we vary the size of all sketches across
10 million (M ), 50M , and 200M counters with 3
hash functions. The results using PMI shows that
CM-CU has best ρ on both WS-203 and MC-30
test sets. The results for LLR in Table 3 show simi-
lar trends with CM-CU having best results on small
size sketches. Thus, CM-CU scales using 10M
counters (using fixed memory of 40 MB versus 4.6
GB to store exact counts). These results are compa-
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rable against the state-of-the-art results for distribu-
tional similarity (Agirre et al., 2009).

On this task CM-CU is best as it avoids loss
of recall (information about low frequency word
pairs) due to under-estimation error. For a target
word that has low frequency, using CMM-CU will
not generate any contexts for it, as it will have
large under-estimation error for word-context pairs
counts. This phenomenon is demonstrated in Ta-
ble 3, where CMM-CU and LCU-WS have worse
result with small size sketches.

5 Conclusion

In this work, we systematically studied the problem
of estimating point queries using different sketch al-
gorithms. As far as we know, this represents the
first comparative study to demonstrate the relative
behavior of sketches in the context of NLP applica-
tions. We proposed two novel sketch variants: Count
sketch (Charikar et al., 2004) with conservative up-
date (COUNT-CU) and Count-mean-min sketch
with conservative update (CMM-CU). We empiri-
cally showed that CMM-CU has under-estimation
error with small over-estimation error, CM-CU has
only over-estimation error, and LCU-WS has more
under-estimation error than over-estimation error.
Finally, we demonstrated CM-CU has better re-
sults on all three tasks: pseudo-words evaluation
for selectional preferences, finding semantic orien-
tation task, and distributional similarity. This shows
that maintaining information about low frequency
items (even with over-estimation error) is better than
throwing away information (under-estimation error)
about rare items.

Future work is to reduce the bit size of each
counter (instead of the number of counters), as has
been tried for other summaries (Talbot and Osborne,
2007; Talbot, 2009; Van Durme and Lall, 2009a) in
NLP. However, it may be challenging to combine
this with conservative update.
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Amit Goyal and Hal Daumé III. 2011a. Approximate
scalable bounded space sketch for large data NLP. In
Empirical Methods in Natural Language Processing
(EMNLP).

Amit Goyal and Hal Daumé III. 2011b. Lossy con-
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Abstract

Conditional random fields and other graphi-
cal models have achieved state of the art re-
sults in a variety of tasks such as coreference,
relation extraction, data integration, and pars-
ing. Increasingly, practitioners are using mod-
els with more complex structure—higher tree-
width, larger fan-out, more features, and more
data—rendering even approximate inference
methods such as MCMC inefficient. In this
paper we propose an alternative MCMC sam-
pling scheme in which transition probabilities
are approximated by sampling from the set
of relevant factors. We demonstrate that our
method converges more quickly than a tradi-
tional MCMC sampler for both marginal and
MAP inference. In an author coreference task
with over 5 million mentions, we achieve a 13
times speedup over regular MCMC inference.

1 Introduction

Conditional random fields and other graphical mod-
els are at the forefront of many natural language
processing (NLP) and information extraction (IE)
tasks because they provide a framework for discrim-
inative modeling while succinctly representing de-
pendencies among many related output variables.
Previously, most applications of graphical models
were limited to structures where exact inference is
possible, for example linear-chain CRFs (Lafferty
et al., 2001). More recently, there has been a de-
sire to include more factors, longer range depen-
dencies, and more sophisticated features; these in-
clude skip-chain CRFs for named entity recogni-
tion (Sutton and McCallum, 2004), probabilistic

DBs (Wick et al., 2010), higher-order models for
dependency parsing (Carreras, 2007), entity-wise
models for coreference (Culotta et al., 2007; Wick
et al., 2009), and global models of relations (Hoff-
mann et al., 2011). The increasing sophistication of
these individual NLP components compounded with
the community’s desire to model these tasks jointly
across cross-document considerations has resulted
in graphical models for which inference is compu-
tationally intractable. Even popular approximate in-
ference techniques such as loopy belief propagation
and Markov chain Monte Carlo (MCMC) may be
prohibitively slow.

MCMC algorithms such as Metropolis-Hastings
are usually efficient for graphical models because
the only factors needed to score a proposal are those
touching the changed variables. However, MCMC
is slowed in situations where a) the model exhibits
variables that have a high-degree (neighbor many
factors), b) proposals modify a substantial subset of
the variables to satisfy domain constraints (such as
transitivity in coreference), or c) evaluating a single
factor is expensive, for example when features are
based on string-similarity. For example, the seem-
ingly innocuous proposal changing the entity type of
a single entity requires examining all its mentions,
i.e. scoring a linear number of factors (in the num-
ber of mentions of that entity). Similarly, evaluating
coreference of a mention to an entity also requires
scoring factors to all the mentions of the entity. Of-
ten, however, the factors are somewhat redundant,
for example, not all mentions of the “USA” entity
need to be examined to confidently conclude that it
is a COUNTRY, or that it is coreferent with “United
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States of America”.
In this paper we propose an approximate MCMC

framework that facilitates efficient inference in high-
degree graphical models. In particular, we approx-
imate the acceptance ratio in the Metropolis Hast-
ings algorithm by replacing the exact model score
with a stochastic approximation that samples from
the set of relevant factors. We explore two sampling
strategies, a fixed proportion approach that samples
the factors uniformly, and a dynamic alternative that
samples factors until the method is confident about
its estimate of the model score.

We evaluate our method empirically on both syn-
thetic and real-world data. On synthetic classi-
fication data, our approximate MCMC procedure
obtains the true marginals faster than a traditional
MCMC sampler. On real-world tasks, our method
achieves 7 times speedup on citation matching, and
13 times speedup on large-scale author disambigua-
tion.

2 Background

2.1 Graphical Models
Factor graphs (Kschischang et al., 2001) succinctly
represent the joint distribution over random vari-
ables by a product of factors that make the depen-
dencies between the random variables explicit. A
factor graph is a bipartite graph between the vari-
ables and factors, where each (log) factor f ∈ F is
a function that maps an assignment of its neighbor-
ing variables to a real number. For example, in a
linear-chain model of part-of-speech tagging, transi-
tion factors score compatibilities between consecu-
tive labels, while emission factors score compatibil-
ities between a label and its observed token.

The probability distribution expressed by the fac-
tor graph is given as a normalized product of the fac-
tors, which we rewrite as an exponentiated sum:

p(y) =
expψ(y)

Z
(1)

ψ(y) =
∑
f∈F

f(yf ) (2)

Z =
∑
y∈Y

expψ(y) (3)

Intuitively, the model favors assignments to the ran-
dom variables that yield higher factor scores and will

assign higher probabilities to such configurations.
The two common inference problems for graphi-

cal models in NLP are maximum a posterior (MAP)
and marginal inference. For models without latent
variables, the MAP estimate is the setting to the
variables that has the highest probability under the
model:

yMAP = argmax
y

p(y) (4)

Marginal inference is the problem of finding
marginal distributions over subsets of the variables,
used primarily in maximum likelihood gradients and
for max marginal inference.

2.2 Markov chain Monte Carlo (MCMC)
Often, computing marginal estimates of a model is
computationally intractable due to the normalization
constant Z, while maximum a posteriori (MAP) is
prohibitive due to the search space of possible con-
figurations. Markov chain Monte Carlo (MCMC) is
important tool for performing sample- and search-
based inference in these models. A particularly suc-
cessful MCMC method for graphical model infer-
ence is Metropolis-Hastings (MH). Since sampling
from the true model p(y) is intractable, MH instead
uses a simpler distribution q(y′|y) that conditions
on a current state y and proposes a new state y′ by
modifying a few variables. This new assignment is
then accepted with probability α:

α = min

(
1,
p(y′)

p(y)

q(y|y′)
q(y′|y)

)
(5)

Computing this acceptance probability is often
highly efficient because the partition function can-
cels, as do all the factors in the model that do not
neighbor the modified variables. MH can be used
for both MAP and marginal inference.

2.2.1 Marginal Inference
To compute marginals with MH, the variables are

initialized to an arbitrary assignment (i.e., randomly
or with some heuristic), and sampling is run until the
samples {yi|i = 0, · · · , n} become independent of
the initial assignment. The ergodic theorem provides
the MCMC analog to the law-of-large-numbers, jus-
tifying the use of the generated samples to compute
the desired statistics (such as feature expectations or
variable marginals).
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2.2.2 MAP Inference

Since MCMC can efficiently explore the high
density regions for a given distribution, the distri-
bution p can be modified such that the high-density
region of the new distribution represents the MAP
configuration of p. This is achieved by adding a tem-
perature term τ to the distribution p, resulting in the
following MH acceptance probability:

α = min

(
1,

(
p(y′)

p(y)

) 1
τ

)
(6)

Note that as τ → 0, MH will sample closer to the
MAP configuration. If a cooling schedule is imple-
mented for τ then the MH sampler for MAP infer-
ence can be seen as an instance of simulated anneal-
ing (Bertsimas and Tsitsiklis, 1993).

3 Monte Carlo MCMC

In this section we introduce our approach for ap-
proximating the acceptance ratio of Metropolis-
Hastings that samples the factors, and describe two
sampling strategies.

3.1 Stochastic Proposal Evaluation

Although one of the benefits of MCMC lies in its
ability to leverage the locality of the proposal, for
some information extraction tasks this can become a
crucial bottleneck. In particular, evaluation of each
sample requires computing the score of all the fac-
tors that are involved in the change, i.e. all fac-
tors that neighbor any variable in the set that has
changed. This evaluation becomes a bottleneck for
tasks in which a large number of variables is in-
volved in each proposal, or in which the model con-
tains a number of high-degree variables, resulting in
a large number of factors, or in which computing
the factor score involves an expensive computation,
such as string similarity between mention text.

Instead of evaluating the log-score ψ of the model
exactly, this paper proposes a Monte-Carlo estima-
tion of the log-score. In particular, if the set of fac-
tors for a given proposal y→ y′ is F(y,y′), we use
a sampled subset of the factors S ⊆ F(y,y′) as an
approximation of the model score. In the following

we use F as an abbreviation for F(y,y′). Formally,

ψ(y) =
∑
f∈F

f(yf ) = |F| · EF [f(yf )]

ψS(y) = |F| · ES [f(yf )] (7)

We use the sample log-score (ψS) in the acceptance
probability α to evaluate the samples. Since we are
using a stochastic approximation to the model score,
in general we need to take more MCMC samples
before we converge, however, since evaluating each
sample will be much faster (O(|S|) as opposed to
O(|F|)), we expect overall sampling to be faster.

In the next sections we describe several alternative
strategies for sampling the set of factors S. The pri-
mary restriction on the set of samples S is that their
mean should be an unbiased estimator of EF[f ]. Fur-
ther, time taken to obtain the set of samples should
be negligible when compared to scoring all the fac-
tors in F. Note that there is an implicit minimum of
1 to the number of the sampled factors.

3.2 Uniform Sampling
The most direct approach for subsampling the set
of F is to perform uniform sampling. In particular,
given a proportion parameter 0 < p ≤ 1, we select a
random subset Sp ⊆ F such that |Sp| = p · |F|. Since
this approach is agnostic as to the actual factors
scores, ES[f ] ≡ EF[f ]. A low p leads to fast evalua-
tion, however it may require a large number of sam-
ples due to the substantial approximation. On the
other hand, although a higher p will converge with
fewer samples, evaluating each sample is slower.

3.3 Confidence-Based Sampling
Selecting the best value for p is difficult, requiring
analysis of the graph structure, and statistics on the
distribution of the factors scores; often a difficult
task in real-world applications. Further, the same
value for p can result in different levels of approxi-
mation for different proposals, either unnecessarily
accurate or problematically noisy. We would prefer
a strategy that adapts to the distribution of the scores
in F.

Instead of sampling a fixed proportion of factors,
we can sample until we are confident that the cur-
rent set of samples Sc is an accurate estimate of the
true mean of F. In particular, we maintain a run-
ning count of the sample mean ESc [f ] and variance
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σSc , using them to compute a confidence interval IS
around our estimate of the mean. Since the num-
ber of sampled factors S could be a substantial frac-
tion of the set of factors F,1 we also incorporate fi-
nite population control (fpc) in our sample variance
computation. We compute the confidence interval as
follows:

σ2
S =

1

|S| − 1

∑
f∈S

(f − ES [f ])2 (8)

IS = 2z
σS√
|S|

√
|F| − |S|
|F| − 1

(9)

where we set the z to 1.96, i.e. the 95% confidence
interval. This approach starts with an empty set of
samples, S = {}, and iteratively samples factors
without replacement to add to S, until the confidence
interval around the estimated mean falls below a user
specified maximum interval width threshold i. As a
result, for proposals that contain high-variance fac-
tors, this strategy examines a large number of fac-
tors, while proposals that involve similar factors will
result in fewer samples. Note that this user-specified
threshold is agnostic to the graph structure and the
number of factors, and instead directly reflects the
score distribution of the relevant factors.

4 Experiments

In this section we evaluate our approach for both
marginal and MAP inference.

4.1 Marginal Inference on Synthetic Data
Consider the task of classifying entities into a set of
types, for example, POLITICIAN, VEHICLE, CITY,
GOVERMENT-ORG, etc. For knowledge base con-
struction, this prediction often takes place on the
entity-level, as opposed to the mention-level com-
mon in traditional NLP. To evaluate the type at the
entity-level, the scored factors examine features of
all the entity mentions of the entity, along with the
labels of all relation mentions for which it is an ar-
gument. See Yao et al. (2010) and Hoffmann et al.
(2011) for examples of such models. Since a sub-
set of the mentions can be sufficiently informative
for the model, we expect our stochastic MCMC ap-
proach to work well.

1Specifically, the fraction may be higher than > 5%
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Figure 1: Synthetic Model for Classification

1 0 2 0 3 0 100 200 1000 10000 100000 1000000

Number of Factors Examined

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

E
rr

o
r 

in
 M

ar
g

in
al

p:1. p:0.75 p:0.5 p:0.2

p:0.1 i:0.1 i:0.05 i:0.01

i:0.005 i:0.001

Figure 2: Marginal Inference Error for Classification
on Synthetic Data

We use synthetic data for such a model to evaluate
the quality of marginals returned by the Gibbs sam-
pling form of MCMC. Since the Gibbs algorithm
samples each variable using a fixed assignment of
its neighborhood, we represent generating a single
sample as classification. We create star-shaped mod-
els with a single unobserved variable (entity type)
that neighbors many unary factors, each represent-
ing a single entity- or a relation-mention factor (See
Figure 1a for an example). We generate a synthetic
dataset for this model, creating 100 variables con-
sisting of 100 factors each. The scores of the fac-
tors are generated from gaussians, N(0.5, 1) for the
positive label, and N(−0.5, 1) for the negative label
(note the overlap between the weights in Figure 1b).
Although each structure contains only a single vari-
able, and no cycles, it is a valid benchmark to test
our sampling approach since the effects of the set-
ting of burn-in period and the thinning samples are
not a concern.

We perform standard Gibbs sampling, and com-
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pare the marginals obtained during sampling with
the true marginals, computed exactly. We evalu-
ate the previously described uniform sampling and
confidence-based sampling, with several parameter
values, and plot the L1 error to the true marginals
as more factors are examined. Note that here, and
in the rest of the evaluation, we shall use the num-
ber of factors scored as a proxy for running time,
since the effects of the rest of the steps of sam-
pling are relatively negligible. The error in compar-
ison to regular MCMC (p = 1) is shown in Fig-
ure 2, with standard error bars averaging over 100
models. Initially, as the sampling approach is made
more stochastic (lowering p or increasing i), we see
a steady improvement in the running time needed
to obtain the same error tolerance. However, the
amount of relative improvements slows as stochas-
ticity is increased further; in fact for extreme values
(i = 0.05, p = 0.1) the chains perform worse than
regular MCMC.

4.2 Entity Resolution in Citation Data

To evaluate our approach on a real world dataset,
we apply stochastic MCMC for MAP inference on
the task of citation matching. Given a large number
of citations (that appear at the end of research pa-
pers, for example), the task is to group together the
citations that refer to the same paper. The citation
matching problem is an instance of entity resolution,
in which observed mentions need to be partitioned
such that mentions in a set refer to the same under-
lying entity. Note that neither the identities, or the
number of underlying entities is known.

In this paper, the graphical model of entity reso-
lution consists of observed mentions (mi), and pair-
wise binary variables between all pairs of mentions
(yij) which represent whether the corresponding ob-
served mentions are coreferent. There is a local
factor for each coreference variable yij that has a
high score if the underlying mentions mi and mj

are similar. For the sake of efficiency, we only in-
stantiate and incorporate the variables and factors
when the variable is true, i.e. if yij = 1. Thus,
ψ(y) =

∑
e

∑
mi,mj∈e f(yij). The set of possible

worlds consists of all settings of the y variables that
are consistent with transitivity, i.e. the binary vari-
ables directly represent a valid clustering over the
mentions. An example of the model defined over 5

m2

m1

m3

m5

m4

1

1

1 1

y12

y23

y13

y45

Figure 3: Graphical Model for Entity Resolution:
defined over 5 mentions, with the setting of the vari-
ables resulting in 2 entities. For the sake of brevity,
we’ve only included variables set to 1; binary vari-
ables between mentions that are not coreferent have
been omitted.

mentions is given in Figure 3. This representation
is equivalent to Model 2 as introduced in McCal-
lum and Wellner (2004). As opposed to belief prop-
agation and other approximate inference techniques,
MCMC is especially appropriate for the task as it
can directly enforce transitivity.

When performing MCMC, each sample is a set-
ting to all the y variables that is consistent with tran-
sitivity. To maintain transitivity during sampling,
Metropolis Hastings is used to change the binary
variables in a way that is consistent with moving in-
dividual mentions. Our proposal function selects a
random mention, and moves it to a random entity,
changing all the pairwise variables with mentions in
its old entity, and the pairwise variables with men-
tions in its new entity. Thus, evaluation of such a
proposal function requires scoring a number of fac-
tors linear in the size of the entities, which, for large
datasets, can be a significant bottleneck. In prac-
tice, however, these set of factors are often highly
redundant, as many of the mentions that refer to the
same entity contain redundant information and fea-
tures, and entity membership may be efficiently de-
termined by observing a subset of its mentions.

We evaluate on the Cora dataset (McCallum et
al., 1999), used previously to evaluate a number
of information extraction approaches (Pasula et al.,
2003), including MCMC based inference (Poon and
Domingos, 2007; Singh et al., 2009). The dataset
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Figure 4: Citation Resolution Accuracy Plot for uni-
form and variance-based sampling compared to reg-
ular MCMC (p = 1)

consists of 1295 mentions, that refer to 134 true un-
derlying entities. We use the same features for our
model as (Poon and Domingos, 2007), using true
author, title, and venue segmentation for features.
Since our focus is on evaluating scalability of in-
ference, we combine all the three folds of the data,
and train the model using Samplerank (Wick et al.,
2011).

We run MCMC on the entity resolution model us-
ing the proposal function described above, running
our approach with different parameter values. Since
we are interested in the MAP configuration, we use
a temperature term for annealing. As inference pro-
gresses, we compute BCubed2 F1 of the current
sample, and plot it against the number of scored fac-
tors in Figure 4. We observe consistent speed im-
provements as stochasticity is improved, with uni-
form sampling and confidence-based sampling per-
forming competitively. To compute the speedup, we
measure the number of factors scored to obtain a de-
sired level of accuracy (90% F1), shown for a di-
verse set of parameters in Table 1. With a very
large confidence interval threshold (i = 20) and
small proportion (p = 0.1), we obtain up to 7 times
speedup over regular MCMC. Since the average en-
tity size in this data set is < 10, using a small pro-
portion (and a wide interval) is equivalent to picking
a single mention to compare against.

2B3 is a coreference evaluation metric, introduced by Bagga
and Baldwin (1998)

Method Factors Examined Speedup
Baseline 57,292,700 1x
Uniform Sampling
p = 0.75 34,803,972 1.64x
p = 0.5 28,143,323 2.04x
p = 0.3 17,778,891 3.22x
p = 0.2 12,892,079 4.44x
p = 0.1 7,855,686 7.29x
Variance-Based Sampling
i = 0.001 52,522,728 1.09x
i = 0.01 51,547,000 1.11x
i = 0.1 47,165,038 1.21x
i = 0.5 32,828,823 1.74x
i = 1 18,938,791 3.02x
i = 2 11,134,267 5.14x
i = 5 9,827,498 5.83x
i = 10 8,675,833 6.60x
i = 20 8,295,587 6.90x

Table 1: Speedups on Cora to obtain 90% B3 F1

4.3 Large-Scale Author Coreference

As the body of published scientific work continues
to grow, author coreference, the problem of clus-
tering mentions of research paper authors into the
real-world authors to which they refer, is becoming
an increasingly important step for performing mean-
ingful bibliometric analysis. However, scaling typi-
cal pairwise models of coreference (e.g., McCallum
and Wellner (2004)) is difficult because the number
of factors in the model grows quadratically with the
number of mentions (research papers) and the num-
ber of factors evaluated for every MCMC proposal
scales linearly in the size of the clusters. For author
coreference, the number of author mentions and the
number of references to an author entity can often be
in the millions, making the evaluation of the MCMC
proposals computationally expensive.

We use the publicly available DBLP dataset3 of
BibTex entries as our unlabeled set of mentions,
which contains nearly 5 million authors. For eval-
uation of accuracy, we also include author mentions
from the Rexa corpus4 that contains 2, 833 mentions

3http://www.informatik.uni-trier.de/

˜ley/db/
4http://www2.selu.edu/Academics/Faculty/

aculotta/data/rexa.html
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Figure 5: Performance of Different Sampling Strategies and Parameters for coreference over 5 million
mentions. Plot with p refer to uniform sampling with proportion p of factors picked, while plots with i
sample till confidence intervals are narrower than i.

labeled for coreference.
We use the same Metropolis-Hastings scheme that

we employ in the problem of citation matching. As
before, we initialize to the singleton configuration
and run the experiments for a fixed number of sam-
ples, plotting accuracy versus the number of factors
evaluated (Figure 5a) as well as accuracy versus the
number of samples generated (Figure 5b). We also
tabulate the relative speedups to obtain the desired
accuracy level in Table 2. Our proposed method
achieves substantial savings on this task: speedups
of 13.16 using the variance sampler and speedups
of 9.78 using the uniform sampler. As expected,
when we compare the performance using the num-
ber of generated samples, the approximate MCMC
chains appear to converge more slowly; however, the
overall convergence for our approach is substantially
faster because evaluation of each sample is signif-
icantly cheaper. We also present results on using
extreme approximations (for example, p = 0.01),
resulting in convergence to a low accuracy.

5 Discussion and Related Work

MCMC is a popular method for inference amongst
researchers that work with large and dense graphi-
cal models (Richardson and Domingos, 2006; Poon
and Domingos, 2006; Poon et al., 2008; Singh et al.,
2009; Wick et al., 2009). Some of the probabilistic

Method Factors Examined Speedup
Baseline 1,395,330,603 1x
Uniform
p = 0.5 689,254,134 2.02x
p = 0.2 327,616,794 4.26x
p = 0.1 206,157,705 6.77x
p = 0.05 152,069,987 9.17x
p = 0.02 142,689,770 9.78x
Variance
i = 0.00001 1,442,091,344 0.96x
i = 0.0001 1,419,110,724 0.98x
i = 0.001 1,374,667,077 1.01x
i = 0.1 1,012,321,830 1.38x
i = 1 265,327,983 5.26x
i = 10 179,701,896 7.76x
i = 100 106,850,725 13.16x

Table 2: Speedups on DBLP to reach 80% B3 F1

programming packages popular amongst NLP prac-
titioners also rely on MCMC for inference and learn-
ing (Richardson and Domingos, 2006; McCallum et
al., 2009). Although most of these methods apply
MCMC directly, the rate of convergence of MCMC
has become a concern as larger and more densely-
factored models are being considered, motivating
the need for more efficient sampling that uses par-
allelism (Singh et al., 2011; Gonzalez et al., 2011)
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and domain knowledge for blocking (Singh et al.,
2010). Thus we feel providing a method to speed up
MCMC inference can have a significant impact.

There has also been recent work in designing
scalable approximate inference techniques. Belief
propagation has, in particular, has gained some re-
cent interest. Similar to our approach, a number
of researchers propose modifications to BP that per-
form inference without visiting all the factors. Re-
cent work introduces dynamic schedules to priori-
tize amongst the factors (Coughlan and Shen, 2007;
Sutton and McCallum, 2007) that has been used to
only visit a small fraction of the factors (Riedel and
Smith, 2010). Gonzalez et al. (2009) utilize these
schedules to facilitate parallelization.

A number of existing approaches in statistics
are also related to our contribution. Leskovec and
Faloutsos (2006) propose techniques to sample a
graph to compute certain graph statistics with asso-
ciated confidence. Christen and Fox (2005) also pro-
pose an approach to efficiently evaluate a proposal,
however, once accepted, they score all the factors.
Murray and Ghahramani (2004) propose an approx-
imate MCMC technique for Bayesian models that
estimates the partition function instead of comput-
ing it exactly.

Related work has also applied such ideas for
robust learning, for example Kok and Domingos
(2005), based on earlier work by Hulten and Domin-
gos (2002), uniformly sample the groundings of an
MLN to estimate the likelihood.

6 Conclusions and Future Work

Motivated by the need for an efficient inference tech-
nique that can scale to large, densely-factored mod-
els, this paper considers a simple extension to the
Markov chain Monto Carlo algorithm. By observ-
ing that many graphical models contain substantial
redundancy among the factors, we propose stochas-
tic evaluation of proposals that subsamples the fac-
tors to be scored. Using two proposed sampling
strategies, we demonstrate improved convergence
for marginal inference on synthetic data. Further,
we evaluate our approach on two real-world entity
resolution datasets, obtaining a 13 times speedup on
a dataset containing 5 million mentions.

Based on the ideas presented in the paper, we will

consider additional sampling strategies. In partic-
ular, we will explore dynamic sampling, in which
we sample fewer factors during the initial, burn-
in phase, but sample more factors as we get close
to convergence. Motivated by our positive results,
we will also study the application of this approach
to other approximate inference techniques, such as
belief propagation and variational inference. Since
training is often a huge bottleneck for information
extraction, we will also explore its applications to
parameter estimation.
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Abstract

This paper deals with the problem of predict-
ing structures in the context of NLP. Typically,
in structured prediction, an inference proce-
dure is applied to each example independently
of the others. In this paper, we seek to op-
timize the time complexity of inference over
entire datasets, rather than individual exam-
ples. By considering the general inference
representation provided by integer linear pro-
grams, we propose three exact inference the-
orems which allow us to re-use earlier solu-
tions for certain instances, thereby completely
avoiding possibly expensive calls to the infer-
ence procedure. We also identify several ap-
proximation schemes which can provide fur-
ther speedup. We instantiate these ideas to the
structured prediction task of semantic role la-
beling and show that we can achieve a speedup
of over 2.5 using our approach while retain-
ing the guarantees of exactness and a further
speedup of over 3 using approximations that
do not degrade performance.

1 Introduction

Typically, in structured prediction applications, ev-
ery example is treated independently and an infer-
ence algorithm is applied to each one of them. For
example, consider a dependency parser that uses the
maximum spanning tree algorithm (McDonald et al.,
2005) or its integer linear program variants (Riedel
and Clarke, 2006; Martins et al., 2009) to make pre-
dictions. Given a trained model, the parser addresses

* These authors contributed equally to this work.

each sentence separately and runs the inference al-
gorithm to predict the parse tree. Thus, the time
complexity of inference over the test set is linear in
the size of the corpus.

In this paper, we ask the following question: For
a given task, since the inference procedure predicts
structures from the same family of structures (depen-
dency trees, semantic role structures, etc.), can the
fact that we are running inference for a large num-
ber of examples help us improve the time complexity
of inference? In the dependency parsing example,
this question translates to asking whether, having
parsed many sentences, we can decrease the parsing
time for the next sentence.

Since any combinatorial optimization problem
can be phrased as an integer linear program (ILP),
we frame inference problems as ILPs for the purpose
of analysis. By analyzing the objective functions
of integer linear programs, we identify conditions
when two ILPs have the same solution. This allows
us to reuse solutions of previously solved problems
and theoretically guarantee the optimality of the so-
lution. Furthermore, in some cases, even when the
conditions are not satisfied, we can reuse previous
solutions with high probability of being correct.

Given the extensive use of integer linear programs
for structured prediction in Natural Language Pro-
cessing over the last few years, these ideas can be ap-
plied broadly to NLP problems. We instantiate our
improved inference approaches in the structured pre-
diction task of semantic role labeling, where we use
an existing implementation and a previous trained
model that is based on the approach of (Punyakanok
et al., 2008). We merely modify the inference pro-
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cess to show that we can realize the theoretical gains
by making fewer calls to the underlying ILP solver.

Algorithm Speedup
Theorem 1 2.44
Theorem 2 2.18
Theorem 3 2.50

Table 1: The speedup for semantic role labeling cor-
responding to the three theorems described in this
paper. These theorems guarantee the optimality of
the solution, thus ensuring that the speedup is not
accompanied by any loss in performance.

Table 1 presents a preview of our results, which
are discussed in Section 4. All three approaches in
this table improve running time, while guaranteeing
optimum solutions. Allowing small violations to the
conditions of the theorems provide an even higher
improvement in speedup (over 3), without loss of
performance.

The primary contributions of this paper are:

1. We pose the problem of optimizing inference
costs over entire datasets rather than individ-
ual examples. Our approach is agnostic to the
underlying models and allows us to use pre-
trained scoring functions.

2. We identify equivalence classes of ILP prob-
lems and use this notion to prove exact con-
ditions under which no inference is required.
These conditions lead to algorithms that can
speed up inference problem without losing the
exactness guarantees. We also use these con-
ditions to develop approximate inference algo-
rithms that can provide a further speedup.

3. We apply our approach to the structured pre-
diction task of semantic role labeling. By not
having to perform inference on some of the in-
stances, those that are equivalent to previously
seen instances, we show significant speed up in
terms of the number of times inference needs to
be performed. These gains are also realized in
terms of wall-clock times.

The rest of this paper is organized as follows: In
section 2, we formulate the problem of amortized
inference and provide motivation for why amortized

gains can be possible. This leads to the theoretical
discussion in section 3, where we present the meta-
algorithm for amortized inference along with sev-
eral exact and approximate inference schemes. We
instantiate these schemes for the task of semantic
role labeling (Section 4). Section 5 discusses related
work and future research directions.

2 Motivation

Many NLP tasks can be phrased as structured pre-
diction problems, where the goal is to jointly assign
values to many inference variables while account-
ing for possible dependencies among them. This de-
cision task is a combinatorial optimization problem
and can be solved using a dynamic programming ap-
proach if the structure permits. In general, the infer-
ence problem can be formulated and solved as inte-
ger linear programs (ILPs).

Following (Roth and Yih, 2004) Integer linear
programs have been used broadly in NLP. For exam-
ple, (Riedel and Clarke, 2006) and (Martins et al.,
2009) addressed the problem of dependency pars-
ing and (Punyakanok et al., 2005; Punyakanok et
al., 2008) dealt with semantic role labeling with this
technique.

In this section, we will use the ILP formulation
of dependency parsing to introduce notation. The
standard approach to framing dependency parsing as
an integer linear program was introduced by (Riedel
and Clarke, 2006), who converted the MST parser
of (McDonald et al., 2005) to use ILP for inference.
The key idea is to build a complete graph consist-
ing of tokens of the sentence where each edge is
weighted by a learned scoring function. The goal
of inference is to select the maximum spanning tree
of this weighted graph.

2.1 Problem Formulation

In this work, we consider the general inference prob-
lem of solving a 0-1 integer linear program. To per-
form inference, we assume that we have a model that
assigns scores to the ILP decision variables. Thus,
our work is applicable not only in cases where in-
ference is done after a separate learning phase, as in
(Roth and Yih, 2004; Clarke and Lapata, 2006; Roth
and Yih, 2007) and others, but also when inference
is done during the training phase, for algorithms like
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the structured perceptron of (Collins, 2002), struc-
tured SVM (Tsochantaridis et al., 2005) or the con-
straints driven learning approach of (Chang et al.,
2007).

Since structured prediction assigns values to a
collection of inter-related binary decisions, we de-
note the ith binary decision by yi ∈ {0, 1} and the
entire structure as y, the vector composed of all the
binary decisions. In our running example, each edge
in the weighted graph generates a single decision
variable (for unlabeled dependency parsing). For
each yi, let ci ∈ < denote the weight associated with
it. We denote the entire collection of weights by the
vector c, forming the objective for this ILP.

Not all assignments to these variables are valid.
Without loss of generality, these constraints can be
expressed using linear inequalities over the infer-
ence variables, which we write as MTy ≤ b for
a real valued matrix M and a vector b. In depen-
dency parsing, for example, these constraints ensure
that the final output is a spanning tree.

Now, the overall goal of inference is to find the
highest scoring structure. Thus, we can frame infer-
ence as an optimization problem p with n inference
variables as follows:

arg max
y∈{0,1}n

cTy (1)

subject to MTy ≤ b. (2)

For brevity, we denote the space of feasible solutions
that satisfy the constraints for the ILP problem p as
Kp = {y ∈ {0, 1}n|MTy ≤ b}. Thus, the goal of
inference is to find

arg max
y∈Kp

cTy.

We refer to Kp as the feasible set for the inference
problem p and yp as its solution.

In the worst case, integer linear programs are
known to be NP-hard. Hence, solving large prob-
lems, (that is, problems with a large number of con-
straints and/or variables) can be infeasible.

For structured prediction problems seen in NLP,
we typically solve many instances of inference prob-
lems. In this paper, we investigate whether an infer-
ence algorithm can use previous predictions to speed
up inference time, thus giving us an amortized gain

in inference time over the lifetime of the program.
We refer to inference algorithms that have this capa-
bility as amortized inference algorithms.

In our running example, each sentence corre-
sponds to a separate ILP. Over the lifetime of the
dependency parser, we create one inference instance
(that is, one ILP) per sentence and solve it. An amor-
tized inference algorithm becomes faster at parsing
as it parses more and more sentences.

2.2 Why can inference costs be amortized over
datasets?

In the rest of this section, we will argue that the time
cost of inference can be amortized because of the
nature of inference in NLP tasks. Our argument is
based on two observations, which are summarized in
Figure (1): (1) Though the space of possible struc-
tures may be large, only a very small fraction of
these occur. (2) The distribution of observed struc-
tures is heavily skewed towards a small number of
them.

x’s p’s y’sILP
formulation

Inference

Examples
ILPs

Solutions

Figure 1: For a structured prediction task, the infer-
ence problem p for an example x needs to be for-
mulated before solving it to get the structure y. In
structured prediction problems seen in NLP, while
an exponential number of structures is possible for a
given instance, in practice, only a small fraction of
these ever occur. This figure illustrates the empirical
observation that there are fewer inference problems
p’s than the number of examples and the number of
observed structures y’s is even lesser.

As an illustration, consider the problem of part-
of-speech tagging. With the standard Penn Treebank
tag set, each token can be assigned one of 45 labels.
Thus, for a sentence of size n, we could have 45n

structures out of which the inference process needs
to choose one. However, a majority of these struc-
tures never occur. For example, we cannot have a
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(a) Part-of-speech tagging
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(b) Unlabeled dependency parsing
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Figure 2: Number of inference instances for different input sizes (red solid lines) and the number of unique
structures for each size (blue dotted lines). The x-axis indicates the size of the input (number of tokens
for part of speech and dependency, and number of argument candidates for SRL.) Note that the number of
instances is not the number of unique examples of a given length, but the number of times an inference
procedure is called for an input of a given size.
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(a) Sentence length = 5
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(b) Sentence length = 10
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(c) Sentence length = 15

Figure 3: These plots show the log-frequencies of occurrences of part-of-speech sequences for sentences
with five, ten and fifteen tokens. The x-axes list different unique part-of-speech tag sequences for the entire
sentence. These plots show that for sentences of a given length, most structures (solutions) that are possible
never occur, or occur very infrequently; only a few of the possible structures (solutions) actually occur
frequently.

sentence where all the tokens are determiners.

Furthermore, many sentences of the same size
share the same part-of-speech tag sequence. To
quantify the redundancy of structures, we part-of-
speech tagged the English Gigaword corpus (Graff
and Cieri, 2003). Figure (2a) shows the number
of sentences in the corpus for different sentence
lengths. In addition, it also shows the number of
unique part-of-speech tag sequences (over the en-
tire sentence) for each size. We see that the number
of structures is much fewer than the number of in-
stances for any sentence size. Note that 45n quickly
outgrows the number of sentences as n increases.
The figures (2b) and (2c) show similar statistics for
unlabeled dependency parsing and semantic role la-
beling. In the former case, the size of the instance is

the number of tokens in a sentence, while in the lat-
ter, the size is the number of argument candidates
that need to be labeled for a given predicate. In
both cases, we see that the number of empirically
observed structures is far fewer than the number of
instances to be labeled.

Thus, for any given input size, the number of in-
stances of that size (over the lifetime of the program)
far exceeds the number of observed structures for
that size. Moreover, the number of observed struc-
tures is significantly smaller than the number of the-
oretically possible structures. Thus, we have a small
number of structures that form optimum structures
for many inference instances of the same size.

Our second observation deals with the distribu-
tion of structures for a given input size. Figure (3)
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shows the log frequencies of part-of-speech tagging
sequences for sentences of lengths five, ten and fif-
teen. In all cases, we see that a few structures are
most frequent. We observed similar distributions of
structures for all input sizes for dependency parsing
and semantic role labeling as well.

Since the number of structures for a given exam-
ple size is small, many examples x’s, and hence
many inference problems p’s, are associated with
the same structure y. These observations suggest the
possibility of getting an amortized gain in inference
time by characterizing the set of inference problems
that produce the same structure. Then, for a new in-
ference problem, if we can identify that it belongs to
a known set, that is, will yield a solution that we have
already seen, we do not have to run inference at all.
The second observation also suggests that this char-
acterization of sets of problems that have the same
solution can be done in a data-driven way because
characterizing a small number of structures can give
us high coverage.

3 Amortizing inference costs

In this section, we present different schemes for
amortized inference leading up to an inference meta-
algorithm. The meta-algorithm is both agnostic to
the underlying inference algorithm that is used by
the problem and maintains the exactness properties
of the underlying inference scheme. That is, if we
have an exact/approximate inference algorithm with
a certain guarantees, the meta-algorithm will have
the same guarantees, but with a speedup.

3.1 Notation

For an integer linear program p with np variables,
we denote its objective coefficients by cp and its fea-
sible set byKp. We denote its solution as as yp. We
represent vectors by boldfaced symbols and their ith

component using subscripts.
We consider many instantiations of the inference

problem and use superscripts to denote each indi-
vidual instance. Thus, we have a large collection of
inference instances P = {p1,p2, · · · } along with
their respective solutions {y1

p,y
2
p, · · · }.

Definition 1 (Equivalence classes of ILPs). Two in-
teger linear programs are said to be in the same
equivalence class if they have the same number of

inference variables and the same feasible set.

We square brackets to denote equivalence classes.
If [P ] is an equivalence class of ILPs, we use the
notation K[P ] to denote its feasible set and n[P ] to
denote the number of variables. Also, for a program
p, we use the notation p ∼ [P ] to indicate that it
belongs to the equivalence class [P ].

3.2 Exact theorems
Our goal is to characterize the set of objective func-
tions which will have the same solution for a given
equivalence class of problems.

Suppose we have solved an ILP p to get a solution
yp. For every inference variable that is active in the
solution (i.e., whose value is 1), increasing the corre-
sponding objective value will not change the optimal
assignment to the variables. Similarly, for all other
variables (whose value in the solution is 0), decreas-
ing the objective value will not change the optimal
solution. This intuition gives us our first theorem for
checking whether two ILPs have the same solution
by looking at the difference between their objective
coefficients.

Theorem 1. Let p denote an inference problem
posed as an integer linear program belonging to an
equivalence class [P ]. Let q ∼ [P ] be another infer-
ence instance in the same equivalence class. Define
δc = cq − cp to be the difference of the objective
coefficients of the ILPs. Then, yp is the solution of
the problem q if for each i ∈ {1, · · · , np}, we have

(2yp,i − 1)δci ≥ 0 (3)

The condition in the theorem, that is, inequal-
ity (3), requires that the objective coefficients corre-
sponding to values yp,i that are set to 1 in p increase,
and those that correspond to values of yp,i set to 0,
decrease. Under these conditions, if yp is the max-
imizer of the original objective, then it maximizes
the new objective too.

Theorem 1 identifies perturbations of an ILP’s ob-
jective coefficients that will not change the optimal
assignment. Next, we will characterize the sets of
objective values that will have the same solution us-
ing a criterion that is independent of the actual so-
lution. Suppose we have two ILPs p and q in an
equivalence class [P ] whose objective values are cp

and cq respectively. Suppose y∗ is the solution to
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both these programs. That is, for every y ∈ K[P ],
we have cT

py ≤ cT
py∗ and cT

qy ≤ cT
qy∗. Multiply-

ing these inequalities by any two positive real num-
bers x1 and x2 and adding them shows us that y∗

is also the solution for the ILP in [P ] which has the
objective coefficients x1cp + x2cq. Extending this
to an arbitrary number of inference problems gives
us our next theorem.
Theorem 2. Let P denote a collection
{p1,p2, · · · ,pm} of m inference problems in
the same equivalence class [P ] and suppose that
all the problems have the same solution, yp. Let
q ∼ [P ] be a new inference program whose optimal
solution is y. Then y = yp if there is some x ∈ <m

such that x ≥ 0 and

cq =
∑

j

xjcj
p. (4)

From the geometric perspective, the pre-condition
of this theorem implies that if the new coefficients
lie in the cone formed by the coefficients of the pro-
grams that have the same solution, then the new pro-
gram shares the solution.

Theorems 1 and 2 suggest two different ap-
proaches for identifying whether a new ILP can
use the solution of previously solved inference in-
stances. These theorems can be combined to get a
single criterion that uses the objective coefficients of
previously solved inference problems and their com-
mon solution to determine whether a new inference
problem will have the same solution. Given a collec-
tion of solved ILPs that have the same solution, from
theorem 2, we know that an ILP with the objective
coefficients c =

∑
j xjc

j
p will share the solution.

Considering an ILP whose objective vector is c and
applying theorem 1 to it gives us the next theorem.
Theorem 3. Let P denote a collection
{p1,p2, · · · ,pm} of m inference problems
belonging to the same equivalence class [P ].
Furthermore, suppose all the programs have the
same solution yp. Let q ∼ [P ] be a new inference
program in the equivalence class. For any x ∈ <m,
define ∆c(x) = cq −

∑
j xjc

j
p. The assignment

yp is the optimal solution of the problem q if there
is some x ∈ <m such that x ≥ 0 and for each
i ∈ {1, np}, we have

(2yp,i − 1)∆ci ≥ 0 (5)

Theorem Condition
Theorem 1 ∀i ∈ {1, · · · , np},

(2yp,i − 1)δci ≥ 0; ∀i.
Theorem 2 ∃ x ∈ <m, such that

x ≥ 0 and cq =
∑

j xjc
j
p

Theorem 3 ∃ x ∈ <m, such that
x ≥ 0 and (2yp,i − 1)∆ci ≥ 0; ∀i.

Table 2: Conditions for checking whether yp is the
solution for an inference problem q ∼ [P ] according
to theorems 1, 2 and 3. Please refer to the statements
of the theorems for details about the notation.

3.3 Implementation
Theorems 1, 2 and 3 each specify a condition that
checks whether a pre-existing solution is the opti-
mal assignment for a new inference problem. These
conditions are summarized in Table 2. In all cases,
if the condition matches, the theorems guarantee that
the two solutions will be the same. That is, applying
the theorems will not change the performance of the
underlying inference procedure. Only the number of
inference calls will be decreased.

In our implementation of the conditions, we used
a database1 to cache ILPs and implemented the
retrieval of equivalence classes and solutions as
queries to the database. To implement theorem 1,
we iterate over all ILPs in the equivalence class and
check if the condition is satisfied for one of them.
The conditions of theorems 2 and 3 check whether a
collection of linear (in)equalities has a feasible solu-
tion using a linear program solver.

We optimize the wall-clock time of theorems 2
and 3 by making two observations. First, we do not
need to solve linear programs for all possible ob-
served structures. Given an objective vector, we only
need consider the highest scoring structures within
an equivalence class. (All other structures cannot
be the solution to the ILP.) Second, since theorem
2 checks whether an ILP lies within a cone, we can
optimize the cache for theorem 2 by only storing the
ILPs that form on the boundary of the cone. A sim-
ilar optimization can be performed for theorem 3 as
well. Our implementation uses the following weaker
version of this optimization: while caching ILPs, we

1We used the H2 database engine, which can be downloaded
from http://h2database.com, for all caching.
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do not add an instance to the cache if it already satis-
fies the theorem. This optimization reduces the size
of the linear programs used to check feasibility.

3.4 Approximation schemes
So far, in the above three theorems, we retain the
guarantees (in terms of exactness and performance)
of the underlying inference procedure. Now, we will
look at schemes for approximate inference. Unlike
the three theorems listed above, with the following
amortized inference schemes, we are not guaranteed
an optimal solution.

3.4.1 Most frequent solution
The first scheme for approximation uses the ob-

servation that the most frequent solution occurs an
overwhelmingly large number of times, compared to
the others. (See the discussion in section 2.2 and fig-
ures 3a, 3b and 3c for part-of-speech tagging.) Un-
der this approximation scheme, given an ILP prob-
lem, we simply pick the most frequent solution for
that equivalence class as the solution, provided this
solution has been seen a sufficient number of times.
If the support available in the cache is insufficient,
we call the underlying inference procedure.

3.4.2 Top-K approximation
The previous scheme for approximate amortized

inference is agnostic to the objective coefficients of
integer linear program to be solved and uses only
its equivalence class to find a candidate structure.
The top-K approach extends this by scoring the K
most frequent solutions using the objective coeffi-
cients and selecting the highest scoring one as the
solution to the ILP problem. As with the previous
scheme, we only consider solutions that have suffi-
cient support.

3.4.3 Approximations to theorems 1 and 3
The next approximate inference schemes relaxes

the conditions in theorems 1 and 3 by allowing the
inequalities to be violated by ε. That is, the inequal-
ity (3) from Theorem 1 now becomes

(2yp,i − 1)δci + ε ≥ 0. (6)

The inequality (5) from Theorem 3 is similarly re-
laxed as follows:

(2yp,i − 1)∆ci + ε ≥ 0 (7)

3.5 Amortized inference algorithm

Each exact and approximate inference approach de-
scribed above specifies a condition to check whether
an inference procedure should be called for a
new problem. This gives us the following meta-
algorithm for amortized inference, parameterized by
the actual scheme used: If the given input instance p
satisfies the condition specified by the scheme, then
use the cached solution. Otherwise, call the infer-
ence procedure and cache the solution for future use.

4 Experiments

In this section, we apply the theory from Section 3 to
the structure prediction problem of semantic role la-
beling. Since the inference schemes presented above
are independent of the learning aspects, we use an
off-the-shelf implementation and merely modify the
inference as discussed in Section 3.5.

The goal of the experiments is to show that us-
ing an amortized inference algorithm, we can make
fewer calls to the underlying inference procedure.
For the exact inference algorithms, doing so will not
change the performance as compared to the under-
lying system. For the approximations, we can make
a trade-off between the inference time and perfor-
mance.

4.1 Experimental setup

Our goal is to simulate a long-running NLP process
that can use a cache of already solved problems to
improve inference time. Given a new input problem,
our theorems require us to find all elements in the
equivalence class of that problem along with their
solutions. Intuitively, we expect a higher probability
of finding members of an arbitrary equivalence class
if the size of the cache is large. Hence, we processed
sentences from the Gigaword corpus and cached the
inference problems for our task.

The wall-clock time is strongly dependent on such
specific implementation of the components, which
are independent of the main contributions of this
work. Also, in most interesting applications, the
computation time for each step will be typically
dominated by the number of inference steps, espe-
cially with efficient implementations of caching and
retrieval. Hence, the number of calls to the underly-
ing procedure is the appropriate complexity param-
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eter. Let NBase be the number of times we would
need to call the underlying inference procedure had
we not used an amortized algorithm. (This is the
same as the number of inference problems.) Let NA

be the number of times the underlying inference pro-
cedure is actually called using an amortized algo-
rithm A. We define the speedup of A as

Speedup(A) =
NBase

NA
. (8)

We also report the clock speedup of our implemen-
tation for all algorithms, which is the ratio of the
wall-clock time taken by the baseline algorithm to
that of the amortized algorithm. For measuring time,
we only measure the time for inference as the other
aspects (feature extraction, scoring, etc.) are not
changed.

4.2 Semantic Role Labeling
The goal of Semantic Role Labeling (SRL) (Palmer
et al., 2010) is to identify and assign semantic roles
to arguments of verb predicates in a sentence. For
example, consider the the sentence John gave the
ball to Mary. The verb give takes three arguments,
John, the ball and to Mary, which are labeled A0,
A1 and A2 respectively.

We used the system of (Punyakanok et al., 2008)
as our base SRL system. It consists of two classi-
fiers trained on the Propbank corpus. The first one,
called the argument identifier, filters argument can-
didates which are generated using a syntactic parse-
based heuristic. The second model scores each can-
didate that has not been filtered for all possible argu-
ment labels. The scores for all candidates of a pred-
icate are combined via inference. As in the system
of (Punyakanok et al., 2008), the softmax function
is applied to the raw classifier scores to ensure that
they are in the same numeric range.

Inference mandates that certain structural and
linguistic constraints hold over the full predicate-
argument structure for a verb. (Punyakanok et al.,
2008) modeled inference via an integer linear pro-
gram instance, where each assignment of labels
to candidates corresponds to one decision variable.
Given a set of argument candidates, the feasible set
of decisions is dependent of the number of argument
candidates and the verb predicate. Thus, in terms
of the notation used in this paper, the equivalence

classes are defined by the pair (predicate, number of
argument candidates).

We ran the semantic role labeler on 225,000 verb
predicates from the Gigaword corpus and cached
the equivalence classes, objective coefficients and
solutions generated by the SRL system. We re-
port speedup for the various amortized inference
schemes on the standard Penn Treebank test set. On
this data, the unaltered baseline system, processes
5127 integer linear programs and achieves an F1 of
75.85%.

Table 3 shows the speedup and performance for
the various inference schemes. The most frequent
and top-K systems are both naive solutions that take
advantage of the cache of stored problems. In spite
of their simplicity, they attain F1 scores of 62%
and 70.06% because few structures occur most fre-
quently, as described in section 2.2. We see that all
the exact theorems attain a speedup higher than two
without losing performance. (The variation in F1 be-
tween them is because of the existence of different
equivalent solutions in terms of the objective value.)
This shows us that we can achieve an amortized gain
in inference. Note that a speedup of 2.5 indicates
that the solver is called only for 40% of the exam-
ples. The approximate versions of theorems 1 and 3
(with ε = 0.3 in both cases, which was not tuned)
attain an even higher gain in speedup over the base-
line than the base versions of the theorems. Interest-
ingly, the SRL performance in both cases does not
decline much even though the conditions of the the-
orems may be violated.

5 Related work and Future directions

In recent years, we have seen several approaches to
speeding up inference using ideas like using the cut-
ting plane approach (Riedel, 2009), dual decompo-
sition and Lagrangian relaxation (Rush et al., 2010;
Chang and Collins, 2011). The key difference be-
tween these and the work in this paper is that all
these approaches solve one instance at a time. Since
we can use any inference procedure as a underlying
system, the speedup reported in this paper is appli-
cable to all these algorithms.

Decomposed amortized inference In this paper,
we have taken advantage of redundancy of struc-
tures that can lead to the re-use of solutions. In the
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Type Algorithm # instances # solver Speedup Clock F1
calls speedup

Exact Baseline 5127 5217 1.0 1.0 75.85
Exact Theorem 1 5127 2134 2.44 1.54 75.90
Exact Theorem 2 5127 2390 2.18 1.14 75.79
Exact Theorem 3 5127 2089 2.50 1.36 75.77
Approx. Most frequent (Support = 50) 5127 2812 1.86 1.57 62.00
Approx. Top-10 solutions (Support = 50) 5127 2812 1.86 1.58 70.06
Approx. Theorem 1 (approx, ε = 0.3) 5127 1634 3.19 1.81 75.76
Approx. Theorem 3 (approx, ε = 0.3) 5127 1607 3.25 1.50 75.46

Table 3: Speedup and performance for various inference methods for the task of Semantic Role Labeling.
All the exact inference algorithms get a speedup higher than two. The speedup of the approximate version
of the theorems is even higher without loss of performance. The clock speedup is defined as the ratio of the
inference times of the baseline and the given algorithm. All numbers are averaged over ten trials.

part of speech example, we showed redundancy of
structures at the sentence level (Figure 2a). How-
ever, for part-of-speech tagging, the decisions are
rarely, if at all, dependent on a very large context.
One direction of future work is to take advantage of
the fact that the inference problem can be split into
smaller sub-problems. To support this hypothesis,
we counted the number of occurrences of ngrams
of tokens (including overlapping and repeated men-
tions) for n <= 10 and compared this to the number
of unique part-of-speech ngrams of this length. Fig-
ure 4 shows these two counts. Following the argu-
ment in Section 2.2, this promises a large amortized
gain in inference time. We believe that such decom-
position can also be applied to other, more complex
structured prediction tasks.

The value of approximate inference From the
experiments, we see that the first two approximate
inference schemes (most frequent solution and the
top-K scheme) can speed up inference with the
only computational cost being the check for pre-
conditions of the exact theorems. Effectively, these
algorithms have parameters (i.e., the support param-
eter) that allow us to choose between the inference
time and performance. Figure 5 shows the perfor-
mance of the most frequent and top-K baselines for
different values of the support parameter, which in-
dicates how often a structure must occur for it to be
considered. We see that for lower values of support,
we can get a very high speedup but pay with poorer
performance.
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Figure 4: The red line shows the number of ngrams
of tokens (including overlapping and repeated oc-
currences) in the Gigaword corpus and the blue line
shows the number of unique POS tag sequences.

However, the prediction of the approximate al-
gorithms can be used to warm-start any solver that
can accept an external initialization. Warm-starting
a solver can give a way to get the exact solution and
yet take advantage of the frequency of structures that
have been observed.

Lifted inference The idea of amortizing inference
time over the dataset is conceptually related to the
idea of lifted inference (de Salvo Braz et al., 2005).
We abstract many instances into equivalence classes
and deal with the inference problem with respect to
the equivalence classes in the same way as done in
lifted inference algorithms.
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Figure 5: Most frequent solutions and top-K:
Speedup and SRL performance (F1) for different
values of the support parameter, using the most-
frequent solutions (dashed blue line) and the top-
K scheme (thick gray line). Support indicates how
many times a structure should be seen for it to be
considered. Note that the speedup values for both
schemes are identical (red line).

6 Conclusion

In this paper, we addressed structured prediction in
the context of NLP and proposed an approach to im-
prove inference costs over an entire dataset, rather
than individual instances. By treating inference
problems as instances of integer linear programs, we
proposed three exact theorems which identify exam-
ples for which the inference procedure need not be
called at all and previous solutions can be re-used
with the guarantee of optimality. In addition, we
also proposed several approximate algorithms. We
applied our algorithms, which are agnostic to the
actual tasks, to the problem semantic role labeling,
showing significant decrease in the number of infer-
ence calls without any loss in performance. While
the approach suggested in this paper is evaluated in
semantic role labeling, it is generally applicable to
any NLP task that deals with structured prediction.

Acknowledgements

The authors wish to thank Sariel Har-Peled and the members

of the Cognitive Computation Group at the University of Illi-

nois for insightful discussions and the anonymous reviewers for

their valuable feedback. This research is sponsored by the Army

Research Laboratory (ARL) under agreement W911NF-09-2-

0053. The authors also gratefully acknowledge the support

of the Defense Advanced Research Projects Agency (DARPA)

Machine Reading Program under Air Force Research Labo-

ratory (AFRL) prime contract no. FA8750-09-C-0181. This

work is also supported by the Intelligence Advanced Research

Projects Activity (IARPA) Foresight and Understanding from

Scientific Exposition (FUSE) Program via Department of In-

terior National Business Center contract number D11PC2015.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the view of ARL, DARPA, AFRL, IARPA,

or the US government.

References
Y-W. Chang and M. Collins. 2011. Exact decoding

of phrase-based translation models through lagrangian
relaxation. EMNLP.

M. Chang, L. Ratinov, and D. Roth. 2007. Guiding semi-
supervision with constraint-driven learning. In ACL.

J. Clarke and M. Lapata. 2006. Constraint-based
sentence compression: An integer programming ap-
proach. In ACL.

M. Collins. 2002. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. In EMNLP.

R. de Salvo Braz, E. Amir, and D. Roth. 2005. Lifted
first-order probabilistic inference. In IJCAI.

D Graff and C. Cieri. 2003. English gigaword.
A. Martins, N. A. Smith, and E. Xing. 2009. Concise

integer linear programming formulations for depen-
dency parsing. In ACL.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. 2005.
Non-projective dependency parsing using spanning
tree algorithms. In EMNLP, pages 523–530, Vancou-
ver, British Columbia, Canada, October. Association
for Computational Linguistics.

M. Palmer, D. Gildea, and N. Xue. 2010. Semantic Role
Labeling, volume 3. Morgan & Claypool Publishers.

V. Punyakanok, D. Roth, and W. Yih. 2005. The neces-
sity of syntactic parsing for semantic role labeling. In
IJCAI.

V. Punyakanok, D. Roth, and W. Yih. 2008. The impor-
tance of syntactic parsing and inference in semantic
role labeling. Computational Linguistics.

S. Riedel and J. Clarke. 2006. Incremental integer linear
programming for non-projective dependency parsing.
In EMNLP.

S. Riedel. 2009. Cutting Plane MAP Inference for
Markov Logic. Machine Learning.

D. Roth and W. Yih. 2004. A linear programming formu-
lation for global inference in natural language tasks. In
Hwee Tou Ng and Ellen Riloff, editors, CoNLL.

1123



D. Roth and W. Yih. 2007. Global inference for entity
and relation identification via a linear programming
formulation. In Lise Getoor and Ben Taskar, editors,
Introduction to Statistical Relational Learning.

A. M. Rush, D. Sontag, M. Collins, and T. Jaakkola.
2010. On dual decomposition and linear program-
ming relaxations for natural language processing. In
EMNLP.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Al-
tun. 2005. Large margin methods for structured and
interdependent output variables. Journal of Machine
Learning Research.

1124



Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1125–1134, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Exact Sampling and Decoding in High-Order Hidden Markov Models

Simon Carter∗
ISLA, University of Amsterdam

Science Park 904, 1098 XH Amsterdam,
The Netherlands

s.c.carter@uva.nl

Marc Dymetman Guillaume Bouchard
Xerox Research Centre Europe

6, chemin de Maupertuis
38240 Meylan, France

{first.last}@xrce.xerox.com

Abstract

We present a method for exact optimization
and sampling from high order Hidden Markov
Models (HMMs), which are generally han-
dled by approximation techniques. Motivated
by adaptive rejection sampling and heuris-
tic search, we propose a strategy based on
sequentially refining a lower-order language
model that is an upper bound on the true
model we wish to decode and sample from.
This allows us to build tractable variable-order
HMMs. The ARPA format for language mod-
els is extended to enable an efficient use of the
max-backoff quantities required to compute
the upper bound. We evaluate our approach
on two problems: a SMS-retrieval task and a
POS tagging experiment using 5-gram mod-
els. Results show that the same approach can
be used for exact optimization and sampling,
while explicitly constructing only a fraction of
the total implicit state-space.

1 Introduction

In NLP, sampling is important for many real tasks,
such as: (i) diversity in language generation or
machine translation (proposing multiple alternatives
which are not clustered around a single maximum);
(ii) Bayes error minimization, for instance in Statis-
tical Machine Translation (Kumar and Byrne, 2004);
(iii) learning of parametric and non-parametric
Bayesian models (Teh, 2006).

However, most practical sampling algorithms are
based on MCMC, i.e. they are based on local moves

∗This work was conducted during an internship at XRCE.

starting from an initial valid configuration. Often,
these algorithms are stuck in local minima, i.e. in
a basin of attraction close to the initialization, and
the method does not really sample the whole state
space. This is a problem when there are ambiguities
in the distribution we want to sample from: by hav-
ing a local approach such as MCMC, we might only
explore states that are close to a given configuration.

The necessity of exact sampling can be ques-
tioned in practice. Approximate sampling tech-
niques have been developed over the last century
and seem sufficient for most purposes. However,
the cases where one actually knows the quality of
a sampling algorithm are very rare, and it is com-
mon practice to forget about the approximation and
simply treat the result of a sampler as a set of i.i.d.
data. Exact sampling provides a de-facto guarantee
that the samples are truly independent. This is par-
ticularly relevant when one uses a cascade of algo-
rithms in complex NLP processing chains, as shown
by (Finkel et al., 2006) in their work on linguistic
annotation pipelines.

In this paper, we present an approach for exact
decoding and sampling with an HMM whose hid-
den layer is a high-order language model (LM),
which innovates on existing techniques in the fol-
lowing ways. First, it is a joint approach to sam-
pling and optimization (i.e. decoding), which is
based on introducing a simplified, “optimistic”, ver-
sion q(x) of the underlying language model p(x),
for which it is tractable to use standard dynamic pro-
gramming techniques both for sampling and opti-
mization. We then formulate the problem of sam-
pling/optimization with the original model p(x) in
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terms of a novel algorithm which can be viewed
as a form of adaptive rejection sampling (Gilks
and Wild, 1992; Gorur and Teh, 2008), in which
a low acceptance rate (in sampling) or a low ratio
p(x∗)/q(x∗) (in optimization, with x∗ the argmax
of q) leads to a refinement of q, i.e., a slightly more
complex and less optimistic q but with a higher ac-
ceptance rate or ratio.

Second, it is the first technique that we are aware
of which is able to perform exact sampling with such
models. Known techniques for sampling in such
situations have to rely on approximation techniques
such as Gibbs or Beam sampling (see e.g. (Teh et
al., 2006; Van Gael et al., 2008)). By contrast, our
technique produces exact samples from the start, al-
though in principle, the first sample may be obtained
only after a long series of rejections (and therefore
refinements). In practice, our experiments indicate
that a good acceptance rate is obtained after a rel-
atively small number of refinements. It should be
noted that, in the case of exact optimization, a sim-
ilar technique to ours has been proposed in an im-
age processing context (Kam and Kopec, 1996), but
without any connection to sampling. That paper,
written in the context of image processing, appears
to be little known in the NLP community.

Overall, our method is of particular interest be-
cause it allows for exact decoding and sampling
from HMMs where the applications of existing dy-
namic programming algorithms such as Viterbi de-
coding (Rabiner, 1989) or Forward-Backward sam-
pling (Scott, 2002) are not feasible, due to a large
state space.

In Section 2, we present our approach and
describe our joint algorithm for HMM sam-
pling/optimization, giving details about our exten-
sion of the ARPA format and refinement proce-
dure. In Section 3 we define our two experimental
tasks, SMS-retrieval and POS tagging, for which we
present the results of our joint algorithm. We finally
discuss perspectives and conclude in Section 4.

2 Adaptive rejection sampling and
heuristic search for high-order HMMs

Notation Let x = {x1, x2, ...x�} be a given hid-
den state sequence (e.g. each xi is an English word)
which takes values in X = {1, · · · , N}� where �

is the length of the sequence and N is the number
of latent symbols. Subsequences (xa, xa+1, · · · , xb)
are denoted by xb

a, where 1 ≤ a ≤ b ≤ �. Let
o = {o1, o2, ...o�} be the set of observations asso-
ciated to these words (e.g. oi is an acoustic realiza-
tion of xi). The notations p, q and q� refer to un-
normalized densities, i.e. non-negative measures on
X . Since only discrete spaces are considered, we
use for short p(x) = p({x}). When the context
is not ambiguous, sampling according to p means
sampling according to the distribution with density
p̄(x) = p(x)

p(X ) , where p(X ) =
�
X p(x)dx is the total

mass of the unnormalized distribution p.

Sampling The objective is to sample a se-
quence with density p̄(x) proportional to p(x) =
plm(x)pobs(o|x) where plm is the probability of the
sequence x under a n-gram model and pobs(o|x)
is the probability of observing the noisy sequence
o given that the correct/latent sequence is x. As-
suming the observations depend only on the current
state, this probability becomes

p(x) =
��

i=1

plm(xi|x
i−1
i−n+1)pobs(oi|xi) . (1)

To find the most likely sequence given an ob-
servation, or to sample sequences from Equa-
tion 1, standard dynamic programming techniques
are used (Rabiner, 1989; Scott, 2002) by expand-
ing the state space at each position. However, as
the transition order n increases, or the number of la-
tent tokens N that can emit to each observation ol

increases, the dynamic programming approach be-
comes intractable, as the number of operations in-
creases exponentially in the order of O(�Nn).

If one can find a proposal distribution q which is
an upper bound of p — i.e such that q(x) ≥ p(x) for
all sequences x ∈ X — and which it is easy to sam-
ple from, the standard rejection sampling algorithm
can be used:

1. Sample x ∼ q/q(X ), with q(X ) =
�
X q(x)dx;

2. Accept x with probability p(x)/q(x), other-
wise reject x;

To obtain multiple samples, the algorithm is re-
peated several times. However, for simple bounds,
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Figure 1: An example of an initial q-automaton (a), and the refined q-automaton (b) Each state corresponds
to a context (only state 6 has a non-empty context) and each edge represents the emission of a symbol.
Thick edges are representing the path for the sampling/decoding of two dog(s) barked, thin edges
corresponding to alternative symbols. By construction, w1(dog) ≥ w2(dog|two) so that the total weight
of (b) is smaller than the total weight of (a).

the average acceptance rate — which is equal to
p(X )/q(X ) — can be so large that rejection sam-
pling is not practical. In adaptive rejection sampling
(ARS), the initial bound q is incrementally improved
based on the values of the rejected elements. While
often based on log-concave distributions which are
easy to bound, ARS is valid for any type of bound,
and in particular can be applied to the upper bounds
on n-gram models introduced by (Kam and Kopec,
1996) in the context of optimization. When a sam-
ple is rejected, our algorithm assumes that a small
set of refined proposals is available, say q�1, · · · , q�m,
where m is a small integer value. These refinements
are improved versions of the current proposal q in
the sense that they still upper-bound the target dis-
tribution p, but their mass is strictly smaller than the
mass of q, i.e. q�(X ) < q(X ). Thus, each such re-
finement q�, while still being optimistic relative to
the target distribution p, has higher average accep-
tance rate than the previous upper bound q. A bound
on the n-gram LM will be presented in Section 2.1.

Optimization In the case of optimization, the ob-
jective is to find the sequence maximizing p(x).
Viterbi on high-order HMMs is intractable but we
have access to an upper bound q, for which Viterbi
is tractable. Sampling from q is then replaced by
finding the maximum point x of q, looking at the ra-
tio r(x) = p(x)/q(x), and accepting x if this ratio is
equal to 1, otherwise refining q into q� exactly as in
the sampling case. This technique is able to find the
exact maximum of p, similarly to standard heuristic
search algorithms based on optimistic bounds. We
stop the process when q and p agree at the value
maximizing q which implies that we have found the
global maximum.

2.1 Upper bounds for n-gram models
To apply ARS on the target density given by
Equation 1 we need to define a random se-
quence of proposal distributions {q(t)}∞t=1 such that
q(t)(x) ≥ p(x), ∀x ∈ X , ∀t ∈ {0, 1, · · · }.
Each n-gram xi−n+1, ..., xi in the hidden layer con-
tributes an n-th order factor wn(xi|x

i−1
i−n+1) ≡

plm(xi|x
i−1
i−n+1)pobs(oi|xi). The key idea is that

these n-th order factors can be upper bounded by
factors of order n− k by maximizing over the head
(i.e. prefix) of the context, as if part of the con-
text was “forgotten”. Formally, we define the max-
backoff weights as:

wn−k(xi|x
i−1
i−n+1+k) ≡ max

xi−n+k
i−n+1

wn(xi|x
i−1
i−n+1),

(2)
By construction, the max-backoff weights wn−k are
factors of order n− k and can be used as surrogates
to the original n-th order factors of Equation (1),
leading to a nested sequence of upper bounds until
reaching binary or unary factors:

p(x) = Π�
i=1wn(xi|x

i−1
i−n+1) (3)

≤ Π�
i=1wn−1(xi|x

i−1
i−n+2) (4)

· · ·

≤ Π�
i=1w2(xi|xi−1) (5)

≤ Π�
i=1w1(xi) := q(0)(x) . (6)

Now, one can see that the loosest bound (6) based
on unigrams corresponds to a completely factorized
distribution which is straightforward to sample and
optimize. The bigram bound (5) corresponds to a
standard HMM probability that can be efficiently de-
coded (using Viterbi algorithm) and sampled (using
backward filtering-forward sampling). 1 In the con-
text of ARS, our initial proposal q(0)(x) is set to

1Backward filtering-forward sampling (Scott, 2002) refers
to the process of running the Forward algorithm (Rabiner,

1127



the unigram bound (6). The bound is then incre-
mentally improved by adaptively refining the max-
backoff weights based on the values of the rejected
samples. Here, a refinement refers to the increase
of the order of some of the max-backoff weights in
the current proposal (thus most refinements consist
of n-grams with heterogeneous max-backoff orders,
not only those shown in equations (3)-(6)). This
operation tends to tighten the bound and therefore
increase the acceptance probability of the rejection
sampler, at the price of a higher sampling complex-
ity. The are several possible ways of choosing the
weights to refine; in Section 2.2 different refinement
strategies will be discussed, but the main technical
difficulty remains in the efficient exact optimization
and sampling of a HMM with n-grams of variable
orders. The construction of the refinement sequence
{q(t)}t≥0 can be easily explained and implemented
through a Weighted Finite State Automaton (WFSA)
referred as a q-automaton, as illustrated in the fol-
lowing example.

Example We give now a high-level description of
the refinement process to give a better intuition of
our method. In Fig. 1(a), we show a WFSA rep-
resenting the initial proposal q(0) corresponding to
an example with an acoustic realization of the se-
quence of words (the, two, dogs, barked). The
weights on edges of this q-automaton correspond to
the unigram max-backoffs, so that the total weight
corresponds to Equation (6). Considering sampling,
we suppose that the first sample from q(0) produces
x1 = (the, two, dog, barked), marked
with bold edges in the drawing. Now, computing the
ratio p(x1)/q(0)(x1) gives a result much below 1,
because from the viewpoint of the full model p, the
trigram (the two dog) is very unlikely; in other
words the ratio w3(dog|the two)/w1(dog) (and,
in fact, already the ratio w2(dog|two)/w1(dog))
is very low. Thus, with high probability, x1 is re-
jected. When this is the case, we produce a re-
fined proposal q(1), represented by the WFSA in
Fig. 1(b), which takes into account the more real-

1989), which creates a lattice of forward probabilities that con-
tains the probability of ending in a latent state at a specific time
t, given the subsequence of previous observations ot

1, for all the
previous latent sub-sequences xt−1

1 , and then recursively mov-
ing backwards, sampling a latent state based on these probabil-
ities.

Algorithm 1 ARS for HMM algorithm.
1: while not Stop(h) do
2: if Optimisation then
3: Viterbi x ∼ q
4: else
5: Sample x ∼ q
6: r ← p(x)/q(x)
7: Accept-or-Reject(x, r)
8: Update(h, x)
9: if Rejected(x) then

10: for all i ∈ {2, · · · , �} do
11: q← UpdateHMM (q, x, i)
12: return q along with accepted x’s in h

Algorithm 2 UpdateHMM
Input: A triplet (q, x, i) where q is a WFSA, x is a se-

quence determining a unique path in the WFSA and
i is a position at which a refinement must be done.

1: n :=ORDERi(xi
1) + 1 #implies xi−1

i−n+2 ∈ Si−1

2: if xi−1
i−n+1 /∈ Si−1 then

3: CREATE-STATE(xi−1
i−n+1, i− 1)

4: #move incoming edges, keeping WFSA determin-
istic

5: for all s ∈ SUFi−2(x
i−2
i−n+1) do

6: e := EDGE(s, xi−1)
7: MOVE-EDGE-END(e,xi−1

i−n+1)
8: #create outgoing edges
9: for all (s, l, ω) ∈ Ti(x

i−1
i−n+2) do

10: CREATE-EDGE(xi−1
i−n+1,s,l,ω)

11: #update weights
12: for all s ∈ SUFi−1(x

i−1
i−n+1) do

13: weight of EDGE(s, xi) := wn(xi|x
i−1
i−n+1)

14: return

istic weight w2(dog|two) by adding a node (node
6) for the context two. We then perform a sampling
trial with q(1), which this time tends to avoid produc-
ing dog in the context of two; if the new sample
is rejected, the refinement process continues until
we start observing that the acceptance rate reaches
a fixed threshold value. The case of optimization is
similar. Suppose that with q(0) the maximum is x1,
then we observe that p(x1) is lower than q(0)(x1),
reject suboptimal x1 and refine q(0) into q(1).

2.2 Algorithm

We describe in detail the algorithm and procedure
for updating a q-automaton with a max-backoff of
longer context.

Algorithm 1 gives the pseudo-code of the sam-
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pling/optimization strategy. On line 1, h represents
the history of all trials so far, where the stopping cri-
terion for decoding is whether the last trial in the
history has been accepted, and for sampling whether
the ratio of accepted trials relative to all trials ex-
ceeds a certain threshold. The WFSA is initial-
ized so that all transitions only take into account
the w1(xi) max-backoffs, i.e. the initial optimistic-
bound ignores all contexts. Then depending on
whether we are sampling or decoding, in lines 2-5,
we draw an event from our automaton using either
the Viterbi algorithm or Forward-Backward sam-
pling. If the sequence is rejected at line 7, then the
q-automaton is updated in lines 10 and 11. This is
done by expanding all the factors involved in the
sampling/decoding of the rejected sequence x to a
higher order. That is, while sampling or decoding
the automaton using the current proposal q(t), the
contexts used in the path of the rejected sequence
are replaced with higher order contexts in the new
refined proposal qt+1(x).

The update process of the q-automaton repre-
sented as a WFSA is described in Algorithm 2. This
procedure guarantees that a lower, more realistic
weight is used in all paths containing the n-gram
xi

i−n+1 while decoding/sampling the q-automaton,
where n is the order at which xi

i−n+1 has been ex-
panded so far. The algorithm takes as input a max-
backoff function, and refines the WFSA such that
any paths that include this n-gram have a smaller
weight thanks to the fact that higher-order max-
backoff have automatically smaller weights.

The algorithm requires the following functions:

• ORDERi(x) returns the order at which the n-
gram has been expanded so far at position i.

• Si returns the states at a position i.

• Ti(s) returns end states, labels and weights of
all edges that originate from this state.

• SUFi(x) returns the states at i which have a suf-
fix matching the given context x. For empty
contexts, all states at i are returned.

• EDGE(s, l) returns the edge which originates
from s and has label l. Deterministic WFSA,
such as those used here, can only have a single
transition with a label l leaving from a state s.

• CREATE-STATE(s, i) creates a state
with name s at position i, CREATE-
EDGE(s1, s2, l, ω) creates an edge (s1, s2)
between s1 and s2 with weight ω and label
l, and MOVE-EDGE-END(e, s) sets the end
of edge e to be the state s, keeping the same
starting state, weight and label.

At line 1, the expansion of the current n-gram is
increased by one so that we only need to expand con-
texts of size n − 2. Line 2 checks whether the con-
text state exists. If it doesn’t it is created at lines 3-
10. Finally, the weight of the edges that could be in-
volved in the decoding of this n-gram are updated to
a smaller value given by a higher-order max-backoff
weight.

The creation of a new state in lines 3-10 is
straightforward: At lines 5-7, incoming edges are
moved from states at position i − 2 with a match-
ing context to the newly created edge. At lines 9-
10 edges heading out of the context state are cre-
ated. They are simply copied over from all edges
that originate from the suffix of the context state, as
we know these will be legitimate transitions (i.e we
will always transition to a state of the same order or
lower).

Note that we can derive many other variants of
Algorithm 2 which also guarantee a smaller total
weight for the q-automaton. We chose to present this
version because it is relatively simple to implement,
and numerical experiments comparing different re-
finement approaches (including replacing the max-
backoffs with the highest-possible context, or pick-
ing a single “culprit” to refine) showed that this ap-
proach gives a good trade-off between model com-
plexity and running time.

2.3 Computing Max-Backoff Factors
An interesting property of the max-backoff weights
is that they can be computed recursively; taking a
3-gram LM as an example, we have:

w1(xi) = max
xi−1

w2(xi|xi−1)

w2(xi|xi−1) = max
xi−2

w3(xi|x
i−1
i−2)

w3(xi|x
i−1
i−2) = p(xi|x

i−1
i−2) p(oi|xi).

The final w3(xi|x
i−1
i−2) upper bound function is sim-

ply equal to the true probability (multiplied by the
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conditional probability of the observation), as any
extra context is discarded by the 3-gram language
model. It’s easy to see that as we refine q(t) by
replacing existing max-backoff weights with more
specific contexts, the q(t) tends to p at t tends to in-
finity.

In the HMM formulation, we need to be able
to efficiently compute at run-time the max-backoffs
w1(the), w2(dog|the), · · · , taking into account
smoothing. To do so, we present a novel method for
converting language models in the standard ARPA
format used by common toolkits such as (Stolcke,
2002) into a format that we can use. The ARPA file
format is a table T composed of three columns: (1)
an n-gram which has been observed in the training
corpus, (2) the log of the conditional probability of
the last word in the n-gram given the previous words
(log f(.)), and (3) a backoff weight (bow(.)) used
when unseen n−grams ’backoff’ to this n-gram. 2

The probability of any n-gram xi
i−n (in the pre-

vious sense, i.e. writing p(xi
i−n) for p(xi|x

i−1
i−n)) is

then computed recursively as:

p(xi
i−n) =

�
f(xi

i−n) if xi
i−n ∈ T

bow(xi−1
i−n) p(xi

i−n+1) otherwise.
(7)

Here, it is understood that if xi−1
i−n is in T , then its

bow(.) is read from the table, otherwise it is taken to
be 1.

Different smoothing techniques will lead to dif-
ferent calculations of f(xi

i−n) and bow(xi−1
i−n), how-

ever both backoff and linear-interpolation methods
can be formulated using the above equation.

Starting from the ARPA format, we pre-compute
a new table MAX-ARPA, which has the same lines
as ARPA, each corresponding to an n-gram xi

i−n ob-
served in the corpus, and the same f and bow, but
with two additional columns: (4) a max log prob-
ability (log mf(xi

i−n)), which is equal to the maxi-
mum log probability over all the n-grams extending
the context of xi

i−n, i.e. which have xi
i−n as a suffix;

(5) a “max backoff” weight (mbow(xi
i−n)), which is

a number used for computing the max log probabil-
ity of an n-gram not listed in the table. From the
MAX-ARPA table, the max probability w of any n-

2See www.speech.sri.com/projects/srilm/
manpages/ngram-format.5.html, last accessed at
1/3/2012, for further details.

gram xi
i−n, i.e the maximum of p(xi

i−n−k) over all
n-grams extending the context of xi

i−n, can then be
computed recursively (again very quickly) as:

w(xi
i−n) =

�
mf(xi

i−n) if xi
i−n ∈ T

mbow(xi−1
i−n) p(xi

i−n) otherwise.
(8)

Here, if xi−1
i−n is in T , then its mbow(.) is read

from the table, otherwise it is taken to be 1. Also
note that the procedure calls p, which is computed
as described in Equation 7. 3

3 Experiments

In this section we empirically evaluate our joint, ex-
act decoder and sampler on two tasks; SMS-retrieval
(Section 3.1), and supervised POS tagging (Sec-
tion 3.2).

3.1 SMS-Retrieval
We evaluate our approach on an SMS-message re-
trieval task. A latent variable x ∈ {1, · · · , N}�

represents a sentence represented as a sequence of
words: N is the number of possible words in the
vocabulary and � is the number of words in the
sentence. Each word is converted into a sequence
of numbers based on a mobile phone numeric key-
pad. The standard character-to-numeric function
num : {a,b, · · · ,z, ., · · · , ?}→{1, 2, · · · , 9, 0} is
used. For example, the words dog and fog
are represented by the sequence (3, 6, 4) because
num(d)=num(f)=3, num(o)=6 and num(g)=4.
Hence, observed sequences are sequences of nu-
meric strings separated by white spaces. To take
into account typing errors, we assume we observe
a noisy version of the correct numeric sequence
(num(xi1), · · · , num(xi|xi|) that encodes the word
xi at the i-th position of the sentence x. The noise
model is:

p(oi|xi) ∝

|xi|�

t=1

1

k ∗ d(oit, num(xit)) + 1
, (9)

where d(a, b) is the physical distance between the
numeric keys a and b and k is a user provided con-

3In this discussion of the MAX-ARPA table we have ignored
the contribution of the observation p(oi|xi), which is a constant
factor over the different max-backoffs for the same xi and does
not impact the computation of the table.
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Figure 2: On the left we report the average #
of iterations taken to decode given different LMs
over input sentences of different lengths, and on the
right we show the average # of states in the final q-
automaton once decoding is completed.

stant that controls the ambiguity in the distribution;
we use 64 to obtain moderately noisy sequences.

We used the English side of the Europarl cor-
pus (Koehn, 2005). The language model was trained
using SRILM (Stolcke, 2002) on 90% of the sen-
tences. On the remaining 10%, we randomly se-
lected 100 sequences for lengths 1 to 10 to obtain
1000 sequences from which we removed the ones
containing numbers, obtaining a test set of size 926.

Decoding Algorithm 1 was run in the optimization
mode. In the left plot of Fig. 2, we show the number
of iterations (running Viterbi then updating q) that
the different n-gram models of size 3, 4 and 5 take
to do exact decoding of the test-set. For a fixed sen-
tence length, we can see that decoding with larger
n-gram models leads to a sub-linear increase w.r.t.
n in the number of iterations taken. In the right plot
of Fig. 2, we show the average number of states in
our variable-order HMMs.

To demonstrate the reduced nature of our q-
automaton, we show in Tab. 1 the distribution of
n-grams in our final model for a specific input sen-
tence of length 10. The number of n-grams in the
full model is∼3.0×1015. Exact decoding here is not
tractable using existing techniques. Our HMM has
only 9008 n-grams in total, including 118 5-grams.

n: 1 2 3 4 5
q: 7868 615 231 176 118

Table 1: # of n-grams in our variable-order HMM.

Finally, we show in Tab. 2 an example run of
our algorithm in the optimization setting for a given

input. Note that the weight according to our q-
automaton for the first path returned by the Viterbi
algorithm is high in comparison to the true log prob-
ability according to p.

Sampling For the sampling experiments, we limit
the number of latent tokens to 100. We refine our q-
automaton until we reach a certain fixed cumulative
acceptance rate (AR). We also compute a rate based
only on the last 100 trials (AR-100), as this tends to
better reflect the current acceptance rate.

In Fig. 3a, we plot a running average of the ratio
at each iteration over the last 10 trials, for a single
sampling run using a 5-gram model for an example
input. The ratios start off at 10−20, but gradually in-
crease as we refine our HMM. After ∼ 500 trials,
we start accepting samples from p. In Fig. 3b, we
show the respective ARs (bottom and top curves re-
spectively), and the cumulative # of accepts (middle
curve), for the same input. Because the cumulative
accept ratio takes into account all trials, the final AR
of 17.7% is an underestimate of the true accept ra-
tio at the final iteration; this final accept ratio can be
better estimated on the basis of the last 100 trials, for
which we read AR-100 to be at around 60%.

We note that there is a trade-off between the time
needed to construct the forward probability lattice
needed for sampling, and the time it takes to adapt
the variable-order HMM. To resolve this, we pro-
pose to use batch-updates: making B trials from the
same q-automaton, and then updating our model in
one step. By doing this, we noted significant speed-
ups in sampling times. In Tab. 3, we show various

input: 3637 843 66639 39478 *
oracle: does the money exist ?
best: does the money exist .
Viterbi paths log q(x) log p(x)
q1 does the money exist ) -0.11 -17.42
q50 does the owned exist . -11.71 -23.54
q100 ends the money exist . -12.76 -17.09
q150 does vis money exist . -13.45 -23.74
q170 does the money exist . -13.70 -13.70

Table 2: Viterbi paths given different qt. Here, for
the given input, it took 170 iterations to find the best
sequence according to p, so we only show every 50th
path.

1131



 1e-20
 1e-18
 1e-16
 1e-14
 1e-12
 1e-10
 1e-08
 1e-06

 0.0001
 0.01

 1

 0  500 1000 1500 2000

ra
tio

iterations
(a)

 0
 10
 20
 30
 40
 50
 60

 0  500  1000 1500 2000
 0
 100
 200
 300
 400
 500
 600

ac
ce

pt
 ra

tio
 %

# 
ac

ce
pt

s

iterations

#ACC
AR

AR 100

(b)

 100
 200
 300
 400
 500
 600
 700
 800

 1  2  3  4  5  6  7  8  9  10

av
g 

#i
te

ra
tio

ns

input length

5
4
3

(c)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 1  2  3  4  5  6  7  8  9 10

av
g 

#s
ta

te
s

input length

5
4
3

(d)

Figure 3: In 3a, we plot the running average over the last 10 trials of the ratio. In 3b, we plot the cumulative
# of accepts (middle curve), the accept rate (bottom curve), and the accept rate based on the last 100
samples (top curve). In 3c, we plot the average number of iterations needed to sample up to an AR of 20%
for sentences of different lengths in our test set, and in 3d, we show the average number of states in our
HMMs for the same experiment.

B: 1 10 20 30 40 50 100
time: 97.5 19.9 15.0 13.9 12.8 12.5 11.4
iter: 453 456 480 516 536 568 700

Table 3: In this table we show the average amount of
time in seconds and the average number of iterations
(iter) taken to sample sentences of length 10 given
different values of B.

statistics for sampling up to AR-100 = 20 given dif-
ferent values for B. We ran this experiment using
the set of sentences of length 10. A value of 1 means
that we refine our automaton after each rejected trial,
a value of 10 means we wait until rejecting 10 trials
before updating our automaton in one step. We can
see that while higher values of B lead to more iter-
ations, as we do not need to re-compute the forward
trellis needed for sampling, the time needed to reach
the specific AR threshold actually decreases, from
97.5 seconds to 11.4 seconds, an 8.5% speedup. Un-
less explicitly stated otherwise, further experiments
use a B = 100.

We now present the full sampling results on our
test-set in Fig. 3c and 3d, where we show the aver-
age number of iterations and states in the final mod-
els once refinements are finished (AR-100=20%) for
different orders n over different lengths. We note
a sub-linear increase in the average number of tri-
als and states when moving to higher n; thus, for
length=10, and for n = 3, 4, 5, # trials: 3-658.16,
4-683.3, 5-700.9, and # states: 3-1139.5, 4-1494.0,
5-1718.3.

Finally, we show in Tab. 4, the ranked samples
drawn from an input sentence, according to a 5-gram
LM. After refining our model up to AR-100 = 20%,

input: 3637 843 66639 39478 *
oracle: does the money exist ?
best: does the money exist .
samples # log q(x) log p(x)
does the money exist . 429 -13.70 -13.70
does the money exist ? 211 -14.51 -14.51
does the money exist ! 72 -15.49 -15.49
does the moody exist . 45 -15.70 -15.70
does the money exist : 25 -16.73 -16.73

Table 4: Top-5 ranked samples for an example in-
put. We highlight in bold the words which are differ-
ent to the Viterbi best of the model. The oracle and
best are not the same for this input.

we continued drawing samples until we had 1000
exact samples from p (out of ∼ 4.7k trials). We
show the count of each sequence in the 1000 sam-
ples, and the log probability according to p for that
event. We only present the top-five samples, though
in total there were 90 unique sequences sampled, 50
of which were only sampled once.

3.2 POS-tagging

Our HMM is the same as that used in (Brants, 2001);
the emission probability of a word given a POS
tag xi is calculated using maximum likelihood tech-
niques. That is, p(oi|xi) = c(oi,xi)

c(xi)
. Unseen words

are handled by interpolating longer suffixes with
shorter, more general suffixes. To train our language
model, we use the SRILM toolkit (Stolcke, 2002)
We build LMs of up to size 9. We present results
on the WSJ Penn Treebank corpus (Marcus et al.,
1993). We use sections 0-18 to train our emission
and transitions probabilities, and report results on
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Figure 4: In 4a, we report the accuracy results given different n-gram models on the WSJ test-set. In 4b, we
show the time taken (seconds) to decode the WSJ test-set given our method (ARS), and compare this to the
full model (F). In 4c, the average number of iterations needed to sample the test-set given different n-gram
language models is given, and 4d shows the average number of states in the variable-order HMMs.

sections 22-24.
We first present results for our decoding experi-

ments. In Fig. 4a we show the accuracy results of
our different models on the WSJ test-set. We see
that the best result is achieved with the 5-gram LM
giving an accuracy of 95.94%. After that, results
start to drop, most likely due to over-fitting of the
LM during training and an inability for the smooth-
ing technique to correctly handle this.

In Fig. 4b, we compare the time it takes in seconds
to decode the test-set with the full model at each n-
gram size; that is a WFSA with all context states
and weights representing the true language model
log probabilities. We can see that while increas-
ing the n-gram model size, our method (ARS) ex-
hibits a linear increase in decoding time, in contrast
to the exponential factor exhibited when running the
Viterbi algorithm over the full WFSA (F). Note for
n-gram models of order 7 and higher, we could not
decode the entire test set as creating the full WFSA
was taking too long.

Finally in both Figs 4c and 4d, we show the aver-
age number of iterations taken to sample from the
entire test-test, and the average number of states
in our variable-order HMMs, with AR-100=60%.
Again we note a linear increase in both Fig., in con-
trast to the exponential nature of standard techniques
applied to the full HMM.

4 Conclusion and Perspectives

We have presented a dual-purpose algorithm that can
be used for performing exact decoding and sampling
on high-order HMMs. We demonstrated the valid-
ity of our method on SMS-retrieval and POS exam-
ples, showing that the “proposals” that we obtain re-

quire only a fraction of the space that would result
from explicitly representing the HMM. We believe
that this ability to support exact inference (both ap-
proximation and sampling) at a reasonable cost has
important applications, in particular when moving
from inference to learning tasks, which we see as a
natural extension of this work.

By proposing a common framework for sampling
and optimization our approach has the advantage
that we do not need separate skills or expertise to
solve the two problems. In several situations, we
might be interested not only in the most probable se-
quence, but also in the distribution of the sequences,
especially when diversity is important or in the pres-
ence of underlying ambiguities.

The interplay between optimization and sampling
is a fruitful area of research that can lead to state-
of-the art performances on inference and decod-
ing tasks in the special case of high-order HMM
decoding, but the method is generic enough to
be generalized to many others models of interest
for NLP applications. One family of models is
provided by agreement-based models, for example
HMM+PCFG, where distribution p takes the form
of a product: p(x) = pHMM(x)pPCFG(x). Even
if the factors pHMM(x) and pPCFG(x) can be de-
coded and sampled efficiently, the product of them
is intractable. Dual decomposition is a generic
method that has been proposed for handling decod-
ing (i.e. optimization) with such models, by decou-
pling the problem into two alternating steps that can
each be handled by dynamic programming or other
polynomial-time algorithms (Rush et al., 2010), an
approach that has been applied to Statistical Ma-
chine Translation (phrase-based (Chang and Collins,
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2011) and hierarchical (Rush and Collins, 2011))
among others. However, sampling such distributions
remains a difficult problem. We are currently ex-
tending the approach described in this paper to han-
dle such applications. Again, using ARS on a se-
quence of upper bounds to the target distribution,
our idea is to express one of the two models as a con-
text free grammar and incrementally compute the
intersection with the second model, maintaining a
good trade-off between computational tractability of
the refinement and a reasonable acceptance rate.
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Abstract

This paper presents PATTY: a large resource
for textual patterns that denote binary relations
between entities. The patterns are semanti-
cally typed and organized into a subsumption
taxonomy. The PATTY system is based on ef-
ficient algorithms for frequent itemset mining
and can process Web-scale corpora. It har-
nesses the rich type system and entity popu-
lation of large knowledge bases. The PATTY
taxonomy comprises 350,569 pattern synsets.
Random-sampling-based evaluation shows a
pattern accuracy of 84.7%. PATTY has 8,162
subsumptions, with a random-sampling-based
precision of 75%. The PATTY resource
is freely available for interactive access and
download.

1 Introduction

Motivation. WordNet (Fellbaum 1998) is one of the
most widely used lexical resources in computer sci-
ence. It groups nouns, verbs, and adjectives into sets
of synonyms, and arranges these synonyms in a tax-
onomy of hypernyms. WordNet is limited to single
words. It does not contain entire phrases or pat-
terns. For example, WordNet does not contain the
pattern X is romantically involved with Y. Just like
words, patterns can be synonymous, and they can
subsume each other. The pattern X is romantically
involved with Y is synonymous with the pattern X is
dating Y. Both are subsumed by X knows Y. Patterns
for relations are a vital ingredient for many appli-
cations, including information extraction and ques-
tion answering. If a large-scale resource of relational
patterns were available, this could boost progress in
NLP and AI tasks.

Yet, existing large-scale knowledge bases are
mostly limited to abstract binary relationships be-
tween entities, such as “bornIn” (Auer 2007; Bol-
lacker 2008; Nastase 2010; Suchanek 2007). These
do not correspond to real text phrases. Only the Re-
Verb system (Fader 2011) yields a larger number of
relational textual patterns. However, no attempt is
made to organize these patterns into synonymous
patterns, let alone into a taxonomy. Thus, the pat-
terns themselves do not exhibit semantics.

Goal. Our goal in this paper is to systematically
compile relational patterns from a corpus, and to im-
pose a semantically typed structure on them. The
result we aim at is a WordNet-style taxonomy of
binary relations. In particular, we aim at patterns
that contain semantic types, such as 〈singer〉 sings
〈song〉. We also want to automatically generalize
syntactic variations such as sings her 〈song〉 and
sings his 〈song〉, into a more general pattern sings
[prp] 〈song〉 with POS tag [prp]. Analogously but
more demandingly, we want to automatically infer
that the above patterns are semantically subsumed
by the pattern 〈musician〉 performs on 〈musical
composition〉 with more general types for the entity
arguments in the pattern.

Compiling and organizing such patterns is chal-
lenging for the following reasons. 1) The number
of possible patterns increases exponentially with the
length of the patterns. For example, the string “Amy
sings ‘Rehab”’ can give rise to the patterns 〈singer〉
sings 〈song〉, 〈person〉 sings 〈artifact〉, 〈person〉
[vbz] 〈entity〉, etc. If wildcards for multiple words
are allowed (such as in 〈person〉 sings * 〈song〉), the
number of possible patterns explodes. 2) A pattern
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can be semantically more general than another pat-
tern (when one relation is implied by the other re-
lation), and it can also be syntactically more gen-
eral than another pattern (by the use of placehold-
ers such as [vbz]). These two subsumption orders
have a non-obvious interplay, and none can be ana-
lyzed without the other. 3) We have to handle pattern
sparseness and coincidental matches. If the corpus
is small, e.g., the patterns 〈singer〉 later disliked her
song 〈song〉 and 〈singer〉 sang 〈song〉, may apply to
the same set of entity pairs in the corpus. Still, the
patterns are not synonymous. 4) Computing mutual
subsumptions on a large set of patterns may be pro-
hibitively slow. Moreover, due to noise and vague
semantics, patterns may even not form a crisp tax-
onomy, but require a hierarchy in which subsump-
tion relations have to be weighted by statistical con-
fidence measures.
Contributions. In this paper, we present PATTY, a
large resource of relational patterns that are arranged
in a semantically meaningful taxonomy, along with
entity-pair instances. More precisely, our contribu-
tions are as follows:

1) SOL patterns: We define an expressive fam-
ily of relational patterns, which combines syntac-
tic features (S), ontological type signatures (O), and
lexical features (L). The crucial novelty is the addi-
tion of the ontological, semantic dimension to pat-
terns. When compared to a state-of-the-art pattern
language, we found that SOL patterns yield higher
recall while achieving similar precision.

2) Mining algorithms: We present efficient and
scalable algorithms that can infer SOL patterns and
subsumptions at scale, based on instance-level over-
laps and an ontological type hierarchy.

3) A large Lexical resource:. On the Wikipe-
dia corpus, we obtained 350,569 pattern synsets
with 84.7% precision. We make our pat-
tern taxonomy available for further research at
www.mpi-inf.mpg.de/yago-naga/patty/ .

The paper is structured as follows. Section 2 dis-
cusses related work. Section 3 outlines the basic
machinery for pattern extraction. Section 4 intro-
duces our SOL pattern model. Sections 5 and 6
present the syntactic and semantic generalization of
patterns. Section 7 explains how to arrange the pat-

terns into a taxonomy. Section 8 reports our experi-
mental findings.

2 Related Work

A wealth of taxonomic knowledge bases (KBs)
about entities and their semantic classes have be-
come available. These are very rich in terms of
unary predicates (semantic classes) and their entity
instances. However, the number of binary relations
(i.e., relation types, not instances) in these KBs is
usually small: Freebase (Bollacker 2008) has a few
thousand hand-crafted relations. WikiNet (Nastase
2010) has automatically extracted ca. 500 relations
from Wikipedia category names. DBpedia (Auer
2007) has automatically compiled ca. 8000 names
of properties from Wikipedia infoboxes, but these
include many involuntary semantic duplicates such
as surname and lastname. In all of these projects,
the resource contains the relation names, but not the
natural language patterns for them. The same is true
for other projects along these lines (Navigli 2010;
Philpot 2008; Ponzetto 2007; Suchanek 2007).

In contrast, knowledge base projects that auto-
matically populate relations from Web pages also
learn surface patterns for the relations: examples
are TextRunner/ReVerb (Banko 2007; Fader 2011),
NELL (Carlson 2010; Mohamed11), Probase (Wu
2011), the dynamic lexicon approach by (Hoffmann
2010; Wu 2008), the LDA-style clustering approach
by (Yao 2011), and projects on Web tables (Li-
maye 2010; Venetis 2011). Of these, only TextRun-
ner/ReVerb and NELL have made large pattern col-
lections publicly available.

ReVerb (Fader 2011) constrains patterns to verbs
or verb phrases that end with prepositions, while
PATTY can learn arbitrary patterns. More impor-
tantly, all methods in the TextRunner/ReVerb family
are blind to the ontological dimension of the enti-
ties in the patterns. Therefore, there is no notion of
semantic typing for relation phrases as in PATTY.

NELL (Carlson 2010) is based on a fixed set
of prespecified relations with type signatures, (e.g.,
personHasCitizenship: 〈person〉 × 〈country〉), and
learns to extract suitable noun-phrase pairs from a
large Web corpus. In contrast, PATTY discovers pat-
terns for relations that are a priori unknown.
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In OntExt (Mohamed11), the NELL architecture
was extended to automatically compute new re-
lation types (beyond the prespecified ones) for a
given type signature of arguments, based on a clus-
tering technique. For example, the relation mu-
sicianPlaysInstrument is found by clustering pat-
tern co-occurrences for the noun-phrase pairs that
fall into the specific type signature 〈musician〉 ×
〈musicinstrument〉. This technique works for one
type signature at a time, and does not scale up to
mining a large corpus. Also, the technique is not
suitable for inferring semantic subsumptions. In
contrast, PATTY efficiently acquires patterns from
large-scale corpora and organizes them into a sub-
sumption hierarchy.

Class-based attribute discovery is a special case
of mining relational patterns (e.g., (Alfonseca 2010;
Pasca 2007; Pasca 2008; Reisinger 2009)). Given a
semantic class, such as movies or musicians, the task
is to determine relevant attributes, such as cast and
budget for movies, or albums and biography for mu-
sicians, along with their instances. Unlike PATTY’s
patterns, the attributes are not typed. They come
with a prespecified type for the domain, but without
any type for the range of the underlying relation.

There are further relation-centric tasks in NLP
and text mining that have commonalities with our
endeavor, but differ in fundamental ways. The
SemEval-2010 task on classification of semantic re-
lations between noun-phrase pairs (Hendrickx 2010)
aimed at predicting the relation for a given sentence
and pair of nominals, but used a fixed set of prespec-
ified relations. Another task in this research avenue
is to characterize and predict the argument types for
a given relation or pattern (Kozareva 2010; Nakov
2008). This is closer to KB population and less re-
lated to our task of discovering relational patterns
and systematically organizing them.

From a linguistic perspective, there is ample
work on patterns for unary predicates of the form
class(entity). This includes work on entailment of
classes, i.e., on is-a and subclassOf relationships.
Entailment among binary predicates of the form re-
lation(entity1, entity2) has received less attention
(Lin 2001; Chklovski 2004; Hashimoto 2009; Be-
rant 2011). These works focus solely on verbs, while

PATTY learns arbitrary phrases for patterns.
Several lexical resources capture verb categories

and entailment: WordNet 3.0 (Fellbaum 1998) con-
tains about 13,000 verb senses, with troponymy and
entailment relations; VerbNet (Kipper 2008) is a hi-
erarchical lexicon with more than 5,000 verb senses
in ca. 300 classes, including selectional preferences.
Again, all of these resources focus solely on verbs.

ConceptNet 5.0 (Havasi 2007) is a thesaurus of
commonsense knowledge built as a crowdsourcing
endeavor. PATTY, in contrast, is constructed fully
automatically from large corpora. Automatic learn-
ing of paraphrases and textual entailment has re-
ceived much attention (see the survey of (Androut-
sopoulos 2010)), but does not consider fine-grained
typing for binary relations, as PATTY does.

3 Pattern Extraction

This section explains how we obtain basic textual
patterns from the input corpus. We first apply the
Stanford Parser (Marneffe 2006) to the individual
sentences of the corpus to obtain dependency paths.
The dependency paths form a directed graph, with
words being nodes and dependencies being edges.
For example, the sentence “Winehouse effortlessly
performed her song Rehab.” yields the following de-
pendency paths:

nsubj(performed-3, Winehouse-1)
advmod(performed-3, effortlessly-2)
poss(Rehab-6, her-4)
nn(Rehab-6, song-5)
dobj(performed-3, Rehab-6)

While our method also works with patterns obtained
from shallow features such as POS tags, we found
that dependency paths improve pattern extraction
precision especially on long sentences.

We then detect mentions of named entities in the
parsed corpus. For this purpose, we use a dictio-
nary of entities. This can be any resource that con-
tains named entities with their surface names and se-
mantic types (Auer 2007; Suchanek 2007; Hoffart
2011; Bollacker 2008). In our experiments, we used
the YAGO2 knowledge base (Hoffart 2011). We
match noun phrases that contain at least one proper
noun against the dictionary. For disamiguation, we
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use a simple context-similarity prior, as described
in (Suchanek 2009). We empirically found that this
technique has accuracy well above 80% (and higher
for prominent and thus frequently occurring enti-
ties). In our example, the entity detection yields the
entities Amy Winehouse and Rehab (song).

Whenever two named entities appear in the same
sentence, we extract a textual pattern. For this pur-
pose, we traverse the dependency graph to get the
shortest path that connects the two entities. In the
example, the shortest path between “Winehouse”
and “Rehab” is: Winehouse nsubj performed dobj
Rehab. In order to capture only relations that refer
to subject-relation-object triples, we only consider
shortest paths that start with subject-like dependen-
cies, such as nsubj, rcmod and partmod. To re-
flect the full meaning of the patterns, we expand the
shortest path with adverbial and adjectival modifiers,
for example the advmod dependency. The sequence
of words on the expanded shortest path becomes our
final textual pattern. In the example, the textual pat-
tern is Amy Winehouse effortlessly performed Rehab
(song).

4 SOL Pattern Model

Textual patterns are tied to the particular surface
form of the text. Therefore, we transform the textual
patterns into a new type of patterns, called syntactic-
ontologic-lexical patterns (SOL patterns). SOL pat-
terns extend lexico-syntactic patterns by ontological
type signatures for entities. The SOL pattern lan-
guage is expressive enough to capture fine-grained
relational patterns, yet simple enough to be dealt
with by efficient mining algorithms at Web scale.

A SOL pattern is an abstraction of a textual pat-
tern that connects two entities of interest. It is a
sequence of words, POS-tags, wildcards, and onto-
logical types. A POS-tag stands for a word of the
part-of-speech class. We introduce the special POS-
tag [word], which stands for any word of any POS
class. A wildcard, denoted ∗, stands for any (pos-
sibly empty) sequence of words. Wildcards are es-
sential to avoid overfitting of patterns to the corpus.
An ontological type is a semantic class name (such
as 〈singer〉) that stands for an instance of that class.
Every pattern contains at least two types, and these

are designated as entity placeholders.
A string and a pattern match, if there is an order-

preserving bijection from sequences of words in the
string to items in the pattern, so that each item can
stand for the respective sequence of words. For ex-
ample, the pattern 〈person〉’s [adj] voice * 〈song〉
matches the strings “Amy Winehouse’s soft voice
in ‘Rehab”’ and “Elvis Presley’s solid voice in his
song ‘All shook up”’. The type signature of a pat-
tern is the pair of the entity placeholders. In the ex-
ample, the type signature is person × song. The
support set of a pattern is the set of pairs of entities
that appear in the place of the entity placeholders
in all strings in the corpus that match the pattern.
In the example, the support set of the pattern could
be {(Amy,Rehab), (Elvis, AllShookUp)}. Each
pair is called a support pair of the pattern.

Pattern B is syntactically more general than pat-
tern A if every string that matches A also matches
B. Pattern B is semantically more general than A
if the support set of B is a superset of the support
set of A. If A is semantically more general than B
and B is semantically more general than A, the pat-
terns are called synonymous. A set of synonymous
patterns is called a pattern synset. Two patterns, of
which neither is semantically more general than the
other, are called semantically different.

To generate SOL patterns from the textual pat-
terns, we decompose the textual patterns into n-
grams (n consecutive words). A SOL pattern con-
tains only the n-grams that appear frequently in the
corpus and the remaining word sequences are re-
placed by wildcards. For example, in the sentence
“was the first female to run for the governor of”
might give rise to the pattern * the first female * gov-
ernor of, if “the first female” and “governor of” are
frequent in the corpus.

To find the frequent n-grams efficiently, we apply
the technique of frequent itemset mining (Agrawal
1993; Srikant 1996): each sentence is viewed as a
“shopping transaction” with a “purchase” of several
n-grams, and the mining algorithm computes the n-
gram combinations with large co-occurrence sup-
port1. These n-grams allow us to break down a sen-

1Our implementation restricts n-grams to length 3 and uses
up to 4 n-grams per sentence
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tence into wildcard-separated subsequences, which
yields an SOL pattern. We generate multiple pat-
terns with different types, one for each combination
of types that the detected entities have in the under-
lying ontology.

We quantify the statistical strength of a pattern by
means of its support set. For a given pattern p with
type signature t1 × t2, the support of p is the size
of its support set. For confidence, we compare the
support-set sizes of p and an untyped variant pu of
p, in which the types 〈t1〉 and 〈t2〉 are replaced by
the generic type 〈entity〉. We define the confidence
of p as the ratio of the support-set sizes of p and pu.

5 Syntactic Pattern Generalization

Almost every pattern can be generalized into a syn-
tactically more general pattern in several ways: by
replacing words by POS-tags, by introducing wild-
cards (combining more n-grams), or by generaliz-
ing the types in the pattern. It is not obvious which
generalizations will be reasonable and useful. We
observe, however, that generalizing a pattern may
create a pattern that subsumes two semantically dif-
ferent patterns. For example, the generalization
〈person〉 [vb] 〈person〉 subsumes the two semanti-
cally different patterns 〈person〉 loves 〈person〉 and
〈person〉 hates 〈person〉. This means that the pattern
is semantically meaningless.

Therefore, we proceed as follows. For every pat-
tern, we generate all possible generalizations. If a
generalization subsumes multiple patterns with dis-
joint support sets, we abandon the generalized pat-
tern. Otherwise, we add it to our set of patterns.

6 Semantic Pattern Generalization

The main difficulty in generating semantic subsump-
tions is that the support sets may contain spurious
pairs or be incomplete, thus destroying crisp set in-
clusions. To overcome this problem, we designed
a notion of a soft set inclusion, in which one set S
can be a subset of another set B to a certain degree.
One possible measure for this degree is the confi-
dence, i.e., the ratio of elements in S that are in B,
deg(S ⊆ B) = |S ∩ B|/|S|. However, if a support
set S has only few elements due to sparsity, it may
become a subset of another support setB, even if the

two patterns are semantically different. Therefore,
one has to take into account also the support, i.e., the
size of the set S. Traditionally, this is done through a
weighted trade-off between confidence and support.

To avoid the weight tuning, we instead devised
a probabilistic model. We interpret S as a random
sample from the “true” support set S′ that the pattern
would have on an infinitely large corpus. We want
to estimate the ratio of elements of S′ that are in
B. This ratio is a Bernoulli parameter that can be
estimated from the ratio of elements of the sample S
that are in B. We compute the Wilson score interval
[c − d, c + d] (Brown 2001) for the sample. This
interval guarantees that with a given probability (set
a priori, usually to α = 95%), the true ratio falls into
the interval [c − d, c + d]. If the sample is small, d
is large and c is close to 0.5. If the sample is large,
d decreases and c approaches the naive estimation
|S ∩ B|/|S|. Thereby, the Wilson interval center
naturally balances the trade-off between confidence
and the support. Hence we define deg(S ⊂ B) = c.
This estimator may degrade when the sample size
is too small We can alternatively use a conservative
estimator deg(S ⊂ B) = c−d, i.e., the lower bound
of the Wilson score interval. This gives a low score
to the case where S ⊂ B if we have few samples (S
is small).

7 Taxonomy Construction

We now have to arrange the patterns in a semantic
taxonomy. A baseline solution would compare ev-
ery pattern support set to every other pattern support
set in order to determine inclusion, mutual inclusion,
or independence. This would be prohibitively slow.
For this reason, we make use of a prefix-tree for fre-
quent patterns (Han 2005). The prefix-tree stores
support sets of patterns. We then developed an algo-
rithm for obtaining set intersections from the prefix-
tree.

7.1 Prefix-Tree Construction

Suppose we have pattern synsets and their support
sets as shown in Table 1. An entity pair in a support
set is denoted by a letter. For example, in the sup-
port set for the pattern 〈Politican〉 was governor
of 〈State〉, the entry 〈A,80〉 may denote the entity
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ID Pattern Synset & Support Sets
P1 〈Politician〉 was governor of 〈State〉

A,80 B,75 C,70
P2 〈Politician〉 politician from 〈State〉

A,80 B,75 C,70 D,66 E,64
P3 〈Person〉 daughter of 〈Person〉

F,78 G,75 H,66
P4 〈Person〉 child of 〈Person〉

I,88 J,87 F,78 G,75 K,64

Table 1: Pattern Synsets and their Support Sets

Root 

A p1,p2 

B 

C 

D 

p1,p2 

p1,p2 

p2 

E p2 

F 

G 

H 

p3 I 

J 

F 

p4 

G p4 

K p4 

p4 

p4 

p3 

p3 

Figure 1: Prefix-Tree for the Synsets in Table 1.

pair Arnold Schwarzenegger, California, with an oc-
currence frequency 80. The contents of the support
sets are used to construct a prefix-tree, where nodes
are entity pairs. If synsets have entity pairs in com-
mon, they share a common prefix; thus the shared
parts can be represented by one prefix-path in the
tree. This enables subsumptions to be directly “read
off” from the tree, while representing the tree in a
compact manner. To increase the chance of shared
prefixes, entity pairs are inserted into the tree in de-
creasing order of occurrence frequency.

The prefix-tree of support sets is a prefix-tree aug-
mented with synset information stored at the nodes.
Each node (entity pair) stores the identifiers of the
pattern sysnets whose support sets contain that en-
tity pair. In addition, each node stores a link to the
next node with the same entity pair.

Figure 1 shows the tree for the pattern synsets
in Table 1. The left-most path contains synsets P1

and P2. The two patterns have a prefix in common,

thus they share the same path. This is reflected by
the synsets stored in the nodes in the path. Synsets
P2 and P3 belong to two different paths due to dis-
similar prefixes although they have common nodes.
Instead, their common nodes are connected by the
same-entity-pair links shown as dotted lines in Fig-
ure 1. These links are created whenever the entity
pair already exists in the tree but with a prefix differ-
ent from the prefix of the synset being added to the
tree. The size of the tree is at most the total num-
ber of entity pairs making up the supports sets of the
synsets. The height of the tree is at most the size of
the the largest support set.

7.2 Mining Subsumptions from the Prefix-Tree

To efficiently mine subsumptions from the prefix-
tree, we have to avoid comparing every path to every
other path as this introduces the same inefficiencies
that the baseline approach suffers from.

From the construction of the tree it follows that
for any node Ni in the tree, all paths containing Ni

can be found by following node Ni’s links includ-
ing the same-entity-pair links. By traversing the en-
tire path of a synset Pi, we can reach all the pattern
synsets sharing common nodes with Pi. This leads
to our main insight: if we start traversing the tree
bottom up, starting at the last node in P ′

is support
set, we can determine exactly which paths are sub-
sumed by Pi. Traversing the tree this way for all
patterns gives us the sizes of the support set intersec-
tion. The determined intersection sizes can then be
used in the Wilson estimator to determine the degree
of semantic subsumption and semantic equivalence
of patterns.

7.3 DAG Construction

Once we have generated subsumptions between re-
lational patterns, there might be cycles in the graph
we generate. We ideally want to remove the minimal
total number of subsumptions whose removal results
in an a directed acyclic graph (DAG). This task is
related to the minimum feedback-arc-set problem:
given a directed graph, we want to remove the small-
est set of edges whose removal makes the remaining
graph acyclic. This is a well known NP-hard prob-
lem (Kann 1992). We use a greedy algorithm for
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removing cycles and eliminating redundancy in the
subsumptions, thus effectively constructing a DAG.
Starting with a list of subsumption edges ordered by
decreasing weights, we construct the DAG bottom-
up by adding the highest-weight subsumption edge.
This step is repeated for all subsumptions, where we
add a subsumption to the DAG only if it does not
introduce cycles or redundancy. Redundancy occurs
when there already exists a path, by transitivity of
subsumptions, between pattern synsets linked by the
subsumption. This process finally yields a DAG of
pattern synsets – the PATTY taxonony.

8 Experimental Evaluation

8.1 Setup

The PATTY extraction and mining algorithms were
run on two different input corpora: the New York
Times archive (NYT) which includes about 1.8 Mil-
lion newspaper articles from the years 1987 to 2007,
and the English edition of Wikipedia (WKP), which
contains about 3.8 Million articles (as of June 21,
2011). Experiments were carried out, for each cor-
pus, with two different type systems: a) the type sys-
tem of YAGO2, which consists of about 350,000 se-
mantic classes from WordNet and the Wikipedia cat-
egory system, and b) the two-level domain/type hier-
archy of Freebase which consists of 85 domains and
a total of about 2000 types within these domains.

All relational patterns and their respective entity
pairs are stored in a MongoDB database. We evalu-
ated PATTY along four dimensions: quality of pat-
terns, quality of subsumptions, coverage, and de-
sign alternatives. These dimensions are discussed
in the following four subsections. We also per-
formed an extrinsic study to demonstrate the use-
fulness of PATTY for paraphrasing the relations
of DBpedia and YAGO2. In terms of runtimes,
he most expensive part is the pattern extraction,
where we identify pattern candidates through de-
pendency parsing and perform entity recognition
on the entire corpus. This phase runs about a
day for Wikipedia a cluster. All other phases of
the PATTY system take less than an hour. All
experimental data is available on our Web site at
www.mpi-inf.mpg.de/yago-naga/patty/.

8.2 Precision of Relational Patterns

To assess the precision of the automatically mined
patterns (patterns in this section always mean pattern
synsets), we sampled the PATTY taxonomy for each
combination of input corpus and type system. We
ranked the patterns by their statistical strength (Sec-
tion 4), and evaluated the precision of the top 100
pattern synsets. Several human judges were shown
a sampled pattern synset, its type signature, and a
few example instances, and then stated whether the
pattern synset indicates a valid relation or not. Eval-
uators checked the correctness of the type signature,
whether the majority of patterns in the synset is rea-
sonable, and whether the instances seem plausible.
If so, the synset was flagged as meaningful. The re-
sults of this evaluation are shown in column four of
Table 2, with a 0.9-confidence Wilson score inter-
val (Brown 2001). In addition, the same assessment
procedure was applied to randomly sampled synsets,
to evaluate the quality in the long tail of patterns.
The results are shown in column five of Table 2. For
the top 100 patterns, we achieve above 90% preci-
sion for Wikipedia, and above 80% for 100 random
samples.

Corpus Types Patterns Top 100 Random

NYT
YAGO2 86,982 0.89±0.06 0.72±0.09
Freebase 809,091 0.87 ±0.06 0.71±0.09

WKP
YAGO2 350,569 0.95±0.04 0.85±0.07
Freebase 1,631,531 0.93±0.05 0.80±0.08

Table 2: Precision of Relational Patterns

From the results we make two observations. First,
Wikipedia patterns have higher precision than those
from the New York Times corpus. This is because
some the language in the news corpus does not ex-
press relational information; especially the news on
stock markets produced noisy patterns picked up by
PATTY. However, we still manage to have a preci-
sion of close to 90% for the top 100 patterns and
around 72% for random sample on the NYT cor-
pus. The second observation is that the YAGO2
type system generally led to higher precision than
the Freebase type system. This is because YAGO2
has finer grained, ontologically clean types, whereas
Freebase has broader categories with a more liberal
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assignment of entities to categories.

8.3 Precision of Subsumptions

We evaluated the quality of the subsumptions by
assessing 100 top-ranked as well as 100 randomly
selected subsumptions. As shown in Table 3, a
large number of the subsumptions are correct. The
Wikipedia-based PATTY taxonomy has a random-
sampling-based precision of 75%.

Corpus Types # Edges Top 100 Random

NYT
YAGO2 12,601 0.86±0.07 0.68±0.09
Freebase 80,296 0.89±0.06 0.41±0.09

WKP
YAGO2 8,162 0.83±0.07 0.75±0.07
Freebase 20,339 0.85±0.07 0.62±0.09

Table 3: Quality of Subsumptions

Example subsumptions from Wikipedia are:

• 〈person〉 nominated for 〈award〉 =

〈person〉 winner of 〈award〉
• 〈person〉 ’ s wife 〈person〉 =

〈person〉 ’s widow 〈person〉

8.4 Coverage

To evaluate the coverage of PATTY, we would need
a complete ground-truth resource that contains all
possible binary relations between entities. Unfor-
tunately, there is no such resource2. We tried to
approximate such a resource by manually compil-
ing all binary relations between entities that ap-
pear in Wikipedia articles of a certain domain. We
chose the domain of popular music, because it offers
a plethora of non-trivial relations (such as addict-
edTo(person,drug), coveredBy(musician,musician),
dedicatedSongTo(musician,entity))). We considered
the Wikipedia articles of five musicians (Amy Wine-
house, Bob Dylan, Neil Young, John Coltrane, Nina
Simone). For each page, two annotators hand-
extracted all relationship types that they would spot
in the respective articles. The annotators limited
themselves to relations where at least one argument
type is 〈musician〉. Then we formed the intersection
of the two annotators’ outputs (i.e., their agreement)

2Lexical resources such as WordNet contain only verbs, but
not binary relations such as is the president of. Other resources
are likely incomplete.

as a reasonable gold standard for relations identifi-
able by skilled humans. In total, the gold-standard
set contains 163 relations.

We then compared our relational patterns to the
relations included in four major knowledge bases,
namely, YAGO2, DBpedia (DBP), Freebase (FB),
and NELL, limited to the specific domain of music.
Table 4 shows the absolute number of relations cov-
ered by each resource. For PATTY, the patterns were
derived from the Wikipedia corpus with the YAGO2
type system.

gold standard PATTY YAGO2 DBP FB NELL
163 126 31 39 69 13

Table 4: Coverage of Music Relations

PATTY covered 126 of the 163 gold-standard re-
lations. This is more than what can be found in large
semi-curated knowledge bases such as Freebase,
and twice as much as Wikipedia-infobox-based re-
sources such as DBpedia or YAGO offer. Some
PATTY examples that do not appear in the other re-
sources at all are:

• 〈musician〉 PRP idol 〈musician〉 for the relation
hasMusicalIdol

• 〈person〉 criticized by 〈organization〉 for
critizedByMedia

• 〈person〉 headliner 〈artifact〉 for headlinerAt

• 〈person〉 successfully sued 〈person〉 for suedBy

• 〈musician〉 wrote hits for 〈musician〉 for wrote-
HitsFor,

This shows (albeit anecdotically) that PATTY’s pat-
terns contribute added value beyond today’s knowl-
edge bases.

8.5 Pattern Language Alternatives

We also investigated various design alternatives to
the PATTY pattern language. We looked at three
main alternatives: the first is verb-phrase-centric
patterns advocated by ReVerb (Fader 2011), the sec-
ond is the PATTY language without type signatures
(just using sets of n-grams with syntactic general-
izations), and the third one is the full PATTY lan-
guage. The results for the Wikipedia corpus and the
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Reverb-style patterns PATTY without types PATTY full
# Patterns 5,996 184,629 350,569
Patterns Precision 0.96±0.03 0.74±0.08 0.95±0.04

# Subsumptions 74 15,347 8,162
Subsumptions Precision 0.79 ±0.09 0.58±0.09 0.83±0.07

# Facts 192,144 6,384,684 3,890,075
Facts Precision. 0.86 ±0.07 0.64±0.09 0.88 ±0.06

Table 5: Results for Different Pattern Language Alternatives

Relation Paraphrases Precision Sample Paraphrases
DBPedia/artist 83 0.96±0.03 [adj] studio album of, [det] song by . . .
DBPedia/associatedBand 386 0.74±0.11 joined band along, plays in . . .
DBPedia/doctoralAdvisor 36 0.558±0.15 [det] student of, under * supervision . . .
DBPedia/recordLabel 113 0.86±0.09 [adj] artist signed to, [adj] record label . . .
DBPedia/riverMouth 31 0.83±0.12 drains into, [adj] tributary of . . .
DBPedia/team 1,108 0.91±0.07 be * traded to, [prp] debut for . . .
YAGO/actedIn 330 0.88±0.08 starred in * film, [adj] role for . . .
YAGO/created 466 0.79±0.10 founded, ’s book . . .
YAGO/isLeaderOf 40 0.53±0.14 elected by, governor of . . .
YAGO/holdsPoliticalPosition 72 0.73±0.10 [prp] tenure as, oath as . . .

Table 6: Sample Results for Relation Paraphrasing

YAGO2 type system are shown in Table 5; preci-
sion figures are based on the respective top 100 pat-
terns or subsumption edges. We observe from these
results that the type signatures are crucial for pre-
cision. Moreover, the number of patterns, subsump-
tions and facts found by verb-phrase-centric patterns
(ReVerb (Fader 2011)), are limited in recall. Gen-
eral pattern synsets with type signatures, as newly
pursued in this paper, substantially outperform the
verb-phrase-centric alternative in terms of pattern
and subsumption recall while yielding high preci-
sion.

8.6 Extrinsic Study: Relation Paraphrasing

To further evaluate the usefulness of PATTY, we per-
formed a study on relation paraphrasing: given a re-
lation from a knowledge base, identify patterns that
can be used to express that relation. Paraphrasing
relations with high-quality patterns is important for
populating knowledge bases and counters the prob-
lem of semantic drifting caused by ambiguous and
noisy patterns.

We considered relations from two knowledge
bases, DBpedia and YAGO2, focusing on relations
that hold between entities and do not include literals.
PATTY paraphrased 225 DBpedia relations with a

total of 127,811 patterns, and 25 YAGO2 relations
with a total of 43,124 patterns. Among these we
evaluated a random sample of 1,000 relation para-
phrases. Table 6 shows precision figures for some
selected relations, along anecdotic example patterns.

Some relations are hard to capture precisely. For
DBPedia/doctoralAdvisor, e.g., PATTY picked up
patterns like “worked with” as paraphrases. These
are not entirely wrong, but we evaluated them as
false because they are too general to indicate the
more specific doctoral advisor relation.

Overall, however, the paraphrasing precision is
high. Our evaluation showed an average precision
of 0.76±0.03 across all relations.

9 Conclusion and Future Directions

This paper presented PATTY, a large resource of text
patterns. Different from existing resources, PATTY
organizes patterns into synsets and a taxonomy, sim-
ilar in spirit to WordNet. Our evaluation shows
that PATTY’s patterns are semantically meaning-
ful, and that they cover large parts of the relations
of other knowledge bases. The Wikipedia-based
version of PATTY contains 350,569 pattern synsets
at a precision of 84.7%, with 8,162 subsumptions,
at a precision of 75%. The PATTY resource is
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freely available for interactive access and download
at www.mpi-inf.mpg.de/yago-naga/patty/.

Our approach harnesses existing knowledge bases
for entity-type information. However, PATTY is not
tied to a particular choice for this purpose. In fact,
it would be straightforward to adjust PATTY to us-
ing surface-form noun phrases rather than disam-
biguated entities, as long as we have means to infer
at least coarse-grained types (e.g., person, organiza-
tion, location). An interesting future direction is to
study this generalized setting. We would also like
to investigate the enhanced interplay of information
extraction and pattern extraction, and possible appli-
cations for question answering.
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Abstract

PCFGs can grow exponentially as additional
annotations are added to an initially simple
base grammar. We present an approach where
multiple annotations coexist, but in a factored
manner that avoids this combinatorial explo-
sion. Our method works with linguistically-
motivated annotations, induced latent struc-
ture, lexicalization, or any mix of the three.
We use a structured expectation propagation
algorithm that makes use of the factored struc-
ture in two ways. First, by partitioning the fac-
tors, it speeds up parsing exponentially over
the unfactored approach. Second, it minimizes
the redundancy of the factors during training,
improving accuracy over an independent ap-
proach. Using purely latent variable annota-
tions, we can efficiently train and parse with
up to 8 latent bits per symbol, achieving F1
scores up to 88.4 on the Penn Treebank while
using two orders of magnitudes fewer parame-
ters compared to the naı̈ve approach. Combin-
ing latent, lexicalized, and unlexicalized anno-
tations, our best parser gets 89.4 F1 on all sen-
tences from section 23 of the Penn Treebank.

1 Introduction

Many high-performance PCFG parsers take an ini-
tially simple base grammar over treebank labels like
NP and enrich it with deeper syntactic features to
improve accuracy. This broad characterization in-
cludes lexicalized parsers (Collins, 1997), unlexical-
ized parsers (Klein and Manning, 2003), and latent
variable parsers (Matsuzaki et al., 2005). Figures
1(a), 1(b), and 1(c) show small examples of context-
free trees that have been annotated in these ways.

When multi-part annotations are used in the same
grammar, systems have generally multiplied these
annotations together, in the sense that an NP that

was definite, possessive, and VP-dominated would
have a single unstructured PCFG symbol that en-
coded all three facts. In addition, modulo backoff
or smoothing, that unstructured symbol would of-
ten have rewrite parameters entirely distinct from,
say, the indefinite but otherwise similar variant of
the symbol (Klein and Manning, 2003). Therefore,
when designing a grammar, one would have to care-
fully weigh new contextual annotations. Should a
definiteness annotation be included, doubling the
number of NPs in the grammar and perhaps overly
fragmenting statistics? Or should it be excluded,
thereby losing important distinctions? Klein and
Manning (2003) discuss exactly such trade-offs and
omit annotations that were helpful on their own be-
cause they were not worth the combinatorial or sta-
tistical cost when combined with other annotations.

In this paper, we argue for grammars with fac-
tored annotations, that is, grammars with annota-
tions that have structured component parts that are
partially decoupled. Our annotated grammars can
include both latent and explicit annotations, as illus-
trated in Figure 1(d), and we demonstrate that these
factored grammars outperform parsers with unstruc-
tured annotations.

After discussing the factored representation, we
describe a method for parsing with factored anno-
tations, using an approximate inference technique
called expectation propagation (Minka, 2001). Our
algorithm has runtime linear in the number of an-
notation factors in the grammar, improving on the
naı̈ve algorithm, which has runtime exponential in
the number of annotations. Our method, the Ex-
pectation Propagation for Inferring Constituency
(EPIC) parser, jointly trains a model over factored
annotations, where each factor naturally leverages
information from other annotation factors and im-
proves on their mistakes.
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(a) NP[agenda]

NN[agenda]

agenda

NP[’s]

The president’s

(b) NP[ˆS]

NN[ˆNP]

agenda

NP[ˆNP-Poss-Det]

The president’s

(c) NP[1]

NN[0]

agenda

NP[1]

The president’s

(d) NP[agenda,ˆS,1]

NN[agenda,ˆNP,0]

agenda

NP[’s,ˆNP-Poss-Det,1]

The president’s

Figure 1: Parse trees using four different annotation schemes: (a) Lexicalized annotation like that in Collins (1997);
(b) Unlexicalized annotation like that in Klein and Manning (2003); (c) Latent annotation like that in Matsuzaki et al.
(2005); and (d) the factored, mixed annotations we argue for in our paper.

We demonstrate the empirical effectiveness of our
approach in two ways. First, we efficiently train
a latent-variable grammar with 8 disjoint one-bit
latent annotation factors, with scores as high as
89.7 F1 on length ≤40 sentences from the Penn
Treebank (Marcus et al., 1993). This latent vari-
able parser outscores the best of Petrov and Klein
(2008a)’s comparable parsers while using two or-
ders of magnitude fewer parameters. Second, we
combine our latent variable factors with lexicalized
and unlexicalized annotations, resulting in our best
F1 score of 89.4 on all sentences.

2 Intuitions

Modern theories of grammar such as HPSG (Pollard
and Sag, 1994) and Minimalism (Chomsky, 1992)
do not ascribe unstructured conjunctions of anno-
tations to phrasal categories. Rather, phrasal cat-
egories are associated with sequences of metadata
that control their function. For instance, an NP
might have annotations to the effect that it is sin-
gular, masculine, and nominative, with perhaps fur-
ther information about its animacy or other aspects
of the head noun. Thus, it is appealing for a gram-
mar to be able to model these (somewhat) orthog-
onal notions, but most models have no mechanism
to encourage this. As a notable exception, Dreyer
and Eisner (2006) tried to capture this kind of insight
by allowing factored annotations to pass unchanged
from parent label to child label, though they were not

able to demonstrate substantial gains in accuracy.
Moreover, there has been to our knowledge no at-

tempt to employ both latent and non-latent annota-
tions at the same time. There is good reason for this:
lexicalized or highly annotated grammars like those
of Collins (1997) or Klein and Manning (2003) have
a very large number of states and an even larger
number of rules. Further annotating these rules with
latent annotations would produce an infeasibly large
grammar. Nevertheless, it is a shame to sacrifice ex-
pert annotation just to get latent annotations. Thus,
it makes sense to combine these annotation methods
in a way that does not lead to an explosion of the
state space or a fragmentation of statistics.

3 Parsing with Annotations

Suppose we have a raw (binarized) treebank gram-
mar, with productions of the form A → B C.
The typical process is to then annotate these rules
with additional information, giving rules of the form
A[x] → B[y] C[z]. In the case of explicit annota-
tions, an x might include information about the par-
ent category, or a head word, or a combination of
things. In the case of latent annotations, x will be
an integer that may or may not correspond to some
linguistic notion. We are interested in the specific
case where each x is actually factored into M dis-
joint parts: A[x1, x2, . . . , xM ]. (See Figure 1(d).)
We call each component of x an annotation factor
or an annotation component.
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3.1 Annotation Classes

In this paper, we consider three kinds of annotation
models, representing three of the major traditions in
constituency parsing. Individually, none of our mod-
els are state-of-the-art, instead achieving F1 scores
in the mid-80’s on the Penn Treebank.

The first model is a relatively simple lexicalized
parser. We are not aware of a prior discriminative
lexicalized constituency parser, and it is quite dif-
ferent from the generative models of Collins (1997).
Broadly, it considers features over a binary rule an-
notated with head words: A[h] → B[h] C[d] and
A[h] → B[d] C[h], focusing on monolexical rule
features and bilexical dependency features. It is our
best individual model, scoring 87.3 F1 on the devel-
opment set.

The second is similar to the unlexicalized model
of Klein and Manning (2003). This parser starts
from a grammar with labels annotated with sibling
and parent information, and then adds specific an-
notations, such as whether an NP is possessive or
whether a symbol rewrites as a unary. This parser
gets 86.3, tying the original generative version of
Klein and Manning (2003).

Finally, we use a straightforward discriminative
latent variable model much like that of Petrov and
Klein (2008a). Here, each symbol is given a la-
tent annotation, referred to as a substate. Typically,
these substates correlate at least loosely with linguis-
tic phenomena. For instance, NP-1 might be associ-
ated with possessive NPs, while NP-3 might be for
adjuncts. Often, these latent integers are considered
as bit strings, with each bit indicating one latent an-
notation. Prior work in this area has considered the
effect of splitting and merging these states (Petrov et
al., 2006; Petrov and Klein, 2007), as well as “mul-
tiscale” grammars (Petrov and Klein, 2008b). With
two states (or one bit of annotation), our version of
this parser gets 81.7 F1, edging out the compara-
ble parser of Petrov and Klein (2008a). On the other
hand, our parser gets 83.2 with four states (two bits),
short of the performance of prior work.1

1Much of the difference stems from the different binariza-
tion scheme we employ. We use head-outward binarization,
rather than the left-branching binarization they employed. This
change was to enable integrating lexicalization with our other
models.

3.2 Model Representation

We employ a general exponential family representa-
tion of our grammar. This representation is fairly
general, and—in its generic form—by no means
new, save for the focus on annotation components.

Formally, we begin with a parse tree T over base
symbols for some sentence w, and we decorate the
tree with annotations X , giving a parse tree T [X].
We focus on the case whenX partitions into disjoint
components X = [X1, X2, . . . , XM ]. These com-
ponents are decoupled in the sense that, conditioned
on the coarse tree T , each column of the annota-
tion is independent of every other column. How-
ever, they are crucially not independent conditioned
only on the sentence w. This model is represented
schematically in Figure 2(a).

The conditional probability P(T [X]|w, θ) of an
annotated tree given words is:

P(T [X]|w, θ)

=

∏
m fm(T [Xm];w, θm)∑

T ′,X′
∏

m fm(T ′[X ′
m];w, θm)

=
1

Z(w, θ)

∏
m

fm(T [Xm];w, θm)

(1)

where the factors fm for each model take the form:

fm(T [Xm];w, θm) = exp
(
θT
mϕm(T,Xm,w)

)
Here, Xm is the annotation associated with a partic-
ular model m. ϕ is a feature function that projects
the raw tree, annotations, and words into a feature
vector. The features ϕ need to decompose into fea-
tures for each factor fm; we do not allow features
that take into account the annotation from two dif-
ferent components.

We further add a pruning filter that assigns zero
weight to any tree with a constituent that a baseline
unannotated grammar finds sufficiently unlikely, and
a weight of one to any other tree. This filter is similar
to that used in Petrov and Klein (2008a) and allows
for much more efficient training and inference.

Because our model is discriminative, training
takes the form of maximizing the probability of the
training trees given the words. This objective is con-
vex for deterministic annotations, but non-convex
for latent annotations. We (locally) optimize the
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flex funlflat f̃lat f̃unl

(a) (b) (c) 

Full product model Approximate model 

P (T [X]|w; ✓) q(T |w)

qlex qlat

qunl

Figure 2: Schematic representation of our model, its approximation, and expectation propagation. (a) The full joint
distribution consists of a product of three grammars with different annotations, here lexicalized, latent, and unlexi-
calized. This model is described in Section 3.2. (b) The core approximation is an anchored PCFG with one factor
corresponding to each annotation component, described in Section 5.1. (c) Fitting the approximation with expectation
propagation, as described in Section 5.3. At the center is the core approximation. During each step, an “augmented”
distribution qm is created by taking one annotation factor from the full grammar and the rest from the approximate
grammar. For instance, in upper left hand corner the full fLEX is substituted for f̃LEX. This new augmented distribution
is projected back to the core approximation. This process is repeated for each factor until convergence.

(non-convex) log conditional likelihood of the ob-
served training data (T (d),w(d)):

`(θ) =
∑

d

log P(T (d)|w(d), θ)

=
∑

d

log
∑
X

P(T (d)[X]|w(d), θ)
(2)

Using standard results, the derivative takes the form:

∇`(θ) =
∑

d

E[ϕ(T,X,w)|T (d),w(d)]

−
∑

d

E[ϕ(T,X,w)|w(d)]
(3)

The first half of this derivative can be obtained by the
forward/backward-like computation defined by Mat-
suzaki et al. (2005), while the second half requires
an inside/outside computation (Petrov and Klein,
2008a). The partition function Z(w, θ) is computed
as a byproduct of the latter computation. Finally,
this objective is regularized, using the L2 norm of θ
as a penalty.

We note that we omit from our parser one major
feature class found in other discriminative parsers,

namely those that use features over the words in the
span (Finkel et al., 2008; Petrov and Klein, 2008b).
These features might condition on words on either
side of the split point of a binary rule or take into
account the length of the span. While such features
have proven useful in previous work, they are not the
focus of our current work and so we omit them.

4 The Complexity of Annotated
Grammars

Note that the first term of Equation 3—which is
conditioned on the coarse tree T—factors into M
pieces, one for each of the annotation components.
However, the second term does not factor because it
is conditioned on just the words w. Indeed, naı̈vely
computing this term requires parsing with the fully
articulated grammar, meaning that inference would
be no more efficient than parsing with non-factored
annotations.

Standard algorithms for parsing run in time
O(G|w|3), where |w| is the length of the sentence,
and G is the size of the grammar, measured in the
number of (binary) rules. Let G0 be the number
of binary rules in the unannotated “base” grammar.
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Suppose that we have M annotation components.
Each annotation component can have up to A primi-
tive annotations per rule. For instance, a latent vari-
able grammar will have A = 8b where b is the num-
ber of bits of annotation. If we compile all annota-
tion components into unstructured annotations, we
can end up with a total grammar size of O(AMG0),
and so in general parsing time scales exponentially
with the number of annotation components. Thus, if
we use latent annotations and the hierarchical split-
ting approach of Petrov et al. (2006), then the gram-
mar has size O(8SG0), where S is the number of
times the grammar was split in two. Therefore, the
size of annotated grammars can reach intractable
levels very quickly, particularly in the case of latent
annotations, where all combinations of annotations
are possible.

Petrov (2010) considered an approach to slowing
this growth down by using a set of M independently
trained parsers Pm, and parsed using the product
of the scores from each parser as the score for the
tree. This approach worked largely because train-
ing was intractable: if the training algorithm could
reach the global optimum, then this approach might
have yielded no gain. However, because the opti-
mization technique is local, the same algorithm pro-
duced multiple grammars.

In what follows, we propose another solution that
exploits the factored structure of our grammar with
expectation propagation. Crucially, we are able to
jointly train and parse with all annotation factors,
minimizing redundancy across the models. While
not exact, we will see that expectation propagation
is indeed effective.

5 Factored Inference

The key insight behind the approximate inference
methods we consider here is that the full model is
a product of complex factors that interact in compli-
cated ways, and we will approximate it with a prod-
uct of corresponding simple factors that interact in
simple ways. Since each annotation factor is a rea-
sonable model in both power and complexity on its
own, we can consider them one at a time, replac-
ing all others with their approximations, as shown in
Figure 2(c).

The way we will build these approximations is

with expectation propagation (Minka, 2001). Ex-
pectation propagation (EP) is a general method for
approximate inference that generalizes belief propa-
gation. We describe it here, but we first try to pro-
vide an intuition for how it functions in our system.
We also describe a simplified version of EP, called
assumed density filtering (Boyen and Koller, 1998),
which is somewhat easier to understand and rhetori-
cally convenient. For a more detailed introduction to
EP in general, we direct the reader to either Minka
(2001) or Wainwright and Jordan (2008). Our treat-
ment most resembles the former.

5.1 Factored Approximations
Our goal is to build an approximation that takes in-
formation from all components into account. To be-
gin, we note that each of these components captures
different phenomena: an unlexicalized grammar is
good at capturing structural relationships in a parse
tree (e.g. subject noun phrases have different dis-
tributions than object noun phrases), while a lexi-
calized grammar captures preferred attachments for
different verbs. At the same time, each of these com-
ponent grammars can be thought of as a refinement
of the raw unannotated treebank grammar. By itself,
each of these grammars induces a different poste-
rior distribution over unannotated trees for each sen-
tence. If we can approximate each model’s contri-
bution by using only unannotated symbols, we can
define an algorithm that avoids the exponential over-
head of parsing with the full grammar, and instead
works with each factor in turn.

To do so, we define a sentence specific core
approximation over unannotated trees q(T |w) =∏

m f̃m(T,w). Figure 2(b) illustrates this approx-
imation. Here, q(T ) is a product of M structurally
identical factors, one for each of the annotated com-
ponents. We will approximate each model fm by
its corresponding f̃m. Thus, there is one color-
coordinated approximate factor for each component
of the model in Figure 2(a).

There are multiple choices for the structure of
these factors, but we focus on anchored PCFGs. An-
chored PCFGs have productions of the form iAj →
iBk kCj , where i, k, and j are indexes into the sen-
tence. Here, iAj is a symbol representing building
the base symbol A over the span [i, j].

Billott and Lang (1989) introduced anchored
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CFGs as “shared forests,” and Matsuzaki et al.
(2005) have previously used these grammars for
finding an approximate one-best tree in a latent vari-
able parser. Note that, even though an anchored
grammar is unannotated, because it is sentence spe-
cific it can represent many complex properties of the
full grammar’s posterior distribution for a given sen-
tence. For example, it might express a preference
for whether a PP token attaches to a particular verb
or to that verb’s object noun phrase in a particular
sentence.

Before continuing, note that a pointwise product
of anchored grammars is still an anchored gram-
mar. The complexity of parsing with a product of
these grammars is therefore no more expensive than
parsing with just one. Indeed, anchoring adds no
inferential cost at all over parsing with an unanno-
tated grammar: the anchored indices i, j, k have to
be computed just to parse the sentence at all. This
property is crucial to EP’s efficiency in our setting.

5.2 Assumed Density Filtering

We now describe a simplified version of EP: parsing
with assumed density filtering (Boyen and Koller,
1998). We would like to train a sequence ofM mod-
els, where each model is trained with knowledge
of the posterior distribution induced by the previous
models. Much as boosting algorithms (Freund and
Schapire, 1995) work by focusing learning on as-
yet-unexplained data points, this approach will en-
courage each model to improve on earlier models,
albeit in a different formal way.

At a high level, assumed density filtering (ADF)
proceeds as follows. First, we have an initially un-
informative q: it assigns the same probability to all
unpruned trees for a given sentence. Then, we fac-
tor in one of the annotated grammars and parse with
this new augmented grammar. This gives us a new
posterior distribution for this sentence over trees an-
notated with just that annotation component. Then,
we can marginalize out the annotations, giving us a
new q that approximates the annotated grammar as
closely as possible without using any annotations.
Once we have incorporated the current model’s com-
ponent, we move on to the next annotated grammar,
augmenting it with the new q, and repeating. In
this way, information from all grammars is incor-
porated into a final posterior distribution over trees

using only unannotated symbols. The algorithm is
then as follows:

• Initialize q(T ) uniformly.

• For each m in sequence:

1. Create the augmented distribution
qm(T[Xm]) ∝ q(T) · fm(T[Xm]) and
compute inside and outside scores.

2. Minimize DKL

(
qm(T )||f̃m(T )q(T )

)
by

fitting an anchored grammar f̃m.
3. Set q(T ) =

∏m
m′=1 f̃m′(T ).

Step 1 of the inner loop forms an approximate pos-
terior distribution using fm, which is the parsing
model associated with component m, and q, which
is the anchored core approximation to the poste-
rior induced by the first m − 1 models. Then, the
marginals are computed, and the new posterior dis-
tribution is projected to an anchored grammar, cre-
ating f̃m. More intuitively, we create an anchored
PCFG that makes the approximation “as close as
possible” to the augmented grammar. (We describe
this procedure more precisely in Section 5.4.) Thus,
each term fm is approximated in the context of the
terms that come before it. This contextual approx-
imation is essential: without it, ADF would ap-
proximate the terms independently, meaning that no
information would be shared between the models.
This method would be, in effect, a simple method
for parser combination, not all that dissimilar to the
method proposed by Petrov (2010). Finally, note
that the same inside and outside scores computed in
the loop can be used to compute the expected counts
needed in Equation 3.

Now we consider the runtime complexity of this
algorithm. If the maximum number of annotations
per rule for any factor is A, ADF has complex-
ity O

(
MAG0|w|3

)
when using M factors. In

contrast, parsing with the fully annotated grammar
would have complexityO

(
AMG0|w|3

)
. Critically,

for a latent variable parser with M annotation bits,
the exact algorithm takes time exponential in M ,
while this approximate algorithm takes time linear
in M .

It is worth pausing to consider what this algo-
rithm does during training. At each step, we have
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in q an approximation to what the posterior distribu-
tion looks like with the first m− 1 models. In some
places, q will assign high probabilities to spans in the
gold tree, and in some places it will not be so accu-
rate. θm will be particularly motivated to correct the
latter, because they are less like the gold tree. On the
other hand, θm will ignore the other “correct” seg-
ments, because q has already sufficiently captured
them.

5.3 Expectation Propagation

While this sequential algorithm gives us a way to ef-
ficiently combine many kinds of annotations, it is
not a fully joint algorithm: there is no backward
propagation of information from later models to ear-
lier models. Ideally, no model should be privileged
over any other. To correct that, we use EP, which is
essentially the iterative generalization of ADF.

Intuitively, EP cycles among the models, updat-
ing the approximation for that model in turn so that
it closely resembles the predictions made by fm in
the context of all other approximations, as in Fig-
ure 2(c). Thus, each approximate term f̃m is cre-
ated using information from all other f̃m′ , meaning
that the different annotation factors can still “talk”
to each other. The product of these approximations
q will therefore come to act as an approximation to
the true posterior: it takes into account joint infor-
mation about all annotation components, all within
one tractable anchored grammar.

With that intuition in mind, EP is defined as fol-
lows:

• Initialize contributions f̃m to the approximate
posterior q.

• At each step, choose m.

1. Include approximations to all factors other
than m: q\m(T ) =

∏
m′ 6=m f̃m′(T ).

2. Create the augmented distribution by in-
cluding the actual factor for component m
qm(T [Xm]) ∝ fm(T [Xm])q\m(T )

and compute inside and outside scores.
3. Create a new f̃m(T ) that minimizes

DKL

(
qm(T )||f̃m(T )q\m(T )

)
.

• Finally, set q(T ) ∝∏m f̃m(T ).

Step 2 creates the augmented distribution qm, which
includes fm along with the approximate factors for
all models except the current model. Step 3 creates
a new anchored f̃m that has the same marginal dis-
tribution as the true model fm in the context of the
other approximations, just as we did in ADF.

In practice, it is usually better to not recompute
the product of all f̃m each time, but instead to main-
tain the full product q(T ) ∝ ∏m f̃m and to remove
the appropriate f̃m by division. This optimization is
analogous to belief propagation, where messages are
removed from beliefs by division, instead of recom-
puting beliefs on the fly by multiplying all messages.

Schematically, the whole process is illustrated in
Figure 2(c). At each step, one piece of the core
approximation is replaced with the corresponding
component from the full model. This augmented
model is then reapproximated by a new core approx-
imation q after updating the corresponding f̃m. This
process repeats until convergence.

5.4 EPIC Parsing
In our parser, EP is implemented as follows. q
and each of the f̃m are anchored grammars that as-
sign weights to unannotated rules. The product of
anchored grammars with the annotated factor fm

need not be carried out explicitly. Instead, note
that an anchored grammar is just a function q(A →
B C, i, k, j) ∈ R+ that returns a score for every an-
chored binary rule. This function can be easily in-
tegrated into the CKY algorithm for a single anno-
tated grammar by simply multiplying in the value
of q whenever computing the score of the respective
production over some span. The modified inside re-
currence takes the form:

INSIDE(A[x], i, j)

=
∑

B,y,C,z

θTϕ(A[x]→ B[y] C[z],w)

·
∑

i<k<j

INSIDE(B[y], i, k) · INSIDE(C[z], k, j)

· q(A→ B C, i, k, j)

(4)

Thus, parsing with a pointwise product of an an-
chored grammar and an annotated grammar has no
increased combinatorial cost over parsing with just
the annotated grammar.
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To actually perform the projection in step 3 of EP,
we create an anchored grammar from inside and out-
side probabilities. First, we compute the expected
number of times the rule iAj → iBk kCj occurs,
and then then we locally normalize for each sym-
bol iAj . This actually creates the new q distribution,
and so we have to divide out q\m This process mini-
mizes KL divergence subject to the local normaliza-
tion constraints.

All in all, this gives an algorithm that takes time
O
(
IMAG0|w|3

)
, where I is the maximum num-

ber of iterations, M is the number of models, and
A is the maximum number of annotations for any
given rule.

5.5 Other Inference Algorithms

To our knowledge, expectation propagation has been
used only once in the NLP community; Daumé III
and Marcu (2006) employed an unstructured ver-
sion in a Bayesian model of extractive summariza-
tion. Therefore, it is worth describing how EP dif-
fers from more familiar techniques.

EP can be thought of as a more flexible gen-
eralization of belief propagation, which has been
used several times in NLP (Smith and Eisner, 2008;
Niehues and Vogel, 2008; Cromières and Kurohashi,
2009; Burkett and Klein, 2012). In particular, EP al-
lows for the arbitrary choice of messages (the f̃m),
meaning that we can use structured messages like
anchored PCFGs.

Mean field (Saul and Jordan, 1996) is another ap-
proximate inference technique that allows for struc-
tured approximations (Xing et al., 2003; Burkett et
al., 2010), but here the natural version of mean field
for our model would still be intractable. However,
it is possible to adapt mean field into allowing for
tractable updates that are similar to the ones we pro-
posed. We do not pursue that approach here.

Dual decomposition (Dantzig and Wolfe, 1960;
Komodakis et al., 2007) has recently become pop-
ular in the community (Rush et al., 2010; Koo et
al., 2010). In fact, EP can be seen as a particular
kind of dual decomposition of the log normalization
constant logZ(w, θ) that is optimized with message
passing rather than (sub-)gradient descent or LP re-
laxations. Indeed, Minka (2001) argues that the EP
objective is more efficiently optimized with message

passing than with gradient updates. This assertion
should be examined for the structured models com-
mon in NLP, but that is beyond the scope of this pa-
per.

Finally, note that EP, like belief propagation but
unlike mean field, is not guaranteed to converge,
though in practice it usually seems to. In our exper-
iments, typically three or four iterations are enough
for almost all sentences to reach convergence, and
we found no loss in cutting off the number of itera-
tions to four.

6 Experiments

In what follows, we describe three experiments.
First, in a small experiment, we examine how effec-
tive the different inference algorithms are for both
training and testing. Second, we scale up our latent
variable model into successively larger products. Fi-
nally, we present a selection of the many possible
model combinations, showing that combining latent
and expert annotation can be quite effective.

6.1 Experimental Setup

For our experiments, we trained and tested on the
Penn Treebank using the standard splits: sections 2-
21 were training, 22 development, and 23 testing.
In preliminary experiments, we report development
set F1 on sentences up to length 40. For our final
test set experiment, we report F1 on sentences from
section 23 up to length 40, as well as all sentences
from that section. Scores reported are computed us-
ing EVALB (Sekine and Collins, 1997). We binarize
trees using Collins’ head rules (Collins, 1997).

Each discriminative parser was trained using the
Adaptive Gradient variant of Stochastic Gradient
Descent (Duchi et al., 2010). Smaller models were
seeded from larger models. That is, before training
a grammar of 5 models with 1 latent bit each, we
started with weights from a parser with 4 factored
bits. Initial experiments suggested this step did not
affect final performance, but greatly decreased to-
tal training time, especially for the latent variable
parsers. For extracting a one-best tree, we use a
version of the Max-Recall algorithm of Goodman
(1996). When using EP or ADF, we initialized
the core approximation q to the uniform distribution
over unpruned trees.
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Parsing
Training ADF EP Exact Petrov

ADF 84.3 84.5 84.5 82.5
EP 84.1 84.6 84.5 78.7

Exact 83.8 84.5 84.9 81.5
Indep. 82.3 82.1 82.2 82.6

Table 1: The effect of algorithm choice for training and
parsing on a product of two 2-state parsers on F1. Petrov
is the product parser of Petrov (2010), and Indep. refers
to independently trained models. For comparison, a four-
state parser achieves a score of 83.2.

When counting parameters, we consider the num-
ber of parameters per binary rule. Hence, a single
four-state latent model would have 64 (= 43) param-
eters per rule, while a product of 5 two-state models
would have just 40 (= 5 · 23).

6.2 Comparison of Inference Algorithms

In our first experiment, we test the relative perfor-
mance of the various approximate inference meth-
ods at both train and test time. In order to include
exact inference, we necessarily need to look at a
smaller scale example for which exact inference is
still feasible. We examined development perfor-
mance for training and inference on a small product
of two parsers, each with two latent states per sym-
bol.

During training, we have several options. We can
use exact training by parsing with the fully articu-
lated product of both grammars, or, we can instead
use EP, ADF, or independent training. At test time,
we can parse using the full product of both gram-
mars, or, we can instead use EP, ADF, or we can use
the method of Petrov (2010) wherein we multiply
the parsers together in an ad hoc fashion.

The results are in Table 1. The best reported score,
unsurprisingly, is for using exact training and pars-
ing, but using EP for training and parsing results in
a relatively small loss of 0.3 F1. ADF, however, suf-
fers a loss of 0.6 F1 over Exact when used for train-
ing and parsing. Otherwise, Exact and EP seem to
perform fairly similarly at parse time for all training
conditions.

In general, there seems to be a gain for using the
same method for training and testing. Each test-
ing method performs at its best when using models
trained with the same method. Moreover, except for
ADF, the converse holds true: the grammars trained

80 
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1 2 3 4 5 6 7 8 

F1
 

Number of Models 

Figure 3: Development F1 plotted against the number M
of one-bit latent annotation components. The best gram-
mar has 6 one-bit annotations, with 89.7 F1.

with a given parsing method are best decoded using
the same method.

Oddly, using Petrov (2010)’s method does not
seem to work well at all for jointly trained models,
except for ADF. Similarly, joint parsing underper-
forms Petrov (2010)’s method when using indepen-
dently trained models. Likely, the joint parsing al-
gorithms are miscalibrating the redundant informa-
tion present in the two independently-trained mod-
els, while the two jointly-trained components come
to depend on each other. In fact, the F1 scores for
the two separate models of the EP parser are in the
60’s.

As expected, ADF does not perform as well as
EP. Therefore, we exclude it from our subsequent
experiments, focusing exclusively on EP.

6.3 Latent Variable Experiments

Most of the previous work in latent variable parsing
has focused on splitting smaller unstructured anno-
tations into larger unstructured annotations. Here,
we consider training a joint model consisting of a
large number of disjoint one-bit (i.e. two-state) la-
tent variable annotations. Specifically, we consider
the performance of products of up to 8 one-bit anno-
tations.

In Figure 3, we show development F1 as a func-
tion of the number of latent bits. Improvement is
roughly linear up to 3 components. Performance
levels off afterwards, with the top performing sys-
tem scoring 89.7 F1. Nevertheless, these parsers
outperform the comparable parsers of Petrov and
Klein (2008a) (89.3), even though our six-bit parser
has many fewer effective parameters per binary rule:
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Models F1, ≤ 40 F1, All
Lexicalized 87.3 86.5

Unlexicalized 86.3 85.4
3xLatent 88.6 87.6

Lex+Unlex 90.2 89.5
Lex+Lat 90.0 89.4

Unlex+Lat 90.0 89.4
Lex+Unlex+Lat 90.2 89.7

Table 2: Development F1 score for various model com-
binations for sentences less than length 40 and all sen-
tences. 3xLatent refers to a latent annotation model with
3 factored latent bits.

48 instead of the 4096 in their best parser. We also
ran our best system on Section 23, where it gets 89.1
and 88.4 on sentences less than length 40 and on all
sentences, respectively. This result compares favor-
ably to the 88.8/88.3 of Petrov and Klein (2008a).

6.4 Heterogeneous Models

We now consider factored models with different
kinds of annotations. Specifically, we tested gram-
mars comprising all subsets of {Lexicalized, Unlex-
icalized, Latent}. We used a model with 3 factored
bits as our representative of the latent variable class,
because it was closest in performance to the other
models. Of course, other smaller and larger combi-
nations are possible, but we found this selection to
be representative.

The development results are in Table 2. Unsur-
prisingly, adding more kinds of annotations helps for
the most part, though the combination of all three
components is not much better than a combination
of just the lexicalized and unlexicalized models. In-
deed, our best systems involved combining the lexi-
calized model with some other model. This is proba-
bly because the lexicalized model can represent very
different syntactic relationships than the latent and
unlexicalized models, meaning there is more diver-
sity in the joint model’s capacity when using combi-
nations involving the lexicalized annotations.

Finally, we ran our best system (the fully com-
bined one) on Section 23 of the Penn Treebank. It
scored 90.1/89.4 F1 on length 40 and all sentences
respectively, slightly edging out the 90.0/89.3 F1
of Petrov and Klein (2008a). However, it is not
quite as good at exact match: 37.7/35.3 vs 40.1/37.7.
Note, though, that their parser makes use of span
features, which deliver a gain of +0.3/0.2F1 respec-

tively, while ours does not. We suspect that similar
gains could be had by incorporating these features,
but we leave that for future work.

7 Conclusion

Factored representations capture a fundamental lin-
guistic insight: grammatical categories are not
monolithic, unanalyzable entities. Instead, they are
composed of numerous facets that together govern
how categories combine into parse trees.

We have developed a new model for grammars
with factored annotations and presented two meth-
ods for parsing with these grammars. Our ex-
periments have demonstrated that our approach
produces higher performance parsers with many
fewer parameters. Moreover, our model works
with both latent and explicit annotations, allowing
us to combine linguistic knowledge with machine
learning. Finally, our source code is available at
http://nlp.cs.berkeley.edu/Software.shtml.
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Abstract

We introduce a model of coherence which
captures the intentional discourse structure in
text. Our work is based on the hypothesis that
syntax provides a proxy for the communica-
tive goal of a sentence and therefore the se-
quence of sentences in a coherent discourse
should exhibit detectable structural patterns.
Results show that our method has high dis-
criminating power for separating out coherent
and incoherent news articles reaching accura-
cies of up to 90%. We also show that our syn-
tactic patterns are correlated with manual an-
notations of intentional structure for academic
conference articles and can successfully pre-
dict the coherence of abstract, introduction
and related work sections of these articles.

1 Introduction

Recent studies have introduced successful automatic
methods to predict the structure and coherence of
texts. They include entity approaches for local co-
herence which track the repetition and syntactic re-
alization of entities in adjacent sentences (Barzilay
and Lapata, 2008; Elsner and Charniak, 2008) and
content approaches for global coherence which view
texts as a sequence of topics, each characterized by a
particular distribution of lexical items (Barzilay and
Lee, 2004; Fung and Ngai, 2006). Other work has
shown that co-occurrence of words (Lapata, 2003;
Soricut and Marcu, 2006) and discourse relations
(Pitler and Nenkova, 2008; Lin et al., 2011) also pre-
dict coherence.

Early theories (Grosz and Sidner, 1986) posited
that there are three factors which collectively con-

tribute to coherence: intentional structure (purpose
of discourse), attentional structure (what items are
discussed) and the organization of discourse seg-
ments. The highly successful entity approaches cap-
ture attentional structure and content approaches are
related to topic segments but intentional structure
has largely been neglected. Every discourse has a
purpose: explaining a concept, narrating an event,
critiquing an idea and so on. As a result each sen-
tence in the article has a communicative goal and the
sequence of goals helps the author achieve the dis-
course purpose. In this work, we introduce a model
to capture coherence from the intentional structure
dimension. Our key proposal is that syntactic pat-
terns are a useful proxy for intentional structure.

This idea is motivated from the fact that cer-
tain sentence types such as questions and definitions
have distinguishable and unique syntactic structure.
For example, consider the opening sentences of two
descriptive articles1 shown in Table 1. Sentences
(1a) and (2a) are typical instances of definition sen-
tences. Definitions are written with the concept to
be defined expressed as a noun phrase followed by
a copular verb (is/are). The predicate contains two
parts: the first is a noun phrase reporting the concept
as part of a larger class (eg. an aqueduct is a water
supply), the second component is a relative clause
listing unique properties of the concept. These are
examples of syntactic patterns related to the com-
municative goals of individual sentences. Similarly,
sentences (1b) and (2b) which provide further de-
tails about the concept also have some distinguish-

1Wikipedia articles on “Aqueduct” and “Cytokine Recep-
tors”
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1a) An aqueduct is a water supply or navigable channel
constructed to convey water.
b) In modern engineering, the term is used for any system

of pipes, canals, tunnels, and other structures used for
this purpose.
2a) Cytokine receptors are receptors that binds cytokines.
b) In recent years, the cytokine receptors have come to

demand more attention because their deficiency has now been
directly linked to certain debilitating immunodeficiency states.

Table 1: The first two sentences of two descriptive arti-
cles

ing syntactic features such as the presence of a top-
icalized phrase providing the focus of the sentence.
The two sets of sentences have similar sequence of
communicative goals and so we can expect the syn-
tax of adjacent sentences to also be related.

We aim to characterize this relationship on a
broad scale using a coherence model based entirely
on syntax. The model relies on two assumptions
which summarize our intuitions about syntax and in-
tentional structure:

1. Sentences with similar syntax are likely to have
the same communicative goal.

2. Regularities in intentional structure will be
manifested in syntactic regularities between ad-
jacent sentences.

There is also evidence from recent work that sup-
ports these assumptions. Cheung and Penn (2010)
find that a better syntactic parse of a sentence can be
derived when the syntax of adjacent sentences is also
taken into account. Lin et al. (2009) report that the
syntactic productions in adjacent sentences are pow-
erful features for predicting which discourse relation
(cause, contrast, etc.) holds between them. Cocco et
al. (2011) show that significant associations exist be-
tween certain part of speech tags and sentence types
such as explanation, dialog and argumentation.

In our model, syntax is represented either as parse
tree productions or a sequence of phrasal nodes aug-
mented with part of speech tags. Our best perform-
ing method uses a Hidden Markov Model to learn
the patterns in these syntactic items. Sections 3 and
5 discuss the representations and their specific im-
plementations and relative advantages. Results show
that syntax models can distinguish coherent and in-
coherent news articles from two domains with 75-
90% accuracies over a 50% baseline. In addition,

the syntax coherence scores turn out complementary
to scores given by lexical and entity models.

We also study our models’ predictions on aca-
demic articles, a genre where intentional structure
is widely studied. Sections in these articles have
well-defined purposes and we find recurring sen-
tence types such as motivation, citations, descrip-
tion, and speculations. There is a large body of work
(Swales, 1990; Teufel et al., 1999; Liakata et al.,
2010) concerned with defining and annotating these
sentence types (called zones) in conference articles.
In Section 6, we describe how indeed some patterns
captured by the syntax-based models are correlated
with zone categories that were proposed in prior lit-
erature. We also present results on coherence pre-
diction: our model can distinguish the introduction
section of conference papers from its perturbed ver-
sions with over 70% accuracy. Further, our model
is able to identify conference from workshop papers
with good accuracies, given that we can expect these
articles to vary in purpose.

2 Evidence for syntactic coherence

We first present a pilot study that confirms that ad-
jacent sentences in discourse exhibit stable patterns
of syntactic co-occurrence. This study validates our
second assumption relating the syntax of adjacent
sentences. Later in Section 6, we examine syntac-
tic patterns in individual sentences (assumption 1)
using a corpus of academic articles where sentences
were manually annotated with communicative goals.

Prior work has reported that certain grammatical
productions are repeated in adjacent sentences more
often than would be expected by chance (Reitter et
al., 2006; Cheung and Penn, 2010). We analyze all
co-occurrence patterns rather than just repetitions.

We use the gold standard parse trees from the
Penn Treebank (Marcus et al., 1994). Our unit of
analysis is a pair of adjacent sentences (S1, S2) and
we choose to use Section 0 of the corpus which has
99 documents and 1727 sentence pairs. We enumer-
ate all productions that appear in the syntactic parse
of any sentence and exclude those that appear less
than 25 times, resulting in a list of 197 unique pro-
ductions. Then all ordered pairs2 (p1, p2) of pro-
ductions are formed. For each pair, we compute

2(p1, p2) and (p2, p1) are considered as different pairs.
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p1, p2 Sentence 1 Sentence 2
NP→ NP NP-ADV The two concerns said they entered into a definitive Also on the takeover front, Jaguar’s ADRs rose
QP→ CD CD merger agreement under which Ratners will begin a tender 1/4 to 13 7/8 on turnover of [4.4 million]QP.

offer for all of Weisfield’s common shares for [$57.50 each]NP.
VP→ VB VP “The refund pool may not [be held hostage through another” [Commonwealth Edison]NP-SBJ said it is already
NP-SBJ→ NNP NNP round of appeals]VP,” Judge Curry said. appealing the underlying commission order and

is considering appealing Judge Curry’s order.
NP-LOC→ NNP “It has to be considered as an additional risk for the investor,” [“Cray Computer will be a concept”
S-TPC-1→ NP-SBJ VP said Gary P. Smaby of Smaby Group Inc., [Minneapolis]NP-LOC. “stock,”]S-TPC-1 he said.

Table 2: Example sentences for preferred production sequences. The span of the LHS of the corresponding production
is indicated by [] braces.

the following: c(p1p2) = number of sentence pairs
where p1 ∈ S1 and p2 ∈ S2; c(p1¬p2) = num-
ber of pairs where p1 ∈ S1 and p2 6∈ S2; c(¬p1p2)
and c(¬p1¬p2) are computed similarly. Then we
perform a chi-square test to understand if the ob-
served count c(p1p2) is significantly (95% confi-
dence level) greater or lesser than the expected value
if occurrences of p1 and p2 were independent.

Of the 38,809 production pairs, we found that
1,168 pairs occurred in consecutive sentences sig-
nificantly more often than chance and 172 appeared
significantly fewer times than expected. In Table 2
we list, grouped in three simple categories, the 25
pairs of the first kind with most significant p-values.

Some of the preferred pairs are indeed repetitions
as pointed out by prior work. But they form only a
small fraction (5%) of the total preferred production
pairs indicating that there are several other classes
of syntactic regularities beyond priming. Some of
these other sequences can be explained by the fact
that these articles come from the finance domain:
they involve productions containing numbers and
quantities. An example for this type is shown in Ta-
ble 2. Finally, there is also a class that is not repe-
titions or readily observed as domain-specific. The
most frequent one reflects a pattern where the first
sentence introduces a subject and predicate and the
subject in the second sentence is pronominalized.
Examples for two other patterns are given in Table
2. For the sequence (VP → VB VP | NP-SBJ → NNP

NNP), a bare verb is present in S1 and is often asso-
ciated with modals. In the corpus, these statements
often present hypothesis or speculation. The follow-
ing sentence S2 has an entity, a person or organiza-
tion, giving an explanation or opinion on the state-
ment. This pattern roughly correponds to a SPECU-
LATE followed by ENDORSE sequence of intentions.

p1 p2 c(p1p2)
— Repetition —

VP→ VBD SBAR VP→ VBD SBAR 83
QP→ $ CD CD QP→ $ CD CD 18
NP→ $ CD -NONE- NP→ $ CD -NONE- 16
NP→ QP -NONE- NP→ QP -NONE- 15
NP-ADV→ DT NN NP-ADV→ DT NN 10
NP→ NP NP-ADV NP→ NP NP-ADV 7

— Quantities/Amounts —
NP→ QP -NONE- QP→ $ CD CD 16
QP→ $ CD CD NP→ QP -NONE- 15
NP→ NP NP-ADV NP→ QP -NONE- 11
NP-ADV→ DT NN NP→ QP -NONE- 11
NP→ NP NP-ADV NP-ADV→ DT NN 9
NP→ $ CD -NONE- NP-ADV→ DT NN 8
NP-ADV→ DT NN NP→ $ CD -NONE- 8
NP-ADV→ DT NN NP→ NP NP-ADV 8
NP→ NP NP-ADV QP→ CD CD 6

— Other —
S→ NP-SBJ VP NP-SBJ→ PRP 290
VP→ VBD SBAR PP-TMP→ IN NP 79
S→ NP-SBJ-1 VP VP→ VBD SBAR 43
VP→ VBD NP VP→ VBD VP 31
VP→ VB VP NP-SBJ→ NNP NNP 27
NP-SBJ-1→ NNP NNP VP→ VBD NP 13
VP→ VBZ NP S→ PP-TMP , NP-SBJ VP . 8
NP-SBJ→ JJ NNS VP→ VBP NP 8
NP-PRD→ NP PP NP-PRD→ NP SBAR 7
NP-LOC→ NNP S-TPC-1→ NP-SBJ VP 6

Table 3: Top patterns in productions from WSJ

Similarly, in all the six adjacent sentence pairs from
our corpus containing the items (NP-LOC → NNP | S-

TPC-1 → NP-SBJ VP), p1 introduces a location name,
and is often associated with the title of a person or
organization. The next sentence has a quote from
that person, where the quotation forms the topical-
ized clause in p2. Here the intentional structure is
INTRODUCE X / STATEMENT BY X.

In the remainder of the paper we formalize our
representation of syntax and the derived model of
coherence and test its efficacy in three domains.

3 Coherence models using syntax

We first describe the two representations of sentence
structure we adopted for our analysis.3 Next, we

3Our representations are similar to features used for rerank-
ing in parsing. Our first representation corresponds to “rules”
features (Charniak and Johnson, 2005; Collins and Koo, 2005),
and our second representation is related to “spines” (Carreras et
al., 2008) and edge annotation(Huang, 2008).
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present two coherence models: a local model which
captures the co-occurrence of structural features in
adjacent sentences and a global one which learns
from clusters of sentences with similar syntax.

3.1 Representing syntax
Our models rely exclusively on syntactic cues. We
derive representations from constituent parses of the
sentences, and terminals (words) are removed from
the parse tree before any processing is done. The
leaf nodes in our parse trees are part of speech tags.
Productions: In this representation we view each
sentence as the set of grammatical productions, LHS
→ RHS, which appear in the parse of the sen-
tence. As we already pointed out, the right-hand side
(RHS) contains only non-terminal nodes. This rep-
resentation is straightforward, however, some pro-
ductions can be rather specific with long right hand
sides. Another apparent drawback of this represen-
tation is that it contains sequence information only
about nodes that belong to the same constituent.
d-sequence: In this representation we aim to pre-
serve more sequence information about adjacent
constituents in the sentence. The simplest approach
would be to represent the sentence as the sequence
of part of speech (POS) tags but then we lose all
the abstraction provided by higher level nodes in
tree. Instead, we introduce a more general represen-
tation, d-sequence where the level of abstraction can
be controlled using a parameter d. The parse tree is
truncated to depth at most d, and the leaves of the
resulting tree listed left to right form the d-sequence
representation. For example, in Figure 1, the line
depicts the cutoff at depth 2.

Next the representation is further augmented; all
phrasal nodes in the d-sequence are annotated (con-
catenated) with the left-most leaf that they domi-
nate in the full non-lexicalized parse tree. This is
shown as suffixes on the S, NP and VP nodes in
the figure. Such annotation conveys richer informa-
tion about the structure of the subtree below nodes
in the d-sequence. For example, “the chairs”, “his
chairs”, “comfortable chairs” will be represented as
NPDT, NPPRP$ and NPJJ. In the resulting representa-
tions, sentences are viewed as sequences of syntactic
words (w1,w2...,wk), k ≤ p, where p is the length of
the full POS sequence and each wi is either POS tag
or a phrasal node+POS tag combination.

Figure 1: Example for d-sequence representation

In our example, at depth-2, the quotation sentence
gets the representation (w1=“ , w2=SDT , w3=, , w4=” ,
w5=NPNNP , w6=VPVBD , w7=.) where the actual quote
is omitted. Sentences that contain attributions are
likely to appear more similar to each other when
compared using this representation in contrast to
representations derived from word or POS sequence.
The depth-3 sequence is also indicated in the figure.

The main verb of a sentence is central to its struc-
ture, so the parameter d is always set to be greater
than that of the main verb and is tuned to optimize
performance for coherence prediction.

3.2 Implementing the model

We adapt two models of coherence to operate over
the two syntactic representations.

3.2.1 Local co-occurrence model
This model is a direct extension from our pilot

study. It allows us to test the assumption that coher-
ent discourse is characterized by syntactic regulari-
ties in adjacent sentences. We estimate the proba-
bilities of pairs of syntactic items from adjacent sen-
tences in the training data and use these probabilities
to compute the coherence of new texts.

The coherence of a text T containing n sentences
(S1...Sn) is computed as:

P (T ) =
n∏

i=2

|Si|∏
j=1

1

|Si−1|

|Si−1|∑
k=1

p(Sj
i |S

k
i−1)

where Sy
x indicates the yth item of Sx. Items

are either productions or syntactic word unigrams
depending on the representation. The conditional
probabilities are computed with smoothing:

1160



Cluster a Cluster b
ADJP → JJ PP | VP → VBZ ADJP VP → VB VP | VP → MD VP

[1] This method VP-[is ADJP-[capable of sequence-specific [1] Our results for the difference in reactivity VP-[can

detection of DNA with high accuracy]-ADJP]-VP . VP-[be linked to experimental observations]-VP]-VP .

[2] The same VP-[is ADJP-[true for synthetic polyamines [2] These phenomena taken together VP-[can VP-[be considered

such as polyallylamine]-ADJP]-VP . as the signature of the gelation process]-VP]-VP .

Table 4: Example syntactic similarity clusters. The top two descriptive productions for each cluster are also listed.

p(wj |wi) =
c(wi, wj) + δC
c(wi) + δC ∗ |V |

wherewi andwj are syntactic items and c(wi, wj) is
the number of sentences that contain the item wi im-
mediately followed by a sentence that contains wj .
|V | is the vocabulary size for syntactic items.

3.2.2 Global structure
Now we turn to a global coherence approach

that implements the assumption that sentences with
similar syntax have the same communicative goal
as well as captures the patterns in communicative
goals in the discourse. This approach uses a Hid-
den Markov Model (HMM) which has been a popu-
lar implementation for modeling coherence (Barzi-
lay and Lee, 2004; Fung and Ngai, 2006; Elsner
et al., 2007). The hidden states in our model de-
pict communicative goals by encoding a probability
distribution over syntactic items. This distribution
gives higher weight to syntactic items that are more
likely for that communicative goal. Transitions be-
tween states record the common patterns in inten-
tional structure for the domain.

In this syntax-HMM, states hk are created by
clustering the sentences from the documents in the
training set by syntactic similarity. For the pro-
ductions representation of syntax, the features for
clustering are the number of times a given produc-
tion appeared in the parse of the sentence. For the
d-sequence approach, the features are n-grams of
size one to four of syntactic words from the se-
quence. Clustering was done by optimizing for av-
erage cosine similarity and was implemented using
the CLUTO toolkit (Zhao et al., 2005). C clusters
are formed and taken as the states of the model. Ta-
ble 4 shows sentences from two clusters formed on
the abstracts of journal articles using the productions
representation. One of them, cluster (a), appears

to capture descriptive sentences and cluster (b) in-
volves mostly speculation type sentences.

The emission probabilities for each state are mod-
eled as a (syntactic) language model derived from
the sentences in it. For productions representa-
tion, this is the unigram distribution of produc-
tions from the sentences in hk. For d-sequences,
the distribution is computed for bigrams of syntac-
tic words. These language models use Lidstone
smoothing with constant δE . The probability for a
sentence Sl to be generated from state hk, pE(Sl|hk)
is computed using these syntactic language models.

The transition probability pM from a state hi to
state hj is computed as:

pM (hj |hi) =
d(hi, hj) + δM
d(hi) + δM ∗ C

where d(hi) is the number of documents whose sen-
tences appear in hi and d(hi, hj) is the number of
documents which have a sentence in hi which is im-
mediately followed by a sentence in hj . In addi-
tion to the C states, we add one initial hS and one
final hF state to capture document beginning and
end. Transitions from hS to any state hk records
how likely it is for hk to be the starting state for doc-
uments of that domain. δM is a smoothing constant.

The likelihood of a text with n sentences is given
by P (T ) =

∑
h1...hn

∏n
t=1 pM (ht|ht−1)pE(St|ht).

All model parameters—the number of clusters
C, smoothing constants δC , δE , δM and d for
d-sequences—are tuned to optimize how well the
model can distinguish coherent from incoherent ar-
ticles. We describe these settings in Section 5.1.

4 Content and entity grid models

We compare the syntax model with content model
and entity grid methods. These approaches are the
most popular ones from prior work and also allow
us to test the complementary nature of syntax with
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lexical statistics and entity structure. This section
explains how we implemented these approaches.

Content models introduced by Barzilay and Lee
(2004) and Fung and Ngai (2006) use lexically
driven HMMs to capture coherence. The hidden
states represent the topics of the domain and en-
code a probability distribution over words. Transi-
tions between states record the probable succession
of topics. We built a content model using our HMM
implementation. Clusters are created using word bi-
gram features after replacing numbers and proper
names with tags NUM and PROP. The emissions are
given by a bigram language model on words from
the clustered sentences. Barzilay and Lee (2004)
also employ an iterative clustering procedure before
finalizing the states of the HMM but our method
only uses one-step clustering. Despite the differ-
ence, the content model accuracies for our imple-
mentation are quite close to that from the original.

For the entity grid model, we follow the gen-
erative approach proposed by Lapata and Barzilay
(2005). A text is converted into a matrix, where rows
correspond to sentences, in the order in which they
appear in the article. Columns are created one for
each entity appearing in the text. Each cell (i,j) is
filled with the grammatical role ri,j of the entity j
in sentence i. We computed the entity grids using
the Brown Coherence Toolkit4. The probability of
the text (T ) is defined using the likely sequence of
grammatical role transitions.

P (T ) =
m∏

j=1

n∏
i=1

p(ri,j |ri−1,j ...ri−h,j)

for m entities and n sentences. Parameter h controls
the history size for transitions and is tuned during
development. When h = 1, for example, only the
grammatical role for the entity in the previous sen-
tence is considered and earlier roles are ignored.

5 Evaluating syntactic coherence

We follow the common approach from prior work
and use pairs of articles, where one has the original
document order and the other is a random permuta-
tion of the sentences from the same document. Since
the original article is always more coherent than a
random permutation, a model can be evaluated using

4http://www.cs.brown.edu/~melsner/manual.html

the accuracy with which it can identify the original
article in the pair, i.e. it assigns higher probability
to the original article. This setting is not ideal but
has become the de facto standard for evaluation of
coherence models (Barzilay and Lee, 2004; Elsner
et al., 2007; Barzilay and Lapata, 2008; Karamanis
et al., 2009; Lin et al., 2011; Elsner and Charniak,
2011). It is however based on a reasonable assump-
tion as recent work (Lin et al., 2011) shows that peo-
ple identify the original article as more coherent than
its permutations with over 90% accuracy and asses-
sors also have high agreement. Later, we present
an experiment distinguishing conference from work-
shop articles as a more realistic evaluation.

We use two corpora that are widely employed for
coherence prediction (Barzilay and Lee, 2004; El-
sner et al., 2007; Barzilay and Lapata, 2008; Lin et
al., 2011). One contains reports on airplane acci-
dents from the National Transportation Safety Board
and the other has reports about earthquakes from the
Associated Press. These articles are about 10 sen-
tences long. These corpora were chosen since within
each dataset, the articles have the same intentional
structure. Further, these corpora are also standard
ones used in prior work on lexical, entity and dis-
course relation based coherence models. Later in
Section 6, we show that the models perform well on
the academic genre and longer articles too.

For each of the two corpora, we have 100 arti-
cles for training and 100 (accidents) and 99 (earth-
quakes) for testing. A maximum of 20 random per-
mutations were generated for each test article to cre-
ate the pairwise data (total of 1986 test pairs for the
accident corpus and 1956 for earthquakes).5 The
baseline accuracy for random prediction is 50%.
The articles were parsed using the Stanford parser
(Klein and Manning, 2003).

5.1 Accuracy of the syntax model

For each model, the relevant parameters were tuned
using 10-fold cross validation on the training data.
In each fold, 90 documents were used for training
and evaluation was done on permutations from the
remaining articles. After tuning, the final model was
trained on all 100 articles in the training set.

5We downloaded the permutations from http://people.

csail.mit.edu/regina/coherence/CLsubmission/
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Table 5 shows the results on the test set. The
best number of clusters and depth for d-sequences
are also indicated. Overall, the syntax models work
quite well, with accuracies at least 15% or more ab-
solute improvement over the baseline.

In the local co-occurrence approach, both pro-
ductions and d-sequences provide 72% accuracy for
the accidents corpus. For the earthquake corpus,
the accuracies are lower and the d-sequence method
works better. The best depth setting for d-sequence
is rather small: depth of main verb (MVP) + 2 (or 1),
and indicates that a fairly abstract level of nodes is
preferred for the patterns. For comparison, we also
provide results using just the POS tags in the model
and this is worse than the d-sequence approach.

The global HMM model is better than the local
model for each representation type giving 2 to 38%
better accuracies. Here we see a different trend for
the d-sequence representation, with better results for
greater depths. At such depths (8 and 9) below the
main verb, the nodes are mostly POS tags.

Overall both productions and d-sequence work
competitively and give the best accuracies when im-
plemented with the global approach.

5.2 Comparison with other approaches
For our implementations of the content and entity
grid models, the best accuracies are 71% on the ac-
cidents corpus and 85% on the earthquakes one, sim-
ilar to the syntactic models.

Ideally, we would like to combine models but we
do not have separate training data. So we perform
the following classification experiment which com-
bines the predictions made by different models on
the test set. Each test pair (article and permutation)
forms one example and is given a class value of 0 or
1 depending on whether the first article in the pair
is the original one or the second one. The example
is represented as an n-dimensional vector, where n
is the number of models we wish to combine. For
instance, to combine content models and entity grid,
two features are created: one of these records the dif-
ference in log probabilities for the two articles from
the content model, the other feature indicates the dif-
ference in probabilities from the entity grid.

A logistic regression classifier is trained to pre-
dict the class using these features. The test pairs are
created such that an equal number of examples have

Model Accidents Earthquake
Parameter Acc Parameter Acc

A. Local co-occurrence
Prodns 72.8 55.0
d-seq dep. MVP+2 71.8 dep. MVP+1 65.1
POS 61.3 42.6

B. HMM-syntax
Prodns clus. 37 74.6 clus. 5 93.8
d-seq dep. MVP+8 82.2 dep. MVP+9 86.5

clus. 8 clus. 45

C. Other approaches
Egrid history 1 67.6 history 1 82.2
Content clus. 48 71.4 clus. 23 84.5

Table 5: Accuracies on accident and earthquake corpora

Model Accid. Earthq.
Content + Egrid 76.8 90.7
Content + HMM-prodn 74.2 95.3
Content + HMM-d-seq 82.1 90.3
Egrid + HMM-prodn 79.6 93.9
Egrid + HMM-d-seq 84.2 91.1
Egrid + Content + HMM-prodn 79.5 95.0
Egrid + Content + HMM-d-seq 84.1 92.3
Egrid + Content + HMM-prodn 83.6 95.7
+ HMM-d-seq

Table 6: Accuracies for combined approaches

class 0 and 1, so the baseline accuracy is 50%. We
run this experiment using 10-fold cross validation on
the test set after first obtaining the log probabilities
from individual models. In each fold, the training is
done using the pairs from 90 articles and tested on
permutations from the remaining 10 articles. These
accuracies are reported in Table 6. When the accu-
racy of a combination is better than that using any of
its smaller subsets, the value is bolded.

We find that syntax supplements both content and
entity grid methods. While on the airplane corpus
syntax only combines well with the entity grid, on
the earthquake corpus, both entity and content ap-
proaches give better accuracies when combined with
syntax. However, adding all three approaches does
not outperform combinations of any two of them.
This result can be due to the simple approach that
we tested for combination. In prior work, content
and entity grid methods have been combined gen-
eratively (Elsner et al., 2007) and using discrimina-
tive training with different objectives (Soricut and
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Marcu, 2006). Such approaches might bring out
the complementary strengths of the different aspects
better and we leave such analysis for future work.

6 Predictions on academic articles

The distinctive intentional structure of academic ar-
ticles has motivated several proposals to define and
annotate the communicative purpose (argumentative
zone) of each sentence (Swales, 1990; Teufel et al.,
1999; Liakata et al., 2010). Supervised classifiers
were also built to identify these zones (Teufel and
Moens, 2000; Guo et al., 2011). So we expect that
these articles form a good testbed for our models. In
the remainder of the paper, we examine how unsu-
pervised patterns discovered by our approach relate
to zones and how well our models predict coherence
for articles from this genre.

We employ two corpora of scientific articles.
ART Corpus: contains a set of 225 Chemistry jour-
nal articles that were manually annotated for inten-
tional structure (Liakata and Soldatova, 2008). Each
sentence was assigned one of 11 zone labels: Result,
Conclusion, Objective, Method, Goal, Background,
Observation, Experiment, Motivation, Model, Hy-
pothesis. For our study, we use the annotation of
the introduction and the abstract sections. We divide
the data into training, development and test sets. For
abstracts, we have 75, 50 and 100 for these sets re-
spectively. For introductions, this split is 75, 31, 82.6

ACL Anthology Network (AAN) Corpus: Radev
et al. (2009) provides the full text of publications
from ACL venues. These articles do not have any
zone annotations. The AAN corpus is produced
from OCR analysis and no section marking is avail-
able. To recreate these, we use the Parscit tagger7

(Councill et al., 2008). We use articles from years
1999 to 2011. For training, we randomly choose 70
articles from ACL and NAACL main conferences.
Similarly, we obtain a development corpus of 36
ACL-NAACL articles. We create two test sets: one
has 500 ACL-NAACL conference articles and an-
other has 500 articles from ACL-sponsored work-
shops. We only choose articles in which all three
sections—abstract, introduction and related work—

6Some articles did not have labelled ‘introduction’ sections
resulting in fewer examples for this setup.

7http://aye.comp.nus.edu.sg/parsCit/

could be successfully identified using Parscit.8

This data was sentence-segmented using MxTer-
minator (Reynar and Ratnaparkhi, 1997) and parsed
with the Stanford Parser (Klein and Manning, 2003).

For each corpus and each section, we train all our
syntactic models: the two local coherence models
using the production and d-sequence representations
and the HMM models with the two representations.
These models are tuned on the respective develop-
ment data, on the task of differentiating the original
from a permuted section. For this purpose, we cre-
ated a maximum of 30 permutations per article.

6.1 Comparison with ART Corpus zones

We perform this analysis using the ART corpus. The
zone annotations present in this corpus allow us to
directly test our first assumption in this work, that
sentences with similar syntax have the same com-
municative goal.

For this analysis, we use the the HMM-prod
model for abstracts and the HMM-d-seq model for
introductions. These models were chosen because
they gave the best performance on the ART corpus
development sets.9 We examine the clusters cre-
ated by these models on the training data and check
whether there are clusters which strongly involve
sentences from some particular annotated zone.

For each possible pair of cluster and zone (Ci,
Zj), we compute c(Ci, Zj): the number of sentences
in Ci that are annotated as zone Zj . Then we use a
chi-square test to identify pairs for which c(Ci, Zj)
is significantly greater than expected (there is a “pos-
itive” association between Ci and Zj) and pairs
where c(Ci, Zj) is significantly less than chance (Ci

is not associated with Zj). A 95% confidence level
was used to determine significance.

The HMM-prod model for abstracts has 9 clusters
(named Clus0 to 8) and the HMM-d-seq model for
introductions has 6 clusters (Clus0 to 5). The pair-
ings of these clusters with zones which turned out to
be significant are reported in Table 7. We also re-
port for each positively associated cluster-zone pair,
the following numbers: matches c(Ci, Zj), preci-
sion c(Ci, Zj)/|Ci| and recall c(Ci, Zj)/|Zj |.

8We also exclude introduction and related work sections
longer than 50 sentences and those shorter than 4 sentences
since they often have inaccurate section boundaries.

9Their test accuracies are reported in the next section.
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Abstracts (HMM-prod 9 clusters)
Positive associations matches prec. recall
Clus5 - Model 7 17.1 43.8
Clus7 - Objective 27 27.6 32.9
Clus7 - Goal 16 16.3 55.2
Clus0 - Conclusion 15 50.0 12.1
Clus6 - Conclusion 27 51.9 21.8
Not associated: Clus7 - Conclusion,
Clus8 - Conclusion

Introductions (HMM-d-seq 6 clusters)
Positive associations matches prec. recall
Clus2-Background 161 64.9 14.2
Clus3-Objective 37 7.9 38.5
Clus4-Goal 29 9.8 32.6
Clus4-Hypothesis 12 4.1 52.2
Clus5-Motivation 61 12.9 37.4
Not associated: Clus1 - Motivation, Clus2 - Goal,
Clus4 - Background, Clus 5 - Model

Table 7: Cluster-Zone mappings on the ART Corpus

The presence of significant associations validate
our intuitions that syntax provides clues about com-
municative goals. Some clusters overwhelmingly
contain the same zone, indicated by high precision,
for example 64% of sentences in Clus2 from intro-
duction sections are background sentences. Other
clusters have high recall of a zone, 55% of all goal
sentences from the abstracts training data is captured
by Clus7. It is particularly interesting to see that
Clus7 of abstracts captures both objective and goal
zone sentences and for introductions, Clus4 is a mix
of hypothesis and goal sentences which intuitively
are closely related categories.

6.2 Original versus permuted sections
We also explore the accuracy of the syntax models
for predicting coherence of articles from the test set
of ART corpus and the 500 test articles from ACL-
NAACL conferences. We use the same experimen-
tal setup as before and create pairs of original and
permuted versions of the test articles. We created a
maximum of 20 permutations for each article. The
baseline accuracy is 50% as before.

For the ART corpus, we also built an oracle model
of annotated zones. We train a first order Markov
Chain to record the sequence of zones in the training
articles. For testing, we assume that the oracle zone
is provided for each sentence and use the model to
predict the likelihood of the zone sequence. Results
from this model represent an upper bound because

an accurate hypothesis of the communicative goal is
available for each sentence.

The accuracies are presented in Table 8. Overall,
the HMM-d-seq model provides the best accuracies.
The highest results are obtained for ACL introduc-
tion sections (74%). These results are lower than
that obtained on the earthquake/accident corpus but
the task here is much harder: the articles are longer
and the ACL corpus also has OCR errors which af-
fect sentence segmentation and parsing accuracies.
When the oracle zones are known, the accuracies are
much higher on the ART corpus indicating that the
intentional structure of academic articles is very pre-
dictive of their coherence.

6.3 Conference versus workshop papers
Finally, we test whether the syntax-based model can
distinguish the structure of conference from work-
shop articles. Conferences publish more complete
and tested work and workshops often present pre-
liminary studies. Workshops are also venues to dis-
cuss a focused and specialized topic. So the way
information is conveyed in the abstracts and intro-
ductions would vary in these articles.

We perform this analysis on the ACL corpus and
no permutations are used, only the original text of
the 500 articles each in the conference and work-
shop test sets. While permutation examples provide
cheap training/test data, they have a few unrealistic
properties. For example, both original and permuted
articles have the same length. Further some permu-
tations could result in an outstandingly incoherent
sample which is easily distinguished from the origi-
nal articles. So we use the conference versus work-
shop task as another evaluation of our model.

We designed a classification experiment for this
task which combines features from the different syn-
tax models that were trained on the ACL conference
training set. We include four features indicating the
perplexity of an article under each model (Local-
prod, Local-d-seq, HMM-prod, HMM-d-seq). We
use perplexity rather than probability because the
length of the articles vary widely in contrast to the
previous permutation-based tests, where both per-
mutation and original article have the same length.
We compute perplexity as P (T )−1/n, where n is
the number of words in the article. We also obtain
the most likely state sequence for the article under
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Data Section Test pairs Local-prod Local-d-seq HMM-prod HMM-d-seq Oracle zones

ART Corpus Abstract 1633 57.0 52.9 64.1 55.0 80.8
Intro 1640 44.5 54.6 58.1 64.6 94.0

ACL Conference
Abstract 8815 44.0 47.2 58.2 63.7
Intro 9966 54.5 53.0 64.4 74.0
Rel. wk. 10,000 54.6 54.4 57.3 67.3

Table 8: Accuracy in differentiating permutation from original sections on ACL and ART test sets.

HMM-prod and HMM-d-seq models using Viterbi
decoding. Then the proportion of sentences from
each state of the two models are added as features.

We also add some fine-grained features from the
local model. We represent sentences in the train-
ing set as either productions or d-sequence items and
compute pairs of associated items (xi, xj) from ad-
jacent sentences using the same chi-square test as
in our pilot study. The most significant (lowest p-
values) 30 pairs (each for production and d-seq) are
taken as features.10 For a test article, we compute
features that represent how often each pair is present
in the article such that xi is in Sm and xj is in Sm+1.

We perform this experiment for each section and
there are about 90 to 140 features for the different
sections. We cast the problem as a binary classifi-
cation task: conference articles belong to one class
and workshop to the other. Each class has 500 ar-
ticles and so the baseline random accuracy is 50%.
We perform 10-fold cross validation using logistic
regression. Our results were 59.3% accuracy for dis-
tinguishing abstracts of conference verus workshop,
50.3% for introductions and 55.4% for related work.
For abstracts and related work, these accuracies are
significantly better than baseline (95% confidence
level from a two-sided paired t-test comparing the
accuracies from the 10 folds). It is possible that in-
troductions in either case, talk in general about the
field and importance of the problem addressed and
hence have similar structure.

Our accuracies are not as high as on permutations
examples because the task is clearly harder. It may
also be the case that the prediction is more difficult
for certain papers than for others. So we also ana-
lyze our results by the confidence provided by the
classifier for the predicted class. We consider only
the examples predicted above a certain confidence
level and compute the accuracy on these predictions.

10A cutoff is applied such that the pair was seen at least 25
times in the training data.

Conf. Abstract Intro Rel wk
>= 0.5 59.3 (100.0) 50.3 (100.0) 55.4 (100.0)
>= 0.6 63.8 (67.2) 50.8 (71.1) 58.6 (75.9)
>= 0.7 67.2 (32.0) 54.4 (38.6) 63.3 (52.8)
>= 0.8 74.0 (10.0) 51.6 (22.0) 63.0 (25.7)
>= 0.9 91.7 (2.0) 30.6 (5.0) 68.1 (7.2)

Table 9: Accuracy (% examples) above each confidence
level for the conference versus workshop task.

These results are shown in Table 9. The proportion
of examples under each setting is also indicated.

When only examples above 0.6 confidence are ex-
amined, the classifier has a higher accuracy of 63.8%
for abstracts and covers close to 70% of the exam-
ples. Similarly, when a cutoff of 0.7 is applied to the
confidence for predicting related work sections, we
achieve 63.3% accuracy for 53% of examples. So
we can consider that 30 to 47% of the examples in
the two sections respectively are harder to tell apart.
Interestingly however even high confidence predic-
tions on introductions remain incorrect.

These results show that our model can success-
fully distinguish the structure of articles beyond just
clearly incoherent permutation examples.

7 Conclusion
Our work is the first to develop an unsupervised
model for intentional structure and to show that
it has good accuracy for coherence prediction and
also complements entity and lexical structure of dis-
course. This result raises interesting questions about
how patterns captured by these different coherence
metrics vary and how they can be combined usefully
for predicting coherence. We plan to explore these
ideas in future work. We also want to analyze genre
differences to understand if the strength of these co-
herence dimensions varies with genre.
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Abstract

Approximate search algorithms, such as cube
pruning in syntactic machine translation, rely
on the language model to estimate probabili-
ties of sentence fragments. We contribute two
changes that trade between accuracy of these
estimates and memory, holding sentence-level
scores constant. Common practice uses lower-
order entries in an N -gram model to score
the first few words of a fragment; this vio-
lates assumptions made by common smooth-
ing strategies, including Kneser-Ney. Instead,
we use a unigram model to score the first
word, a bigram for the second, etc. This im-
proves search at the expense of memory. Con-
versely, we show how to save memory by col-
lapsing probability and backoff into a single
value without changing sentence-level scores,
at the expense of less accurate estimates for
sentence fragments. These changes can be
stacked, achieving better estimates with un-
changed memory usage. In order to interpret
changes in search accuracy, we adjust the pop
limit so that accuracy is unchanged and re-
port the change in CPU time. In a German-
English Moses system with target-side syntax,
improved estimates yielded a 63% reduction
in CPU time; for a Hiero-style version, the
reduction is 21%. The compressed language
model uses 26% less RAM while equivalent
search quality takes 27% more CPU. Source
code is released as part of KenLM.

1 Introduction

Language model storage is typically evaluated in
terms of speed, space, and accuracy. We introduce

a fourth dimension, rest cost quality, that captures
how well the model scores sentence fragments for
purposes of approximate search. Rest cost quality is
distinct from accuracy in the sense that the score of
a complete sentence is held constant. We first show
how to improve rest cost quality over standard prac-
tice by using additional space. Then, conversely, we
show how to compress the language model by mak-
ing a pessimistic rest cost assumption1.

Language models are designed to assign probabil-
ity to sentences. However, approximate search algo-
rithms use estimates for sentence fragments. If the
language model has order N (an N -gram model),
then the first N − 1 words of the fragment have in-
complete context and the last N − 1 words have not
been completely used as context. Our baseline is
common practice (Koehn et al., 2007; Dyer et al.,
2010; Li et al., 2009) that uses lower-order entries
from the language model for the first words in the
fragment and no rest cost adjustment for the last few
words. Formally, the baseline estimate for sentence
fragment wk

1 is(
N−1∏
n=1

pN (wn|wn−1
1 )

)(
k∏

n=N

pN (wn|wn−1
n−N+1)

)

where each wn is a word and pN is an N -gram lan-
guage model.

The problem with the baseline estimate lies in
lower order entries pN (wn|wn−1

1 ). Commonly used
Kneser-Ney (Kneser and Ney, 1995) smoothing,

1Here, the term rest cost means an adjustment to the score of
a sentence fragment but not to whole sentences. The adjustment
may be good or bad for approximate search.
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including the modified version (Chen and Good-
man, 1998), assumes that a lower-order entry will
only be used because a longer match could not
be found2. Formally, these entries actually eval-
uate pN (wn|wn−1

1 , did not find wn
0 ). For purposes

of scoring sentence fragments, additional context is
simply indeterminate, and the assumption may not
hold.

As an example, we built 5-gram and unigram lan-
guage models with Kneser-Ney smoothing on the
same data. Sentence fragments frequently begin
with “the”. Using a lower-order entry from the 5-
gram model, log10 p5(the) = −2.49417. The uni-
gram model does not condition on backing off, as-
signing log10 p1(the) = −1.28504. Intuitively, the
5-gram model is surprised, by more than an order of
magnitude, to see “the” without matching words that
precede it.

To remedy the situation, we train N language
models on the same data. Each model pn is an n-
gram model (it has order n). We then use pn to
score the nth word of a sentence fragment. Thus,
a unigram model scores the first word of a sentence
fragment, a bigram model scores the second word,
and so on until either the n-gram is not present in
the model or the first N−1 words have been scored.
Storing probabilities from these models requires one
additional value per n-gram in the model, except for
N -grams where this probability is already stored.

Conversely, we can lower memory consumption
relative to the baseline at the expense of poorer rest
costs. Baseline models store two entries per n-gram:
probability and backoff. We will show that the prob-
ability and backoff values in a language model can
be collapsed into a single value for each n-gram
without changing sentence probability. This trans-
formation saves memory by halving the number of
values stored per entry, but it makes rest cost esti-
mates worse. Specifically, the rest cost pessimisti-
cally assumes that the model will back off to uni-
grams immediately following the sentence fragment.

The two modifications can be used independently
or simultaneously. To measure the impact of their
different rest costs, we experiment with cube prun-
ing (Chiang, 2007) in syntactic machine transla-

2Other smoothing techniques, including Witten-Bell (Witten
and Bell, 1991), do not make this assumption.

tion. Cube pruning’s goal is to find high-scoring
sentence fragments for the root non-terminal in the
parse tree. It does so by going bottom-up in the parse
tree, searching for high-scoring sentence fragments
for each non-terminal. Within each non-terminal, it
generates a fixed number of high-scoring sentence
fragments; this is known as the pop limit. Increasing
the pop limit therefore makes search more accurate
but costs more time. By moderating the pop limit,
improved accuracy can be interpreted as a reduction
in CPU time and vice-versa.

2 Related Work

Vilar and Ney (2011) study several modifications to
cube pruning and cube growing (Huang and Chiang,
2007). Most relevant is their use of a class-based
language model for the first of two decoding passes.
This first pass is cheaper because translation alter-
natives are likely to fall into the same class. Entries
are scored with the maximum probability over class
members (thereby making them no longer normal-
ized). Thus, paths that score highly in this first pass
may contain high-scoring paths under the lexicalized
language model, so the second pass more fully ex-
plores these options. The rest cost estimates we de-
scribe here could be applied in both passes, so our
work is largely orthogonal.

Zens and Ney (2008) present rest costs for phrase-
based translation. These rest costs are based on fac-
tors external to the sentence fragment, namely out-
put that the decoder may generate in the future. Our
rest costs examine words internal to the sentence
fragment, namely the first and last few words. We
also differ by focusing on syntactic translation.

A wide variety of work has been done on language
model compression. While data structure compres-
sion (Raj and Whittaker, 2003; Heafield, 2011) and
randomized data structures (Talbot and Osborne,
2007; Guthrie and Hepple, 2010) are useful, here
we are concerned solely with the values stored by
these data structures. Quantization (Whittaker and
Raj, 2001; Federico and Bertoldi, 2006) uses less
bits to store each numerical value at the expense
of model quality, including scores of full sentences,
and is compatible with our approach. In fact, the
lower-order probabilities might be quantized further
than normal since these are used solely for rest cost
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purposes. Our compression technique reduces stor-
age from two values, probability and backoff, to one
value, theoretically halving the bits per value (ex-
cept N -grams which all have backoff 1). This makes
the storage requirement for higher-quality modified
Kneser-Ney smoothing comparable to stupid back-
off (Brants et al., 2007). Whether to use one smooth-
ing technique or the other then becomes largely an
issue of training costs and quality after quantization.

3 Contribution

3.1 Better Rest Costs

As alluded to in the introduction, the first few words
of a sentence fragment are typically scored us-
ing lower-order entries from an N -gram language
model. However, Kneser-Ney smoothing (Kneser
and Ney, 1995) conditions lower-order probabilities
on backing off. Specifically, lower-order counts are
adjusted to represent the number of unique exten-
sions an n-gram has:

a(wn
1 ) =

{
|{w0 : c(wn

0 ) > 0}| if n < N

c(wn
1 ) if n = N

where c(wn
1 ) is the number of times wn

1 appears in
the training data3. This adjustment is also performed
for modified Kneser-Ney smoothing. The intuition
is based on the fact that the language model will
base its probability on the longest possible match. If
an N -gram was seen in the training data, the model
will match it fully and use the smoothed count. Oth-
erwise, the full N -gram was not seen in the train-
ing data and the model resorts to a shorter n-gram
match. Probability of this shorter match is based on
how often the n-gram is seen in different contexts.
Thus, these shorter n-gram probabilities are not rep-
resentative of cases where context is short simply
because additional context is unknown at the time of
scoring.

In some cases, we are able to determine that
the model will back off and therefore the lower-
order probability makes the appropriate assumption.
Specifically, if vwn

1 does not appear in the model for
any word v, then computing p(wn|vwn−1

1 ) will al-

3Counts are not modified for n-grams bound to the begin-
ning of sentence, namely those with w1 = <s>.

ways back off to wn−1
1 or fewer words4. This crite-

rion is the same as used to minimize the length of left
language model state (Li and Khudanpur, 2008) and
can be retrieved for each n-gram without using addi-
tional memory in common data structures (Heafield
et al., 2011).

Where it is unknown if the model will back off,
we use a language model of the same order to pro-
duce a rest cost. Specifically, there are N language
models, one of each order from 1 to N . The mod-
els are trained on the same corpus with the same
smoothing parameters to the extent that they apply.
We then compile these into one data structure where
each n-gram record has three values:

1. Probability pn from the n-gram language
model

2. Probability pN from the N -gram language
model

3. Backoff b from the N -gram language model

For N -grams, the two probabilities are the same and
backoff is always 1, so only one value is stored.
Without pruning, the n-gram model contains the
same n-grams as the N -gram model. With prun-
ing, the two sets may be different, so we query the
n-gram model in the normal way to score every n-
gram in the N -gram model. The idea is that pn is the
average conditional probability that will be encoun-
tered once additional context becomes known. We
also tried more complicated estimates by addition-
ally interpolating upper bound, lower bound, and pN

with weights trained on cube pruning logs; none of
these improved results in any meaningful way.

Formalizing the above, let wk
1 be a sentence frag-

ment. Choose the largest s so that vws
1 appears in

the model for some v; equivalently ws
1 is the left

state described in Li and Khudanpur (2008). The

4Usually, this happens because wn
1 does not appear, though

it can also happen that wn
1 appears but all vwn

1 were removed
by pruning or filtering.
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baseline estimate is

pb(w
k
1) =

(
s∏

n=1

pN (wn|wn−1
1 )

)
·(

N+1∏
n=s+1

pN (wn|wn−1
1 )

)
· (1)

(
k∏

n=N

pN (wn|wn−1
n−N+1)

)
while our improved estimate is

pr(w
k
1) =

(
s∏

n=1

pn(wn|wn−1
1 )

)
·(

N+1∏
n=s+1

pN (wn|wn−1
1 )

)
· (2)

(
k∏

n=N

pN (wn|wn−1
n−N+1)

)
The difference between these equations is that pn is
used for words in the left state i.e. 1 ≤ n ≤ s.
We have also abused notation by using pN to denote
both probabilities stored explicitly in the model and
the model’s backoff-smoothed probabilities when
not present. It is not necessary to store backoffs for
pn because s was chosen such that all queried n-
grams appear in the model.

This modification to the language model improves
rest costs (and therefore quality or CPU time) at the
expense of using more memory to store pn. In the
next section, we do the opposite: make rest costs
worse to reduce storage size.

3.2 Less Memory
Many language model smoothing strategies, includ-
ing modified Kneser-Ney smoothing, use the back-
off algorithm shown in Figure 1. Given an n-gram
wn

1 , the backoff algorithm bases probability on as
much context as possible. Equivalently, it finds
the minimum f so that wn

f is in the model then
uses p(wn|wn−1

f ) as a basis. Backoff penalties b
are charged because a longer match was not found,
forming the product

p(wn|wn−1
1 ) = p(wn|wn−1

f )

f−1∏
j=1

b(wn−1
j ) (3)

Notably, the backoff penalties {b(wn−1
j )}n−1

j=1 are in-
dependent of wn, though which backoff penalties are
charged depends on f and therefore wn.

backoff← 1
for f = 1→ n do

if wn
f is in the model then

return p(wn|wn−1
f ) · backoff

else
if wn−1

f is in the model then
backoff← backoff · b(wn−1

f )
end if

end if
end for

Figure 1: The baseline backoff algorithm to com-
pute p(wn|wn−1

1 ). It always terminates with a prob-
ability because even unknown words are treated as a
unigram.

for f = 1→ n do
if wn

f is in the model then
return q(wn|wn−1

f )
end if

end for

Figure 2: The run-time pessimistic backoff algo-
rithm to find q(wn|wn−1

1 ). It assumes that q has been
computed at model building time.

In order to save memory, we propose to account
for backoff in a different way, defining q

q(wn|wn−1
1 ) =

p(wn|wn−1
f )

∏n
j=f b(wn

j )∏n−1
j=f b(wn−1

j )

where again wn
f is the longest matching entry in the

model. The idea is that q is a term in the telescop-
ing series that scores a sentence fragment, shown
in equation (1) or (2). The numerator pessimisti-
cally charges all backoff penalties, as if the next
word wn+1 will only match a unigram. When wn+1

is scored, the denominator of q(wn+1|wn
1 ) cancels

out backoff terms that were wrongly charged. Once
these terms are canceled, all that is left is p, the cor-
rect backoff penalties, and terms on the edge of the
series.
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Proposition 1. The terms of q telescope. Formally,
let wk

1 be a sentence fragment and f take the mini-
mum value so that wk

f is in the model. Then,

q(wk
1) = p(wk

1)
k∏

j=f

b(wk
j )

Proof. By induction on k. When k = 1, f = 1 since
the word w1 is either in the vocabulary or mapped to
<unk> and treated like a unigram.

q(w1) =
p(w1)

∏1
j=1 b(w1

j )∏0
j=1 b(w0

j )
= p(w1)b(w1)

For k > 1,

q(wk
1) = q(wk−1

1 )q(wk|wk−1
1 )

=
q(wk−1

1 )p(wk|wk−1
f )

∏k
j=f b(wk

j )∏k−1
j=f b(wk−1

j )

where f has the lowest value such that wk
f is in the

model. Applying the inductive hypothesis to expand
q(wk−1

1 ), we obtain

p(wk−1
1 )

(∏k−1
j=e b(wk−1

j )
)

p(wk|wk−1
f )

∏k
j=f b(wk

j )∏k−1
j=f b(wk−1

j )

where e has the lowest value such that wk−1
e is in the

model. The backoff terms cancel to yield

p(wk−1
1 )

f−1∏
j=e

b(wk−1
j )

 p(wk|wk−1
f )

k∏
j=f

b(wk
j )

By construction of e, wk−1
j is not in the model for all

j < e. Hence, b(wk−1
j ) = 1 implicitly for all j < e.

Multiplying by 1,

p(wk−1
1 )

f−1∏
j=1

b(wk−1
j )

 p(wk|wk−1
f )

k∏
j=f

b(wk
j )

Recognizing the backoff equation (3) to simplify,

p(wk−1
1 )p(wk|wk−1

1 )

k∏
j=f

b(wk
j )

Finally, the conditional probability folds as desired

q(wk
1) = p(wk

1)
k∏

j=f

b(wk
j )

We note that entries ending in </s> have back-
off 1, so it follows from Proposition 1 that sentence-
level scores are unchanged.

q(<s> wk
1 </s>) = p(<s> wk

1 </s>)

Proposition 1 characterizes q as a pessimistic rest
cost on sentence fragments that scores sentences in
exactly the same way as the baseline using p and
b. To save memory, we simply store q in lieu of
p and b. Compared with the baseline, this halves
number of values from two to one float per n-gram,
except N -grams that already have one value. The
impact of this reduction is substantial, as seen in
Section 4.3. Run-time scoring is also simplified
as shown in Figure 2 since the language model lo-
cates the longest match wn

f then returns the value
q(wn|wn−1

1 ) = q(wn|wn−1
f ) without any calcula-

tion or additional lookup. Baseline language mod-
els either retrieve backoffs values with additional
lookups (Stolcke, 2002; Federico et al., 2008) or
modify the decoder to annotate sentence fragments
with backoff information (Heafield, 2011); we have
effectively moved this step to preprocessing. The
disadvantage is that q is not a proper probability and
it produces worse rest costs than does the baseline.

Language models are actually applied at two
points in syntactic machine translation: scoring lexi-
cal items in grammar rules and during cube pruning.
Grammar scoring is an offline and embarrassingly
parallel process where memory is not as tight (since
the phrase table is streamed) and fewer queries
are made, so slow non-lossy compression and even
network-based sharding can be used. We there-
fore use an ordinary language model for grammar
scoring and only apply the compressed model dur-
ing cube pruning. Grammar scoring impacts gram-
mar pruning (by selecting only top-scoring grammar
rules) and the order in which rules are tried during
cube pruning.
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3.3 Combined Scheme

Our two language model modifications can be triv-
ially combined by using lower-order probabilities on
the left of a fragment and by charging all backoff
penalties on the right of a fragment. The net result is
a language model that uses the same memory as the
baseline but has better rest cost estimates.

4 Experiments

To measure the impact of different rest costs, we
use the Moses chart decoder (Koehn et al., 2007)
for the WMT 2011 German-English translation task
(Callison-Burch et al., 2011). Using the Moses
pipeline, we trained two syntactic German-English
systems, one with target-side syntax and the other
hierarchical with unlabeled grammar rules (Chiang,
2007). Grammar rules were extracted from Europarl
(Koehn, 2005) using the Collins parser (Collins,
1999) for syntax on the English side. The language
model interpolates, on the WMT 2010 test set, sep-
arate models built on Europarl, news commentary,
and the WMT news data for each year. Models were
built and interpolated using SRILM (Stolcke, 2002)
with modified Kneser-Ney smoothing (Kneser and
Ney, 1995; Chen and Goodman, 1998) and the de-
fault pruning settings. In all scenarios, the primary
language model has order 5. For lower-order rest
costs, we also built models with orders 1 through 4
then used the n-gram model to score n-grams in the
5-gram model. Feature weights were trained with
MERT (Och, 2003) on the baseline using a pop limit
of 1000 and 100-best output. Since final feature val-
ues are unchanged, we did not re-run MERT in each
condition. Measurements were collected by running
the decoder on the 3003-sentence test set.

4.1 Rest Costs as Prediction

Scoring the first few words of a sentence fragment
is a prediction task. The goal is to predict what
the probability will be when more context becomes
known. In order to measure performance on this
task, we ran the decoder on the hierarchical system
with a pop limit of 1000. Every time more context
became known, we logged5 the prediction error (es-
timated log probability minus updated log probabil-

5Logging was only enabled for this experiment.

Lower Baseline
n Mean Bias MSE Var Bias MSE Var
1 -3.21 .10 .84 .83 -.12 .87 .86
2 -2.27 .04 .18 .17 -.14 .23 .24
3 -1.80 .02 .07 .07 -.09 .10 .09
4 -1.29 .01 .04 .04 -.10 .09 .08

Table 1: Bias (mean error), mean squared error, and
variance (of the error) for the lower-order rest cost
and the baseline. Error is the estimated log prob-
ability minus the final probability. Statistics were
computed separately for the first word of a fragment
(n = 1), the second word (n = 2), etc. The lower-
order estimates are better across the board, reducing
error in cube pruning. All numbers are in log base
ten, as is standard for ARPA-format language mod-
els. Statistics were only collected for words with
incomplete context.

ity) for both lower-order rest costs and the baseline.
Table 1 shows the results.

Cube pruning uses relative scores, so bias mat-
ters less, though positive bias will favor rules with
more arity. Variance matters the most because lower
variance means cube pruning’s relative rankings are
more accurate. Our lower-order rest costs are bet-
ter across the board in terms of absolute bias, mean
squared error, and variance.

4.2 Pop Limit Trade-Offs

The cube pruning pop limit is a trade-off between
search accuracy and CPU time. Here, we mea-
sure how our rest costs improve (or degrade) that
trade-off. Search accuracy is measured by the aver-
age model score of single-best translations. Model
scores are scale-invariant and include a large con-
stant factor; higher is better. We also measure over-
all performance with uncased BLEU (Papineni et al.,
2002). CPU time is the sum of user and system time
used by Moses divided by the number of sentences
(3003). Timing includes time to load, though files
were forced into the disk cache in advance. Our test
machine has 64 GB of RAM and 32 cores. Results
are shown in Figures 3 and 4.

Lower-order rest costs perform better in both sys-
tems, reaching plateau model scores and BLEU with
less CPU time. The gain is much larger for tar-
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Baseline Lower Order Pessimistic Combined
Pop CPU Model BLEU CPU Model BLEU CPU Model BLEU CPU Model BLEU

2 3.29 -105.56 20.45 3.68 -105.44 20.79 3.74 -105.62 20.01 3.18 -105.49 20.43
10 5.21 -104.74 21.13 5.50 -104.72 21.26 5.43 -104.77 20.85 5.67 -104.75 21.10
50 23.30 -104.31 21.36 23.51 -104.24 21.38 23.68 -104.33 21.25 24.29 -104.22 21.34

500 54.61 -104.25 21.33 55.92 -104.15 21.38 54.23 -104.26 21.31 55.74 -104.15 21.40
700 64.08 -104.25 21.34 87.02 -104.14 21.42 68.74 -104.25 21.29 78.84 -104.15 21.41

(a) Numerical results for select pop limits.
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(b) Model and BLEU scores near the plateau.

Figure 3: Target-syntax performance. CPU time and model score are averaged over 3003 sentences.

get syntax, where a pop limit of 50 outperforms the
baseline with pop limit 700. CPU time per sen-
tence is reduced to 23.5 seconds from 64.0 seconds,
a 63.3% reduction. The combined setting, using the
same memory as the baseline, shows a similar 62.1%
reduction in CPU time. We attribute this differ-
ence to improved grammar rule scoring that impacts
pruning and sorting. In the target syntax model,
the grammar is not saturated (i.e. less pruning will
still improve scores) but we nonetheless prune for
tractability reasons. The lower-order rest costs are
particularly useful for grammar pruning because lex-
ical items are typically less than five words long (and
frequently only word).

The hierarchical grammar is nearly saturated with
respect to grammar pruning, so improvement there is
due mostly to better search. In the hierarchical sys-
tem, peak BLEU 22.34 is achieved under the lower-
order condition with pop limits 50 and 200, while

other scenarios are still climbing to the plateau. With
a pop limit of 1000, the baseline’s average model
score is -101.3867. Better average models scores
are obtained from the lower-order model with pop
limit 690 using 79% of baseline CPU, the combined
model with pop limit 900 using 97% CPU, and the
pessimistic model with pop limit 1350 using 127%
CPU.

Pessimistic compression does worsen search, re-
quiring 27% more CPU in the hierarchical system to
achieve the same quality. This is worthwhile to fit
large-scale language models in memory, especially
if the alternative is a remote language model.

4.3 Memory Usage

Our rest costs add a value (for lower-order prob-
abilities) or remove a value (pessimistic compres-
sion) for each n-gram except those of highest order
(n = N ). The combined condition adds one value

1175



Baseline Lower Order Pessimistic Combined
Pop CPU Model BLEU CPU Model BLEU CPU Model BLEU CPU Model BLEU

2 2.96 -101.85 21.19 2.44 -101.80 21.63 2.71 -101.90 20.85 3.05 -101.84 21.37
10 2.80 -101.60 21.90 2.42 -101.58 22.20 2.95 -101.63 21.74 2.69 -101.60 21.98
50 3.02 -101.47 22.18 3.11 -101.46 22.34 3.46 -101.48 22.08 2.67 -101.47 22.14

690 10.83 -101.39 22.28 11.45 -101.39 22.25 10.88 -101.40 22.25 11.19 -101.39 22.23
900 13.41 -101.39 22.27 14.00 -101.38 22.24 13.38 -101.39 22.25 14.09 -101.39 22.22

1000 14.50 -101.39 22.27 15.17 -101.38 22.25 15.09 -101.39 22.26 15.23 -101.39 22.23
1350 18.52 -101.38 22.27 19.16 -101.38 22.23 18.46 -101.39 22.25 18.61 -101.38 22.23
5000 59.67 -101.38 22.24 61.41 -101.38 22.22 59.76 -101.38 22.27 61.38 -101.38 22.22

(a) Numerical results for select pop limits.
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(b) Model and BLEU scores near the plateau.

Figure 4: Hierarchical system performance. All values are averaged over 3003 sentences.

and removes another, so it uses the same memory
as the baseline. The memory footprint of adding or
removing a value depends on the number of such n-
grams, the underlying data structure, and the extent
of quantization. Our test language model has 135
million n-grams for n < 5 and 56 million 5-grams.
Memory usage was measured for KenLM data struc-
tures (Heafield, 2011) and minimal perfect hashing
(Guthrie and Hepple, 2010). For minimal perfect
hashing, we assume the Compress, Hash and Dis-
place algorithm (Belazzougui et al., 2008) with 8-bit
signatures and 8-bit quantization. Table 2 shows the
results. Storage size of the smallest model is reduced
by 26%, bringing higher-quality smoothed models
in line with stupid backoff models that also store one
value per n-gram.

Structure Baseline Change %
Probing 4,072 517 13%
Trie 2,647 506 19%
8-bit quantized trie 1,236 140 11%
8-bit minimal perfect hash 540 140 26%

Table 2: Size in megabytes of our language model,
excluding operating system overhead. Change is the
cost of adding an additional value to store lower-
order probabilities. Equivalently, it is the savings
from pessimistic compression.
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5 Conclusion

Our techniques reach plateau-level BLEU scores
with less time or less memory. Efficiently stor-
ing lower-order probabilities and using them as rest
costs improves both cube pruning (21% CPU reduc-
tion in a hierarchical system) and model filtering
(net 63% CPU time reduction with target syntax) at
the expense of 13-26% more RAM for the language
model. This model filtering improvement is surpris-
ing both in the impact relative to changing the pop
limit and simplicity of implementation, since it can
be done offline. Compressing the language model to
halve the number of values per n-gram (except N -
grams) results in a 13-26% reduction in RAM with
26% over the smallest model, costing 27% more
CPU and leaving overall sentence scores unchanged.
This compression technique is likely to have more
general application outside of machine translation,
especially where only sentence-level scores are re-
quired. Source code is being released6 under the
LGPL as part of KenLM (Heafield, 2011).
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Abstract

Independence between sentences is an as-
sumption deeply entrenched in the models and
algorithms used for statistical machine trans-
lation (SMT), particularly in the popular dy-
namic programming beam search decoding al-
gorithm. This restriction is an obstacle to re-
search on more sophisticated discourse-level
models for SMT. We propose a stochastic lo-
cal search decoding method for phrase-based
SMT, which permits free document-wide de-
pendencies in the models. We explore the sta-
bility and the search parameters of this method
and demonstrate that it can be successfully
used to optimise a document-level semantic
language model.

1 Motivation

In the field of translation studies, it is undisputed that
discourse-wide context must be considered care-
fully for good translation results (Hatim and Mason,
1990). By contrast, the state of the art in statistical
machine translation (SMT), despite significant ad-
vances in the last twenty years, still assumes that
texts can be translated sentence by sentence under
strict independence assumptions, even though it is
well known that certain linguistic phenomena such
as pronominal anaphora cannot be translated cor-
rectly without referring to extra-sentential context.
This is true both for the phrase-based and the syntax-
based approach to SMT. In the rest of this paper, we
shall concentrate on phrase-based SMT.

One reason why it is difficult to experiment
with document-wide models for phrase-based SMT
is that the dynamic programming (DP) algorithm

which has been used almost exclusively for decod-
ing SMT models in the recent literature has very
strong assumptions of locality built into it. DP
beam search for phrase-based SMT was described
by Koehn et al. (2003), extending earlier work on
word-based SMT (Tillmann et al., 1997; Och et al.,
2001; Tillmann and Ney, 2003). This algorithm con-
structs output sentences by starting with an empty
hypothesis and adding output words at the end until
translations for all source words have been gener-
ated. The core models of phrase-based SMT, in par-
ticular the n-gram language model (LM), only de-
pend on a constant number of output words to the
left of the word being generated. This fact is ex-
ploited by the search algorithm with a DP technique
called hypothesis recombination (Och et al., 2001),
which permits the elimination of hypotheses from
the search space if they coincide in a certain number
of final words with a better hypothesis and no future
expansion can possibly invert the relative ranking of
the two hypotheses under the given models. Hypoth-
esis recombination achieves a substantial reduction
of the search space without affecting search optimal-
ity and makes it possible to use aggressive pruning
techniques for fast search while still obtaining good
results.

The downside of this otherwise excellent ap-
proach is that it only works well with models that
have a local dependency structure similar to that
of an n-gram language model, so they only de-
pend on a small context window for each target
word. Sentence-local models with longer dependen-
cies can be added, but doing so greatly increases
the risk for search errors by inhibiting hypothesis
recombination. Cross-sentence dependencies can-
not be directly integrated into DP SMT decoding in
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any obvious way, especially if joint optimisation of
a number of interdependent decisions over an entire
document is required. Research into models with
a more varied, non-local dependency structure is to
some extent stifled by the difficulty of decoding such
models effectively, as can be seen by the problems
some researchers encountered when they attempted
to solve discourse-level problems. Consider, for in-
stance, the work on cache-based language models
by Tiedemann (2010) and Gong et al. (2011), where
error propagation was a serious issue, or the works
on pronominal anaphora by Le Nagard and Koehn
(2010), who implemented cross-sentence dependen-
cies with an ad-hoc two-pass decoding strategy, and
Hardmeier and Federico (2010) with the use of an
external decoder driver to manage backward-only
dependencies between sentences.

In this paper, we present a method for decoding
complete documents in phrase-based SMT. Our de-
coder uses a local search approach whose state con-
sists of a complete translation of an entire document
at any time. The initial state is improved by the ap-
plication of a series of operations using a hill climb-
ing strategy to find a (local) maximum of the score
function. This setup gives us complete freedom to
define scoring functions over the entire document.
Moreover, by optionally initialising the state with
the output of a traditional DP decoder, we can en-
sure that the final hypothesis is no worse than what
would have been found by DP search alone. We start
by describing the decoding algorithm and the state
operations used by our decoder, then we present em-
pirical results demonstrating the effectiveness of our
approach and its usability with a document-level se-
mantic language model, and finally we discuss some
related work.

2 SMT Decoding by Hill Climbing

In this section, we formally describe the phrase-
based SMT model implemented by our decoder as
well as the decoding algorithm we use.

2.1 SMT Model

Our decoder is based on local search, so its state at
any time is a representation of a complete translation
of the entire document. Even though the decoder op-
erates at the document level, it is important to keep

track of sentence boundaries, and the individual op-
erations that are applied to the state are still confined
to sentence scope, so it is useful to decompose the
state of a document into the state of its sentences,
and we define the overall state S as a sequence of
sentence states:

S = S1S2 . . .SN , (1)

where N is the number of sentences. This implies
that we constrain the decoder to emit exactly one
output sentence per input sentence.

Let i be the number of a sentence and mi the num-
ber of input tokens of this sentence, p and q (with
1 ≤ p ≤ q ≤ mi) be positions in the input sentence
and [p;q] denote the set of positions from p up to and
including q. We say that [p;q] precedes [p′;q′], or
[p;q]≺ [p′;q′], if q < p′. Let Φi([p;q]) be the set of
translations for the source phrase covering positions
[p;q] in the input sentence i as given by the phrase
table. We call A = 〈[p;q],φ〉 an anchored phrase
pair with coverage C(A) = [p;q] if φ ∈ Φi([p;q]) is
a target phrase translating the source words at posi-
tions [p;q]. Then a sequence of ni anchored phrase
pairs

Si = A1A2 . . .Ani (2)

is a valid sentence state for sentence i if the follow-
ing two conditions hold:

1. The coverage sets C(A j) for j in 1, . . . ,ni are
mutually disjoint, and

2. the anchored phrase pairs jointly cover the
complete input sentence, or

ni⋃
j=1

C(A j) = [1;mi]. (3)

Let f (S) be a scoring function mapping a state S
to a real number. As usual in SMT, it is assumed that
the scoring function can be decomposed into a linear
combination of K feature functions hk(S), each with
a constant weight λk, so

f (S) =
K

∑
k=1

λkhk(S). (4)

The problem addressed by the decoder is the search
for the state Ŝ with maximal score, such that

Ŝ = argmax
S

f (S). (5)
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The feature functions implemented in our baseline
system are identical to the ones found in the popular
Moses SMT system (Koehn et al., 2007). In particu-
lar, our decoder has the following feature functions:

1. phrase translation scores provided by the
phrase table including forward and backward
conditional probabilities, lexical weights and a
phrase penalty (Koehn et al., 2003),

2. n-gram language model scores implemented
with the KenLM toolkit (Heafield, 2011),

3. a word penalty score,

4. a distortion model with geometric decay
(Koehn et al., 2003), and

5. a feature indicating the number of times a given
distortion limit is exceeded in the current state.

In our experiments, the last feature is used with a
fixed weight of negative infinity in order to limit the
gaps between the coverage sets of adjacent anchored
phrase pairs to a maximum value. In DP search, the
distortion limit is usually enforced directly by the
search algorithm and is not added as a feature. In
our decoder, however, this restriction is not required
to limit complexity, so we decided to add it among
the scoring models.

2.2 Decoding Algorithm

The decoding algorithm we use (algorithm 1) is
very simple. It starts with a given initial document
state. In the main loop, which extends from line 3
to line 12, it generates a successor state S′ for the
current state S by calling the function Neighbour,
which non-deterministically applies one of the oper-
ations described in section 3 of this paper to S. The
score of the new state is compared to that of the pre-
vious one. If it meets a given acceptance criterion,
S′ becomes the current state, else search continues
from the previous state S. For the experiments in
this paper, we use the hill climbing acceptance cri-
terion, which simply accepts a new state if its score
is higher than that of the current state. Other accep-
tance criteria are possible and could be used to en-
dow the search algorithm with stochastic behaviour.

The main loop is repeated until a maximum num-
ber of steps (step limit) is reached or until a maxi-
mum number of moves are rejected in a row (rejec-
tion limit).

Algorithm 1 Decoding algorithm
Input: an initial document state S;

search parameters maxsteps and maxrejected
Output: a modified document state

1: nsteps← 0
2: nrejected← 0
3: while nsteps < maxsteps and

nrejected < maxrejected do
4: S′← Neighbour(S)
5: if Accept( f (S′), f (S)) then
6: S← S′

7: nrejected← 0
8: else
9: nrejected← nrejected +1

10: end if
11: nsteps← nsteps+1
12: end while
13: return S

A notable difference between this algorithm and
other hill climbing algorithms that have been used
for SMT decoding (Germann et al., 2004; Langlais
et al., 2007) is its non-determinism. Previous work
for sentence-level decoding employed a steepest as-
cent strategy which amounts to enumerating the
complete neighbourhood of the current state as de-
fined by the state operations and selecting the next
state to be the best state found in the neighbourhood
of the current one. Enumerating all neighbours of
a given state, costly as it is, has the advantage that
it makes it easy to prove local optimality of a state
by recognising that all possible successor states have
lower scores. It can be rather inefficient, since at
every step only one modification will be adopted;
many of the modifications that are discarded will
very likely be generated anew in the next iteration.

As we extend the decoder to the document level,
the size of the neighbourhood that would have to be
explored in this way increases considerably. More-
over, the inefficiency of the steepest ascent approach
potentially increases as well. Very likely, a promis-
ing move in one sentence will remain promising af-
ter a modification has been applied to another sen-
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tence, even though this is not guaranteed to be true
in the presence of cross-sentence models. We there-
fore adopt a first-choice hill climbing strategy that
non-deterministically generates successor states and
accepts the first one that meets the acceptance cri-
terion. This frees us from the necessity of gener-
ating the full set of successors for each state. On
the downside, if the full successor set is not known,
it is no longer possible to prove local optimality of a
state, so we are forced to use a different condition for
halting the search. We use a combination of two lim-
its: The step limit is a hard limit on the resources the
user is willing to expend on the search problem. The
value of the rejection limit determines how much of
the neighbourhood is searched for better successors
before a state is accepted as a solution; it is related
to the probability that a state returned as a solution
is in fact locally optimal.

To simplify notations in the description of the in-
dividual state operations, we write

Si −→ S′i (6)

to signify that a state operation, when presented with
a document state as in equation 1 and acting on sen-
tence i, returns a new document state of

S′ = S1 . . .Si−1 S′i Si+1 . . .SN . (7)

Similarly,

Si : A j . . .A j+h−1 −→ A′1 . . .A′h′ (8)

is equivalent to

Si −→ A1 . . .A j−1 A′1 . . .A′h′ A j+h . . .Ani (9)

and indicates that the operation returns a state in
which a sequence of h consecutive anchored phrase
pairs has been replaced by another sequence of h′

anchored phrase pairs.

2.3 Efficiency Considerations
When implementing the feature functions for the de-
coder, we have to exercise some care to avoid re-
computing scores for the whole document at every
iteration. To achieve this, the scores are computed
completely only once, at the beginning of the de-
coding run. In subsequent iterations, scoring func-
tions are presented with the scores of the previous

iteration and a list of modifications produced by the
state operation, a set of tuples 〈i,r,s,A′1 . . .A′h′〉, each
indicating that the document should be modified as
described by

Si : Ar . . .As −→ A′1 . . .A′h′ . (10)

If a feature function is decomposable in some way,
as all the standard features developed under the con-
straints of DP search are, it can then update the state
simply by subtracting and adding score components
pertaining to the modified parts of the document.
Feature functions have the possibility to store their
own state information along with the document state
to make sure the required information is available.
Thus, the framework makes it possible to exploit de-
composability for efficient scoring without impos-
ing any particular decomposition on the features as
beam search does.

To make scoring even more efficient, scores are
computed in two passes: First, every feature func-
tion is asked to provide an upper bound on the score
that will be obtained for the new state. In some
cases, it is possible to calculate reasonable upper
bounds much more efficiently than computing the
exact feature value. If the upper bound fails to meet
the acceptance criterion, the new state is discarded
right away; if not, the full score is computed and the
acceptance criterion is tested again.

Among the basic SMT models, this two-pass
strategy is only used for the n-gram LM, which re-
quires fairly expensive parameter lookups for scor-
ing. The scores of all the other baseline models are
fully computed during the first scoring pass. The
n-gram model is more complex. In its state informa-
tion, it keeps track of the LM score and LM library
state for each word. The first scoring pass then iden-
tifies the words whose LM scores are affected by the
current search step. This includes the words changed
by the search operation as well as the words whose
LM history is modified. The range of the history de-
pendencies can be determined precisely by consider-
ing the “valid state length” information provided by
the KenLM library. In the first pass, the LM scores
of the affected words are subtracted from the total
score. The model only looks up the new LM scores
for the affected words and updates the total score
if the new search state passes the first acceptance
check. This two-pass scoring approach allows us

1182



to avoid LM lookups altogether for states that will
be rejected anyhow because of low scores from the
other models, e. g. because the distortion limit is vi-
olated.

Model score updates become more complex and
slower as the number of dependencies of a model in-
creases. While our decoding algorithm does not im-
pose any formal restrictions on the number or type
of dependencies that can be handled, there will be
practical limits beyond which decoding becomes un-
acceptably slow or the scoring code becomes very
difficult to maintain. These limits are however fairly
independent of the types of dependencies handled
by a model, which permits the exploration of more
varied model types than those handled by DP search.

2.4 State Initialisation
Before the hill climbing decoding algorithm can be
run, an initial state must be generated. The closer the
initial state is to an optimum, the less work remains
to be done for the algorithm. If the algorithm is to be
self-contained, initialisation must be relatively unin-
formed and can only rely on some general prior as-
sumptions about what might be a good initial guess.
On the other hand, if optimal results are sought after,
it pays off to invest some effort into a good starting
point. One way to do this is to run DP search first.

For uninformed initialisation, we chose to imple-
ment a very simple procedure based only on the ob-
servation that, at least for language pairs involving
the major European languages, it is usually a good
guess to keep the word order of the output very sim-
ilar to that of the input. We therefore create the ini-
tial state by selecting, for each sentence in the docu-
ment, a sequence of anchored phrase pairs covering
the input sentence in monotonic order, that is, such
that for all pairs of adjacent anchored phrase pairs
A j and A j+1, we have that C(A j)≺C(A j+1).

For initialisation with DP search, we first run the
Moses decoder (Koehn et al., 2007) with default
search parameters and the same models as those
used by our decoder. Then we extract the best output
hypothesis from the search graph of the decoder and
map it into a sequence of anchored phrase pairs in
the obvious way. When the document-level decoder
is used with models that are incompatible with beam
search, Moses can be run with a subset of the mod-
els in order to find an approximation of the solution

which is then refined with the complete feature set.

3 State Operations

Given a document state S, the decoder uses a neigh-
bourhood function Neighbour to simulate a move
in the state space. The neighbourhood function non-
deterministically selects a type of state operation and
a location in the document to apply it to and returns
the resulting new state. We use a set of three opera-
tions that has the property that every possible docu-
ment state can be reached from every other state in
a sequence of moves.

Designing operations for state transitions in lo-
cal search for phrase-based SMT is a problem that
has been addressed in the literature (Langlais et
al., 2007; Arun et al., 2010). Our decoder’s first-
choice hill climbing strategy never enumerates the
full neighbourhood of a state. We therefore place
less emphasis than previous work on defining a com-
pact neighbourhood, but allow the decoder to make
quite extensive changes to a state in a single step
with a certain probability. Otherwise our operations
are similar to those used by Arun et al. (2010).

All of the operations described in this paper make
changes to a single sentence only. Each time it is
called, the Neighbour function selects a sentence
in the document with a probability proportional to
the number of input tokens in each sentence to en-
sure a fair distribution of the decoder’s attention over
the words in the document regardless of varying sen-
tence lengths.

3.1 Changing Phrase Translations

The change-phrase-translation operation re-
places the translation of a single phrase with a ran-
dom translation with the same coverage taken from
the phrase table. Formally, the operation selects an
anchored phrase pair A j by drawing uniformly from
the elements of Si and then draws a new translation
φ ′ uniformly from the set Φi(C(A j)). The new state
is given by

Si : A j −→ 〈C(A j),φ
′〉. (11)

3.2 Changing Word Order

The swap-phrases operation affects the output
word order without changing the phrase translations.
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It exchanges two anchored phrase pairs A j and A j+h,
resulting in an output state of

Si : A j . . .A j+h −→ A j+h A j+1 . . .A j+h−1 A j. (12)

The start location j is drawn uniformly from the el-
igible sentence positions; the swap range h comes
from a geometric distribution with configurable de-
cay. Other word-order changes such as a one-way
move operation that does not require another move-
ment in exchange or more advanced permutations
can easily be defined.

3.3 Resegmentation

The most complex operation is resegment, which
allows the decoder to modify the segmentation of the
source phrase. It takes a number of anchored phrase
pairs that form a contiguous block both in the input
and in the output and replaces them with a new set
of phrase pairs covering the same span of the input
sentence. Formally,

Si : A j . . .A j+h−1 −→ A′1 . . .A′h′ (13)

such that

j+h−1⋃
j′= j

C(A j′) =
h′⋃

j′=1

C(A′j′) = [p;q] (14)

for some p and q, where, for j′ = 1, . . . ,h′, we
have that A′j′ = 〈[p j′ ;q j′ ],φ j′〉, all [p j′ ;q j′ ] are mu-
tually disjoint and each φ j′ is randomly drawn from
Φi([p j′ ;q j′ ]).

Regardless of the ordering of A j . . .A j+h−1, the
resegment operation always generates a sequence
of anchored phrase pairs in linear order, such that
C(A′j′)≺C(A′j′+1) for j′ = 1, . . . ,h′−1.

As for the other operations, j is generated uni-
formly and h is drawn from a geometric distribution
with a decay parameter. The new segmentation is
generated by extending the sequence of anchored
phrase pairs with random elements starting at the
next free position, proceeding from left to right until
the whole range [p;q] is covered.

4 Experimental Results

In this section, we present the results of a series
of experiments with our document decoder. The

goal of our experiments is to demonstrate the be-
haviour of the decoder and characterise its response
to changes in the fundamental search parameters.

The SMT models for our experiments were cre-
ated with a subset of the training data for the
English-French shared task at the WMT 2011 work-
shop (Callison-Burch et al., 2011). The phrase ta-
ble was trained on Europarl, news-commentary and
UN data. To reduce the training data to a manage-
able size, singleton phrase pairs were removed be-
fore the phrase scoring step. Significance-based fil-
tering (Johnson et al., 2007) was applied to the re-
sulting phrase table. The language model was a 5-
gram model with Kneser-Ney smoothing trained on
the monolingual News corpus with IRSTLM (Fed-
erico et al., 2008). Feature weights were trained with
Minimum Error-Rate Training (MERT) (Och, 2003)
on the news-test2008 development set using the DP
beam search decoder and the MERT implementation
of the Moses toolkit (Koehn et al., 2007). Experi-
mental results are reported for the newstest2009 test
set, a corpus of 111 newswire documents totalling
2,525 sentences or 65,595 English input tokens.

4.1 Stability

An important difference between our decoder and
the classical DP decoder as well as previous work in
SMT decoding with local search is that our decoder
is inherently non-deterministic. This implies that re-
peated runs of the decoder with the same search pa-
rameters, input and models will not, in general, find
the same local maximum of the score space. The
first empirical question we ask is therefore how dif-
ferent the results are under repeated runs. The re-
sults in this and the next section were obtained with
random state initialisation, i. e. without running the
DP beam search decoder.

Figure 1 shows the results of 7 decoder runs with
the models described above, translating the news-
test2009 test set, with a step limit of 227 and a rejec-
tion limit of 100,000. The x-axis of both plots shows
the number of decoding steps on a logarithmic scale,
so the number of steps is doubled between two adja-
cent points on the same curve. In the left plot, the
y-axis indicates the model score optimised by the
decoder summed over all 2525 sentences of the doc-
ument. In the right plot, the case-sensitive BLEU
score (Papineni et al., 2002) of the current decoder
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Figure 1: Score stability in repeated decoder runs

state against a reference translation is displayed.

We note, as expected, that the decoder achieves
a considerable improvement of the initial state with
diminishing returns as decoding continues. Be-
tween 28 and 214 steps, the score increases at a
roughly logarithmic pace, then the curve flattens out,
which is partly due to the fact that decoding for
some documents effectively stopped when the max-
imum number of rejections was reached. The BLEU
score curve shows a similar increase, from an initial
score below 5 % to a maximum of around 21.5 %.
This is below the score of 22.45 % achieved by the
beam search decoder with the same models, which
is not surprising considering that our decoder ap-
proximates a more difficult search problem, from
which a number of strong independence assump-
tions have been lifted, without, at the moment, hav-
ing any stronger models at its disposal to exploit this
additional freedom for better translation.

In terms of stability, there are no dramatic differ-
ences between the decoder runs. Indeed, the small
differences that exist are hardly discernible in the
plots. The model scores at the end of the decod-
ing run range between −158767.9 and −158716.9,
a relative difference of only about 0.03 %. Final
BLEU scores range from 21.41 % to 21.63 %, an in-
terval that is not negligible, but comparable to the
variance observed when, e. g., feature weights from
repeated MERT runs are used with one and the same
SMT system. Note that these results were obtained
with random state initialisation. With DP initialisa-
tion, score differences between repeated runs rarely

exceed 0.02 absolute BLEU percentage points.
Overall, we conclude that the decoding results of

our algorithm are reasonably stable despite the non-
determinism inherent in the procedure. In our sub-
sequent experiments, the evaluation scores reported
are calculated as the mean of three runs for each ex-
periment.

4.2 Search Algorithm Parameters

The hill climbing algorithm we use has two param-
eters which govern the trade-off between decoding
time and the accuracy with which a local maximum
is identified: The step limit stops the search pro-
cess after a certain number of steps regardless of the
search progress made or lack thereof. The rejection
limit stops the search after a certain number of un-
successful attempts to make a step, when continued
search does not seem to be promising. In most of our
experiments, we used a step limit of 227 ≈ 1.3 · 108

and a rejection limit of 105. In practice, decoding
terminates by reaching the rejection limit for the vast
majority of documents. We therefore examined the
effect of different rejection limits on the learning
curves. The results are shown in figure 2.

The results show that continued search does pay
off to a certain extent. Indeed, the curve for re-
jection limit 107 seems to indicate that the model
score increases roughly logarithmically, albeit to a
higher base, even after the curve has started to flat-
ten out at 214 steps. At a certain point, however, the
probability of finding a good successor state drops
rather sharply by about two orders of magnitude, as
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Figure 2: Search performance at different rejection limits

evidenced by the fact that a rejection limit of 106

does not give a large improvement over one of 105,
while one of 107 does. The continued model score
improvement also results in an increase in BLEU
scores, and with a BLEU score of 22.1 % the system
with rejection limit 107 is fairly close to the score of
22.45 % obtained by DP beam search.

Obviously, more exact search comes at a cost, and
in this case, it comes at a considerable cost, which is
an explosion of the time required to decode the test
set from 4 minutes at rejection limit 103 to 224 min-
utes at rejection limit 105 and 38 hours 45 minutes
at limit 107. The DP decoder takes 31 minutes for
the same task. We conclude that the rejection limit
of 105 selected for our experiments, while techni-
cally suboptimal, realises a good trade-off between
decoding time and accuracy.

4.3 A Semantic Document Language Model

In this section, we present the results of the applica-
tion of our decoder to an actual SMT model with
cross-sentence features. Our model addresses the
problem of lexical cohesion. In particular, it rewards
the use of semantically related words in the trans-
lation output by the decoder, where semantic dis-
tance is measured with a word space model based
on Latent Semantic Analysis (LSA). LSA has been
applied to semantic language modelling in previous
research with some success (Coccaro and Jurafsky,
1998; Bellegarda, 2000; Wandmacher and Antoine,
2007). In SMT, it has mostly been used for domain
adaptation (Kim and Khudanpur, 2004; Tam et al.,

2007), or to measure sentence similarities (Banchs
and Costa-jussà, 2011).

The model we use is inspired by Bellegarda
(2000). It is a Markov model, similar to a stan-
dard n-gram model, and assigns to each content
word a score given a history of n preceding content
words, where n = 30 below. Scoring relies on a 30-
dimensional LSA word vector space trained with the
S-Space software (Jurgens and Stevens, 2010). The
score is defined based on the cosine similarity be-
tween the word vector of the predicted word and the
mean word vector of the words in the history, which
is converted to a probability by histogram lookup
as suggested by Bellegarda (2000). The model is
structurally different from a regular n-gram model
in that word vector n-grams are defined over content
words occurring in the word vector model only and
can cross sentence boundaries. Stop words, identi-
fied by an extensive stop word list and amounting to
around 60 % of the tokens, are scored by a different
mechanism based on their relative frequency (undis-
counted unigram probability) in the training corpus.
In sum, the score produced by the semantic docu-
ment LM has the following form:

h(w|h) =


punigr(w) if w is a stop word, else
α pcos(w|h) if w is known, else
ε if w is unknown,

(15)

where α is the proportion of content words in the
training corpus and ε is a small fixed probability.
It is integrated into the decoder as an extra feature
function. Since we lack an automatic method for
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training the feature weights of document-wide fea-
tures, its weight was selected by grid search over
a number of values, comparing translation perfor-
mance for the newstest2009 test set.

In these experiments, we used DP beam search
to initialise the state of our local search decoder.
Three results are presented (table 1): The first table
row shows the baseline performance using DP beam
search with standard sentence-local features only.
The scores in the second row were obtained by run-
ning the hill climbing decoder with DP initialisation,
but without adding any models. A marginal increase
in scores for all three test sets demonstrates that the
hill climbing decoder manages to fix some of the
search errors made by the DP search. The last row
contains the scores obtained by adding in the seman-
tic language model. Scores are presented for three
publicly available test sets from recent WMT Ma-
chine Translation shared tasks, of which one (news-
test2009) was used to monitor progress during de-
velopment and select the final model.

Adding the semantic language model results in a
small increase in NIST scores (Doddington, 2002)
for all three test sets as well as a small BLEU score
gain (Papineni et al., 2002) for two out of three cor-
pora. We note that the NIST score turned out to re-
act more sensitively to improvements due to the se-
mantic LM in all our experiments, which is reason-
able because the model specifically targets content
words, which benefit from the information weight-
ing done by the NIST score. While the results
we present do not constitute compelling evidence
in favour of our semantic LM in its current form,
they do suggest that this model could be improved
to realise higher gains from cross-sentence seman-
tic information. They support our claim that cross-
sentence models should be examined more closely
and that existing methods should be adapted to deal
with them, a problem addressed by our main contri-
bution, the local search document decoder.

5 Related Work

Even though DP beam search (Koehn et al., 2003)
has been the dominant approach to SMT decoding
in recent years, methods based on local search have
been explored at various times. For word-based
SMT, greedy hill-climbing techniques were advo-

cated as a faster replacement for beam search (Ger-
mann et al., 2001; Germann, 2003; Germann et al.,
2004), and a problem formulation specifically tar-
geting word reordering with an efficient word re-
ordering algorithm has been proposed (Eisner and
Tromble, 2006).

A local search decoder has been advanced as a
faster alternative to beam search also for phrase-
based SMT (Langlais et al., 2007; Langlais et al.,
2008). That work anticipates many of the features
found in our decoder, including the use of local
search to refine an initial hypothesis produced by
DP beam search. The possibility of using models
that do not fit well into the beam search paradigm is
mentioned and illustrated with the example of a re-
versed n-gram language model, which the authors
claim would be difficult to implement in a beam
search decoder. Similarly to the work by Germann
et al. (2001), their decoder is deterministic and ex-
plores the entire neighbourhood of a state in order
to identify the most promising step. Our main con-
tribution with respect to the work by Langlais et al.
(2007) is the introduction of the possibility of han-
dling document-level models by lifting the assump-
tion of sentence independence. As a consequence,
enumerating the entire neighbourhood becomes too
expensive, which is why we resort to a “first-choice”
strategy that non-deterministically generates states
and accepts the first one encountered that meets the
acceptance criterion.

More recently, Gibbs sampling was proposed as
a way to generate samples from the posterior distri-
bution of a phrase-based SMT decoder (Arun et al.,
2009; Arun et al., 2010), a process that resembles
local search in its use of a set of state-modifying
operators to generate a sequence of decoder states.
Where local search seeks for the best state attainable
from a given initial state, Gibbs sampling produces
a representative sample from the posterior. Like all
work on SMT decoding that we know of, the Gibbs
sampler presented by Arun et al. (2010) assumes in-
dependence of sentences and considers the complete
neighbourhood of each state before taking a sample.

6 Conclusion

In the last twenty years of SMT research, there has
been a strong assumption that sentences in a text
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newstest2009 newstest2010 newstest2011
BLEU NIST BLEU NIST BLEU NIST

DP search only 22.56 6.513 27.27 7.034 24.94 7.170
DP + hill climbing 22.60 6.518 27.33 7.046 24.97 7.169
with semantic LM 22.71 6.549 27.53 7.087 24.90 7.199

Table 1: Experimental results with a cross-sentence semantic language model

are independent of one another, and discourse con-
text has been largely neglected. Several factors have
contributed to this. Developing good discourse-level
models is difficult, and considering the modest trans-
lation quality that has long been achieved by SMT,
there have been more pressing problems to solve and
lower hanging fruit to pick. However, we argue that
the popular DP beam search algorithm, which deliv-
ers excellent decoding performance, but imposes a
particular kind of local dependency structure on the
feature models, has also had its share in driving re-
searchers away from discourse-level problems.

In this paper, we have presented a decoding pro-
cedure for phrase-based SMT that makes it possi-
ble to define feature models with cross-sentence de-
pendencies. Our algorithm can be combined with
DP beam search to leverage the quality of the tradi-
tional approach with increased flexibility for models
at the discourse level. We have presented prelimi-
nary results on a cross-sentence semantic language
model addressing the problem of lexical cohesion to
demonstrate that this kind of models is worth explor-
ing further. Besides lexical cohesion, cross-sentence
models are relevant for other linguistic phenomena
such as pronominal anaphora or verb tense selection.
We believe that SMT research has reached a point of
maturity where discourse phenomena should not be
ignored any longer, and we consider our decoder to
be a step towards this goal.
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Philippe Langlais, Alexandre Patry, and Fabrizio Gotti.
2008. Recherche locale pour la traduction statistique
par segments. In TALN 2008, pages 119–128, Avi-
gnon, France, June. ATALA.

Ronan Le Nagard and Philipp Koehn. 2010. Aiding pro-
noun translation with co-reference resolution. In Pro-
ceedings of the Joint Fifth Workshop on Statistical Ma-
chine Translation and MetricsMATR, pages 252–261,
Uppsala, Sweden, July. Association for Computational
Linguistics.

Franz Josef Och, Nicola Ueffing, and Hermann Ney.
2001. An efficient A* search algorithm for Statisti-
cal Machine Translation. In Proceedings of the Data-
Driven Machine Translation Workshop, 39th Annual
Meeting of the Association for Computational Linguis-
tics (ACL), pages 55–62, Toulouse.

Franz Josef Och. 2003. Minimum error rate training in
Statistical Machine Translation. In Proceedings of the
41st annual meeting of the Association for Computa-
tional Linguistics, pages 160–167, Sapporo (Japan).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of Machine Translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318, Philadelphia. ACL.

Yik-Cheung Tam, Ian Lane, and Tanja Schultz. 2007.
Bilingual LSA-based adaptation for Statistical Ma-
chine Translation. Machine Translation, 21(4):187–
207.

Jörg Tiedemann. 2010. To cache or not to cache? Ex-
periments with adaptive models in Statistical Machine
Translation. In Proceedings of the ACL 2010 Joint
Fifth Workshop on Statistical Machine Translation and
Metrics MATR, pages 189–194, Uppsala, Sweden. As-
sociation for Computational Linguistics.

Christoph Tillmann and Hermann Ney. 2003. Word re-
ordering and a Dynamic Programming beam search al-
gorithm for Statistical Machine Translation. Compu-
tational linguistics, 29(1):97–133.

Christoph Tillmann, Stephan Vogel, Hermann Ney, and
Alex Zubiaga. 1997. A DP-based search using mono-
tone alignments in Statistical Translation. In Proceed-
ings of the 35th Annual Meeting of the Association for

1189



Computational Linguistics, pages 289–296, Madrid,
Spain, July. Association for Computational Linguis-
tics.

Tonio Wandmacher and Jean-Yves Antoine. 2007.
Methods to integrate a language model with seman-
tic information for a word prediction component. In
Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL), pages 506–513, Prague, Czech Republic,
June. Association for Computational Linguistics.

1190



Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1191–1200, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Left-to-Right Tree-to-String Decoding with Prediction
Yang Feng† Yang Liu‡ Qun Liu⋆ Trevor Cohn†

† Department of Computer Science
The University of Sheffield, Sheffield, UK

{y.feng, t.cohn}@sheffield.ac.uk
‡ State Key Laboratory on Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Sci. and Tech., Tsinghua University, Beijing, China

liuyang2011@tsinghua.edu.cn
⋆Key Laboratory of Intelligent Information Processing

Institute of Computing Technology
Chinese Academy of Sciences, Beijing, China

liuqun@ict.ac.cn

Abstract

Decoding algorithms for syntax based ma-
chine translation suffer from high compu-
tational complexity, a consequence of in-
tersecting a language model with a con-
text free grammar. Left-to-right decoding,
which generates the target string in order,
can improve decoding efficiency by simpli-
fying the language model evaluation. This
paper presents a novel left to right decod-
ing algorithm for tree-to-string translation, us-
ing a bottom-up parsing strategy and dynamic
future cost estimation for each partial trans-
lation. Our method outperforms previously
published tree-to-string decoders, including a
competing left-to-right method.

1 Introduction

In recent years there has been rapid progress in the
development of tree-to-string models for statistical
machine translation. These models use the syntac-
tic parse tree of the source language to inform its
translation, which allows the models to capture con-
sistent syntactic transformations between the source
and target languages, e.g., from subject-verb-object
to subject-object-verb word orderings. Decoding al-
gorithms for grammar-based translation seek to find
the best string in the intersection between a weighted
context free grammar (the translation mode, given a
source string/tree) and a weighted finite state accep-
tor (an n-gram language model). This intersection

is problematic, as it results in an intractably large
grammar, and makes exact search impossible.

Most researchers have resorted to approximate
search, typically beam search (Chiang, 2007). The
decoder parses the source sentence, recording the
target translations for each span.1 As the partial
translation hypothesis grows, its component ngrams
are scored and the hypothesis score is updated. This
decoding method though is inefficient as it requires
recording the language model context (n− 1 words)
on the left and right edges of each chart cell. These
contexts allow for boundary ngrams to be evaluated
when the cell is used in another grammar produc-
tion. In contrast, if the target string is generated
in left-to-right order, then only one language model
context is required, and the problem of language
model evaluation is vastly simplified.

In this paper, we develop a novel method of left-
to-right decoding for tree-to-string translation using
a shift-reduce parsing strategy. A central issue in
any decoding algorithm is the technique used for
pruning the search space. Our left-to-right decod-
ing algorithm groups hypotheses, which cover the
same number of source words, into a bin. Pruning
requires the evaluation of different hypotheses in the
same bin, and elimating the least promising options.
As each hypotheses may cover different sets of tree

1The process is analogous for tree-to-string models, except
that only rules and spans matching those in the source trees are
considered. Typically nodes are visited according to a post-
order traversal.
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nodes, it is necessary to consider the cost of uncov-
ered nodes, i.e., the future cost. We show that a good
future cost estimate is essential for accurate and effi-
cient search, leading to high quality translation out-
put.

Other researchers have also considered the left-
to-right decoding algorithm for tree-to-string mod-
els. Huang and Mi (2010) developed an Earley-
style parsing algorithm (Earley, 1970). In their ap-
proach, hypotheses covering the same number of
tree nodes were binned together. Their method uses
a top-down depth-first search, with a mechanism for
early elimation of some rules which lead to dead-
ends in the search. Huang and Mi (2010)’s method
was shown to outperform the traditional post-order-
traversal decoding algorithm, considering fewer hy-
potheses and thus decoding much faster at the same
level of performance. However their algorithm used
a very rough estimate of future cost, resulting in
more search errors than our approach.

Our experiments show that compared with the
Earley-style left-to-right decoding (Huang and Mi,
2010) and the traditional post-order-traversal de-
coding (Liu et al., 2006) algorithms, our algorithm
achieves a significant improvement on search capac-
ity and better translation performance at the same
level of speed.

2 Background

A typical tree-to-string system (Liu et al., 2006;
Huang et al., 2006) searches through a 1-best source
parse tree for the best derivation. It transduces the
source tree into a target-language string using a Syn-
chronous Tree Substitution Grammar (STSG). The
grammar rules are extracted from bilingual word
alignments using the GHKM algorithm (Galley et
al., 2004).

We will briefly review the traditional decoding al-
gorithm (Liu et al., 2006) and the Earley-style top-
down decoding algorithm (Huang and Mi, 2010) for
the tree-to-string model.

2.1 Traditional Decoding

The traditional decoding algorithm processes source
tree nodes one by one according to a post-order
traversal. For each node, it applies matched STSG
rules by substituting each non-terminal with its cor-

in theory beam search
traditional O(nc|̇V |4(g−1)) O(ncb2)

top-down O(c(cr)d|V |g−1) O(ncb)

bottom-up O((cr)d|V |g−1) O(nub)

Table 1: Time complexity of different algorithms. tra-
ditional : Liu et al. (2006), top-down : Huang and Mi
(2010). n is the source sentence length, b is the beam
width, c is the number of rules used for each node, V
is the target word vocabulary, g is the order of the lan-
guage model, d is the depth of the source parse tree, u is
the number of viable prefixes for each node and r is the
maximum arity of each rule.

responding translation. For the derivation in Figure
1 (b), the traditional algorithm applies r2 at node
NN2

r2 : NN2 (jieguo) → the result,

to obtain “the result” as the translation of NN2. Next
it applies r4 at node NP,

r4 : NP ( NN1 (toupiao), x1 : NN2 )
→ x1 of the vote

and replaces NN2 with its translation “the result”,
then it gets the translation of NP as “the result of the
vote”.

This algorithm needs to contain boundary words
at both left and right extremities of the target string
for the purpose of LM evaluation, which leads to a
high time complexity. The time complexity in the-
ory and with beam search (Huang and Mi, 2010) is
shown in Table 1.

2.2 Earley-style Top-down Decoding

The Earley-style decoding algorithm performs a top-
down depth-first parsing and generates the target
translation left to right. It applies Context-Free
Grammar (CFG) rules and employs three actions:
predict, scan and complete (Section 3.1 describes
how to convert STSG rules into CFG rules). We can
simulate its translation process using a stack with a
dot � indicating which symbol to process next. For
the derivation in Figure 1(b) and CFG rules in Fig-
ure 1(c), Figure 2 illustrates the whole translation
process.

The time complexity is shown in Table 1 .
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3 Bottom-Up Left-to-Right Decoding

We propose a novel method of left-to-right decoding
for tree-to-string translation using a bottom-up pars-
ing strategy. We use viable prefixes (Aho and John-
son, 1974) to indicate all possible target strings the
translations of each node should starts with. There-
fore, given a tree node to expand, our algorithm
can drop immediately to target terminals no matter
whether there is a gap or not. We say that there is a
gap between two symbols in a derivation when there
are many rules separating them, e.g. IP r6→ ...

r4→
NN2. For the derivation in Figure 1(b), our algo-
rithm starts from the root node IP and applies r2

first although there is a gap between IP and NN2.
Then it applies r4, r5 and r6 in sequence to generate
the translation “the result of the vote was released
at night”. Our algorithm takes the gap as a black-
box and does not need to fix which partial deriva-
tion should be used for the gap at the moment. So it
can get target strings as soon as possible and thereby
perform more accurate pruning. A valid derivation
is generated only when the source tree is completely
matched by rules.

Our bottom-up decoding algorithm involves the
following steps:

1. Match STSG rules against the source tree.

2. Convert STSG rules to CFG rules.

3. Collect the viable prefix set for each node in a
post-order transversal.

4. Search bottom-up for the best derivation.

3.1 From STSG to CFG
After rule matching, each tree node has its applica-
ble STSG rule set. Given a matched STSG rule, our
decoding algorithm only needs to consider the tree
node the rule can be applied to and the target side,
so we follow Huang and Mi (2010) to convert STSG
rules to CFG rules. For example, an STSG rule

NP ( NN1 (toupiao), x1 : NN2 ) → x1 of the vote

can be converted to a CFG rule

NP → NN2 of the vote

The target non-terminals are replaced with corre-
sponding source non-terminals. Figure 1 (c) shows
all converted CFG rules for the toy example. Note

IP

NP

NN1

tóupı̀ao

NN2

jı́eguǒ

VP

NT

wǎnshàng

VV

gōngbù

(a) Source parse tree

r6: IP

NP VP
⇓ ⇓

r4: NP

NN1

tóupı̀ao

NN2

r5: VP

NT

wǎnshàng

VV

gōngbù
⇓

r2: NN2

jı́eguǒ

the result of the vote was released at night

(b) A derivation

r1: NN1 → the vote
r2: NN2 → the result
r3: NP → NN2 of NN1

r4: NP → NN2 of the vote
r5: VP → was released at night
r6: IP → NP VP
r7: IP → NN2 of the vote VP
r8: IP → VP NP

(c) Target-side CFG rule set

Figure 1: A toy example.

that different STSG rules might be converted to the
same CFG rule despite having different source tree
structures.

3.2 Viable Prefix
During decoding, how do we decide which rules
should be used next given a partial derivation, es-
pecially when there is a gap? A key observation is
that some rules should be excluded. For example,
any derivation for Figure 1(a) will never begin with
r1 as there is no translation starting with “the vote”.
In order to know which rules can be excluded for
each node, we can recursively calculate the start-
ing terminal strings for each node. For example,

1193



NN1: {the vote} NN2: {the result}
NT: ∅ VV: ∅
NP: {the result}
VP: {was released at night}
IP: {the result, was released at night}

Table 2: The Viable prefix sets for Figure 1 (c)

according to r1, the starting terminal string of the
translation for NN1 is “the vote”. According to r2,
the starting terminal string for NN2 is “the result”.
According to r3, the starting terminal string of NP
must include that of NN2. Table 2 lists the starting
terminal strings of all nodes in Figure 1(a). As the
translations of node IP should begin with either “the
result” or “was released at night”, the first rule must
be either r2 or r5. Therefore, r1 will never be used
as the first rule in any derivation.

We refer to starting terminal strings of a node as
a viable prefixes, a term borrowed from LR pars-
ing (Aho and Johnson, 1974). Viable prefixes are
used to decide which rule should be used to ensure
efficient left-to-right target generation. Formally, as-
sume that VN denotes the set of non-terminals (i.e.,
source tree node labels), VT denotes the set of ter-
minals (i.e., target words), v1, v2 ∈ VN , w ∈ VT ,
π ∈ {VT ∪ VN}∗, we say that w is a viable prefix of
v1 if and only if:

• v1 → w, or

• v1 → wv2π, or

• v1 → v2π, and w is a viable prefix of v2.

Note that we bundle all successive terminals in one
symbol.

3.3 Shift-Reduce Parsing

We use a shift-reduce algorithm to search for the
best deviation. The algorithm maintains a stack of
dotted rules (Earley, 1970). Given the source tree in
Figure 1(a), the stack is initialized with a dotted rule
for the root node IP:

[� IP].

Then, the algorithm selects one viable prefix of IP
and appends it to the stack with the dot at the begin-
ning (predict):

[� IP] [� the result]2.

Then, a scan action is performed to produce a partial
translation “the result”:

[� IP] [the result �].
Next, the algorithm searches for the CFG rules start-
ing with “the result” and gets r2. Then, it pops the
rightmost dotted rule and append the left-hand side
(LHS) of r2 to the stack (complete):

[� IP] [NN2 �].
Next, the algorithm chooses r4 whose right-hand
side “NN2 of the vote” matches the rightmost dot-
ted rule in the stack3 and grows the rightmost dotted
rule:

[� IP] [NN2 � of the vote].

Figure 3 shows the whole process of derivation
generation.

Formally, we define four actions on the rightmost
rule in the stack:

• Predict. If the symbol after the dot in the right-
most dotted rule is a non-terminal v, this action
chooses a viable prefix w of v and generates a
new dotted rule for w with the dot at the begin-
ning. For example:

[� IP]
predict−→ [� IP] [� the result]

• Scan. If the symbol after the dot in the right-
most dotted rule is a terminal string w, this ac-
tion advances the dot to update the current par-
tial translation. For example:

[� IP] [� the result] scan−→ [� IP] [the result �]

• Complete. If the rightmost dotted rule ends
with a dot and it happens to be the right-hand
side of a rule, then this action removes the
right-most dotted rule. Besides, if the symbol
after the dot in the new rightmost rule corre-
sponds to the same tree node as the LHS non-
terminal of the rule, this action advance the dot.
For example,

[� IP] [NP � VP] [was released at night �]
complete−→ [� IP] [NP VP �]

2There are another option: “was released at night”
3Here there is an alternative: r3 or r7
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step action rule used stack hypothesis
0 [� IP]
1 p r6 [� IP] [� NP VP]
2 p r4 [� IP] [� NP VP] [� NN2 of the vote]
3 p r2 [� IP] [� NP VP] [� NN2 of the vote] [� the result]
4 s [� IP] [� NP VP] [� NN2 of the vote] [the result �] the result
5 c [� IP] [� NP VP] [NN2 � of the vote] the result
6 s [� IP] [� NP VP] [NN2 of the vote �] the result of the vote
7 c [� IP] [NP � VP] the result of the vote
8 p r5 [� IP] [NP � VP] [� was released at night] the result of the vote
9 s [� IP] [NP � VP] [was released at night �] the ... vote was ... night
10 c [� IP] [NP VP �] the ... vote was ... night
11 c [IP �] the ... vote was ... night

Figure 2: Simulation of top-down translation process for the derivation in Figure 1(b). Actions: p, predict; s, scan; c,
complete. “the ... vote” and “was ... released” are the abbreviated form of “the result of the vote” and “was released at
night”, respectively.

step action rule used stack number hypothesis
0 [� IP] 0
1 p [� IP] [� the result] 0
2 s [� IP] [the result �] 1 the result
3 c r2 [� IP] [NN2 �] 1 the result
4 g r4 or r7 [� IP] [NN2 � of the vote] 1 the result
5 s [� IP] [NN2 of the vote �] 2 the result of the vote
6 c r4 [� IP] [NP �] 2 the result of the vote
7 g r6 [� IP] [NP � VP] 2 the result of the vote
8 p [� IP] [NP � VP] [� was released at night] 2 the result of the vote
9 s [� IP] [NP � VP] [was released at night �] 4 the ... vote was ... night
10 c r5 [� IP] [NP VP �] 4 the ... vote was ... night
11 c r6 [IP �] 4 the ... vote was ... night

Figure 3: Simulation of bottom-up translation process for the derivation in Figure 1(b). Actions: p, predict; s, scan; c,
complete; g, grow. The column of number gives the number of source words the hypothesis covers.

If the string cannot rewrite on the frontier non-
terminal, then we add the LHS to the stack with
the dot after it. For example:

[� IP] [the result �] complete−→ [� IP] [NN2 �]

• Grow. If the right-most dotted rule ends with
a dot and it happens to be the starting part of
a CFG rule, this action appends one symbol of
the remainder of that rule to the stack 4. For
example:

4We bundle the successive terminals in one rule into a sym-
bol

[� IP] [NN2 �] grow−→ [� IP] [NN2 � of the vote]

From the above definition, we can find that there
may be an ambiguity about whether to use a com-
plete action or a grow action. Similarly, predict ac-
tions must select a viable prefix form the set for a
node. For example in step 5, although we select
to perform complete with r4 in the example, r7 is
applicable, too. In our implementation, if both r4

and r7 are applicable, we apply them both to gener-
ate two seperate hypotheses. To limit the exponen-
tial explosion of hypotheses (Knight, 1999), we use
beam search over bins of similar partial hypotheses
(Koehn, 2004).
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IP

NP

NN2 of NN1

of the vote

VP

was released at night

r7

r4 r5

r6

r3

Figure 4: The translation forest composed of applicable
CFG rules for the partial derivation of step 3 in Figure 3.

3.4 Future Cost

Partial derivations covering different tree nodes may
be grouped in the same bin for beam pruning5. In
order to perform more accurate pruning, we take into
consideration future cost, the cost of the uncovered
part. The merit of a derivation is the covered cost
(the cost of the covered part) plus the future cost.
We borrow ideas from the Inside-Outside algorithm
(Charniak and Johnson, 2005; Huang, 2008; Mi et
al., 2008) to compute the merit. In our algorithm,
the merit of a derivation is just the Viterbi inside cost
β of the root node calculated with the derivations
continuing from the current derivation.

Given a partial derivation, we calculate its future
cost by searching through the translation forest de-
fined by all applicable CFG rules. Figure 4 shows
the translation forest for the derivation of step 3. We
calculate the future cost for each node as follows:
given a node v, we define its cost function f(v) as

f(v) =


1 v is completed
lm(v) v is a terminal string
maxr∈Rv f(r)

∏
π∈rhs(r) f(π) otherwise

where VN is the non-terminal set, VT is the terminal
set, v, π ∈ VN ∪ VT

+, Rv is the set of currently ap-
plicable rules for v, rhs(r) is the right-hand symbol
set of r, lm is the local language model probability,
f(r) is calculated using a linear model whose fea-
tures are bidirectional translation probabilities and
lexical probabilities of r. For the translation forest
in Figure 4, if we calculate the future cost of NP with

5Section 3.7 will describe the binning scheme

r4, then

f(NP ) = f(r4) · f(NN2) · lm(of the vote)

= f(r4) · 1 · lm(of the vote)

Note that we calculate lm(of the vote) locally and do
not take “the result” derived from NN2 as the con-
text. The lm probability of “the result” has been in-
cluded in the covered cost.

As a partial derivation grows, some CFG rules
will conflict with the derivation (i.e. inapplicable)
and the translation forest will change accordingly.
For example, when we reach step 5 from step 3 (see
Figure 4 for its translation forest), r3 is inapplica-
ble and thereby should be ruled out. Then the nodes
on the path from the last covered node (it is “of the
vote” in step 5) to the root node should update their
future cost, as they may employ r3 to produce the
future cost. In step 5, NP and IP should be updated.
In this sense, we say that the future cost is dynamic.

3.5 Comparison with Top-Down Decoding

In order to generate the translation “the result” based
on the derivation in Figure 1(b), Huang and Mi’s
top-down algorithm needs to specify which rules to
apply starting from the root node until it yields “the
result”. In this derivation, rule r6 is applied to IP, r4

to NP, r2 to NN2. That is to say, it needs to repre-
sent the partial derivation from IP to NN2 explicitly.
This can be a problem when combined with beam
pruning. If the beam size is small, it may discard the
intermediate hypotheses and thus never consider the
string. In our example with a beam of 1, we must
select a rule for IP among r6, r7 and r8 although we
do not get any information for NP and VP.

Instead, our bottom-up algorithm allows top-
down and bottom-up information to be used together
with the help of viable prefixes. This allows us to
encode more candidate derivations than the purely
top-down method. In the above example, our al-
gorithm does not specify the derivation for the gap
from IP and “the result”. In fact, all derivations
composed of currently applicable rules are allowed.
When needed, our algorithm derives the derivation
dynamically using applicable rules. So when our
algorithm performs pruning at the root node, it has
got much more information and consequently intro-
duces fewer pruning errors.
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3.6 Time Complexity

Assume the depth of the source tree is d, the max-
imum number of matched rules for each node is c,
the maximum arity of each rule is r, the language
model order is g and the target-language vocabulary
is V, then the time complexity of our algorithm is
O((cr)d|V |g−1). Analysis is as follows:

Our algorithm expands partial paths with termi-
nal strings to generate new hypotheses, so the time
complexity depends on the number of partial paths
used. We split a path which is from the root node to a
leaf node with a node on it (called the end node) and
get the segment from the root node to the end node
as a partial path, so the length of the partial path is
not definite with a maximum of d. If the length is
d′(d′ ≤ d), then the number of partial paths is (cr)d′

.
Besides, we use the rightest g − 1 words to signa-
ture each partial path, so we can get (cr)d′ |V |g−1

states. For each state, the number of viable prefixes
produced by predict operation is cd−d′

, so the total
time complexity is f = O((cr)d′ |V |g−1cd−d′

) =
O(cdrd′ |V |g−1) = O((cr)d|V |g−1).

3.7 Beam Search

To make decoding tractable, we employ beam search
(Koehn, 2004) and choose “binning” as follows: hy-
potheses covering the same number of source words
are grouped in a bin. When expanding a hypothe-
sis in a beam (bin), we take series of actions until
new terminals are appended to the hypothesis, then
add the new hypothesis to the corresponding beam.
Figure 3 shows the number of source words each hy-
pothesis covers.

Among the actions, only the scan action changes
the number of source words each hypothesis cov-
ers. Although the complete action does not change
source word number, it changes the covered cost of
hypotheses. So in our implementation, we take scan
and complete as “closure” actions. That is to say,
once there are some complete actions after a scan ac-
tion, we finish all the compete actions until the next
action is grow. The predict and grow actions decide
which rules can be used to expand hypotheses next,
so we update the applicable rule set during these two
actions.

Given a source sentence with n words, we main-
tain n beams, and let each beam hold b hypotheses

at most. Besides, we prune viable prefixes of each
node up to u, so each hypothesis can expand to u
new hypotheses at most, so the time complexity of
beam search is O(nub).

4 Related Work

Watanabe et al. (2006) present a novel Earley-
style top-down decoding algorithm for hierarchical
phrase-based model (Chiang, 2005). Their frame-
work extracts Greibach Normal Form rules only,
which always has at least one terminal on the left
of each rule, and discards other rules.

Dyer and Resnik (2010) describe a translation
model that combines the merits of syntax-based
models and phrase-based models. Their decoder
works in two passes: for first pass, the decoder col-
lects a context-free forest and performs tree-based
source reordering without a LM. For the second
pass, the decoder adds a LM and performs bottom-
up CKY decoding.

Feng et al. (2010) proposed a shift-reduce algo-
rithm to add BTG constraints to phrase-based mod-
els. This algorithm constructs a BTG tree in a
reduce-eager manner while the algorithm in this pa-
per searches for a best derivation which must be de-
rived from the source tree.

Galley and Manning (2008) use the shift-reduce
algorithm to conduct hierarchical phrase reordering
so as to capture long-distance reordering. This al-
gorithm shows good performance on phrase-based
models, but can not be applied to syntax-based mod-
els directly.

5 Experiments

In the experiments, we use two baseline systems:
our in-house tree-to-string decoder implemented ac-
cording to Liu et al. (2006) (denoted as traditional)
and the Earley-style top-down decoder implemented
according to Huang and Mi (2010) (denoted as top-
down), respectively. We compare our bottom-up
left-to-right decoder (denoted as bottom-up) with
the baseline in terms of performance, translation
quality and decoding speed with different beam
sizes, and search capacity. Lastly, we show the in-
fluence of future cost. All systems are implemented
in C++.
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5.1 Data Setup

We used the FBIS corpus consisting of about 250K
Chinese-English sentence pairs as the training set.
We aligned the sentence pairs using the GIZA++
toolkit (Och and Ney, 2003) and extracted tree-to-
string rules according to the GHKM algorithm (Gal-
ley et al., 2004). We used the SRILM toolkit (Stol-
cke, 2002) to train a 4-gram language model on the
Xinhua portion of the GIGAWORD corpus.

We used the 2002 NIST MT Chinese-English test
set (571 sentences) as the development set and the
2005 NIST MT Chinese-English test set (1082 sen-
tences) as the test set. We evaluated translation qual-
ity using BLEU-metric (Papineni et al., 2002) with
case-insensitive n-gram matching up to n = 4. We
used the standard minimum error rate training (Och,
2003) to tune feature weights to maximize BLEU
score on the development set.

5.2 Performance Comparison

Our bottom-up left-to-right decoder employs the
same features as the traditional decoder: rule proba-
bility, lexical probability, language model probabil-
ity, rule count and word count. In order to compare
them fairly, we used the same beam size which is 20
and employed cube pruning technique (Huang and
Chiang, 2005).

We show the results in Table 3. From the re-
sults, we can see that the bottom-up decoder out-
performs top-down decoder and traditional decoder
by 1.1 and 0.8 BLEU points respectively and the
improvements are statistically significant using the
sign-test of Collins et al. (2005) (p < 0.01). The
improvement may result from dynamically search-
ing for a whole derivation which leads to more ac-
curate estimation of a partial derivation. The addi-
tional time consumption of the bottom-up decoder
against the top-down decoder comes from dynamic
future cost computation.

Next we compare decoding speed versus transla-
tion quality using various beam sizes. The results
are shown in Figure 5. We can see that our bottom-
up decoder can produce better BLEU score at the
same decoding speed. At small beams (decoding
time around 0.5 second), the improvement of trans-
lation quality is much bigger.

System BLEU(%) Time (s)
Traditional 29.8 0.84
Top-down 29.5 0.41
Bottom-up 30.6 0.81

Table 3: Performance comparison.
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Figure 5: BLEU score against decoding time with various
beam size.

5.3 Search Capacity Comparison

We also compare the search capacity of the bottom-
up decoder and the traditional decoder. We do this
in the following way: we let both decoders use the
same weights tuned on the traditional decoder, then
we compare their translation scores of the same test
sentence.

From the results in Table 4, we can see that for
many test sentences, the bottom-up decoder finds
target translations with higher score, which have
been ruled out by the traditional decoder. This may
result from more accurate pruning method. Yet for
some sentences, the traditional decoder can attain
higher translation score. The reason may be that the
traditional decoder can hold more than two nonter-
minals when cube pruning, while the bottom-up de-
coder always performs dual-arity pruning.

Next, we check whether higher translation scores
bring higher BLEU scores. We compute the BLEU
score of both decoders on the test sentence set on
which bottom-up decoder gets higher translation
scores than the traditional decoder does. We record
the results in Figure 6. The result shows that higher
score indeed bring higher BLEU score, but the im-
provement of BLEU score is not large. This is be-
cause the features we use don’t reflect the real statis-
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Figure 6: BLEU score with various beam sizes on the sub
test set consisting of sentences on which the bottom-up
decoder gets higher translation score than the traditional
decoder does.

b > = <

10 728 67% 347 32% 7 1%
20 657 61% 412 38% 13 1%
30 615 57% 446 41% 21 2%
40 526 49% 523 48% 33 3%
50 315 29% 705 65% 62 6%

Table 4: Search capacity comparison. The first column is
beam size, the following three columns denote the num-
ber of test sentences, on which the translation scores of
the bottom-up decoder are greater, equal to, lower than
that of the traditional decoder.

System BLEU(%) Time (s)
with 30.6 0.81
without 28.8 0.39

Table 5: Influence of future cost. The results of the
bottom-up decoder with and without future cost are given
in the second and three rows, respectively.

tical distribution of hypotheses well. In addition, the
weights are tuned on the traditional decoder, not on
the bottom-up decoder. The bottom-up decoder can
perform better with weights tuned by itself.

5.4 Influence of Future Cost

Next, we will show the impact of future cost via ex-
periments. We give the results of the bottom-up de-
coder with and without future cost in Table 5. From
the result, we can conclude that future cost plays a
significant role in decoding. If the bottom-up de-
coder does not employ future cost, its performance

will be influenced dramatically. Furthermore, cal-
culating dynamic future cost is time consuming. If
the bottom-up decoder does not use future cost, it
decodes faster than the top-down decoder. This is
because the top-down decoder has |T | beams, while
the bottom-up decoder has n beams, where T is the
source parse tree and n is the length of the source
sentence.

6 Conclusions

In this paper, we describe a bottom-up left-to-right
decoding algorithm for tree-to-string model. With
the help of viable prefixes, the algorithm generates
a translation by constructing a target-side CFG tree
according to a post-order traversal. In addition, it
takes into consideration a dynamic future cost to es-
timate hypotheses.

On the 2005 NIST Chinese-English MT transla-
tion test set, our decoder outperforms the top-down
decoder and the traditional decoder by 1.1 and 0.8
BLEU points respectively and shows more powerful
search ability. Experiments also prove that future
cost is important for more accurate pruning.
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Abstract

Single-word vector space models have been
very successful at learning lexical informa-
tion. However, they cannot capture the com-
positional meaning of longer phrases, prevent-
ing them from a deeper understanding of lan-
guage. We introduce a recursive neural net-
work (RNN) model that learns compositional
vector representations for phrases and sen-
tences of arbitrary syntactic type and length.
Our model assigns a vector and a matrix to ev-
ery node in a parse tree: the vector captures
the inherent meaning of the constituent, while
the matrix captures how it changes the mean-
ing of neighboring words or phrases. This
matrix-vector RNN can learn the meaning of
operators in propositional logic and natural
language. The model obtains state of the art
performance on three different experiments:
predicting fine-grained sentiment distributions
of adverb-adjective pairs; classifying senti-
ment labels of movie reviews and classifying
semantic relationships such as cause-effect or
topic-message between nouns using the syn-
tactic path between them.

1 Introduction

Semantic word vector spaces are at the core of many
useful natural language applications such as search
query expansions (Jones et al., 2006), fact extrac-
tion for information retrieval (Paşca et al., 2006)
and automatic annotation of text with disambiguated
Wikipedia links (Ratinov et al., 2011), among many
others (Turney and Pantel, 2010). In these mod-
els the meaning of a word is encoded as a vector
computed from co-occurrence statistics of a word
and its neighboring words. Such vectors have been
shown to correlate well with human judgments of
word similarity (Griffiths et al., 2007).

…      very                        good                           movie          ...
       (  a  ,  A  )                (  b  ,  B  )                     (  c  ,  C  )  

Recursive Matrix-Vector Model

f(Ba, Ab)=

 Ba=                        Ab=

- vector

- matrix
...

…

Figure 1: A recursive neural network which learns se-
mantic vector representations of phrases in a tree struc-
ture. Each word and phrase is represented by a vector
and a matrix, e.g., very = (a,A). The matrix is applied
to neighboring vectors. The same function is repeated to
combine the phrase very good with movie.

Despite their success, single word vector models
are severely limited since they do not capture com-
positionality, the important quality of natural lan-
guage that allows speakers to determine the meaning
of a longer expression based on the meanings of its
words and the rules used to combine them (Frege,
1892). This prevents them from gaining a deeper
understanding of the semantics of longer phrases or
sentences. Recently, there has been much progress
in capturing compositionality in vector spaces, e.g.,
(Mitchell and Lapata, 2010; Baroni and Zamparelli,
2010; Zanzotto et al., 2010; Yessenalina and Cardie,
2011; Socher et al., 2011c) (see related work). We
extend these approaches with a more general and
powerful model of semantic composition.

We present a novel recursive neural network
model for semantic compositionality. In our context,
compositionality is the ability to learn compositional
vector representations for various types of phrases
and sentences of arbitrary length. Fig. 1 shows an
illustration of the model in which each constituent
(a word or longer phrase) has a matrix-vector (MV)
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representation. The vector captures the meaning of
that constituent. The matrix captures how it modifies
the meaning of the other word that it combines with.
A representation for a longer phrase is computed
bottom-up by recursively combining the words ac-
cording to the syntactic structure of a parse tree.
Since the model uses the MV representation with a
neural network as the final merging function, we call
our model a matrix-vector recursive neural network
(MV-RNN).

We show that the ability to capture semantic com-
positionality in a syntactically plausible way trans-
lates into state of the art performance on various
tasks. The first experiment demonstrates that our
model can learn fine-grained semantic composition-
ality. The task is to predict a sentiment distribution
over movie reviews of adverb-adjective pairs such as
unbelievably sad or really awesome. The MV-RNN
is the only model that is able to properly negate sen-
timent when adjectives are combined with not. The
MV-RNN outperforms previous state of the art mod-
els on full sentence sentiment prediction of movie
reviews. The last experiment shows that the MV-
RNN can also be used to find relationships between
words using the learned phrase vectors. The rela-
tionship between words is recursively constructed
and composed by words of arbitrary type in the
variable length syntactic path between them. On
the associated task of classifying relationships be-
tween nouns in arbitrary positions of a sentence the
model outperforms all previous approaches on the
SemEval-2010 Task 8 competition (Hendrickx et al.,
2010). It outperforms all but one of the previous ap-
proaches without using any hand-designed semantic
resources such as WordNet or FrameNet. By adding
WordNet hypernyms, POS and NER tags our model
outperforms the state of the art that uses significantly
more resources. The code for our model is available
at www.socher.org.

2 MV-RNN: A Recursive Matrix-Vector
Model

The dominant approach for building representations
of multi-word units from single word vector repre-
sentations has been to form a linear combination of
the single word representations, such as a sum or
weighted average. This happens in information re-

trieval and in various text similarity functions based
on lexical similarity. These approaches can work
well when the meaning of a text is literally “the sum
of its parts”, but fails when words function as oper-
ators that modify the meaning of another word: the
meaning of “extremely strong” cannot be captured
as the sum of word representations for “extremely”
and “strong.”

The model of Socher et al. (2011c) provided a
new possibility for moving beyond a linear combi-
nation, through use of a matrix W that multiplied
the word vectors (a, b), and a nonlinearity function
g (such as a sigmoid or tanh). They compute the
parent vector p that describes both words as

p = g

(
W

[
a
b

])
(1)

and apply this function recursively inside a binarized
parse tree so that it can compute vectors for multi-
word sequences. Even though the nonlinearity al-
lows to express a wider range of functions, it is al-
most certainly too much to expect a single fixed W
matrix to be able to capture the meaning combina-
tion effects of all natural language operators. After
all, inside the function g, we have the same linear
transformation for all possible pairs of word vectors.

Recent work has started to capture the behavior
of natural language operators inside semantic vec-
tor spaces by modeling them as matrices, which
would allow a matrix for “extremely” to appropri-
ately modify vectors for “smelly” or “strong” (Ba-
roni and Zamparelli, 2010; Zanzotto et al., 2010).
These approaches are along the right lines but so
far have been restricted to capture linear functions
of pairs of words whereas we would like nonlinear
functions to compute compositional meaning repre-
sentations for multi-word phrases or full sentences.

The MV-RNN combines the strengths of both of
these ideas by (i) assigning a vector and a matrix to
every word and (ii) learning an input-specific, non-
linear, compositional function for computing vector
and matrix representations for multi-word sequences
of any syntactic type. Assigning vector-matrix rep-
resentations to all words instead of only to words of
one part of speech category allows for greater flex-
ibility which benefits performance. If a word lacks
operator semantics, its matrix can be an identity ma-
trix. However, if a word acts mainly as an operator,
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such as “extremely”, its vector can become close to
zero, while its matrix gains a clear operator mean-
ing, here magnifying the meaning of the modified
word in both positive and negative directions.

In this section we describe the initial word rep-
resentations, the details of combining two words as
well as the multi-word extensions. This is followed
by an explanation of our training procedure.

2.1 Matrix-Vector Neural Word Representation

We represent a word as both a continuous vector
and a matrix of parameters. We initialize all word
vectors x ∈ Rn with pre-trained 50-dimensional
word vectors from the unsupervised model of Col-
lobert and Weston (2008). Using Wikipedia text,
their model learns word vectors by predicting how
likely it is for each word to occur in its context. Sim-
ilar to other local co-occurrence based vector space
models, the resulting word vectors capture syntactic
and semantic information. Every word is also asso-
ciated with a matrix X . In all experiments, we ini-
tialize matrices as X = I+ ε, i.e., the identity plus a
small amount of Gaussian noise. If the vectors have
dimensionality n, then each word’s matrix has di-
mensionality X ∈ Rn×n. While the initialization is
random, the vectors and matrices will subsequently
be modified to enable a sequence of words to com-
pose a vector that can predict a distribution over se-
mantic labels. Henceforth, we represent any phrase
or sentence of length m as an ordered list of vector-
matrix pairs ((a,A), . . . , (m,M)), where each pair
is retrieved based on the word at that position.

2.2 Composition Models for Two Words

We first review composition functions for two
words. In order to compute a parent vector p from
two consecutive words and their respective vectors
a and b, Mitchell and Lapata (2010) give as their
most general function: p = f(a, b, R,K),where R
is the a-priori known syntactic relation and K is
background knowledge.

There are many possible functions f . For our
models, there is a constraint on p which is that it
has the same dimensionality as each of the input
vectors. This way, we can compare p easily with
its children and p can be the input to a composition
with another word. The latter is a requirement that
will become clear in the next section. This excludes

tensor products which were outperformed by sim-
pler weighted addition and multiplication methods
in (Mitchell and Lapata, 2010).

We will explore methods that do not require
any manually designed semantic resources as back-
ground knowledge K. No explicit knowledge about
the type of relation R is used. Instead we want the
model to capture this implicitly via the learned ma-
trices. We propose the following combination func-
tion which is input dependent:

p = fA,B(a, b) = f(Ba,Ab) = g

(
W

[
Ba
Ab

])
,

(2)
whereA,B are matrices for single words, the global
W ∈ Rn×2n is a matrix that maps both transformed
words back into the same n-dimensional space. The
element-wise function g could be simply the identity
function but we use instead a nonlinearity such as
the sigmoid or hyperbolic tangent tanh. Such a non-
linearity will allow us to approximate a wider range
of functions beyond purely linear functions. We can
also add a bias term before applying g but omit this
for clarity. Rewriting the two transformed vectors as
one vector z, we get p = g(Wz) which is a single
layer neural network. In this model, the word ma-
trices can capture compositional effects specific to
each word, whereas W captures a general composi-
tion function.

This function builds upon and generalizes several
recent models in the literature. The most related
work is that of (Mitchell and Lapata, 2010; Zan-
zotto et al., 2010) who introduced and explored the
composition function p = Ba + Ab for word pairs.
This model is a special case of Eq. 2 when we set
W = [II] (i.e. two concatenated identity matri-
ces) and g(x) = x (the identity function). Baroni
and Zamparelli (2010) computed the parent vector
of adjective-noun pairs by p = Ab, where A is an
adjective matrix and b is a vector for a noun. This
cannot capture nouns modifying other nouns, e.g.,
disk drive. This model too is a special case of the
above model with B = 0n×n. Lastly, the models of
(Socher et al., 2011b; Socher et al., 2011c; Socher et
al., 2011a) as described above are also special cases
with bothA andB set to the identity matrix. We will
compare to these special cases in our experiments.
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…  very      good    movie   …
   (a , A)     (b , B)    (c , C)  

Matrix-Vector Recursive Neural Network

(p1 , P1)

( p2, P2  ) p2  = g(W                )
P2 =  WM

Cp1 
P1c[   ]
P1

C[   ]

Figure 2: Example of how the MV-RNN merges a phrase
with another word at a nonterminal node of a parse tree.

2.3 Recursive Compositions of Multiple Words
and Phrases

This section describes how we extend a word-pair
matrix-vector-based compositional model to learn
vectors and matrices for longer sequences of words.
The main idea is to apply the same function f to
pairs of constituents in a parse tree. For this to
work, we need to take as input a binary parse tree
of a phrase or sentence and also compute matrices at
each nonterminal parent node. The function f can
be readily used for phrase vectors since it is recur-
sively compatible (p has the same dimensionality as
its children). For computing nonterminal phrase ma-
trices, we define the function

P = fM (A,B) = WM

[
A
B

]
, (3)

where WM ∈ Rn×2n, so P ∈ Rn×n just like each
input matrix.

After two words form a constituent in the parse
tree, this constituent can now be merged with an-
other one by applying the same functions f and
fM . For instance, to compute the vectors and ma-
trices depicted in Fig. 2, we first merge words a
and b and their matrices: p1 = f(Ba,Ab), P1 =
fM (A,B). The resulting vector-matrix pair (p1, P1)
can now be used to compute the full phrase when
combining it with word c and computing p2 =
f(Cp1, P1c), P2 = fM (P1, C). The model com-
putes vectors and matrices in a bottom-up fashion,
applying the functions f, fM to its own previous out-
put (i.e. recursively) until it reaches the top node of
the tree which represents the entire sentence.

For experiments with longer sequences we will
compare to standard RNNs and the special case of
the MV-RNN that computes the parent by p = Ab+

Ba, which we name the linear Matrix-Vector Re-
cursion model (linear MVR). Previously, this model
had not been trained for multi-word sequences. Sec.
6 talks about alternatives for compositionality.

2.4 Objective Functions for Training

One of the advantages of RNN-based models is that
each node of a tree has associated with it a dis-
tributed vector representation (the parent vector p)
which can also be seen as features describing that
phrase. We train these representations by adding on
top of each parent node a simple softmax classifier
to predict a class distribution over, e.g., sentiment or
relationship classes: d(p) = softmax(W labelp). If
there are K labels, then d ∈ RK is a K-dimensional
multinomial distribution. For the applications below
(excluding logic), the corresponding error function
E(s, t, θ) that we minimize for a sentence s and its
tree t is the sum of cross-entropy errors at all nodes.

The only other methods that use this type of ob-
jective function are (Socher et al., 2011b; Socher
et al., 2011c), who also combine it with either a
score or reconstruction error. Hence, for compar-
isons to other related work, we need to merge vari-
ations of computing the parent vector p with this
classifier. The main difference is that the MV-RNN
has more flexibility since it has an input specific re-
cursive function fA,B to compute each parent. In
the following applications, we will use the softmax
classifier to predict both sentiment distributions and
noun-noun relationships.

2.5 Learning

Let θ = (W,WM ,W
label, L, LM ) be our model pa-

rameters and λ a vector with regularization hyperpa-
rameters for all model parameters. L andLM are the
sets of all word vectors and word matrices. The gra-
dient of the overall objective function J becomes:

∂J

∂θ
=

1

N

∑
(x,t)

∂E(x, t; θ)

∂θ
+ λθ. (4)

To compute this gradient, we first compute all tree
nodes (pi, Pi) from the bottom-up and then take
derivatives of the softmax classifiers at each node
in the tree from the top down. Derivatives are com-
puted efficiently via backpropagation through struc-
ture (Goller and Küchler, 1996). Even though the
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objective is not convex, we found that L-BFGS run
over the complete training data (batch mode) mini-
mizes the objective well in practice and convergence
is smooth. For more information see (Socher et al.,
2010).

2.6 Low-Rank Matrix Approximations

If every word is represented by an n-dimensional
vector and additionally by an n × n matrix, the di-
mensionality of the whole model may become too
large with commonly used vector sizes of n = 100.
In order to reduce the number of parameters, we rep-
resent word matrices by the following low-rank plus
diagonal approximation:

A = UV + diag(a), (5)

where U ∈ Rn×r, V ∈ Rr×n, a ∈ Rn and we set
the rank for all experiments to r = 3.

2.7 Discussion: Evaluation and Generality

Evaluation of compositional vector spaces is a com-
plex task. Most related work compares similarity
judgments of unsupervised models to those of hu-
man judgments and aims at high correlation. These
evaluations can give important insights. However,
even with good correlation the question remains
how these models would perform on downstream
NLP tasks such as sentiment detection. We ex-
perimented with unsupervised learning of general
vector-matrix representations by having the MV-
RNN predict words in their correct context. Ini-
tializing the models with these general representa-
tions, did not improve the performance on the tasks
we consider. For sentiment analysis, this is not sur-
prising since antonyms often get similar vectors dur-
ing unsupervised learning from co-occurrences due
to high similarity of local syntactic contexts. In our
experiments, the high prediction performance came
from supervised learning of meaning representations
using labeled data. While these representations are
task-specific, they could be used across tasks in a
multi-task learning setup. However, in order to fairly
compare to related work, we use only the super-
vised data of each task. Before we describe our full-
scale experiments, we analyze the model’s expres-
sive powers.

3 Model Analysis

This section analyzes the model with two proof-of-
concept studies. First, we examine its ability to learn
operator semantics for adverb-adjective pairs. If a
model cannot correctly capture how an adverb op-
erates on the meaning of adjectives, then there’s lit-
tle chance it can learn operators for more complex
relationships. The second study analyzes whether
the MV-RNN can learn simple boolean operators of
propositional logic such as conjunctives or negation
from truth values. Again, if a model did not have this
ability, then there’s little chance it could learn these
frequently occurring phenomena from the noisy lan-
guage of real texts such as movie reviews.

3.1 Predicting Sentiment Distributions of
Adverb-Adjective Pairs

The first study considers the prediction of fine-
grained sentiment distributions of adverb-adjective
pairs and analyzes different possibilities for com-
puting the parent vector p. The results show that
the MV-RNN operators are powerful enough to cap-
ture the operational meanings of various types of ad-
verbs. For example, very is an intensifier, pretty is an
attenuator, and not can negate or strongly attenuate
the positivity of an adjective. For instance not great
is still pretty good and not terrible; see Potts (2010)
for details.

We use a publicly available IMDB dataset of ex-
tracted adverb-adjective pairs from movie reviews.1

The dataset provides the distribution over star rat-
ings: Each consecutive word pair appears a certain
number of times in reviews that have also associ-
ated with them an overall rating of the movie. After
normalizing by the total number of occurrences, one
gets a multinomial distribution over ratings. Only
word pairs that appear at least 50 times are kept. Of
the remaining pairs, we use 4211 randomly sampled
ones for training and a separate set of 1804 for test-
ing. We never give the algorithm sentiment distribu-
tions for single words, and, while single words over-
lap between training and testing, the test set consists
of never before seen word pairs.

The softmax classifier is trained to minimize the
cross entropy error. Hence, an evaluation in terms of
KL-divergence is the most reasonable choice. It is

1http://compprag.christopherpotts.net/reviews.html
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Method Avg KL
Uniform 0.327
Mean train 0.193
p = 1

2(a+ b) 0.103
p = a⊗ b 0.103
p = [a; b] 0.101
p = Ab 0.103
RNN 0.093
Linear MVR 0.092
MV-RNN 0.091
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Figure 3: Left: Average KL-divergence for predicting sentiment distributions of unseen adverb-adjective pairs of the
test set. See text for p descriptions. Lower is better. The main difference in the KL divergence comes from the few
negation pairs in the test set. Right: Predicting sentiment distributions (over 1-10 stars on the x-axis) of adverb-
adjective pairs. Each row has the same adverb and each column the same adjective. Many predictions are similar
between the two models. The RNN and linear MVR are not able to modify the sentiment correctly: not awesome is
more positive than fairly awesome and not annoying has a similar shape as unbelievably annoying. Predictions of the
linear MVR model are almost identical to the standard RNN for these examples.

defined as KL(g||p) =
∑

i gi log(gi/pi), where g is
the gold distribution and p is the predicted one.

We compare to several baselines and ablations of
the MV-RNN model. An (adverb,adjective) pair is
described by its vectors (a, b) and matrices (A,B).
1 p = 0.5(a+ b), vector average
2. p = a⊗ b, element-wise vector multiplication
3. p = [a; b], vector concatenation
4. p = Ab, similar to (Baroni and Lenci, 2010)
5. p = g(W [a; b]), RNN, similar to Socher et al.
6. p = Ab+Ba, Linear MVR, similar to (Mitchell
and Lapata, 2010; Zanzotto et al., 2010)
7. p = g(W [Ba;Ab]), MV-RNN
The final distribution is always predicted by a
softmax classifier whose inputs p vary for each of
the models. This objective function (see Sec. 2.4)
is different to all previously published work except
that of (Socher et al., 2011c).

We cross-validated all models over regulariza-
tion parameters for word vectors, the softmax clas-
sifier, the RNN parameter W and the word op-
erators (10−4, 10−3) and word vector sizes (n =
6, 8, 10, 12, 15, 20). All models performed best at
vector sizes of below 12. Hence, it is the model’s
power and not the number of parameters that deter-

mines the performance. The table in Fig. 3 shows
the average KL-divergence on the test set. It shows
that the idea of matrix-vector representations for all
words and having a nonlinearity are both impor-
tant. The MV-RNN which combines these two ideas
is best able to learn the various compositional ef-
fects. The main difference in KL divergence comes
from the few negation cases in the test set. Fig. 3
shows examples of predicted distributions. Many
of the predictions are accurate and similar between
the top models. However, only the MV-RNN has
enough expressive power to allow negation to com-
pletely shift the sentiment with respect to an adjec-
tive. A negated adjective carrying negative senti-
ment becomes slightly positive, whereas not awe-
some is correctly attenuated. All three top models
correctly capture the U-shape of unbelievably sad.
This pair peaks at both the negative and positive
spectrum because it is ambiguous. When referring
to the performance of actors, it is very negative, but,
when talking about the plot, many people enjoy sad
and thought-provoking movies. The p = Ab model
does not perform well because it cannot model the
fact that for an adjective like “sad,” the operator of
“unbelievably” behaves differently.
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false ∧ false

false

true ∧ false
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false ∧ true

true

true ∧ true

true

¬ false

false

¬ true

Figure 4: Training trees for the MV-RNN to learn propositional operators. The model learns vectors and operators for
∧ (and) and ¬ (negation). The model outputs the exact representations of false and true respectively at the top node.
Hence, the operators can be combined recursively an arbitrary number of times for more complex logical functions.

3.2 Logic- and Vector-based Compositionality

Another natural question is whether the MV-RNN
can, in general, capture some of the simple boolean
logic that is sometimes found in language. In other
words, can it learn some of the propositional logic
operators such as and, or, not in terms of vectors and
matrices from a few examples. Answering this ques-
tion can also be seen as a first step towards bridg-
ing the gap between logic-based, formal semantics
(Montague, 1974) and vector space models.

The logic-based view of language accounts nicely
for compositionality by directly mapping syntac-
tic constituents to lambda calculus expressions. At
the word level, the focus is on function words, and
nouns and adjectives are often defined only in terms
of the sets of entities they denote in the world. Most
words are treated as atomic symbols with no rela-
tion to each other. There have been many attempts
at automatically parsing natural language to a logi-
cal form using recursive compositional rules.

Conversely, vector space models have the attrac-
tive property that they can automatically extract
knowledge from large corpora without supervision.
Unlike logic-based approaches, these models allow
us to make fine-grained statements about the seman-
tic similarity of words which correlate well with hu-
man judgments (Griffiths et al., 2007). Logic-based
approaches are often seen as orthogonal to distribu-
tional vector-based approaches. However, Garrette
et al. (2011) recently introduced a combination of a
vector space model inside a Markov Logic Network.

One open question is whether vector-based mod-
els can learn some of the simple logic encountered
in language such as negation or conjunctives. To
this end, we illustrate in a simple example that our
MV-RNN model and its learned word matrices (op-
erators) have the ability to learn propositional logic
operators such as ∧,∨,¬ (and, or, not). This is a
necessary (though not sufficient) condition for the
ability to pick up these phenomena in real datasets

and tasks such as sentiment detection which we fo-
cus on in the subsequent sections.

Our setup is as follows. We train on 6 strictly
right-branching trees as in Fig. 4. We consider the 1-
dimensional case and fix the representation for true
to (t = 1, T = 1) and false to (f = 0, F = 1).
Fixing the operators to the 1 × 1 identity matrix 1
is essentially ignoring them. The objective is then
to create a perfect reconstruction of (t, T ) or (f, F )
(depending on the formula), which we achieve by
the least squares error between the top vector’s rep-
resentation and the corresponding truth value, e.g.
for ¬false: min ||ptop − t||2 + ||Ptop − T ||2.

As our function g (see Eq. 2), we use a linear
threshold unit: g(x) = max(min(x, 1), 0). Giving
the derivatives computed for the objective function
for the examples in Fig. 4 to a standard L-BFGS op-
timizer quickly yields a training error of 0. Hence,
the output of these 6 examples has exactly one of the
truth representations, making it recursively compati-
ble with further combinations of operators. Thus, we
can combine these operators to construct any propo-
sitional logic function of any number of inputs (in-
cluding xor). Hence, this MV-RNN is complete in
terms of propositional logic.

4 Predicting Movie Review Ratings

In this section, we analyze the model’s performance
on full length sentences. We compare to previous
state of the art methods on a standard benchmark
dataset of movie reviews (Pang and Lee, 2005; Nak-
agawa et al., 2010; Socher et al., 2011c). This
dataset consists of 10,000 positive and negative sin-
gle sentences describing movie sentiment. In this
and the next experiment we use binarized trees from
the Stanford Parser (Klein and Manning, 2003). We
use the exact same setup and parameters (regulariza-
tion, word vector size, etc.) as the published code of
Socher et al. (2011c).2

2www.socher.org
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Method Acc.
Tree-CRF (Nakagawa et al., 2010) 77.3
RAE (Socher et al., 2011c) 77.7
Linear MVR 77.1
MV-RNN 79.0

Table 1: Accuracy of classification on full length movie
review polarity (MR).

S. C. Review sentence
1

√
The film is bright and flashy in all the right ways.

0
√

Not always too whimsical for its own good this
strange hybrid of crime thriller, quirky character
study, third-rate romance and female empowerment
fantasy never really finds the tonal or thematic glue
it needs.

0
√

Doesn’t come close to justifying the hype that sur-
rounded its debut at the Sundance film festival two
years ago.

0 x Director Hoffman, his writer and Kline’s agent
should serve detention.

1 x A bodice-ripper for intellectuals.

Table 2: Hard movie review examples of positive (1) and
negative (0) sentiment (S.) that of all methods only the
MV-RNN predicted correctly (C:

√
) or could not classify

as correct either (C: x).

Table 1 shows comparisons to the system of (Nak-
agawa et al., 2010), a dependency tree based classifi-
cation method that uses CRFs with hidden variables.
The state of the art recursive autoencoder model of
Socher et al. (2011c) obtained 77.7% accuracy. Our
new MV-RNN gives the highest performance, out-
performing also the linear MVR (Sec. 2.2).

Table 2 shows several hard examples that only the
MV-RNN was able to classify correctly. None of the
methods correctly classified the last two examples
which require more world knowledge.

5 Classification of Semantic Relationships

The previous task considered global classification of
an entire phrase or sentence. In our last experiment
we show that the MV-RNN can also learn how a syn-
tactic context composes an aggregate meaning of the
semantic relationships between words. In particular,
the task is finding semantic relationships between
pairs of nominals. For instance, in the sentence
“My [apartment]e1 has a pretty large [kitchen]e2.”,
we want to predict that the kitchen and apartment are
in a component-whole relationship. Predicting such

…          the [movie] showed [wars]    …

MV-RNN for Relationship Classification
…

…

Classifier: Message-Topic

Figure 5: The MV-RNN learns vectors in the path con-
necting two words (dotted lines) to determine their se-
mantic relationship. It takes into consideration a variable
length sequence of various word types in that path.

semantic relations is useful for information extrac-
tion and thesaurus construction applications. Many
approaches use features for all words on the path
between the two words of interest. We show that
by building a single compositional semantics for the
minimal constituent including both terms one can
achieve a higher performance.

This task requires the ability to deal with se-
quences of words of arbitrary type and length in be-
tween the two nouns in question.Fig. 5 explains our
method for classifying nominal relationships. We
first find the path in the parse tree between the two
words whose relation we want to classify. We then
select the highest node of the path and classify the
relationship using that node’s vector as features. We
apply the same type of MV-RNN model as in senti-
ment to the subtree spanned by the two words.

We use the dataset and evaluation framework
of SemEval-2010 Task 8 (Hendrickx et al., 2010).
There are 9 ordered relationships (with two direc-
tions) and an undirected other class, resulting in
19 classes. Among the relationships are: message-
topic, cause-effect, instrument-agency (etc. see Ta-
ble 3 for list). A pair is counted as correct if the
order of the words in the relationship is correct.

Table 4 lists results for several competing meth-
ods together with the resources and features used
by each method. We compare to the systems of
the competition which are described in Hendrickx
et al. (2010) as well as the RNN and linear MVR.
Most systems used a considerable amount of hand-
designed semantic resources. In contrast to these
methods, the MV-RNN only needs a parser for the
tree structure and learns all semantics from unla-
beled corpora and the training data. Only the Se-
mEval training dataset is specific to this task, the re-
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Relationship Sentence with labeled nouns for which to predict relationships
Cause-Effect(e2,e1) Avian [influenza]e1 is an infectious disease caused by type a strains of the influenza [virus]e2.
Entity-Origin(e1,e2) The [mother]e1 left her native [land]e2 about the same time and they were married in that city.
Message-Topic(e2,e1) Roadside [attractions]e1 are frequently advertised with [billboards]e2 to attract tourists.
Product-Producer(e1,e2) A child is told a [lie]e1 for several years by their [parents]e2 before he/she realizes that ...
Entity-Destination(e1,e2) The accident has spread [oil]e1 into the [ocean]e2.
Member-Collection(e2,e1) The siege started, with a [regiment]e1 of lightly armored [swordsmen]e2 ramming down the gate.
Instrument-Agency(e2,e1) The core of the [analyzer]e1 identifies the paths using the constraint propagation [method]e2.
Component-Whole(e2,e1) The size of a [tree]e1 [crown]e2 is strongly correlated with the growth of the tree.
Content-Container(e1,e2) The hidden [camera]e1, found by a security guard, was hidden in a business card-sized [leaflet

box]e2 placed at an unmanned ATM in Tokyo’s Minato ward in early September.

Table 3: Examples of correct classifications of ordered, semantic relations between nouns by the MV-RNN. Note that
the final classifier is a recursive, compositional function of all the words in the syntactic path between the bracketed
words. The paths vary in length and the words vary in type.

Classifier Feature Sets F1
SVM POS, stemming, syntactic patterns 60.1
SVM word pair, words in between 72.5
SVM POS, WordNet, stemming, syntactic

patterns
74.8

SVM POS, WordNet, morphological fea-
tures, thesauri, Google n-grams

77.6

MaxEnt POS, WordNet, morphological fea-
tures, noun compound system, the-
sauri, Google n-grams

77.6

SVM POS, WordNet, prefixes and other
morphological features, POS, depen-
dency parse features, Levin classes,
PropBank, FrameNet, NomLex-Plus,
Google n-grams, paraphrases, Tex-
tRunner

82.2

RNN - 74.8
Lin.MVR - 73.0
MV-RNN - 79.1
RNN POS,WordNet,NER 77.6
Lin.MVR POS,WordNet,NER 78.7
MV-RNN POS,WordNet,NER 82.4

Table 4: Learning methods, their feature sets and F1
results for predicting semantic relations between nouns.
The MV-RNN outperforms all but one method without
any additional feature sets. By adding three such features,
it obtains state of the art performance.

maining inputs and the training setup are the same
as in previous sentiment experiments.

The best method on this dataset (Rink and
Harabagiu, 2010) obtains 82.2% F1. In order to
see whether our system can improve over this sys-
tem, we added three features to the MV-RNN vec-
tor and trained another softmax classifier. The fea-
tures and their performance increases were POS tags
(+0.9); WordNet hypernyms (+1.3) and named en-

tity tags (NER) of the two words (+0.6). Features
were computed using the code of Ciaramita and Al-
tun (2006).3 With these features, the performance
improved over the state of the art system. Table 3
shows random correct classification examples.

6 Related work

Distributional approaches have become omnipresent
for the recognition of semantic similarity between
words and the treatment of compositionality has
seen much progress in recent years. Hence, we can-
not do justice to the large amount of literature. Com-
monly, single words are represented as vectors of
distributional characteristics – e.g., their frequencies
in specific syntactic relations or their co-occurrences
with given context words (Pado and Lapata, 2007;
Baroni and Lenci, 2010; Turney and Pantel, 2010).
These representations have proven very effective in
sense discrimination and disambiguation (Schütze,
1998), automatic thesaurus extraction (Lin, 1998;
Curran, 2004) and selectional preferences.

There are several sophisticated ideas for com-
positionality in vector spaces. Mitchell and Lap-
ata (2010) present an overview of the most impor-
tant compositional models, from simple vector ad-
dition and component-wise multiplication to tensor
products, and convolution (Metcalfe, 1990). They
measured the similarity between word pairs such
as compound nouns or verb-object pairs and com-
pared these with human similarity judgments. Sim-
ple vector averaging or multiplication performed
best, hence our focus on related baselines above.

3sourceforge.net/projects/supersensetag/
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Other important models are tensor products (Clark
and Pulman, 2007), quantum logic (Widdows,
2008), holographic reduced representations (Plate,
1995) and the Compositional Matrix Space model
(Rudolph and Giesbrecht, 2010). RNNs are related
to autoencoder models such as the recursive autoas-
sociative memory (RAAM) (Pollack, 1990) or recur-
rent neural networks (Elman, 1991). Bottou (2011)
and Hinton (1990) discussed related models such as
recursive autoencoders for text understanding.

Our model builds upon and generalizes the mod-
els of (Mitchell and Lapata, 2010; Baroni and Zam-
parelli, 2010; Zanzotto et al., 2010; Socher et al.,
2011c) (see Sec. 2.2). We compare to them in
our experiments. Yessenalina and Cardie (2011) in-
troduce a sentiment analysis model that describes
words as matrices and composition as matrix mul-
tiplication. Since matrix multiplication is associa-
tive, this cannot capture different scopes of nega-
tion or syntactic differences. Their model, is a spe-
cial case of our encoding model (when you ignore
vectors, fix the tree to be strictly branching in one
direction and use as the matrix composition func-
tion P = AB). Since our classifiers are trained on
the vectors, we cannot compare to this approach di-
rectly. Grefenstette and Sadrzadeh (2011) learn ma-
trices for verbs in a categorical model. The trained
matrices improve correlation with human judgments
on the task of identifying relatedness of subject-
verb-object triplets.

7 Conclusion

We introduced a new model towards a complete
treatment of compositionality in word vector spaces.
Our model builds on a syntactically plausible parse
tree and can handle compositional phenomena. The
main novelty of our model is the combination of
matrix-vector representations with a recursive neu-
ral network. It can learn both the meaning vectors of
a word and how that word modifies its neighbors (via
its matrix). The MV-RNN combines attractive the-
oretical properties with good performance on large,
noisy datasets. It generalizes several models in the
literature, can learn propositional logic, accurately
predicts sentiment and can be used to classify se-
mantic relationships between nouns in a sentence.
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Abstract

Existing vector space models typically map
synonyms and antonyms to similar word vec-
tors, and thus fail to represent antonymy. We
introduce a new vector space representation
where antonyms lie on opposite sides of a
sphere: in the word vector space, synonyms
have cosine similarities close to one, while
antonyms are close to minus one.

We derive this representation with the aid of a
thesaurus and latent semantic analysis (LSA).
Each entry in the thesaurus – a word sense
along with its synonyms and antonyms – is
treated as a “document,” and the resulting doc-
ument collection is subjected to LSA. The key
contribution of this work is to show how to as-
sign signs to the entries in the co-occurrence
matrix on which LSA operates, so as to induce
a subspace with the desired property.

We evaluate this procedure with the Grad-
uate Record Examination questions of (Mo-
hammed et al., 2008) and find that the method
improves on the results of that study. Further
improvements result from refining the sub-
space representation with discriminative train-
ing, and augmenting the training data with
general newspaper text. Altogether, we im-
prove on the best previous results by 11 points
absolute in F measure.

1 Introduction

Vector space representations have proven useful
across a wide variety of text processing applications
ranging from document clustering to search rele-
vance measurement. In these applications, text is

represented as a vector in a multi-dimensional con-
tinuous space, and a similarity metric such as co-
sine similarity can be used to measure the related-
ness of different items. Vector space representations
have been used both at the document and word lev-
els. At the document level, they are effective for
applications including information retrieval (Salton
and McGill, 1983; Deerwester et al., 1990), docu-
ment clustering (Deerwester et al., 1990; Xu et al.,
2003), search relevance measurement (Baeza-Yates
and Ribiero-Neto, 1999) and cross-lingual docu-
ment retrieval (Platt et al., 2010). At the word level,
vector representations have been used to measure
word similarity (Deerwester et al., 1990; Turney and
Littman, 2005; Turney, 2006; Turney, 2001; Lin,
1998; Agirre et al., 2009; Reisinger and Mooney,
2010) and for language modeling (Bellegarda, 2000;
Coccaro and Jurafsky, 1998). While quite success-
ful, these applications have typically been consistent
with a very general notion of similarity in which
basic association is measured, and finer shades of
meaning need not be distinguished. For example,
latent semantic analysis might assign a high degree
of similarity to opposites as well as synonyms (Lan-
dauer and Laham, 1998; Landauer, 2002).

Independent of vector-space representations, a
number of authors have focused on identifying dif-
ferent kinds of relatedness. At the simplest level,
we may wish to distinguish between synonyms and
antonyms, which can be further differentiated. For
example, in synonymy, we may wish to distinguish
hyponyms and hypernyms. Moreover, Cruse (1986)
notes that numerous kinds of antonymy are possible,
for example antipodal pairs like “top-bottom” or
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gradable opposites like “light-heavy.” Work in this
area includes (Turney, 2001; Lin et al., 2003; Tur-
ney and Littman, 2005; Turney, 2006; Curran and
Moens, 2002; van der Plas and Tiedemann, 2006;
Mohammed et al., 2008; Mohammed et al., 2011).
Despite the existence of a large amount of related
work in the literature, distinguishing synonyms and
antonyms is still considered as a difficult open prob-
lem in general (Poon and Domingos, 2009).

In this paper, we fuse these two strands of re-
search in an attempt to develop a vector space rep-
resentation in which the synonymy and antonymy
are naturally differentiated. We follow Schwab et
al. (2002) in requiring a representation in which
two lexical items in an antonymy relation should lie
at opposite ends of an axis. However, in contrast
to the logical axes used previously, we desire that
antonyms should lie at the opposite ends of a sphere
lying in a continuous and automatically induced vec-
tor space. To generate this vector space, we present
a novel method for assigning both negative and pos-
itive values to the TF-IDF weights used in latent se-
mantic analysis.

To determine these signed values, we exploit the
information present in a thesaurus. The result is a
vector space representation in which synonyms clus-
ter together, and the opposites of a word tend to clus-
ter together at the opposite end of a sphere.

This representation provides several advantages
over the raw thesaurus. First, by finding the items
most and least similar to a word, we are able to dis-
cover new synonyms and antonyms. Second, as dis-
cussed in Section 5, the representation provides a
natural starting point for gradient-descent based op-
timization. Thirdly, as we discuss in Section 6, it is
straightforward to embed new words into the derived
subspace by using information from a large unsuper-
vised text corpus such as Wikipedia.

The remainder of this paper is organized as fol-
lows. Section 2 describes previous work. Section 3
presents the classical LSA approach and analyzes
some of its limitations. In Section 4 we present our
polarity inducing extension to LSA. Section 5 fur-
ther extends the approach by optimizing the vector
space representation with supervised discriminative
training. Section 6 describes the proposed method of
embedding new words in the thesaurus-derived sub-
space. The experimental results of Section 7 indi-

cate that the proposed method outperforms previous
approaches on a GRE test of closest-opposites (Mo-
hammed et al., 2008). Finally, Section 8 concludes
the paper.

2 Related Work

The detection of antonymy has been studied in a
number of previous papers. Mohammed et al. (2008)
approach the problem by combining information
from a published thesaurus with corpus statistics de-
rived from the Google n-gram corpus (Brants and
Franz, 2006). Their method consists of two main
steps: first, detecting contrasting word categories
(e.g. “WORK” vs. “ACTIVITY FOR FUN”) and
then determining the degree of antonymy. Cate-
gories are defined by a thesaurus; contrasting cat-
egories are found by using affix rules (e.g., un- &
dis-) and WordNet antonymy links. Words belong-
ing to contrasting categories are treated as antonyms
and the degree of contrast is determined by distri-
butional similarity. Mohammed et al. (2008) also
provides a publicly available dataset for detection of
antonymy, which we have adopted. This work has
been extended in (Mohammed et al., 2011) to in-
clude a study of antonymy based on crowd-sourcing
experiments.

Turney (2008) proposes a unified approach to
handling analogies, synonyms, antonyms and asso-
ciations by transforming the last three cases into
cases of analogy. A supervised learning method
is then used to solve the resulting analogical prob-
lems. This is evaluated on a set of 136 ESL ques-
tions. Lin et al. (2003) builds on (Lin, 1998) and
identifies antonyms as semantically related words
which also happen to be found together in a database
in pre-identified phrases indicating opposition. Lin
et al. (2003) further note that whereas synonyms
will tend to translate to the same word in another
language, antonyms will not. This observation is
used to select antonyms from amongst distribution-
ally similar words. Antonymy is used in (de Si-
mone and Kazakov, 2005) for document clustering
and (Harabagiu et al., 2006) to find contradiction.

The automatic detection of synonyms has been
more extensively studied. Lin (1998) presents
a thorough comparison of word-similarity metrics
based on distributional similarity, where this is de-
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termined from co-occurrence statistics in depen-
dency triples extracted by parsing a large dataset.
Related studies are described in (Curran and Moens,
2002; van der Plas and Bouma, 2005). Later, van
der Plas and Tiedemann (2006) extend the use of
multilingual data present in Lin et al. (2003) by mea-
suring distributional similarity based on the contexts
that a word occurs in once translated into a new lan-
guage. This is used to improve the precision/recall
characteristics on synonym pairs. Structured infor-
mation can be important in determining relatedness,
and thesauri and Wikipedia links have been studied
in (Milne and Witten, 2008; Jarmasz and Szpakow-
icz, 2003). Combinations of approaches are studied
in (Turney et al., 2003).

Vector-space models and latent semantic analysis
in particular have a long history of use in synonym
detection, which in fact was suggested in some of
the earliest LSA papers. Deerwester et al. (1990)
defines a metric for measuring word similarity based
on LSA, and it has been used in (Landauer and Du-
mais, 1997; Landauer et al., 1998) to answer word
similarity questions derived from the Test of English
as a Foreign Language (TOEFL). Turney (2001)
proposes the use of point-wise mutual information in
conjunction with LSA, and again presents results on
synonym questions derived from the TOEFL. Vari-
ants of vector space models are further analyzed
in (Turney and Littman, 2005; Turney, 2006; Tur-
ney and Pantel, 2010).

3 Latent Semantic Analysis

Latent Semantic Analysis (Deerwester et al., 1990)
is a widely used method for representing words and
documents in a low dimensional vector space. The
method is based on applying singular value decom-
position (SVD) to a matrix W which indicates the
occurrence of words in documents. To perform
LSA, one proceeds as follows. The input is a col-
lection of d documents which are expressed in terms
of words from a vocabulary of size n. These docu-
ments may be actual documents such as newspaper
articles, or simply notional documents such as sen-
tences, or any other collection in which words are
grouped together. Next, a d×n document-term ma-

trix W is formed1. At its simplest form, the ijth

entry contains the number of times word j has oc-
curred in document i – its term frequency or TF
value. More conventionally, the entry is weighted
by some notion of the importance of word j, for ex-
ample the negative logarithm of the fraction of doc-
uments that contain it, resulting in a TF-IDF weight-
ing (Salton et al., 1975). The similarity between two
documents can be computed using the cosine simi-
larity of their corresponding row vectors:

sim(x,y) =
x · y

‖ x ‖‖ y ‖
Similarly, the cosine similarity of two column vec-
tors can be used to judge the similarity of the corre-
sponding words. Finally, to obtain a subspace repre-
sentation of dimension k, W is decomposed as

W ≈ USV T

where U is d × k, V T is k × n, and S is a k × k
diagonal matrix. In applications, k � n and k � d;
for example one might have a 50, 000 word vocab-
ulary and 1, 000, 000 documents and use a 300 di-
mensional subspace representation.

An important property of SVD is that the columns
of SV T – which now represent the words – behave
similarly to the original columns of W , in the sense
that the cosine similarity between two columns in
SV T approximates the cosine similarity between the
corresponding columns in W . This follows from
the observation that W TW = V S2V T , and the fact
that the ijth entry of W TW is the dot product of
the ith and jth columns (words) in W . We will
use this observation subsequently in the derivation
of polarity-inducing LSA. For efficiency, we nor-
malize the columns of SV T to unit length, allow-
ing the cosine similarity between two words to be
computed with a single dot-product; this also has the
property of mapping each word to a point on a multi-
dimensional sphere.

A second important property of LSA is that in the
word representations which result can by viewed as
the result of applying a projection matrix U to the
original vectors as:

UTW = SV T

1(Bellegarda, 2000) constructs the transpose of this, but we
have found it convenient in data processing for documents to
represent rows.
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In Section 5, we will viewU simply as a d×k matrix
learned through gradient descent so as to optimize
an objective function.

3.1 Limitation of LSA
Word similarity as determined by LSA assigns high
values to words which tend to co-occur in doc-
uments. However, as noted by (Landauer and
Laham, 1998; Landauer, 2002), there is no no-
tion of antonymy; words with low or negative co-
sine scores are simply unrelated. In comparison,
words with high cosine similarity scores are typi-
cally semantically related, which includes both syn-
onyms and antonyms, as contrasting words often co-
occur (Murphy and Andrew, 1993; Mohammed et
al., 2008). To illustrate this, we have performed
SVD with the aid of the Encarta thesaurus developed
by Bloomsbury Publishing Plc. This thesaurus con-
tains approximately 47k word senses and a vocab-
ulary of 50k words and phrases. Each “document”
is taken to be the thesaurus entry for a word-sense,
including synonyms and antonyms. For example,
the word “admirable” induces a document consist-
ing of {admirable, estimable, commendable, vener-
able, good, splendid, worthy, marvelous, excellent,
unworthy}. Note that the last word in this set is its
antonym. Performing SVD on this set of thesaurus
derived “meaning-documents” results in a subspace
representation for each word. This form of LSA is
similar to the use of Wikipedia in (Gabrilovich and
Markovitch, 2007).

Table 1 shows some words, their original the-
saurus documents, and the most and least similar
words in the LSA subspace. Several properties are
apparent:

• The vector-space representation of words is
able to identify related words that are not ex-
plicitly present in the original thesaurus. For
example, “meritorious” for “admirable” – ar-
guably better than any of the words given in the
thesaurus itself.

• Similarity is based on co-occurrence, so the
co-occurrence of antonyms in the thesaurus-
derived documents induces their presence as
LSA-similar words. For example, “con-
temptible” is identified as similar to “ad-
mirable.” In the case of “mourning,” opposites

acrimony rancor goodwill affection
acrimony 1 1 1 1
affection 1 1 1 1

Table 2: The W matrix for two thesaurus entries in
its original form. Rows represent documents; columns
words.

acrimony rancor goodwill affection
acrimony 1 1 -1 -1
affection -1 -1 1 1

Table 3: The W matrix for two thesaurus entries in its
polarity-inducing form.

such as “joy” and “elation” actually dominate
the list of LSA-similar words.

• The LSA-least-similar words have no relation-
ship at all to the word they are least-similar to.
For example, the least-similar word to “consid-
ered” is “ready-made-meal.”

In the next section, we will present a method for
inducing polarity in LSA subspaces, where opposite
words will tend to have negative cosine similarities,
analogous to the positive similarities of synonyms.
Thus, the least-similar words to a given word will be
its opposites.

4 Polarity Inducing LSA

We modify LSA so that we may exploit a thesaurus
to embed meaningful axes in the induced subspace
representation. Words with opposite meaning will
lie at opposite positions on a sphere. Recall that the
cosine similarity between word-vectors in the orig-
inal matrix W are preserved in the subspace repre-
sentation of words. Thus, if we construct the original
matrix so that the columns representing antonyms
will tend to have negative cosine similarities while
columns representing synonyms will tend to have
positive similarities, we will achieve the desired be-
havior.

This can be achieved by negating the TF-IDF en-
tries for the antonyms of a word when constructing
W from the thesaurus, which is illustrated in Ta-
bles 2 and 3. The two rows in these tables corre-
spond to thesaurus entries for the sense-categories
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Word Thesaurus Entry LSA Most-Similar Words LSA Least-Similar Words
admirable estimable, commendable,

venerable, good, splen-
did, worthy, marvelous,
excellent, unworthy

commendable, creditable,
laudable, praiseworthy,
worthy, meritorious,
scurvy, contemptible,
despicable, estimable

easy-on-the-eye, peace-
keeper, peace-lover,
conscientious-objector,
uninviting, dishy, dessert,
pudding, seductive

considered careful, measured, well-
thought-out, painstaking,
rash

calculated, premeditated,
planned, tactical, strate-
gic, thought-through, in-
tentional, fortuitous, pur-
poseful, unpremeditated

ready-made-meal, ready-
meal, disposed-to, apt-to,
wild-animals, big-game,
game-birds, game-fish,
rugger, rugby

mourning grief, bereavement, sor-
row, sadness, lamenta-
tion, woe, grieving, exul-
tation

sorrowfulness, anguish,
exultation, rejoicing, ju-
bilation, glee, heartache,
travail, joy, elation

muckiness, turn-the-
corner, impassibility,
filminess, pellucidity,
limpidity, sheerness

Table 1: LSA on a thesaurus. Thesaurus entries include antonyms in italics.

“acrimony,” and “affection.” The thesaurus entries
induce two “documents” containing the words and
their synonyms and antonyms. The complete set of
words is acrimony, rancor, goodwill, affection. For
simplicity, we assume that all TF-IDF weights are
1. In the original LSA formulation, we have the rep-
resentation of Table 2. “Rancor” is listed as a syn-
onym of “acrimony,” which has “goodwill” and “af-
fection” as its antonyms. This results in the first row.
Note that the cosine similarity between every pair of
words (columns) is 1.

Table 3 shows the polarity-inducing representa-
tion. Here, the cosine similarity between synony-
mous words (columns) is 1, and the cosine similarity
between antonymous words is -1. Since LSA tends
to preserve cosine similarities between words, in the
resulting subspace we may expect to find meaning-
ful axes, where opposite senses map to opposite ex-
tremes. We refer to this as polarity-inducing LSA or
PILSA.

In Table 4, we show the PILSA-similar and
PILSA-least-similar words for the same words as in
Table 1. We see now that words which are least
similar in the sense of having the lowest cosine-
similarity are indeed opposites. In this table gen-
erally the most similar words have similarities in the
range of 0.7 to 1.0 and the least similar in the range
of -0.7 to -1.0.

5 Discriminative Training

Although the cosine similarity of LSA-derived word
vectors are generally very effective in applications
such as judging the relevance of words or docu-
ments, or detecting antonyms as in our construction,
the process of singular value decomposition in LSA
does not explicitly try to achieve such goals. In this
section, we see that when supervised training data is
available, the projection matrix of LSA can be en-
hanced through a discriminative training technique
explicitly designed to create a representation suited
to a specific task.

Because LSA is closely related to principle com-
ponent analysis (PCA), extensions of PCA such as
canonical correlation analysis (CCA) and oriented
principle component analysis (OPCA) can leverage
the labeled data and produce the projection matrix
through general eigen-decomposition (Platt et al.,
2010). Along this line of work, Yih et al. (2011)
proposed a Siamese neural network approach called
S2Net, which tunes the projection matrix directly
through gradient descent, and has shown to outper-
form other methods in several tasks. Below we de-
scribe briefly this technique and explain how we
adopt it for the task of antonym detection.

The goal of S2Net is to learn a concept vector
representation of the original sparse term vectors.
Although such transformation can be non-linear in
general, its current design chooses the model form
to be a linear projection matrix, which is identical to
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Word PILSA-Similar Words PILSA-Least-Similar Words
admirable commendable, creditable, laudable,

praiseworthy, worthy, meritorious, es-
timable, deserving, tiptop, valued

scurvy, contemptible, despicable,
lamentable, shameful, reprehensible,
unworthy, disgraceful, discreditable,
undeserving

considered calculated, premeditated, planned, tac-
tical, strategic, thought-through, inten-
tional, purposeful, intended, psycho-
logical

fortuitous, unpremeditated, unconsid-
ered, off-your-own-bat, unintended,
undirected, objectiveless, hit-and-miss,
unforced, involuntary

mourning sorrowful, doleful, sad, miserable,
wistful, pitiful, wailing, sobbing,
heavy-hearted, forlorn

smiley, happy, blissful, wooden, mirth-
ful, joyful, deadpan, fulfilled, straight-
faced, content

Table 4: PILSA on a thesaurus. Thesaurus entries are as in Table 1.

that of LSA, PCA, OPCA or CCA. Given a d-by-1
input vector f , the model of S2Net is a d-by-k ma-
trix A = [aij ]d×k, which maps f to a k-by-1 output
vector g = AT f . The fact that the transformation
can be viewed as a two-layer neural network leads
to the method’s name.

What differentiates S2Net from other approaches
is its loss function and optimization process. In
the “parallel text” setting, the labeled data con-
sists of pairs of similar text objects such as doc-
uments. The objective of the training process is
to assign higher cosine similarities to these pairs
compared to others. More specifically, suppose the
training set consists of m pairs of raw input vectors
{(fp1 , fq1), (fp2 , fq2), · · · , (fpm , fqm)}. Given a pro-
jection matrix A, the similarity score of any pair of
objects is simA(fpi , fqj ) = cosine(AT fpi ,A

T fqj ).
Let ∆ij = simA(fpi , fqi) − simA(fpi , fqj ) be the
difference of the similarity scores of (fpi , fqi) and
(fpi , fqj ). The learning procedure tries to increase
∆ij by using the following logistic loss:

L(∆ij ; A) = log(1 + exp(−γ∆ij)),

where γ is a scaling factor that adjusts the loss func-
tion2. The loss of the whole training set is thus:

1

m(m− 1)

∑
1≤i,j≤m,i 6=j

L(∆ij ; A)

Parameter learning (i.e., tuning A) can be done
2As suggested in (Yih et al., 2011), γ is set to 10 in our

experiments.

by standard gradient-based methods, such as L-
BFGS (Nocedal and Wright, 2006).

The original setting of S2Net can be directly ap-
plied to finding synonymous words, where the train-
ing data consists of pairs of vectors representing
two synonyms. It is also easy to modify the loss
function to apply it to the antonym detection prob-
lem. We first sample pairs of antonyms from the
thesaurus to create the training data. The raw input
vector f of a selected word is its corresponding col-
umn vector of the document-term matrix W (Sec-
tion 3) after inducing polarity (Section 4). When
each pair of vectors in the training data represents
two antonyms, we can redefine ∆ij by flipping the
sign: ∆ij = simA(fpi , fqj ) − simA(fpi , fqi), and
leave others unchanged. As the loss function encour-
ages ∆ij to be larger, an antonym pair will tend to
have a smaller cosine similarity than other pairs. Be-
cause S2Net uses a gradient descent technique and a
non-convex objective function, it is sensitive to ini-
tialization, and we have found that the PILSA pro-
jection matrix U (Section 3) provides an excellent
starting point. As illustrated in Section 7, learning
the word vectors with S2Net produces a significant
improvement over PILSA alone.

6 Extending PILSA to Out-of-thesaurus
Words

While PILSA is effective at representing synonym
and antonym information, in its pure form, it is lim-
ited to the vocabulary of the thesaurus. In order to
extend PILSA to operate on out-of-thesaurus words,
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we employ a two-stage strategy. We first conduct
some lexical analysis and try to match an unknown
word to one or more in-thesaurus words in their lem-
matized forms. If no such match can be found,
we then attempt to find semantically related in-
thesaurus words by leveraging co-occurrence statis-
tics from general text data. These two steps are de-
scribed in detail below.

6.1 Matching via Lexical Analysis
When a target word is not included in a thesaurus, it
is quite often that some of its morphological varia-
tions are covered. For example, although the Encarta
thesaurus does not have the word “corruptibility,”
it does contain other forms like “corruptible” and
“corruption.” Replacing the out-of-thesaurus target
word with these morphological variations may alter
the part-of-speech but typically does not change the
meaning3.

Given an out-of-thesaurus target word, we first
apply a morphological analyzer for English devel-
oped by Minnen et al. (2001), which removes the
inflectional affixes and returns the lemma. If the
lemma still does not exist in the thesaurus, we then
apply Porter’s stemmer (Porter, 1980) and check
whether the target word can match any of the in-
thesaurus words in their stemmed forms. A sim-
ple rule that checks whether removing hyphens from
words can lead to a match and whether the target
word occurs as part of a compound word in the the-
saurus is applied when both morphological analysis
and stemming fail to find a match. When there are
more than one matched words, the centroid of their
PILSA vectors is used to represent the target word.
When there is only one matched word, the matched
word is treated as the target word.

6.2 Leveraging General Text Data
If no words in the thesaurus can be linked to the
target word through the simple lexical analysis pro-
cedure, we try to find matched words by creating
a context vector space model from a large docu-
ment collection, and then mapping from this space
to the PILSA space. We use contexts because of the
distributional hypothesis – words that occur in the
same contexts tend to have similar meaning (Harris,

3The rules we use based on lexical analysis are moderately
conservative to avoid mistakes like mapping hopeless to hope.

1954). When a word is not in the thesaurus but ap-
pears in the corpus, we predict its PILSA vector rep-
resentation from the context vector space model by
using its k-nearest neighbors which are in the the-
saurus and consistent with each other.

6.2.1 Context Vector Space Model
Given a corpus of documents, we construct the

raw context vectors as follows. For each target word,
we first create a bag of words by collecting all the
terms within a window of [-10,+10] centered at each
occurrence of the target word in the corpus. The
non-identical terms form a term-vector, where each
term is weighted using its TF-IDF value. We then
perform LSA on the context-word matrix. The se-
mantic similarity/relatedness of two words can then
be determined using the cosine similarity of their
corresponding LSA word vectors. In the following
text, we refer to this LSA context vector space model
as the corpus space, in contrast to the PILSA the-
saurus space.

6.2.2 Embedding Out-of-Vocabulary Words
Given the context space model, we may use a

linear regression or a k-nearest neighbors approach
to embed out-of-thesaurus words into the thesaurus-
space representation. However, as near words in the
context space may be synonyms in addition to other
semantically related words (including antonyms),
such approaches can potentially be noisy. For ex-
ample, words like “hot” and “cold” may be close
to each other in the context space due to their sim-
ilar usage in text. An affine transform cannot “tear
space” and map them to opposite poles in the the-
saurus space.

Therefore, we propose a revised k-nearest neigh-
bors approach. Suppose we are interested in an out-
of-thesaurus word w. We first find K-nearest in-
thesaurus neighbors to w in the context space. We
then select a subset of k members of these K words
such that the pairwise similarity of each of the k
members with every other member is positive. The
thesaurus-space centroid of these k items is com-
puted as w’s representation. This procedure has the
property that the k nearby words used to form the
embedding of a non-thesaurus word are selected to
be consistent with each other. In practice, we used
K = 10 and k = 3, which requires only around
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1000 pairwise computations even done in a brute-
force way. To provide a concrete example, if we
had the out-of-thesaurus word “sweltering” with in-
thesaurus neighbors “hot, cold, burning, scorching,
...” the procedure would return the centroid of “hot,
burning, scorching” and exclude “cold.”

7 Experimental Validation

In this section, we present our experimental results
on applying PILSA and its extensions to answering
the closest-opposite GRE questions.

7.1 Data Resources
The primary thesaurus we use is the Encarta The-
saurus developed by Bloomsbury Publishing Plc4.
Our version of this has approximately 47k word
senses and a vocabulary of 50k words, and con-
tains 125,724 pairs of antonyms. To experiment with
the effect of using a different thesaurus, we used
WordNet as an information source. Each synset in
WordNet maps to a row in the document-term ma-
trix; synonyms in a synset are weighted with posi-
tive TFIDF values, and antonyms are weighted neg-
ative TFIDF values. Entries corresponding to other
words in the vocabulary are 0. WordNet provides
significantly greater coverage with approximately
227k synsets involving multiple words, and a vo-
cabulary of about 190k words. However, it is also
much sparser, with 5.3 words per sense on average
as opposed to 10.3 in the thesaurus, and has only
62,821 pairs of antonyms. As general text data for
use in embedding out-of-vocabulary words, we used
a Nov-2010 dump of English Wikipedia, which con-
tains approximately 917M words.

7.2 Development and Test Data
For testing, we use the closest-opposite questions
from GRE tests provided by (Mohammed et al.,
2008). Each question contains a target word and
five choices, and asks which of the choice words has
the most opposite meaning to the target word. Two
datasets are made publicly available by Mohammad
et al. (2008): the development set, which consists of
162 questions, and the test set, which has 950 ques-
tions5. We considered making our own, more exten-

4http://www.bloomsbury.com/
5http://www.umiacs.umd.edu/∼saif/WebDocs/LC-

data/{devset,testset}.txt

Dimensions Bloomsbury Prec. WordNet Prec.
50 0.778 0.475

100 0.850 0.563
200 0.856 0.569
300 0.863 0.625
400 0.843 0.625
500 0.843 0.613
750 0.830 0.613

1000 0.837 0.544
2000 0.784 0.519
3000 0.778 0.494

Table 5: The performance of PILSA vs. the number of di-
mensions when applied to the closest-opposite questions
from the GRE development set. Out of the 162 ques-
tions, using the Bloomsbury thesaurus data we are able
to answer 153 of them. Using 300 dimensions gives the
best precision (132/153 = 0.863). This dimension set-
ting is also optimal when using the WordNet data, which
answers 100 questions correctly out of the 160 attempts
(100/160 = 0.625).

sive, test – for example one which would require the
use of sentence context to choose between related
yet distributionally different antonyms (e.g. “little,
small” as antonyms of “big”) but chose to stick to a
previously used benchmark. This allows the direct
comparison with previously reported methods.

Some of these questions contain very rarely used
target or choice words, which are not included in
the thesaurus vocabulary. In order to provide a fair
comparison to existing methods, we do not try to
randomly answer these questions. Instead, when the
target word is out of vocabulary, we skip the whole
question. When the target word is in vocabulary but
one or more choices are unknown words, we ignore
those unknown words and pick the word with the
lowest cosine similarity from the rest as the answer.
The results of our methods are reported in precision
(the number of questions answered correctly divided
by the number of questions attempted), recall (the
number of questions answered correctly divided by
the number of all questions) and F1 (the harmonic
mean of precision and recall)6. We now turn to an
in-depth evaluation.

6Precision/recall/F1 were used in (Mohammed et al., 2008)
as when their system “did not find any evidence of antonymy
between the target and any of its alternatives, then it refrained
from attempting that question.” We adopt this convention to
provide a fair comparison to their system.
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Dev. Set Test Set
Prec Rec F1 Prec Rec F1

WordNet lookup 0.40 0.40 0.40 0.42 0.41 0.42
WordNet signed-TFIDF w/o LSA 0.41 0.41 0.41 0.43 0.42 0.43
WordNet PILSA 0.63 0.62 0.62 0.60 0.60 0.60
Bloomsbury lookup 0.65 0.61 0.63 0.61 0.56 0.59
Bloomsbury signed TFIDF w/o LSA 0.68 0.64 0.66 0.63 0.57 0.60
Bloomsbury PILSA 0.86 0.81 0.84 0.81 0.74 0.77
Bloomsbury PILSA + S2Net 0.89 0.84 0.86 0.84 0.77 0.80
Bloomsbury PILSA + S2Net + Embedding 0.88 0.87 0.87 0.81 0.80 0.81
(Mohammed et al., 2008) 0.76 0.66 0.70 0.76 0.64 0.70

Table 6: The overall results. PILSA performs LSA on the signed TF-IDF vectors.

7.3 Basic PILSA

When applying PILSA, we need to determine the
number of dimensions in the projected space. Eval-
uated on the GRE development set, Table 5 shows
the precision of PILSA, using two different training
datasets, Bloomsbury and WordNet, at different di-
mensions.

The Bloomsbury-based system is able to answer
153 questions, and the best dimension setting is
300, which answers 132 questions correctly and thus
archives 0.863 in precision. In contrast, the larger
vocabulary in WordNet helps the system answer 160
questions but the quality is not as good. We find
dimensions 300 and 400 are equally good, where
both answer 100 questions correctly (0.625 in pre-
cision)7. Because a lower number of dimensions
is preferred for saving storage space and computing
time, we choose 300 as the number of dimensions in
PILSA.

We now compare the proposed methods. All re-
sults are summarized in Table 6. When evaluated on
the GRE test set, the Bloomsbury thesaurus-based
methods (Lines 4–7) attempted 865 questions. The
precision, recall and F1 of the Bloomsbury-based
PILSA model (Line 6) are 0.81, 0.74 and 0.77,
which are all better than the best reported method
in (Mohammed et al., 2008)8. In contrast, the
WordNet-based methods (Lines 1–3) attempted 936

7Note that the number of questions attempted is not a func-
tion of the number of dimensions.

8We take a conservative approach and assume that skipped
questions are answered incorrectly. The difference is statisti-
cally significant at 99% confidence level using a binomial test.

questions. However, consistent with what we ob-
served on the development set, the WordNet-based
model is inferior. Its precision, recall and F1 on
the test set are 0.60, 0.60 and 0.60 (Line 3). Al-
though the quality of the data source plays an im-
portant role, we need to emphasize that performing
LSA using our polarity inducing construction is in
fact a critical step in enhancing the model perfor-
mance. For example, directly using the antonym sets
in the Bloomsbury thesaurus gives 0.59 in F1 (Line
4), while using cosine similarity on the signed vec-
tors prior to LSA only reaches 0.60 in F1 (Line 5).

7.4 Improving Precision with Discriminative
Training

Building on the success of the unsupervised PILSA
model, we refine the projection matrix. As described
in Section 5, we take the PILSA projection matrix
as the initial model in S2Net and train the model
using 20,517 pairs of antonyms sampled from the
Bloomsbury thesaurus. A separate sample of 5,000
antonym pairs is used as the validation set for hyper-
parameter tuning in regularization. Encouragingly,
we found that the already strong results of PILSA
can indeed be improved, which gives 3 more points
in both precision (0.84), recall (0.77) and F1 (0.80).

7.5 Improving Recall with Unsupervised Data

We next evaluate our approach of extending the
word coverage with the help of an external text cor-
pus, as well as the lexical analysis procedure. Using
the Bloomsbury PILSA-S2Net thesaurus space and
the Wikipedia corpus space, our method increases
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recall by 3 points on the test set. Compared to the in-
vocabulary only setting, it attempted 75 more ques-
tions (865→ 940) and had 33 of them correctly an-
swered.

While the accuracy on these questions is much
higher than random, the fact that it is substantially
below the precision of the original indicates some
room for improvement. We notice that the out-of-
thesaurus words are either offensive words excluded
in the thesaurus (e.g., moronic) or some very rarely
used words (e.g., froward). When the lexical analy-
sis procedure fails to match the target word to some
in-thesaurus words, the context vector embedding
approach solves the former case, but has difficulty
in handling the latter. The main reason is that such
words occur very infrequently in a general corpus,
which result in significant uncertainty in their se-
mantic vectors. Other than using a much larger
corpus, approaches that leverage character n-grams
may help. We leave this as future work.

8 Conclusion

In this paper we have tackled the problem of find-
ing a vector-space representation of words where,
by construction, synonyms and antonyms are easy
to distinguish. Specifically, we have defined a way
of assigning sign to the entries in the co-occurrence
matrix on which LSA operates, such that synonyms
will tend to have positive cosine similarity, and
antonyms will tend to have negative similarities. To
the best of our knowledge, our method of inducing
polarity to the document-term matrix before apply-
ing LSA is novel and has shown to effectively pre-
serve and generalize the synonymous/antonymous
information in the projected space. With this vector
space representation, we were able to bring to bear
the machinery of discriminative training in order to
further optimize the word representations. Finally,
by using the notion of closeness in this space, we
were able to embed new out-of-vocabulary words
into the space. On a standard test set, the proposed
methods improved the F measure by 11 points abso-
lute over previous results.
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Abstract

Adjectival modification, particularly by ex-
pressions that have been treated as higher-
order modifiers in the formal semantics tradi-
tion, raises interesting challenges for semantic
composition in distributional semantic mod-
els. We contrast three types of adjectival mod-
ifiers – intersectively used color terms (as in
white towel, clearly first-order), subsectively
used color terms (white wine, which have been
modeled as both first- and higher-order), and
intensional adjectives (former bassist, clearly
higher-order) – and test the ability of different
composition strategies to model their behav-
ior. In addition to opening up a new empir-
ical domain for research on distributional se-
mantics, our observations concerning the at-
tested vectors for the different types of adjec-
tives, the nouns they modify, and the resulting
noun phrases yield insights into modification
that have been little evident in the formal se-
mantics literature to date.

1 Introduction

One of the most appealing aspects of so-called dis-
tributional semantic models (see Turney and Pan-
tel (2010) for a recent overview) is that they af-
ford some hope for a non-trivial, computationally
tractable treatment of the context dependence of lex-
ical meaning that might also approximate in inter-
esting ways the psychological representation of that
meaning (Andrews et al., 2009). However, in or-
der to have a complete theory of natural language
meaning, these models must be supplied with or
connected to a compositional semantics; otherwise,

we will have no account of the recursive potential
that natural language affords for the construction of
novel complex contents.

In the last 4-5 years, researchers have begun
to introduce compositional operations on distribu-
tional semantic representations, for instance to com-
bine verbs with their arguments or adjectives with
nouns (Erk and Padó, 2008; Mitchell and Lapata,
2010; Baroni and Zamparelli, 2010; Grefenstette
and Sadrzadeh, 2011; Socher et al., 2011)1. Al-
though the proposed operations have shown vary-
ing degrees of success in a number of tasks such as
detecting phrase similarity and paraphrasing, it re-
mains unclear to what extent they can account for
the full range of meaning composition phenomena
found in natural language. Higher-order modifica-
tion (that is, modification that cannot obviously be
modeled as property intersection, in contrast to first-
order modification, which can) presents one such
challenge, as we will detail in the next section.

The goal of this paper is twofold. First, we exam-
ine how the properties of different types of adjecti-
val modifiers, both in isolation and in combination
with nouns, are represented in distributional mod-
els. We take as a case study three groups of adjec-
tives: 1) color terms used to ascribe true color prop-
erties (referred to here as intersective color terms),
as prototypical representative of first-order modi-
fiers; 2) color terms used to ascribe properties other
than simple color (here, subsective color terms), as
representatives of expressions that could in principle

1In a complementary direction, Garrette et al. (2011) con-
nect distributional representations of lexical semantics to logic-
based compositional semantics.
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be given a well-motivated first-order or higher-order
analysis; and 3) intensional adjectives (e.g. former),
as representative of modifiers that arguably require a
higher-order analysis. Formal semantic models tend
to group the second and third groups together, de-
spite the existence of some natural language data
that questions this grouping. However, our results
show that all three types of modifiers behave differ-
ently from each other, suggesting that their semantic
treatment needs to be differentiated.

Second, we test how five different composition
functions that have been proposed in recent literature
fare in predicting the attested properties of nominals
modified by each type of adjective. The model by
Baroni and Zamparelli (2010) emerges as a suitable
model of adjectival composition, while multiplica-
tion and addition shed mixed results.

The paper is structured as follows. Section 2 pro-
vides the necessary background on the semantics of
adjectival modification. Section 3 presents the meth-
ods used in our study. Section 4 describes the char-
acteristics of the different types of adjectival modifi-
cation, and Section 5, the results of the composition
operations. The paper concludes with a general dis-
cussion of the results and prospects for future work.

2 The semantics of adjectival modification

Accounting for inference in language is an impor-
tant concern of semantic theory. Perhaps for this rea-
son, within the formal semantics tradition the most
influential classification of adjectives is based on
the inferences they license (see (Parsons, 1970) and
(Kamp, 1975) for early discussion). We very briefly
review this classification here.

First, so called intersective adjectives, such as (the
literally used) white in white dress, yield the infer-
ence that both the property contributed by the ad-
jective and that contributed by the noun hold of the
individual described; in other words, a white dress
is white and is a dress. The semantics for such mod-
ifiers is easily characterized in terms of the intersec-
tion of two first-order properties, that is, properties
that can be ascribed to individuals.

On the other extreme, intensional adjectives, such
as former or alleged in former/alleged criminal, do
not license the inference that either of the properties
holds of the individual to which the modified nom-

inal is ascribed. Indeed, such adjectives cannot be
used as predicates at all:

(1) ??The criminal was former/alleged.

The infelicity of (1) is generally attributed to the
fact that these adjectives do not describe individu-
als directly but rather effect more complex opera-
tions on the meaning of the modified noun. It is for
this reason that these adjectives can be considered
higher-order modifiers: they behave as properties of
properties. Though rather abstract, the higher-order
analysis is straightforwardly implementable in for-
mal semantic models and captures a range of lin-
guistic facts successfully.

Finally, subsective adjectives such as (the non-
literally-used) white in white wine, consitute an in-
termediate case: they license the inference that the
property denoted by the noun holds of the indi-
vidual being described, but not the property con-
tributed by the adjective. That is, white wine is
not white but rather a color that we would proba-
bly call some shade of yellow. This use of color
terms, in general, is distinguished primarily by the
fact that color serves as a proxy for another prop-
erty that is related to color (e.g. type of grape),
though the color in question may or may not match
the color identified by the adjective on the intersec-
tive use (see (Gärdenfors, 2000) and (Kennedy and
McNally, 2010) for discussion and analysis). The
effect of the adjective, rather than to identify a value
for an incidental COLOR attribute of an object, is of-
ten to characterize a subclass of the class described
by the noun (white wine is a kind of wine, brown
rice a kind of rice, etc.).

This use of color terms can be modeled by prop-
erty intersection in formal semantic models only if
the term is previously disambiguated or allowed to
depend on context for its precise denotation. How-
ever, it is easily modeled if the adjective denotes a
(higher-order) function from properties (e.g. that de-
noted by wine) to properties (that denoted by white
wine), since the output of the function denoted by
the color term can be made to depend on the input it
receives from the noun meaning. Nonetheless, there
is ample evidence in natural language that a first-
order analysis of the subsective color terms would
be preferable, as they share more features with pred-
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icative adjectives such as happy than they do with
adjectives such as former.

The trio of intersective color terms, subsective
color terms, and intensional adjectives provides fer-
tile ground for exploring the different composition
functions that have been proposed for distributional
semantic representations. Most of these functions
start from the assumption that composition takes
pairs of vectors (e.g. a verb vector and a noun vec-
tor) and returns another vector (e.g. a vector for
the verb with the noun as its complement), usually
by some version of vector addition or multiplication
(Erk and Padó, 2008; Mitchell and Lapata, 2010;
Grefenstette and Sadrzadeh, 2011). Such func-
tions, insofar as they yield representations which
strengthen distributional features shared by the com-
ponent vectors, would be expected to model inter-
sective modification.

Consider the example of white dress. We might
expect the vector for dress to include non-zero fre-
quencies for words such as wedding and funeral.
The vector for white, on the other hand, is likely
to have higher frequencies for wedding than for fu-
neral, at least in corpora obtained from the U.S. and
the U.K. Combining the two vectors with an addi-
tive or multiplicative operation should rightly yield
a vector for white dress which assigns a higher fre-
quency to wedding than to funeral.

Additive and multiplicative functions might also
be expected to handle subsective modification with
some success because these operations provide a
natural account for how polysemy is resolved in
meaning composition. Thus, the vector that results
from adding or multiplying the vector for white with
that for dress should differ in crucial features from
the one that results from combining the same vector
for white with that for wine. For example, depend-
ing on the details of the algorithm used, we should
find the frequencies of words such as snow or milky
weakened and words like straw or yellow strength-
ened in combination with wine, insofar as the former
words are less likely than the latter to occur in con-
texts where white describes wine than in those where
it describes dresses. In contrast, it is not immedi-
ately obvious how these operations would fare with
intensional adjectives such as former. In particular,
it is not clear what specific distributional features of
the adjective would capture the effect that the ad-

jective has on the meaning of the resulting modified
nominal.

Interestingly, recent approaches to the semantic
composition of adjectives with nouns such as Baroni
and Zamparelli (2010) and Guevara (2010) draw on
the classical analysis of adjectives within the Mon-
tagovian tradition of formal semantic theory (Mon-
tague, 1974), on which they are treated as higher or-
der predicates, and model adjectives as matrices of
weights that are applied to noun vectors. On such
models, the distributional properties of observed oc-
currences of adjective-noun pairs are used to induce
the effect of adjectives on nouns. Insofar as it is
grounded in the intuition that adjective meanings
should be modeled as mappings from noun mean-
ings to adjective-noun meanings, the matrix anal-
ysis might be expected to perform better than ad-
ditive or multiplicative models for adjective-noun
combinations when there is evidence that the adjec-
tive denotes only a higher-order property. There is
also no a priori reason to think that it would fare
more poorly at modeling the intersective and subsec-
tive adjectives than would additive or multiplicative
analyses, given its generality.

In this paper, we present the first studies that we
know of that explore these expectations.

3 Method

We built a semantic space and tested the composi-
tion functions as specified in what follows.

3.1 Semantic space
The semantic space we used for our experiments
consists of a matrix where each row vector repre-
sents an adjective, noun or adjective-noun phrase
(henceforth, AN). We first introduce the source cor-
pus, then the vocabulary that we represent in the
space, and finally the procedure to build the vectors
representing the vocabulary items from corpus data.

3.1.1 Source corpus
Our source corpus is the concatenation of the

ukWaC corpus2, a mid-2009 dump of the English
Wikipedia3 and the British National Corpus4. The
corpus is tokenized, POS-tagged and lemmatized

2http://wacky.sslmit.unibo.it/
3http://en.wikipedia.org
4http://www.natcorp.ox.ac.uk/
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with TreeTagger (Schmid, 1995) and contains about
2.8 billion tokens. We extracted all statistics at the
lemma level, ignoring inflectional information.

3.1.2 Vocabulary
The core vocabulary of the semantic space con-

sists of the 8K most frequent nouns and the 4K most
frequent adjectives from the corpus. By crossing the
set of 700 most frequent adjectives (reduced to 663
after removing questionable items like above, less
and very) and the 4K most frequent nouns and se-
lecting those ANs that occured at least 100 times
in the corpus, we obtained a set of 179K ANs that
we added to the semantic space, for a total of 191K
rows. These ANs were used for training the linear
models as well as for providing a basis for the anal-
ysis of the results.

3.1.3 Semantic space parameters
The dimensions (columns) of our semantic space

are the top 10K most frequent content words in the
corpus (nouns, adjectives, verbs and adverbs), ex-
cluding the 300 most frequent words of all parts of
speech.

For each word or AN, we collected raw co-
occurrence counts by recording their sentence-
internal co-occurrence with each of words in the di-
mensions. The counts were then transformed into
Local Mutual Information (LMI) scores, an associ-
ation measure that closely approximates the com-
monly used Log-Likelihood Ratio but is simpler to
compute (Evert, 2005). Specifically, given a row el-
ement r, a column element c and a counting function
C(r, c), then

LMI = C(r, c) · log
C(r, c)C(∗, ∗)
C(r, ∗)C(∗, c)

(1)

where C(r, c) is how many times r cooccurs with
c, C(r, ∗) is the total count of r, C(∗, c) is the to-
tal count of c, and C(∗, ∗) is the cumulative co-
occurrence count of any r with any c.

The dimensionality of the space was reduced us-
ing Singular Value Decomposition (SVD), as in La-
tent Semantic Analysis and related distributional
semantic methods (Landauer and Dumais, 1997;
Rapp, 2003; Schütze, 1997). Both LMI and SVD
were used for the core vocabulary, and the AN vec-
tors were computed based on the values for the

core vocabulary. All of the results discussed in the
article are based on the SVD-reduced space, be-
cause it yielded consistently better results, except for
those involving multiplicative composition, which
was carried out on the non-reduced model because
SVD reduction introduces negative values for the la-
tent dimensions used for the reduced space.

Some of the parameters of the space and com-
position functions were set based on performance
on independent word similarity and AN similarity
tasks (Rubenstein and Goodenough, 1965; Mitchell
and Lapata, 2010). In addition to LMI, we tested
the performance using log-transformed frequencies
and found very poor performance in the aforemen-
tioned tasks. The number of latent dimensions for
the SVD-reduced space was set at 300 after testing
the performance using 300, 600 and 900 latent di-
mensions.

In the discussion, we use the cosine of two vectors
as a measure of similarity. This is the most common
choice in related work, as it has shown to be robust
across different tasks and settings, though other op-
tions (in particular, measures that are not symmetric
or do not normalize) could be explored (Widdows,
2004).

3.2 Composition models
The experiments described below were carried out
using five compositional methods that have been ex-
plored in recent studies of compositionality in dis-
tributional semantic spaces (Mitchell and Lapata,
2010; Guevara, 2010; Baroni and Zamparelli, 2010).
For each function, we define p as the composition
of the adjective vector, u, and the noun vector, v,
a nomenclature that follows Mitchell and Lapata
(2010).

Additive (add) AN vectors were obtained by
summing the corresponding adjective and noun vec-
tors. We also explored the effects of the additive
model with normalized component adjective and
noun vectors (addn).

p = u + v (2)

Multiplicative (mult) AN vectors were obtained
by component-wise multiplication of the adjective
and noun vectors in the non-reduced semantic space.

p = u� v (3)
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Dilation (dl) AN vectors were obtained by calcu-
lating the dot products of u·u and u·v and stretching
v by a factor λ (in our case, 16.7) in the direction of
u (Clark et al., 2008; Mitchell and Lapata, 2010).
The effect of this operation is to “stretch” the head
vector v (noun, in our case) in the direction of the
modifying vector u (adjective).

p = (u · u)v + (λ− 1)(u · v) (4)

The factor λ was selected based on the optimal pa-
rameters presented in Mitchell and Lapata (2010).
We tested both reported values (16.7 and 2.2) and
found λ = 16.7 to perform better in terms of rank of
observed equivalent (see Section 5).

The preceding functions produce an AN vector
from the component A and N vectors. The remain-
ing two functions do not use the vector for the ad-
jective, but learn a matrix representation for it. The
composed AN vector is obtained by multiplying the
matrix by the noun vector. The general equation for
the two functions is the following, where B is a ma-
trix of weights that is multiplied by the noun vector
v to produce the AN vector p.

p = Bv (5)

In the linear map (lim) approach proposed by
Guevara (2010), one single matrix B is learnt that
represents all adjectives. An AN vector is obtained
by multiplying the weight matrix by the concate-
nation of the adjective and noun vectors, so that
each dimension of the generated AN vector is a lin-
ear combination of dimensions of the correspond-
ing adjective and noun vectors. In our implementa-
tion, B is an 300 x 300 weight matrix representing
an adjective, and v is a 300-dimension noun vec-
tor. Following Guevara (2010), we estimate the co-
efficients of the equation using (multivariate) partial
least squares regression (PLSR) as implemented in
the R pls package (Mevik and Wehrens, 2007), set-
ting the latent dimension parameter of PLSR to 300.
This value was chosen after testing values 100, 200
and 300 on the AN similarity tasks (Mitchell and
Lapata, 2010). Coefficient matrix estimation is per-
formed by feeding PLSR a set of input-output exam-
ples, where the input is given by concatenated ad-
jective and noun vectors, and the output is the vector
of the corresponding AN directly extracted from our

semantic space. The matrix is estimated using a ran-
dom sample of 2.5K adjective-noun-AN tuples.5

In the adjective-specific linear map (alm) model,
proposed by Baroni and Zamparelli (2010), a dif-
ferent matrix B is learnt for each adjective. The
weights of each of the rows of the weight matrix
are the coefficients of a linear equation predicting
the values of one of the dimensions of the normal-
ized AN vector as a linear combination of the di-
mensions of the normalized component noun. The
linear equation coefficients are estimated again us-
ing PLSR, and in the present implementation we use
ridge regression generalized cross-validation (GCV)
to automatically choose the optimal ridge parameter
for each adjective (Golub et al., 1979). This pro-
cedure drastically outperforms setting a fixed num-
ber of dimensions. The model is trained on all N-
AN vector pairs available in the semantic space for
each adjective, and range from 100 to over 1K items
across the adjectives we tested.

3.3 Datasets
We built two datasets of adjective-noun phrases for
the present research, one with color terms and one
with intensional adjectives.6

Color terms. This dataset is populated with a ran-
domly selected set of adjective-noun pairs from the
space presented above. From the 11 colors in the ba-
sic set proposed by Berlin and Kay (1969), we cover
7 (black, blue, brown, green, red, white, and yel-
low), since the remaining (grey, orange, pink, and
purple) are not in the 700 most frequent set of ad-
jectives in the corpora used. From an original set
of 412 ANs, 43 were manually removed because of
suspected parsing errors (e.g. white photograph, for
black and white photograph) or because the head
noun was semantically transparent (white variety).
The remaining 369 ANs were tagged independently
by the second and fourth authors of this paper, both
native English speaker linguists, as intersective (e.g.
white towel), subsective (e.g. white wine), or id-
iomatic, i.e. compositionally non-transparent (e.g.
black hole). They were allowed the assignment of at

52.5K ANs is the upper bound of the software package used.
6Available at http://dl.dropbox.com/u/513347/

resources/data-emnlp2012.zip. See Bruni et al. (to
appear) for an analysis of the color term dataset from a multi-
modal perspective.
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most two labels in case of polysemy, for instance for
black staff for the person vs. physical object senses
of the noun or yellow skin for the race vs. literally
painted interpretations of the AN. In this paper, only
the first label (most frequent interpretation, accord-
ing to the judges) has been used. The κ coefficient of
the annotation on the three categories (first interpre-
tation only) was 0.87 (conf. int. 0.82-0.92, according
to Fleiss et al. (1969)), observed agreement 0.96.7

There were too few instances of idioms (17) for a
quantitative analysis of the sort presented here, so
these are collapsed with the subsective class in what
follows.8 The dataset as used here consists of 239
intersective and 130 subsective ANs.

Intensional adjectives. The intensional dataset
contains all ANs in the semantic space with a pre-
selected list of 10 intensional adjectives, manually
pruned by one of the authors of the paper to elimi-
nate erroneous examples and to ensure that the ad-
jective was being intensionally used. Examples of
the ANs eliminated on these grounds include past
twelve (cp. accepted past president), former girl
(probably former girl friend or similar), false rumor
(which is a real rumor that is false, vs. e.g. false
floor, which is not a real floor), or theoretical work
(which is real work related to a theory, vs. e.g. theo-
retical speed, which is a speed that should have been
reached in theory). Other AN pairs were excluded
on the grounds that the noun was excessively vague
(e.g. past one) or because the AN formed a fixed
expression (e.g. former USSR). The final dataset
contained 1,200 ANs, distributed as follows: former
(300 examples), possible (244), future (243), poten-
tial (183), past (87), false (44), apparent (39), arti-
ficial (36), likely (18), theoretical (6).9

Table 1 contains examples of each type of AN we
are considering.

7Code for the computation of inter-annotator agreement by
Stefan Evert, available at http://www.collocations.
de/temp/kappa_example.zip.

8An alternative would have been to exclude idiomatic ANs
from the analysis.

9Alleged, one of the most prototypical intensional adjectives,
is not considered here because it was not among the 700 most
frequent adjectives in the space. We will consider it in future
work.

Intersective Subsective Intensional
white towel white wine artificial leg
black sack black athlete former bassist
green coat green politics likely suspect
red disc red ant possible delay
blue square blue state theoretical limit

Table 1: Example ANs in the datasets.

4 Observed vectors

We began by exploring the empirically observed
vectors for the adjectives (A), nouns (N), and
adjective-noun phrases (AN) in the datasets, as they
are represented in the semantic space. Note that
we are working with the AN vectors directly har-
vested from the corpora (that is, based on the co-
occurrence of, say, the phrase white towel with each
of the 10K words in the space dimensions), with-
out doing any composition. AN vectors obtained by
composition will be examined in the following sec-
tion. Though observed AN vectors should not be
regarded as a gold standard in the sense of, for in-
stance, Machine Learning approaches, because they
are typically sparse10 and thus the vectors of their
component adjective and noun will be richer, they
are still useful for exploration and as a compari-
son point for the composition operations (Baroni and
Lenci, 2010; Guevara, 2010).

Figure 1 shows the distribution of the cosines be-
tween A, N, and AN vectors with intensional adjec-
tives (I, white box), intersective uses of color terms
(IE, lighter gray box), and subsective uses of color
terms (S, darker gray box).

In general, the similarity of the A and N vectors is
quite low (cosine < 0.2, left graph of Figure 1), and
much lower than the similarities between both the
AN and A vectors and the AN and N vectors. This
is not surprising, given that adjectives and nouns de-
scribe rather different sorts of things.

We find significant differences between the three
types of adjectives in the similarity between AN and
A vectors (middle graph of Figure 1). The adjec-
tive and adjective-noun phrase vectors are nearer for

10The frequency of the adjectives in the datasets range from
3.5K to 3.7M, with a median frequency of 109,114. The nouns
range from 4.9K to 2.5M, with a median frequency of 148,459.
While the frequency of the ANs range from 100 to 18.5K, with
a median frequency of 239.
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Figure 1: Cosine distance distribution in the different types of AN. We report the cosines between the component
adjective and noun vectors (cos(A,N)), between the observed AN and adjective vectors (cos(AN,A)), and between the
observed AN and noun vectors (cos(AN,N)). Each chart contains three boxplots with the distribution of the cosine
scores (y-axis) for the intensional (I), intersective (IE), and subsective (S) types of ANs. The boxplots represent the
value distribution of the cosine between two vectors. The horizontal lines in the rectangles represent the first quartile,
median, and third quartile. Larger rectangles correspond to a more spread distribution, and their (a)symmetry mirrors
the (a)symmetry of the distribution. The lines above and below the rectangle stretch to the minimum and maximum
values, at most 1.5 times the length of the rectangle. Values outside this range (outliers) are represented as points.

intersective uses than for subsective uses of color
terms, a pattern that parallels the difference in the
distance between component A and N vectors. Since
intersective uses correspond to the prototypical use
of color terms (a white dress is the color white, while
white wine is not), the greater similarity for the in-
tersective cases is unsurprising – it suggests that in
the case of subsective adjectival modifiers, the noun
“pulls” the AN further away from the adjective than
happens with the cases of intersective modification.
This is compatible with the intuition (manifest in the
formal semantics tradition in the treatment of sub-
sective adjectives as higher-order rather than first-
order, intersective modifiers) that the adjective’s ef-
fect on the AN in cases of subsective modification
depends heavily on the interpretation of the noun
with which the adjective combines, whereas that is
less the case when the adjective is used intersec-
tively.

As for intensional adjectives, the middle graph
shows that their AN vectors are quite distant from
the corresponding A vectors, in sharp contrast to
what we find with both intersective and subsective

color terms. We hypothesize that the results for the
intensional adjectives are due to the fact that they
cannot plausibly be modeled as first order attributes
(i.e. being potential or apparent is not a property
in the same sense that being white or yellow is) and
thus typically do not restrict the nominal description
per se, but rather provide information about whether
or when the nominal description applies. The re-
sult is that intensional adjectives should be even
weaker than subsectively used adjectives, in com-
parison with the nouns with which they combine, in
their ability to “pull” the AN vector in their direc-
tion. Note, incidentally, that an alternative expla-
nation, namely that the effect mentioned could be
due to the fact that most nouns in the intensional
dataset are abstract and that adjectives modifying
abstract nouns might tend to be further away from
their nouns altogether, is ruled out by the compari-
son between the A and N vectors: the A-N cosines
of the intensional and intersective ANs are similar.
We thus conclude that here we see an effect of the
type of modification involved.

An examination of the average distances among
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the nearest neighbors of the intensional and of the
color adjectives in the distributional space supports
our hypothesized account of their contrasting be-
haviors. We predict that the nearest neighbors are
more dispersed for adjectives that cannot be mod-
eled as first-order properties (i.e., intensional adjec-
tives), than for those that can (here, the color terms).
We find that the average cosine distance among the
nearest ten neighbors of the intensional adjectives is
0.74 with a standard deviation of 0.13, which is sig-
nificantly lower (t-test, p<0.001) than the average
similarity among the nearest neighbors of the color
adjectives, 0.96 with astandard deviation of 0.04.

Finally, with respect to the distances between the
adjective-noun and head noun vectors (right graph
of Figure 1), there is no significant difference for the
intersective vs. subsective color terms. This can be
explained by the fact that both kinds of modifiers
are subsective, that is, the fact that a white dress is a
dress and that white wine is wine.

In contrast, intensional ANs are closer to their
component Ns than are color ANs (the difference
is qualitatively quite small, but significant even for
the intersective vs. intensional ANs according to a
t-test, p-value = 0.015). This effect, the inverse of
what we find with the AN-A vectors, can similarly
be explained by the fact that intensional adjectives
do not restrict the descriptive content of the noun
they modify, in contrast to both the intersective and
subsective color ANs. Restriction of the nominal
description may lead to significantly restricted dis-
tributions (e.g. the phrase red button may appear
in distinctively different contexts than does button;
similarly for green politics and politics), while we
do not expect the contexts in which former bassist
and bassist appear to diverge in a qualitatively dif-
ferent way because the basic nominal descriptions
are identical, though further research will be neces-
sary to confirm these explanations.

Finally, note that, contrary to predictions from
some approaches in formal semantics, subsective
color ANs and intensional ANs do not pattern to-
gether: subsective ANs are closer to their compo-
nent As, and intensional ANs closer to their compo-
nent Ns. This unexpected behavior underscores the
fact highlighted in the previous paragraph: that the
distributional properties of modified expressions are
more sensitive to whether the modification restricts

the nominal description than to whether the modifier
is intersective in the strictest sense of term.

We now discuss the extent to which the different
composition functions account for these patterns.

5 Composed vectors

Since intersective modification is the point of com-
parison for both subsective and intensional modifi-
cation, we first discuss the composed vectors for the
intersective vs. subsective uses of color terms, and
then turn to intersective vs. intensional modification.

5.1 Intersective and subsective modification
with color terms

To adequately model the differences between inter-
sective and subsective modification observed in the
previous section, a successful composition function
should yield a significantly smaller distance between
the adjective and AN vectors for intersectively used
adjectives, whereas it should yield no significant dif-
ference for the distances between the noun and AN
vectors.

Table 2 provides a summary of the results with
the observed data (obs) and the composition func-
tions discussed in Section 3.2. The median rank of
observed equivalent (ROE) is provided as a general
measure of the quality of the composition function.
It is computed by finding the cosine between the
composed AN vectors and all rows in the semantic
space and then determining the rank in which the ob-
served ANs are found.11 The remaining columns re-
port the differences in standardized (z-score) cosines
between the vector built with each of the composi-
tion functions and the observed AN, A, and N vec-
tors. A positive value means that the cosines for
intersective uses are higher, while a negative value
means that the cosines for subsective uses are higher.
The first row (obs) contains a numerical summary
of the tendencies for observed ANs explained in the
previous section. This is the behavior that we expect
to model.

Two composition functions come close to mod-
eling the observed behavior: alm and mult, though
alm is better in terms of ROE, consistent with the

11The ROE is provided as a general guide; however, recall
that the ROE was taken into account to tune the λ parameter in
the dilation model, and that the ANs of the color dataset were
included when training the matrices for the alm model.
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model ROE ∆:AN ∆:A ∆:N
obs - - .54 ∗∗∗ .10
add 286 .40 ∗∗∗ .14 .15
addn 11 .40 ∗∗∗ .65 ∗∗∗ .65 ∗∗∗

mult 111 .40 ∗∗∗ .74 ∗∗∗ .29 ∗

dl 298 .63 ∗∗∗ .85 ∗∗∗ -.66 ∗∗∗

lim 1,940 .46 ∗∗∗ .20 .38 ∗∗

alm 1 .16 .52 ∗∗∗ .27 ∗

Table 2: Intersective vs. subsective uses of color terms.
The first column reports the rank of the observed equiva-
lent (ROE), the rest report the differences (∆) betwen the
intersective and subsective uses of color terms when com-
paring the composed AN with the observed vectors for:
AN, adjective (A), noun (N). See text for details. Signifi-
cances according to a t-test: *** for p< 0.001, **< 0.01,
* < 0.05.

results reported in Baroni and Zamparelli (2010).
In both cases, we find that these functions yield
higher similarities for AN-A for the intersective than
for the subsective uses of color terms, and a very
slight (though still mildly significant) difference for
the distance to the head noun. The addn function
performs very good in terms of ROE (median 11).
This suggests that, for adjectival modification, pro-
viding a vector that is in the middle of the two
component vectors (which is what normalized ad-
dition does) is a reasonable approximation of the
observed vectors. However, precisely because the
resulting vector is in the middle of the two com-
ponent vectors, this function cannot account for the
asymmetries in the distances found in the observed
data. The non-normalized version also cannot ac-
count for these effects because the adjective vec-
tor, being much longer (as color terms are very fre-
quent), totally dominates the AN, which results in
no difference across uses when comparing to the ad-
jective or to the noun.

The dilation model shows a strange pattern, as it
yields a strongly significant negative difference in
the AN-N distance. The lim function exhibits the op-
posite pattern as predicted, yielding no difference for
the AN-A similarities and a difference for the AN-
N similarities. A possible explanation for the AN-
A results is that lim learns from such a broad range
of AN pairs that the impact of the distance between
intersective vs. subsective uses of color terms from
their component adjectives is dampened. Moreover,

lim is by far the worst function in terms of ROE.
All composition functions except for alm find in-

tersective uses easier to model. This is shown in the
positive values in column ∆:AN, which mean that
the similarity between observed and composed AN
vectors is greater for intersective than for subsective
ANs. This is consistent with expectations. The sub-
sective uses are specific to the nouns with which the
color terms combine, and the exact interpretation of
the adjective varies across those nouns. In contrast,
the interpretation associated with intersective use is
consistent across a larger variety of nouns, and in
that sense should be predominantly reflected in the
adjective’s vector. The exception in this respect is
the alm function, since the weights for each adjec-
tive matrix are estimated in relation to the noun vec-
tors with which the adjective combines, on the one
hand, and the related observed AN vectors, on the
other; thus, the basic lexical representation of the
adjective is inherently reflective of the distributions
of the ANs in which it appears in a way that is not
the case for the adjective representations used in the
other composition models. And indeed, alm is the
only function that shows no difference in difficulty
(distance) between the predicted and observed AN
vectors for intersective vs. subsective ANs.

Both mult and alm seem to account for the ob-
served patterns in color terms. However, an exam-
ination of the nearest neighbors of the composed
ANs suggest that alm captures the semantics of ad-
jective composition in this case to a larger extent
than mult. For instance, the NN for blue square (in-
tersective) are the following according to mul: blue,
red, official colour, traditional colour, blue num-
ber, yellow; while alm yields the following: blue
square, red square, blue circle, blue triangle, blue
pattern, yellow circle. Similarly, for green poli-
tics (subsective) mul yields: pleasant land, green
business, green politics, green issue, green strategy,
green product, while alm yields green politics, green
movement, political agenda, environmental move-
ment, progressive government, political initiative.

5.2 Intensional modification

Table 3 contains the results of the composition func-
tions comparing the behavior of intersective color
ANs and intensional ANs. The tendencies in the
ROE are as in Table 2, so we will not comment on
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model ROE ∆:AN ∆:A ∆:N
obs - - 1.39 ∗∗∗ -.27 ∗∗∗

add 198 .66 ∗∗∗ .71 ∗∗∗ -.81 ∗∗∗

addn 40 .93 ∗∗∗ .20 ∗ .20 ∗

mult 110 .58 ∗∗∗ 1.09 ∗∗∗ -.25 ∗∗∗

dl 354 .97 ∗∗∗ -.27 ∗∗ .47 ∗∗∗

lim 7,943 .27 ∗∗∗ .65 ∗∗∗ -.47 ∗∗∗

alm 1 .81 ∗∗∗ 1.43 ∗∗∗ -.59 ∗∗∗

Table 3: Intersective vs. intensional ANs. Information as
in Table 2.

them further (note the very poor performance of lim,
though). As noted above, we expect more difficulty
in modeling intensional modification vs. other kinds
of modification, and this is verified in the results
(cf. the positive values in second column). The dif-
ference with the results in the previous subsection
is that in this case the alm function does present a
higher difficulty in modeling intensional ANs, un-
like with the color terms. This points to a qualitative
difference between subsective and intensional adjec-
tives that could be evidence for a first-order analysis
of subsective color terms.

A good composition function should provide a
large positive difference when comparing the AN
to the A, and a small negative difference (because
the effect is very small in the observed data) when
comparing the AN to the N. The functions that best
match the observed data are again alm and mult.
Add and lim show the predicted pattern, but to a
much lesser degree (cf. smaller differences in col-
umn ∆:A). Dl yields the exact opposite effect and
addn, though good in terms of ROE, is subject to
the problems discussed in the previous section.

Again, alm seems to be capturing relevant seman-
tic aspects of composition with intensional adjec-
tives. For instance, the nearest neighbors of artificial
leg according to alm are artificial leg, artificial limb,
artificial joint, artificial hip, scar, small wound.

6 Discussion and conclusions

The present research provides some evidence for
treating adjectives as matrices or functions, rather
than vectors, although simple operations on vectors
such as addition (for its excellent approximation to
observed vectors) and multiplication (for its ability
to reproduce the observed trends in the data) still ac-

count for some aspects of adjectival modification.
The dilation model, in contrast, is not suitable for
adjectival modification.

Our results also show that alm performs better
than lim, but it is worth observing that it does so
at the expense of modeling each adjective as a com-
pletely different function. We consider lim very at-
tractive in principle because it generalizes across ad-
jectives and is thus more parsimonious. Part of the
poor results on lim were due to limitations of our
implementation, as we trained the matrices on only
2.5K ANs, while our semantic space contains more
than 170K ANs. However, the linguistic literature
and the present results suggest that it might be use-
ful to try a compromise between alm and lim, train-
ing one matrix for each subclass of adjectives under
analysis.

Beyond the new data it offers regarding the com-
parative ability of the different composition func-
tions to account for different kinds of adjectival
modification, the study presented here underscores
the complexity of modification as a semantic phe-
nomenon. The role of adjectival modifiers as restric-
tors of descriptive content is reflected differently in
distributional data than is their role in providing in-
formation about whether or when a description ap-
plies to some individual. Formal semantic models,
thanks to their abstractness, are able to handle these
two roles with little difficulty, but also with limited
insight. Distributional models, in contrast, offer the
promise of greater insight into each of these roles,
but face serious challenges in handling both of them
in a unified manner.
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Abstract

We explore the interplay of knowledge and
structure in co-reference resolution. To inject
knowledge, we use a state-of-the-art system
which cross-links (or “grounds”) expressions
in free text to Wikipedia. We explore ways
of using the resulting grounding to boost the
performance of a state-of-the-art co-reference
resolution system. To maximize the utility of
the injected knowledge, we deploy a learning-
based multi-sieve approach and develop novel
entity-based features. Our end system outper-
forms the state-of-the-art baseline by 2 B3 F1
points on non-transcript portion of the ACE
2004 dataset.

1 Introduction

Co-reference resolution is the task of grouping men-
tions to entities. For example, consider the text snip-
pet in Fig. 11. The correct output groups the men-
tions {m1, m2, m5} to one entity while leaving m3

∗We thank Nicholas Rizzolo and Kai Wei Chang for their
invaluable help with modifying the baseline co-reference sys-
tem. We thank the anonymous EMNLP reviewers for con-
structive comments. This research was supported by the Army
Research Laboratory (ARL) under agreement W911NF-09-2-
0053 and by the Defense Advanced Research Projects Agency
(DARPA) Machine Reading Program under Air Force Research
Laboratory (AFRL) prime contract no. FA8750-09-C-0181.
Any opinions, findings, conclusions or recommendations are
those of the authors and do not necessarily reflect the view of
the ARL, DARPA, AFRL, or the US government.

† The majority of this work was done while the first author
was at the University of Illinois.

1Throughout this paper, curly brackets {} denote the extent
and square brackets [] denote the head.

“After the {[vessel]}m1 suffered a catastrophic torpedo
detonation, {[Kursk]}m2 sank in the waters of {[Barents
Sea]}m3 with all hands lost. Though rescue attempts were
offered by a nearby {Norwegian [ship]}m4 , Russia declined
initial rescue offers, and all 118 sailors and officers aboard
{[Kursk]}m5 perished.”

Figure 1: Example illustrating the challenges in co-reference
resolution.

and m4 as singletons. Resolving co-reference is fun-
damental for understanding natural language. For
example in Fig. 1, to infer that Kusrk has suffered
a torpedo detonation, we have to understand that
{[vessel]}m1 refers to {[Kursk]}m2.

This inference is typically trivial for humans, but
proves extremely challenging for state-of-the-art co-
reference resolution systems. We believe that it is
world knowledge that gives people the ability to un-
derstand text with such ease. A human reader can in-
fer that since Kursk sank, it must be a vessel and ves-
sels which suffer catastrophic torpedo detonations
can sink. Moreover, some readers might just know
that Kursk is a Russian submarine named after the
city of Kursk, where the largest tank battle in his-
tory took place in 1943. In this work we are using
Wikipedia as a source of encyclopedic knowledge.
The key contributions of this work are:

(1) Using Wikipedia to assign a set of knowledge
attributes to mentions in a context-sensitive way.
For example, for the text in Fig. 1, our system as-
signs to the mention “Kursk” the nationalities: Rus-
sian, Soviet and the attributes ship, incident, subma-
rine, shipwreck (as opposed to city or battle). We
are using a publicly available system for context-
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sensitive disambiguation to Wikipedia. We then
extract attributes from the cross-linked Wikipedia
pages (described in Sec. 3.1), assign these attributes
to the document mentions (Sec. 3.2) and develop
knowledge-rich compatibility metric between men-
tions (Sec. 3.3)2.

(2) Integrating the strength of rule-based systems
such as (Haghighi and Klein, 2009; Raghunathan et
al., 2010) into a machine learning framework. We
are using a multi-sieve approach (Raghunathan et
al., 2010), which splits pairwise “co-reference” vs.
“non-coreference” decisions to different types and
attempts to make the easy decisions first (Goldberg
and Elhadad, 2010). Our multi-sieve approach is
different from (Raghunathan et al., 2010) in sev-
eral respects: (a) our sieves are machine-learning
classifiers, (b) the same pair of mentions can fall
into multiple sieves, (c) later sieves can override
the decisions made by earlier sieves, allowing to re-
cover from errors as additional evidence becomes
available. In our running example, the decision
of whether {[vessel]}m1 refers to {[Kursk]}m2 is
made before the decision of whether {[vessel]}m1

refers to {Norwegian [ship]}m4 since decisions in
the same sentence are believed to be easier than
cross-sentence ones. We describe our learning-
based multi-sieve approach in Sec. 4.

(3) A novel approach for entity-based features. As
sieves of classifiers are applied, our system attempts
to model entities and share the attributes between the
mentions belonging to the same entity. Once the de-
cision that {[vessel]}m1 and {[Kursk]}m2 co-refer is
made, we want the two mentions to share the Rus-
sian nationality. This allows us to avoid erroneously
linking {[vessel]}m1 to {Norwegian [ship]}m4 de-
spite vessel and ship being synonyms in Word-
Net. However, in this work we allow the sieves to
make conflicting decisions on the same pair of men-
tions. Hence, obtaining entities and their attributes
by straightforward transitive closure of co-reference
predictions is impossible. We describe our approach
for leveraging possibly contradicting predictions in
Sec. 5.

(4) By adding word-knowledge features and us-

2The extracted attributes and the related re-
sources are available for public download at
http://cogcomp.cs.illinois.edu/Data/
Ace2004CorefWikiAttributes.zip

Input: document d; mentions M = {m1, . . . , mN}
1) For each mi ∈ M , assign it a Wikipedia page pi in a
context-sensitive way (pi may be null).
- If pi 6= null: extract knowledge attributes from pi and
assign to m.
- Else extract knowledge attributes directly from m via
noun-phrase parsing techniques (Vadas and Curran, 2008).
3) Let Q = {(mi, mj)}i6=j , be the queue of mention
pairs approximately sorted by “easy-first” (Goldberg and
Elhadad, 2010).
4) Let G be a partial clustering graph.
5) While Q is not empty
- Extract a pair p = (mi, mj) from Q.
- Using the knowledge attributes of mi and mj as well as
the structure of G, classify whether p is co-referent.
- Update G with the classification decision.
6) Construct an end clustering from G.

Figure 2: High-level system architecture.

ing learning-based multi-sieve approach, we im-
prove the performance of the state-of-the-art system
of (Bengtson and Roth, 2008) by 3 MUC, 2 B3 and
2 CEAF F1 points on the non-transcript portion of
the ACE 2004 dataset. We report our experimen-
tal results in Sec. 6 and conclude with discussion in
Sec. 7.

We conclude the introduction by giving a high-
level overview of our system in Fig. 2.

2 Baseline System

In this work, we are using the state-of-the-art sys-
tem of (Bengtson and Roth, 2008), which relies
on a pairwise scoring function pc to assign an or-
dered pair of mentions a probability that they are
coreferential. It uses a rich set of features includ-
ing: string edit distance, gender match, whether the
mentions appear in the same sentence, whether the
heads are synonyms in WordNet etc. The function
pc is modeled using regularized averaged percep-
tron for a tuned number of training rounds, learn-
ing rate and margin. For the end system, we keep
these parameters intact, our only modifications will
be adding knowledge-rich features and adding inter-
mediate classification sieves to the training and the
inference, which we will discuss in the following
sections.

At inference time, given a document d and a
pairwise co-reference scoring function pc, (Bengt-
son and Roth, 2008) generate a graph Gd accord-
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ing to the Best-Link decision model (Ng and Cardie,
2002) as follows. For each mention m in docu-
ment d, let Bm be the set of mentions appearing
before m in d. Let a be the highest scoring an-
tecedent: a = argmaxb∈Bm

(pc(b, m)). We will add
the edge (a, m) to Gd if pc(a, m) predicts the pair to
be co-referent with a confidence exceeding a chosen
threshold, then we take the transitive closure3.

The properties of the Best-Link inference are il-
lustrated in Fig. 3. At this stage, we ask the reader
to ignore the knowledge attributes at the bottom of
the figure. Let us assume that the pairwise classi-
fier labeled the mentions (m2, m5) co-referent be-
cause they have identical surface form; mentions
(m1, m4) are co-referred because the heads are syn-
onyms in WordNet. Let us assume that since m1

and m2 appear in the same sentence, the pairwise
classifier managed to leverage the dependency parse
tree to correctly co-ref the pair (m1, m2). The tran-
sitive closure would correctly link (m1, m5) despite
the incorrect prediction of the pairwise classifier on
(m1, m5), and would incorrectly link m4 with all
other mentions because of the incorrect pairwise
prediction on (m1, m4) and despite the correct pre-
dictions on (m2, m4) and (m4, m5).

Figure 3: A sample output of a pairwise co-reference classifier.
The full edges represent a co-ref prediction and the empty edges
represent a non-coref prediction. A set of knowledge attributes
for selected mentions is shown as well.

3 Wikipedia as Knowledge

In this section we describe our methodology for us-
ing Wikipedia as a knowledge resource. In Sec. 3.1
we cover the process of knowledge extraction from

3We use Platt Scaling while (Bengtson and Roth, 2008) used
the raw output value of pc.

Wikipedia pages. We describe how to inject this
knowledge into mentions in Sec. 3.2. The bottom
part of Fig. 3 illustrates the knowledge attributes our
system injects to two sample mentions at this stage.
Finally, in Sec. 3.3 we describe a compatibility met-
ric our system learns over the injected knowledge.

3.1 Wikipedia Knowledge Attributes

Our goal in this section is to extract from Wikipedia
pages a compact and highly-accurate set of knowl-
edge attributes, which nevertheless possesses dis-
criminative power for co-reference4. We concentrate
on three types of knowledge attributes: fine-grained
semantic categories, gender information and nation-
ality where applicable.

Each Wikipedia page is assigned a set of cat-
egories. There are over 100K categories in
Wikipedia, many are extremely fine-grained and
contain very few pages. The value of the Wikipedia
category structure for knowledge acquisition has
long been noticed in several influential works, such
as (Suchanek et al., 2007; Nastase and Strube, 2008)
to name a few. However, while the recall of the
above resources is excellent, we found their preci-
sion insufficient for our purposes. We have imple-
mented a simple high-precision low-recall heuris-
tic for extracting the head words of Wikipedia cat-
egories as follows.

We noticed that Wikipedia categories have a sim-
ple structure of either <noun-phrase> or <noun-
phrase><relation-token><noun-phrase>, where
in the second case the category information is al-
ways on the left. Therefore, we first remove the
text succeeding a set of carefully chosen relation to-
kens5. With this heuristic “Recipients of the Gold
Medal of the Royal Astronomical Society” becomes
just “Recipients”; “Populated places in Africa” be-
comes “places”; however “Institute for Advanced
Study faculty” becomes “Institute” (rather than
“faculty”). At the second step, we apply the Illi-
nois POS tagger and keep only the tokens labeled as
NNS. This step allows us to exclude singular nouns
incorrectly identified as heads, such as “Institute”
above. To further reduce the noise in the category

4We justify the reasons for our choice of high-precision low-
recall knowledge extraction in Sec. 3.2.

5The selected set was: {of, in, with, from, ”,”, at, who,
which, for, and, by}
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extraction, we also remove all rare category tokens
which appeared in less than 100 titles ending up with
2088 fine-grained entity types. We manually map
popular fine-grained categories to coarser-grained
ones, more consistent with ACE entity typing. A
sample of the mapping is shown in the table below:

Fine-grained Coarse-grained

departments, organizations, banks, . . . ORG

venues, trails, areas, buildings, . . . LOC

countries, towns, villages, . . . GPE

churches, highways, schools, . . . FACILITY
Manual inspection of the extracted category key-
words has led us to believe that this heuristic
achieves a higher precision at a considerable loss
of recall when compared to the more sophisticated
approach of (Nastase and Strube, 2008), which
correctly identifies “faculty” as the head of “Insti-
tute for Advanced Study faculty”, but incorrectly
identifies “statistical organizations” as the head of
“Presidents of statistical organizations” in about
half the titles containing the category6.

We assign gender to the titles using the follow-
ing simple heuristic. The first paragraph of each
Wikipedia article provides a very brief summary
of the entity in focus. If the first paragraph of a
Wikipedia page contains the pronoun “she”, but not
“he”, the article is considered to be about a female
(and vice-versa). However, when the page is as-
signed a non-person-related fine-grained NE type
(e.g. school) and at the same time is not assigned
a person-related fine-grained NE type (e.g. novel-
ist), we mark the page as inanimate regardless of the
presence of he/she pronouns. The nationality is as-
signed by matching the tokens in the original (un-
processed) categories of the Wikipedia page to a list
of countries. We assign nationality not only to the
Wikipedia titles, but also to single tokens. For each
token, we track the list of titles it appears in, and if
the union of the nationalities assigned to the titles it
appears in is less than 7, we mark the token compat-
ible with these nationalities. This allows us to iden-
tify Ivan Lebedev as Russian and Ronen Ben-Zohar
as Israeli, even though Wikipedia may not contain
pages for these specific people.

6 (Nastase and Strube, 2008) analyze a set of categories S
assigned to Wikipedia page p jointly, hence the same category
expression can be interpreted differently, depending on S.

3.2 Injecting Knowledge Attributes

Once we have extracted the knowledge attributes of
Wikipedia pages, we need to inject them into the
mentions. (Rahman and Ng, 2011) used YAGO for
similar purposes, but noticed that knowledge injec-
tion is often noisy. Therefore they used YAGO only
for mention pairs where one mention was an NE
of type PER/LOC/ORG and the other was a com-
mon noun. This implies that all MISC NEs were
discarded, and all NE-NE pairs were discarded as
well. We also note that (Rahman and Ng, 2011)
reports low utility of FrameNet-based features. In
fact, when incrementally added to other features in
cluster-ranking model the FrameNet-based features
sometimes led to performance drops. This observa-
tion has motivated our choice of high-precision low-
recall heuristic in Sec. 3.1 and will motivate us to
add features conservatively when building attribute
compatibility metric in Sec. 3.3.

Additionally, while (Rahman and Ng, 2011) uses
the union of all possible meanings a mention may
have in Wikipedia, we deploy GLOW (Ratinov et
al., 2011)7, a context-sensitive system for disam-
biguation to Wikipedia. Using context-sensitive dis-
ambiguation to Wikipedia as well as high-precision
set of knowledge attributes allows us to inject the
knowledge to more mention pairs when compared
to (Rahman and Ng, 2011). Our exact heuristic for
injecting knowledge attributes to mentions is as fol-
lows:
Named Entities with Wikipedia Disambiguation
If the mention head is an NE matched to a Wikipedia
page p by GLOW, we import all the knowledge at-
tributes from p. GLOW allows us to map “Ephraim
Sneh” to http://en.wikipedia.org/wiki/Efraim Sneh
and to assign it the Israeli nationality, male gender,
and the fine-grained entity types: {member, politi-
cian, person, minister, alumnus, physician, gen-
eral}.
Head and Extent Keywords
If the mention head is not mapped to Wikipedia by
GLOW and the head contains keywords which ap-
pear in the list of 2088 fine-grained entity types,
then the rightmost such keyword is added to the list
of mention knowledge attributes. If the head does

7Available at: http://cogcomp.cs.illinois.
edu/page/software_view/Wikifier
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not contain any entity-type keywords but the extent
does, we add the rightmost such keyword of the ex-
tent. In both cases, we apply the heuristic of re-
moving clauses starting with a select set of punctua-
tions, prepositions and pronouns, annotating what is
left with POS tagger and restricting to noun tokens
only8. This allows us to inject knowledge to men-
tions unmapped to Wikipedia, such as: “{current
Cycle World publisher [Larry Little]}”, which is as-
signed the attribute publisher but not world or cy-
cle. Likewise, “{[Joseph Conrad Parkhurst], who
founded the motorcycle magazine Cycle World in
1962 }”, is not assigned the attribute magazine,
since the text following “who” is discarded.

3.3 Learning Attributes Compatibility
In the previous section we have assigned knowledge
attributes to the mentions. Some of this information,
such as gender and coarse-grained entity types are
also modeled in the baseline system of (Bengtson
and Roth, 2008). Our goal is to build a compatibility
metric on top of this redundant, yet often inconsis-
tent information.

The majority of the features we are using are
straightforward, such as: (1) whether the two men-
tions mapped to the same Wikipedia page, (2)
gender agreement (both Wikipedia and dictionary-
based), (3) nationality agreement (here we measure
only whether the sets intersect, since mentions can
have multiple nationalities in the real world), (4)
coarse-grained entity type match, etc.

The only non-trivial feature is measuring com-
patibility between sets of fine-grained entity types,
which we describe below. Let us assume that men-
tion m1 was assigned the set of fine-grained entity
types S1 and the mention m2 was assigned the set
of fine-grained entity types S2. We record whether
S1 and S2 share elements. If they do, than, in addi-
tion to the Boolean feature, the list of the shared el-
ements also appears as a list of discrete features. We
do the same for the most similar and most dissimilar
elements of S1 and S2 (along with their discretized
similarity score) according to a WordNet-based sim-
ilarity metric of (Do et al., 2009). The reason for ex-
plicitly listing the shared, the most similar and dis-

8This heuristic is similar to the one we used for extracting
Wikipedia category headwords and seems to be a reasonable
baseline for parsing noun structures (Vadas and Curran, 2008).

similar elements is that the WordNet similarity does
not always correspond to co-reference compatibil-
ity. For example, the pair (company, rival) has a
low similarity score according to WordNet, but char-
acterizes co-referent mentions. On the other hand,
the pair (city, region) has a high WordNet simi-
larity score, but characterizes non-coreferent men-
tions. We want to allow our system to “memorize”
the discrepancy between the WordNet similarity and
co-reference compatibility of specific pairs.

We also note that we generate a set of selected
conjunctive features, most notably of fine-grained
categories with NER predictions. The reason is
that the pair of mentions “(Microsoft, Google)” are
not co-referent despite the fact that they both have
the company attribute. On the other hand “(Mi-
crosoft, Redmond-based company)” is a co-referent
pair. To capture this difference, we generate the
feature ORG-ORG&&share attribute for the first
pair, and ORG-O&&share attribute for the second
pair9. These features are also used in conjunction
with string edit distance. Therefore, if our system
sees two named entities which share the same fine-
grained type but have a large string edit distance, it
will label the pair as non-coref.

4 Learning-based Multi-Sieve Aproach

State-of-the-art machine-learning co-ref systems,
e.g. (Bengtson and Roth, 2008; Rahman and Ng,
2011) train a single model for predicting co-
reference of all mention pairs. However, rule-based
systems, e.g. (Haghighi and Klein, 2009; Raghu-
nathan et al., 2010) characterize mention pairs by
discourse structure and linguistic properties and ap-
ply rules in a prescribed order (high-precision rules
first). Somewhat surprisingly, such hybrid approach
of applying rules on top of structures produced by
statistical tools (such as dependency parse trees) per-
forms better than pure machine-learning approach10.

In this work, we attempt to integrate the strength
of linguistically motivated rule-based systems with
the robustness of a machine learning approach. We
started with a hypothesis that different types of men-

9The head of “Redmond-based company” is “company”,
which is not a named entity, and is marked O.

10(Raghunathan et al., 2010) recorded the best result on
CoNLL 2011 shared task.
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tion pairs may require a different co-ref model. For
example, consider the text below:

Queen Rania of Jordan , Egypt’s [Suzanne Mubarak]m1 and
others were using their charisma and influence to campaign
for equality of the sexes. [Mubarak]m2 , wife of Egyptian
President [Hosni Mubarak]m3 , and one of the conference
organizers, said they must find ways to . . .

There is a subtle difference between mention pairs
(m1, m2) and (m2, m3). One of the differences is
purely structural. The first pair appears in different
sentences, while the second pair – in the same sen-
tence. It turns out that string edit distance feature be-
tween two named entities has different “semantics”
depending on whether the two mentions appear in
the same sentence. The reason is that to avoid redun-
dancy, humans refer to the same entity differently
within the sentence, preferring titles, nicknames and
pronouns. Therefore, when a similar-looking named
entities appear in the same sentence, they are ac-
tually likely to refer to different entities. On the
other hand, in the sentence “Reggie Jackson, nick-
named Mr. October . . . ” we have to rely heavily on
sentence structure rather than string edit distance to
make the correct co-ref prediction.

Trained on Sieve-specific
Sieve All Data Training
AllSentencePairs 61.37 67.46
ClosestNonProDiffSent 60.71 63.33
NonProSameSentence 62.97 63.80
NerMentionsDiffSent 86.44 87.12
SameSentenceOneNer 64.10 68.88
Adjacent 71.00 78.80
SameSenBothNer 75.30 73.75
Nested 76.11 79.00

Table 1: F1 performance on co-referent mention pairs by sieve
type when trained with all data versus sieve-specific data only.

Our second intuition is that “easy-first” inference
is necessary to effectively leverage knowledge. For
example, in Fig. 3, our goal is to link vessel to
Kursk and assign it the Russian/Soviet nationality
prior to applying the pairwise co-reference classi-
fier on (vessel, Norwegian ship). Therefore, our
goal is to apply the pairwise classifier on pairs in
prescribed order and to propagate the knowledge
across mentions. The ordering should be such that
(a) maximum amount of information is injected at
early stages (b) the precision at the early stages is as

high as possible (Raghunathan et al., 2010). Hence,
we divide the mention pairs as follows:

Nested: are pairs such as “{{[city]m1} of [Jerusalem]m2}”
where the extent of one of the mentions contains the extent of

the other. For some mentions, the extent is the entire clause, so

we also added a requirement that mention heads are at most 7

tokens apart. Intuitively, it is the easiest case of co-reference.

There are 5,804 training samples and 992 testing samples, out

of which 208 are co-referent.
SameSenBothNer: are pairs of named entities which appear

in the same sentence. We already saw an example for this

case involving [Mubarak]m2 and [Hosni Mubarak]m3. There

are 13,041 training samples and 1,746 testing samples, out of

which 86 are co-referent.
Adjacent: are pairs of mentions which appear closest to each

other on the dependency tree. We note that most of the nested

pairs are also adjacent. There are training 5,872 samples and

895 testing samples, out of which 219 are co-referent.
SameSentenceOneNer: are pairs which appear in the same

sentence and exactly one of the mentions is a named entity, and

the other is not a pronoun. Typical pairs are “Israel-country”,

as opposed to “Bill Clinton - reporter”. This type of pairs is

fairly difficult, but our hope is to use encyclopedic knowledge

to boost the performance. There are 15,715 training samples

and 2,635 testing samples, out of which 207 are co-referent.
NerMentionsDiffSent: are pairs of mentions in different sen-

tences, both of which are named entities. There are 189,807

training samples and 24,342 testing samples, out of which 1,628

are co-referent.
NonProSameSentence: are pairs in the same sentence, where

both mentions are non-pronouns. This sieve includes all the

pairs in the SameSentenceOneNer sieve. Typical pairs are

“city-capital” and “reporter-celebrity”. There are 33,895

training samples and 5,393 testing samples, out of which 336

are co-referent..
ClosestNonProDiffSent: are pairs of mentions in different sen-

tences with no other mentions between the two. 3,707 train-

ing samples and 488 testing samples, out of which 38 are co-

referent.
AllSentencePairs: All mention pairs within same sentence.

There are 49,953 training samples and 7,809 testing samples,

out of which 846 are co-referent.
TopSieve: The set of mention pairs classified by the baseline

system. 525,398 training samples and 85,358 testing samples,

out of which 1,387 are co-referent.
In Tab. 1 we compare the performance at each

sieve in two scenarios11. First, we train with the en-
tire 525,398 training samples, and then we train on

11The data is described in Sec. 6.1.
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whatever training data is available for the specific
sieve12. We were surprised to see that the F1 on the
nested mentions, when trained on the 5,804 sieve-
specific samples improves to 79.00 versus 76.11
when trained on the 525,398 top sieve samples.

There are several things to note when interpreting
the results in Tab 1. First, the sheer ratio of positive
to negative samples fluctuates drastically. For exam-
ple, 208 out of the 992 testing samples at the nested
sieve are positive, while there are only 86 positive
samples out of 1,746 testing samples in the Same-
SenBothNer sieve. It seems unreasonable to use the
same model for inference at both sieves. Second, the
data for intermediate sieves is not always a subset of
the top sieve. The reason is that top sieve extracts
a positive instance only for the closest co-referent
mentions, while sieves such as AllSentencePairs ex-
tract samples for all co-referent pairs which appear
in the same sentence. Third, while our division to
sieves may resemble witchcraft, it is motivated by
the intuition that mentions appearing close to one
another are easier instances of co-ref as well as lin-
guistic insights of (Raghunathan et al., 2010).

5 Entity-Based Features

In this section we describe our approach for build-
ing entity-based features. Let {C1, C2, . . . CN} be
the set of sieve-specific classifiers. In our case, C1 is
the nested mention pairs classifier, C2 is the Same-
SenBothNer classifier, and C9 is the top sieve clas-
sifier. We design entity-based features so that the
subsequent sieves “see” the decisions of the previ-
ous sieves and use entity-based features based on the
intermediate clustering. However, unlike (Raghu-
nathan et al., 2010), we allow the subsequent sieves
to change the decisions made by the lower sieves
(since additional information becomes available).

5.1 Intermediate Clustering Features (IC)
Let Ri(m) be the set of all mentions which, when
paired with the mention m, form valid sample pairs
for sieve i. E.g. in our running example of Fig. 1,

12We report pairwise performance on mention pairs because
it is the more natural metric for the intermediate sieves. We
report only performance on co-referent pairs, because for many
sieves, such as the top sieve, 99% of the mention pairs are non-
coreferent, hence the baseline of labeling all samples as non-
coreferent would result in 99% accuracy. We are interested in a
more challenging baseline, the co-referent pairs.

R2([Kursk]m2) = {[Barents Sea]m3}, since both
m1 and m2 are NEs and appear in the same sen-
tence. Let R+

i (m) be the set of all mentions which
were labeled as co-referent to the mention m by the
classifier Ci (including m, which is co-referent to
itself). We define R−i (m) similarly. We denote the
union of mentions co-refed to m during inference
up to sieve i as E+

i (m) = ∪i−1
j=1R

+
j (m). Similarly,

E−i (m) = ∪i−1
j=1R

−
j (m). Using these definitions

we can introduce entity-based prediction features
which allow subsequent sieves to use information
aggregated from previous sieves:

ICR
i (mj , mk) =


−1 mj ∈ R−i−1(mk)
+1 mj ∈ R+

i−1(mk)
0 Otherwise

ICE
i (mj , mk) =


−1 mj ∈ E−i−1(mk)
+1 mj ∈ E+

i−1(mk)
0 Otherwise

ICR
i stores the pairwise prediction history, thus

when classifying a pair (mj , mk) at sieve i, a
classifier can see the predictions of all the previous
sieves applicable on that pair. ICE

i stores the
transitive closures of the sieve-specific predictions.
We note that both ICR

i and ICE
i can have the values

+1 and -1 active at the same time if intermediate
sieve classifiers generated conflicting predictions.
However, a classifier at sieve i will use as features
both ICR

1 ,. . . ICR
i−1 and ICE

1 ,. . . ICE
i−1, thus it

will know the lowest sieve at which the conflicting
evidence occurs. The classifier at sieve i also
uses set identity, set containment, set overlap and
other set comparison features between E

+/−
i−1 (mj)

and E
+/−
i−1 (mk). We check whether the sets have

symmetric difference, whether the size of the
intersection between the two sets is at least half
the size of the smallest set etc. We also generate
subtypes of set comparison features when restricting
the elements to NE-mentions and non-pronominal
mentions (e.g “what percent of named entities do
the sets have in common?”).

5.2 Surface Form Compatibility (SFC)

The intermediate clustering features do not allow us
to generalize predictions from pairs of mentions to
pairs of surface strings. For example, if we have
three mentions: {[vessel]m1 , [Kursk]m2 , [Kursk]m5},
then the prediction on the pair (m1, m2) will not be
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(B)aseline (B)+Knowledge (B)+Predictions (B)+Knowledge+Predictions
TopSieve 66.58 69.08 68.77 70.43
AllSentencePairs 67.46 71.79 69.59 73.50
ClosestNonProDiffSent 63.33 65.62 65.57 70.76
NonProSameSentence 63.80 69.62 67.03 71.11
NerMentionsDiffSent 87.12 88.23 88.68 89.07
SameSentenceOneNer 68.88 70.58 67.89 73.17
Adjacent 78.80 81.32 80.00 81.79
SameSenBothNer 73.75 80.50 77.21 80.98
Nested 79.00 83.59 80.65 83.37

Table 2: Utility of knowledge and prediction features (F1 on co-referent mention pairs) by inference sieves. Both knowledge and
entity-based features significantly and independently improve the performance for all sieves. The goal of entity-based features is
to propagate knowledge effectively, thus it is encouraging that the combination of entity-based and knowledge features performed
significantly better than any of the approaches individually at the top sieve.

used for the prediction on the pair (m1, m5), even
though in both pairs we are asking whether Kursk
can be referred to as vessel. The surface form com-
patibility features mirror the intermediate clustering
features, but relax mention IDs and replace them
by surface forms. Similarly to intermediate cluster-
ing features, both +1 and -1 values can be active at
the same time. We also generate subtypes of set-
comparison features for NE-mentions and optionally
stemmed non-pronominal mentions. For example,
in a text discussing President Clinton and President
Putin, some instances of the surface from president
will refer to Putin but not Clinton and vice-versa.
Therefore, both for (Putin, president) and for (Clin-
ton, president), the surface from compatibility will
be +1 and -1 simultaneously. This indicates to the
system that Putin can be referred to as president, but
president can refer to other entities in the document
as well.

6 Experiments and Results

6.1 Data
We use the official ACE 2004 English training
data (NIST, 2004). We started with the data split
used in (Culotta et al., 2007), which used 336 doc-
uments for training and 107 documents for testing.
We note that ACE data contains both newswire text
and transcripts. In this work, we are using NLP tools
such as POS tagger, named entity recognizer, shal-
low parser, and a disambiguation to Wikipedia sys-
tem to inject expressive features into a co-reference
system.

Unfortunately, current state-of-the-art NLP tools

do not work well on transcribed text. Therefore, we
discard all the transcripts. Our criteria was simple.
The ACE annotators have marked the named enti-
ties both in newswire and in the transcripts. We kept
only those documents which contained named en-
tities (according to manual ACE annotation) and at
least 1/3 of the named entities started with a capital
letter. After this pre-processing step, we were left
with 275 out of the original 336 training documents,
and 42 out of the 107 testing documents.

For the experiments throughout this paper, fol-
lowing Culotta et al. (Culotta et al., 2007) and much
other work, to make experiments more compara-
ble across systems, we assume that perfect mention
boundaries and mention type labels are given. How-
ever, we do not use the gold named entity types such
as person/location/facility etc. available in the data.
In all experiments we automatically split words and
sentences, and annotate the text with part-of-speech
tags, named entities and cross-link concepts from
the text to Wikipedia using publicly available tools.

6.2 Ablation Study

In Tab. 2 we report the pairwise F1 scores on co-
referent mention pairs broken down by sieve and
using different components. This allows us to see,
for example, that adding only the knowledge at-
tributes improved the performance at NonProSame-
Sentence sieve from 63.80 to 69.62. We have or-
dered the sieves according to our initial intuition of
“easy first”. We were surprised to see that co-ref res-
olution for named entities in the same sentence was
harder than cross-sentence (73.75 vs. 87.12 base-
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Figure 4: End performance for various systems.

line F1). We were also surprised to see that resolv-
ing all mention pairs within sentence when includ-
ing pronouns was easier than resolving pairs where
both mentions were non-pronouns (67.46 vs. 63.80
baseline F1).

We note that conceptually, the nested
(B)+Predictions sieve should be identical to
the baseline. However, in practice, the surface
form compatibility (SFC) features are generated
for the nested sieve as well. Given two mentions
m1 and m2, the SFC features capture how many
surface forms E+(m1) and E+(m2) share. At the
nested sieve, E+(m) and R+(m) are just m, which
is identical to string comparison features already
existing in the baseline system. While the SFC
features do not add new information, they influence
the weight the features get (essentially leading to
a different regularization), which in turn leads to
slightly different results.

6.3 End system performance
Recall that the Best-Link algorithm applies transi-
tive closure on the graph generated by thresholding
the pairwise co-reference scoring function pc. The
lower the threshold on the positive prediction, the
lower is the precision and the higher is the recall. In
Fig. 4 we compare the end clustering quality across
a variety of thresholds and for various system fla-
vors using three metrics: MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998) and CEAF (Luo,
2005)13. The purpose of this comparison is to see
the impact of the knowledge and the prediction fea-
tures on the final output and to see whether the per-
formance gains are due to (mis-)tuning of one of
the systems or are they consistent across a variety
of thresholds.

The end performance of the baseline system
on our training/testing split peaks at around 78.39
MUC, 83.03 B3 and 77.52 CEAF, which is higher
(e.g. 3 B3 F1 points) than the originally reported
result on the entire dataset (which includes the tran-
scripts). This is expected, since well-formed text is
easier to process than transcripts. We note that our
baseline is a state-of-the art system which recorded
the highest B3 and BLANC scores at CoNLL 2011
shared task and took the third place overall. Fig. 4
shows a minimum improvement of 3 MUC, 2 B3

and 1.25 CEAF F1 points across all thresholds when
comparing the baseline to our end system. Surpris-
ingly, the knowledge features outperformed predic-
tion features on pairwise, MUC and B3 metrics, but
not on the CEAF metric. This shows that pairwise
performance is not always indicative of cluster-level
performance for all metrics.

7 Conclusions and Related Work

To illustrate the strengths of our approach, let us
consider the following text:

Another terminal was made available in {[Jiangxi]m1}, an

{inland [province]m2}. . . . The previous situation whereby

large amount of goods for {Jiangxi [province]m3} had to

be re-shipped through Guangzhou and Shanghai will be

changed completely.

The baseline system assigns each mention to a
separate cluster. The pairs (m1, m2) and (m1, m3)

13In the interest of space, we refer the reader to the literature
for details about the different metrics.
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are misclassified because the baseline classifier does
not know that Jiangxi is a province and the preposi-
tion an before m2 is interpreted to mean it is a pre-
viously unmentioned entity. The pair (m2, m3) is
misclassified because identical heads have different
modifiers, as in (big province, small province). Our
end system first co-refs (m1, m2) at the AllSameSen-
tence sieve due to the knowledge features, and then
co-refs (m1, m3) at the top sieve due to surface form
compatibility features indicating that province was
observed to refer to Jiangxi in the document. The
transitivity of Best-Link takes care of (m2, m3).

However, our approach has multiple limitations.
Entity-based features currently do not propagate
knowledge attributes directly, but through aggregat-
ing pairwise predictions at knowledge-infused inter-
mediate sieves. We rely on gold mention bound-
aries and exhaustive gold co-reference annotation.
This prevented us from applying our approach to
the Ontonotes dataset where singleton clusters and
co-referent nested mentions are removed. There-
fore the gold annotation for training several sieves
of our scheme is missing (e.g. nested mentions).
Another limitation is our somewhat preliminary di-
vision to sieves. (Vilalta and Rish, 2003) have ex-
perimented with approaches for automatic decom-
position of data to subclasses and learning multiple
models to improve data separability. We hope that
similar approach would be useful for co-reference
resolution. Ideally, we want to make “simple de-
cisions” first, similarly to what was done in (Gold-
berg and Elhadad, 2010) for dependency parsing,
and model clustering as a structured problem, sim-
ilarly to (Joachims et al., 2009; Wick et al., 2011).
However, our experience with multi-sieve approach
with classifiers suggests that a single model would
not perform well for both lower sieves with little
entity-based information and higher sieves with a lot
of entity-based features. Addressing the aforemen-
tioned challenges is a subject for future work.

There has been an increasing interest in
knowledge-rich co-reference resolution (Ponzetto
and Strube, 2006; Haghighi and Klein, 2010; Rah-
man and Ng, 2011). We use Wikipedia differently
from (Ponzetto and Strube, 2006) who focus on
using WikiRelate, a Wikipedia-based relatedness
metric (Strube and Ponzetto, 2006). (Rahman and
Ng, 2011) used the union of all possible inter-

pretations a mention may have in YAGO, which
means that Michael Jordan could be co-refed both
to a scientist and basketball player in the same
document. Additionally, (Rahman and Ng, 2011)
use exact word matching, relying on YAGO’s ability
to extract a comprehensive set of facts offline14. We
are the first to use context-sensitive disambiguation
to Wikipedia, which received a lot of attention re-
cently (Bunescu and Pasca, 2006; Cucerzan, 2007;
Mihalcea and Csomai, 2007; Milne and Witten,
2008; Ratinov et al., 2011). We extract context-
sensitive, high-precision knowledge attributes from
Wikipedia pages and apply (among other features)
WordNet similarity metric on pairs of knowledge
attributes to determine attribute compatibility.

We have integrated the strengths of rule-based
systems such as (Haghighi and Klein, 2009; Raghu-
nathan et al., 2010) into a multi-sieve machine learn-
ing framework. We show that training sieve-specific
models significantly increases the performance on
most intermediate sievesieves.

We develop a novel approach for entity-based in-
ference. Unlike (Rahman and Ng, 2011) who con-
struct entities left-to-right, and similarly to (Raghu-
nathan et al., 2010) we resolve easy instances of co-
ref to reduce error propagation in entity-based fea-
tures. Unlike (Raghunathan et al., 2010), we al-
low later stages of inference to change the decisions
made at lower stages as additional entity-based evi-
dence becomes available.

By adding word-knowledge features and refin-
ing the inference, we improve the performance of a
state-of-the-art system of (Bengtson and Roth, 2008)
by 3 MUC, 2 B3 and 2 CEAF F1 points on the non-
transcript portion of the ACE 2004 dataset.
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Abstract

Pairwise coreference resolution models must
merge pairwise coreference decisions to gen-
erate final outputs. Traditional merging meth-
ods adopt different strategies such as the best-
first method and enforcing the transitivity con-
straint, but most of these methods are used
independently of the pairwise learning meth-
ods as an isolated inference procedure at the
end. We propose a joint learning model which
combines pairwise classification and mention
clustering with Markov logic. Experimen-
tal results show that our joint learning sys-
tem outperforms independent learning sys-
tems. Our system gives a better performance
than all the learning-based systems from the
CoNLL-2011 shared task on the same dataset.
Compared with the best system from CoNLL-
2011, which employs a rule-based method,
our system shows competitive performance.

1 Introduction

The task of noun phrase coreference resolution is to
determine which mentions in a text refer to the same
real-world entity. Many methods have been pro-
posed for this problem. Among them the mention-
pair model (McCarthy and Lehnert, 1995) is one of
the most influential ones and can achieve the state-
of-the-art performance (Bengtson and Roth, 2008).
The mention-pair model splits the task into three
parts: mention detection, pairwise classification and
mention clustering. Mention detection aims to iden-
tify anaphoric noun phrases, including proper nouns,
common noun phrases and pronouns. Pairwise clas-
sification takes a pair of detected anaphoric noun

phrase candidates and determines whether they re-
fer to the same entity. Because these classification
decisions are local, they do not guarantee that can-
didate mentions are partitioned into clusters. There-
fore a mention clustering step is needed to resolve
conflicts and generate the final mention clusters.

Much work has been done following the mention-
pair model (Soon et al., 2001; Ng and Cardie, 2002).
In most work, pairwise classification and mention
clustering are done sequentially. A major weak-
ness of this approach is that pairwise classification
considers only local information, which may not be
sufficient to make correct decisions. One way to
address this weakness is to jointly learn the pair-
wise classification model and the mention cluster-
ing model. This idea has been explored to some
extent by McCallum and Wellner (2005) using con-
ditional undirected graphical models and by Finley
and Joachims (2005) using an SVM-based super-
vised clustering method.

In this paper, we study how to use a different
learning framework, Markov logic (Richardson and
Domingos, 2006), to learn a joint model for both
pairwise classification and mention clustering un-
der the mention-pair model. We choose Markov
logic because of its appealing properties. Markov
logic is based on first-order logic, which makes
the learned models readily interpretable by humans.
Moreover, joint learning is natural under the Markov
logic framework, with local pairwise classification
and global mention clustering both formulated as
weighted first-order clauses. In fact, Markov logic
has been previously used by Poon and Domingos
(2008) for coreference resolution and achieved good
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results, but it was used for unsupervised coreference
resolution and the method was based on a different
model, the entity-mention model.

More specifically, to combine mention cluster-
ing with pairwise classification, we adopt the com-
monly used strategies (such as best-first clustering
and transitivity constraint), and formulate them as
first-order logic formulas under the Markov logic
framework. Best-first clustering has been previously
studied by Ng and Cardie (2002) and Bengtson and
Roth (2008) and found to be effective. Transitivity
constraint has been applied to coreference resolution
by Klenner (2007) and Finkel and Manning (2008),
and also achieved good performance.

We evaluate Markov logic-based method on the
dataset from CoNLL-2011 shared task. Our ex-
periment results demonstrate the advantage of joint
learning of pairwise classification and mention clus-
tering over independent learning. We examine
best-first clustering and transitivity constraint in our
methods, and find that both are very useful for coref-
erence resolution. Compared with the state of the
art, our method outperforms a baseline that repre-
sents a typical system using the mention-pair model.
Our method is also better than all learning systems
from the CoNLL-2011 shared task based on the re-
ported performance. Even with the top system from
CoNLL-2011, our performance is still competitive.

In the rest of this paper, we first describe a stan-
dard pairwise coreference resolution system in Sec-
tion 2. We then present our Markov logic model for
pairwise coreference resolution in Section 3. Exper-
imental results are given in Section 4. Finally we
discuss related work in Section 5 and conclude in
Section 6.

2 Standard Pairwise Coreference
Resolution

In this section, we describe standard learning-based
framework for pairwise coreference resolution. The
major steps include mention detection, pairwise
classification and mention clustering.

2.1 Mention Detection

For mention detection, traditional methods include
learning-based and rule-based methods. Which kind
of method to choose depends on specific dataset. In

this paper, we first consider all the noun phrases
in the given text as candidate mentions. With-
out gold standard mention boundaries, we use a
well-known preprocessing tool from Stanford’s NLP
group1 to extract noun phrases. After obtaining all
the extracted noun phrases, we also use a rule-based
method to remove some erroneous candidates based
on previous studies (e.g. Lee et al. (2011), Uryupina
et al. (2011)). Some examples of these erroneous
candidates include stop words (e.g. uh, hmm), web
addresses (e.g. http://www.google.com),
numbers (e.g. $9,000) and pleonastic “it” pronouns.

2.2 Pairwise Classification

For pairwise classification, traditional learning-
based methods usually adopt a classification model
such as maximum entropy models and support vec-
tor machines. Training instances (i.e. positive and
negative mention pairs) are constructed from known
coreference chains, and features are defined to rep-
resent these instances.

In this paper, we build a baseline system that uses
maximum entropy models as the classification algo-
rithm. For generation of training instances, we fol-
low the method of Bengtson and Roth (2008). For
each predicted mention m, we generate a positive
mention pair between m and its closest preceding
antecedent, and negative mention pairs by pairing m
with each of its preceding predicted mentions which
are not coreferential with m. To avoid having too
many negative instances, we impose a maximum
sentence distance between the two mentions when
constructing mention pairs. This is based on the in-
tuition that for each anaphoric mention, its preced-
ing antecedent should appear quite near it, and most
coreferential mention pairs which have a long sen-
tence distance can be resolved using string match-
ing. During the testing phase, we generate men-
tion pairs for each mention candidate with each of
its preceding mention candidates and use the learned
model to make coreference decisions for these men-
tion pairs. We also impose the sentence distance
constraint and use string matching for mention pairs
with a sentence distance exceeding the threshold.

1http://nlp.stanford.edu/software/corenlp.shtml
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2.3 Mention Clustering

After obtaining the coreferential results for all men-
tion pairs, some clustering method should be used to
generate the final output. One strategy is the single-
link method, which links all the mention pairs that
have a prediction probability higher than a threshold
value. Two other alternative methods are the best-
first clustering method and clustering with the tran-
sitivity constraint. Best-first clustering means that
for each candidate mention m, we select the best
one from all its preceding candidate mentions based
on the prediction probabilities. A threshold value
is given to filter out those mention pairs that have a
low probability to be coreferential. Transitivity con-
straint means that if a and b are coreferential and
b and c are coreferential, then a and c must also be
coreferential. Previous work has found that best-first
clustering and transitivity constraint-based cluster-
ing are better than the single-link method. Finally
we remove all the singleton mentions.

3 Markov Logic for Pairwise Coreference
Resolution

In this section, we present our method for joint
learning of pairwise classification and mention clus-
tering using Markov logic. For mention detection,
training instance generation and postprocessing, our
method follows the same procedures as described in
Section 2. In what follows, we will first describe
the basic Markov logic networks (MLN) framework,
and then introduce the first-order logic formulas we
use in our MLN including local formulas and global
formulas which perform pairwise classification and
mention clustering respectively. Through this way,
these two isolated parts are combined together, and
joint learning and inference can be performed in a
single framework. Finally we present inference and
parameter learning methods.

3.1 Markov Logic Networks

Markov logic networks combine Markov networks
with first-order logic (Richardson and Domingos,
2006; Riedel, 2008). A Markov logic network con-
sists of a set of first-order clauses (which we will re-
fer to as formulas in the rest of the paper) just like in
first-order logic. However, different from first-order
logic where a formula represents a hard constraint,

in an MLN, these constraints are softened and they
can be violated with some penalty. An MLN M
is therefore a set of weighted formulas {(ϕi, wi)}i,
where ϕi is a first order formula and wi is the penalty
(the formula’s weight). These weighted formulas
define a probability distribution over sets of ground
atoms or so-called possible worlds. Let y denote a
possible world, then we define p(y) as follows:

p(y) =
1

Z
exp

( ∑
(ϕi,wi)∈M

wi

∑
c∈C

nϕi

fϕi
c (y)

)
. (1)

Here each c is a binding of free variables in ϕi to
constants. Each fϕi

c represents a binary feature func-
tion that returns 1 if the ground formula we get by
replacing the free variables in ϕi with the constants
in c under the given possible world y is true, and 0
otherwise. nϕi

denotes the number of free variables
of a formula ϕi. Cnϕi is the set of all bindings for the
free variables in ϕi. Z is a normalization constant.
This distribution corresponds to a Markov network
where nodes represent ground atoms and factors rep-
resent ground formulas.

Each formula consists of a set of first-order predi-
cates, logical connectors and variables. Take the fol-
lowing formula as one example:

(ϕi, wi) : headMatch(a, b)∧(a ̸= b) ⇒ coref (a, b).

The formula above indicates that if two different
candidate mentions a and b have the same head
word, then they are coreferential. Here a and b are
variables which can represent any candidate men-
tion, headMatch and coref are observed predicate
and hidden predicate respectively. An observed
predicate is one whose value is known from the ob-
servations when its free variables are assigned some
constants. A hidden predicate is one whose value is
not known from the observations. From this exam-
ple, we can see that headMatch is an observed pred-
icate because we can check whether two candidate
mentions have the same head word. coref is a hid-
den predicate because this is something we would
like to predict.

3.2 Formulas

We use two kinds of formulas for pairwise classi-
fication and mention clustering, respectively. For
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describing the attributes of mi

mentionType(i,t) mi has mention type NAM(named entities), NOM(nominal) or PRO(pronouns).
entityType(i,e) mi has entity type PERSON, ORG, GPE or UN...
genderType(i,g) mi has gender type MALE, FEMALE, NEUTRAL or UN.
numberType(i,n) mi has number type SINGULAR, PLURAL or UN.
hasHead(i,h) mi has head word h, here h can represent all possible head words.
firstMention(i) mi is the first mention in its sentence.
reflexive(i) mi is reflexive.
possessive(i) mi is possessive.
definite(i) mi is definite noun phrase.
indefinite(i) mi is indefinite noun phrase.
demonstrative(i) mi is demonstrative.
describing the attributes of relations between mj and mi

mentionDistance(j,i,m) Distance between mj and mi in mentions.
sentenceDistance(j,i,s) Distance between mj and mi in sentences.
bothMatch(j,i,b) Gender and number of both mj and mi match: AGREE YES, AGREE NO

and AGREE UN).
closestMatch(j,i,c) mj is the first agreement in number and gender when looking backward

from mi: CAGREE YES, CAGREE NO and CAGREE UN.
exactStrMatch(j,i) Exact strings match between mj and mi.
pronounStrMatch(j,i) Both are pronouns and their strings match.
nopronounStrMatch(j,i) Both are not pronouns and their strings match.
properStrMatch(j,i) Both are proper names and their strings match.
headMatch(j,i) Head word strings match between mj and mi.
subStrMatch(j,i) Sub-word strings match between mj and mi.
animacyMatch(j,i) Animacy types match between mj and mi.
nested(j,i) mj/i is included in mi/j .
c command(j,i) mj/i C-Commands mi/j .
sameSpeaker(j,i) mj and mi have the same speaker.
entityTypeMatch(j,i) Entity types match between mj and mi.
alias(j,i) mj/i is an alias of mi/j .
srlMatch(j,i) mj and mi have the same semantic role.
verbMatch(j,i) mj and mi have semantic role for the same verb.

Table 1: Observed predicates.

pairwise classification, because the decisions are lo-
cal, we use a set of local formulas. For mention
clustering, we use global formulas to implement
best-first clustering or transitivity constraint. We
naturally combine pairwise classification with men-
tion clustering via local and global formulas in the
Markov logic framework, which is the essence of
“joint learning” in our work.

3.2.1 Local Formulas

A local formula relates any observed predicates to
exactly one hidden predicate. For our problem, we
define a list of observed predicates to describe the
properties of individual candidate mentions and the
relations between two candidate mentions, shown in
Table 1. For our problem, we have only one hidden
predicate, i.e. coref. Most of our local formulas are

from existing work (e.g. Soon et al. (2001), Ng and
Cardie (2002), Sapena et al. (2011)). They are listed
in Table 2, where the symbol “+” indicates that for
every value of the variable preceding “+” there is a
separate weight for the corresponding formula.

3.2.2 Global Formulas

Global formulas are designed to add global con-
straints for hidden predicates. Since in our problem
there is only one hidden predicate, i.e. coref, our
global formulas incorporate correlations among dif-
ferent ground atoms of the coref predicates. Next we
will show the best-first and transitivity global con-
straints. Note that we treat them as hard constraints
so we do not set any weights for these global formu-
las.
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Lexical Features
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ exactStrMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ pronounStrMatch (j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ properStrMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ nopronounStrMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ headMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ subStrMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
hasHead(j,h1+) ∧ hasHead(i,h2+) ∧ j ̸= i ⇒ coref(j,i)
Grammatical Features
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ genderType(j,g1+) ∧ genderType(i,g2+) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ numberType(j,n1+) ∧ numberType(i,n2+) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ bothMatch(j,i,b+) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ closestMatch(j,i,c+) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ animacyMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ nested(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ c command(j,i) ∧ j ̸= i ⇒ coref(j,i)
(mentionType(j,t1+) ∨ mentionType(i,t2+)) ∧ j ̸= i ⇒ coref(j,i)
(reflexive(j) ∨ reflexive(i)) ∧ j ̸= i ⇒ coref(j,i)
(possessive(j) ∨ possessive(i)) ∧ j ̸= i ⇒ coref(j,i)
(definite(j) ∨ definite(i)) ∧ j ̸= i ⇒ coref(j,i)
(indefinite(j) ∨ indefinite(i)) ∧ j ̸= i ⇒ coref(j,i)
(demonstrative(j) ∨ demonstrative(i)) ∧ j ̸= i ⇒ coref(j,i)
Distance and position Features
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ sentenceDistance(j,i,s+) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ mentionDistance (j,i,m+) ∧ j ̸= i ⇒ coref(j,i)
(firstMention(j) ∨ firstMention(i)) ∧ j ̸= i ⇒ coref(j,i)
Semantic Features
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ alias(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ sameSpeaker(j,i) ∧ j̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ entityTypeMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ srlMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
mentionType(j,t1+) ∧ mentionType(i,t2+) ∧ verbMatch(j,i) ∧ j ̸= i ⇒ coref(j,i)
(entityType(j,e1+) ∨ entityType(i,e2+)) ∧ j ̸= i ⇒ coref(j,i)

Table 2: Local Formulas.

Best-First constraint:

coref(j, i) ⇒ ¬coref(k, i) ∀j, k < i(k ̸= j) (2)

Here we assume that coref(j,i) returns true if can-
didate mentions j and i are coreferential and false
otherwise. Therefore for each candidate mention i,
we should only select at most one candidate mention
j to return true for the predicate coref(j,i) from all its
preceding candidate mentions.

Transitivity constraint:

coref(j, k)∧coref(k, i)∧j < k < i ⇒ coref(j, i) (3)

coref(j, k)∧coref(j, i)∧j < k < i ⇒ coref(k, i) (4)

coref(j, i)∧coref(k, i)∧j < k < i ⇒ coref(j, k) (5)

With the transitivity constraint, it means for given
mentions j, k and i, if any two pairs of them are
coreferential, then the third pair of them should be
also coreferential.

We use best-first clustering and transitivity con-
straint in our joint learning model respectively. De-
tailed comparisons between them will be shown in
Section 4.

3.3 Inference
We use MAP inference which is implemented by In-
teger Linear Programming (ILP). Its objective is to
maximize a posteriori probability as follows. Here
we use x to represent all the observed ground atoms
and y to represent the hidden ground atoms. For-
mally, we have

ŷ = arg max
y

p(y|x) ≃ arg max
y

s(y, x),

where

s(y, x) =
∑

(ϕi,wi)∈M

wi

∑
c∈C

nϕi

fϕi
c (y, x). (6)

Each hidden ground atom can only takes a value of
either 0 or 1. And global formulas should be satis-
fied as hard constraints when inferring the best ŷ. So
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the problem can be easily solved using ILP. Detailed
introduction about transforming ground Markov net-
works in Markov logic into an ILP problem can be
found in (Riedel, 2008).

3.4 Parameter Learning
For parameter learning, we employ the online
learner MIRA (Crammer and Singer, 2003), which
establishes a large margin between the score of the
gold solution and all wrong solutions to learn the
weights. This is achieved by solving the quadratic
program as follows

min ∥ wt −wt−1 ∥ . (7)

s.t. s(yi, xi)− s(y′, xi) ≥ L(yi, y
′)

∀y′ ̸= yi, (yi, xi) ∈ D

Here D = {(yi, xi)}N
i=1 represents N training in-

stances (each instance represents one single docu-
ment in the dataset) and t represents the number of
iterations. In our problem, we adopt 1-best MIRA,
which means that in each iteration we try to find wt

which can guarantee the difference between the right
solution yi and the best solution y′ (i.e. the one with
the highest score s(y′, xi), equivalent to ŷ in Section
3.3)) is at least as big as the loss L(yi, y

′), while
changing wt−1 as little as possible. The number of
false ground atoms of coref predicate is selected as
loss function in our experiments. Hard global con-
straints (i.e. best-first clustering or transitivity con-
straint) must be satisfied when inferring the best y′

in each iteration, which can make learned weights
more effective.

4 Experiments

In this section, we will first describe the dataset and
evaluation metrics we use. We will then present the
effect of our joint learning method, and finally dis-
cuss the comparison with the state of the art.

4.1 Data Set
We use the dataset from the CoNLL-2011 shared
task, “Modeling Unrestricted Coreference in
OntoNotes” (Pradhan et al., 2011)2. It uses the En-
glish portion of the OntoNotes v4.0 corpus. There
are three important differences between OntoNotes

2http://conll.cemantix.org/2011/

and another well-known coreference dataset from
ACE. First, OntoNotes does not label any singleton
entity cluster, which has only one reference in the
text. Second, only identity coreference is tagged in
OntoNotes, but not appositives or predicate nomi-
natives. Third, ACE only considers mentions which
belong to ACE entity types, whereas OntoNotes
considers more entity types. The shared task is to
automatically identify both entity coreference and
event coreference, although we only focus on entity
coreference in this paper. We don’t assume that
gold standard mention boundaries are given. So we
develop a heuristic method for mention detection.
See details in Section 2.1.

The training set consists of 1674 documents from
newswire, magazine articles, broadcast news, broad-
cast conversations and webpages, and the develop-
ment set consists of 202 documents from the same
source. For training set, there are 101264 mentions
from 26612 entities. And for development set, there
are 14291 mentions from 3752 entities (Pradhan et
al., 2011).

4.2 Evaluation Metrics

We use the same evaluation metrics as used in
CoNLL-2011. Specifically, for mention detection,
we use precision, recall and the F-measure. A men-
tion is considered to be correct only if it matches
the exact same span of characters in the annotation
key. For coreference resolution, MUC (Vilain et al.,
1995), B-CUBED (Bagga and Baldwin, 1998) and
CEAF-E (Luo, 2005) are used for evaluation. The
unweighted average F score of them is used to com-
pare different systems.

4.3 The Effect of Joint Learning

To assess the performance of our method, we set up
several variations of our system to compare with the
joint learning system. The MLN-Local system uses
only the local formulas described in Table 2 with-
out any global constraints under the MLN frame-
work. By default, the MLN-Local system uses the
single-link method to generate clustering results.
The MLN-Local+BF system replaces the single-link
method with best-first clustering to infer mention
clustering results after learning the weights for all
the local formulas. The MLN-Local+Trans sys-
tem replaces the best-first clustering with transitivity
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System Mention Detection MUC B-cube CEAF Avg
R P F R P F R P F R P F F

MLN-Local 62.52 74.75 68.09 56.07 65.55 60.44 65.67 72.95 69.12 45.55 37.19 40.95 56.84
MLN-Local+BF 65.74 73.2 69.27 56.79 64.08 60.22 65.71 74.18 69.69 47.29 40.53 43.65 57.85

MLN-Local+Trans 68.49 70.32 69.40 57.16 60.98 59.01 66.97 72.90 69.81 46.96 43.34 45.08 57.97
MLN-Joint(BF) 64.36 75.25 69.38 55.47 66.95 60.67 64.14 77.75 70.29 50.47 39.85 44.53 58.50

MLN-Joint(Trans) 64.46 75.37 69.49 55.48 67.15 60.76 64.00 78.11 70.36 50.63 39.84 44.60 58.57

Table 3: Comparison between different MLN-based systems, using 10-fold cross validation on the training dataset.

constraint. The MLN-Joint system is a joint model
for both pairwise classification and mention cluster-
ing. It can combine either best-first clustering or en-
forcing transitivity constraint with pairwise classifi-
cation, and we denote these two variants of MLN-
Joint as MLN-Joint(BF) and MLN-Joint(Trans) re-
spectively.

To compare the performance of the various sys-
tems above, we use 10-fold cross validation on
the training dataset. We empirically find that our
method has a fast convergence rate, to learn the
MLN model, we set the number of iterations to be
10.

The performance of these compared systems is
shown in Table 3. To provide some context for
the performance of this task, we report the median
average F-score of the official results of CoNLL-
2011, which is 50.12 (Pradhan et al., 2011). We can
see that MLN-Local achieves an average F-score of
56.84, which is well above the median score. When
adding best-first or transitivity constraint which
is independent of pairwise classification, MLN-
Local+BF and MLN-Local+Trans achieve better re-
sults of 57.85 and 57.97. Most of all, we can see
that the joint learning model (MLN-Joint(BF) or
MLN-Joint(Trans)) significantly outperforms inde-
pendent learning model (MLN-Local+BF or MLN-
Local+Trans) no matter whether best-first clustering
or transitivity constraint is used (based on a paired 2-
tailed t-test with p < 0.05) with the score of 58.50
or 58.57, which shows the effectiveness of our pro-
posed joint learning method.

Best-first clustering and transitivity constraint
are very useful in Markov logic framework, and
both MLN-Local and MLN-Joint benefit from them.
For MLN-Joint, these two clustering methods re-
sult in similar performance. But actually, transi-

tivity is harder than best-first, because it signifi-
cantly increases the number of formulas for con-
straints and slows down the learning process. In
our experiments, we find that MLN-Joint(Trans)3 is
much slower than MLN-Joint(BF). Overall, MLN-
Joint(BF) has a good trade-off between effectiveness
and efficiency.

4.4 Comparison with the State of the Art

In order to compare our method with the state-of-
the-art systems, we consider the following systems.
We implemented a traditional pairwise coreference
system using Maximum Entropy as the base classi-
fier and best-first clustering to link the results. We
used the same set of local features in MLN-Joint.
We refer to this system as MaxEnt+BF. To replace
best-first clustering with transitivity constraint, we
have another system named as MaxEnt+Trans. We
also consider the best 3 systems from CoNLL-2011
shared task. Chang’s system uses ILP to perform
best-first clustering after training a pairwise corefer-
ence model. Sapena’s system uses a relaxation label-
ing method to iteratively perform function optimiza-
tion for labeling each mention’s entity after learning
the weights for features under a C4.5 learner. Lee’s
system is a purely rule-based one. They use a battery
of sieves by precision (from highest to lowest) to it-
eratively choose antecedent for each mention. They
obtained the highest score in CoNLL-2011.

Table 4 shows the comparisons of our system with
the state-of-the-art systems on the development set
of CoNLL-2011. From the results, we can see that
our joint learning systems are obviously better than

3For MLN-Joint(Trans), not all training instances can be
learnt in a reasonable amount of time, so we set up a time out
threshold of 100 seconds. If the model cannot response in 100
seconds for some training instance, we remove it from the train-
ing set.
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System Mention Detection MUC B-cube CEAF Avg
R P F R P F R P F R P F F

MLN-Joint(BF) 67.33 72.94 70.02 58.03 64.05 60.89 67.11 73.88 70.33 47.6 41.92 44.58 58.60
MLN-Joint(Trans) 67.28 72.88 69.97 58.00 64.10 60.90 67.12 74.13 70.45 47.70 41.96 44.65 58.67

MaxEnt+BF 60.54 76.64 67.64 52.20 68.52 59.26 60.85 80.15 69.18 51.6 37.05 43.13 57.19
MaxEnt+Trans 61.36 76.11 67.94 51.46 68.40 58.73 59.79 81.69 69.04 53.03 37.84 44.17 57.31
Lee’s System - - - 57.50 59.10 58.30 71.00 69.20 70.10 48.10 46.50 47.30 58.60

Sapena’s System 92.45 27.34 42.20 54.53 62.25 58.13 63.72 73.83 68.40 47.20 40.01 43.31 56.61
Chang’s System - - 64.69 - - 55.8 - - 69.29 - - 43.96 56.35

Table 4: Comparisons with state-of-the-art systems on the development dataset.

MaxEnt+BF and MaxEnt+Trans. They also out-
perform the learning-based systems of Sapena et al.
(2011) and Chang et al. (2011), and perform com-
petitively with Lee’s system (Lee et al., 2011). Note
that Lee’s system is purely rule-based, while our
methods are developed in a theoretically sound way,
i.e., Markov logic framework.

5 Related Work

Supervised noun phrase coreference resolution has
been extensively studied. Besides the mention-pair
model, two other commonly used models are the
entity-mention model (Luo et al., 2004; Yang et al.,
2008) and ranking models (Denis and Baldridge,
2008; Rahman and Ng, 2009). Interested readers
can refer to the literature review by Ng (2010).

Under the mention-pair model, Klenner (2007)
and Finkel and Manning (2008) applied Integer Lin-
ear Programming (ILP) to enforce transitivity on the
pairwise classification results. Chang et al. (2011)
used the same ILP technique to incorporate best-first
clustering and generate the mention clusters. In all
these studies, however, mention clustering is com-
bined with pairwise classification only at the infer-
ence stage but not at the learning stage.

To perform joint learning of pairwise classifi-
cation and mention clustering, in (McCallum and
Wellner, 2005), each mention pair corresponds to
a binary variable indicating whether the two men-
tions are coreferential, and the dependence between
these variables is modeled by conditional undirected
graphical models. Finley and Joachims (2005) pro-
posed a general SVM-based framework for super-
vised clustering that learns item-pair similarity mea-
sures, and applied the framework to noun phrase

coreference resolution. In our work, we take a differ-
ent approach and apply Markov logic. As we have
shown in Section 3, given the flexibility of Markov
logic, it is straightforward to perform joint learning
of pairwise classification and mention clustering.

In recent years, Markov logic has been widely
used in natural language processing problems (Poon
and Domingos, 2009; Yoshikawa et al., 2009; Che
and Liu, 2010). For coreference resolution, the most
notable one is unsupervised coreference resolution
by Poon and Domingos (2008). Poon and Domin-
gos (2008) followed the entity-mention model while
we follow the mention-pair model, which are quite
different approaches. To seek good performance in
an unsupervised way, Poon and Domingos (2008)
highly rely on two important strong indicators:
appositives and predicate nominatives. However,
OntoNotes corpus (state-of-art NLP data collection)
on coreference layer for CoNLL-2011 has excluded
these two conditions of annotations (appositives and
predicate nominatives) from their judging guide-
lines. Compared with it, our methods are more ap-
plicable for real dataset. Huang et al. (2009) used
Markov logic to predict coreference probabilities
for mention pairs followed by correlation cluster-
ing to generate the final results. Although they also
perform joint learning, at the inference stage, they
still make pairwise coreference decisions and clus-
ter mentions sequentially. Unlike their method, We
formulate the two steps into a single framework.

Besides combining pairwise classification and
mention clustering, there has also been some work
that jointly performs mention detection and coref-
erence resolution. Daumé and Marcu (2005) de-
veloped such a model based on the Learning as

1252



Search Optimization (LaSO) framework. Rahman
and Ng (2009) proposed to learn a cluster-ranker
for discourse-new mention detection jointly with
coreference resolution. Denis and Baldridge (2007)
adopted an Integer Linear Programming (ILP) for-
mulation for coreference resolution which models
anaphoricity and coreference as a joint task.

6 Conclusion

In this paper we present a joint learning method with
Markov logic which naturally combines pairwise
classification and mention clustering. Experimental
results show that the joint learning method signifi-
cantly outperforms baseline methods. Our method
is also better than all the learning-based systems in
CoNLL-2011 and reaches the same level of perfor-
mance with the best system.

In the future we will try to design more global
constraints and explore deeper relations between
training instances generation and mention cluster-
ing. We will also attempt to introduce more predi-
cates and transform structure learning techniques for
MLN into coreference problems.
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Abstract

We annotate and resolve a particular
case of abstract anaphora, namely, this-
issue anaphora. We propose a candidate
ranking model for this-issue anaphora
resolution that explores different issue-
specific and general abstract-anaphora
features. The model is not restricted
to nominal or verbal antecedents; rather,
it is able to identify antecedents that
are arbitrary spans of text. Our re-
sults show that (a) the model outperforms
the strong adjacent-sentence baseline;
(b) general abstract-anaphora features,
as distinguished from issue-specific fea-
tures, play a crucial role in this-issue
anaphora resolution, suggesting that our
approach can be generalized for other
NPs such as this problem and this debate;
and (c) it is possible to reduce the search
space in order to improve performance.

1 Introduction

Anaphora in which the anaphoric expression refers
to an abstract object such as a proposition, a prop-
erty, or a fact is known as abstract object anaphora.
This is seen in the following examples.

(1) [Be careful what you wish... because wishes
sometimes come true.]i [That]i is what the
Semiconductor Industry Association, which rep-
resents U.S. manufacturers, has been learning.
(from Asher (1993))

(2) This prospective study suggested [that oral
carvedilol is more effective than oral meto-
prolol in the prevention of AF after on-pump

CABG]i. It is well tolerated when started before
and continued after the surgery. However, further
prospective studies are needed to clarify [this is-
sue]i.

(3) In principle, he said, airlines should be allowed
[to sell standing-room-only tickets for adults]i
— as long as [this decision]i was approved by
their marketing departments.

These examples highlight a difficulty not found with
nominal anaphora. First, the anaphors refer to ab-
stract concepts that can be expressed with differ-
ent syntactic shapes which are usually not nominals.
The anaphor That in (1) refers to the proposition in
the previous utterance, whereas the anaphor this is-
sue in (2) refers to a clause from the previous text.
In (3), the anaphoric expression this decision refers
to a verb phrase from the same sentence. Second,
the antecedents do not always have precisely defined
boundaries. In (2), for example, the whole sentence
containing the marked clause could also be thought
to be the correct antecedent. Third, the actual refer-
ents are not always the precise textual antecedents.
The actual referent in (2), the issue to be clarified,
is whether oral carvedilol is more effective than oral
metoprolol in the prevention of AF after on-pump
CABG or not, a variant of the antecedent text.

Generally, abstract anaphora, as distinguished
from nominal anaphora, is signalled in English by
pronouns this, that, and it (Müller, 2008). But in
abstract anaphora, English prefers demonstratives
to personal pronouns and definite articles (Pas-
sonneau, 1989; Navarretta, 2011).1 Demonstra-

1This is not to say that personal pronouns and definite arti-
cles do not occur in abstract anaphora, but they are not common.
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tives can be used in isolation (That in (1)) or with
nouns (e.g., this issue in (2)). The latter follows
the pattern demonstrative {modifier}* noun. The
demonstrative acts as a determiner and the noun fol-
lowing the demonstrative imposes selectional con-
straints for the antecedent, as in examples (2) and
(3). Francis (1994) calls such nouns label nouns,
which “serve to encapsulate or package a stretch
of discourse”. Schmid (2000) refers to them as
shell nouns, a metaphoric term which reflects differ-
ent functions of these nouns such as encapsulation,
pointing, and signalling.

Demonstrative nouns, along with pronouns like
both and either, are referred to as sortal anaphors
(Castaño et al., 2002; Lin and Liang, 2004; Torii
and Vijay-Shanker, 2007). Castaño et al. observed
that sortal anaphors are prevalent in the biomedi-
cal literature. They noted that among 100 distinct
anaphors derived from a corpus of 70 Medline ab-
stracts, 60% were sortal anaphors. But how often
do demonstrative nouns refer to abstract objects?
We observed that from a corpus of 74,000 randomly
chosen Medline2 abstracts, of the first 150 most fre-
quently occurring distinct demonstrative nouns (fre-
quency > 30), 51.3% were abstract, 41.3% were
concrete, and 7.3% were discourse deictic. This
shows that abstract anaphora resolution is an impor-
tant component of general anaphora resolution in the
biomedical domain. However, automatic resolution
of this type of anaphora has not attracted much atten-
tion and the previous work for this task is limited.

The present work is a step towards resolving ab-
stract anaphora in written text. In particular, we
choose the interesting abstract concept issue and
demonstrate the complexities of resolving this-issue
anaphora manually as well as automatically in the
Medline domain. We present our algorithm, results,
and error analysis for this-issue anaphora resolution.

The abstract concept issue was chosen for the fol-
lowing reasons. First, it occurs frequently in all
kinds of text from newspaper articles to novels to
scientific articles. There are 13,489 issue anaphora
instances in the New York Times corpus and 1,116
instances in 65,000 Medline abstracts. Second, it is
abstract enough that it can take several syntactic and

2http://www.nlm.nih.gov/bsd/pmresources.
html

semantic forms, which makes the problem interest-
ing and non-trivial. Third, issue referents in scien-
tific literature generally lie in the previous sentence
or two, which makes the problem tractable. Fourth,
issues in Medline abstracts are generally associated
with clinical problems in the medical domain and
spell out the motivation of the research presented in
the article. So extraction of this information would
be useful in any biomedical information retrieval
system.

2 Related Work

Anaphora resolution has been extensively studied
in computational linguistics (Hirst, 1981; Mitkov,
2002; Poesio et al., 2011). But CL research has
mostly focused on nominal anaphora resolution
(e.g., resolving multiple ambiguous mentions of a
single entity representing a person, a location, or an
organization) mainly for two reasons. First, nominal
anaphora is the most frequently occurring anaphora
in most domains, and second, there is a substantial
amount of annotated data available for this kind of
anaphora.

Besides pronominal anaphora, some work has
been done on complement anaphora (Modjeska,
2003) (e.g., British and other European steelmak-
ers). There is also some research on resolving sor-
tal anaphora in the medical domain using domain
knowledge (Castaño et al., 2002; Lin and Liang,
2004; Torii and Vijay-Shanker, 2007). But all these
approaches focus only on the anaphors with nominal
antecedents.

By contrast, the area of abstract object anaphora
remains relatively unexplored mainly because the
standard anaphora resolution features such as agree-
ment and apposition cannot be applied to abstract
anaphora resolution. Asher (1993) built a theoreti-
cal framework to resolve abstract anaphora. He di-
vided discourse abstract anaphora into three broad
categories: event anaphora, proposition anaphora,
and fact anaphora, and discussed how abstract en-
tities can be resolved using discourse representa-
tion theory. Chen et al. (2011) focused on a sub-
set of event anaphora and resolved event corefer-
ence chains in terms of the representative verbs of
the events from the OntoNotes corpus. Our task dif-
fers from their work as follows. Chen et al. mainly
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focus on events and actions and use verbs as a proxy
for the non-nominal antecedents. But this-issue an-
tecedents cannot usually be represented by a verb.
Our work is not restricted to a particular syntactic
type of the antecedent; rather we provide the flexibil-
ity of marking arbitrary spans of text as antecedents.

There are also some prominent approaches to ab-
stract anaphora resolution in the spoken dialogue
domain (Eckert and Strube, 2000; Byron, 2004;
Müller, 2008). These approaches go beyond nom-
inal antecedents; however, they are restricted to spo-
ken dialogues in specific domains and need serious
adaptation if one wants to apply them to arbitrary
text.

In addition to research on resolution, there is
also some work on effective annotation of abstract
anaphora (Strube and Müller, 2003; Botley, 2006;
Poesio and Artstein, 2008; Dipper and Zinsmeister,
2011). However, to the best of our knowledge, there
is currently no English corpus annotated for issue
anaphora antecedents.

3 Data and Annotation

To create an initial annotated dataset, we collected
188 this {modifier}* issue instances along with the
surrounding context from Medline abstracts.3 Five
instances were discarded as they had an unrelated
(publication related) sense. Among the remaining
183 instances, 132 instances were independently an-
notated by two annotators, a domain expert and a
non-expert, and the remaining 51 instances were an-
notated only by the domain expert. We use the for-
mer instances for training and the latter instances
(unseen by the developer) for testing. The anno-
tator’s task was to mark arbitrary text segments
as antecedents (without concern for their linguistic
types). To make the task tractable, we assumed that
an antecedent does not span multiple sentences but
lies in a single sentence (since we are dealing with
singular this-issue anaphors) and that it is a continu-
ous span of text.

3Although our dataset is rather small, its size is similar to
other available abstract anaphora corpora in English: 154 in-
stances in Eckert and Strube (2000), 69 instances in Byron
(2003), 462 instances annotated by only one annotator in Botley
(2006), and 455 instances restricted to those which have only
nominal or clausal antecedents in Poesio and Artstein (2008).

r11 r12 r13 r14 r15

r21 r22 r23 r24 r25

Annotator 1

Annotator 2

r16 r17 r18 r19

r26 r27 r28 r29 r2,10

id2

Intersections
1 2 3 4 5 6 7 8 9 10 11 12 13 14

id3 id4 id5

id1 id2 id3 id4 id5

Figure 1: Example of annotated data. Bold segments
denote the marked antecedents for the corresponding
anaphor ids. rh j is the jth section identified by the an-
notator h.

3.1 Inter-annotator Agreement

This kind of annotation — identifying and marking
arbitrary units of text that are not necessarily con-
stituents — requires a non-trivial variant of the usual
inter-annotator agreement measures. We use Krip-
pendorff’s reliability coefficient for unitizing (αu)
(Krippendorff, 1995) which has not often been used
or described in CL. In our context, unitizing means
marking the spans of the text that serve as the an-
tecedent for the given anaphors within the given text.
The coefficient αu assumes that the annotated sec-
tions do not overlap in a single annotator’s output
and our data satisfies this criterion.4 The general
form of coefficient αu is:

αu = 1− uDo

uDe
(1)

where uDo and uDe are observed and expected dis-
agreements respectively. Both disagreement quanti-
ties express the average squared differences between
the mismatching pairs of values assigned by anno-
tators to given units of analysis. αu = 1 indicates
perfect reliability and αu = 0 indicates the absence
of reliability. When αu < 0, the disagreement is sys-
tematic. Annotated data with reliability of αu≥ 0.80
is considered reliable (Krippendorff, 2004).

Krippendorff’s αu is non-trivial, and explaining it
in detail would take too much space, but the general
idea, in our context, is as follows. The annotators
mark the antecedents corresponding to each anaphor
in their respective copies of the text, as shown in Fig-
ure 1. The marked antecedents are mutually exclu-
sive sections r; we denote the jth section identified

4If antecedents overlap with each other in a single annota-
tor’s output (which is a rare event) we construct data that satis-
fies the non-overlap criterion by creating different copies of the
same text corresponding to each anaphor instance.
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Antecedent type Distribution Example

clause 37.9% There is a controversial debate (SBAR whether back school program might improve
quality of life in back pain patients). This study aimed to address this issue.

sentence 26.5% (S Reduced serotonin function and abnormalities in the hypothalamic-pituitary-adrenal
axis are thought to play a role in the aetiology of major depression.) We sought to
examine this issue in the elderly ...

mixed 18.2% (S (PP Given these data) (, ,) (NP decreasing HTD to < or = 5 years) (VP may have
a detrimental effect on patients with locally advanced prostate cancer) (. .)) Only a
randomized trial will conclusively clarify this issue.

nominalization 17.4% As (NP the influence of estrogen alone on breast cancer detection) is not established,
we examined this issue in the Women’s Health Initiative trial...

Table 1: Antecedent types. In examples, the antecedent type is in bold and the marked antecedent is in italics.

by the annotator h by rh j. In Figure 1, annotators 1
and 2 have reached different conclusions by identi-
fying 9 and 10 sections respectively in their copies
of the text. Annotator 1 has not marked any an-
tecedent for the anaphor with id = 1, while annotator
2 has marked r21 for the same anaphor. Both anno-
tators have marked exactly the same antecedent for
the anaphor with id = 4. The difference between two
annotated sections is defined in terms of the square
of the distance between the non-overlapping parts of
the sections. The distance is 0 when the sections are
unmarked by both annotators or are marked and ex-
actly same, and is the summation of the squares of
the unmatched parts if they are different. The coeffi-
cient is computed using intersections of the marked
sections. In Figure 1, annotators 1 and 2 have a to-
tal of 14 intersections. The observed disagreement
uDo is the weighted sum of the differences between
all mismatching intersections of sections marked by
the annotators, and the expected disagreement is the
summation of all possible differences of pairwise
combinations of all sections of all annotators nor-
malized by the length of the text (in terms of the
number of tokens) and the number of pairwise com-
binations of annotators.

For our data, the inter-annotator agreement was
αu = 0.86 (uDo = 0.81 and uDe = 5.81) despite the
fact that the annotators differed in their domain ex-
pertise, which suggests that abstract concepts such
as issue can be annotated reliably.

3.2 Corpus Statistics

A gold standard corpus was created by resolving the
cases where the annotators disagreed. Among 132
training instances, the annotators could not resolve

6 instances and we broke the tie by writing to the
authors of the articles and using their response to
resolve the disagreement. In the gold standard cor-
pus, 95.5% of the antecedents were in the current or
previous sentence and 99.2% were in the current or
previous two sentences. Only one antecedent was
found more than two sentences back and it was six
sentences back. One instance was a cataphor, but
the antecedent occurred in the same sentence as the
anaphor. This suggests that for an automatic this-
issue resolution system, it would be reasonable to
consider only the previous two sentences along with
the sentence containing the anaphor.

The distribution of the different linguistic forms
that an antecedent of this-issue can take in our data
set is shown in Table 1. The majority of antecedents
are clauses or whole sentences. A number of an-
tecedents are noun phrases, but these are gener-
ally nominalizations that refer to abstract concepts
(e.g., the influence of estrogen alone on breast can-
cer detection). Some antecedents are not even well-
defined syntactic constituents5 but are combinations
of several well-defined constituents. We denote the
type of such antecedents as mixed. In the corpus,
18.2% of the antecedents are of this type, suggest-
ing that it is not sufficient to restrict the antecedent
search space to well-defined syntactic constituents.6

In our data, we did not find anaphoric chains for
any of the this-issue anaphor instances, which indi-
cates that the antecedents of this-issue anaphors are

5We refer to every syntactic constituent identified by the
parser as a well-defined syntactic constituent.

6Indeed, many of mixed type antecedents (nearly three-
quarters of them) are the result of parser attachment errors, but
many are not.
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in the reader’s local memory and not in the global
memory. This observation supports the THIS-NPs
hypothesis (Gundel et al., 1993; Poesio and Mod-
jeska, 2002) that this-NPs are used to refer to enti-
ties which are active albeit not in focus, i.e., they are
not the center of the previous utterance.

4 Resolution Algorithm

4.1 Candidate Extraction

For correct resolution, the set of extracted candidates
must contain the correct antecedent in the first place.
The problem of candidate extraction is non-trivial in
abstract anaphora resolution because the antecedents
are of many different types of syntactic constituents
such as clauses, sentences, and nominalizations.
Drawing on our observation that the mixed type an-
tecedents are generally a combination of different
well-defined syntactic constituents, we extract the
set of candidate antecedents as follows. First, we
create a set of candidate sentences which contains
the sentence containing the this-issue anaphor and
the two preceding sentences. Then, we parse every
candidate sentence with the Stanford Parser7. Ini-
tially, the set of candidate constituents contains a
list of well-defined syntactic constituents. We re-
quire that the node type of these constituents be in
the set {S, SBAR, NP, SQ, SBARQ, S+V}. This
set was empirically derived from our data. To each
constituent, there is associated a set of mixed type
constituents. These are created by concatenating the
original constituent with its sister constituents. For
example, in (4), the set of well-defined eligible can-
didate constituents is {NP, NP1} and so NP1 PP1 is
a mixed type candidate.

(4) NP

NP1 PP1 PP2

The set of candidate constituents is updated with
the extracted mixed type constituents. Extracting
mixed type candidate constituents not only deals
with mixed type instances as shown in Table 1, but
as a side effect it also corrects some attachment er-
rors made by the parser. Finally, the constituents

7http://nlp.stanford.edu/software/
lex-parser.shtml

having a number of leaves (words) less than a thresh-
old8 are discarded to give the final set of candidate
constituents.

4.2 Features

We explored the effect of including 43 automati-
cally extracted features (12 feature classes), which
are summarized in Table 2. The features can also be
broadly divided into two groups: issue-specific fea-
tures and general abstract-anaphora features. Issue-
specific features are based on our common-sense
knowledge of the concept of issue and the different
semantic forms it can take; e.g., controversy (X is
controversial), hypothesis (It has been hypothesized
X), or lack of knowledge (X is unknown), where X
is the issue. In our data, we observed certain syn-
tactic patterns of issues such as whether X or not
and that X and the IP feature class encodes this in-
formation. Other issue-specific features are IVERB
and IHEAD. The feature IVERB checks whether
the governing verb of the candidate is an issue
verb (e.g., speculate, hypothesize, argue, debate),
whereas IHEAD checks whether the candidate head
in the dependency tree is an issue word (e.g., contro-
versy, uncertain, unknown). The general abstract-
anaphora resolution features do not make use of
the semantic properties of the word issue. Some
of these features are derived empirically from the
training data (e.g., ST, L, D). The EL feature is bor-
rowed from Müller (2008) and encodes the embed-
ding level of the candidate within the candidate sen-
tence. The MC feature tries to capture the idea of the
THIS-NPs hypothesis (Gundel et al., 1993; Poesio
and Modjeska, 2002) that the antecedents of this-
NP anaphors are not the center of the previous utter-
ance. The general abstract-anaphora features in the
SR feature class capture the semantic role of the can-
didate in the candidate sentence. We used the Illinois
Semantic Role Labeler9 for SR features. The gen-
eral abstract-anaphora features also contain a few
lexical features (e.g., M, SC). But these features are
independent of the semantic properties of the word
issue. The general abstract-anaphora resolution fea-
tures also contain dependency-tree features, lexical-

8The threshold 5 was empirically derived. Antecedents in
our training data had on average 17 words.

9http://cogcomp.cs.illinois.edu/page/
software_view/SRL
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ISSUE PATTERN (IP)
ISWHETHER 1 iff the candidate follows the pattern SBAR→ (IN whether) (S ...)
ISTHAT 1 iff the candidate follows the pattern SBAR→ (IN that) (S ...)
ISIF 1 iff the candidate follows the pattern SBAR→ (IN iff) (S ...)
ISQUESTION 1 iff the candidate node is SBARQ or SQ
SYNTACTIC TYPE (ST)
ISNP 1 iff the candidate node is of type NP
ISS 1 iff the candidate node is a sentence node
ISSBAR 1 iff the candidate node is an SBAR node
ISSQ 1 iff the candidate node is an SQ or SBARQ node
MIXED 1 iff the candidate node is of type mixed
EMBEDDING LEVEL (EL) (Müller, 2008)
TLEMBEDDING level of embedding of the given candidate in its top clause (the root node of the syntactic tree)
ILEMBEDDING level of embedding of the given candidate in its immediate clause (the closest parent of type S or SBAR)
MAIN CLAUSE (MC)
MCLAUSE 1 iff the candidate is in the main clause
DISTANCE (D)
ISSAME 1 iff the candidate is in the same sentence as anaphor
SADJA 1 iff the candidate is in the adjacent sentence
ISREM 1 iff the candidate occurs 2 or more sentences before the anaphor
POSITION 1 iff the antecedent occurs before anaphor
SEMANTIC ROLE LABELLING (SR)
IVERB 1 iff the governing verb of the given candidate is an issue verb
ISA0 1 iff the candidate is the agent of the governing verb
ISA1 1 iff the candidate is the patient of the governing verb
ISA2 1 iff the candidate is the instrument of the governing verb
ISAM 1 iff the candidate plays the role of modiffication
ISNOR 1 iff the candidate plays no well-defined semantic role in the sentence
DEPENDENCY TREE (DT)
IHEAD 1 iff the candidate head in the dependency tree is an issue word (e.g., controversial, unknown)
ISSUBJ 1 iff the dependency relation of the candidate to its head is of type nominal, controlling or clausal subject
ISOBJ 1 iff the dependency relation of the candidate to its head is of type direct object or preposition obj
ISDEP 1 iff the dependency relation of the candidate to its head is of type dependent
ISROOT 1 iff the candidate is the root of the dependency tree
ISPREP 1 iff the dependency relation of the candidate to its head is of type preposition
ISCONT 1 iff the dependency relation of the candidate to its head is of type continuation
ISCOMP 1 iff the dependency relation of the candidate to its head is of type clausal or adjectival complement
ISSENT 1 iff candidate’s head is the root node
PRESENCE OF MODALS (M)
MODAL 1 iff the given candidate contains a modal verb
PRESENCE OF SUBORDINATING CONJUNCTION (SC)
ISCONT 1 iff the candidate starts with a contrastive subordinating conjunction (e.g., however, but, yet)
ISCAUSE 1 iff the candidate starts with a causal subordinating conjunction (e.g., because, as, since)
ISCOND 1 iff the candidate starts with a conditional subordinating conjunction (e.g., if, that, whether or not)
LEXICAL OVERLAP (LO)
TOS normalized ratio of the overlapping words in candidate and the title of the article
AOS normalized ratio of the overlapping words in candidate and the anaphor sentence
DWS proportion of domain-specific words in the candidate
CONTEXT (C)
ISPPREP 1 iff the preceding word of the candidate is a preposition
ISFPREP 1 iff the following word of the candidate is a preposition
ISPPUNCT 1 iff the preceding word of the candidate is a punctuation
ISFPUNCT 1 iff the following word of the candidate is a punctuation
LENGTH (L)
LEN length of the candidate in words

Table 2: Feature sets for this-issue resolution. All features are extracted automatically.
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overlap features, and context features.

4.3 Candidate Ranking Model

Given an anaphor ai and a set of candidate
antecedents C = {C1,C2, ...,Ck}, the problem of
anaphora resolution is to choose the best candidate
antecedent for ai. We follow the candidate-ranking
model proposed by Denis and Baldridge (2008).
The advantage of the candidate-ranking model over
the mention-pair model is that it overcomes the
strong independence assumption made in mention-
pair models and evaluates how good a candidate is
relative to all other candidates.

We train our model as follows. If the anaphor
is a this-issue anaphor, the set C is extracted us-
ing the candidate extraction algorithm from Section
4.1. Then a corresponding set of feature vectors,
C f = {C f 1,C f 2, ...,C f k}, is created using the features
in Table 2. The training instances are created as de-
scribed by Soon et al. (2001). Note that the instance
creation is simpler than for general coreference res-
olution because of the absence of anaphoric chains
in our data. For every anaphor ai and eligible can-
didates C f = {C f 1,C f 2, ...,C f k}, we create training
examples (ai,C f i, label),∀C f i ∈ C f . The label is 1
if Ci is the true antecedent of the anaphor ai, oth-
erwise the label is −1. The examples with label 1
get the rank of 1, while other examples get the rank
of 2. We use SVMrank (Joachims, 2002) for train-
ing the candidate-ranking model. During testing, the
trained model is used to rank the candidates of each
test instance of this-issue anaphor.

5 Evaluation

In this section we present the evaluation of each
component of our resolution system.

5.1 Evaluation of Candidate Extraction

The set of candidate antecedents extracted by the
method from Section 4.1 contained the correct an-
tecedent 92% of the time. Each anaphor had, on
average, 23.80 candidates, of which only 5.19 can-
didates were nominal type. The accuracy dropped
to 84% when we did not extract mixed type candi-
dates. The error analysis of the 8% of the instances
where we failed to extract the correct antecedent re-
vealed that most of these errors were parsing errors

which could not be corrected by our candidate ex-
traction method.10 In these cases, the parts of the
antecedent had been placed in completely different
branches of the parse tree. For example, in (5), the
correct antecedent is a combination of the NP from
the S→ V P→ NP→ PP→ NP branch and the PP
from S→V P→ PP branch. In such a case, concate-
nating sister constituents does not help.

(5) The data from this pilot study (VP (VBP provide)
(NP (NP no evidence) (PP (IN for) (NP a dif-
ference in hemodynamic effects between pulse
HVHF and CPFA))) (PP in patients with sep-
tic shock already receiving CRRT)). A larger
sample size is needed to adequately explore this
issue.

5.2 Evaluation of this-issue Resolution
We propose two metrics for abstract anaphora eval-
uation. The simplest metric is the percentage of an-
tecedents on which the system and the annotated
gold data agree. We denote this metric as EXACT-
M (Exact Match) and compute it as the ratio of
number of correctly identified antecedents to the to-
tal number of marked antecedents. This metric is
a good indicator of a system’s performance; how-
ever, it is a rather strict evaluation because, as we
noted in section 1, issues generally have no precise
boundaries in the text. So we propose another met-
ric called RLL, which is similar to the ROUGE-L
metric (Lin, 2004) used for the evaluation of auto-
matic summarization. Let the marked antecedents
of the gold corpus for k anaphor instances be G =
〈g1,g2, ...,gk〉 and the system-annotated antecedents
be A = 〈a1,a2, ...,ak〉. Let the number of words in
G and A be m and n respectively. Let LCS(gi,ai)
be the the number of words in the longest common
subsequence of gi and ai. Then the precision (PRLL)
and recall (RRLL) over the whole data set are com-
puted as shown in equations (2) and (3). PRLL is
the total number of word overlaps between the gold
and system-annotated antecedents normalized by the
number of words in system-annotated antecedents
and RRLL is the total number of such word overlaps
normalized by the number of words in the gold an-
tecedents. If the system picks too much text for an-
tecedents, RRLL is high but PRLL is low. The F-score,

10Extracting candidate constituents from the dependency
trees did not add any new candidates to the set of candidates.
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5-fold Cross-Validation Test
PRLL RRLL FRLL EX-M PRLL RRLL FRLL EX-M

1 Adjacent sentence 66.47 86.16 74.93 22.93 61.73 87.69 72.46 24.00
2 Random 50.71 32.84 39.63 8.40 43.75 35.00 38.89 15.69

3 {IP, D, C, LO, EL, M, MC, L, SC, SR, DT} 79.37 83.66 81.11 59.80 71.89 85.74 78.20 58.82
4 {IP, D, C, LO, M, MC, L, SC, DT} 78.71 83.86 81.14 59.89 70.64 88.09 78.40 54.90
5 {IP, D, C, EL, L, SC, SR, DT} 77.95 83.06 80.33 57.41 72.03 84.85 77.92 60.78
6 {IP, D, EL, MC, L, SR, DT} 80.00 84.75 82.24 59.91 68.88 85.29 76.22 56.86
7 {IP, D, M, L, SR} 73.42 83.16 77.90 52.31 70.74 91.03 79.61 50.98
8 {D, C, LO, L, SC, SR, DT} 79.15 85.28 82.04 56.07 67.39 86.32 75.69 52.94
9 issue-specific features 74.66 45.70 56.57 41.42 64.20 45.88 53.52 41.38
10 non-issue features 76.39 79.39 77.82 51.48 71.19 83.24 76.75 58.82
11 All 78.22 82.92 80.41 56.75 71.28 83.24 76.80 56.86

12 Oracle candidate extractor + row 3 79.63 82.26 80.70 58.32 74.65 87.06 80.38 64.71
13 Oracle candidate sentence extractor + row 3 86.67 92.12 89.25 63.72 79.71 91.49 85.20 62.00

Table 3: this-issue resolution results with SVMrank. All means evaluation using all features. Issue-specific features =
{IP, IVERB, IHEAD}. EX-M is EXACT-M.

FRLL, combines these two scores.

PRLL =
1
n

k

∑
i=1

LCS(gi,ai) (2)

RRLL =
1
m

k

∑
i=1

LCS(gi,ai) (3)

FRLL =
2×PRLL×RRLL

PRLL +RRLL
(4)

The lower bound of FRLL is 0, where no true an-
tecedent has any common substring with the pre-
dicted antecedents and the upper bound is 1, where
all the predicted and true antecedents are exactly the
same. In our results we represent these scores in
terms of percentage.

There are no implemented systems that resolve is-
sue anaphora or abstract anaphora signalled by label
nouns in arbitrary text to use as a comparison. So
we compare our results against two baselines: ad-
jacent sentence and random. The adjacent sentence
baseline chooses the previous sentence as the correct
antecedent. This is a high baseline because in our
data 84.1% of the antecedents lie within the adjacent
sentence. The random baseline chooses a candidate
drawn from a uniform random distribution over the
set of candidates.11

11Note that our FRLL scores for both baselines are rather high
because candidates often have considerable overlap with one
another; hence a wrong choice may still have a high FRLL score.

We carried out two sets of systematic experi-
ments in which we considered all combinations of
our twelve feature classes. The first set consists of
5-fold cross-validation experiments on our training
data. The second set evaluates how well the model
built on the training data works on the unseen test
data.

Table 3 gives results of our system. The first two
rows are the baseline results. Rows 3 to 8 give re-
sults for some of the best performing feature sets.
All systems based on our features beat both base-
lines on F-scores and EXACT-M. The empirically
derived feature sets IP (issue patterns) and D (dis-
tance) appeared in almost all best feature set com-
binations. Removing D resulted in a 6 percentage
points drop in FRLL and a 4 percentage points drop
in EXACT-M scores. Surprisingly, feature set ST
(syntactic type) was not included in most of the best
performing set of feature sets. The combination of
syntactic and semantic feature sets {IP, D, EL, MC,
L, SR, DT} gave the best FRLL and EXACT-M scores
for the cross-validation experiments. For the test-
data experiments, the combination of semantic and
lexical features {D, C, LO, L, SC, SR, DT} gave
the best FRLL results, whereas syntactic, discourse,
and semantic features {IP, D, C, EL, L, SC, SR,
DT} gave the best EXACT-M results. Overall, row
3 of the table gives reasonable results for both cross-
validation and test-data experiments with no statisti-
cally significant difference to the corresponding best
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EXACT-M scores in rows 6 and 5 respectively.12

To pinpoint the errors made by our system, we
carried out three experiments. In the first experi-
ment, we examined the contribution of issue-specific
features versus non-issue features (rows 9 and 10).
Interestingly, when we used only non-issue features,
the performance dropped only slightly. The FRLL re-
sults from using only issue-specific features were
below baseline, suggesting that the more general
features associated with abstract anaphora play a
crucial role in resolving this-issue anaphora.

In the second experiment, we determined the er-
ror caused by the candidate extractor component of
our system. Row 12 of the table gives the result
when an oracle candidate extractor was used to add
the correct antecedent in the set of candidates when-
ever our candidate extractor failed. This did not
affect cross-validation results by much because of
the rarity of such instances. However, in the test-
data experiment, the EXACT-M improvements that
resulted were statistically significant. This shows
that our resolution algorithm was able to identify an-
tecedents that were arbitrary spans of text.

In the last experiment, we examined the effect of
the reduction of the candidate search space. We as-
sumed an oracle candidate sentence extractor (Row
13) which knows the exact candidate sentence in
which the antecedent lies. We can see that both
RLL and EXACT-M scores markedly improved in
this setting. In response to these results, we trained
a decision-tree classifier to identify the correct an-
tecedent sentence with simple location and length
features and achieved 95% accuracy in identifying
the correct candidate sentence.

6 Discussion and Conclusions

We have demonstrated the possibility of resolv-
ing complex abstract anaphora, namely, this-issue
anaphora having arbitrary antecedents. The work
takes the annotation work of Botley (2006) and Dip-
per and Zinsmeister (2011) to the next level by re-
solving this-issue anaphora automatically. We pro-
posed a set of 43 automatically extracted features
that can be used for resolving abstract anaphora.

12We performed a simple one-tailed, k-fold cross-validated
paired t-test at significance level p = 0.05 to determine whether
the difference between the EXACT-M scores of two feature
classes is statistically significant.

Our results show that general abstract-anaphora
resolution features (i.e., other than issue-specific
features) play a crucial role in resolving this-issue
anaphora. This is encouraging, as it suggests that
the approach could be generalized for other NPs —
especially NPs having similar semantic constraints
such as this problem, this decision, and this conflict.

The results also show that reduction of search
space markedly improves the resolution perfor-
mance, suggesting that a two-stage process that first
identifies the broad region of the antecedent and then
pinpoints the exact antecedent might work better
than the current single-stage approach. The rationale
behind this two-stage process is twofold. First, the
search space of abstract anaphora is large and noisy
compared to nominal anaphora.13 And second, it is
possible to reduce the search space and accurately
identify the broad region of the antecedents using
simple features such as the location of the anaphor
in the anaphor sentence (e.g., if the anaphor occurs
at the beginning of the sentence, the antecedent is
most likely present in the previous sentence).

We chose scientific articles over general text be-
cause in the former domain the actual referents are
seldom discourse deictic (i.e., not present in the
text). In the news domain, for instance, which we
have also examined and are presently annotating, a
large percentage of this-issue antecedents lie out-
side the text. For example, newspaper articles often
quote sentences of others who talk about the issues
in their own world, as shown in example (6).

(6) As surprising and encouraging to organizers of
the movement are the Wall Street names added
to their roster. Prominent among them is Paul
Singer, a hedge fund manager who is straight
and chairman of the conservative Manhattan
Institute. He has donated more than $8 million
to various same-sex marriage efforts, in states
including California, Maine, New Hampshire,
New Jersey, New York and Oregon, much of it
since 2007.

“It’s become something that gradually peo-

13If we consider all well-defined syntactic constituents of a
sentence as issue candidates, in our data, a sentence has on av-
erage 43.61 candidates. Combinations of several well-defined
syntactic constituents only add to this number. Hence if we
consider the antecedent candidates from the previous 2 or 3 sen-
tences, the search space can become quite large and noisy.
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ple like myself weren’t afraid to fund, weren’t
afraid to speak out on,” Mr. Singer said in an in-
terview. “I’m somebody who is philosophically
very conservative, and on this issue I thought
that this really was important on the basis of
liberty and actual family stability.”

In such a case, the antecedent of this issue is not
always in the text of the newspaper article itself, but
must be inferred from the context of the quotation
and the world of the speaker quoted. That said, we
do not use any domain-specific information in our
this-issue resolution model. Our features are solely
based on distance, syntactic structure, and semantic
and lexical properties of the candidate antecedents
which could be extracted for text in any domain.

Issue anaphora can also be signalled by demon-
stratives other than this. However, for our initial
study, we chose this issue for two reasons. First, in
our corpus as well as in other general corpora such
as the New York Times corpus, issue occurs much
more frequently with this than other demonstratives.
Second, we did not want to increase the complexity
of the problem by including the plural issues.

Our approach needs further development to make
it useful. Our broad goal is to resolve abstract
anaphora signalled by label nouns in all kinds of
text. At present, the major obstacle is that there
is very little annotated data available that could be
used to train an abstract anaphora resolution sys-
tem. And the understanding of abstract anaphora
itself is still at an early stage; it would be prema-
ture to think about unsupervised approaches. In this
work, we studied the narrow problem of resolution
of this-issue anaphora in the medical domain to get
a good grasp of the general abstract-anaphora reso-
lution problem.

A number of extensions are planned for this work.
First, we will extend the work to resolve other ab-
stract anaphors (e.g., this decision, this problem).
Second, we will experiment with a two-stage reso-
lution approach. Third, we would like to explore the
effect of including serious discourse structure fea-
tures in our model. (The feature sets SC and C en-
code only shallow discourse information.) Finally,
during annotation, we noted a number of issue pat-
terns (e.g., An open question is X, X is under debate);
a possible extension is extracting issues and prob-
lems from text using these patterns as seed patterns.
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José Castaño, Jason Zhang, and James Pustejovsky.
2002. Anaphora resolution in biomedical literature. In
Proceedings of the International Symposium on Refer-
ence Resolution for NLP, Alicante, Spain, June.

Bin Chen, Jian Su, Sinno Jialin Pan, and Chew Lim Tan.
2011. A unified event coreference resolution by inte-
grating multiple resolvers. In Proceedings of 5th Inter-
national Joint Conference on Natural Language Pro-
cessing, Chiang Mai, Thailand, November.

Pascal Denis and Jason Baldridge. 2008. Specialized
models and ranking for coreference resolution. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 660–669,
Honolulu, Hawaii, October. Association for Computa-
tional Linguistics.

Stefanie Dipper and Heike Zinsmeister. 2011. Annotat-
ing abstract anaphora. Language Resources and Eval-
uation, 69:1–16.

Miriam Eckert and Michael Strube. 2000. Dialogue acts,
synchronizing units, and anaphora resolution. Journal
of Semantics, 17:51–89.

Gill Francis. 1994. Labelling discourse: an aspect
of nominal group lexical cohesion. In Malcolm
Coulthard, editor, Advances in written text analysis,
pages 83–101, London. Routledge.

Jeanette K. Gundel, Nancy Hedberg, and Ron Zacharski.
1993. Cognitive status and the form of referring ex-

1264



pressions in discourse. Language, 69(2):274–307,
June.

Graeme Hirst. 1981. Anaphora in Natural Language Un-
derstanding: A Survey, volume 119 of Lecture Notes
in Computer Science. Springer.

Thorsten Joachims. 2002. Optimizing search engines us-
ing clickthrough data. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD),
pages 133–142.

Klaus Krippendorff. 1995. On the reliability of unitizing
contiguous data. Sociological Methodology, 25:47–
76.

Klaus Krippendorff. 2004. Content Analysis: An In-
troduction to Its Methodology. Sage, Thousand Oaks,
CA, second edition.

Yu-Hsiang Lin and Tyne Liang. 2004. Pronominal and
sortal anaphora resolution for biomedical literature. In
Proceedings of ROCLING XVI: Conference on Com-
putational Linguistics and Speech Processing, Taiwan,
September.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Workshop,
pages 74–81, Barcelona, Spain, July. Association for
Computational Linguistics.

Ruslan Mitkov. 2002. Anaphora Resolution. Longman.
Natalia N. Modjeska. 2003. Resolving Other-Anaphora.

Ph.D. thesis, School of Informatics, University of Ed-
inburgh.

Christoph Müller. 2008. Fully Automatic Resolution of
It, This and That in Unrestricted Multi-Party Dialog.
Ph.D. thesis, Universität Tübingen.
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Abstract

Bridging the lexical gap between the user’s
question and the question-answer pairs in the
Q&A archives has been a major challenge for
Q&A retrieval. State-of-the-art approaches
address this issue by implicitly expanding the
queries with additional words using statistical
translation models. While useful, the effec-
tiveness of these models is highly dependant
on the availability of quality corpus in the ab-
sence of which they are troubled by noise is-
sues. Moreover these models perform word
based expansion in a context agnostic manner
resulting in translation that might be mixed
and fairly general. This results in degraded
retrieval performance. In this work we ad-
dress the above issues by extending the lex-
ical word based translation model to incor-
porate semantic concepts (entities). We ex-
plore strategies to learn the translation proba-
bilities between words and the concepts using
the Q&A archives and a popular entity cata-
log. Experiments conducted on a large scale
real data show that the proposed techniques
are promising.

1 Introduction

Over the past few years community-based ques-
tion answering (CQA) portals like Naver, Ya-
hoo! Answers, Baidu Zhidao and WikiAnswers
have attracted great attention from both academia
and industry (Adamic et al., 2008; Singh and
Visweswariah, 2011). These portals foster collab-
orative creation of content by allowing the users to
both submit questions to be answered and answer

questions asked by other users. These portals aim
to provide highly focused access to this information
by directly returning pertinent question and answer
(Q&A) pairs to the users questions, instead of a long
list of ranked URLs. This is in noted contrast to the
usual search paradigm, where the question is used to
search the database of potential answers, in this case
the question is used to search the database of pre-
vious questions, which in turn are associated with
answers. This involves addressing the word mis-
match problem between the users question and the
question-answer pairs in the archive. This is the ma-
jor challenge for Q&A retrieval.

Researchers have proposed the use of translation
models (Berger and Lafferty, 1999; Jeon et al., 2005;
Xue et al., 2008) to solve this problem. As a princi-
pled approach to capturing semantic word relations,
statistical translation language models are built by
using the IBM model 1 (Brown et al., 1993) and
have been shown to outperform traditional docu-
ment language models on Q&A retrieval task. The
basic idea is to estimate the likelihood of translat-
ing a document1 to a query by exploiting the depen-
dencies that exists between query words and doc-
ument words. For example the document contain-
ing the word Wheezing may well answer the ques-
tion containing the term Asthma. They learn the
these dependencies (encoded as translation proba-
bilities) between words using parallel mono-lingual
corpora created from the Q&A pairs. While useful,
the effectiveness of these models is highly depen-
dant on the availability of quality corpus (Lee et al.,

1we will use (Q&A, document), (word, term) and (user
query, question) interchangeably
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Figure 1: Need for entity based expansions

2008). Also these models only capture shallow se-
mantics between words via the co-occurrence statis-
tics, while some of the more explicit relationships
between words and entities is freely available exter-
nally. Being context agnostic (Zhou et al., 2007) is
another very common criticism hailed on translation
models as it results in noisy and generic translations.

Example shown in Figure 1 captures these prob-
lems. Specifically, the word Blizzard can
refer to an American game development com-
pany that develops World of Warcraft game or
it could refer to a severe snowstorm. Expand-
ing query without taking the gaming context es-
tablished by the word WOW (acronym for World
of Warcraft) into account would lead to topic
drift. Also it would be difficult to learn relation-
ships between World of Warcraft Burning
Crusade and Blizzard from the Q&A corpus
alone due to the sparsity of co-occurance counts as
these can be expressed in several lexical forms, some
of which are multi word phrases.

In this paper we argue that solution to all the
above problems lies in a unified model in which en-
tities are a primary citizen. The guiding hypothesis
being, an entity based representation provides a less
ambiguous representation of the users question and
provides for a more semantically accurate expansion
if the relationship between entities and words can be
estimated more reliably. Our main contributions are

1. We propose Entity based Translation Language

Model (ETLM) for Q&A retrieval that accom-
modates semantic information associated be-
tween entities and words. Being closely re-
lated to the general source-channel framework
(Berger and Lafferty, 1999), the model enjoys
its benefits, while mitigating some of its short-
comings. Specifically it provides for context
aware expansions of the query by exploiting
entity annotations on both, the document and
the query side. Entity annotations also provide
a means to handle the “many-to-one” (Moore,
2004) translation limitation in the IBM model,
due to which each word in the target document
can be generated by at most one word in the
question2. For the same reasons, it also al-
leviates another related limitation by enabling
translation between contiguous words across
the query and documents (Moore, 2004).

2. We learn relationships between entities and
terms by proposing new ways of organiz-
ing monolingual parallel corpus and simul-
taneously leveraging external resources like
Wikipedia from which one can derive these re-
lationships reliably. This helps alleviate the
noise problem associated with learning transla-
tion models on Q&A archive described above.
An important point to note is that, our tech-
nique has merits independent to the choice
of the entity catalog. In this work we use

2entity mentions can be of more than unit word length
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D original Q&A collection
E set of all entities in catalog
d(e) description of entity e
C D annotated with e ∈ E
quser users question
q quser annotated with e ∈ E
t token span

tq, td token span in q and d
V word vocabulary

Table 1: Notation.

Wikipedia, as it is a popular choice due to its
large and ever expanding coverage and its abil-
ity to keep up with world events on a timely
basis.

3. We provide detailed evaluation of impact of
modelling assumptions and model components
on retrieval performance on a large scale real
data from Yahoo Answers comprising ∼5 mil-
lion Q&A pairs.

Rest of the paper is organized as follows: In the
next section, we define ETLM and outline its de-
tails. This is followed by Section 3 which gives
the details of entity annotators and its performance.
Section 4 describes our experiments on the retrieval
method used Q&A retrieval. In Section 5 we com-
pare and contrast related literature. Finally, we con-
clude in Section 6.

2 Our Approach

Problem Definition: Let D = d1, d2, ..., dn denote
the Q&A collection. Here di refers to the i-th Q&A
data consisting of a question qi and its answer ai.
Given the user question quser, the task of Q&A
retrieval is to rank di according to score(quser, di).
Figure 2 outlines the approach to compute this score
in the ETLM framework.

Offline processing: Using the entity catalog E, we
learn the entity annotation models EAoffline and
EAonline for annotation of entities in the Q&A cor-
pus and the query respectively. Refer Section 3 for
details. For each di ∈ D, we then annotate refer-
ences to entities in Wikipedia using EAoffline re-

sulting in annotated Q&A corpus C. We then com-
pute relationships between entities and words using
C and E. These relationships are used to learn our
ETLM model.
Online processing: At runtime, annotate the user
query quser with entities using EAonlineto create an
enriched question q. Issue this query over the an-
notated corpus C and rank the candidates as per the
ETLM model described below.

2.1 ETLM Model
Let the annotated query q (and similarly annotated
Q&A pair d) be composed of sequence of token
spans Tq (and Td). Each token span tq (similarly
td) corresponds to sequence of contiguous words oc-
curring in the running text. These tq’s can corre-
spond to entity mentions, phrases or words. Let eq
denote the tokens spans that are annotated and neq
that are not (Tq = eq ∪ neq). For example, in the
query , What︸ ︷︷ ︸

neq

is︸︷︷︸
neq

a︸︷︷︸
neq

Quadratic Formula︸ ︷︷ ︸
eq

?,

token span Quadratic Formula is linked to an
entity corresponding to Quadratic Equation3, while
all other token spans are marked as neq .

For the sake of simplicity, in this work we do
not identify phrases i.e. neq is always of unit word
length4. In the ETLM framework, the similarity be-
tween a query q and a document dwithin a collection
C is given by the probability

score(q, d) ∼ P (q|d) =
∏
tq∈q

tq=eq∪neq

P (tq|d)

P (tq|d) = (1− λ)Pml(tq|d) + λPml(tq|C)

Pml(tq|d) =
∑
td∈d

T (tq|td)Pml(td|d) (1)

Intuitively this indicates a generative process for cre-
ating q from d. Ideally both q and d are “only” com-
posed of e i.e. ∀tq ∈ q; tq ∈ EU , where EU is the
universal set of entities 5 (similarly for all td). This
is because when the document was created, each and
every td ∈ d had a sense attached to it. however in
reality, for various reasons, set of target entities are
clearly a subset of EU (for e.g. E: set of all entities

3http://en.wikipedia.org/wiki/Quadratic equation
4its not a restriction as the model is valid for neq consisting

of more than one word.
5language for creating q and d
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Figure 2: ETLM Architecture (gray and brown arrows indicate offline and online processes respectively

in the catalog) also not all of them may be recog-
nized by the annotation system.
T (tq|td) in Equation 1 denotes the probability

that a token span tq is the translation of token span
td. This induces the desired query expansion effect.
The key task is to estimate Pml(tq|C), T (tq|td) and
Pml(td|d); tq ∈ eq ∪ neq and td ∈ ed ∪ ned

2.2 Estimating Model Parameters
We adopt 2 different approach for estimating
T (tq|td), leading to 2 different configurations of
ETLM system . As the name suggests, ETLMqa is
estimated from Q&A data (C andD) while we lever-
age the entity catalog (in our case it is Wikipedia) for
ETLMwiki.

2.3 ETLMqa: Estimate from parallel corpus
Following (Xue et al., 2008) we pool the question
and answers from D to create a master parallel cor-
pus P = (q1, a1), .., (qn, an) ∪ (a1, q1), ., (an, qn).
This is used for learning T (ne|ne′)6. Similarly we
create P ∗ from C. We then derive 2 different paral-
lel corpora from P and P ∗ as follows

Pentity We remove all non linked tokens ne from
P ∗ thereby reducing it to parallel corpus over e.
This is used for learning T (e|e′) i.e. translation
probabilities between two entities e and e′ inE.

Phybrid This is hybrid of Pentity and P where in
one part of Q&A pair consists on only newhile
other consists of only e. This is used for learn-
ing T (ne|e) and T (e|ne).

To handle entities e, we introduce special id’s in the
ne space. Thus our universal token span set is given

6subscript of q and d has been dropped as translation proba-
bility learnt agnostic to it, due to pooling.

by V ∪ E. This is done so that T (tq|td) is learnt
from P , Pentity and Phybrid, w/o any modification
to the corresponding translation algorithm (Brown
et al., 1993). Lets call this approach ETLMqa′ .

We explored another intuitive approach ETLMqa,
to learn T (e|e′), T (e|ne), T (ne|e) and T (ne|ne′)
directly by using only P ∗ as our parallel corpus.
We do so by redistributing the probability mass
i.e. when calculating T (e|e′), we redistribute prob-
ability mass spread over all the ne to e given by
Equation 2 and 3. Similar process is followed for
T (e|ne), T (ne|e) and T (ne|ne′).

S(e|e′) =
T (e|e′)∑
t∈V T (t|e′)

(2)

T (e|e′) =
S(e|e′)∑
t∈E T (t|e′)

(3)

Remaining model components are calculated using
Equation 4 and 5. Here d refers to question part of
the Q&A pair.

Pml(tq|C) =
tftq ,C + 1∑

t′∈C tft′,C + |C|
(4)

Pml(tq|d) =
tftq ,d∑
t′∈d tft′,d

(5)

2.4 ETLMwiki: Estimating from Wikipedia

Number of symmetric measures have been pro-
posed (Medelyan et al., 2009) to measure seman-
tic relationships between entities and words using
Wikipedia. For our problem we need an asym-
metric measure. We use co-citation information
in Wikipedia to detect relatedness between enti-
ties (T (e|e′)) and co-occurrence counts to estimate
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T (ne|ne′) as follows: .

T (e|e′) =
co(e, e′)∑
e′′ co(e

′′, e′)
(6)

T (ne|ne′) =
cf(ne, ne′)∑
ne′′ cf(ne′′, ne′)

(7)

T (ne|e) =
tfne,D(e) + 1

|D(e)|+ |V |
(8)

T (e|ne) =
tfne,D(e) + 1∑

e′∈E tfne,D(e′) + |E|
(9)

Here d(e) represents the page corresponding to
entity e. D(e) represents concatenation of d(e)
and all context of size 5 surrounding anchor text in
Wikipedia that link to e. cf(ne, ne′) is the number
context windows of fixed size containing both
ne and ne′ in Wikipedia. In our case, we set the
window size at 10 (because this size turned out to be
reasonable in our pilot experiments). tft,d(e) is the
frequency of t in d(e); co(e, e′) indicates number
of entities in Wikipedia that have a hyperlink to
both e and e′. As links from pages with a small
number of outgoing links are generally considered
to be more valuable than links from pages with a
high outgoing link degree, we tried with weighted
version of 6 where the co-citations are weighted
by the outdegree of Wikipedia page corresponding
to entity s that link to e and e′. Lets denote the
weighted version by ETLMwiki and unweighted
version by ETLMwiki′ . Pml(tq|C) and Pml(tq|d)
are estimated as per Equation 4 and 5 respectively.

2.5 Self translation probability
To make sure self translation probability is not un-
derestimated i.e. T (t|t) ≥ T (t′|t) always holds
true, we introduce new parameter γ as T (t|t′) =
γ + (1− γ)T (t|t′); γ = 0 when t 6= t′ and γ > 0.5
otherwise.

2.6 ETLMcombo: Combining ETLMqa and
ETLMwiki

Often, combining language models yields better re-
sults than any of the individual language models
themselves. Linear interpolation is often the tech-
nique of choice in language modelling for combin-
ing models to exploit complementary features of the
component models. It involves taking a weighted

sum of the probabilities given by the component lan-
guage models. An advantage of the linear interpola-
tion is that it is simple and fast to calculate. If the
inputs are probability estimates, also the output is a
probability estimate. The mixture translation model
Tcombo(e|e′) over M component models is given by
Equation 10.

Tcombo(t|t′) =

M∑
j=1

αjTj(t|t′)

t ∈ E ∪ V ;
M∑
j=1

αj = 1; αj ≥ 0

(10)

One can immediately notice that Tcombo(t|t′) has
one global weight for each of the M component
models which might not be ideal. With access to
large training data one could employ more power-
ful context dependent interpolation techniques (Liu
et al., 2008). In our case we have 2 components
Tqa and Twiki and four classes for each ; α(e,e′)

wiki
7,

α
(e,ne)
wiki , α(ne,ne′)

wiki and α(ne,e)
wiki ), one corresponding to

each class of T (t|t′). respectively.

3 Entity Annotation

In this section we describe our entity annotation
system. Recently there has been lot of work ad-
dressing the problem of annotating text with links
to Wikipedia entities (Mihalcea and Csomai, 2007;
Bunescu and Pasca, 2006; Milne and Witten, 2008;
Kulkarni et al., 2009; Ratinov et al., 2011; Ferrag-
ina and Scaiella, 2010). We adopt a similar ap-
proach, wherein we first find the best disambigua-
tion (BESTDISAMBIGUATION) for a given mention
and then decide to prune it (PRUNE), via the dummy
mapping NA (similar to “no assignment” (Kulkarni
et al., 2009)).

3.1 BESTDISAMBIGUATION

As defined earlier, e ∈ E represent an entity cor-
responding to URN of a Wikipedia article. Let
Em = {em,1, em,2, · · · , em,|Em|} em,i ∈ E repre-
sent the set of possible disambiguations for a men-
tion m (m is an index over all mentions in the cor-
pus). Given a mention m, task is to find best disam-
biguation e from Wikipedia. Without loss of gener-

7α
(e,e′)
qa = 1− α(e,e′)

wiki
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ality, we consider em,∗ ∈ Em as the correct answer.
Let φ(m, em,j) represent the mapping onto features
between an entity mention m and the Wikipedia en-
tity em,j and −→ω be the corresponding weight vector
and D(em,j) = −→ω φ(m, em,j) represent the disam-
biguation score. The task is to learn −→ω such that
argmax
em,j

D(em,j) gives the best disambiguation for

the mention m.
We pose this as a ranking problem and solve

it using max-margin technique (Joachims, 2002;
Joachims, 2006) as follows

minimize
−→ω ,
−→
ξ

1

2
−→ω · −→ω + C

∑
ξi,j

subject to

∀m,∀em,j ∈ Em − em,∗ :

−→ω φ(m, em,∗) >
−→ω φ(m, em,j) + ξi,j

∀i,∀j : ξi,j ≥ 0
(11)

where
∑
ξi,j is the total training error that upper

bounds the number of pair preferences violations.
This is controlled by adjusting the parameter C. Note
that Equation 11 means pairwise comparison be-
tween the correct disambiguation em,∗ and other dis-
ambiguation candidates em,j such that j 6= index
corresponding to *.

3.2 PRUNE

The disambiguation phase produces one candidate
disambiguation per mention. To discard any un-
meaningful annotations a simple strategy similar to
LOCAL (Kulkarni et al., 2009) is followed where the
D(em,∗) is compared against a predefined threshold
ρna, so that if D(em,∗) < ρna then that annotation
for menton m is discarded by linking m to NA. The
parameter ρna allows the algorithm to back-off when
short of evidence.

3.3 FEATUREMAP φ(m, em,j)

Sense probability prior (SP): It represents the prior
probability that a mention name s points to a specific
entity in Wikipedia. For example, without any other
information, mention name “tree” will more likely
refer to the entity woody plant8, rather than the less

8en.wikipedia.org/wiki/Tree

popular notion related to graphs 9.
Entity Probability prior (EP): It captures the pop-
ularity knowledge as a distribution of entities, i.e.,
the EP (ei) should be larger than EP (ej) if ei is
more popular than ej . This score is independent of
the mention name.
Context specific features: It captures the tex-
tual similarity between weighted word vectors cor-
responding to the context of the mention (window
around the mention) and textual description associ-
ated with the entity (Wikipedia page).

Let EAonline and EAoffline represent config-
urations for annotating user question and corpus
respectively. For EAonline, user question repre-
sents the document from which context specific
features are computed. For EAoffline, question
and the answer(best) is concatenated to represents
the document. Based on the “one sense per dis-
course” assumption, one additional heuristic is used
in EAoffline where, for the same Q&A pair, if same
name mention is repeated multiple times across the
question and the answer then one with the maximum
D(em,∗) > ρna is annotated for all instances.

3.4 Annotation Experiments

We used 2010 version of Wikipedia as our knowl-
edge base. It contains more than 2.5 million en-
tities. Annotations were done by volunteers fluent
in english. Volunteers were told to be as exhaus-
tive as possible and tag all possible name mentions,
even if to mark them as ”NA”. Inter-annotator agree-
ment=92.1%; Kappa coefficient = 0.72. As our cor-
pus, we collected 8.3K manual annotations spanning
1315 Q&A pairs. 2.8K of the annotations were as-
signed to NA. 2.1K annotations (out of 8.3K) were
made in the question of which 551 were assigned to
NA. We use Precision, Recall and F1 score micro-
averaged across documents as the evaluation mea-
sures. We do a linear scan of data to identify en-
tity mentions by first tokenizing and then identify-
ing token sequences that maximally match an en-
tity ID in the entity name dictionary (constructed
using Wikipedia anchor text, redirect pages). Fig-
ure 3 outlines the performance of EAoffline and
EAonline. We measured EAoffline in 3 test data
configurations; (1) EAoffline: measured over entire

9en.wikipedia.org/wiki/Tree (data structure)
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Figure 3: Precision v/s Recall

annotation set; 2) EAoffline′ is measured only on
annotations made in question. this is done to com-
pare it with EAonline; 3) EAoffline∗ is similar to
(2), only difference is that for (2) entire Q&A pair
is the context, while here only question part is the
context. This is done to check if separate annotators
are required for online and online phase. As seen
in Figure 3, this indeed is necessary as EAoffline∗

performs worse than EAonline. Closer look at the
feature weights revealed that in EAoffline context
specific features have much more weightage when
compared to its weight in EAonline, on the contrary
EAonline weighs SP significantly higher.

4 Evaluation

We now describe the empirical evaluation where
we compare our techniques against the baseline
techniques. We use several standard measures (R-
Precision, MAP, MRR, Precision@k) in evaluation.
We first describe the dataset used followed by de-
scribing an exhaustive set of results across tech-
niques and performance measures.

4.1 Dataset

We crawled a dataset of ∼5 million questions and
answers from Yahoo! Answers spanning all the leaf
level categories. Tokenization and stop word re-
moval were the only preprocessing steps performed.
We have used a stoplist10 having a vocabulary of 429
common words to remove the stopwords.

In our retrieval experiments we used 339 queries
(average length 5.6 words). We employed pool-
ing technique used in the TREC conference series.

10http://truereader.com/manuals/onix/stopwords1.html

We pooled the top 25 Q&A pairs from retrieval re-
sults generated by varying the retrieval algorithms
and the search field. Relevance judgments were
marked by human annotators without disclosing the
identity of method used for retrieval. The annota-
tors were asked to label candidate as “relevant” or
“irrelevant” based on semantic similarity with the
query. Answer quality/correctness was not a crite-
ria. In case of disagreement between two volunteers,
authors made the final judgment. Inter-annotator
agreement was 87.9% and Kappa coefficient = 0.68.
Over all we had collected more than 12K relevance
judgements corresponding to these queries, of which
>2.3K were marked as relevant.

4.2 Baselines

To evaluate the effectiveness of our models we
compared them against the following baselines

Traditional models: VSM (Zobel and Moffat,
2006) and OKAPI BM25 (Robertson et al., 1996)
(k1, b, and k3 are parameters that are set to 1.2, 0.75
and∞ respectively).
Translation based language models: TLM (Jeon
et al., 2005), TransLM (using answers) (Xue et al.,
2008) and CTM (Lee et al., 2008).

For our experiments we used a set of 50 queries to
select the model parameters. Translation based lan-
guage model use 2 parameters; smoothing parameter
λ in the Language Model and β to control the self-
translation impact in the TransLM. Final values of
parameters used in our experiments were λ = 0.2
(Zhai and Lafferty, 2004) and β = 0.75 (Xue et
al., 2008). For CTM, we used tf-idf based weigh-
ing scheme (Lee et al., 2008) to remove words from
the (Q‖A) corpus P . Word elimination threshold of
20% was selected based on the above 50 queries. Fi-
nal values of ETLM parameters used in our experi-
ments were λ = 0.18 and γ = 0.65.

4.3 Result Analysis

Table 2 presents the performance of the various tech-
niques. Under each measure, we highlight the best
performing technique. Performance of all the trans-
lation based models is better than VSM and OKAPI
thereby confirming the importance of addressing the
lexical gap. Using high confidence annotations for
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MAP %chg MRR %chg R-Prec %chg Prec@5 %chg Prec@10 %chg

VSM 0.221 0.421 0.21 0.202 0.15
OKAPI 0.298 0.532 0.271 0.264 0.214

TLM 0.337 0.583 0.318 0.297 0.239
TransLM 0.352 0.612 0.347 0.332 0.261
CTM 0.361 0.641 0.351 0.341 0.279

ETLMqa 0.390† 8.03 0.699† 9.05 0.379† 7.98 0.367† 7.62 0.302† 8.24
ETLMwiki 0.413† 14.40 0.719† 12.17 0.399† 13.68 0.391† 14.66 0.323† 15.77
ETLMcombo 0.427† 18.28 0.726† 13.26 0.413† 17.66 0.407† 19.35 0.331† 18.64

Table 2: Comparisons of retrieval models. † indicate a statistically significant improvement over the CTM using paired
t-test with p-value < 0.05. %chg indicates change over CTM as it is the most competitive baseline

query expansion in ETLM, leads to an improved
performance as compared to the all the baseline
methods that do not consider this signal. This is
validated by the fact that ETLMqa and ETLMwiki

can achieve statistically significant improvements in
terms of all the measures. The reason for this im-
provement is the context sensitive computation of
T (t|t′) leading to reduced spurious expansions and
improved top expansions, this is made possible be-
cause of entity disambiguation. This computation in
baselines happens on word by word basis without
exploiting contextual information. ETLMqa per-
forms worse than ETLMwiki. On close inspec-
tion of failure cases and translation probability ta-
bles we found that T (e|e′) for ETLMqa was much
worse than ETLMwiki. This is because for getting
good estimates of T (e|e′), we need enough instances
where both e and e′ need to be correctly annotated
in the same Q&A pair. Failure in this leads to sparse
counts thereby reducing the gap in T (e|e′) scores
for related and unrelated e. Figure 4 shows the
impact of choices made for learning the translation
probabilities T (t|t′). We found that ETLMwiki per-
forms slightly better than ETLMwiki′ , indicating the
utility of weighted co-citation measure for comput-
ing T (e|e′). We believe that embedding other mea-
sures that are better in capturing relationships from
Wikipedia, should improve the performance. Simi-
larly ETLMqa also performs better than ETLMqa′ .
This is because for creating Pentity all ne are re-
moved. This leads to count sparsity problem dis-

Figure 4: Performance of ETLM configurations

cussed above, but slightly worse. Due to absence
of ne, in ETLMqa′ e

′ in d are thought be being
generated “only” from e in q. On the contrary in
ETLMqa, e′ had an option of mapping to ne in q.
An interesting observation is that while the perfor-
mances of different configurations vary, all of them
perform better than CTM which is the best baseline.

4.4 Impact of Annotations on retrieval

Since entities are central in our model, impact of
entity annotation on quser is one of the most im-
portant aspect to be studied. Figure 5 shows the
plot of retrieval measures obtained by varying ρna
in EAonline. CTM is shown by horizontal lines. As
explained in Section 3, value of ρna is inversely pro-
portional to aggressiveness of annotation. Which
implies for high values, EAonline will annotate only
those mentions in query that its highly confident
about. Beyond a value no annotations are made.
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Figure 5: Impact of query annotation on retrieval. x-axis
represents value of ρna used to control annotation

This is represented on the extreme right in Figure 5.
One important observation is that, even with no an-
notations made in query, performance of ETLMqa

and ETLMwiki is competitive to CTM. This is ev-
idence for addressing the noise related issue for
which CTM is designed. For large range of values,
all ETLM configurations are above CTM. As we de-
crease ρna performance increases smoothly and then
after a certain point (ρna = 5) is starts decreasing.

4.5 ETLMcombo

We believe that T (t|t′) learnt from one source would
encode word association characteristics which might
not be exactly the same across sources.ETLMcombo

tries to address this by combining the two models.
Values for mixing parameters are : α(e,e′)

wiki = 0.9511,
α

(e,ne)
wiki = 0.75, α(ne,ne′)

wiki = 0.7 and α(ne,e)
wiki = 0.75).

The interpolation weights were obtained by optimiz-
ing the retrieval performance by doing a using grid
search over the parameter space. Same 50 queries
were used for tuning. As seen entity relationships
obtained from Wikipedia are far superior to one
from Q&A corpus. As seen in Table 2 combining
the two models improves the performance.

5 Related Work

Recently Q&A retrieval has been garnering lot of at-
tention. Translation model (TLM) (Jeon et al., 2005)
has been extensively employed in question search
and has been shown to outperform the traditional IR
methods significantly (VSM, BM25, LM). Existing

11α
(e,e′)
qa = (1− 0.95)

work can be broadly grouped under the following
topics:
(a) Improved training of translation models by ex-
ploiting answer content/inter-word co-occurrence
relations and restriction to reliable parallel cor-
pora: Translation-based language model (TRLM)
(Xue et al., 2008) improved stability of TLM by
providing better probability estimates and also ex-
ploited answers for question retrieval. It further im-
proved the retrieval results and obtained the state-of-
the-art performance. Another line of work on trans-
lation models focused on providing suitable parallel
data to learn the translation probabilities. Compact
translation models (CTM) (Lee et al., 2008) tried to
further improve the translation probabilities based
on question-answer pairs by selecting the most im-
portant terms to build compact translation models.
We show that such special-purpose models to con-
trol noisy translations may not be necessary because
models learnt using entity annotations are robust to
noise in Q&A data.

Instead of using noisy Q&A data, new approach
(Bernhard and Gurevych, 2009) to build parallel cor-
pus from reliable sources has showed improvements.
They proposed to use as a parallel training data com-
prising of set the definitions and glosses provided
for the same term by different lexical semantic re-
sources. We move beyond terms and capture rela-
tionships between entities and terms using the page
contents and link structure in Wikipedia.

Apart from translation models there are other
approaches (Gao et al., 2004) that try to extend the
existing language models for adhoc retrieval by
incorporating term relationships or dependencies.
Some expand queries using word relationships
derived from co-occurrence thesaurus (Bai et al.,
2005; Qiu and Frei, 1993), hand-crafted thesaurus
(Liu et al., 2004; Voorhees, 1994) and combination
of both (Cao et al., 2005).

(b) Incorporation of query context information in
translation models using latent factor modeling
and smoothing approaches: All these existing
approaches mentioned above are considered to be
context independent, in that they do not take into
account any contextual information in modeling
word word relationships. Topic signature model
(Zhou et al., 2007) exploited contextual information
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by decomposing a document into a set of weighted
topic signatures and use it for model smoothing.
This model turns out to be inefficient when con-
fronted with ambiguous words and phrases because
it is unable to disambiguate the sense of topic
signatures. Others (Liu and Croft, 2004) perform
semantic smoothing by means of clustering. Re-
cently (Tu et al., 2010; Cai et al., 2011; Zhou
et al., 2011) showed improved performance by
performing sense based smoothing for document
retrieval, latent topic mining and phase based
retrieval respectively. Contrary to these approaches
we used entity disambiguation to capture contextual
information for improving Q&A retrieval.

(c) Complementary ideas for improving retrieval
performance that can be used alongside translation
models: Other work on question retrieval include
the use of category information available (Cao et
al., 2010), learning-to-rank techniques (Bian et al.,
2008; Surdeanu et al., 2008; Bunescu and Huang,
2010), proposed a syntactic tree matching ((Wang et
al., 2009) or question structure for important phrase
matching (Duan et al., 2008)). These methods seem
orthogonal to ours, in some cases complementary
and can be leveraged to get an even better perfor-
mance

There also exists work where exploiting entity
based representation has been found helpful in in-
formation retrieval (Singh et al., 2009; Egozi et al.,
2011; Meij et al., 2008; Grootjen and van der Weide,
2006). In our work we use entity annotations in
Q&A retrieval context. There is also some work on
using Wikipedia in general web search (Xu et al.,
2009).

6 Conclusion

In this work we extend word based model to in-
corporate semantic concepts for addressing the lex-
ical gap issue in retrieval models for large online
Q&A collections. Compared to the existing trans-
lation based model, our model is more robust and
effective in that it can perform context aware expan-
sions. We proposed ways to embed rich information
freely available in Wikipedia into our models and
combine it one learnt from Q&A corpus. Experi-
ments performed on a large real Q&A data demon-

strate that all configurations of ETLM significantly
outperforms existing models for Q&A retrieval.
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Abstract

Taxonomies can serve as browsing tools for
document collections. However, given an ar-
bitrary collection, pre-constructed taxonomies
could not easily adapt to the specific topic/task
present in the collection. This paper explores
techniques to quickly derive task-specific tax-
onomies supporting browsing in arbitrary
document collections. The supervised ap-
proach directly learns semantic distances from
users to propose meaningful task-specific tax-
onomies. The approach aims to produce glob-
ally optimized taxonomy structures by incor-
porating path consistency control and user-
generated task specification into the general
learning framework. A comparison to state-
of-the-art systems and a user study jointly
demonstrate that our techniques are highly ef-
fective.

1 Introduction

Taxonomies are widely used for knowledge stan-
dardization, knowledge sharing, and inferencing in
natural language processing (NLP) tasks (Harabagiu
et al., 2003; Szpektor et al., 2004). However, an-
other common function of taxonomies, browsing,
has received little attention in the NLP community.
Browsing is the task of exploring and accessing in-
formation through a structure, e.g. a hierarchy, built
upon a given document collection. In fact, tax-
onomies serve as browsing tools in many venues,
including the Library of Congress Subject Headings
(LCSH, 2011) for the U.S. Library of Congress and
the Open Directory Project (ODP, 2011) for about

5% of the entire Web. We call taxonomies support-
ing browsing as browsing taxonomies.

When used for browsing, concepts1 in taxonomies
are linked to documents containing them and taxo-
nomic structures are navigated to find particular doc-
uments. Users can navigate through a browsing tax-
onomy to explore the documents in the collection.
A browsing taxonomy benefits information access
by providing corpus overview for a document col-
lection and allowing more focused reading by pre-
senting together documents about the same concept.

Most existing browsing taxonomies, such as
LCSH and ODP, are manually constructed to sup-
port large collections in general domains. Not only
their constructions are expensive and slow, but also
their structures are static and difficult to adapt to spe-
cific tasks. In situations where document collections
are given ad-hoc, such as search result organization
(Carpineto et al., 2009), email collection exploration
(Yang and Callan, 2008), and literature investigation
(Chau et al., 2011), existing taxonomies may even
not be able to provide the right coverage of concepts.
It is necessary to explore ad-hoc (semi-)automatic
techniques to quickly derive task-specific browsing
taxonomies for arbitrary document collections.

(Hovy, 2002) pointed out that one key challenge
in taxonomy construction is multiple perspectives
embedded in concepts and relations. One cause for
multiple perspectives is the inherent facets in con-
cepts, e.g., jewelries can be organized by price or by
gemstone types. Another cause is task specification
or even personalization. For example, when build-
ing a taxonomy for search results of query trip to

1English terms or entities; usually nouns or noun phrases.
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DC, Jane may organize the concepts based on places
of interests while Tom may organize them based on
dates in visit. Typically, a taxonomy only conveys
one or two perspectives from many choices. It is dif-
ficult to decide which perspective should be present.
One realistic solution is to leave the decision to the
constructor independent of the confusion that comes
from facets, task specification or personalization.

When multiple perspectives present in the same
taxonomy, it is not uncommon that the per-
spectives are mixed. For example, along a
path financial institute→bank→river bank, finan-
cial institute→bank shows one perspective and
bank→river bank shows another. We call this prob-
lem path inconsistency. Many approaches on auto-
matic taxonomy construction suffer from this prob-
lem because their foci are on accurately identifying
local relations between concept pairs (Etzioni et al.,
2005; Pantel and Pennacchiotti, 2006) instead of on
global control over the entire taxonomic structure.
More recently, approaches attempted to build the full
taxonomy structure (Snow et al., 2006; Yang and
Callan, 2009; Kozareva and Hovy, 2010), however,
few have looked into how to incorporate task speci-
fications into taxonomy construction.

In this paper, we extended an existing taxonomy
construction approach (Yang and Callan, 2009) to
build task-specific taxonomies for document collec-
tion browsing. The extension comes in two parts:
handling path consistency and incorporating spec-
ifications from users. We uniquely employ pair-
wise semantic distance as an entry point to incre-
mentally build browsing taxonomies. A supervised
distance learning algorithm not only allows us to
incorporate multiple semantic features to evaluate
the proximity between concepts, but also allows us
to learn the metric function from personal prefer-
ences. Users can thus manually modify the tax-
onomies and to some extent teach the algorithm to
predict his/her way to organize the concepts. More-
over, by minimizing the overall semantic distances
among concepts and restricting minimal semantic
distances along a path, we find the best hierarchical
structure as the browsing taxonomy.

Our contributions include:
- A supervised learning mechanism to capture

task-specific or personalized requirements for orga-
nizing a browsing taxonomy;

- A strategy to address path inconsistency due to
word sense ambiguity and/or mixed perspectives;

- A general scheme to capture user inputs in tax-
onomy construction;

- A user study to evaluate the effectiveness of
task-specific taxonomies for browsing activities.

2 Related Work

Document collection browsing has been studied as
an alternative to the ranked list representation for
search results by the Information Retrieval (IR)
community. The popular IR approaches include
clustering (Cutting et al., 1992) and monothetic con-
cept hierarchies (Sanderson and Croft, 1999; Lawrie
et al., 2001; Kummamuru et al., 2004; Carpineto
et al., 2009). Clustering approaches hierarchically
cluster documents in a collection and label the clus-
ters. Monothetic approaches organize the concepts
into hierarchies and link documents to related con-
cepts. Both approaches are mainly based on pure
statistics, such as document frequency (Sanderson
and Croft, 1999) and conditional probability (Lawrie
et al., 2001). The major drawback of these pure
statistical approaches is their neglect of semantics
among concepts. As an consequence, they often fail
to produce semantically meaningful taxonomies.

The NLP community has extensively studied
automatic taxonomy construction. Although tra-
ditional research on taxonomy construction fo-
cuses on extracting local relations between concept
pairs (Hearst, 1992; Berland and Charniak, 1999;
Ravichandran and Hovy, 2002; Girju et al., 2003;
Etzioni et al., 2005; Pantel and Pennacchiotti, 2006;
Kozareva et al., 2008), more recent efforts has been
made in building full taxonomies. For example,
(Snow et al., 2006) proposed to estimate taxonomic
structure via maximizing the overall likelihood of a
taxonomy. (Kozareva and Hovy, 2010) proposed to
connect local concept pairs by finding the longest
path in a subsumption graph. Yang and Callan pro-
posed the Minimum Evolution (ME) framework
to model the semantic distance d(cx, cy) between
concepts cx and cy as a weighted combination of
various lexical, statistical, and semantic features:∑

j weightj ∗ featurej(cx, cy) and estimate the taxo-
nomic structure by minimizing the overall semantic
distances.
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Researcher also attempted to carve out tax-
onomies from existing ones. For example, Stoica
et al. (Stoica and Hearst, 2007) managed to extract a
browsing taxonomy from hypernym relations within
WordNet (Fellbaum, 1998).

To support browsing in arbitrary collections, in
this paper, we propose to incorporate task specifica-
tion in a taxonomy. One way to achieve it is to define
task-specific distances among concepts. Moreover,
through controlling distance scores among concepts,
we can enforce path consistency in taxonomies. For
example, when the distance between financial in-
stitute and river bank is big, the path financial
institute→bank→river bank will be pruned and the
concepts will be repositioned. Inspired by ME, we
take a distance learning approach to deal with path
consistency (Section 3) and task specification (Sec-
tion 4) in taxonomy construction.

3 Build Structure-Optimized Taxonomies

This section presents how to automatically build tax-
onomies. We take two steps to build browsing tax-
onomy for a given document collection. The first
step is to extract the concepts and the second is to
organize the concepts. For concept extraction, we
take a simple but effective approach: (1) We first
parse the document collection and exhaustively ex-
tract nouns, noun phrases, and named entities that
occur >5 times in the collection. (2) We then fil-
ter out part-of-speech errors and typos by a Web-
based frequency test. In the test, we search each
candidate concept in the Google search engine and
remove a candidate if it appears <4 times within
the top 10 Google snippets. (3) We finally cluster
similar concept candidates into groups by Latent Se-
mantic Analysis (Bellegarda et al., 1996) and select
the candidate with the highest tfidf value within a
group to form the concept set C. Although our ex-
traction algorithm is very effective with 95% preci-
sion and 80% recall in a manual evaluation, some-
times C may still miss some important concepts for
the collection. This can be later corrected by users
interactively through adding new concepts (Section
4).

To organize the concepts in C into taxonomic
structures, we extend the incremental clustering
framework proposed by ME (Yang and Callan,

2009). In ME, concepts are inserted one at a time.
At each insertion, a concept cz is at the parent (or
child) position for every existing node in the current
taxonomy. The evaluation of the best position de-
pends on the semantic distance between cz and its
temporary child (or parent) node and the semantic
distance among all other concepts in the taxonomy.
An advantage in ME is that it allows incorporat-
ing various constraints to the taxonomic structure.
For example, ME can handle concept generality-
specificity by learning different semantic distance
functions for general concepts which are located at
upper levels and specific concepts which are located
at lower levels in a taxonomy.

In this section, we introduce a new semantic dis-
tance learning method (Section 3.1) and extendME
by controlling path consistency (Section 3.2).

3.1 Estimating Semantic Distances
Pair-wise semantic distances among concepts build
the foundation for taxonomy construction. ME
models the semantic distance d(cx, cy) between con-
cepts cx and cy as a linear combination of underly-
ing feature functions. Similar to ME, we also as-
sume that “there are some underlying feature func-
tions that measure semantic dissimilarity for con-
cepts and a good semantic distance is a combination
of these features”. Different from ME, we model
the semantic distance d(cx, cy) between concepts
(cx, cy) as a Mahalanobis distance (Mahalanobis,
1936): dcx,cy =

√
Φ(cx, cy)TW−1Φ(cx, xy), where

Φ(cx, cy) is the set of underlying feature functions
{φk : (cx, cy)}with k=1,...,|Φ|. W is the weight ma-
trix, whose diagonal values weigh the various fea-
ture functions. We use the same set of features as
proposed in ME.

Mahalanobis distance is a general parametric
function widely used in distance metric learning
(Yang, 2006). It measures the dissimilarity between
two random vectors of the same distribution with a
covariance matrix W , which scales the data points
from their original values by W 1/2. When only di-
agonal values of W are taken into account, W is
equivalent to assigning weights to different axes in
the random vectors.

We choose Mahalanobis distance for two reasons.
(1) It is in a parametric form so that it allows us to
learn a distance function by supervised learning and
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provides an opportunity to assign different weights
for each type of semantic features. (2) When W
is properly constrained to be positive semi-definite
(PSD) (Bhatia, 2006), a Mahalanobis-formatted dis-
tance will be guaranteed to satisfy non-negativity
and triangle inequality, which was not addressed in
ME. As long as these two conditions are satisfied,
one may learn other forms of distance functions to
represent a semantic distance.

We can estimateW by minimizing the squared er-
rors between training semantic distances d and the
expected value d̂. We also need to constrain W
to be PSD to satisfy triangle inequality and non-
negativity. The objective function for semantic dis-
tance estimation is:

min
W

|C|∑
x=1

|C|∑
y=1

(
dcx,cy −

√
Φ(cx, cy)TW−1Φ(cx, cy)

)2

subject to W � 0

(1)

In this implementation, we used (Sedumi, 2011) and
(Yalmip, 2011) to solve the semi-definite program-
ming (SDP).

To generate the training semantic distances, we
collected 100 hypernym taxonomy fragments from
WordNet (Fellbaum, 1998) and ODP. The seman-
tic distance for a concept pair (cx, cy) in a training
taxonomy fragment is generated by assuming ev-
ery edge is weighted as 1 and summing up the edge
weights along the shortest path from cx to cy in the
taxonomy fragment. In Section 4, we will show how
to use user inputs as training data to capture task-
specifications in taxonomy construction.

3.2 Enforcing Path Consistency

In ME, the main taxonomy structure optimization
framework is based on minimization of overall se-
mantic distance among all concepts in the taxonomy
and the minimum evolution assumption. We extend
the framework by introducing another optimization
objective to the framework: path consistency objec-
tive. The idea is that in any root-to-leaf path in a tax-
onomy, all concepts on the path should be about the
same topic or the same perspective. Within a root-to-
leaf path, the concepts need to be coherent no mat-
ter how far away they are apart. It suggests that a
good path’s sum of the semantic distances should be
small.

Algorithm: Automatic Taxonomy Optimization.
W = minW

∑
x=1

∑|N(ctrx )|
y=1 ((dctrx ,ctry

−√
Φ(ctrx , ctry )TW−1Φ(ctrx , ctry ))2;

foreach cz ∈ C \ S
S ← S ∪ {cz};
if W � 0

d(cz , .) =
√

Φ(cz , .)TW−1Φ(cz , );
R← R ∪ {arg minR(cz,.)

(λ objME + (1− λ) objpath)};
Output T (S,R)

Figure 1: An algorithm for taxonomy structure optimiza-
tion with path consistency control. C denotes the entire
concept set, S the current concept set, and R the current
relation set. N(ctrx

) is the neighborhood of a training
concept ctrx , including its parent and child(ten). R(cz, .)
indicates the set of relations between a new concept cz
and all other existing concepts. T is the taxonomy with
concept set S and relation set R.

Therefore, we propose to minimize the sum of se-
mantic distances along a root-to-leaf path. Particu-
larly, when adding a new concept cz into an existing
browsing hierarchy T , we try it at different positions
in T . At each temporary position, we can calculate
the sum of the semantic distances along the root-to-
leaf path Pcz that contains the new concept cx. The
path consistency objective is given by:

objpath = min
Pcz

∑
cx,cy∈Pcz ,x<y

d(cx, cy) (2)

where x < y defines the order of the concepts to
avoid counting the same pair of pair-wise distances
twice.

Towards modeling path consistency in taxonomy
construction, we introduce a Pareto co-efficient λ ∈
[0, 1] to control the contributions from objME , the
overall semantic distance minimization objective as
proposed inME, and objpath, the path distance min-
imization objective. The optimization is:

minλ objME + (1− λ) objpath (3)

where objME = |
∑

cx,cy∈Cn∪{cz},x<y d(cx, cy) −∑
cx,cy∈Cn,x<y d(cx, cy)|, 0 ≤ λ ≤ 1, and Cn is the

concept set after nth concept is added. Empirically,
we set λ = 0.8.

The algorithm shown in Figure 1 outlines our
greedy algorithm to build taxonomies with path con-
sistency control. Each time when a new concept ar-
rives, the algorithm first estimates its semantic dis-
tances based on W learned from the training data,
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then finds the optimal position for the concept by
minimizing overall semantic distances and path in-
consistency, and gradually grows the structure into a
full taxonomy.

The order of adding concepts may affect the final
taxonomy structure. We hence insert concepts in an
arbitrary order with 10 random restarts with differ-
ent initial concepts and pick the taxonomy that min-
imizes both objectives among all candidate struc-
tures.

4 Incorporating Task Specification

This section studies how to incorporate user-defined
task specifications in taxonomy construction. Al-
though the automatic algorithm proposed in Section
3 is able to well-organize most concepts for a given
document collection, it has not yet addressed the is-
sue of mixed perspective in taxonomy construction.
For concepts with multiple perspectives, we need to
decide which perspective is more appropriate for the
browsing taxonomy. This task-specific requirement
can only be captured by the user/constructor who
builds and uses the browsing taxonomy. Moreover,
the automatic algorithm relies on training data from
WordNet and ODP, which are known for imperfect
term organizations such as unbalanced granularity
among terms at the same level. To correct the wrong
relations learned from imperfect training data, we
propose to utilize user inputs in the learning process.

Particularly, we formulate taxonomy construction
as a user-teaching-machine-learning process. To
guide how to organize the concepts, a user trains
the supervised distance learning model via a taxon-
omy construction interface that allows the user to
intuitively modify a taxonomy. The interface sup-
ports editing actions such as dragging and dropping,
adding, deleting, and renaming nodes. When a user
put cx under cy, i.e. cx → cy, this action indi-
cates that the user wants a relation represented by
cx → cy to be true in this taxonomy. We did not
expect users to make all the edits. In a human-
computer-interaction cycle, a user is not restricted
to give a certain number of edits. Based on a user
study (Section 5.5), an average number of edits per
interaction is 3.6, which can be achieved with ease
by most users.

The algorithm shown in Figure 2 provides the

Algorithm: Interactive Taxonomy Construction.
1. T (S,R) =CreateInitialTaxonomy();
2. U(0)={Unmodified Concepts}=C \ S,
G(0)={Modified concepts}=S, M(0) = ∅, i = 0;

3. while (not Satisfied) or U(i) 6= ∅
4. M(i)=CollectManualGuidance(G(i),U(i));
5. W (i)=LearnDistanceMetricFunction(M(i));
6. D(i)=PredictDistanceScores(W (i),U(i));
7. (G(i+1), U(i+1)) = UpdateTaxonomy(D(i),U(i),G(i));
8. i = i+ 1;
9. Output G(i) as the taxonomy.

Figure 2: Interactive taxonomy construction procedure.

pseudo code for the interactive taxonomy construc-
tion procedure. It starts with automatic construction
of initial taxonomies using the techniques presented
in Section 3 (Line 1). We then capture the user in-
puts as manual guidance (Line 4) and make use of it
to adjust the distance learning model (Line 5), make
new predictions for semantic distances of other con-
cepts (Line 6), and organize those concepts to agree
with the user and update the taxonomy accordingly
(Line 7). Line 2 initiates three variables, the unmod-
ified concepts U , the modified concepts G, and the
manual guidance M , indexed by the iteration num-
ber i. The process iterates until the user is satisfied
with the taxonomy’s organization (Line 3).

Learning and predicting distances have been pre-
sented in Section 3.1. In this section, we present how
to capture manual guidance (Section 4.1) and update
the taxonomies accordingly (Section 4.2).

4.1 Manual Guidance as the Training Data
Taxonomies are tree-structured. It is not trivial to
model a taxonomy, especially changes in a taxon-
omy, and feed that into a learning algorithm. In
this section, we propose a general scheme to cap-
ture changes, i.e., user inputs during interactions, in
taxonomy construction.

We propose to convert a taxonomy into matrices
of neighboring nodes. We compare the changes be-
tween a series of snapshots of the changing taxon-
omy to identify the user inputs. Specifically, before
a user starts editing in an interaction cycle, we repre-
sent the organization of concepts as a before matrix;
likewise, after the user finishes all edits in one cy-
cle, we represent the new organization of concepts
as an after matrix. For both matrices, the (x, y)th

entry indicates whether (or how confident) a rela-
tion r(cx, cy) is true. r could be any type of relation
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Figure 3: An example taxonomy before and after human
edits (Concepts unchanged; relation type = sibling).

between the concepts. Figure 3 shows an example
taxonomy’s before and after matrices.

We define manual guidance M as a submatrix
which consists of entries in the after matrix B; at
these entries, there exist differences between the be-
fore matrix A and the after matrix B. Formally,

M = B[r; c]

r = {i : bij − aij 6= 0}
c = {j : bij − aij 6= 0}

(4)

where aij is the (i, j)th entry in A, bij is the (i, j)th

entry in B, r indicates the rows and c indicates the
columns.

Note that manual guidance is not simply the
matrix difference between A and B. It is part of
the after matrix because it is the after matrix that
indicates where the user wants the concept hierarchy
to develop. The manual guidance for the example
shown in Figure 3 is: M = B[2, 3, 4; 2, 3, 4] =

Oscars Best supporting Best picture
Oscars 1 0 0
Best supporting 0 1 1
Best picture 0 1 1

.

When the user adds or deletes concepts, we ex-
pand rows and columns in A and B by filling 0 for
non-diagonal entries and 1 for diagonal entries. The
expanded before and after matrices A′ and B′ are
used in the calculation.

For taxonomies with concept changes, we define
manual guidance with concept set change Mchange

as a submatrix which consists of some entries of the
after matrix B; at these entries, there exist differ-
ences from the expanded before matrix A′ to the ex-

panded after matrix B′. Note that the concepts cor-
responding to these entries should exist in the unex-
panded set of concepts. Formally, manual guidance
with concept set change

Mchange = B[r′; c′]

r′ = {i : b′ij − a′ij 6= 0, concept ci ∈ CB}
c′ = {j : b′ij − a′ij 6= 0, concept cj ∈ CB}

(5)

where a′ij is the (i, j)th entry in A′, b′ij is the (i, j)th

entry in B′, CB is the set of concepts in the unex-
panded after matrix B, r indicates the rows and c
indicates the columns.

Based on manual guidance M , we can create
training data for the supervised distance learning
algorithm (Section 3.1). In particular, we trans-
form the manual guidance into a distance matrix
D = 1 − M , which is used as the training data.
The learning algorithm is then able to learn a good
model which best preserves the regularity defined by
the task and the user. The difference is that the train-
ing data here is derived from manual guidance while
in the automatic algorithm we use training data from
WordNet and ODP.

4.2 Update the Taxonomy
According to the algorithm shown in Figure 2, after
learning W (i), the weight matrix at the ith iteration,
from the manual guidance, we can use it to predict
the pair-wise semantic distances for the unmodified
concepts and further group them in the taxonomy.

When the pair-wise distance score for a concept
pair (cl, cm) is small (<0.5), we consider the rela-
tion between the concept pair is true; when it is big
(≥0.5), false. How to organize concepts whose re-
lations are true, is decided again by the relation type
in the distance matrix. If r is “sibling”, cl and cm are
put under the same parent. If r is “is-a”, cm is put
under cl as one of cl’s children. The user interface
then presents the updated taxonomy to the user and
waits for the next round of manual guidance.

Since only a few changes are made during each
human-computer interaction, the learning model
may suffer from overfitting and the taxonomic struc-
ture may change too rapidly. To avoid such is-
sues caused by too few manual guidance, we em-
ploy background training taxonomy fragments from
WordNet and ODP, to smooth the learning models
and achieve less variance.
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5 Evaluation

We conduct experiments and a user study to evalu-
ate the effectiveness of our approach. We have two
goals for the evaluation. One is to evaluate how the
browsing taxonomies constructed by our approach
compare with those constructed by other baseline
systems. Another is to investigate how well our
system can learns from task-specifications based on
user supervision.

5.1 Datasets
The datasets we used in the evaluation are collec-
tions of Web documents crawled for complex search
tasks. For each task, we created the dataset by sub-
mitting 4 to 5 queries to and collecting the returned
Web documents from two search engines bing.com
and google.com. For example, queries “trip to DC”,
“Washington DC”, “DC”, and “Washington” were
submitted for the task “planning a trip to DC”. In to-
tal, we created 50 Web datasets on the topics such as
find a good kindergarten, purchase a used car, plan
a trip to DC, how to make a cake, find a good wed-
ding videographer, write a survey paper for health
care systems, find the best deals for a Mother’s day
gift, write a survey paper for social network, write
a survey paper for EU’s finance, and write a survey
paper for information technology.

Around 1000 Web documents are collected for
each dataset. We filter out spams and advertisements
and then search for more relevant Web documents
to make the total number 1000. However, not all
topics can retrieve 1000 documents. Among all 50
datasets, the average number of documents is 988.5.
The average number of unique words in a dataset is
698,875.

5.2 Comparing with Baseline Systems
We compare the following 5 systems.

• Subsumption: the automatic algorithm pro-
posed by (Sanderson and Croft, 1999), the
most effective state-of-the-art browsing hier-
archy construction technique as reported by
(Lawrie et al., 2001).

• KH: the automatic taxonomy construction al-
gorithm proposed by (Kozareva and Hovy,
2010).

• ME: the automatic taxonomy construction al-
gorithm proposed by (Yang and Callan, 2009).
This framework does not perform path consis-
tency control nor learning from users.

• DistOpt: our automatic taxonomy construction
algorithm with path consistency control.

• PDistOpt: our interactive approach with human
supervision. The process starts from a flat list
of concepts. The user built the browsing taxon-
omy from the list in a user study (Section 5.5).

5.3 Browsing Effectiveness
A popular measure to evaluate the quality of the
browsing taxonomies is the expected mutual infor-
mation measure (EMIM (Lawrie et al., 2001)). It
calculates the mutual information between the lan-
guage model in a taxonomy T and the language
model in a document collection Z. It is defined as:

I(C;V ) =
∑

c∈C,v∈V
P (c, v)log

P (c, v)

P (c)P (v)
,

where P (c, v) =
∑

d∈Z P (d)P (c|d)P (v|d), C is
the set of concepts in T , V is the set of non-
stopwords in Z, and d is a document in Z. EMIM
only evaluates the content of a browsing taxonomy,
not its structure. However, it is still popularly used
to indicate how representative a browsing taxonomy
is for a document collection.

Table 1 shows the EMIM of the browsing tax-
onomies constructed by the five systems under eval-
uation. Based on the mean EMIM over the 50
datasets, we can rank the systems in terms of EMIM
in the descending order as PDistOpt >> DistOpt
>> ME > KH >> Subsumption.2 It shows that
DistOpt is the best performing automatic algorithm
to generate browsing taxonomies. DistOpt is 109%
and statistically significantly more effective than
ME (p-value<.001, t-test), 159% and statistically
significantly more effective than KH (p-value<.001,
t-test), and 17 times and statistically significantly
more effective than Subsumption (p-value<.001, t-
test). It strongly suggests that our techniques are

2>> indicates statistically significant difference between
the left and the right hand sides (p < .001, t-test) and > indi-
cates moderate statistical significance between the left and the
right hand sides (p < .05, t-test). We will use the same symbols
throughout the remainder of this paper.
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Table 1: Expected Mutual Information (in 1000*EMIM).

Example dataset Subs. KH ME DistOpt PDistOpt
kindergarten 0.4 3.8 3.9 5.6 7.3

health care 0.5 2.8 3.1 7.8 8.3
used car 0.1 0.2 0.1 2.8 3.6

trip to DC 0.2 4.3 4.5 6.4 6.8
finance 0.01 0.01 0.1 0.6 0.6

gift 0.2 1.2 1.2 3.8 4.7
social network 0.1 1.5 1.3 2.4 3.2

information 0.3 1.9 2.3 3.5 4.9
cake 0.2 1.2 3.1 6.6 6.8

videographer 0.4 1.8 1.6 4.9 5.6
Mean of 50 sets 0.24 1.7 2.1 4.4 5.2

more effective than the state-of-the-art systems in
constructing browsing taxonomies.

Moreover, Table 1 shows that the PDistOpt tax-
onomies is 18% more effective than the DistOpt tax-
onomies in terms of EMIM. The result is also sta-
tistically significant (p-value<.01, t-test). It indi-
cates that incorporating user preferences in brows-
ing taxonomy construction is able to produce even
more effective browsing taxonomies than all auto-
mated methods.

Another popular evaluation measure3 for brows-
ing effectiveness is reach time (Carpineto et al.,
2009). It is defined as:

treach =
1

|R|
∑
di∈R

L(ci) + pi,

where R is the relevant documents, ci is the concept
that connects to a relevant document di, L(ci) is the
path length from the root to reach ci, and pi is the
position that di appears in the document cluster as-
sociated with ci. Reach time evaluates both the con-
tent and the structure of a browsing taxonomy. This
measure needs relevance judgements about a query
for the documents organized by the taxonomies. We
obtained the relevance judgements by using the ma-
jority votes from a user study involving 29 subjects
followed by expert reviews. Three experts manu-
ally examined the majority votes and reached agree-
ments on all relevance judgements.

Table 2 elaborates reach time for the systems.
Based on the mean reach time over 50 datasets,
we obtain a similar ranking of the systems as sug-
gested by EMIM. The ranking based on reach time

3Other proposed measures include coverage and compact-
ness (Kummamuru et al., 2004).

Table 2: Reach time.

Example dataset Subs. KH ME DistOpt PDistOpt
kindergarten 14.4 9.8 9.9 8.7 4.3

health care 12.3 9.8 6.8 4.5 3.3
used car 15.4 12.4 10.2 8.7 7.6

trip to DC 11.2 10.3 9,8 8.7 5.8
finance 24.5 18.3 19.7 18.7 15.6

gift 11.2 8.4 7.7 5.6 5.4
social network 14.3 9.8 7.8 7.6 6.8

information 10.6 9.5 8.8 8.9 6.7
cake 8.9 4.8 4.5 3.4 3.2

videographer 9.5 8.8 7.6 6.9 4.5
Mean of 50 sets 14.2 12.2 9.8 7.2 5.2
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Figure 4: Path error rate.

is: PDistOpt >> DistOpt >> ME > KH >>
Subsumption. It shows that the best performing
automatic system is DistOpt, which on average can
produce taxonomies to reach a relevant document by
visiting only 7.2 nodes, including 5.2 non-leaf con-
cepts and 2 documents in the leaf cluster on average.
To find all relevant documents in a collection sized
around 1000, this reach time is very fast. The in-
teractive PDistOpt unsurprisingly gives even better
reach time, 5.2 nodes on average.

5.4 Path Consistency

To evaluate how well path consistency is handled,
we compare the path error rate generated by our ap-
proach and by other baseline systems. This evalua-
tion is only applied to automatic algorithms.

The path error is defined as the average number of
wrong ancestor-descendant pairs in a taxonomy. It is
only applied for concepts are not immediately con-
nected. It can be judged and calculated as follows.
Three human assessors manually evaluated the path
errors by (1) gathering the paths by performing a
depth-first traverse in the taxonomy from the root
concept; (2) along each path, counting the number
of wrong ancestor-descendant pairs; (3) summing up
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Figure 5: Perceived browsing effectiveness.

the errors that all assessors agree on and normalizing
the sum by the taxonomy size.

Figure 4 shows the path error rate generated by
all the automated algorithms under evaluation. We
can see that DistOpt produces the least path error.
The algorithms can be ranked in terms of the ability
to handle path consistency as DistOpt >> ME >>
KH >> Subsumption. DistOpt statistically signif-
icantly reduces path errors from not using the path
consistency control (ME) by 500% (p-value<.001,
t-test). It strongly indicates that our technique is ef-
fective to maintain path consistency. We conclude
that DistOpt best handles path consistency among
all the system under evaluation.

5.5 User Study

Besides objective evaluations, we conducted an user
study consisting of two parts: qualitative compari-
son of the systems under evaluation, and using our
taxonomy construction user interface to interactively
construct personalized browsing taxonomies.

Twenty-nine (Thirty subjects initially, one was ex-
cluded because of incomplete data entry) graduate
and undergraduate students from various majors in
two universities participated in the study. They were
all familiar with use of computers and highly profi-
cient in English. Each user study lasted for 4 hours.

In the first half of the user study, the participants
were first introduced to the taxonomy construction
user interface for about 10 minutes to get famil-
iar with its functions. After that, the participants
performed an exercise task which lasted about 5
minutes and then started the real tasks. For each
dataset, the participants were asked to interactively
work with PDistOpt to build browsing taxonomies.

Once the real tasks were done, the participants spend
5 minutes to answer a questionnaire regarding their
experience and opinions.

In the second half of the user study, we asked the
participants to use and compare the provided brows-
ing taxonomies with the following task in mind.

Imagine your have a task [task name].
You use a browsing taxonomy designed
for the collection of Web documents about
this task. Use the browsing taxonomy to
find all useful topics for your task. Iden-
tify at least one document for each topic.

For each dataset, we asked the participants to rate
the browsing taxonomies built by the systems un-
der evaluation by answering the following question
about perceived browsing effectiveness - “How well
did the browsing taxonomy help you to complete the
task?”. Ratings in the 5-point Likert-type scale,
ranging from “very good”(5), “good”(4), “fair”(3),
“bad”(2), to “trash”(1), are used to rate browsing ef-
fectiveness perceived by the participants.

5.5.1 Perceived Browsing Effectiveness
Figure 5 shows the mean and 95% confidence in-

terval for the perceived browsing effectiveness for
browsing taxonomies constructed by the systems
under evaluation. These perceived browsing ef-
fectiveness can be ranked in descending order as
PDistOpt >> DistOpt > ME >> KH > Subsump-
tion. PDistOpt shows the highest mean perceived
browsing effectiveness, which is as high as 4.4. Such
high rating shows that browsing taxonomy with per-
sonalization could well satisfy users’ information
needs and are perceived as very effective in brows-
ing by the users.

5.5.2 Accuracy of System Predictions
When a user provided manual guidance to the in-

teractive system, during each human-computer in-
teraction cycle, the system made predictions based
on the user’s edits. He or she could directly judge
the correctness of these machine-predicted modi-
fications on-the-fly by selecting an option “yes”
or “no” from the “Accept the change?” menu.
Note that these were personalized tasks and the
predictions were evaluated by the user according
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Table 3: Accuracy of system predictions.
Max Min Avg

accuracy of system predictions 0.98 0.92 0.94

Table 4: Perceived learning ability.
Max Min Avg

perceived learning ability 4.2 2.8 3.61
which dataset health care finance -

to his/her own standard. We calculate the ac-
curacy of system predictions as: Accuracy =
1
I

∑I
i=1

number of accepted predictions in ith cycle
number of predictions in ith cycle , where I

is the total number of human-computer interaction
cycles when constructing a browsing taxonomy. A
high accuracy indicates that the system learns well
from user edits. This evaluation is only applied to
PDistOpt.

Table 3 shows that for all datasets, the mean ac-
curacy of the system predictions is above 0.92. The
average value is 0.94. This high accuracy clearly
demonstrates that the system successfully learns
from a user and makes highly accurate predictions
on how the user would organize the concepts.

5.5.3 Perceived Learning Ability
After completing constructing a browsing taxon-

omy, a participant was asked immediately to rate
how well the system learned from his/her edits. The
question was “How well did the system appear to
learn your method of organizing the concepts?”. We
also used the 5-point Likert-type scale to rate this
perceived system learning ability. This evaluation is
only applied to PDistOpt.

Table 4 shows the max, min, and average re-
sponses of perceived system learning ability. The
mean perceived learning ability is 3.61, with a stan-
dard derivation of 0.45. It suggests that the learning
ability of the system was only perceived as moder-
ately good. This result contradicts with the conclu-
sion that we drew based on the more objective mea-
sure, accuracy of system prediction (Section 5.5.2).

We further investigate why the participants were
only moderately satisfied with the system’s learn-
ing ability. From the after session questionnaire, we
found that participants thought that some datasets
such as “finance” were more difficult than other
datasets such as “health care”. For example, the

dataset “finance” was considered by all participants
as “very difficult” while “health care” was consid-
ered as “very easy”. The participants also com-
plained that they were not familiar with the difficult
datasets. It is interesting that when a dataset is less
familiar for the users, the system was perceived per-
forming badly too. It may suggest that when peo-
ple are not familiar with the tasks, they provide less
promising edits, the system learns from the lower
quality training data, and in the end the users per-
ceive the output as poor system learning ability.

6 Conclusion

Document collection browsing is another common
use of taxonomies. Given an arbitrary collection, a
taxonomy must suit the specific domain in order to
support browsing. This paper explores techniques
to quickly derive task-specific taxonomies support-
ing browsing in arbitrary document sets. In par-
ticular, we uniquely employ pair-wise semantic dis-
tance as an entry point to incrementally build brows-
ing taxonomies. The supervised distance learning
algorithm not only allows us to incorporate multi-
ple semantic features to evaluate the proximity be-
tween concepts, but also allows us to learn the met-
ric function from personal preferences. Users can
thus manually modify the taxonomies and to some
extent teach the algorithm to predict his/her way to
organize the concepts. Moreover, by minimizing the
overall semantic distances among concepts and re-
stricting minimal semantic distances along a path,
we find the best hierarchical structure as the brows-
ing hierarchy. It guarantees that semantically close
concepts are put together so that users will have a
good idea about why the concepts are put together.
This greatly increases the interpretability of a con-
structed browsing hierarchy than the existing ap-
proaches. This makes our approach more flexible
and more general to effectively creating browsing
taxonomies to support more complicated and more
realistic tasks such as Web information triage.

Acknowledgments

The author sincerely thanks Prof. Jamie Callan for
in-depth discussions about the research and anony-
mous reviewers for valuable comments to this paper.

1287



References

J. R. Bellegarda, J. W. Butzberger, Yen-Lu Chow, N. B.
Coccaro, and D. Naik. 1996. A novel word clustering
algorithm based on latent semantic analysis. In Pro-
ceedings of the Acoustics, Speech, and Signal Process-
ing, 1996. on Conference Proceedings., 1996 IEEE
International Conference - Volume 01, ICASSP ’96,
pages 172–175, Washington, DC, USA. IEEE Com-
puter Society.

Matthew Berland and Eugene Charniak. 1999. Finding
parts in very large corpora. In Proceedings of the 27th
Annual Meeting for the Association for Computational
Linguistics (ACL 1999).

Rajendra Bhatia. 2006. Positive definite matrices
(princeton series in applied mathematics). Princeton
University Press, December.

Claudio Carpineto, Stefano Mizzaro, Giovanni Romano,
and Matteo Snidero. 2009. Mobile information re-
trieval with search results clustering: Prototypes and
evaluations. Journal of American Society for Informa-
tion Science and Technology (JASIST), pages 877–895.

Duen Horng Chau, Aniket Kittur, Jason I. Hong, and
Christos Faloutsos. 2011. Apolo: making sense of
large network data by combining rich user interaction
and machine learning. In CHI, pages 167–176.

Gouglass R. Cutting, David R. Karger, Jan R. Petersen,
and John W. Tukey. 1992. Scatter/Gather: A cluster-
based approach to browsing large document collec-
tions. In Proceedings of the fifteenth Annual ACM
Conference on Research and Development in Informa-
tion Retrieval (SIGIR 1992).

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S. Weld, and Alexander Yates. 2005. Unsu-
pervised named-entity extraction from the web: an ex-
perimental study. In Artificial Intelligence, 165(1):91-
134, June.

Christiane Fellbaum. 1998. WordNet: an electronic lexi-
cal database. MIT Press.

Roxana Girju, Adriana Badulescu, and Dan Moldovan.
2003. Learning semantic constraints for the automatic
discovery of part-whole relations. In Proceedings of
the Human Language Technology Conference/Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics (HLT/NAACL
2003).

Sanda M. Harabagiu, Steve J. Maiorano, and Marius A.
Pasca. 2003. Open-domain textual question answer-
ing techniques. In Natural Language Engineering 9
(3): 1-38.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of

the 14th International Conference on Computational
Linguistics (COLING 1992).

E. H. Hovy. 2002. Comparing Sets of Semantic Re-
lations in Ontologies. In R. Green, C. A. Bean,
and Myaeng S. H. (eds), editors, The Semantics of
Relationships: An Interdisciplinary Perspective. Dor-
drecht: Kluwer.

Zornitsa Kozareva and Eduard Hovy. 2010. A semi-
supervised method to learn and construct taxonomies
using the web. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1110–1118, Cambridge, MA, October. As-
sociation for Computational Linguistics.

Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy. 2008.
Semantic class learning from the web with hyponym
pattern linkage graphs. In Proceedings of the 46th An-
nual Meeting for the Association for Computational
Linguistics (ACL 2008).

Krishna Kummamuru, Rohit Lotlikar, Shourya Roy,
Karan Singal, and Raghu Krishnapuram. 2004. A hi-
erarchical monothetic document clustering algorithm
for summarization and browsing search results. Pro-
ceedings of the 13th conference on World Wide Web
WWW 04, page 658.

Dawn Lawrie, W. Bruce Croft, and Arnold Rosenberg.
2001. Finding topic words for hierarchical summa-
rization. In Proceedings of the 24th Annual ACM Con-
ference on Research and Development in Information
Retrieval (SIGIR 2001), pages 349–357.

LCSH. 2011. Library of congress subject headings.
http://www.loc.gov/.

P. C. Mahalanobis. 1936. On the generalised distance in
statistics. In Proceedings of the National Institute of
Sciences of India 2 (1): 495.

ODP. 2011. Open directory project. http://www.
dmoz.org/.

Patrick Pantel and Marco Pennacchiotti. 2006. Espresso:
Leveraging generic patterns for automatically harvest-
ing semantic relations. In Proceedings of the 44th An-
nual Meeting for the Association for Computational
Linguistics (ACL 2006).

Deepak Ravichandran and Eduard Hovy. 2002. Learning
surface text patterns for a question answering system.
In Proceedings of the 40th Annual Meeting for the As-
sociation for Computational Linguistics (ACL 2002).

Mark Sanderson and W. Bruce Croft. 1999. Deriving
concept hierarchies from text. In Proceedings of the
22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR 1999).

Sedumi. 2011. http://sedumi.mcmaster.ca.
Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2006.

Semantic taxonomy induction from heterogenous evi-

1288



dence. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguis-
tics (ACL/COLING 2006).

Emilia Stoica and Marti A. Hearst. 2007. Automating
Creation of Hierarchical Faceted Metadata Structures.
In Proceedings of the Human Language Technology
Conference (NAACL-HLT).

Idan Szpektor, Hristo Tanev, Ido Dagan, and Bonaventura
Coppola. 2004. Scaling web-based acquisition of en-
tailment relations. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP 2004).

Yalmip. 2011. http://users.isy.liu.se/
johanl/yalmip.

Hui Yang and Jamie Callan. 2008. Ontology generation
for large email collections. In Proceedings of the 8th
National Conference on Digital Government Research
(Dg.O 2008).

Hui Yang and Jamie Callan. 2009. A metric-based
framework for automatic taxonomy induction. In Pro-
ceedings of the 47th Annual Meeting for the Associa-
tion for Computational Linguistics (ACL 2009).

Liu Yang. 2006. Distance metric learning: A com-
prehensive survey. http://www.cs.cmu.edu/

˜liuy/frame_survey_v2.pdf.
Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti

Hearst. 2003. Faceted metadata for image search and
browsing. In Human factors in computing systems.
ACM.

1289



Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1290–1301, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Besting the Quiz Master:
Crowdsourcing Incremental Classification Games

Jordan Boyd-Graber
iSchool and UMIACS

University of Maryland
jbg@umiacs.umd.edu

Brianna Satinoff, He He, and Hal Daumé III
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Abstract

Cost-sensitive classification, where the features
used in machine learning tasks have a cost, has
been explored as a means of balancing knowl-
edge against the expense of incrementally ob-
taining new features. We introduce a setting
where humans engage in classification with
incrementally revealed features: the collegiate
trivia circuit. By providing the community with
a web-based system to practice, we collected
tens of thousands of implicit word-by-word
ratings of how useful features are for eliciting
correct answers. Observing humans’ classifi-
cation process, we improve the performance
of a state-of-the art classifier. We also use the
dataset to evaluate a system to compete in the
incremental classification task through a reduc-
tion of reinforcement learning to classification.
Our system learns when to answer a question,
performing better than baselines and most hu-
man players.

1 Introduction

A typical machine learning task takes as input a set
of features and learns a mapping from features to a
label. In such a setting, the objective is to minimize
the error of the mapping from features to labels. We
call this traditional setting, where all of the features
are consumed, rapacious machine learning.1

This not how humans approach the same task.
They do not exhaustively consider every feature. Af-
ter a certain point, a human has made a decision
and no longer needs additional features. Even in-
defatigable computers cannot always exhaustively
consider every feature. This is because the result

1Earlier drafts called this “batch” machine learning, which
confused the distinction between batch and online learning. We
gladly adopt “rapacious” to make this distinction clearer and
to cast traditional machine learning—that always examines all
features—as a resource hungry approach.

is time sensitive, such as in interactive systems, or
because processing time is limited by the sheer quan-
tity of data, as in sifting e-mail for spam (Pujara et
al., 2011). In such settings, often the best solution
is incremental: allow a decision to be made without
seeing all of an instance’s features. We discuss the
incremental classification framework in Section 2.

Our understanding of how humans conduct incre-
mental classification is limited. This is because com-
plicating an already difficult annotation task is often
an unwise tradeoff. Instead, we adapt a real world
setting where humans are already engaging (eagerly)
in incremental classification—trivia games—and de-
velop a cheap, easy method for capturing human
incremental classification judgments.

After qualitatively examining how humans con-
duct incremental classification (Section 3), we show
that knowledge of a human’s incremental classifi-
cation process improves state-of-the-art rapacious
classification (Section 4). Having established that
these data contain an interesting signal, we build
Bayesian models that, when embedded in a Markov
decision process, can engage in effective incremental
classification (Section 5), and develop new hierar-
chical models combining local and thematic content
to better capture the underlying content (Section 7).
Finally, we conclude in Section 8 and discuss exten-
sions to other problem areas.

2 Incremental Classification

In this section, we discuss previous approaches that
explore how much effort or resources a classifier
needs to come to a decision, a problem not as thor-
oughly examined as the question of whether the de-
cision is right or not.2 Incremental classification is

2When have an externally interrupted feature stream, the
setting is called “any time” (Boddy and Dean, 1989; Horsch and
Poole, 1998). Like “budgeted” algorithms (Wang et al., 2010),
these are distinct but related problems.
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not equivalent to missing features, which have been
studied at training time (Cesa-Bianchi et al., 2011),
test time (Saar-Tsechansky and Provost, 2007), and
in an online setting (Rostamizadeh et al., 2011). In
contrast, incremental classification allows the learner
to decide whether to acquire additional features.

A common paradigm for incremental classification
is to view the problem as a Markov decision process
(MDP) (Zubek and Dietterich, 2002). The incremen-
tal classifier can either request an additional feature
or render a classification decision (Chai et al., 2004;
Ji and Carin, 2007; Melville et al., 2005), choosing
its actions to minimize a known cost function. Here,
we assume that the environment chooses a feature
in contrast to a learner, as in some active learning
settings (Settles, 2011). In Section 5, we use a MDP
to decide whether additional features need to be pro-
cessed in our application of incremental classification
to a trivia game.

2.1 Trivia as Incremental Classification

A real-life setting where humans classify documents
incrementally is quiz bowl, an academic competition
between schools in English-speaking countries; hun-
dreds of teams compete in dozens of tournaments
each year (Jennings, 2006). Note the distinction be-
tween quiz bowl and Jeopardy, a recent application
area (Ferrucci et al., 2010). While Jeopardy also uses
signaling devices, these are only usable after a ques-
tion is completed (interrupting Jeopardy’s questions
would make for bad television). Thus, Jeopardy is
rapacious classification followed by a race to see—
among those who know the answer—who can punch
a button first. Moreover, buzzes before the question’s
end are penalized.

Two teams listen to the same question.3 In this
context, a question is a series of clues (features) re-
ferring to the same entity (for an example question,
see Figure 1). We assume a fixed feature ordering
for a test sequence (i.e., you cannot request specific
features). Teams interrupt the question at any point
by “buzzing in”; if the answer is correct, the team
gets points and the next question is read. Otherwise,
the team loses points and the other team can answer.

3Called a “starter” (UK) or “tossup” (US) in the lingo, as it
often is followed by a “bonus” given to the team that answers the
starter; here we only concern ourselves with tossups answerable
by both teams.

After losing a race for the Senate, this politician edited the Om-
aha World-Herald. This man resigned 3 from one of his posts
when the President sent a letter to Germany protesting the Lusi-
tania 3 sinking, and 3 he advocated 3 coining 3 silver at a 16
3 to 1 33 rate 3 compared to 3 gold. He was the 3 three-time
Democratic 3 Party 333 nominee for 3 President 3 but 333

lost to McKinley twice 33 and then Taft, although he served as
Secretary of State 33 under Woodrow Wilson, 3 and he later
argued 3 against Clarence Darrow 3 in the Scopes 33 Monkey
Trial. For ten points, name this 3 man who famously declared
that “we shall not be crucified on a Cross of 3 Gold”. 3

Figure 1: Quiz bowl question on William Jennings Bryan,
a late nineteenth century American politician; obscure
clues are at the beginning while more accessible clues are
at the end. Words (excluding stop words) are shaded based
on the number of times the word triggered a buzz from any
player who answered the question (darker means more
buzzes; buzzes contribute to the shading of the previous
five words). Diamonds (3) indicate buzz positions.

The answers to quiz bowl questions are well-
known entities (e.g., scientific laws, people, battles,
books, characters, etc.), so the answer space is rel-
atively limited; there are no open-ended questions
of the form “why is the sky blue?” However, there
are no multiple choice questions—as there are in
Who Wants to Be a Millionaire (Lam et al., 2003)—
or structural constraints—as there are in crossword
puzzles (Littman et al., 2002).

Now that we introduced the concepts of questions,
answers, and buzzes, we pause briefly to define them
more formally and explicitly connect to machine
learning. In the sequel, we will refer to: questions,
sequences of words (tokens) associated with a single
answer; features, inputs used for decisions (derived
from the tokens in a question); labels, a question’s
correct response; answers, the responses (either cor-
rect or incorrect) provided; and buzzes, positions in
a question where users halted the stream of features
and gave an answer.

Quiz bowl is not a typical problem domain for natu-
ral language processing; why should we care about it?
First, it is a real-world instance of incremental classi-
fication that happens hundreds of thousands of times
most weekends. Second, it is a classification problem
intricately intertwined with core computational lin-
guistics problems such as anaphora resolution, online
sentence processing, and semantic priming. Finally,
quiz bowl’s inherent fun makes it easy to acquire
human responses, as we describe in the next section.
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Figure 2: Users plotted based on accuracy vs. the number
of tokens—on average—the user took to give an answer.
Dot size and colour represent the total number of ques-
tions answered. Users that answered questions later in the
question had higher accuracy. However, there were users
that were able to answer questions relatively early without
sacrificing accuracy.

3 Getting a Buzz through Crowdsourcing

We built a corpus with 37,225 quiz bowl questions
with 25,498 distinct labels from 121 tournaments
written for tournaments between 1999 and 2010. We
created a webapp4 that simulates the experience of
playing quiz bowl. Text is incrementally revealed
(at a pace adjustable by the user) until users press
the space bar to “buzz”. Users then answer, and the
webapp judges correctness using a string matching
algorithm. Players can override the automatic check
if the system mistakenly judged an answer incorrect.
Answers of previous users are displayed after answer-
ing a question; this enhances the sense of community
and keeps users honest (e.g., it’s okay to say that “wj
bryan” is an acceptable answer for the label “william
jennings bryan”, but “asdf” is not). We did not see
examples of nonsense answers from malicious users;
in contrast, users were stricter than we expected, per-
haps because protesting required effort.

To collect a set of labels with many buzzes, we
focused on the 1186 labels with more than four dis-
tinct questions. Thus, we shuffled the labels into a
canonical order shown to all users (e.g., everyone
saw a question on “Jonathan Swift” and then a ques-
tion on “William Jennings Bryan”, but because these
labels have many questions the specific questions

4Play online or download the datasets at http://umiacs.
umd.edu/˜jbg/qb.

Figure 3: A screenshot of the webapp used to collect data.
Users see a question revealed one word at a time. They
signal buzzes by clicking on the answer button and input
an answer.

were different for each user). Participants were ea-
ger to answer questions; over 7000 questions were
answered in the first day, and over 43000 questions
were answered in two weeks by 461 users.

To represent a “buzz”, we define a function b(q, f)
(“b” for buzz) as the number of times that feature
f occurred in question q at most five tokens before
a user correctly buzzed on that question.5 Aggre-
gating buzzes across questions (summing over q)
shows different features useful for eliciting a buzz
(Figure 4(a)). Some features coarsely identify the
type of answer sought, e.g., “author”, “opera”, “city”,
“war”, or “god”. Other features are relational, con-
necting the answer to other clues, e.g., “namesake”,
“defeated”, “husband”, or “wrote”. The set of buzzes
help narrow which words are important for matching
a question to its answer; for an example, see how
the word cloud for all of the buzzes on “Wuthering

5This window was chosen qualitatively by examining the
patterns of buzzes; this is person-dependent, based on reading
comprehension, reaction time, and what reveal speed the user
chose. We leave explicitly modeling this for future work.
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(a) Buzzes over all Questions (b) Wuthering Heights Question Text (c) Buzzes on Wuthering Heights

Figure 4: Word clouds representing all words that were a part of a buzz (a), the original text appearing in seven questions
on the book “Wuthering Heights” by Emily Brönte (b), and the buzzes of users on those questions (c). The buzzes
reflect what users remember about the work and is more focused than the complete question text.

Heights” (Figure 4(c)) is much more focused than the
word cloud for all of the words from the questions
with that label (Figure 4(b)).

4 Buzzes Reveal Useful Features

If we restrict ourselves to a finite set of labels, the
process of answering questions is a multiclass clas-
sification problem. In this section, we show that in-
formation gleaned from humans making a similar de-
cision can help improve rapacious machine learning
classification. This validates that our crowdsourcing
technique is gathering useful information.

We used a state-of-the-art maximum entropy clas-
sification model, MEGAM (Daumé III, 2004), that
accepts a per-class mean prior for feature weights
and applied MEGAM to the 200 most frequent labels
(11,663 questions, a third of the dataset). The prior
mean of the feature weight is a convenient, simple
way to incorporate human feature utility; apart from
the mean, all default options are used.

Specifying the prior requires us to specify a weight
for each pair of label and feature. The weight com-
bines buzz information (described in Section 3) and
tf-idf (Salton, 1968). The tf-idf value is computed by
treating the training set of questions with the same
label as a single document.

Buzzes and tf-idf information were combined into
the prior µ for label a and feature f as µa,f =[
βb(a, f) + αI [b(a, f) > 0] + γ

]
tf-idf(a, f). (1)

We describe our weight strategies in increasing order
of human knowledge. If α, β, and γ are zero, this
is a naı̈ve zero prior. If γ only is nonzero, this is a
linear transformation of features’ tf-idf. If only α
is nonzero, this is a linear transformation of buzzed

Weighting α β γ Error
zero - - - 0.37
tf-idf - - 3.5 0.14

buzz-binary 7.1 - - 0.10
buzz-linear - 1.5 - 0.16
buzz-tier - 1.1 0.1 0.09

Table 1: Classification error of a rapacious classifier able
to draw on human incremental classification. The best
weighting scheme for each dataset is in bold. Missing
parameter values (-) mean that the parameter is fixed to
zero for that weighting scheme.

words’ tf-idf weights. If only β is non-zero, num-
ber of buzzes is now a linear multiplier of the tf-idf
weight (buzz-linear). Finally we allow unbuzzed
words to have a separate linear transformation if both
β and γ are non-zero (buzz-tier).

Grid search (width of 0.1) on development set error
was used to set parameters. Table 1 shows test error
for weighting schemes and demonstrates that adding
human information as a prior improves classification
error, leading to a 36% error reduction over tf-idf
alone. While not directly comparable (this classifier
is rapacious, not incremental, and has a predefined
answer space), the average user had an error rate of
16.7%.

5 Building an Incremental Classifier

In the previous section we improved rapacious classi-
fication using humans’ incremental classification. A
more interesting problem is how to compete against
humans in incremental classification. While in the
previous section we used human data for a training
set, here we use human data as an evaluation set.
Doing so requires us to formulate an incremental rep-
resentation of the contents of questions and to learn
a strategy to decide when to buzz.
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Because this is the first machine learning algo-
rithm for quiz bowl, we attempt to provide reason-
able rapacious baselines and compare against our new
strategies. We believe that our attempts represent a
reasonable explanation of the problem space, but ad-
ditional improvements could improve performance,
as discussed in Section 8.

A common way to represent state-dependent strate-
gies is via a Markov decision process (MDP). The
most salient component of a MDP is the policy, i.e., a
mapping from the state space to an action. In our con-
text, a state is a sequence of (thus far revealed) tokens,
and the action is whether to buzz or not. To learn a
policy, we use a standard reinforcement learning tech-
nique (Langford and Zadrozny, 2005; Abbeel and
Ng, 2004; Syed et al., 2008): given a representation
of the state space, learn a classifier that can map from
a state to an action. This is also a common paradigm
for other incremental tasks, e.g., shift-reduce pars-
ing (Nivre, 2008).

Given examples of the correct answer given a con-
figuration of the state space, we can learn a MDP
without explicitly representing the reward function.
In this section, we define our method of defining
actions and our representation of the state space.

5.1 Action Space
We assume that there are only two possible actions:
buzz now or wait. An alternative would be a more
expressive action space (e.g., an action for every pos-
sible answer). However, this conflates the question
of when to buzz with what to answer. Instead, we call
the distinct component that provides what to answer
the content model. We describe an initial content
model in Section 5.2, below, and improve the models
further in Section 7. For the moment, assume that
a content model maintains a posterior distribution
over labels and when needed can provide its best
guess (e.g., given the features seen, the best answer
is “William Jennings Bryan”).

Given the action space, we need to specify where
examples of state space and action come from. In
the language of classification, we need to provide
(x, y) pairs to learn a mapping x 7→ y. The clas-
sifier attempts to learn that action y is (“buzz”) in
all states where the content model gave a correct re-
sponse given state x. Negative examples (“wait”)
are applied to states where the content model gave

a wrong answer. Every token in our training set cor-
responds to a classification example; both states are
prevalent enough that we do not to explicitly need to
address class imbalance. This resembles approaches
that merge different classifiers (Riedel et al., 2011) or
attempt to estimate confidence of models (Blatz et al.,
2004). However, here we use partial observations.

This is a simplification of the problem and corre-
sponds to a strategy of “buzz as soon as you know the
answer”, ignoring all other factors. While reasonable,
this is not always optimal. For example, if you know
your opponent is unlikely to answer a question, it is
better to wait until you are more confident. Incorrect
answers might also help your opponent, e.g., by elim-
inating an incorrect answer. Moreover, strategies in a
game setting (rather than a single question) are more
complicated. For example, if a right answer is worth
+10 points and the penalty for an incorrect question
is −5, then a team leading by 15 points on the last
question should never attempt to answer. Investigat-
ing such gameplay strategies would require a “roll
out” of game states (Tesauro and Galperin, 1996) to
explore the efficacy of such strategies. While inter-
esting, we leave these issues to future work.

We also investigated learning a policy directly
from users’ buzzes directly (Abbeel and Ng, 2004),
but this performed poorly because the content model
is incompatible with the players’ abilities and the
high variation in players’ ability and styles (compare
Figure 2).

5.2 State Space

Recall that our goal is to learn a classifier that maps
states to actions; above, we defined the action space
(the classifier’s output) but not the state space, the
classifier’s input. The straightforward parameteriza-
tion of the state space would be all of the words that
have been revealed. However, such a feature set is
very sparse.

We use three components to form the state space:
what information has been observed, what the content
model believes is the correct answer, how confident
the content model is, and whether the content model’s
confidence is changing. We describe each in more
detail below.

Text In addition to the obvious, sparse parameter-
ization that contains all of the features thus far ob-
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served, we also include the total number of tokens
revealed and whether the phrase “for ten points” has
appeared.6

Guess An additional feature that we used to repre-
sent the state space is the current guess of the content
model; i.e., the argmax of the posterior.

Posterior The posterior feature (Pos for short) cap-
tures the shape of the posterior distribution: the prob-
ability of the current guess (the max of the poste-
rior), the difference between the top two probabilities
and the probabilities associated with the fifteen most
probable labels under the posterior.

Change As features are revealed, there is often
a rapid transition from a state of confusion—when
there are many candidates with no clear best choice—
to a state of clarity with the posterior pointing to only
one probable label. To capture when this happens,
we add a binary feature to reflect when the best guess
has changed when a single feature has been revealed.

Other Features We thought that other features
would be useful. While useful on their own, no
features that we tried were useful when the content
model’s posterior was also used as a feature. Fea-
tures that we attempted to use were: a logistic re-
gression model attempting to capture the probability
that any player would answer (Silver et al., 2008), a
regression predicting how many individuals would
buzz in the next n words, the year the question was
written, the category of the question, etc.

5.3 Naı̈ve Content Model
The action space is only deciding when to answer,
having abdicated responsibility for what to answer.
So where does do the answers come from? We as-
sume that at any point we can ask “what is the highest
probability label given my current feature observa-
tions?” We call the component of our model that
answers this question the content model.

Our first content model is a naı̈ve Bayes
model (Lewis, 1998) trained over a text collection.
This generative model assumes labels for questions
come from a multinomial distribution φ ∼ Dir(α)

6The phrase “for ten points” (abbreviated FTP) appears in
all quiz bowl questions to signal the question’s last sentence or
clause. It is a signal to answer soon, as the final “giveaway” clue
is next.

and assumes that label l has a word distribution
θl ∼ Dir(λ). Each question n has a label zn and
its words are generated from θzn . Given labeled ob-
servations, we use the maximum a posteriori (MAP)
estimate of θl.

Why use a generative model when a discriminative
classifier could use a richer feature space? The most
important reason is that, by definition, it makes sense
to ask a generative model the probability of a label
given a partial observation; such a question is not
well-formed for discriminative models, which expect
a complete feature set. Another important consid-
eration is that generative models can predict future,
unrevealed features (Chai et al., 2004); however, we
do not make use of that capability here.

In addition to providing our answers, the content
model also provides an additional, critically impor-
tant feature for our state space: its posterior (pos
for short) probability. With every revealed feature,
the content model updates its posterior distribution
over labels given that t tokens have been revealed in
question n,

p(zn |w1 . . . wt, φ,θ). (2)

To train our naı̈ve Bayes model, we semi-
automatically associate labels with a Wikipedia page
(correcting mistakes manually) and then form the
MAP estimate of the class multinomial distribution
from the Wikipedia page’s text. We did this for the
1065 labels that had at least three human answers,
excluding ambiguous labels associated with multiple
concepts (e.g., “europa”, “steppenwolf”, “georgia”,
“paris”, and “v”).

Features were taken to be the 25,000 most frequent
tokens and bigrams7 that were not stop words; fea-
tures were extracted from the Wikipedia text in the
same manner as from the question tokens.8

After demonstrating our ability to learn an incre-
mental classifier using this simple content model, we
extend the content model to capture local context and
correlations between similar labels in Section 7.

7We used NLTK (Loper and Bird, 2002) to filter stop words
and we used a χ2 test to identify bigrams with that rejected the
null hypothesis at the 0.01 level.

8The Dirichlet scaling parameter λ was set to 10,000 given
our relatively large vocabulary (25,000) and to not penalize a
label’s posterior probability if there were unseen features; this
corresponds to a pseudocount of 0.4. α was set to 1.0.
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6 Pitting the Algorithm Against Humans

With a state space and a policy, we now have all the
necessary ingredients to have our algorithm compete
against humans. Classification, which allows us to
learn a policy, was done using the default settings of
LIBLINEAR (Fan et al., 2008). To determine where
the algorithm buzzes, we provide a sequence of state
spaces until the policy classifier determines that it is
time to buzz.

We simulate competition by taking the human an-
swers and buzzes as a given and ask our algorithm
(independently) to provide its decision on when to
buzz on a test set. We compare the two buzz positions.
If the algorithm buzzed earlier with the right answer,
we consider it to have “won” the question; equiva-
lently, if the algorithm buzzed later, we consider it to
have “lost” that question. Ties are rare (less than 1%
of cases), as the algorithm had significantly different
behavior from humans; in the case where there was a
tie, ties were broken in favor of the machine.

Because we have a large, diverse population an-
swering questions, we need aggregate measures of
human performance to get a comprehensive view of
algorithm performance. We use the following metrics
for each question in the test set:

• best: the earliest anyone buzzed correctly
• median: the first buzz after 50% of human buzzes
• mean: for each recorded buzz compute a reward and

we average over all rewards

We compare the algorithm against baseline strategies:

• rap The rapacious strategy waits until the end of the
question and answers the best answer possible.
• ftp Waiting until when “for 10 points” is said, then

giving the best answer possible.
• indexn Waiting until the first feature after the nth to-

ken has been processed, then giving the best answer
possible. The indices were chosen as the quartiles
for question length (by convention, most questions
are of similar length).

We compare these baselines against policies that de-
cide when to buzz based on the state.

Recall that the non-oracle algorithms were un-
aware of the true reward function. To best simulate
conventional quiz bowl settings, a correct answer
was +10 and the incorrect answer was −5. The full
payoff matrix for the computer is shown in Table 2.

Cases where the opponent buzzes first but is wrong
are equivalent to rapacious classification, as there is
no longer any incentive to answer early. Thus we
exclude such situations (Outcomes 3, 5, 6 in Table 2)
from the dataset to focus on the challenge of process-
ing clues incrementally.

Computer Human Payoff
1 first and wrong right −15
2 — first and correct −10
3 first and wrong wrong −5
4 first and correct — +10
5 wrong first and wrong +5
6 right first and wrong +15

Table 2: Payoff matrix (from the computer’s perspective)
for when agents “buzz” during a question. To focus on
incremental classification, we exclude instances where the
human interrupts with an incorrect answer, as after an
opponent eliminates themselves, the answering reduces to
rapacious classification.

Table 3 shows the algorithm did much better when
it had access to the posterior. While incremental
algorithms outperform rapacious baselines, they lose
to humans. Against the median and average players,
they lose between three and four points per question,
and nearly twice that against the best players.

Although the content model is simple, this poor
performance is not from the content model never
producing the correct answer. To see this, we also
computed the optimal actions that could be executed.
We called this strategy the oracle strategy; it was able
to consistently win against its opponents. Thus, while
the content model was able to come up with correct
answers often enough to on average win against oppo-
nents (even the best human players), we were unable
to consistently learn winning policies.

There are two ways to solve this problem: create
deeper, more nuanced policies (or the features that
feed into them) or refine content models that provide
the signal needed for our policies to make sound
decisions. We chose to refine the content model, as
we felt we had added all of the obvious features for
learning effective policies.

7 Expanding the Content Model

When we asked quiz bowlers how they answer ques-
tions, they said that they first determine the category
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Strategy Features Mean Best Median Index

Classify

text -8.72 -10.04 -6.50 40.36
+guess -5.71 -8.40 -3.95 66.02
+pos -4.13 -7.56 -2.70 67.97
+change -4.02 -7.41 -2.63 77.33

Oracle text 3.36 0.61 4.35 49.90
all -6.61 -9.03 -4.42 100.19
ftp -5.22 -8.62 -4.23 88.65

Rapacious index30 -7.89 -8.71 -6.41 32.23
Baseline index60 -5.16 -7.56 -3.71 61.90

index90 -5.02 -8.62 -3.50 87.13

Table 3: Performance of strategies against users. The
human scoring columns show the average points per ques-
tion (positive means winning on average, negative means
losing on average) that the algorithm would expect to ac-
cumulate per question versus each human amalgam metric.
The index column notes the average index of the token
when the strategy chose to buzz.

of a question, which substantially narrows the an-
swer space. Ideally, the content model should con-
duct the same calculus—if a question seems to be
about mathematics, all answers related with mathe-
matics should be more likely in the posterior. This
was consistent with our error analysis; many errors
were non-sensical (e.g., answering “entropy” for “Jo-
hannes Brahms”, when an answer such as “Robert
Schumann”, another composer, would be better).

In addition, assuming independence between fea-
tures given a label causes us to ignore potentially
informative multiword expressions such as quota-
tions, titles, or dates. Adding a language model to
our content model allows us to capture some of these
phenomena.

To create a model that jointly models categories
and local context, we propose the following model:

1. Draw a distribution over labels φ ∼ Dir(α)
2. Draw a background distribution over words θ0 ∼

Dir(λ0~1)

(a) For each category c of questions, draw a distribution
over words θc ∼ Dir(λ1θ0).

i. For each label l in category c, draw a distribu-
tion over words θl,c ∼ Dir(λ2θc)

A. For each type v, draw a bigram distribution
θl,c,v ∼ Dir(λ3θl,c)

3. Draw a distribution over labels φ ∼ Dir(α).
4. For each question with category c and N words, draw

answer l ∼ Mult(φ):
(a) Assume w0 ≡ START

(b) Draw wn ∼ Mult(θl,c,wn−1) for n ∈ {1 . . . N}

This creates a language model over categories, la-

bels, and observed words (we use “words” loosely, as
bigrams replace some word pairs). By constructing
the word distributions using hierarchical distributions
based on domain and ngrams (a much simpler para-
metric version of more elaborate methods (Wood and
Teh, 2009)), we can share statistical strength across
related contexts. We assume that labels are (only)
associated with their majority category as seen in our
training data and that category assignments are ob-
served. All scaling parameters λ were set to 10,000,
α was 1.0, and the vocabulary was still 25,000.

We used the maximal seating assignment (Wallach,
2008) for propagating counts through the Dirichlet
hierarchy. Thus, if the word v appeared Bl,u,v times
in label l following a preceding word u, Sl,v times in
label l, Tc,v times in category c, andGv times in total,
we estimate the probability of a word v appearing
in label k, category t, and after word u as p(wn =
v | lab = l, cat = c, wn−1 = u;~λ) =

Bl,u,v + λ3

Sl,v+λ2

Tc,v+λ1
Gv+λ0/V
G·+λ0

Tc,·+λ2

Sl,·+λ2

Bl,u,· + λ3
, (3)

where we use · to represent marginalization, e.g.
Tc,· =

∑
v′ Tc,v′ . As with naı̈ve Bayes, Bayes’ rule

provides posterior label probabilities (Equation 2).
We compare the naı̈ve model with models that

capture more of the content in the text in Table 4;
these results also include intermediate models be-
tween naı̈ve Bayes and the full content model: “cat”
(omit 2.a.i.A) and “bigram” (omit 2.a). These models
perform much better than the naı̈ve Bayes models
seen in Table 3. They are about even against the
mean and median players and lose four points per
question against top players.

7.1 Qualitative Analysis
In this section, we explore what defects are prevent-
ing the model presented here from competing with
top players, exposing challenges in reinforcement
learning, interpreting pragmatic cues, and large data.
Three examples of failures of the model are in Fig-
ure 5. This model is the best performing model of
the previous section.

Too Slow The first example is a question on Mau-
rice Ravel, a French composer known for Boléro. The
question leads off with Ravel’s orchestral version of
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Strategy Model Mean Best Median Index

Classify

naı̈ve -4.02 -7.41 -2.63 77.33
cat -1.69 -5.22 0.12 67.97
bigram -3.80 -7.66 -2.51 78.69
bgrm+cat -0.86 -4.46 0.83 63.42

Oracle

naive 3.36 0.61 4.35 49.90
cat 4.48 1.64 5.47 47.88
bigram 3.58 0.87 4.61 49.34
bgrm+cat 4.67 1.99 5.74 46.49

Table 4: As in Table 3, performance of strategies against
users, but with enhanced content models. Modeling both
bigrams and label categories improves overall perfor-
mance.

Mussorgsky’s piano piece “Pictures at an Exhibition”.
Based on that evidence, the algorithm considers “Pic-
tures at an Exhibition” the most likely but does not
yet buzz. When it receives enough information to be
sure about the correct answer, over half of the players
had already buzzed. Correcting this problem would
require a more aggressive strategy, perhaps incorpo-
rating the identity of the opponent or estimating the
difficulty of the question.

Mislead by the Content Model The second ex-
ample is a question on Enrico Fermi, an Italian-
American physicist. The first clues are about mag-
netic fields near a Fermi surface, which causes the
content model to view “magnetic field” as the most
likely answer. The question’s text, however, has
pragmatic cues “this man” and “this Italian” which
would have ruled out the abstract answer “magnetic
field”. Correcting this would require a model that
jointly models content and bigrams (Hardisty et
al., 2010), has a coreference system as its content
model (Haghighi and Klein, 2007), or determines the
correct question type (Moldovan et al., 2000).

Insufficient Data The third example is where our
approach had no chance. The question is a very diffi-
cult question about George Washington, America’s
first president. As a sign of its difficulty, only half
the players answered correctly, and only near the end
of the question. The question concerns lesser known
episodes from Washington’s life, including a mistress
caught in the elements. To the content model, of the
several hypotheses it considers, the closest match
it can find is “Yasunari Kawabata”, who wrote the
novel Snow Country, whose plot matches some of
these keywords. To answer these types of question,
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Figure 5: Three questions where our algorithm performed
poorly. It gets “Maurice Ravel” (top) right but only after
over half the humans had answered correctly (i.e., the
buzz’s hexagon appears when the cyan line is above 0.6);
on “Enrico Fermi” (middle) it confuses the correct type
of answer (person vs. concept); on “George Washington”
(bottom) it lacks information to answer correctly. Lines
represent the current estimate posterior probability of the
answer (red) and the proportion of opponents who have
answered the question correctly (cyan). The label of each
of the three questions is above each chart. Words are in
black with arrows and arrows, and the current argmax
answer is at the bottom of the graph in red. The buzz
location is the hexagon.
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the repository used to train the content model would
have to be orders of magnitude larger to be able to
link the disparate clues in the question to a consistent
target. The content model would also benefit from
weighting later (more informative) features higher.

7.2 Assumptions

We have made assumptions to solve a problem that
is subtly different that the game of quiz bowl that
a human would play. Some of these were simpli-
fying assumptions, such as our assumption that the
algorithm has a closed set of possible answers (Sec-
tion 5.3). Even with this advantage, the algorithm is
unable to compete with human players, who choose
answers from an unbounded set. On the other hand,
to focus on incremental classification, we idealized
our human opponents so that they never give incor-
rect answers (Section 6). This causes our estimates
of our performance to be lower than they would be
against real players.

8 Conclusion and Future Work

We make three contributions. First, we introduce a
new setting for exploring the problem of incremental
classification: trivia games. This problem is intrin-
sically interesting because of its varied topics and
competitive elements, has a great quantity of stan-
dardized, machine-readable data, and also has the
boon of being cheaply and easily annotated. We took
advantage of that ease and created a framework for
quickly and efficiently gathering examples of humans
doing incremental classification.

There are other potential uses for the dataset; the
progression of clues from obscure nuggets to could
help determine how “known” a particular aspect of
an entity is (e.g., that William Jennings Bryant gave
the “Cross of Gold” speech is better known his resig-
nation after the Lusitania sinking, Figure 1). Which
could be used in educational settings (Smith et al.,
2008) or summarization (Das and Martins, 2007).

The second contribution shows that humans’ incre-
mental classification improves state-of-the-art rapa-
cious classification algorithms. While other frame-
works (Zaidan et al., 2008) have been proposed to
incorporate user clues about features, the system de-
scribed here provides analogous features without the
need for explicit post-hoc reflection, has faster anno-

tation throughput, and is much cheaper.
The problem of answering quiz bowl questions is

itself a challenging task that combines issues from
language modeling, large data, coreference, and re-
inforcement learning. While we do not address all
of these problems, our third contribution is a sys-
tem that learns a policy in a MDP for incremental
classification even in very large state spaces; it can
successfully compete with skilled human players.

Incorporating richer content models is one of our
next steps. This would allow us to move beyond the
closed-set model and use a more general coreference
model (Haghighi and Klein, 2007) for identifying
answers and broader corpora for training. In addi-
tion, using larger corpora would allow us to have
more comprehensive doubly-hierarchical language
models (Wood and Teh, 2009). We are also inter-
ested in adding richer models of opponents to the
state space that would adaptively adjust strategies as
it learned more about the strengths and weaknesses
of its opponent (Waugh et al., 2011).

Further afield, our presentation of sentences
closely resembles paradigms for cognitive experi-
ments in linguistics (Thibadeau et al., 1982) but are
much cheaper to conduct. If online processing ef-
fects (Levy et al., 2008; Levy, 2011) could be ob-
served in buzzing behavior; e.g., if a confusingly
worded phrase depresses buzzing probability, it could
help validate cognitively-inspired models of online
sentence processing.

Incremental classification is a natural problem,
both for humans and resource-limited machines.
While our data set is trivial (in a good sense), learn-
ing how humans process data and make decisions
in a cheap, easy crowdsourced application can help
us apply new algorithms to improve performance in
settings where features aren’t free, either because of
computational or annotation cost.
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Abstract

We present a systematic analysis of exist-
ing multi-domain learning approaches with re-
spect to two questions. First, many multi-
domain learning algorithms resemble ensem-
ble learning algorithms. (1) Are multi-domain
learning improvements the result of ensemble
learning effects? Second, these algorithms are
traditionally evaluated in a balanced class la-
bel setting, although in practice many multi-
domain settings have domain-specific class
label biases. When multi-domain learning
is applied to these settings, (2) are multi-
domain methods improving because they cap-
ture domain-specific class biases? An under-
standing of these two issues presents a clearer
idea about where the field has had success in
multi-domain learning, and it suggests some
important open questions for improving be-
yond the current state of the art.

1 Introduction

Research efforts in recent years have demonstrated
the importance of domains in statistical natural lan-
guage processing. A mismatch between training and
test domains can negatively impact system accuracy
as it violates a core assumption in many machine
learning algorithms: that data points are indepen-
dent and identically distributed (i.i.d.). As a result,
numerous domain adaptation methods (Chelba and
Acero, 2004; Daumé III and Marcu, 2006; Blitzer et
al., 2007) target settings with a training set from one
domain and a test set from another.

Often times the training set itself violates the i.i.d.
assumption and contains multiple domains. In this

case, training a single model obscures domain dis-
tinctions, and separating the dataset by domains re-
duces training data. Instead, multi-domain learn-
ing (MDL) can take advantage of these domain la-
bels to improve learning (Daumé III, 2007; Dredze
and Crammer, 2008; Arnold et al., 2008; Finkel and
Manning, 2009; Zhang and Yeung, 2010; Saha et al.,
2011). One such example is sentiment classification
of product reviews. Training data is available from
many product categories and while all data should
be used to learn a model, there are important differ-
ences between the categories (Blitzer et al., 2007)1.

While much prior research has shown improve-
ments using MDL, this paper explores what prop-
erties of an MDL setting matter. Are previous im-
provements from MDL algorithms discovering im-
portant distinctions between features in different do-
mains, as we would hope, or are other factors con-
tributing to learning success? The key question of
this paper is: when do domains matter?

Towards this goal we explore two issues. First,
we explore the question of whether domain distinc-
tions are used by existing MDL algorithms in mean-
ingful ways. While differences in feature behaviors
between domains will hurt performance (Blitzer et
al., 2008; Ben-David et al., 2009), it is not clear
if the improvements in MDL algorithms can be at-
tributed to correcting these errors, or whether they
are benefiting from something else. In particular,
there are many similarities between MDL and en-
semble methods, with connections to instance bag-

1Blitzer et al. (2007) do not consider the MDL setup, they
consider a single source domain, and a single target domain,
with little or no labeled data available for the target domain.
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ging, feature bagging and classifier combination. It
may be that gains in MDL are the usual ensemble
learning improvements.

Second, one simple way in which domains can
change is the distribution of the prior over the la-
bels. For example, reviews of some products may be
more positive on average than reviews of other prod-
uct types. Simply capturing this bias may account
for significant gains in accuracy, even though noth-
ing is learned about the behavior of domain-specific
features. Most prior work considers datasets with
balanced labels. However, in real world applica-
tions, where labels may be biased toward some val-
ues, gains from MDL could be attributed to simply
modeling domain-specific bias. A practical advan-
tage of such a result is ease of implementation and
the ability to scale to many domains.

Overall, irrespective of the answers to these ques-
tions, a better understanding of the performance of
existing MDL algorithms in different settings will
provide intuitions for improving the state of the art.

2 Multi-Domain Learning

In the multi-domain learning (MDL) setting, exam-
ples are accompanied by both a class label and a do-
main indicator. Examples are of the form (xi, y,di),
where xi ∈ RN , di is a domain indicator, xi is
drawn according to a fixed domain-specific distri-
bution Ddi

, and yi is the label (e.g. yi ∈ {−1,+1}
for binary labels). Standard learning ignores di, but
MDL uses these to improve learning accuracy.

Why should we care about the domain label? Do-
main differences can introduce errors in a number
of ways (Ben-David et al., 2007; Ben-David et al.,
2009). First, the domain-specific distributions Ddi

can differ such that they favor different features, i.e.
p(x) changes between domains. As a result, some
features may only appear in one domain. This aspect
of domain difference is typically the focus of un-
supervised domain adaptation (Blitzer et al., 2006;
Blitzer et al., 2007). Second, the features may be-
have differently with respect to the label in each do-
main, i.e. p(y|x) changes between domains. As a
result, a learning algorithm cannot generalize the be-
havior of features from one domain to another. The
key idea behind many MDL algorithms is to target
one or both of these properties of domain difference

to improve performance.
Prior approaches to MDL can be broadly catego-

rized into two classes. The first set of approaches
(Daumé III, 2007; Dredze et al., 2008) introduce pa-
rameters to capture domain-specific behaviors while
preserving features that learn domain-general be-
haviors. A key of these methods is that they do not
explicitly model any relationship between the do-
mains. Daumé III (2007) proposes a very simple
“easy adapt” approach, which was originally pro-
posed in the context of adapting to a specific target
domain, but easily generalizes to MDL. Dredze et al.
(2008) consider the problem of learning how to com-
bine different domain-specific classifiers such that
behaviors common to several domains can be cap-
tured by a shared classifier, while domain-specific
behavior is still captured by the individual classi-
fiers. We describe both of these approaches in § 3.2.

The second set of approaches to MDL introduce
an explicit notion of relationship between domains.
For example, Cavallanti et al. (2008) assume a fixed
task relationship matrix in the context of online
multi-task learning. The key assumption is that in-
stances from two different domains are half as much
related to each other as two instances from the same
domain. Saha et al. (2011) improve upon the idea
of simply using a fixed task relationship matrix by
instead learning it adaptively. They derive an online
algorithm for updating the task interaction matrix.

Zhang and Yeung (2010) derive a convex formu-
lation for adaptively learning domain relationships.
We describe their approach in § 3.2. Finally, Daumé
III (2009) proposes a joint task clustering and multi-
task/multi-domain learning setup, where instead of
just learning pairwise domain relationships, a hier-
archical structure among them is inferred. Hierar-
chical clustering of tasks is performed in a Bayesian
framework, by imposing a hierarchical prior on the
structure of the task relationships.

In all of these settings, the key idea is to learn
both domain-specific behaviors and behaviors that
generalize between (possibly related) domains.

3 Data

To support our analysis we develop several empir-
ical experiments. We first summarize the datasets
and methods that we use in our experiments, then
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proceed to our exploration of MDL.

3.1 Datasets
A variety of multi-domain datasets have been used
for demonstrating MDL improvements. In this pa-
per, we focus on two datasets representative of many
of the properties of MDL.

Amazon (AMAZON) Our first dataset is the Multi-
Domain Amazon data (version 2.0), first introduced
by Blitzer et al. (2007). The task is binary sentiment
classification, in which Amazon product reviews are
labeled as positive or negative. Domains are defined
by product categories. We select the four domains
used in most studies: books, dvd, electronics
and kitchen appliances.

The original dataset contained 2,000 reviews for
each of the four domains, with 1,000 positive and
1,000 negative reviews per domain. Feature extrac-
tion follows Blitzer et al. (2007): we use case insen-
sitive unigrams and bigrams, although we remove
rare features (those that appear less than five times
in the training set). The reduced feature set was se-
lected given the sensitivity to feature size of some of
the MDL methods.

ConVote (CONVOTE) Our second dataset is taken
from segments of speech from United States
Congress floor debates, first introduced by Thomas
et al. (2006). The binary classification task on this
dataset is that of predicting whether a given speech
segment supports or opposes a bill under discus-
sion in the floor debate. We select this dataset be-
cause, unlike the AMAZON data, CONVOTE can be
divided into domains in several ways based on dif-
ferent metadata attributes available with the dataset.
We consider two types of domain divisions: the bill
identifier and the political party of the speaker. Di-
vision based on the bill creates domain differences
in that each bill has its own topic. Division based on
political party implies preference for different issues
and concerns, which manifest as different language.
We refer to these datasets as BILL and PARTY.

We use Version 1.1 of the CONVOTE dataset,
available at http://www.cs.cornell.edu/
home/llee/data/convote.html. More
specifically, we combine the training, development
and test folds from the data stage three/ ver-
sion, and sub-sample to generate different versions

of the dataset required for our experiments. For
BILL we randomly sample speech segments from
three different bills. The three bills and the number
of instances for each were chosen such that we have
sufficient data in each fold for every experiment.
For PARTY we randomly sample speech segments
from the two major political parties (Democrats and
Republicans). Feature processing was identical to
AMAZON, except that the threshold for feature re-
moval was two.

3.2 Learning Methods and Features

We consider three MDL algorithms, two are repre-
sentative of the first approach and one of the second
approach (learning domain similarities) (§2). We fa-
vored algorithms with available code or that were
straightforward to implement, so as to ensure repro-
ducibility of our results.

FEDA Frustratingly easy domain adaptation
(FEDA) (Daumé III, 2007; Daumé III et al., 2010b;
Daumé III et al., 2010a) is an example of a classifier
combination approach to MDL. The feature space
is a cross-product of the domain and input features,
augmented with the original input features (shared
features). Prediction is effectively a linear combina-
tion of a set of domain-specific weights and shared
weights. We combine FEDA with both the SVM
and logistic regression algorithms described below
to obtain FEDA-SVM and FEDA-LR.

MDR Multi-domain regularization (MDR) (Dredze
and Crammer, 2008; Dredze et al., 2009) extends the
idea behind classifier combination by explicitly for-
mulating a classifier combination scheme based on
Confidence-Weighted learning (Dredze et al., 2008).
Additionally, classifier updates (which happen in
an online framework) contain an explicit constraint
that the combined classifier should perform well on
the example. Dredze et al. (2009) consider several
variants of MDR. We select the two best perform-
ing methods: MDR-L2, which uses the underlying
algorithm of Crammer et al. (2008), and MDR-KL,
which uses the underlying algorithm of Dredze et al.
(2008). We follow their approach to classifier train-
ing and parameter optimization.

MTRL The multi-task relationship learning
(MTRL) approach proposed by Zhang and Yeung
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(2010) achieves states of the art performance on
many MDL tasks. This method is representative
of methods that learn similarities between domains
and in turn regularize domain-specific parameters
accordingly. The key idea in their work is the use
of a matrix-normal distribution p(X|M ,Ω,Σ) as
a prior on the matrix W created by column-wise
stacking of the domain-specific classifier weight
vectors. Ω represents the covariance matrix for the
variables along the columns of X . When used as
a prior over W it models the covariance between
the domain-specific classifiers (and therefore the
tasks). Ω is learned jointly with the domain-specific
classifiers. This method has similar benefits to
FEDA in terms of classifier combination, but also
attempts to model domain relationships. We use
the implementation of MTRL made available by the
authors2. For parameter tuning, we perform a grid
search over the parameters λ1 and λ2, using the fol-
lowing values for each (a total of 36 combinations):
{0.00001, 0.0001, 0.001, 0.01, 0.1, 1}.

In addition to these multi-task learning methods,
we consider a common baseline: ignoring the do-
main distinctions and learning a single classifier
over all the data. This reflects single-domain learn-
ing, in which no domain knowledge is used and will
indicate baseline performance for all experiments.
While some earlier research has included a sepa-
rate one classifier per domain baseline, it almost al-
ways performs worse, since splitting the domains
provides much less data to each classifier (Dredze
et al., 2009). So we omit this baseline for simplicity.

To obtain a single classifier we use two classifica-
tion algorithms: SVMs and logistic regression.

Support Vector Machines A single SVM run
over all the training data, ignoring domain labels.
We use the SVM implementation available in the LI-
BLINEAR package (Fan et al., 2008). In particular,
we use the L2-regularized L2-loss SVM (option -s
1 in version 1.8 of LIBLINEAR, and also option -B
1 for including a standard bias feature). We tune
the SVM using five-fold stratified cross-validation
on the training set, using the following values for
the trade-off parameterC: {0.0001, 0.001, 0.01, 0.1,
0.2, 0.3, 0.5, 1}.

2http://www.cse.ust.hk/˜zhangyu/codes/
MTRL.zip

Logistic Regression (LR) A single logistic re-
gression model run over all the training data, ignor-
ing domain labels. Again, we use the L2-regularized
LR implementation available in the LIBLINEAR
package (option -s 0, and also option -B 1). We
tune the LR model using the same strategy as the
one used for SVM above, including the values of the
trade-off parameter C.

For all experiments, we measure average accu-
racy overK-fold cross-validation, using 10 folds for
AMAZON, and 5 folds for both BILL and PARTY.

4 When Do Domains Matter?

We now empirically explore two questions regarding
the behavior of MDL.

4.1 Ensemble Learning

Question: Are MDL improvements the result of
ensemble learning effects?

Many of the MDL approaches bear a striking
resemblance to ensemble learning. Traditionally,
ensemble learning combines the output from sev-
eral different classifiers to obtain a single improved
model (Maclin and Opitz, 1999). It is well estab-
lished that ensemble learning, applied on top of a
diverse array of quality classifiers, can improve re-
sults for a variety of tasks. The key idea behind
ensemble learning, that of combining a diverse ar-
ray of models, has been applied to settings in which
data preprocessing is used to create many different
classifiers. Examples include instance bagging and
feature bagging (Dietterich, 2000).

The core idea of using diverse inputs in making
classification decisions is common in the MDL liter-
ature. In fact, the top performing and only success-
ful entry to the 2007 CoNLL shared task on domain
adaptation for dependency parsing was a straightfor-
ward implementation of ensemble learning by cre-
ating variants of parsers (Sagae and Tsujii, 2007).
Many MDL algorithms, among them Dredze and
Crammer (2008), Daumé III (2009), Zhang and Ye-
ung (2010) and Saha et al. (2011), all include some
notion of learning domain-specific classifiers on the
training data, and combining them in the best way
possible. To be clear, we do not claim that these
approaches can be reduced to an existing ensem-
ble learning algorithm. There are crucial elements
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in each of these algorithms that separate them from
existing ensemble learning algorithms. One exam-
ple of such a distinction is the learning of domain
relationships by both Zhang and Yeung (2010) and
Saha et al. (2011). However, we argue that their
core approach, that of combining parameters that are
trained on variants of the data (all data or individual
domains), is an ensemble learning idea.

Consider instance bagging, in which multiple
classifiers are each trained on random subsets of the
data. The resulting classifiers are then combined
to form a final model. In MDL, we can consider
each domain a subset of the data, albeit non-random
and non-overlapping. The final model combines the
domain-specific parameters and parameters trained
on other instances, which in the case of FEDA are the
shared parameters. In this light, these methods are a
complex form of instance bagging, and their devel-
opment could be justified from this perspective.

However, given this justification, are improve-
ments from MDL simply the result of standard en-
semble learning effects, or are these methods re-
ally learning something about domain behavior? If
knowledge of domain was withheld from the algo-
rithm, could we expect similar improvements? As
we will do in each empirical experiment, we propose
a contrarian hypothesis:

Hypothesis: Knowledge of domains is irrelevant
for MDL.

Empirical Evaluation We evaluate this hypothe-
sis as follows. We begin by constructing a true MDL
setting, in which we attempt to improve accuracy
through knowledge of the domains. We will apply
three MDL algorithms (FEDA, MDR, and MTRL) to
our three multi-domain datasets (AMAZON, BILL,
and PARTY) and compare them against a single clas-
sifier baseline. We will then withhold knowledge
of the true domains from these algorithms and in-
stead provide them with random “pseudo-domains,”
and then evaluate the change in their behavior. The
question is whether we can obtain similar benefits
by ignoring domain labels and relying strictly on an
ensemble learning motivation (instance bagging).

For the “True Domain” setting, we apply the
MDL algorithms as normal. For the “Random Do-
main” setting, we randomly shuffle the domain la-
bels within a given class label within each fold, thus

maintaining the same number of examples for each
domain label, and also retaining the same class dis-
tribution within each randomized domain. The re-
sulting “pseudo-domains” are then similar to ran-
dom subsets of the data used in ensemble learning.

Following the standard practice in previous work,
for this experiment we use a balanced number of
examples from each domain and a balanced num-
ber of positive and negative labels (no class bias).
For AMAZON (4 domains), we have 10 folds of 400
examples per fold, for BILL (3 domains) 5 folds of
60 examples per fold, and for PARTY (2 domains) 5
folds of 80 examples per fold. In the “Random Do-
main” setting, since we are randomizing the domain
labels, we increase the number of trials. We repeat
each cross-validation experiment 5 times with differ-
ent randomization of the domain labels each time.

Results Results are shown in Table 1. The first
row shows absolute (average) accuracy for a single
classifier trained on all data, ignoring domain dis-
tinctions. The remaining cells indicate absolute im-
provements against the baseline.

First, we note for the well-studied AMAZON

dataset that our results with true domains are con-
sistent with the previous literature. FEDA is known
to not improve upon a single classifier baseline for
that dataset (Dredze et al., 2009). Both MDR-L2 and
MDR-KL improve upon the single classifier baseline,
again as per Dredze et al. (2009). And finally, MTRL
also improves upon the single classifier baseline. Al-
though the MTRL improvement is not as dramatic as
in the original paper3, the average accuracy that we
achieve for MTRL (84.2%) is better than the best av-
erage accuracy in the original paper (83.65%).

The main comparison to make in Table 1 is be-
tween having knowledge of true domains or not.
“Random Domain” in the table is the case where do-
main identifiers are randomly shuffled within a given
fold. Ignoring the significance test results for now,
overall the results indicate that knowing the true do-
mains is useful for MDL algorithms. Randomiz-
ing the domains does not work better than knowing
true domains in any case. However, in all except
one case, the improvements of MDL algorithms are

3This might be due to a different version of the dataset being
used in a cross-validation setup, rather than their train/test setup,
and also because of differences in baseline approaches.
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AMAZON BILL PARTY

SVM LR SVM LR SVM LR
Single Classifier

83.93% 83.78% 66.67% 68.00% 62.75% 64.00%
FEDA

True Domain -0.35 -0.10 +2.33 + 1.00 +4.25 N +1.25
Random Domain -1.30 H -1.02 H -1.20 -2.07 -2.05 -2.10

MDR-L2
True Domain +1.87 N +2.02 N +0.00 -1.33 +2.25 +1.00
Random Domain +0.91 N +1.07 N -2.67 -4.00 -2.80 -4.05

MDR-KL
True Domain +1.85 N +2.00 N +1.00 -0.33 +3.00 +1.75
Random Domain +1.36 N +1.51 N +0.60 -0.73 -1.30 -2.55 H

MTRL
True Domain +0.27 +0.42 +0.67 -0.67 +1.50 +0.25
Random Domain -0.37 -0.21 -1.47 -2.80 -3.55 -4.80

Table 1: A comparison between MDL methods with access to the “True Domain” labels and methods that
use “Random Domain” information, essentially ensemble learning. The first row has raw accuracy numbers,
whereas the remaining entries are absolute improvements over the baseline. N: Significantly better than the
corresponding SVM or LR baseline, with p < 0.05, using a paired t-test. H: Significantly worse than
corresponding baseline, with p < 0.05, using a paired t-test.

significantly better only for the AMAZON dataset4.
And interestingly, exactly in the same case, ran-
domly shuffling the domains also gives significant
improvements compared to the baseline, showing
that there is an ensemble learning effect in operation
for MDR-L2 and MDR-KL on the AMAZON dataset.
For FEDA, randomizing the domains significantly
hurts its performance on the AMAZON data, as is
the case for MDR-KL on the PARTY data. Therefore,
while our contrarian hypothesis about irrelevance of
domains is not completely true, it is indeed the case
that some MDL methods benefit from the ensemble
learning effect.

A second observation to be made from these re-
sults is that, while all of empirical research on MDL
assumes the definition of domains as a given, the
question of how to split a dataset into domains given
various metadata attributes is still open. For exam-
ple, in our experiments, in general, using the po-
litical party as a domain distinction gives us more
improvements over the corresponding baseline ap-
proach5.

We provide a detailed comparison of using true
4Some numbers in Table 1 might appear to be significant,

but are not. That is because of high variance in the performance
of the methods across the different folds.

5The BILL and the PARTY datasets are not directly compa-
rable to each other, although the prediction task is the same.

vs. randomized domains in Table 6, after presenting
the second set of experimental results.

4.2 Domain-specific Class Bias

Question: Are MDL methods improving because
they capture domain-specific class biases?

In previous work, and the above section, experi-
ments have assumed a balanced dataset in terms of
class labels. It has been in these settings that MDL
methods improve. However, this is an unrealistic as-
sumption. Even in our datasets, the original versions
demonstrated class bias: Amazon product reviews
are generally positive, votes on bills are rarely tied,
and political parties vote in blocs. While it is com-
mon to evaluate learning methods on balanced data,
and then adjust for imbalanced real world datasets, it
is unclear what effect domain-specific class bias will
have on MDL methods. Domains can differ in their
proportion of examples of different classes. For ex-
ample, it is quite likely that less controversial bills in
the United States Congress will have more yes votes
than controversial bills. Similarly, if instead of the
category of a product, its brand is considered as a do-
main, it is likely that some brands receive a higher
proportion of positive reviews than others.

Improvements from MDL in such settings may
simply be capturing domain-specific class biases.
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domain class cb1 cb2 cb3 cb4
AMAZON

b
- 20 80 60 40
+ 80 20 40 60

d
- 40 20 80 60
+ 60 80 20 40

e
- 60 40 20 80
+ 40 60 80 20

k
- 80 60 40 20
+ 20 40 60 80

BILL

031
N 16 4 8 12
Y 4 16 12 8

088
N 12 16 4 8
Y 8 4 16 12

132
N 8 12 16 4
Y 12 8 4 16

PARTY

D
N 10 30 15 25
Y 30 10 25 15

R
N 30 10 25 15
Y 10 30 15 25

Table 2: The table shows the distribution of in-
stances across domains and class labels within one
fold of each of the datasets, for four different class
bias trials. These datasets with varying class bias
across domains were used for the experiments de-
scribed in §4.2

Consider two domains, where each domain is biased
towards the opposite label. In this case, domain-
specific parameters may simply be capturing the bias
towards the class label, increasing the weight uni-
formly of features predictive of the dominant class.
Similarly, methods that learn domain similarity may
be learning class bias similarity.

Why does the effectiveness of these domain-
specific bias parameters matter? First, if capturing
domain-specific class bias is the source of improve-
ment, there are much simpler methods for learning
that can be just as effective. This would be espe-
cially important in settings where we have many do-
mains, and learning domain-specific parameters for
each feature becomes infeasible. Second, if class
bias accounted for most of the improvement in learn-
ing, it suggests that such settings could be amenable
to unsupervised adaptation of the bias parameters.

Hypothesis: MDL largely capitalizes on
domain-specific class bias.

Empirical Evaluation To evaluate our hypothe-
sis, for each of our three datasets we create 4 random
versions, each with some domain-specific class-bias.
A summary of the dataset partitions is shown in
Table 2. For example, for the AMAZON dataset,
we create 4 versions (cb1 . . . cb4), where each do-
main has 100 examples per fold and each domain
has a different balance between positive and nega-
tive classes. For each of these settings, we conduct
a 10-fold cross validation experiment, then average
the CV results for each of the 4 settings. The re-
sulting accuracy numbers therefore reflect an aver-
age across many types of bias, each evaluated many
times. We do a similar experiment for the BILL and
PARTY datasets, except we use 5-fold CV.

In addition to the multi-domain and baseline
methods, we add a new baseline: DOM-ID. In this
setting, we augment the baseline classifier (which
ignores domain labels) with a new feature that in-
dicates the domain label. While we already include
a general bias feature, as is common in classifica-
tion tasks, these new features will capture domain-
specific bias. This is the only change to the base-
line classifier, so improvements over the baseline are
indicative of the change in domain-bias that can be
captured using these simple features.

Results Results are shown in Table 3. The table
follows the same structure as Table 1, with the ad-
dition of the results for the DOM-ID approach. We
first examine the efficacy of MDL in this setting. An
observation that is hard to miss is that MDL results
in these experiments show significant improvements
in almost all cases, as compared to only a few cases
in Table 1, despite the fact that even the baseline ap-
proaches have a higher accuracy. This shows that
MDL results can be highly influenced by systematic
differences in class bias across domains. Note that
there is also a significant negative influence of class
bias on MTRL for the AMAZON data.

A comparison of the MDL results on true domains
to the DOM-ID baseline gives us an idea of how
much MDL benefits purely from class bias differ-
ences across domains. We see that in most cases,
about half of the improvement seen in MDL is ac-
counted for by a simple baseline of using the do-
main identifier as a feature, and all but one of the
improvements from DOM-ID are significant. This
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AMAZON BILL PARTY

SVM LR SVM LR SVM LR
Single Classifier

85.52% 85.46% 70.50% 70.67% 65.44% 65.81%
FEDA

True Domain +0.11 +0.31 +4.25 N +4.00 N +4.81 N +4.69 N
Random Domain +0.94 N +1.03 N +3.68 N +4.03 N +4.24 +3.73

MDR-L2
True Domain +0.92 N +0.98 N +4.42 N +4.25 N +1.31 +0.94
Random Domain +1.86 N +1.92 N +3.93 N +3.77 N +0.65 +0.28

MDR-KL
True Domain +1.54 N +1.59 N +5.17 N +5.00 N +4.25 N +3.88 N
Random Domain +2.84 N +2.90 N +4.13 N +3.97 N +3.81 N +3.44

MTRL
True Domain -1.22 H -1.17 H +4.50 N +4.33 N +6.44 N +6.06 N
Random Domain -0.69 H -0.63 H +3.53 N +3.37 N +4.87 N +4.50 N

DOM-ID
True Domain +0.36 +0.38 N +2.83 N +2.75 N +3.75 N +4.00 N
Random Domain +1.73 N +1.76 N +4.50 N +4.98 N +5.24 N +5.31 N

Table 3: A comparison between MDL methods with class biased data. Similar to the setup where we
evaluate the ensemble learning effect, we have a setting of using randomized domains. N: Significantly
better than the corresponding SVM or LR baseline, with p < 0.05, using a paired t-test. H: Significantly
worse than corresponding baseline, with p < 0.05, using a paired t-test.

suggests that in a real-world scenario where differ-
ence in class bias across domains is quite likely, it is
useful to consider DOM-ID as a simple baseline that
gives good empirical performance. To our knowl-
edge, using this approach as a baseline is not stan-
dard practice in MDL literature.

Finally, we also include the “Random Domain”
evaluation in the our class biased version of exper-
iments. Each “Random Domain” result in Table 3
is an average over 20 cross-validation runs (5 ran-
domized trials for each of the four class biased tri-
als cb1 . . . cb4). This setup combines the effects
of ensemble learning and bias difference across do-
mains. As seen in the table, for MDL algorithms the
results are consistently better as compared to know-
ing the true domains for the AMAZON dataset. For
the other datasets, the performance after randomiz-
ing the domains is still significantly better than the
baseline. This evaluation on randomized domains
further strengthens the conclusion that differences in
bias across domains play an important role, even in
the case of noisy domains. Looking at the perfor-
mance of DOM-ID with randomized domains, we
see that in all cases the DOM-ID baseline performs
better with randomized domains. While the dif-
ference is significant mostly only on the AMAZON

domain class cb5 cb6 cb7 cb8
AMAZON

b
- 20 40 60 80
+ 80 60 40 20

d
- 20 40 60 80
+ 80 60 40 20

e
- 20 40 60 80
+ 80 60 40 20

k
- 20 40 60 80
+ 20 40 60 80

Table 4: The table shows the distribution of in-
stances across domains and class labels within one
fold of the AMAZON dataset, for four different class
bias trials. For the BILL and PARTY datasets, similar
folds with consistent bias were created (number of
examples used was different). These datasets with
consistent class bias across domains were used for
the experiments described in §4.2.1

dataset (details in Table 6, columns under “Varying
Class Bias,”) this trend is still counter-intuitive. We
suspect this might be because randomization creates
a noisy version of the domain labels, which helps
learners to avoid over-fitting that single feature.
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4.2.1 Consistent Class Bias
We also performed a set of experiments that ap-

ply MDL algorithms to a setting where the datasets
have different class biases (unlike the experiments
reported in Table 1, where the classes are balanced),
but, unlike the experiments reported in Table 3, the
class bias is the same within each of the domains.
We refer to this as the case of consistent class bias
across domains. The distribution of classes within
each domain within each fold is shown in Table 4.
The results for this set of experiments are reported
in Table 5. The structure of Table 5 is identical to
that of Table 1. Comparing these results to those
in Table 1, we can see that in most cases the im-
provements seen using MDL algorithms are lower
than those seen in Table 1. This is likely due to
the higher baseline performance in the consistent
class bias case. A notable difference is in the per-
formance of MTRL — it is significantly worse for
the AMAZON dataset, and significantly better for the
PARTY dataset. For the AMAZON dataset, we be-
lieve that the domain distinctions are less meaning-
ful, and hence forcing MTRL to learn the relation-
ships results in lower performance. For the PARTY

dataset, in the case of a class-biased setup, know-
ing the party is highly predictive of the vote (in the
original CONVOTE dataset, Democrats mostly vote
“no” and Republicans mostly vote “yes”), and this
is rightly exploited by MTRL.

4.2.2 True vs. Randomized Domains
In Table 6 we analyze the difference in perfor-

mance of MDL methods when using true vs. ran-
domized domain information. For the three sets of
results reported earlier, we evaluated whether using
true domains as compared to randomized domains
gives significantly better, significantly worse or
equal performance. Significance testing was done
using a paired t-test with α = 0.05 as before. As the
table shows, for the first set of results where the class
labels were balanced (overall, as well as within each
domain), using true domains was significantly better
mostly only for the AMAZON dataset. FEDA-SVM
was the only approach that was consistently better
with true domains across all datasets. Note, how-
ever, that it was significantly better than the baseline
approach only for PARTY.

For the second set of results (Table 3) where the

class bias varied across the different domains, us-
ing true domains was either no different from using
randomized domains, or it was significantly worse.
In particular, it was consistently significantly worse
to use true domains on the AMAZON dataset. This
questions the utility of domains on the AMAZON

dataset in the context of MDL in a domain-specific
class bias scenario. Since randomizing the domains
works better for all of the MDL methods on AMA-
ZON, it suggests that an ensemble learning effect
is primarily responsible for the significant improve-
ments seen on the AMAZON data, when evaluated in
a domain-specific class bias setting.

Finally, for the case of consistent class bias across
domains, the trend is similar to the case of no class
bias — using true domains is useful. This table
further supports the conclusion that domain-specific
class bias highly influences multi-domain learning.

5 Discussion and Open Questions

Our analysis of MDL algorithms revealed new
trends that suggest further avenues of exploration.
We suggest three open questions in response.

Question: When are MDL methods most effective?

Our empirical results suggest that MDL can be more
effective in settings with domain-specific class bi-
ases. However, we also saw differences in im-
provements for each method, and for different do-
mains. Differences emerge between the AMAZON

and CONVOTE datasets in terms of the ensemble
learning hypothesis. While there has been some the-
oretical analyses on the topic of MDL (Ben-David
et al., 2007; Ben-David et al., 2009; Mansour et
al., 2009; Daumé III et al., 2010a), our results sug-
gest performing new analyses that relate ensemble
learning results with the MDL setting. These anal-
yses could provide insights into new algorithms that
can take advantage of the specific properties of each
multi-domain setting.

Question: What makes a good domain for MDL?

To the best of our knowledge, previous work has
assumed that domain identities are provided to the
learning algorithm. However, in reality, there may
be many ways to split a dataset into domains. For
example, consider the CONVOTE dataset, which we
split both by BILL and PARTY. The choice of splits
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AMAZON BILL PARTY

SVM LR SVM LR SVM LR
Single Classifier

86.06% 86.22% 76.42% 75.58% 69.31% 68.38%
FEDA

True Domain -0.25 -0.33 -0.83 +0.25 +0.88 +1.25
Random Domain -1.17 H -1.26 H -1.33 -0.82 -0.55 -0.04

MDR-L2
True Domain +0.39 N +0.23 -0.42 +0.42 -2.12 -1.19
Random Domain -0.38 -0.53 H -3.57 -2.73 -4.30 H -3.36 H

MDR-KL
True Domain +0.81 N +0.65 N -0.83 +0.00 +1.31 +2.25 N
Random Domain +0.22 +0.06 -1.90 -1.07 -0.60 +0.34

MTRL
True Domain -1.52 H -1.68 H -1.92 -1.08 +3.12 N +4.06 N
Random Domain -2.12 H -2.28 H -0.95 -0.12 +0.19 +1.12 N

Table 5: A comparison between MDL methods with data that have a consistent class bias across domains.
Similar to the setup where we evaluate the ensemble learning effect, we have a setting of using randomized
domains. N: Significantly better than the corresponding SVM or LR baseline, with p < 0.05, using a paired
t-test. H: Significantly worse than corresponding baseline, with p < 0.05, using a paired t-test.

MDL Method No Class Bias (Tab. 1) Varying Class Bias (Tab. 3) Consistent Class Bias (Tab. 5)
better worse equal better worse equal better worse equal

FEDA-SVM AM, BI, PA AM BI, PA AM, PA BI

FEDA-LR AM BI, PA AM BI, PA AM, BI PA

MDR-L2 AM BI, PA AM BI, PA AM, BI PA

MDR-KL PA AM, BI AM BI, PA AM, PA BI

MTRL AM BI, PA AM BI, PA AM, PA BI

DOM-ID-SVM – – – AM BI, PA – – –
DOM-ID-LR – – – AM, BI PA – – –

Table 6: The table shows the datasets (AM:AMAZON, BI:BILL, PA:PARTY) for which a given MDL method
using true domain information was significantly better, significantly worse, or not significantly different
(equal) as compared to using randomized domain information with the same MDL method.

impacted MDL. This poses new questions: what
makes a good domain? How should we choose to di-
vide data along possible metadata properties? If we
can gain improvements simply by randomly creat-
ing new domains (“Random Domain” setting in our
experiments) then there may be better ways to take
advantage of the provided metadata for MDL.

Question: Can we learn class-bias for
unsupervised domain adaptation?

Experiments with domain-specific class biases re-
vealed that a significant part of the improvements
could be achieved by adding domain-specific bias
features. Limiting the multi-domain improvements
to a small set of parameters raises an interesting
question: can these parameters be adapted to a new
domain without labeled data? Traditionally, domain

adaptation without target domain labeled data has
focused on learning the behavior of new features;
beliefs about existing feature behaviors could not be
corrected without new training data. However, by
collapsing the adaptation into a single bias parame-
ter, we may be able to learn how to adjust this pa-
rameter in a fully unsupervised way. This would
open the door to improvements in this challenging
setting for real world problems where class bias was
a significant factor.
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Venkatasubramanian. 2011. Online learning of mul-
tiple tasks and their relationships. In Proceedings of
AISTATS 2011.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get
out the vote: Determining support or opposition from
Congressional floor-debate transcripts. In Proceed-
ings of EMNLP, pages 327–335.

Yu Zhang and Dit-Yan Yeung. 2010. A Convex Formu-
lation for Learning Task Relationships in Multi-Task
Learning. In Proceedings of the Proceedings of the
Twenty-Sixth Conference Annual Conference on Un-
certainty in Artificial Intelligence (UAI-10).

1312



Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1313–1323, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Biased Representation Learning for Domain Adaptation

Fei Huang , Alexander Yates
Temple University

Computer and Information Sciences
324 Wachman Hall

Philadelphia, PA 19122
{fhuang,yates}@temple.edu

Abstract

Representation learning is a promising tech-
nique for discovering features that allow su-
pervised classifiers to generalize from a source
domain dataset to arbitrary new domains. We
present a novel, formal statement of the rep-
resentation learning task. We argue that be-
cause the task is computationally intractable
in general, it is important for a representa-
tion learner to be able to incorporate expert
knowledge during its search for helpful fea-
tures. Leveraging the Posterior Regularization
framework, we develop an architecture for in-
corporating biases into representation learn-
ing. We investigate three types of biases, and
experiments on two domain adaptation tasks
show that our biased learners identify signif-
icantly better sets of features than unbiased
learners, resulting in a relative reduction in er-
ror of more than 16% for both tasks, with re-
spect to existing state-of-the-art representation
learning techniques.

1 Introduction

Supervised natural language processing (NLP) sys-
tems have been widely used and have achieved im-
pressive performance on many NLP tasks. Howev-
er, they exhibit a significant drop-off in performance
when tested on domains that differ from their train-
ing domains. (Gildea, 2001; Sekine, 1997; Pradhan
et al., 2007) One major cause for poor performance
on out of-domain texts is the traditional representa-
tion used by supervised NLP systems (Ben-David et
al., 2007). Most systems depend on lexical features,
which can differ greatly between domains, so that
important words in the test data may never be seen

in the training data. The connection between word-
s and labels may also change across domains. For
instance, “signaling” appears only as a present par-
ticiple (VBG) in WSJ text (as in, “signaling that...”),
but predominantly as a noun (as in “signaling path-
way”) in biomedical text.

Recently, several authors have found that learning
new features based on distributional similarity can
significantly improve domain adaptation (Blitzer et
al., 2006; Huang and Yates, 2009; Turian et al.,
2010; Dhillon et al., 2011). This framework is at-
tractive for several reasons: experimentally, learned
features can yield significant improvements over s-
tandard supervised models on out-of-domain test-
s. Moreover, since the representation-learning tech-
niques are unsupervised, they can easily be applied
to arbitrary new domains. There is no need to supply
additional labeled examples for each new domain.

Traditional representations still hold one signif-
icant advantage over representation-learning, how-
ever: because features are hand-crafted, these rep-
resentations can readily incorporate the linguistic
or domain expert knowledge that leads to state-of-
the-art in-domain performance. In contrast, the on-
ly guide for existing representation-learning tech-
niques is a corpus of unlabeled text.

To address this shortcoming, we introduce
representation-learning techniques that incorporate
a domain expert’s preferences over the learned fea-
tures. For example, out of the set of all possi-
ble distributional-similarity features, we might pre-
fer those that help predict the labels in a labeled
training data set. To capture this preference, we
might bias a representation-learning algorithm to-
wards features with low joint entropy with the labels
in the training data. This particular biased form of
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representation learning is a type of semi-supervised
learning that allows our system to learn task-specific
representations from a source domain’s training da-
ta, rather than the single representation for all tasks
produced by current, unsupervised representation-
learning techniques.

We present a novel formal statement of represen-
tation learning, and demonstrate that it is computa-
tionally intractable in general. It is therefore criti-
cal for representation learning to be flexible enough
to incorporate the intuitions and knowledge of hu-
man experts, to guide the search for representations
efficiently and effectively. Leveraging the Posteri-
or Regularization framework (Ganchev et al., 2010),
we present an architecture for learning representa-
tions for sequence-labeling tasks that allows for bi-
ases. In addition to a bias towards task-specific rep-
resentations, we investigate a bias towards repre-
sentations that have similar features across domain-
s, to improve domain-independence; and a bias to-
wards multi-dimensional representations, where d-
ifferent dimensions are independent of one another.
In this paper, we focus on incorporating the bias-
es with HMM-type representations (Hidden Markov
Model). However, this technique can also be ap-
plied to other graphical model-based representations
with little modification. Our experiments show that
on two different domain-adaptation tasks, our biased
representations improve significantly over unbiased
ones. In a part-of-speech tagging experiment, our
best model provides a 25% relative reduction in er-
ror over a state-of-the-art Chinese POS tagger, and
a 19% relative reduction in error over an unbiased
representation from previous work.

The next section describes background and previ-
ous work. Section 3 introduces our framework for
learning biased representations. Section 4 describes
how we estimate parameters for the biased objective
functions efficiently. Section 5 details our experi-
ments and results, and section 6 concludes and out-
lines directions for future work.

2 Background and Previous Work

2.1 Terminology and Notation

A representation is a set of features that describe da-
ta points. Formally, given an instance set X , it is a
functionR : X → Y for some suitable space Y (of-

ten Rd), which is then used as the input space for a
classifier. For instance, a traditional representation
for POS tagging over vocabulary V would include
(in part) |V | dimensions, and would map a word to a
binary vector with a 1 in only one of the dimensions.
By a structured representation, we mean a function
R that incorporates some form of joint inference. In
this paper, we use Viterbi decoding of variants of
Hidden Markov Models (HMMs) for our structured
representations, although our techniques are appli-
cable to arbitrary (Dynamic) Bayes Nets. A domain
is a probability distribution D over the instance set
X ; R(D) denotes the induced distribution over Y .
In domain adaptation tasks, a learner is given sam-
ples from a source domain DS , and is evaluated on
samples from a target domain DT .

2.2 Theoretical Background

Ben-David et al. (2010) give a theoretical analysis
of domain adaptation which shows that the choice
of representation is crucial. A good choice is one
that minimizes error on the training data, but equally
important is that the representation must make data
from the two domains look similar. Ben-David et al.
show that for every hypothesis h, we can provably
bound the error of h on the target domain by its error
on the source domain plus a measure of the distance
between DS and DT :

Ex∼DT
L(x,R, f, h) ≤ Ex∼DS

L(x,R, f, h)

+ d1(R(DS), R(DT ))

where L is a loss function, f is the target function,
and the variation divergence d1 is given by

d1(D,D
′) = 2 sup

B∈B
|PrD[B]− PrD′ [B]| (1)

where B is the set of measurable sets under D,D′.

2.3 Problem Formulation

Ben-David et al.’s theory provides learning bound-
s for domain adaptation under a fixed R. We now
reformulate this theory to define the task of repre-
sentation learning for domain adaptation as the fol-
lowing optimization problem: given a set of unla-
beled instances US drawn from the source domain
and unlabeled instances UT from the target domain,
as well as a set of labeled instances LS drawn from
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the source domain, identify a function R∗ from the
space of possible representationsR:

R∗ = argmin
R∈R

{min
h∈H

(Ex∼DS
L(x,R, f, h))

+ d1(R(DS), R(DT ))}
(2)

Unlike most learning problems, where the repre-
sentation R is fixed, this problem formulation in-
volves a search over the space of representation-
s and hypotheses. The equation also highlights an
important underlying tension: the best representa-
tion for the source domain would naturally include
domain-specific features, and allow a hypothesis to
learn domain-specific patterns. We are aiming, how-
ever, for the best general classifier, that happens to
be trained on training data from one or a few do-
mains. Domain-specific features would contribute
to distance between domains, and to classifier errors
on data taken from unseen domains. By optimizing
for this combined objective function, we allow the
optimization method to trade off between features
that are best for classifying source-domain data and
features that allow generalization to new domains.

Naturally, the objective function in Equation 2 is
completely intractable. Just finding the optimal hy-
pothesis for a fixed representation of the training da-
ta is intractable for many hypothesis classes. And
the d1 metric is intractable to compute from samples
of a distribution, although Ben-David et al. propose
some tractable bounds (2007; 2010). We view Equa-
tion 2 as a high-level goal rather than a computable
objective. We leverage prior knowledge to bias the
representation learner towards attractive regions of
the representations space R, and we develop effi-
cient, greedy optimization techniques for learning
effective representations.

2.4 Previous Work

There is a long tradition of research on representa-
tions for NLP, mostly falling into one of three cat-
egories: 1) vector space models and dimensionality
reduction techniques (Salton and McGill, 1983; Tur-
ney and Pantel, 2010; Sahlgren, 2005; Deerwester et
al., 1990; Honkela, 1997) 2) using structured repre-
sentations to identify clusters based on distributional
similarity, and using those clusters as features (Lin
and Wu, 2009; Candito and Crabbé, 2009; Huang

and Yates, 2009; Ahuja and Downey, 2010; Turi-
an et al., 2010; Huang et al., 2011); 3) and struc-
tured representations that induce multi-dimensional
real-valued features (Dhillon et al., 2011; Emami et
al., 2003; Morin and Bengio, 2005). Our work fall-
s into the second category, but builds on the pre-
vious work by demonstrating how to improve the
distributional-similarity clusters with prior knowl-
edge. To our knowledge, we are the first to apply
semi-supervised representation learning techniques
for structured NLP tasks.

Most previous work on domain adaptation has fo-
cused on the case where some labeled data is avail-
able in both the source and target domains (Daumé
III, 2007; Jiang and Zhai, 2007; Daumé III et al.,
2010). Learning bounds are known (Blitzer et al.,
2007; Mansour et al., 2009). A few authors have
considered domain adaptation with no labeled data
from the target domain (Blitzer et al., 2006; Huang
et al., 2011) by using features based on distributional
similarity. We demonstrate empirically that incorpo-
rating biases into this type of representation-learning
process can significantly improve results.

3 Biased Representation Learning

As before, let US and UT be unlabeled data, and LS
be labeled data from the source domain only. Pre-
vious work on representation learning with Hidden
Markov Models (HMMs) (Huang and Yates, 2009)
has estimated parameters θ for the HMM from un-
labeled data alone, and then determined the Viterbi-
optimal latent states for training and test data to pro-
duce new features for a supervised classifier. The
objective function for HMM learning in this case is
marginal log-likelihood, optimized using the Baum-
Welch algorithm:

L(θ) =
∑

x∈US∪UT

log
∑
y

p(x,Y = y|θ) (3)

where x is a sentence, Y is the sequence of latent
random variables for the sentence, and y is an in-
stance of the latent sequence. The joint distribution
in an HMM factors into observation and transition
distributions, typically mixtures of multinomials:

p(x,y|θ) = P (y1)P (x1|y1)
∏
i≥2

P (yi|yi−1)P (xi|yi)
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Innocent bystanders are often the

JJ NNS RB VBP DT

y1 y2 y3 y4 y5

...

victims

y6

NNS

Innocent bystanders are often the victims

...

Eφentropy (Y,z)

P(Y)
p1

p2

p3

pm
pn

KL(pm || pn )

Monday, March 26, 12

Figure 1: Illustration of how the entropy bias is incor-
porated into HMM learning. The dotted oval shows the
space of desired distributions in the hidden space, which
have small or zero entropy with the real labels. The learn-
ing algorithm aims to maximize the log-likelihood of the
unlabeled data, and to minimize the KL divergence be-
tween the real distribution, pm, and the closest desired
distribution, pn.

Intuitively, this form of representation learning i-
dentifies clusters of distributionally-similar words:
those words with the same Viterbi-optimal latent s-
tate. The Viterbi-optimal latent states are then used
as features for the supervised classifier. Our previ-
ous work (2009) has shown that the features from
the learned HMM significantly improve the accura-
cy of POS taggers and chunkers on benchmark do-
main adaptation datasets.

We use the HMM model from our previous work
(2009) as our baseline. Our techniques follow the
same general setup, as it provides an efficient and
empirically-proven starting point for exploring (one
part of) the space of possible representations. Note,
however, that the HMM on its own does not provide
even an approximate solution to the objective func-
tion in our problem formulation (Eqn. 2), since it
makes no attempt to find the representation that min-
imizes loss on labeled data. To address this and other
concerns, we modify the objective function for HM-
M training. Specifically, we encode biases for rep-
resentation learning by defining a set of properties φ
that we believe a good representation function would
minimize. One possible bias is that the HMM states
should be predictive of the labels in labeled training

data. We can encode this as a property that computes
the entropy between the HMM states and the label-
s. For example, in Figure 1, we want to learn the
best HMM distribution for the sentence “Innocen-
t bystanders are often the victims” for POS tagging
task. The hidden sequence y1, y2, y3, y4, y5, y6 can
have any distribution p1, p2, p3, ..., pm, ..., pn from
the latent space Y . Since we are doing POS tagging,
we want the distribution to learn the information en-
coded in the original POS labels “JJ NNS RB VBP
DT NNS”. Therefore, by calculating the entropy be-
tween the hidden sequence and real labels, we can
identify a subset of desired distributions that have
low entropy, shown in the dotted oval. By minimiz-
ing the KL divergence between the learned distribu-
tion and the set of desired distributions, we can find
the best distribution which is the closest to our de-
sire.

The following subsections describe the specific
properties we investigate; here we show how to in-
corporate them into the objective function. Let z
be the sequence of labels in LS , and let φ(x,y, z)
be a property of the completed data that we wish
the learned representation to minimize, based on our
prior beliefs. Let Q be the subspace of the possible
distributions over Y that have a small expected val-
ue for φ: Q = {q(Y)|EY∼q[φ(x,Y, z)] ≤ ξ}, for
some constant ξ. We then add penalty terms to the
objective function (3) for the divergence between the
HMM distribution p and the “good” distributions q,
as well as for ξ:

L(θ)−min
q,ξ

[KL(q(Y)||p(Y|x, θ)) + σ|ξ|] (4)

s.t. EY∼q[φ(x,Y, z)] ≤ ξ (5)

where KL is the Kullback-Leibler divergence, and
σ is a free parameter indicating how important the
bias is compared with the marginal log likelihood.

To incorporate multiple biases, we define a vec-
tor of properties φ, and we constrain each property
φi ≤ ξi. Everything else remains the same, except
that in the penalty term σ|ξ|, the absolute value is
replaced with a suitable norm: σ ‖ξ‖. To allow our-
selves to place weights on the relative importance
of the different biases, we use a norm of the form
‖x‖A =

√
(xtAx), where A is a diagonal matrix

whose diagonal entries Aii are free parameters that
provide weights on the different properties. For our
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experiments, we set the free parameters σ and Aii
using a grid search over development data, as de-
scribed in Section 5.1

3.1 A Bias for Task-specific Representations
Current representation learning techniques are unsu-
pervised, so they will generate the exact same repre-
sentation for different tasks. Yet it is exceedingly
rare that two state-of-the-art NLP systems for differ-
ent tasks share the same feature set, even if they do
tend to share some core set of lexical features.

Traditional non-learned (i.e., manually-
engineered) representations essentially always
include task-specific features. In response, we
propose to bias our representation learning such
that the learned representations are optimized for a
specific task. In particular, we propose a property
that measures how difficult it is to predict the labels
in training data, given the learned latent states.
Our entropy property uses conditional entropy of
the labels given the latent state as the measure of
unpredictability:

φentropy(y, z) = −
∑
i

P̃ (yi, zi) log P̃ (zi|yi) (6)

where P̃ is the empirical probability and i indicates
the ith position in the data. We can plug this feature
into Equation 5 to obtain a new version of Equation
4 as an objective function for task-specific represen-
tations. We refer to this model as HMM+E. Un-
like previous formulations for supervised and semi-
supervised dimensionality reduction (Zhang et al.,
2007; Yang et al., 2006), our framework works effi-
ciently for structured representations.

3.2 A Bias for Domain-Independent Features
Following the theory in Section 2.2, we devise a bi-
ased objective to provide an explicit mechanism for
minimizing the distance between the source and tar-
get domain. As before, we construct a property of
the completed data:

φdistance(y) = d1(P̃S , P̃T )

where P̃S(Y ) is the empirical distribution over la-
tent state values estimated from source-domain la-
tent states, and similarly for P̃T (Y ). Essentially,

1Note that ξ, unlike A and σ, is not a free parameter. It is
explicitly minimized in the modified objective function.

minimizing this property will bias the the represen-
tation towards features that appear approximately as
often in the source domain as the target domain. We
refer to the model trained with a bias of minimiz-
ing φdistance as HMM+D, and the model with both
φdistance and φentropy biases as HMM+D+E.

3.3 A Bias for Multi-Dimensional
Representations

Words are multidimensional objects. In English,
words can be nouns or verbs, singular or plural,
count or mass, just to name a few dimensions along
which they may vary. Factorial HMMs (FHMM-
s) (Ghahramani and Jordan, 1997) can learn multi-
dimensional models, but inference and learning are
complex and computationally expensive even in su-
pervised settings. Our previous work (2010) creat-
ed a multi-dimensional representation called an “I-
HMM” by training several HMM layers indepen-
dently; we showed that by finding several latent cat-
egories for each word, this representation can pro-
vide useful and domain-independent features for su-
pervised learners. In this work, we also learn a sim-
ilar multi-dimensional model (I-HMM+D+E), but
within each layer we add in the two biases described
above. While more efficient than FHMMs, the draw-
back of these I-HMM-based models is that there
is no mechanism to encourage the different HMM
models to learn different things. As a result, the lay-
ers may produce similar or equivalent features de-
scribing the dominant aspect of distributional sim-
ilarity in the data, but miss features that are less
strong, but still important, in the data.

To encourage learning a truly multi-dimensional
representation, we add a bias towards I-HMM mod-
els in which each layer is different from all previ-
ous layers. We define an entropy-based predictabili-
ty property that measures how predictable each pre-
vious layer is, given the current one. Formally, let
yli denote the hidden state at the ith position in lay-
er l of the model. For a given layer l, this proper-
ty measures the conditional entropy of ym given yl,
summed over layers m < l, and subtracts this from
the maximum possible entropy:

φpredictl (y) = MAX+
∑
i;m<l

P̃ (yli, y
m
i ) log P̃ (ymi |yli)

The entropy between layer l and the previous layer-
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s m measures how unpredictable the previous lay-
ers are, given layer l. By biasing the model such
that MAX minus the entropy approaches zero, we
encourage layer l towards completely different fea-
tures from previous layers. We call the model with
this bias P-HMM+D+E.

4 Efficient Parameter Estimation

Several machine learning paradigms have been de-
veloped recently for incorporating biases and con-
straints into parameter estimation (Liang et al.,
2009; Chang et al., 2007; Mann and McCallum,
2007). We leverage the Posterior Regularization
(PR) framework for our problem because of its flex-
ibility in handling different kinds of biases; we pro-
vide a brief overview of the technique here, but see
(Ganchev et al., 2010) for full details.

4.1 Overview of PR

PR introduces a modified EM algorithm to handle
constrained objectives, like Equation 4. The modi-
fied E-step estimates a distribution q(Y) that is close
to the current estimate of p(Y|x, θ), but also close
to the ideal set of distributions that (in expectation)
have φ = 0 for each property φ. The M step re-
mains the same, except that it re-estimates parame-
ters with respect to expected latent states computed
with q rather than p.

E step:

qt+1 = arg min
q

min
ξ

KL(q(Y)||p(Y|x, θt)) + σ ‖ξ‖

s.t. Eq[φ(x,Y, z)] ≤ ξ
M step:

θt+1 = argmax
θ

Eqt+1 [log p(x,Y|θt))]

To make the optimization task in the E-step more
tractable, PR transforms it to a dual problem:

max
λ≥0,‖λ‖∗≤σ

− log
∑
Y

p(Y|x, θ) exp{−λ·φ(x,Y, z)}

where ‖·‖∗ is the dual norm of ‖·‖. The gradient of
this dual objective is −Eq[φ(x,Y, z)]. A projected
subgradient descent algorithm is used to perform the
optimization.

4.2 Modifying φ for Tractability

In unstructured settings, this optimization problem
is relatively straightforward. However, for struc-
tured representations, we need to ensure that the
dynamic programming algorithms needed for infer-
ence remain tractable for the biased objectives. For
efficient PR over structured models, the properties φ
need to be decomposed as a sum over the cliques in
the structured model. Unfortunately, the properties
we mention above do not decompose so nicely, so
we must resort to approximations.

In order to efficiently compute the expected val-
ue of the entropy property with respect to Y ∼ q,
we need to be able to compute each componen-
t EYi∼q[φ

entropy(Yi, zi)] separately. Yet P̃ depends
on the setting of other latent states Yj in the corpus.
To avoid this problem, we pre-compute the expected
empirical distributions over the completed data. For
each specific value y and z:

P̃q(y, z) =
1

|LS |
∑
x

|x|∑
i=1

1[zi = z]q(Yi = y)

P̃q(y) =
1

|LS |
∑
x

|x|∑
i=1

q(Yi = y)

These expected empirical distributions P̃q can be
computed efficiently using standard inference algo-
rithms, such as the forward algorithm for HMMs.
Note that P̃q depends on q, but unlike the original
P̃ from Equation 6, they do not depend on the data
completions y. Thus we can compute P̃q once for
each qt, and then substitute it for P̃ for all values
of Y in the computation of EY∼qφ

entropy(Y, z),
making this computation tractable. For the entropy-
based predictability properties, the calculation is
similar, but instead of using the label z, we use the
decoded states yli from previous layers.

For the distance property, Ben-David et al.’s anal-
ysis depends on a particular notion of distance (E-
qn. 1) that is computationally intractable. They also
propose more tractable lower bounds, but these are
again incompatible with the PR framework. Since
no computationally feasible exact algorithm exists
for this distance feature, we resort to a crude but ef-
ficient approximation of this measure: for each pos-
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sible value y of the latent states, we define:

φdisty (y) =
∑

i|xi∈US

1[yi = y]q(Yi = y)

|US |

−
∑

i|xi∈UT

1[yi = y]q(Yi = y)

|UT |

Each of these individual properties is tractable for
structured models. Combining these properties us-
ing the ‖·‖A norm results in a Euclidean distance
(weighted byA) between the frequencies of features
in each domain, rather than d1 distance.

5 Experiments

We tested the structured representations with biases
on two NLP tasks: Chinese POS tagging and En-
glish NER. In both cases, we use a domain adapta-
tion setting where no labeled data is available for the
target domain — a particularly difficult setting, but
one that provides a strong test for an NLP system’s
ability to generalize . In our work (Huang and Yates,
2009), we used a plain HMM for domain adaptation
tasks in which there is labeled source data and un-
labeled source and target data, but no labeled target
data for training. Therefore, here, we use the HMM
technique as a baseline, and build on it by including
biases.

5.1 Chinese POS tagging
We use the UCLA Corpus of Written Chinese,
which is a part of The Lancaster Corpus of Man-
darin Chinese (LCMC). The UCLA Corpus consists
of 11,192 sentences of word-segmented and POS-
tagged text in 13 genres. We use gold-standard
word segmentation labels during training and test-
ing. The LCMC tagset consists of 50 Chinese POS
tags. Each genre averages 5284 word tokens, for a
total of 68,695 tokens among all genres. We use the
‘news’ genre as our source domain and randomly se-
lect 20% of every other genre as labeled test data. To
train our representation models, we use the ‘news’
text, plus the remaining 80% of the texts from the
other genres. We use 90% of the labeled news text
for training, and 10% for development. We replace
hapax legomena in the unlabeled data with the spe-
cial symbol *UNKNOWN*, and also do the same
for word types in the labeled test sets that never ap-
pear in our unlabeled training texts.
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Figure 2: Grid search for parameters on news text

Following our previous HMM setup in (Huang
and Yates, 2009) for consistency, we use an HMM
with 80 latent states. For our multi-layer models,
we use 7 layers of HMMs. We tuned the free pa-
rameters σ and A on development data. We varied
σ from 0.1 to 1000. To tune A, we start by setting
the diagonal entry for φentropy to 1, without loss of
generality. We then tie all the entries in A for φdisty

to a single parameter α, and tie all of the entries for
φpredicty to a parameter β. We vary α and β over the
set {0.01,0.1,1,10,100}. Figure 2 shows our results
for σ and α on news development data. A setting
of α = 0.01 and σ = 100 performs best, with all
σ = 100 doing reasonably well. Results for each
of these models on the general fiction test text con-
firm the general trends seen on development data —
a comforting sign, since this indicates we can opti-
mize the free parameters on in-domain development
data, rather than requiring labeled data from the tar-
get domain. Our models tended to perform better
with increasing β on development data, though with
diminishing returns. We pick the largest setting test-
ed, β = 100, for our final models.

We use a linear-chain Conditional Random Field
(CRF) for our supervised classifier. To incorporate
the learned representations, we use the Viterbi Algo-
rithm to find the optimal latent state sequence from
each HMM-based model and then use the optimal
states as features in the CRF. Table 1 presents the
full list of features in the CRF. To handle Chinese,
we add in two features introduced in previous work
(Wang et al., 2009): radical features and repeated
characters. A radical is a portion of a Chinese char-
acter that consists of a small number of pen or brush
strokes in a regular pattern.
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Figure 3: Validating parameter settings on fiction text

CRF Feature Set

Transition
∀z1[zj = z]

∀z,z′1[zj = z and zj−1 = z′]

Word
∀w,z1[xj = w and zj = z]

Radical
∀z,r1[∃c∈xjradical(c) = r and zj = z]

Repeated Words
∀A,B,z1[xj = AABB and zj = z]

∀A,z1[(xj = AA�or xj = AA/) and zj = z]
∀A,B,z1[xj = ABAB and zj = z]

Features from Representation Learning
∀y,l,z1[ylj = y and zj = z]

Table 1: Features used in our Chinese POS tagging
CRF systems. c represents a character within a word.

Table 2 shows our results. We compare against
the Baseline CRF without any additional representa-
tions and the unbiased HMM, a state-of-the-art do-
main adaptation technique from previous work, over
all 13 domains (source and target). We also com-
pare against a state-of-the-art Chinese POS tagger
for in-domain text, the CRF-based Stanford tagger
(Tseng et al., 2005), retrained for this corpus. H-
MM+D+E outperforms the Stanford tagger on 10
out of 12 target domains and the unbiased HMM on
all domains, while the P-HMM+D+E outperform-
s the Stanford tagger (2.6% average improvement)
and HMM (1.7%) on all 12 target domains. The I-
HMM+D+E is slightly better than the HMM+D+E
(.3%), but incorporating the multi-dimensional bias

(P-HMM+D+E) adds an additional 0.6% improve-
ment.

Our interpretation for the success of I-
HMM+D+E and P-HMM+D+E is that the increase
in the state space of the models yields improved
performance. Because P-HMM+D+E biases against
redundant states found in I-HMM+D+E, it effective-
ly increases the state space beyond I-HMM+D+E.
Ahuja and Downey (2010) and our own work with
HMMs as representations (2010) have previously
shown that increasing the state space of the HMM
can significantly improve the representation, but
memory constraints eventually prevent further
progress this way. The I-HMM+D+E and P-
HMM+D+E models can provide similar benefits,
but because they split parameters across multiple
HMMs, they can accommodate much greater state
spaces in the same amount of memory.

We also tested the entropy and distance biases
separately. Figure 4 shows the result of the distance-
biased HMM+D on the general-fiction test text, as
we vary σ over the set {0.1,1,10,100,1000} (we ob-
served similar results for other domains). For all val-
ues of σ, the biased representation outperforms the
unbiased HMM. There is also a strong negative cor-
relation between the expected value of ‖φdistance‖
and the resulting accuracy, as expected from Ben-
David et al.’s theoretical analysis. The HMM+E
model outperforms the HMM on the (source) news
domain by 0.3%, but actually performs worse for
most target domains. We suspect that the entropy
feature, which is learned only from labeled source-
domain data, makes the representation biased to-
wards features that are important in the source do-
main only. However, after we add in the distance
bias and a parameter to balance the weights from
both biases, the representation is able to capture the
label information as well as the target domain fea-
tures. Thus, the representation won’t solely depend
on source data. HMM+D+E, which combines both
biases, outperforms HMM+D, suggesting that task-
specific features for domain adaptation can be help-
ful, but only if there is some control for the domain-
independence of the features.

5.2 English Named Entity Recognition

To evaluate on a second task, we turn to Named En-
tity Recognition. We use the training data from the
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news (source) lore reli humour gen-fic essay mystery romance sci-fi skill science adv-fic report avg

words 9774 5428 3248 3326 4913 5214 5774 5489 3070 5464 5262 5071 6662 5284

CRF w/o HMM 93.8 85.0 80.0 85.4 85.0 83.8 84.7 86.0 82.8 78.2 82.2 77.1 85.3 84.5
HMM+E 97.1 88.2 83.1 87.5 87.4 89.2 89.5 87.1 86.7 82.1 87.2 79.4 91.7 88.3
Stanford 98.8 88.4 83.5 89.0 87.5 88.4 87.4 87.5 88.6 82.7 86.0 82.1 91.7 88.7
HMM 96.9 89.7 85.2 89.6 89.4 89.0 90.1 89.0 87.0 84.9 87.8 80.0 91.4 89.2
HMM+D 97.4 89.9 85.4 89.4 89.6 89.9 90.1 88.6 87.9 85.3 87.9 80.0 92.0 89.5
HMM+D+E 97.7 90.1 86.1 89.8 90.9 89.7 90.3 89.8 88.4 85.6 87.9 81.2 92.0 89.9
I-HMM+D+E 97.8 90.5 87.0 89.1 91.1 90.2 90.0 90.5 89.8 86.0 87.1 82.2 92.1 90.2
P-HMM+D+E 98.2 91.5 87.7 89.0 91.8 91.0 89.9 91.4 90.4 87.0 87.7 83.4 92.4 90.8

Table 2: POS tagging accuracy: The P-HMM+D+E tagger outperforms the unbiased HMM tagger and the
Stanford tagger on all target domains. The ‘avg’ column includes source-domain development data results. Differ-
ences between the P-HMM+D+E and the Stanford tagger are statistically significant at p < 0.01 on average and on 11
out of 12 target domain. We used the two-tailed Chi-square test with Yates’ correction.
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Figure 4: Greater distance between domains correlates
with worse target-domain tagging accuracy.

CoNLL 2003 shared task for our labeled training set,
consisting of 204k tokens from the newswire do-
main. We tested the system on the MUC7 formal
run test data, consisting of 59k tokens of stories on
the telecommunications and aerospace industries.

To train our representations, we use the CoNL-
L training data and the MUC7 training data without
labels. We again use a CRF, with features introduced
by Zhang and Johnson (2003) for our baseline. We
use the same setting of free parameters from our
POS tagging experiments.

Results are shown in Table 3. Our best biased
representation P-HMM+D+E outperformed the un-
biased HMM representation by 3.6%, and beats the
I-HMM+D+E by 1.6%. The domain-distance and
multi-dimensional biases help most, while the task-
specific bias helps somewhat, but only when the
domain-distance bias is included. The best sys-

System F1

CRF without HMM 66.15
HMM+E 74.25
HMM 75.06
HMM+D 75.75
HMM+D+E 76.03
I-HMM+D+E 77.04
P-HMM+D+E 78.62

Table 3: English Named Entity recognition results

tem tested on this dataset achieved a slightly bet-
ter F1 score (78.84) (Turian et al., 2010), but used
a much larger training corpus (they use RCV1 cor-
pus which contains approximately 63 million token-
s). Other studies (Turian et al., 2010; Huang et
al., 2011) have performed a detailed comparison be-
tween these types of systems, so we concentrate on
comparisons between biased and unbiased represen-
tations here.

5.3 Does the task-specific bias actually help?

In this section, we test whether the task-specific
bias (entropy bias) actually learns something task-
specific. We learn the entropy-biased representa-
tions for two tasks on the same set of sentences,
labeled differently for the two tasks: English POS
tagging and Named Entity Recognition. Then we
switch the representations to see whether they will
help or hurt the performance on the other task. We
randomly picked 500 sentences from WSJ section
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Representation/Task POS Accuracy NER F1

HMM 88.5 66.3
HMM+E(POS labels) 89.7 64.5
HMM+E(NER labels) 86.5 68.0

Table 4: Results of POS tagging and Named Entity
recognition tasks with different representations. With the
entropy-biased representation, the system has better per-
formance on the task which the bias is trained for, but
worse performance on the other task.

0-18 as our labeled training data and 500 sentences
from WSJ section 20-23 as testing data. Because
WSJ data does not have gold standard NER tags,
we manually labeled these sentences with NER tags.
For simplicity, we only use three types of NER tags:
person, organization and location. The result is
shown in Table 4. When the entropy bias uses la-
bels from the same task as the classifier, the perfor-
mance is improved: about 1.2% in accuracy on POS
tagging and 1.7% in F1 score on NER. Switching
the representations for the tasks actually hurts the
performance compared with the unbiased represen-
tation. The results suggest that the entropy bias does
indeed yield a task-specific representation.

6 Conclusion and Future Work

We introduce three types of biases into represen-
tation learning for sequence labeling using the PR
framework. Our experiments on POS tagging and
NER indicate domain-independent biases and multi-
dimensional biases significantly improve the repre-
sentations, while the task-specific bias improves per-
formance on out-of-domain data if it is combined
with the domain-independent bias. Our results indi-
cate the power of representation learning in building
domain-agnostic classifiers, but also the complexi-
ty of the task and the limitations of current tech-
niques, as even the best models still fall significantly
short of in-domain performance. Important consid-
erations for future work include identifying further
effective and tractable biases, and extending beyond
sequence-labeling to other types of NLP tasks.
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Abstract

We introduce a novel approach named unam-
biguity regularization for unsupervised learn-
ing of probabilistic natural language gram-
mars. The approach is based on the observa-
tion that natural language is remarkably unam-
biguous in the sense that only a tiny portion of
the large number of possible parses of a nat-
ural language sentence are syntactically valid.
We incorporate an inductive bias into gram-
mar learning in favor of grammars that lead
to unambiguous parses on natural language
sentences. The resulting family of algorithms
includes the expectation-maximization algo-
rithm (EM) and its variant, Viterbi EM, as well
as a so-called softmax-EM algorithm. The
softmax-EM algorithm can be implemented
with a simple and computationally efficient
extension to standard EM. In our experiments
of unsupervised dependency grammar learn-
ing, we show that unambiguity regularization
is beneficial to learning, and in combination
with annealing (of the regularization strength)
and sparsity priors it leads to improvement
over the current state of the art.

1 Introduction

Machine learning offers a potentially powerful ap-
proach to learning probabilistic grammars from data.
Because of the high cost of manual sentence anno-
tation, there is substantial interest in unsupervised
grammar learning, i.e., the induction of a grammar
from a corpus of unannotated sentences. The sim-
plest such approaches attempt to maximize the like-

∗Part of the work was done while at Iowa State University.

lihood of the grammar given the training data, typi-
cally using expectation-maximization (EM) (Baker,
1979; Lari and Young, 1990; Klein and Manning,
2004). More recent approaches incorporate addi-
tional prior information of the target grammar into
learning. For example, Kurihara and Sato (2004)
used Dirichlet priors over rule probabilities to obtain
smoothed estimates of the probabilities. Johnson et
al. (2007) used Dirichlet priors with hyperparame-
ters set to values less than 1 to encourage sparsity
of grammar rules. Finkel et al. (2007) and Liang et
al. (2007) proposed to use the hierarchical Dirichlet
process prior to bias learning towards concise gram-
mars without the need to pre-specify the number of
nonterminals. Cohen et al. (2008) and Cohen and
Smith (2009) employed the logistic normal prior to
model the correlations between grammar symbols.
Gillenwater et al. (2010) incorporated a sparsity bias
on grammar rules into learning by means of poste-
rior regularization.

More recently, Spitkovsky et al. (2010) and Poon
and Domingos (2011) observed that the use of
Viterbi EM (also called hard EM) in place of stan-
dard EM can lead to significantly improved results
in unsupervised learning of probabilistic grammars
from natural language and image data respectively,
even if no prior information is used. This finding is
surprising because Viterbi EM is a degenerate case
of standard EM and is therefore generally consid-
ered to be less effective in locating the optimum
of the objective function. Spitkovsky et al. (2010)
speculated that the observed advantage of Viterbi
EM over standard EM is due to standard EM reserv-
ing too much probability mass to spurious parses in
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the E-step. However, it is still unclear as to why
Viterbi EM can avoid this problem.

Against this background, we propose the use of
a novel type of prior information for unsupervised
learning of probabilistic natural language grammars,
namely the syntactic unambiguity of natural lan-
guage. Although it is often possible to correctly
parse a natural language sentence in more than one
way, natural language is remarkably unambiguous
in the sense that the number of plausible parses of a
natural language sentence is rather small in compar-
ison with the total number of possible parses. Thus,
we incorporate into learning an inductive bias in fa-
vor of grammars that lead to unambiguous parses on
natural language sentences, by using the posterior
regularization framework (Ganchev et al., 2010).
We name this approach unambiguity regularization.
The resulting family of algorithms includes standard
EM and Viterbi EM, as well as an algorithm that
falls between standard EM and Viterbi EM which
we call softmax-EM. The softmax-EM algorithm
can be implemented with a simple and computation-
ally efficient extension to standard EM. The fact that
Viterbi EM is a special case of our approach also
gives an explanation of the advantage of Viterbi EM
observed in previous work: it is because Viterbi EM
implicitly utilizes unambiguity regularization. In
our experiments of unsupervised dependency gram-
mar learning, we show that unambiguity regulariza-
tion is beneficial to learning, and in combination
with annealing (of the regularization strength) and
sparsity priors it leads to improvement over the cur-
rent state of the art.

It should be noted that our approach is closely
related to the deterministic annealing (DA) tech-
nique studied in the optimization literature (Rose,
1998). However, DA has a very different motiva-
tion than ours and differs from our approach in a few
important algorithmic details, as will be discussed
in section 5. When applied to unsupervised gram-
mar learning, DA has been shown to lead to worse
parsing accuracy than standard EM (Smith and Eis-
ner, 2004); in contrast, we show that our approach
leads to significantly higher parsing accuracy than
standard EM in unsupervised dependency grammar
learning.

The rest of the paper is organized as follows. Sec-
tion 2 analyzes the degree of unambiguity of natural

language grammars. Section 3 introduces the unam-
biguity regularization approach and shows that stan-
dard EM, Viterbi EM and softmax-EM are its special
cases. We show the experimental results in section
4, discuss related work in section 5 and conclude the
paper in section 6.

2 The (Un)ambiguity of Natural Language
Grammars

A grammar is said to be ambiguous on a sentence if
the sentence can be parsed in more than one way by
the grammar. It is widely acknowledged that natu-
ral language grammars are ambiguous on a signifi-
cant proportion of natural language sentences. For
example, Manning and Schütze (1999) show that a
sentence randomly chosen from the Wall Street Jour-
nal — “The post office will hold out discounts and
service concessions as incentives” — has at least
five plausible syntactic parses. When we parse this
sentence using the Berkeley parser (Petrov et al.,
2006), one of the state-of-the-art English language
parsers, we find many alternative parses in addition
to the parses shown in (Manning and Schütze, 1999).
Indeed, with a probabilistic context-free grammar
of only 26 nonterminals (as used in the Berke-
ley parser), the estimated total number of possible
parses1 of the example sentence is 2 × 1037. How-
ever, upon closer examination, we find that among
this very large number of possible parses, only a few
have significant probabilities. Figure 1 shows the
probabilities of the 100 best parses of the example
sentence. We can see that most of the parses have
probabilities that are negligible compared with the
probability of the best parse (i.e., the parse with the
largest probability). Quantitatively, we find that the
probabilities of the parses decrease roughly expo-
nentially as we go from the best parse to the less
likely parses. We confirmed this observation by ex-
amining the parses of many other natural language
sentences obtained using the Berkeley parser. This
observation suggests that natural language gram-
mars are indeed remarkably unambiguous on natu-
ral language sentences, in the sense that for a typical

1Given a sentence of length m and a complete Chomsky nor-
mal form grammar with n nonterminals, the number of all pos-
sible parses is Cm−1×n2m−1, where Cm−1 is the (m− 1)-th
Catalan number. This number is further increased if there are
unary rules between nonterminals in the grammar.
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Figure 1: The probabilities of the 100 best parses of the
example sentence.

natural language sentence, the probability mass of
the parses is concentrated to a tiny portion of all pos-
sible parses. This is not surprising in light of the fact
that the main purpose of natural language is commu-
nication and in the course of language evolution the
selection pressure for more efficient communication
would favor unambiguous languages.

To highlight the unambiguity of natural language
grammars, here we compare the parse probabilities
shown in Figure 1 with the parse probabilities pro-
duced by two other probabilistic context-free gram-
mars. In figure 2(a) we show the probabilities of the
100 best parses of the example sentence produced
by a random grammar. The random grammar has a
similar number of nonterminals as in the Berkeley
parser, and its grammar rule probabilities are sam-
pled from a uniform distribution and then normal-
ized. It can be seen that unlike the natural language
grammar, the random grammar produces a very uni-
form probability distribution over parses. Figure
2(b) shows the probabilities of the 100 best parses
of the example sentence produced by a maximum-
likelihood grammar learned from the unannotated
Wall Street Journal corpus of the Penn Treebank us-
ing the EM algorithm. An exponential decrease can
be observed in the probabilities, but the probabil-
ity mass is still much less concentrated than in the
case of the natural language grammar. Again, we
confirmed this observation by repeating the exper-
iments on many other natural language sentences.
This suggests that both the random grammar and the
maximum-likelihood grammar are far more ambigu-
ous on natural language sentences than true natural

language grammars.

3 Learning with Unambiguity
Regularization

Motivated by the preceding observation, we want to
incorporate into learning an inductive bias in favor
of grammars that are unambiguous on natural lan-
guage sentences. First of all, we need a precise defi-
nition of the ambiguity of a grammar on a sentence.
Assume a grammar with a fixed set of grammar rules
and let θ be the rule probabilities. Let x represent a
sentence and let z represent the parse of x. One natu-
ral measurement of the ambiguity is the information
entropy of z conditioned on x and θ:

H(z|x, θ) = −
∑

z

pθ(z|x) log pθ(z|x)

The lower the entropy is, the less ambiguous the
grammar is on sentence x. When the entropy
reaches 0, the grammar is strictly unambiguous on
sentence x, i.e., sentence x has a unique parse ac-
cording to the grammar.

Now we need to modify the objective function
of grammar learning to favor low ambiguity of the
learned grammar in parsing natural langauge sen-
tences. One approach is to use a prior distribu-
tion that favors grammars with low ambiguity on
the sentences that they generate. Since the likeli-
hood term in the objective function would ensure
that the learned grammar will have high probability
of generating natural language sentences, combin-
ing the likelihood and the prior would lead to low
ambiguity of the learned grammar on natural lan-
guage sentences. Unfortunately, adding this prior
to the objective function makes learning intractable.
Hence, here we adopt an alternative approach using
the posterior regularization framework (Ganchev et
al., 2010). Posterior regularization biases learning
in favor of solutions with desired behavior by con-
straining the model posteriors on the unlabeled data.
In our case, we use the constraint that the probability
distributions on the parses of the training sentences
given the learned grammar must have low entropy,
which is equivalent to requiring the learned grammar
to have low ambiguity on the training sentences.

Let X = {x1, x2, . . . , xn} denote the set of train-
ing sentences, Z = {z1, z2, . . . , zn} denote the set
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Figure 2: The probabilities of the 100 best parses of the example sentence produced by (a) a random grammar and (b)
a maximum-likelihood grammar learned by the EM algorithm.

of parses of the training sentences, and θ denote the
rule probabilities of the grammar. We use the slack-
penalized version of the posterior regularization ob-
jective function:

J(θ) = log p(θ|X)

−min
q,ξ

(
KL(q(Z)||pθ(Z|X)) + σ

∑
i

ξi

)
s.t. ∀i,H(zi) = −

∑
zi

q(zi) log q(zi) ≤ ξi

where σ is a nonnegative constant that controls the
strength of the regularization term; q is an auxil-
iary distribution such that q(Z) =

∏
i q(zi). The

first term in the objective function is the log poste-
rior probability of the grammar parameters given the
training corpus, and the second term minimizes the
KL-divergence between the auxiliary distribution q
and the posterior distribution on Z while constrains
q to have low entropy. We can incorporate the con-
straint into the objective function, so we get

J(θ) = log p(θ|X)

−min
q

(
KL(q(Z)||pθ(Z|X)) + σ

∑
i

H(zi)

)
To optimize this objective function, we can per-

form coordinate ascent on a two-variable function:

F (θ, q) = log p(θ|X)

−

(
KL(q(Z)||pθ(Z|X)) + σ

∑
i

H(zi)

)

There are two steps in each coordinate ascent itera-
tion. In the first step, we fix q and optimize θ. It can
be shown that

θ∗ = arg max
θ

F (θ, q)

= arg max
θ

Eq[log(pθ(X,Z)p(θ))]

This is equivalent to the M-step in the EM algorithm.
The second step fixes θ and optimizes q.

q∗ = arg max
q

F (θ, q)

= arg min
q

(
KL(q(Z)||pθ(Z|X)) + σ

∑
i

H(zi)

)
It is different from the E-step of the EM algorithm
in that it contains an additional regularization term
σ
∑

i H(zi). Ganchev et al. (2010) propose to use
the projected subgradient method to solve this op-
timization problem in the general case of posterior
regularization. In our case, however, it is possible to
obtain an analytical solution as shown below.

First, note that the optimization objective of this
step can be rewritten as the sum over functions of
individual training sentences.

KL(q(Z)||pθ(Z|X)) + σ
∑

i

H(zi) =
∑

i

fi(q)

where

fi(q) = KL(q(zi)||pθ(zi|xi)) + σH(zi)

=
∑
zi

(
q(zi) log

q(zi)
1−σ

pθ(zi|xi)

)
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So we can optimize fi(q) for each training sentence
xi. The optimum of fi(q) depends on the value of
the constant σ.

Case 1: σ = 0.
fi(q) contains only the KL-divergence term, so the
second step in the coordinate ascent iteration be-
comes the standard E-step of the EM algorithm.

q∗(zi) = pθ(zi|xi)

Case 2: 0 < σ < 1.
The space of valid assignments of the distribution
q(zi) is a unit (m−1)-simplex, where m is the num-
ber of valid parses of sentence xi. Denote this space
by ∆.

Theorem 1. fi(q) is strictly convex on the unit sim-
plex ∆ when 0 < σ < 1.

Proof Sketch. Define g(x) = x log x, where g(0) is
defined to be 0. For any t ∈ (0, 1), for any two
points q1 and q2 in the unit simplex ∆, we can show
that

tfi(q1) + (1− t)fi(q2)− fi(tq1 + (1− t)q2)

= (1− σ)
∑
zi

[
tg(q1(zi)) + (1− t)g(q2(zi))
− g(tq1(zi) + (1− t)q2(zi))

]
It is easy to prove that g(x) is strictly convex on the
interval [0, 1]. Because ∀zi, 0 ≤ q1(zi), q2(zi) ≤ 1,
we have

tg(q1(zi)) + (1− t)g(q2(zi))

> g(tq1(zi) + (1− t)q2(zi))

Because 1− σ > 0, we have

tfi(q1) + (1− t)fi(q2)− fi(tq1 + (1− t)q2) > 0

By applying the Lagrange multiplier, we get the
stationary point of fi(q) on the unit simplex ∆:

q∗(zi) = αipθ(zi|xi)
1

1−σ (1)

where αi is the normalization factor

αi =
1∑

zi
pθ(zi|xi)

1
1−σ

Because fi(q) is strictly convex on the unit simplex
∆, this stationary point is the global minimum. Note
that because 1

1−σ > 1, q∗(zi) can be seen as the re-
sult of applying a variant of the softmax function to
pθ(zi|xi). To compute q∗, note that pθ(zi|xi) is the
product of a set of grammar rule probabilities, so we
can raise all the rule probabilities of the grammar to
the power of 1

1−σ and then run the normal E-step of
the EM algorithm. The normalization of q∗ is in-
cluded in the normal E-step.

With q∗, the objective function becomes

F (θ, q∗) = (1− σ)
∑

i

log
∑
zi

p(zi, xi|θ)
1

1−σ

+ log p(θ)− log p(X)

The first term is proportional to the log “likelihood”
of the corpus computed with the exponentiated rule
probabilities. So we can use the parsing algorithm to
efficiently compute the value of the objective func-
tion (on the training corpus or on a separate devel-
opment set) to determine when the coordinate ascent
iteration shall be terminated.

Case 3: σ = 1

We need to minimize

fi(q) = −
∑
zi

(q(zi) log pθ(zi|xi))

Because log pθ(zi|xi) ≤ 0 for any zi, the minimum
of fi(q) is reached at

q∗(zi) =

{
1 if zi = arg maxzi pθ(zi|xi)
0 otherwise

Case 4: σ > 1

Theorem 2. fi(q) is strictly concave on the unit sim-
plex ∆ when σ > 1.

The proof is the same as that of theorem 1, ex-
cept that 1 − σ is now negative which reverses the
direction of the last inequality in the proof.

Theorem 3. The minimum of fi(q) is attained at a
vertex of the unit simplex ∆.

Proof. Assume the minimum of fi(q) is attained
at q∗ that is not a vertex of the unit simplex ∆,
so there are at least two assignments of zi, say z1

and z2, such that q∗(z1) and q∗(z2) are nonzero.
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Let q′ be the same distribution as q∗ except that
q′(z1) = 0 and q′(z2) = q∗(z1) + q∗(z2). Let q′′

be the same distribution as q∗ except that q′′(z1) =
q∗(z1) + q∗(z2) and q′′(z2) = 0. Obviously, both q′

and q′′ are in the unit simplex ∆ and q′ ̸= q′′. Let
t = q∗(z2)

q∗(z1)+q∗(z2)
, and obviously we have 0 < t < 1.

So we get q∗ = tq′ + (1 − t)q′′. According to The-
orem 2, fi(q) is strictly concave on the unit simplex
∆, so we have fi(q

∗) > tfi(q
′) + (1 − t)fi(q

′′).
Without loss of generality, suppose fi(q

′) ≥ fi(q
′′).

So we have tfi(q
′) + (1 − t)fi(q

′′) ≥ fi(q
′′) and

therefore fi(q
∗) > fi(q

′′), which means fi(q) does
not attain the minimum at q∗. This contradicts the
assumption.

Now we need to find out at which of the vertices
of the unit simplex ∆ is the minimum of fi(q) at-
tained. At the vertex where the probability mass is
concentrated at the assignment z, the value of fi(q)
is − log pθ(z|xi). So the minimum is attained at

q∗(zi) =

{
1 if zi = arg maxzi pθ(zi|xi)
0 otherwise

It can be seen that the minimum in the case of
σ > 1 is attained at the same point as in the case of
σ = 1, at which all the probability mass is assigned
to the best parse of the sentence. So q∗ can be com-
puted using the E-step of the Viterbi EM algorithm.
Denote the best parse by z∗i . With q∗, the objective
function becomes

F (θ, q∗) =
∑

i

log p(z∗i , xi|θ)

+ log p(θ)− log p(X)

The first term is the sum of the log probabilities of
the best parses of the corpus. So again we can use
the parsing algorithm to efficiently compute it to de-
cide when to terminate the iterative algorithm.

Summary
Our unambiguity regularization approach is an ex-
tension of the EM algorithm. The behavior of our
approach is controlled by the value of the nonneg-
ative parameter σ. A larger value of σ corresponds
to a stronger bias in favor of an unambiguous gram-
mar. When σ = 0, our approach reduces to the stan-
dard EM algorithm. When σ ≥ 1, our approach

reduces to the Viterbi EM algorithm, which consid-
ers only the best parses of the training sentences in
the E-step. When 0 < σ < 1, our approach falls
between standard EM and Viterbi EM: it applies a
softmax function (Eq.1) to the distributions of parses
of the training sentences in the E-step. The softmax
function can be computed by simply exponentiating
the grammar rule probabilities before the standard
E-step, which does not increase the time complexity
of the E-step. We refer to the algorithm in the case
of 0 < σ < 1 as the softmax-EM algorithm.

3.1 Annealing the Strength of Regularization

In unsupervised learning of probabilistic grammars,
the initial grammar is typically very ambiguous
(e.g., a random grammar). So we need to set σ to a
value that is large enough to induce unambiguity. On
the other hand, natural language grammars do con-
tain some degree of ambiguity, so if the value of σ
is too large, then the learned grammar might be ex-
cessively unambiguous and thus not a good model
of natural languages. Hence, it is unclear how to
choose an optimal value of σ.

One way to avoid choosing a fixed value of σ is
to anneal its value. We start learning with a large
value of σ (e.g., σ = 1) to strongly push the learner
away from the highly ambiguous initial grammar;
then we gradually reduce the value of σ, possibly
ending with σ = 0, to avoid inducing excessive un-
ambiguity in the learned grammar. Note that if the
value of σ is annealed to 0, then our approach can be
seen as providing an unambiguous initialization for
standard EM.

3.2 Unambiguity Regularization with
Mean-field Variational Inference

Variational inference approximates the posterior of
the model given the data. It typically leads to more
accurate predictions than the maximum a posteriori
(MAP) estimation. In addition, for certain types of
prior distributions (e.g., a Dirichlet prior with hy-
perparameters set to values less than 1), variational
inference is able to find a solution when MAP esti-
mation fails. Here we incorporate unambiguity reg-
ularization into mean-field variational inference.

The objective function with unambiguity regular-
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ization for mean-field variational inference is:

F (q(θ), q(Z)) = log p(X)

−

(
KL(q(θ)q(Z)||p(θ,Z|X)) + σ

∑
i

H(zi)

)
where ∀i, H(zi) = −

∑
zi

q(zi) log q(zi)

We can perform coordinate ascent that alternately
optimizes q(θ) and q(Z). Since the regularization
term does not contain q(θ), the optimization of q(θ)
is exactly the same as in the standard mean-field
variational inference. To optimize q(Z), we have

q∗(Z) =

arg min
q(Z)

(
KL(q(Z)||p̃(X,Z)) + σ

∑
i

H(zi)

)

where p̃(X,Z) is defined as

log p̃(X,Z) = Eq(θ)[log p(θ,Z,X)] + const

Now we can follow a derivation similar to that in the
setting of MAP estimation with unambiguity regu-
larization, and we can obtain a similar result but with
pθ(zi|xi) replaced with p̃(xi, zi) in each of the four
cases.

Note that if Dirichlet priors are used over gram-
mar rule probabilities θ, then p̃(xi, zi) can be rep-
resented as the product of a set of weights in
mean-field variational inference (Kurihara and Sato,
2004). Therefore in order to compute q∗(zi), when
0 < σ < 1, we simply need to raise all the weights
to the power of 1

1−σ before running the normal step
of computing q∗(zi) in standard mean-field varia-
tional inference; and when σ ≥ 1, we can simply
use the weights to find the best parse of the training
sentence and assign probability 1 to it.

4 Experiments

We tested the effectiveness of unambiguity regular-
ization in unsupervised learning of a type of depen-
dency grammar called the dependency model with
valence (DMV) (Klein and Manning, 2004). We
report the results on the Wall Street Journal cor-
pus (with section 2-21 for training and section 23
for testing) in section 4.1–4.3, and the results on
the corpora of eight additional languages in section

Testing Accuracy
Value of σ ≤ 10 ≤ 20 All
0 (standard EM) 46.2 39.7 34.9
0.25 53.7 44.7 40.3
0.5 51.9 42.9 38.8
0.75 51.6 43.1 38.8
1 (Viterbi EM) 58.3 45.2 39.4

Table 1: The dependency accuracies of grammars learned
by our approach with different values of σ.

4.4. On each corpus, we trained the learner on the
gold-standard part-of-speech tags of the sentences
of length ≤ 10 with punctuation stripped off. We
started our algorithm with the informed initialization
proposed in (Klein and Manning, 2004), and termi-
nated the algorithm when the increase in the value
of the objective function fell below a threshold of
0.001%. To evaluate a learned grammar, we used the
grammar to parse the testing corpus and computed
the dependency accuracy which is the percentage of
the dependencies that are correctly matched between
the parses generated by the grammar and the gold
standard parses. We report the dependency accu-
racy on subsets of the testing corpus corresponding
to sentences of length ≤ 10, length ≤ 20, and the
entire testing corpus.

4.1 Results with Different Values of σ

We compared the performance of our approach with
five different values of the parameter σ: 0 (i.e., stan-
dard EM), 0.25, 0.5, 0.75, 1 (i.e., Viterbi EM). Table
1 shows the experimental results. It can be seen that
learning with unambiguity regularization (i.e., with
σ > 0) consistently outperforms learning without
unambiguity regularization (i.e., σ = 0). The gram-
mar learned by Viterbi EM has significantly higher
dependency accuracy in parsing short sentences. We
speculate that this is because short sentences are less
ambiguous and therefore a strong unambiguity regu-
larization is especially helpful in learning the gram-
matical structures of short sentences. On the testing
sentences of all lengths, σ = 0.25 achieves the best
dependency accuracy, which suggests that control-
ling the strength of unambiguity regularization can
contribute to improved performance.

1330



Testing Accuracy
≤ 10 ≤ 20 All

DMV Model
UR-Annealing 63.6 53.1 47.9
UR-Annealing&Prior 66.6 57.7 52.3
PR-S (Gillenwater et al., 2010) 62.1 53.8 49.1
SLN TieV&N (Cohen and Smith, 2009) 61.3 47.4 41.4
LN Families (Cohen et al., 2008) 59.3 45.1 39.0

Extended Models
UR-Annealing on E-DMV(2,2) 71.4 62.4 57.0
UR-Annealing on E-DMV(3,3) 71.2 61.5 56.0
L-EVG (Headden et al., 2009) 68.8 - -
LexTSG-DMV (Blunsom and Cohn, 2010) 67.7 - 55.7

Table 2: The dependency accuracies of grammars learned
by our approach (denoted by “UR”) with annealing and
prior, compared with previous published results.

4.2 Results with Annealing and Prior

We annealed the value of σ from 1 to 0 when run-
ning our approach. We reduced the value of σ at
a constant speed such that it reaches 0 at iteration
100. The results of this experiment (shown as “UR-
Annealing” in Table 2) suggest that annealing the
value of σ not only helps circumvent the problem of
choosing an optimal value of σ, but may also lead to
substantial improvements over the results of learn-
ing using any fixed value of σ.

Dirichlet priors with the hyperparameter α set to a
value less than 1 are often used to induce parameter
sparsity. We added Dirichlet priors over grammar
rule probabilities and ran the variational inference
version of our approach. The value of α was set to
0.25 as suggested by previous work (Cohen et al.,
2008; Gillenwater et al., 2010). When tested with
different values of σ, adding Dirichlet priors with
α = 0.25 consistently boosted the dependency ac-
curacy of the learned grammar by 1–2%. When the
value of σ was annealed during variational inference
with Dirichlet priors, the dependency accuracy was
further improved (shown as “UR-Annealing&Prior”
in Table 2).

The first part of Table 2 also compares our re-
sults with the best results that have been published in
the literature for unsupervised learning of the DMV
model (with different priors or regularizations than
ours). It can be seen that our best result (unambigu-
ity regularization with annealing and prior) clearly
outperforms previous results. Furthermore, we ex-

pect our approach to be more computationally ef-
ficient than the other approaches, because our ap-
proach only inserts an additional parameter expo-
nentiation step into each iteration of standard EM or
variational inference, in contrast to the other three
approaches all of which involve additional gradient
descent optimization steps in each iteration.

4.3 Results on Extended Models

It has been pointed out that the DMV model is very
simplistic and cannot capture many linguistic phe-
nomena; therefore a few extensions of DMV have
been proposed, which achieve significant improve-
ment over DMV in unsupervised grammar learn-
ing (Headden et al., 2009; Blunsom and Cohn,
2010). We examined the effect of unambiguity reg-
ularization on E-DMV, an extension of DMV (with
two different settings: (2,2) and (3,3)) (Headden et
al., 2009; Gillenwater et al., 2010). As shown in
the second part of Table 2, unambiguity regular-
ization with annealing on E-DMV achieves better
dependency accuracies than the state-of-the-art ap-
proaches to unsupervised parsing with extended de-
pendency models. Addition of Dirichlet priors, how-
ever, did not further improve the accuracies in this
setting. Note that E-DMV is an unlexicalized ex-
tension of DMV that is relatively simple. We spec-
ulate that the performance of unambiguity regular-
ization can be further improved if applied to more
advanced models like LexTSG-DMV (Blunsom and
Cohn, 2010).

4.4 Results on More Languages

We examined the effect of unambiguity regulariza-
tion with the DMV model on the corpora of eight
additional languages2. The experimental results of
all the nine languages are summarized in Table 3. It
can be seen that learning with unambiguity regular-
ization (i.e., with σ > 0) outperforms learning with-
out unambiguity regularization (i.e., σ = 0) on eight
out of the nine languages, but the optimal value of
σ is very different across languages. Annealing the
value of σ from 1 to 0 does not always lead to fur-
ther improvement over using the optimal value of σ

2The corpora are from the PASCAL Challenge on
Grammar Induction (http://wiki.cs.ox.ac.uk/
InducingLinguisticStructure/SharedTask).
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for each language, but on average it has better per-
formance than using any fixed value of σ and hence
is useful when the optimal value of σ is hard to iden-
tify.

5 Related Work

Deterministic annealing (DA) (Rose, 1998; Smith
and Eisner, 2004) also extends the standard EM al-
gorithm by exponentiating the posterior probabili-
ties of the hidden variables in the E-step. However,
the goal of DA is to improve the optimization of a
non-concave objective function, which is achieved
by setting the exponent in the E-step to a value close
to 0, so that the distribution of the hidden variables
becomes nearly uniform and the objective function
becomes almost concave and therefore easy to opti-
mize; this exponent is then gradually increased to
1 to optimize the original objective function. In
contrast, the goal of unambiguity regularization is
to bias learning in favor of unambiguous grammars,
which is achieved by setting the exponent in the E-
step (i.e., 1

1−σ in Eq.1) to a value larger than 1, so
that the distribution of the hidden variables becomes
less uniform (i.e., parses become less ambiguous); in
our annealing approach, the exponent is initialized
to a very large value (positive infinity in our experi-
ment) to push the learner away from the ambiguous
initial grammar, and then gradually decreased to 1 to
avoid inducing excessive unambiguity in the learned
grammar. The empirical results of Smith and Eisner
(2004) show that DA resulted in lower parsing ac-
curacy compared with standard EM in unsupervised
constituent parsing; and a “skew” posterior term had
to be inserted into the E-step formulation of DA to
boost its accuracy over that of standard EM. In con-
trast, the results of our experiments show that unam-
biguity regularization leads to significantly higher
parsing accuracy than standard EM.

Unambiguity regularization is also related to
the minimum entropy regularization framework for
semi-supervised learning (Grandvalet and Bengio,
2005; Smith and Eisner, 2007), which tries to min-
imize the entropy of the class label or hidden vari-
ables on unlabeled data in addition to maximizing
the likelihood of labeled data. However, entropy
regularization is either motivated by the theoreti-
cal result that unlabeled data samples are informa-

tive when classes are well separated (Grandvalet and
Bengio, 2005), or derived from the expected condi-
tional log-likelihood (Smith and Eisner, 2007). In
contrast, our approach is motivated by the observed
unambiguity of natural language grammars. One
implication of this difference is that if our approach
is applied to semi-supervised learning, the regular-
ization term would be applied to labeled sentences
as well (by ignoring the labels) because the target
grammar shall be unambiguous on all the training
sentences.

The sparsity bias, which favors a grammar with
fewer grammar rules, has been widely used in un-
supervised grammar learning (Chen, 1995; Johnson
et al., 2007; Gillenwater et al., 2010). Although a
more sparse grammar is often less ambiguous, in
general that is not always the case. We have shown
that unambiguity regularization could lead to better
performance than approaches utilizing the sparsity
bias, and that the two types of biases can be applied
together for further improvement in the learning per-
formance.

6 Conclusion

We have introduced unambiguity regularization, a
novel approach to unsupervised learning of proba-
bilistic natural language grammars. It is based on
the observation that natural language grammars are
remarkably unambiguous in the sense that in parsing
natural language sentences they tend to concentrate
the probability mass to a tiny portion of all possi-
ble parses. By using posterior regularization, we
incorporate an inductive bias into learning in favor
of grammars that are unambiguous on natural lan-
guage sentences. The resulting family of algorithms
includes standard EM and Viterbi EM, as well as
the softmax-EM algorithm which falls between stan-
dard EM and Viterbi EM. The softmax-EM algo-
rithm can be implemented by adding a simple pa-
rameter exponentiation step into standard EM. In
our experiments of unsupervised dependency gram-
mar learning, we show that unambiguity regulariza-
tion is beneficial to learning, and by incorporating
regularization strength annealing and sparsity priors
our approach outperforms the current state-of-the-
art grammar learning algorithms. For future work,
we plan to combine unambiguity regularization with
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Arabic Basque Czech Danish Dutch English Portuguese Slovene Swedish

σ = 0 (standard EM) 27.4 32.1 27.8 35.6 29.4 34.9 23.7 30.6 31.9
σ = 0.25 30.6 39.3 27.2 35.2 30.9 40.3 27.7 23.8 42.0
σ = 0.5 32.6 40.6 33.0 37.4 32.7 38.8 27.5 15.3 29.3
σ = 0.75 31.6 41.8 16.1 36.0 35.1 38.8 26.2 15.1 32.7
σ = 1 (Viterbi EM) 29.6 39.8 28.6 33.6 28.0 39.4 27.3 14.6 37.2
UR-Annealing 26.7 41.6 39.3 34.1 43.1 47.8 26.4 16.4 46.0

Table 3: The dependency accuracies (on sentences of all lengths in the testing corpus) of grammars learned by our
approach from the corpora of the following languages: Arabic (Hajič et al., 2004), Basque (Aduriz et al., 2003), Czech
(Hajič et al., 2000), Danish (Buch-Kromann et al., 2007), Dutch (Beek et al., 2002), English, Portuguese (Afonso et
al., 2002), Slovene (Erjavec et al., 2010), Swedish (Nivre et al., 2006).

other types of priors and regularizations for unsu-
pervised grammar learning, to apply it to more ad-
vanced grammar models, and to explore alternative
formulations of unambiguity regularization.
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Abstract

Extracting opinion expressions from text is
usually formulated as a token-level sequence
labeling task tackled using Conditional Ran-
dom Fields (CRFs). CRFs, however, do not
readily model potentially useful segment-level
information like syntactic constituent struc-
ture. Thus, we propose a semi-CRF-based ap-
proach to the task that can perform sequence
labeling at the segment level. We extend the
original semi-CRF model (Sarawagi and Co-
hen, 2004) to allow the modeling of arbitrar-
ily long expressions while accounting for their
likely syntactic structure when modeling seg-
ment boundaries. We evaluate performance on
two opinion extraction tasks, and, in contrast
to previous sequence labeling approaches to
the task, explore the usefulness of segment-
level syntactic parse features. Experimental
results demonstrate that our approach outper-
forms state-of-the-art methods for both opin-
ion expression tasks.

1 Introduction

Accurate opinion expression identification is crucial
for tasks that benefit from fine-grained opinion anal-
ysis (Wiebe et al., 2005): e.g., it is a first step
in characterizing the sentiment and intensity of the
opinion; it provides a textual anchor for identifying
the opinion holder and the target or topic of an opin-
ion; and these, in turn, form the basis of opinion-
oriented question answering and opinion summa-
rization systems. In this paper, we focus on opin-
ion expressions as defined in Wiebe et al. (2005) —

subjective expressions that denote emotions, senti-
ment, beliefs, opinions, judgments, or other private
states (Quirk et al., 1985) in text. These include
direct subjective expressions (DSEs): explicit men-
tions of private states or speech events expressing
private states; and expressive subjective expressions
(ESEs): expressions that indicate sentiment, emo-
tion, etc. without explicitly conveying them. Follow-
ing are two example sentences labeled with DSEs
and ESEs.

(1) The International Committee of the
Red Cross, [as usual][ESE], [has refused to
make any statements][DSE].

(2) The Chief Minister [said][DSE] that [the
demon they have reared will eat up their
own vitals][ESE].

As a type of information extraction task, opinion
expression extraction has been successfully tackled
in the past via sequence tagging methods: Choi et
al. (2006) and Breck et al. (2007), for example, ap-
ply conditional random fields (CRFs) (Lafferty et
al., 2001) using sophisticated token-level features.
In token-level sequence labeling, labels are assigned
to single tokens, and the label of each token depends
on the current token and the label of the previous to-
ken (we consider the usual first-order assumption).
Segment-based features — features that describe a
set of related contiguous tokens, e.g., a phrase or
constituent — might provide critical information for
identifying opinion expressions; they cannot, how-
ever, be readily and naturally represented in the CRF
model.
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Our goal in this work is to extract opinion ex-
pressions at the segment level with semi-Markov
conditional random fields (semi-CRFs). Semi-CRFs
(Sarawagi and Cohen, 2004) are more powerful than
CRFs in that they allow one to construct features
to capture characteristics of the subsequences of a
sentence. They are defined on semi-Markov chains
where labels are attached to segments instead of
tokens and label dependencies are modeled at the
segment-level. Previous work has shown that semi-
CRFs outperform CRFs on named entity recog-
nition (NER) tasks (Sarawagi and Cohen, 2004;
Okanohara et al., 2006). However, to the best of
our knowledge, semi-CRF techniques have not been
investigated for opinion expression extraction.

The contribution of this paper is a semi-CRF-
based approach for opinion expression extraction
that leverages parsing information to provide better
modeling of opinion expressions. Specifically, pos-
sible segmentations are generated by taking into ac-
count likely syntactic structure during learning and
inference. As a result, arbitrarily long expressions
can be modeled and their boundaries can be influ-
enced by probable syntactic structure. We also ex-
plore the impact of syntactic features for extracting
opinion expressions.

We evaluate our model on two opinion extrac-
tion tasks: identifying direct subjective expres-
sions (DSEs) and expressive subjective expressions
(ESEs). Experimental results show that our ap-
proach outperforms the state-of-the-art approach for
the task by a large margin. We also identify useful
syntactic features for the task.

2 Related Work

Previous research to extract direct subjective ex-
pressions exists, but is mainly focused on single-
word expressions (Wiebe et al., 2005; Wilson et
al., 2005; Munson et al., 2005). More recent stud-
ies tackle opinion expression extraction at the ex-
pression level. Breck et al. (2007) formulate the
problem as a token-level sequence labeling prob-
lem; their CRF-based approach was shown to sig-
nificantly outperform two subjectivity-clue-based
baselines. Others extend the token-level approach
to jointly identify opinion holders (Choi et al.,
2006), and to determine the polarity and inten-

sity of the opinion expressions (Choi and Cardie,
2010). Reranking the output of a simple sequence
labeler has been shown to further improve the ex-
traction of opinion expressions (Johansson and Mos-
chitti, 2010; Johansson and Moschitti, 2011); impor-
tantly, their reranking approach relied on features
that encoded syntactic structure. All of the above
approaches, however, are based on token-level se-
quence labeling, which ignores potentially useful
phrase-level information.

Semi-CRFs (Sarawagi and Cohen, 2004) are gen-
eral CRFs that relax the Markovian assumptions to
allow sequence labeling at the segment level. Pre-
vious work has shown that semi-CRFs are supe-
rior to CRFs for NER and Chinese word segmen-
tation (Sarawagi and Cohen, 2004; Okanohara et al.,
2006; Andrew, 2006). The task of opinion expres-
sion extraction is known to be harder than traditional
NER since subjective expressions exhibit substantial
lexical variation and their recognition requires more
attention to linguistic structure.

Parsing has been leveraged to improve perfor-
mance for numerous natural language tasks. In opin-
ion mining, numerous studies have shown that syn-
tactic parsing features are very helpful for opinion
analysis. A lot of work uses syntactic features to
identify opinion holders and opinion topics (Bethard
et al., 2005; Kim and Hovy, 2006; Kobayashi et al.,
2007; Joshi and Carolyn, 2009; Wu et al., 2009;
Choi et al., 2005). Jakob et al. (2010) recently
employed dependency path features for the extrac-
tion of opinion targets. Johansson and Moschitti
(2010; Johansson and Moschitti (2011) also success-
fully employed syntactic features that indicate de-
pendency relations between opinion expressions for
the task of opinion expression extraction. However,
as their approach is based on the output of a se-
quence labeler, these features cannot be encoded to
help the learning of the sequence labeler.

3 Approach

We formulate the extraction of opinion expres-
sions as a sequence labeling problem. Unlike
previous sequence-labeling approaches to the task
(e.g., Breck et al. (2007)), however, we aim to model
segment-level, rather than token-level, information.
As a result, we explore the use of semi-CRFs, which
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can assign labels to segments instead of tokens;
hence, features can be defined at the segment level.
For example, features like JX is a verb phraseK can
be easily encoded in the model. In the following
subsections, we first introduce standard semi-CRFs
and then describe our semi-CRF-based approach for
opinion expression extraction.

3.1 Semi-CRFs

In semi-CRFs, each observed sentence x is repre-
sented as a sequence of consecutive segments s =
〈s1, ..., sn〉, where si is a triple si = (ti, ui, yi), ti
denotes the start position of segment si, ui denotes
the end position, and yi denotes the label of the seg-
ment. Segments are restricted to have positive length
less than or equal to a maximum length of L that has
been seen in the corpus (1 ≤ ui − ti + 1 ≤ L).

Features in semi-CRFs are defined at the seg-
ment level rather than the word level. The fea-
ture function g(i, x, s) is a function of x, the cur-
rent segment si, and the label yi−1 of the previ-
ous segment si−1 (we consider the usual first-order
Markovian assumption). It can also be written as
g(x, ti, ui, yi, yi−1). The conditional probability of
a segmentation s given a sequence x is defined as

p(s|x) =
1

Z(x)
exp

{∑
i

∑
k

λkgk(i, x, s)

}
(1)

where

Z(x) =
∑
s′∈S

exp

{∑
i

∑
k

λkgk(i, x, s
′)

}

and the set S contains all possible segmentations ob-
tained from segment candidates with length ranging
from 1 to the maximum length L.

The correct segmentation s of a sentence
is defined as a sequence of entity segments
(i.e., the entities to be extracted) and non-
entity segments. For example, the correct
segmentation of sentence (2) in Section 1 is
〈(The,NONE),(Chief,NONE),(Minister,NONE),
(said,DSE),(that,NONE),(the demon they have
reared will eat up their own vitals,ESE),(.,NONE)〉.
Here, non-entity segments are represented as
unit-length segments.

3.2 Semi-CRF-based Approach for Opinion
Expression Extraction

In this section, we present an extended version of
semi-CRFs in which we can make use of parsing in-
formation in learning entity boundaries and labels
for opinion expression extraction.

As discussed in Section 3.1, the maximum entity
length L is fixed during training to generate segment
candidates in the standard semi-CRFs. In opinion
expression extraction, L is unbounded since opin-
ion expressions may be clauses or whole sentences,
which can be arbitrarily long. Thus, fixing an upper
bound on segment length based on the observed en-
tities may lead to an incorrect removal of segments
during inference. Also note that possible segment
candidates are generated based on the length con-
straint, which means any span of the text consisting
of no more than L words would be considered as
a possible segment. This would lead to the consid-
eration of implausible segments, e.g., “The Chief”
in sentence (2) is an incorrect segment within the
multi-word expression “The Chief Minister”.

To address these problems, we propose tech-
niques to incorporate parsing information into the
modeling of segments in semi-CRFs. More specifi-
cally, we construct segment units from the parse tree
of each sentence1, and then build up possible seg-
ment candidates based on those units. In the parse
tree, each leaf phrase or leaf word is considered to be
a segment unit. Each segment unit performs as the
smallest unit in the model (words within a segment
unit will be automatically assigned the same label).
The segment units are highlighted in rectangles in
the parse tree example in Figure 1. As the segment
units are not separable, we avoid implausible seg-
ments, which truncate multi-word expressions. For
example, “both ridiculous and”, would not be con-
sidered a possible segment in our model.

To generate segment candidates for the model,
we consider meaningful combinations of consecu-
tive segment units. Intuitively, a sentence is made
up of several parts, and each has its own grammati-
cal role or meaning. We define the boundary of these
parts based on the parse tree structure. Specifically,

1We use the Stanford Parser http://nlp.stanford.
edu/software/lex-parser.shtml to generate the
parse trees.
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Figure 1: A parse tree example. There are seven segment units in the sentence. The shaded regions correspond to
segment groups, where Gi represents the segment group starting from segment unit Ui.

we consider each segment unit to belong to a mean-
ingful group defined by the span of its parent node.
Two consecutive segment units are considered to be-
long to the same group if the subtrees rooted in their
parent nodes have the same rightmost child. For ex-
ample, in Figure 1, segment units “are” and “both
ridiculous and odd” belong to the same group, while
“I” and “found” belong to different groups.

Algorithm 1 Construction of segment candidates
Input: A training sentence x
Output: A set of segment candidates S

1: Obtain the segment units U = (U1, ..., Um) by
preorder traversal of the parse tree T , each Ui

corresponds to a node in T
2: for i = 1 to m do
3: j ← i− 1
4: while j < m− 1 and

commonGroup(Ui, ..., Uj+1) do
5: j ← j + 1
6: for k = i to j do
7: for t = 0 to j − k do
8: s← segment(Uk, ..., Uk+t)
9: S ← S ∪ s

10: Return S

Following this idea, we generate possible seg-
ment candidates by Algorithm 1. Starting from
each segment unit Ui, we first find the rightmost
segment unit Uj that belongs to the same group
as Ui. Function commonGroup(Ui, ..., Uj) re-
turns True if Ui, ..., Uj are within the same group
(the parent nodes of Ui,...,Uj have the same right-

most child in their subtrees), otherwise it returns
False. Then we enumerate all possible combina-
tions of segment units Ui, ..., Uk where i ≤ k ≤
j. segment(Ui, ..., Uj) denotes the segment ob-
tained by concatenating words in the consecutive
segment units Ui,...,Uj . This way, segment can-
didates are generated without constraints on length
and are meaningful for learning entity boundaries.

Based on the generated segment candidates, the
correct segmentation for each training sentence can
be obtained as follows. For opinion expressions
that do not match any segment candidate, we break
them down into smaller segments using a greedy
matching process. Starting from the start position
of the expression, we search for the longest candi-
date that is contained in the expression, add it to
the correct segmentation for the sentence, set the
start position to be the next position, and repeat the
process. Using this process, the correct segmen-
tation of sentence (2) would be s = 〈(The Chief
Minister,NONE),(said,DSE),(that,NONE),(the de-
mon they have reared,ESE), (will eat up their own
vitals,ESE),(.)〉. Note that here non-entities corre-
spond to segment units instead of single-word seg-
ments in the original semi-CRF model.2

After obtaining the set of possible segment candi-
dates and the correct segmentation s for each train-
ing sentence, the semi-CRF model can be trained.
The goal of learning is to find the optimal parameter
λ by maximizing log-likelihood. We use the limited-

2There are cases where words within a segment unit have
different labels. This may be due to errors by the human anno-
tators or the errors in the parser. In such cases, we consider each
word within the segment unit as a segment.
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memory BFGS algorithm (Liu and Nocedal, 1989)
for optimization in our implementation, where the
gradient of the log-likelihood L (corresponding to
one instance x) is computed:

∂L

∂λk
=

∑
i

gk(x, ti, ui, yi, yi−1)

−
∑
s′∈S

∑
y,y′

∑
j

gk(x, t
′
j , u
′
j , y, y

′)p(y, y′|x)

(2)

where S is all possible segmentations consisting of
the generated segment candidates, p(y, y′|x) is the
probability of having label y for the current segment
s′j (with boundary (t′j , u

′
j)) and label y′ for the pre-

vious segment s′j−1.
We use a forward-backward algorithm to com-

pute the marginal distribution p(y, y′|x) and the nor-
malization factor Z(x) efficiently. For inference we
seek the best segmentation s∗ = arg maxs p(s|x),
where p(s|x) is defined by Equation 1. We im-
plement efficient inference using an extension of
Viterbi algorithm to segments. In particular, define
V (j, y) as the largest unnormalized probability of
p(s1:j |x) with label y at the ending position j. Then
we have

V (j, y) = max
(i,j)∈s:,j

max
y′

φ(x, i, j, y, y′)V (i− 1, y′)

where

φ(x, i, j, y, y′) = exp

{∑
k

λkgk(x, i, j, y, y
′)

}
and s:,j denotes the set of the generated segment
candidates ending at position j. The best segmen-
tation can be obtained from tracing the path of
maxy V (n, y).

3.3 Features
Here we described the features used in our model.
Very generally, we include CRF-style features that
are segment-level extensions of the token-level fea-
tures. We also include new segment-level features
that can be naturally represented in semi-CRFs but
not CRFs.

For CRF-style features, we consider the string
representation of the current word, its part-of-
speech, and a dictionary-derived feature, which is

based on a subjectivity lexicon provided by Wilson
et al. (2005). The lexicon consists of a set of words
that can act as strong or weak cues to subjectivity.
If the current word appears as an entry in the lexi-
con, then a feature strong or weak will be fired if the
entry is of that strength. These features have been
successfully employed in previous work (Breck et
al., 2007). To employ them in our model, we sim-
ply extend the feature definition to the segment level.
For example, a token-level feature Jx is great K will
be extended to a segment-level feature Js contains
great K.

Previous work on semi-CRFs has explored fea-
tures such as the length of the segment, the position
of the segment in the current segmentation (at the be-
ginning or at the end), indicators for the start word
and end word within the segment, and indicators for
words before and after the segment. These features
have been shown useful for the task of NE recogni-
tion (Sarawagi and Cohen, 2004; Okanohara et al.,
2006). However, we only found the position of the
segment to be helpful for the extraction of opinion
expressions, probably due to the lack of patterns in
the length distribution and word choices of opinion
expressions.

Besides the above features, we design new
segment-level syntactic features to capture the syn-
tactic patterns of opinion expressions. Syntactic pat-
terns are often used to identify useful information in
information extraction tasks. In our task, we found
that the majority of opinion expressions involve verb
phrases.3 For example, “was encouraged”, “ex-
pressed goodwill”, “cannot accept” are all within a
VP constituent. To capture such structural prefer-
ences, we define several syntax-based parse features
for VP-related constituents.4

Let VPROOT denote a VP constituent whose par-
ent node is not VP, and let VPLEAF denote a VP
constituent whose children nodes are non-VP. De-
note the head of VPLEAF as the predicate, and its
next segment unit as the argument. If a segment con-
sists of words in the VP nodes visited by the preorder

3The percentages of opinion expressions involving
VP/NP/PP are 64.13%/18.43%/5.92% for DSEs and
43.22%/24.99%/11.77% for ESEs in the data set we used.

4We also conducted experiments with NP and PP-related
features, and could not find any performance improvement for
the tasks.
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traversal from a VPROOT to a VPLEAF, then we re-
fer to it as a verb-cluster segment. If a segment con-
sists of a verb cluster and the argument in VPLEAF,
we consider it as a VP segment. The following fea-
tures are defined for verb-cluster segments and VP
segments.

VPcluster: Indicates whether or not the segment
matches the verb-cluster structure.

VPpred: A feature of the syntactic category and
the word of the head of VPLEAF. The head of
VPLEAF is the predicate of the verb phrase, which
may encode some intention of opinions in the verb
phrase. For example, if “warned” is the head of
VPLEAF rather than “informed”, the chance of the
segment being an opinion expression increases.

VParg: A feature of the syntactic category and
the head word of the argument in VPLEAF. For ex-
ample, the noun phrase “a negative stand” is the ar-
gument of the predicate “take” in the verb phrase
“take a negative stand”. The argument in the verb
phrase (could be a noun phrase, adjectival phrase or
prepositional phrase) may convey some relevant in-
formation for identifying opinion expressions.

VPsubj: Whether the verb clusters or the argu-
ment in the segment contains an entry from the sub-
jectivity lexicon. For example, the word “negative”
is in the lexicon, so the segment “take a negative
stand” has a feature ISVPSUBJ.

4 Experiments

For evaluation, we use the MPQA 1.2 corpus (Wiebe
et al., 2005)5, a widely used data set for fine-grained
opinion analysis. It contains 535 news articles, a to-
tal of 11,114 sentences with subjectivity-related an-
notations at the phrase level. We focus on the task
of extracting two types of opinion expressions: di-
rect subjective expressions (DSEs) and expressive
subjective expressions (ESEs). Table 1 shows some
statistics of the corpus. As in prior research that
uses the corpus, we set aside the standard 135 docu-
ments as a development set and use 400 documents
as the evaluation set. All experiments employ 10-
fold cross validation on the evaluation set, and the
average over all runs is reported.

5Available at http://www.cs.pitt.edu/mpqa/.

DSEs ESEs
Sentences with opinions(%) 55.89 57.93
TotalNum 9746 11730
MaxLength 15 40
Length ≥ 1 (%) 43.38 71.65
Length ≥ 4 (%) 9.44 35.01

Table 1: Statistics of opinion expressions in the MPQA
Corpus.

4.1 Evaluation Metrics

We use precision, recall, and F-measure to evalu-
ate the quality of the model. Precision is defined
as |C∩P |

|P | and recall, as |C∩P |
|C| , where C and P are

the sets of correct and predicted expression spans,
respectively. F-measure is computed as 2PR

P+R . Be-
cause the boundaries of opinion expressions are hard
to define even for human annotators (Wiebe et al.,
2005), previous research mainly focused on soft pre-
cision and recall measures for performance evalu-
ation. Breck et al. (2007) introduced an overlap
measure, which considers a predicted expression to
be correct if it overlaps with a correct expression.
We refer to this metric as Binary Overlap. Johans-
son and Moschitti (2010) provides a stricter measure
that computes the proportion of overlapping spans:
if a correct expression s overlaps with a predicted
expression s′, the overlap contributes value |s∩s′|

|s′| to
|C ∩ P | instead of value 1. We refer to this metric
as Proportional Overlap. To compare with previous
work, we present our results according to both met-
rics.

4.2 Baseline Methods

As a baseline, we use the token-level CRF-based ap-
proach of Breck et al. (2007) applied to the MPQA
dataset. We employ a very similar, but not iden-
tical set of features: indicators for specific words
at the current location and neighboring words in a
[−4,+4] window, part-of-speech features, and opin-
ion lexicon features for tokens that are contained in
the subjectivity lexicon (see Section 3.3). We do not
include WordNet, Levin’s verb categorization, and
FrameNet features.

We also include two variants of standard CRFs as
baselines: segment-CRF and syntactic-CRF. They
incorporate segmentation information into standard
CRFs without modifying the Markovian assump-
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DSE Extraction ESE Extraction
Method Precision Recall F-measure Precision Recall F-measure
CRF 82.83 49.38 61.87 78.56 43.57 56.05
segment-CRF 82.52 51.48 63.41 78.90 44.46 56.88
syntactic-CRF 82.48 49.09 61.55 78.41 43.39 55.95
semi-CRF 66.67 74.13 70.20 71.21 57.41 63.57
new-semi-CRF 67.72∗∗ 74.33 70.87∗ 73.57∗∗∗ 57.63 64.74∗∗

semi-CRF(w/ syn) 64.86 74.10 69.17 70.68 56.61 62.87
new-semi-CRF(w/ syn) 70.12∗∗∗ 74.74∗ 72.36∗∗∗ 73.61∗∗∗ 59.27∗∗∗ 65.67∗∗∗

Table 2: Results for extracting opinion expressions with Binary-Overlap metric. (w/ syn) indicates the inclusion of
syntactic parse features VPpre, VParg and VPsubj. Results of new-semi-CRF that are statistically significantly greater
than semi-CRF according to a two-tailed t-test are indicated with ∗(p < 0.1), ∗∗(p < 0.05), ∗∗∗(p < 0.005). T-test
results are also shown for new-semi-CRF(w/ syn) versus semi-CRF(w/ syn).

DSE Extraction ESE Extraction
Method Precision Recall F-measure Precision Recall F-measure
CRF 77.91 46.45 58.20 67.72 37.55 48.31
segment-CRF 77.86 48.58 59.83 68.03 38.34 49.04
syntactic-CRF 77.73 46.27 58.01 67.80 37.60 48.37
semi-CRF 60.38 68.34 64.11 57.30 46.20 51.16
new-semi-CRF 62.50∗∗ 68.59∗ 65.41∗ 61.69∗∗∗ 47.44∗∗ 53.63∗∗∗

semi-CRF(w/ syn) 58.69 67.80 62.92 57.09 45.63 50.72
new-semi-CRF(w/ syn) 65.52∗∗∗ 68.91∗∗∗ 67.17∗∗∗ 61.66∗∗∗ 48.77∗∗∗ 54.47∗∗∗

Table 3: Results for extracting opinion expressions with Proportional-Overlap metric. Notation is the same as above.

tion. Segment-CRF treats segment units obtained
from the parser as word tokens. For example, in
Figure 1, the segment units the statement and both
ridiculous and odd will be treated as word tokens.
Syntactic-CRF encodes segment-level syntactic in-
formation in a standard token-level CRF as input
features. We consider the VP-related segment fea-
tures introduced in Section 3.3. VPPRE and VPARG

are added to the head word of the corresponding verb
phrase, and VPSUBJ and VPCLUSTER are added to
each token within the corresponding segment.

Another baseline method is the original semi-
CRF model (Sarawagi and Cohen, 2004). To the
best of our knowledge, our work is the first to ex-
plore the use of semi-CRFs on the extraction of
opinion expressions. They are considered to be more
powerful than CRFs since they allow information to
be represented at the expression level. The model
requires an input of the maximum entity length. We
set it to 15 for DSE and 40 for ESE. For segment fea-
tures, we used the same features as in our approach
(see Section 3.3).

4.3 Results

Table 2 and Table 3 show the results of DSE and
ESE extraction using two different metrics. The
standard token-based CRF baseline of Breck et al.
(2007) is labeled CRF; the original semi-CRF base-
line is labeled semi-CRF; and our extended semi-
CRF approach is labeled new-semi-CRF. For semi-
CRF and new-semi-CRF, the results were obtained
using two different settings of features: the basic
feature set includes features described in Section 3.3
excluding the segment-level syntactic features. In
the second feature setting (labeled as w/ syn in the
tables), we further augment the basic features with
the syntactic parse features.

Using the basic features, we observe that
semi-CRF-based approaches significantly outper-
form CRF and its two variants segment-CRF and
syntactic-CRF in F-Measure on both DSE and ESE
extraction, and new-semi-CRF achieves the best re-
sults. By simply incorporating the segmentation
prior into the standard CRF, segment-CRF achieves
a slight improvement over standard CRF, but the
results are still worse than those of semi-CRF
and new-semi-CRF. However, adding segment-level
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DSE Extraction ESE Extraction
Feature set Precision Recall F-measure Precision Recall F-measure
Basic 67.72 74.33 70.87 73.57 57.63 64.74
Basic+VPpre 70.88 71.44 71.16 73.20 58.20 64.85
Basic+VParg 70.12 74.03 72.02 73.05 58.20 64.79
Basic+VPcluster 70.08 72.94 71.48 73.06 58.45 64.94
Basic+VPsubj 70.04 72.34 71.17 73.31 58.53 65.09
Basic+VPpre+VPsubj 70.91 72.54 71.72 73.61 58.29 65.07
Basic+VParg+VPsubj 70.45 73.53 71.96 74.45 57.80 65.07
Basic+VPpre+VParg+VPsubj 70.12 74.74 72.36 73.61 59.27 65.67
Basic+VPcluster+VPpre+VParg+VPsubj 70.91 72.54 71.72 72.84 58.45 64.86

Table 4: Effect of syntactic features on extracting opinion expressions with Binary-Overlap metric

syntactic features into standard CRF yields slightly
reduced performance. This is not surprising as en-
coding segment-level information into the token-
level CRF is not natural. These experiments in-
dicate that simply encoding segmentation informa-
tion into standard CRF cannot result in large per-
formance gains. The promising F-measure results
obtained by semi-CRF and new-semi-CRF confirm
that relaxing the Markovian assumption on segments
leads to better modeling of opinion expressions. We
can also see that new-semi-CRF consistently outper-
forms the original semi-CRF model. This further
confirms the benefit of taking into account syntactic
parsing information in modeling segments. In Ta-
ble 3, we observe the same general results trend as
in Table 2. The scores are generally lower since the
metric Proportional Overlap is stricter than Binary
Overlap.

We also study the impact of syntactic parse fea-
tures on the semi-Markov CRF models. Here we
consider the combination of VPPRE, VPARG and
VPSUBJ since they turned out to be the most help-
ful features for our tasks. Interestingly, we found
that after incorporating the syntactic parse features,
performance decreases on semi-CRF. This indicates
that syntactic information does not help if learning
and inference take place on segment candidates gen-
erated without accounting for parse information. In
contrast, our approach incorporates syntactic pars-
ing information in modeling segments and meaning-
ful segmentations. We can see in Tables 2 and 3
that adding syntactic features successfully boosts the
performance of our approach.

To further explore the effect of the syntactic fea-

tures, we include the results of our model with dif-
ferent configurations of syntactic features in Table 4
(here we focus on the Binary Overlap metric as
the results with Proportional Overlap demonstrate
a similar conclusion). We can see that using the ba-
sic features and the combination of VPPRE, VPARG

and VPSUBJ yields the best results for both DSE
and ESE extraction. For DSE extraction, combin-
ing these three features improves the precision no-
ticeably from 67.72% to 70.12% while the recall
slightly improves. This indicates that VP-related
structural information is very helpful for modeling
segments as DSEs. However, this trend is not so
clear for ESE extraction. This may be due to the fact
that DSEs often involve verb phrases while ESEs are
represented via a variety of syntactic structures.

Comparison with previous work. In Table 5, we
compare our results to the previous work on opinion
expression extraction (here we also focus on the Bi-
nary Overlap metric due to the similar trend demon-
strated by the Proportional Overlap metric). Breck
et al. (2007) presents the state-of-the-art sequence
labeling approach on the tasks of DSE and ESE ex-
traction. Their best results are shown as Breck et
al. Baseline in the table. Johansson and Mos-
chitti (2010) use a reranking technique on the best
k outputs of a sequence labeler to further improve
their sequence labeling results on the task of ex-
tracting DSEs, ESEs and OSEs (Objective Speech
Events) (we don’t consider OSEs here). Results
using our re-implementation of their approach us-
ing SVM struct (Tsochantaridis et al., 2004) on the
output of CRF are labeled CRF+Reranking Base-
line in the table. We use the same features and
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parameter settings as in their approach. Our ap-
proach+Reranking are results obtained by apply-
ing the reranking step on the output of our new-
semi-CRF approach.

We can see that our approach outperforms the
Breck et al. Baseline on both DSE extraction and
ESE extraction in spite of the fact that we do not
use their WordNet, Levin’s verb categorization, and
FrameNet features. The CRF+Reranking Baseline
does provide a performance increase over the the
baseline CRF results, but overall it cannot beat the
other methods since the CRF baseline is very low.
As one might expect, reranking also succeeds in
boosting the performance of new-semi-CRF, achiev-
ing the best performance on F-measure for both DSE
and ESE extraction. Note that the interannotator
agreement results for these two tasks are 75% for
DSE and 72% for ESE using a similar metric to Bi-
nary Overlap. Our results are much closer to these
interannotator scores than previous systems espe-
cially for DSEs.

Task Method F-measure

DSE Extraction
Breck et al. Baseline 70.65
CRF+Reranking Baseline 63.87
Our approach 72.36
Our approach+Reranking 73.12

ESE Extraction
Breck et al. Baseline 63.43
CRF+Reranking Baseline 58.21
Our approach 65.67
Our approach+Reranking 67.01

Table 5: Comparison of our work with previous work on
opinion expression extraction using the Binary-Overlap
metric

4.4 Discussion

We note that our new-semi-CRF approach outper-
forms the original semi-CRF w.r.t. both precision
and recall, but compared to CRF, our approach
yields a clear improvement on recall but not on pre-
cision. An error analysis helps explain why. We
found that our semi-CRF approach predicted almost
the same number of DSEs as the gold standard la-
bels while CRF only predicted half of them (for ESE
extraction, the trend is similar). With more pre-
dicted entities, the precision is sacrificed but recall is
boosted substantially, and overall we see an increase
in F-measure.

Looking further into the errors, we found sev-
eral mistakes that could potentially be fixed to yield
better a precision score. Some errors were due to
the false prediction of speech events like “said” or
“told” as DSEs in cases where they actually just in-
troduced statements of fact without expressing any
private state. Adding features to distinguish such
cases should help improve performance. Other er-
rors were due to inadequate modeling of the context
surrounding the expressions. For example, “enjoy a
relative advantage” was falsely predicted as an ESE.
If incorporating information about the subject of this
verb phrase which is “products”, this mistake could
be avoided since “products” cannot hold or express
private state. We also noticed some errors caused
by inaccurate parsing and hope to study ways to ac-
count for these in our approach as future work.

By comparing the extraction results across differ-
ent methods, we see that full parsing provides many
benefits for modeling segment boundaries and im-
proving the prediction precision for opinion expres-
sion extraction. For example, given the sentence, “...
who are living [a lot better][ESE] ...”, both CRF and
the original semi-CRF extract “lot better” as an ESE,
while our approach correctly extracts “a lot better”
as an ESE. And we also found many cases where
the original semi-CRF cannot extract the opinion ex-
pressions while our approach can. Another benefit
of utilizing parsing is to speed up learning and infer-
ence. Although in theory, the computational cost of
parsing is O(g × n3) where g is the grammar size
and n is the sentence length while the cost of semi-
CRFs is O(K2 × L× n) where K is the number of
labels and L is the maximum entity length, feature
extraction overhead and the potentially large num-
ber of learning iterations in parameter optimization
may lead to a long training time for semi-CRFs. In
our experiments on the MPQA data set, our machine
with Intel Core 2 Duo CPU and 4GB RAM took 2
hours to fully parse 11,114 sentences using the Stan-
ford Parser, and also 2 hours to train the standard
semi-CRF. With the parsing information, our semi-
CRF-based approach is able to finish training in 15
minutes. As full parsing would be expensive when
the average sentence length is very large, it would be
interesting to study how to utilize parsing with less
cost in our task.
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5 Conclusion

In this paper we propose a semi-CRF-based ap-
proach for extracting opinion expressions that takes
into account during learning and inference the struc-
tural information available from syntactic parsing.
Our approach allows opinion expressions to be iden-
tified at the segment level and their boundaries to
be influenced by their probable syntactic structure.
Experimental evaluations show that our model out-
performs the best existing approaches on two opin-
ion extraction tasks. In addition, we identify useful
syntactic parse features for these tasks that have not
been explored in previous work. Our error analysis
indicates that adding additional features that account
for subjectivity cues in the local context might fur-
ther improve the performance. In future work, we
hope to explore better ways of utilizing parsing in-
formation with less cost. Also, we will apply our
model to additional opinion analysis tasks such as
fine-grained opinion summarization and relation ex-
traction.
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Abstract 

This paper proposes a novel approach to 

extract opinion targets based on word-

based translation model (WTM). At first, 

we apply WTM in a monolingual scenario 

to mine the associations between opinion 

targets and opinion words. Then, a graph-

based algorithm is exploited to extract 

opinion targets, where candidate opinion 

relevance estimated from the mined 

associations, is incorporated with candidate 

importance to generate a global measure. 

By using WTM, our method can capture 

opinion relations more precisely, especially 

for long-span relations. In particular, 

compared with previous syntax-based 

methods, our method can effectively avoid 

noises from parsing errors when dealing 

with informal texts in large Web corpora. 

By using graph-based algorithm, opinion 

targets are extracted in a global process, 

which can effectively alleviate the problem 

of error propagation in traditional 

bootstrap-based methods, such as Double 

Propagation. The experimental results on 

three real world datasets in different sizes 

and languages show that our approach is 

more effective and robust than state-of-art 

methods. 

1 Introduction 

With the rapid development of e-commerce, most 

customers express their opinions on various kinds 

of entities, such as products and services. These 

reviews not only provide customers with useful 

information for reference, but also are valuable for 

merchants to get the feedback from customers and 

enhance the qualities of their products or services. 

Therefore, mining opinions from these vast 

amounts of reviews becomes urgent, and has 

attracted a lot of attentions from many researchers.  

In opinion mining, one fundamental problem is 

opinion target extraction. This task is to extract 

items which opinions are expressed on. In reviews, 

opinion targets are usually nouns/noun phrases. 

For example, in the sentence of “The phone has a 

colorful and even amazing screen”, “screen” is an 

opinion target. In online product reviews, opinion 

targets often are products or product features, so 

this task is also named as product feature 

extraction in previous work (Hu et al., 2004; Ding 

et al., 2008; Liu et al., 2005; Popescu et al., 2005; 

Wu et al., 2005; Su et al., 2008).  

To extract opinion targets, many studies 

regarded opinion words as strong indicators (Hu et 

al., 2004; Popescu et al., 2005; Liu et al., 2005; 

Qiu et al., 2011; Zhang et al., 2010), which is 

based on the observation that opinion words are 

usually located around opinion targets, and there 

are associations between them. Therefore, most 

pervious methods iteratively extracted opinion 

targets depending upon the associations between 

opinion words and opinion targets (Qiu et al., 2011; 

Zhang et al., 2010). For example, “colorful” and 

“amazing” is usually used to modify “screen” in 

reviews about cell phone, so there are strong 

associations between them. If “colorful” and 

“amazing” had been known to be opinion words, 

“screen” is likely to be an opinion target in this 

domain. In addition, the extracted opinion targets 

can be used to expand more opinion words 

according to their associations. It’s a mutual 

reinforcement procedure. 

Therefore, mining associations between opinion 

targets and opinion words is a key for opinion 
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target extraction (Wu et al., 2009). To this end, 

most previous methods (Hu et al., 2004; Ding et al., 

2004; Wang et al., 2008), named as adjacent 

methods, employed the adjacent rule, where an 

opinion target was regarded to have opinion 

relations with the surrounding opinion words in a 

given window. However, because of the limitation 

of window size, opinion relations cannot be 

captured precisely, especially for long-span 

relations, which would hurt estimating associations 

between opinion targets and opinion words. To 

resolve this problem, several studies exploited 

syntactic information such as dependency trees 

(Popescu et al., 2005; Qiu et al., 2009; Qiu et al., 

2011; Wu et al., 2009; Zhang et al., 2010). If the 

syntactic relation between an opinion word and an 

opinion target satisfied a designed pattern, then 

there was an opinion relation between them. 

Experiments consistently reported that syntax-

based methods could yield better performance than 

adjacent methods for small or medium corpora 

(Zhang et al., 2010). The performance of syntax-

based methods heavily depends on the parsing 

performance. However, online reviews are often 

informal texts (including grammar mistakes, typos, 

improper punctuations etc.). As a result, parsing 

may generate many mistakes. Thus, for large 

corpora from Web including a great deal of 

informal texts, these syntax-based methods may 

suffer from parsing errors and introduce many 

noises. Furthermore, this problem maybe more 

serious on non-English language reviews, such as 

Chinese reviews, because that the performances of 

parsing on these languages are often worse than 

that on English. 

To overcome the weakness of the two kinds of 

methods mentioned above, we propose a novel 

unsupervised approach to extract opinion targets 

by using word-based translation model (WTM). 

We formulate identifying opinion relations 

between opinion targets and opinion words as a 

word alignment task. We argue that an opinion 

target can find its corresponding modifier through 

monolingual word alignment. For example in 

Figure 1, the opinion words “colorful” and 

“amazing” are aligned with the target “screen” 

through word alignment. To this end, we use WTM 

to perform monolingual word alignment for mining 

associations between opinion targets and opinion 

words. In this process, several factors, such as 

word co-occurrence frequencies, word positions 

etc., can be considered globally. Compared with 

adjacent methods, WTM doesn’t identify opinion 

relations between words in a given window, so 

long-span relations can be effectively captured 

(Liu et al., 2009). Compared with syntax-based 

methods, without using parsing, WTM can 

effectively avoid errors from parsing informal texts. 

So it will be more robust. In addition, by using 

WTM, our method can capture the “one-to-many” 

or “many-to-one” relations (“one-to-many” means 

that, in a sentence one opinion word modifies 

several opinion targets, and “many-to-one” means 

several opinion words modify one opinion target). 

Thus, it’s reasonable to expect that WTM is likely 

to yield better performance than traditional 

methods for mining associations between opinion 

targets and opinion words.  

Based on the mined associations, we extract 

opinion targets in a ranking framework. All 

nouns/noun phrases are regarded as opinion target 

candidates. Then a graph-based algorithm is 

exploited to assign confidences to each candidate, 

in which candidate opinion relevance and 

importance are incorporated to generate a global 

measure. At last, the candidates with higher ranks 

are extracted as opinion targets. Compared with 

most traditional methods (Hu et al. 2004; Liu et al., 

2005; Qiu et al., 2011), we don’t extract opinion 

targets iteratively based on the bootstrapping 

strategy, such as Double Propagation (Qiu et al., 

2011), instead all candidates are dynamically 

ranked in a global process. Therefore, error 

propagation can be effectively avoided and the 

performance can be improved.  

 
 Figure 1: Word-based translation model for 

opinion relation identification 

The main contributions of this paper are as 

follows. 

1) We formulate the opinion relation 

identification between opinion targets and 

opinion words as a word alignment task. To 

our best knowledge, none of previous methods 

deal with this task using monolingual word 

alignment model (in Section 3.1). 

Translation 

The phone has a colorful and even amazing screen 

The phone has a colorful and even amazing screen 
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2) We propose a graph-based algorithm for 

opinion target extraction in which candidate 

opinion relevance and importance are 

incorporated into a unified graph to estimate 

candidate confidence. Then the candidates 

with higher confidence scores are extracted as 

opinion targets (in Section 3.2). 

3) We have performed experiments on three 

datasets in different sizes and languages. The 

experimental results show that our approach 

can achieve performance improvement over 

the traditional methods. (in Section 4). 

The rest of the paper is organized as follows. In 

the next section, we will review related work in 

brief. Section 3 describes our approach in detail. 

Then experimental results will be given in Section 

4. At the same time, we will give some analysis 

about the results. Finally, we give the conclusion 

and the future work. 

2 Related Work 

Many studies have focused on the task of opinion 

target extraction, such as (Hu et al., 2004; Ding et 

al., 2008; Liu et al., 2006; Popescu et al., 2005; 

Wu et al., 2005; Wang et al., 2008; Li et al., 2010; 

Su et al., 2008; Li et al., 2006). In general, the 

existing approaches can be divided into two main 

categories: supervised and unsupervised methods. 

In supervised approaches, the opinion target 

extraction task was usually regarded as a sequence 

labeling task (Jin et al. 2009; Li et al. 2010; Wu et 

al., 2009; Ma et al. 2010; Zhang et al., 2009). Jin et 

al. (2009) proposed a lexicalized HMM model to 

perform opinion mining. Li et al. (2010) proposed 

a Skip-Tree CRF model for opinion target 

extraction. Their methods exploited three 

structures including linear-chain structure, 

syntactic structure, and conjunction structure. In 

addition, Wu et al. (2009) utilized a SVM classifier 

to identify relations between opinion targets and 

opinion expressions by leveraging phrase 

dependency parsing. The main limitation of these 

supervised methods is that labeling training data 

for each domain is impracticable because of the 

diversity of the review domains.  

In unsupervised methods, most approaches 

regarded opinion words as the important indicators 

for opinion targets (Hu et al., 2004; Popsecu et al., 

2005; Wang et al., 2008; Qiu et al., 2011; Zhang et 

al., 2010). The basic idea was that reviewers often 

use the same opinion words when they comment 

on the similar opinion targets. The extraction 

procedure was often a bootstrapping process which 

extracted opinion words and opinion targets 

iteratively, depending upon their associations. 

Popsecu et al. (2005) used syntactic patterns to 

extract opinion target candidates. After that they 

computed the point-wise mutual information (PMI) 

score between a candidate and a product category 

to refine the extracted results. Hu et al. (2004) 

exploited an association rule mining algorithm and 

frequency information to extract frequent explicit 

product features. The adjective nearest to the 

frequent explicit feature was extracted as an 

opinion word. Then the extracted opinion words 

were used to extract infrequent opinion targets. 

Wang et al. (2008) adopted the similar idea, but 

their method needed a few seeds to weakly 

supervise the extraction process. Qiu et al. (2009, 

2011) proposed a Double Propagation method to 

expand a domain sentiment lexicon and an opinion 

target set iteratively. They exploited direct 

dependency relations between words to extract 

opinion targets and opinion words iteratively. The 

main limitation of Qiu’s method is that the patterns 

based on dependency parsing tree may introduce 

many noises for the large corpora (Zhang et al., 

2010). Meanwhile, Double Propagation is a 

bootstrapping strategy which is a greedy process 

and has the problem of error propagation. Zhang et 

al. (2010) extended Qiu’s method. Besides the 

patterns used in Qiu’s method, they adopted some 

other patterns, such as phrase patterns, sentence 

patterns and “no” pattern, to increase recall. In 

addition they used the HITS (Klernberg et al., 1999) 

algorithm to compute the feature relevance scores, 

which were simply multiplied by the log of feature 

frequencies to rank the extracted opinion targets. In 

this way, the precision of result can be improved.  

3 Opinion Target Extraction Using 

Word-Based Translation Model 

3.1 Method Framework 

As mentioned in the first section, our approach for 

opinion target extraction is composed of the 

following two main components:  

1) Mining associations between opinion targets 

and opinion words: Given a collection of 

reviews, we adopt a word-based translation 
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model to identify potential opinion relations in 

all sentences, and then the associations 

between opinion targets and opinion words are 

estimated.  

2) Candidate confidence estimation: Based on 

these associations, we exploit a graph-based 

algorithm to compute the confidence of each 

opinion target candidate. Then the candidates 

with higher confidence scores are extracted as 

opinion targets.  

3.2 Mining associations between opinion 

targets and opinion words using Word-

based Translation Model 

This component is to identify potential opinion 

relations in sentences and estimate associations 

between opinion targets and opinion words. We 

assume opinion targets and opinion words 

respectively to be nouns/noun phrases and 

adjectives, which have been widely adopted in 

previous work (Hu et al., 2004; Ding et al., 2008; 

Wang et al., 2008; Qiu et al., 2011). Thus, our aim 

is to find potential opinion relations between 

nouns/noun phrases and adjectives in sentences, 

and calculate the associations between them. As 

mentioned in the first section, we formulate 

opinion relation identification as a word alignment 

task. We employ the word-based translation model 

(Brown et al. 1993) to perform monolingual word 

alignment, which has been widely used in many 

tasks, such as collocation extraction (Liu et al., 

2009), question retrieval (Zhou et al., 2011) and so 

on. In our method, every sentence is replicated to 

generate a parallel corpus, and we apply the 

bilingual word alignment algorithm to the 

monolingual scenario to align a noun/noun phase 

with its modifier. 

Given a sentence with n words 

1 2{ , ,..., }nS w w w , the word alignment 

{( , ) | [1, ]}iA i a i n  can be obtained by 

maximizing the word alignment probability of the 

sentence as follows. 

ˆ=arg max ( | )
A

A P A S                    (1) 

where ( , )ii a  means that a noun/noun phrase at 

position i  is aligned with an adjective at position ia . 

If we directly use this alignment model to our task, 

a noun/noun phrase may align with the irrelevant 

words other than adjectives, like prepositions or 

conjunctions and so on. Thus, in the alignment 

procedure, we introduce some constrains: 1) 

nouns/noun phrases (adjectives) must be aligned 

with adjectives (nouns/noun phrases) or null words; 

2) other words can only align with themselves. 

Totally, we employ the following 3 WTMs (IBM 

1~3) to identify opinion relations. 

1

1

( | ) ( | )
j

n

IBM j a

j

P A S t w w



  

2

1

( | ) ( | ) ( | , )
j

n

IBM j a j

j

P A S t w w d j a n



  

3

1 1

( | ) ( | ) ( | ) ( | , )
j

n n

IBM i i j a j

i j

P A S n w t w w d j a n

 

 

(2) 

There are three main factors: ( | )
jj at w w , 

( | , )jd j a n and ( | )i in w , which respectively 

models different information.  

1) ( | )
jj at w w models the co-occurrence 

information of two words in corpora. If an 

adjective co-occurs with a noun/noun phrase 

frequently in the reviews, this adjective has high 

association with this noun/noun phrase. For 

example, in reviews of cell phone, “big” often co-

occurs with “phone’s size”, so “big” has high 

association with “phone’s size”. 

2) ( | , )jd j a l  models word position information, 

which describes the probability of a word in 

position ja aligned with a word in position j .  

3) ( | )i in w models the fertility of words, which 

describe the ability of a word for “one-to-many” 

alignment. i denotes the number of words that are 

aligned with iw . For example, “Iphone4 has 

amazing screen and software”. In this sentence, 

“amazing” is used to modify two words: “screen” 

and “software”. So equals to 2 for “amazing”.  

Therefore, in Eq. (2), 1( | )IBMP A S  only models 

word co-occurrence information. 2 ( | )IBMP A S  

additionally employs word position information. 

Besides these two information, 3( | )IBMP A S  

considers the ability of a word for “one-to-many” 

alignment. In the following experiments section, 

we will discuss the performance difference among 

these models in detail. Moreover, these models 
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may capture “one-to-many” or “many-to-one” 

opinion relations (mentioned in the first section). 

In our knowledge, it isn’t specifically considered 

by previous methods including adjacent methods 

and syntax-based methods. Meanwhile ， the 

alignment results may contain empty-word 

alignments, which means a noun/noun phrase has 

no modifier or an adjective modify nothing in the 

sentence. 

After gathering all word pairs from the review 

sentences, we can estimate the translation 

probabilities between nouns/noun phrases and 

adjectives as follows. 

( , )
( | )

( )

N A
N A

A

Count w w
p w w

Count w
            (3) 

where ( | )N Ap w w means the translation 

probabilities from adjectives to nouns/noun 

phrases. Similarly, we can obtain translation 

probability ( | )A Np w w . Therefore, similar to (Liu 

et al. 2009), the association between a noun/noun 

phrase and an adjective is estimated as follows. 

1| |

( , )

( ( ) (1 ) ( ))

N A

N NA A

Association w w

t p w w t p w w   
    (4) 

where t is the harmonic factor to combine these 

two translation probabilities. In this paper, we set 

0.5t  . For demonstration, we give some 

examples in Table 1. We can see that our method 

using WTM can successfully capture associations 

between opinion targets and opinion words. 

 battery life sound software 

wonderful 0.000 0.042 0.000 

poor 0.032 0.000 0.026 

long 0.025 0.000 0.000 

Table 1: Examples of associations between opinion 

targets and opinion words. 

3.3 Candidate Confidence Estimation 

In this component, we compute the confidence of 

each opinion target candidate and rank them. The 

candidates with higher confidence are regarded as 

the opinion targets. We argue that the confidence 

of a candidate is determined by two factors: 1) 

Opinion Relevance; 2) Candidate Importance. 

Opinion Relevance reflects the degree that a 

candidate is associated to opinion words. If an 

adjective has higher confidence to be an opinion 

word, the noun/noun phrase it modifies will have 

higher confidence to be an opinion target. 

Similarly, if a noun/noun phrase has higher 

confidence to be an opinion target, the adjective 

which modifies it will be highly possible to be an 

opinion word. It’s an iterative reinforcement 

process, which indicates that existing graph-based 

algorithms are applicable.  

Candidate Importance reflects the salience of a 

candidate in the corpus. We assign an importance 

score to an opinion target candidate f according to 

its -tf idf score, which is further normalized by the 

sum of -tf idf scores of all candidates. 

- ( )
( )

- ( )
c

tf idf c
Importance c

tf idf c



              (5) 

where c represents a candidate, tf is the term 

frequency in the dataset, and df is computed by 

using the Google n-gram corpus
1
. 

To model these two factors, a bipartite graph is 

constructed, the vertices of which include all 

nouns/noun phrases and adjectives. As shown in 

Figure 2, the white vertices represent nouns/noun 

phrases and the gray vertices represent adjectives. 

An edge between a noun/noun phrase and an 

adjective represents that there is an opinion 

relation between them. The weight on the edges 

represents the association between them, which are 

estimated by using WTM, as shown in Eq. (4).  

To estimate the confidence of each candidate on 

this bipartite graph, we exploit a graph-based 

algorithm, where we use C to represent candidate 

confidence vector, a 1n vector. We set the 

candidate initial confidence with candidate 

importance score, i.e.
0

C S , where S is the 

candidate initial confidence vector and each item 

in S is computed using Eq. (5). 

 
 

Figure 2: Bipartite graph for modeling relations 

between opinion targets and opinion words 

                                                           
1 http://books.google.com/ngrams/datasets 

..... 

..... 

Opinion Word Candidates (adjectives) 

Opinion Target Candidates (nouns/noun phrases) 
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Then we compute the candidate confidence by 

using the following iterative formula. 
1t T tC M M C                      (6) 

where 
tC is the candidate confidence vector at 

time t , and 
1tC 

 is the candidate confidence 

vector at time 1t  . M is an opinion relevance 

matrix, a m n matrix, where ,i jM is the 

associated weight between a noun/noun phrase 

i and an adjective j . 

To consider the candidate importance scores, we 

introduce a reallocate condition: combining the 

candidate opinion relevance with the candidate 

importance at each step. Thus we can get the final 

recursive form of the candidate confidence as 

follows. 
1 (1 )t T tC M M C S                (7) 

where [0,1] is the proportion of candidate 

importance in the candidate confidence. When 

1  , the candidate confidence is completely 

determined by the candidate importance; and when 

0  , the candidate confidence is determined by 

the candidate opinion relevance. We will discuss 

its effect in the section of experiments.  

To solve Eq. (7), we rewrite it as the following 

form. 
1( (1 ) )TC I M M S                 (8) 

where I is an identity matrix. To handle the 

inverse of the matrix, we expand the Eq. (8) as a 

power series as following. 

[ ]kC I B B S                    (9) 

where (1 ) TB M M    and [0, )k  is an 

approximate factor. In experiments, we set 

100k  . Using this equation, we estimate 

confidences for opinion target candidates. The 

candidates with higher confidence scores than the 

threshold will be extracted as the opinion targets.  

4 Experiments 

4.1 Datasets and Evaluation Metrics 

In our experiments, we select three real world 

datasets to evaluate our approach. The first dataset 

is COAE2008 dataset2
2
, which contains Chinese 

reviews of four different products. The detailed 

                                                           
2 http://ir-china.org.cn/coae2008.html 

information can be seen in Table 2. Moreover, to 

evaluate our method comprehensively, we collect a 

larger collection named by Large, which includes 

three corpora from three different domains and 

different languages. The detailed statistical 

information of this dataset is also shown in Table 2. 

Restaurant is crawled from the Chinese Web site: 

www.dianping.com. The Hotel and MP3
3

 were 

used in (Wang et al., 2011), which are respectively 

clawed from www.tripadvisor.com and 

www.amazon.com. For each collection, we 

perform random sampling to generate testing 

dataset, which include 6,000 sentences for each 

domain. Then the opinion targets in Large were 

manually annotated as the gold standard for 

evaluations. Three annotators are involved in the 

annotation process as follows. First, every 

noun/noun phrase and its contexts in review 

sentences are extracted. Then two annotators were 

required to judge whether every noun/noun phrase 

is opinion target or not. If a conflict happens, a 

third annotator will make judgment for finial 

results. The inter-agreement was 0.72. In total, we 

respectively obtain 1,112, 1,241 and 1,850 opinion 

targets in Hotel, MP3 and Restaurant. The third 

dataset is Customer Review Datasets 4  (English 

reviews of five products), which was also used in 

(Hu et al., 2004; Qiu et al., 2011). They have 

labeled opinion targets. The detailed information 

can be found in (Hu et al., 2004).  

 

Domain Language #Sentence #Reviews 

Camera Chinese 2075 137 

Car Chinese 4783 157 

Laptop Chinese 1034 56 

Phone Chinese 2644 123 

(a) COAE2008 dataset2 

Domain Language #Sentence #Reviews 

Hotel English 1,855,351 185,829 

MP3 English 289,931 30,837 

Restaurant Chinese 1,683,129 395,124 

(b) Large 

Table 2: Experimental Data Sets, # denotes the size 

of the reviews/sentences 

In experiments, each review is segmented into 

sentences according to punctuations. Then 

sentences are tokenized and the part-of-speech of 

                                                           
3 http://sifaka.cs.uiuc.edu/~wang296/Data/index.html 
4 http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html 
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Methods 
Camera Car Laptop Phone 

P R F P R F P R F P R F 

Hu 0.63 0.65 0.64 0.62 0.58 0.60 0.51 0.67 0.58 0.69 0.60 0.64 

DP 0.71 0.70 0.70 0.72 0.65 0.68 0.58 0.69 0.63 0.78 0.66 0.72 

Zhang 0.71 0.78 0.74 0.69 0.68 0.68 0.57 0.80 0.67 0.80 0.71 0.75 

Ours 0.75 0.81 0.78 0.71 0.71 0.71 0.61 0.85 0.71 0.83 0.74 0.78 

Table 3: Experiments on COAE2008 dataset2 

Methods 
Hotel MP3 Restaurant 

P R F P R F P R F 

Hu 0.60  0.65  0.62  0.61  0.68  0.64  0.64  0.69  0.66  

DP 0.67  0.69  0.68  0.69  0.70  0.69  0.74  0.72  0.73  

Zhang 0.67  0.76  0.71  0.67  0.77  0.72  0.75  0.79  0.77  

Ours 0.71  0.80  0.75  0.70  0.82  0.76  0.80  0.84  0.82  

Table 4: Experiments on Large 

Methods 
D1 D2 D3 D4 D5 

P R F P R F P R F P R F P R F 

Hu 0.75  0.82  0.78  0.71  0.79  0.75  0.72  0.76  0.74  0.69  0.82  0.75  0.74  0.80  0.77  

DP 0.87  0.81  0.84  0.90  0.81  0.85  0.90  0.86  0.88  0.81  0.84  0.82  0.92  0.86  0.89  

Zhang 0.83  0.84  0.83  0.86  0.85  0.85  0.86  0.88  0.87  0.80  0.85  0.83  0.86  0.86  0.86  

Ours 0.84  0.85  0.84  0.87  0.85  0.86  0.88  0.89  0.88  0.81  0.85  0.83  0.89  0.87  0.88  

Table 5: Experiments on Customer Review Dataset 

each word is assigned. Stanford NLP tool
5
 is used 

to perform POS-tagging and dependency parsing. 

The method in (Zhu et al., 2009) is used to identify 

noun phrases. We select precision, recall and F-

measure as the evaluation metrics. We also 

perform a significant test, i.e., a t-test with a 

default significant level of 0.05. 

4.2 Our Methods vs. State-of-art Methods 

To prove the effectiveness of our method, we 

select the following state-of-art unsupervised 

methods as baselines for comparison. 

1) Hu is the method described in (Hu et al., 2004), 

which extracted opinion targets by using adjacent 

rule.  

2) DP is the method described in (Qiu et al., 2011), 

which used Double Propagation algorithm to 

extract opinion targets depending on syntactic 

relations between words.  

3) Zhang is the method described in (Zhang et al., 

2010), which is an extension of DP. They extracted 

opinion targets candidates using syntactic patterns 

and other specific patterns. Then HITS (Kleinberg 

1999) algorithm combined with candidate 

frequency is employed to rank the results for 

opinion target extraction.  

Hu is selected to represent adjacent methods for 

opinion target extraction. And DP and Zhang are 

                                                           
5 http://nlp.stanford.edu/software/tagger.shtml 

selected to represent syntax-based methods. The 

parameter settings in these three baselines are the 

same as the original papers. In special, for DP and 

Zhang, we used the same patterns for different 

language reviews. The overall performance results 

are shown in Table 3, 4 and 5, respectively, where 

“P” denotes precision, “R” denotes recall and “F” 

denotes F-measure. Ours denotes full model of our 

method, in which we use IBM-3 model for 

identifying opinion relations between words. 

Moreover, we set max 2  in Eq. (2) and 0.3  in 

Eq. (7). From results, we can make the following 

observations. 

1) Ours achieves performance improvement over 

other methods. This indicates that our method 

based on word-based translation model is 

effective for opinion target extraction.  

2) The graph-based methods (Ours and Zhang) 

outperform the methods using Double 

Propagation (DP). Similar observations have 

been made by Zhang et al. (2010). The reason 

is that graph-based methods extract opinion 

targets in a global framework and they can 

effectively avoid the error propagation made 

by traditional methods based on Double 

Propagation. Moreover, Ours outperforms 

Zhang. We believe the reason is that Ours 

consider the opinion relevance and the 

candidate importance in a unified graph-based 

framework. By contrast, Zhang only simply 
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plus opinion relevance with frequency to 

determine the candidate confidence. 

3) In Table 4, the improvement made by Ours on 

Restaurant (Chinese reviews) is larger than 

that on Hotel and MP3 (English reviews). The 

same phenomenon can be found when we 

compare the improvement made by Ours in 

Table 3 (Chinese reviews) with that in Table 5 

(English reviews). We believe that reason is 

that syntactic patterns used in DP and Zhang 

were exploited based on English grammar, 

which may not be suitable to Chinese language. 

Moreover, another reason is that the 

performance of parsing on Chinese texts is not 

better than that on English texts, which will 

hurt the performance of syntax-based methods 

(DP and Zhang).  

4) Compared the results in Table 3 with the 

results in Table 4, we can observe that Ours 

obtains larger improvements with the increase 

of the data size. This indicates that our method 

is more effective for opinion target extraction 

than state-of-art methods, especially for large 

corpora. When the data size increase, the 

methods based on syntactic patterns will 

introduce more noises due to the parsing errors 

on informal texts. On the other side, Ours uses 

WTM other than parsing to identify opinion 

relations between words, and the noises made 

by inaccurate parsing can be avoided. Thus, 

Ours can outperform baselines. 

5) In Table 5, Ours makes comparable results 

with baselines in Customer Review Datasets, 

although there is a little loss in precision in 

some domains. We believe the reason is that 

the size of Customer Review Datasets is too 

small. As a result, WTM may suffer from data 

sparseness for association estimation. 

Nevertheless, the average recall is improved. 

An Example In Table 6, we show top 10 opinion 

targets extracted by Hu, DP, Zhang and Ours in 

MP3 of Large. In Hu and DP, since they didn’t 

rank the results, their results are ranked according 

to frequency in this experiment. The errors are 

marked in bold face. From these examples, we can 

see Ours extracts more correct opinion targets than 

others. In special, Ours outperforms Zhang. It 

indicates the effectiveness of our graph-based 

method for candidate confidence estimation. 

Moreover, Ours considers candidate importance 

besides opinion relevance, so some specific 

opinion targets are ranked to the fore, such as 

“voice recorder”, “fm radio” and “lcd screen”.  

4.3 Effect of Word-based Translation Model 

In this subsection, we aim to prove the 

effectiveness of our WTM for estimating 

associations between opinion targets and opinion 

words. For comparison, we select two baselines for 

comparison, named as Adjacent and Syntax. These 

baselines respectively use adjacent rule (Hu et al. 

2004; Wang et al., 2008) and syntactic patterns 

(Qiu et al., 2009) to identify opinion relations in 

sentences. Then the same method (Eq.3 and Eq.4) 

is used to estimate associations between opinion 

targets and opinion words. At last the same graph-

based method (in Section 3.3) is used to extract 

opinion targets. Due to the limitation of the space, 

the experimental results only on COAE2008 

dataset2 and Large are shown in Figure 3. 

 

 
Figure 3: Experimental comparison among 

different relation identification methods 

 
Hu quality, thing, drive, feature, battery, sound, 

time, music, price 

DP quality, battery, software, device, screen, file, 

thing, feature, battery life 

Zhang quality, size, battery life, hour, version, function, 

upgrade, number, music 

Ours quality, battery life, voice recorder, video, fm 

radio, battery, file system, screen, lcd screen 

Table 6: Top 10 opinion targets extracted by 

different methods. 

In Figure 3, we observe that Ours using WTM 

makes significant improvements compared with 
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two baselines, both on precision and recall. It 

indicates that WTM is effective for identifying 

opinion relations, which makes the estimation of 

the associations be more precise. 

4.4 Effect of Our Graph-based Method 

In this subsection, we aim to prove the 

effectiveness of our graph-based method for 

opinion target extraction. We design two baselines, 

named as WTM_DP and WTM_HITS. Both 

WTM_DP and WTM_HITS use WTM to mine 

associations between opinion targets and opinion 

words. Then, WTM_DP uses Double Propagation 

adapted in (Wang et al. 2008; Qiu et al. 2009) to 

extract opinion targets, which only consider the 

candidate opinion relevance. WTM_HITS uses a 

graph-based method of Zhang et al. (2010) to 

extract opinion targets, which consider both 

candidate opinion relevance and frequency. Figure 

4 gives the experimental results on COAE2008 

dataset2 and Large. In Figure 4, we can observe 

that our graph-based algorithm outperforms not 

only the method based on Double Propagation, but 

also the previous graph-based approach.  

 

 

Figure 4: Experimental Comparison between 

different ranking algorithms 

4.5 Parameter Influences 

4.5.1 Effect of Different WTMs 

In section 3, we use three different WTMs in Eq. 

(2) to identify opinion relations. In this subsection, 

we make comparison among them. Experimental 

results on COAE2008 dataset2 and Large are 

shown in Figure 5. Ours_1, Ours_2 and Ours_3 

respectively denote our method using different 

WTMs (IBM 1~3). From the results in Figure 5, 

we observe that Ours_2 outperforms Ours_1, 

which indicates that word position is useful for 

identifying opinion relations. Furthermore, Ours_3 

outperforms other models, which indicates that 

considering the fertility of a word can produce 

better performance. 

4.5.2 Effect of   

In our method, when we employ Eq. (7) to assign 

confidence score to each candidate, 

[0,1] decides the proportion of candidate 

importance in our method. Due to the limitation of 

space, we only show the F-measure of Ours on 

COAE2008 dataset2 and Large when varying  in 

Figure 6.  

In Figure 6, curves increase firstly, and decrease 

with the increase of  . The best performance is 

obtained when  is around 0.3. It indicates that 

candidate importance and candidate opinion 

relevance are both important for candidate 

confidence estimation. The performance of opinion 

target extraction benefits from their combination. 

 

 

 
Figure 5. Experimental results by using different 

word-based translation model. 

 

 
Figure 6. Experimental results when varying   
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5 Conclusions and Future Work 

This paper proposes a novel graph-based approach 

to extract opinion targets using WTM. Compared 

with previous adjacent methods and syntax-based 

methods, by using WTM, our method can capture 

opinion relations more precisely and therefore be 

more effective for opinion target extraction, 

especially for large informal Web corpora.  

In future work, we plan to use other word 

alignment methods, such as discriminative model 

(Liu et al., 2010) for this task. Meanwhile, we will 

add some syntactic information into WTM to 

constrain the word alignment process, in order to 

identify opinion relations between words more 

precisely. Moreover, we believe that there are 

some verbs or nouns can be opinion words and 

they may be helpful for opinion target extraction. 

And we think that it’s useful to add some prior 

knowledge of opinion words (sentiment lexicon) in 

our model for estimating candidate opinion 

relevance. 
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Abstract

We investigate the use of language in food
writing, specifically on restaurant menus and
in customer reviews. Our approach is to build
predictive models of concrete external vari-
ables, such as restaurant menu prices. We
make use of a dataset of menus and customer
reviews for thousands of restaurants in several
U.S. cities. By focusing on prediction tasks
and doing our analysis at scale, our method-
ology allows quantitative, objective measure-
ments of the words and phrases used to de-
scribe food in restaurants. We also explore
interactions in language use between menu
prices and sentiment as expressed in user re-
views.

1 Introduction

What words might a menu writer use to justify the
high price of a steak? How does describing an item
as chargrilled vs. charbroiled affect its price? When
a customer writes an unfavorable review of a restau-
rant, how is her word choice affected by the restau-
rant’s prices? In this paper, we explore questions
like these that relate restaurant menus, prices, and
customer sentiment. Our goal is to understand how
language is used in the food domain, and we di-
rect our investigation using external variables such
as restaurant menu prices.

We build on a thread of NLP research that seeks
linguistic understanding by predicting real-world
quantities from text data. Recent examples include
prediction of stock volatility (Kogan et al., 2009)
and movie revenues (Joshi et al., 2010). There, pre-
diction tasks were used for quantitative evaluation
and objective model comparison, while analysis of
learned models gave insight about the social process
behind the data.

We echo this pattern here as we turn our atten-
tion to language use on restaurant menus and in user
restaurant reviews. We use data from a large cor-
pus of restaurant menus and reviews crawled from
the web and formulate several prediction tasks. In
addition to predicting menu prices, we also consider
predicting sentiment along with price.

The relationship between language and senti-
ment is an active area of investigation (Pang and
Lee, 2008). Much of this research has focused on
customer-written reviews of goods and services, and
perspectives have been gained on how sentiment is
expressed in this type of informal text. In addition
to sentiment, however, other variables are reflected
in a reviewer’s choice of words, such as the price of
the item under consideration. In this paper, we take
a step toward joint modeling of multiple variables
in review text, exploring connections between price
and sentiment in restaurant reviews.

Hence this paper contributes an exploratory data
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analysis of language used to describe food (by its
purveyors and by its consumers). While our primary
goal is to understand the language used in our cor-
pus, our findings bear relevance to economics and
hospitality research as well. This paper is a step on
the way to the eventual goal of using linguistic anal-
ysis to understand social phenomena like sales and
consumption.

2 Related Work

There are several areas of related work scattered
throughout linguistics, NLP, hospitality research,
and economics.

Freedman and Jurafsky (2011) studied the use of
language in food advertising, specifically the words
on potato chip bags. They argued that, due to
the ubiquity of food writing across cultures, eth-
nic groups, and social classes, studying the use of
language for describing food can provide perspec-
tive on how different socioeconomic groups self-
identify using language and how they are linguisti-
cally targeted. In particular, they showed that price
affects how “authenticity” is realized in marketing
language, a point we return to in §5. This is an ex-
ample of how price can affect how an underlying
variable is expressed in language. Among other ex-
plorations in this paper, we consider how price inter-
acts with expression of sentiment in user reviews of
restaurants.

As mentioned above, our work is related to re-
search in predicting real-world quantities using text
data (Koppel and Shtrimberg, 2006; Ghose et al.,
2007; Lerman et al., 2008; Kogan et al., 2009; Joshi
et al., 2010; Eisenstein et al., 2010; Eisenstein et
al., 2011; Yogatama et al., 2011). Like much of
this prior work, we aim to learn how language is
used in a specific context while building models that
achieve competitive performance on a quantitative
prediction task.

Along these lines, there is recent interest in ex-
ploring the relationship between product sales and
user-generated text, particularly online product re-
views. For example, Ghose and Ipeirotis (2011)
studied the sales impact of particular properties of
review text, such as readability, the presence of
spelling errors, and the balance between subjective
and objective statements. Archak et al. (2011) had a

similar goal but decomposed user reviews into parts
describing particular aspects of the product being
reviewed (Hu and Liu, 2004). Our paper differs
from price modeling based on product reviews in
several ways. We consider a large set of weakly-
related products instead of a homogeneous selection
of a few products, and the reviews in our dataset are
not product-centered but rather describe the overall
experience of visiting a restaurant. Consequently,
menu items are not always mentioned in reviews and
rarely appear with their exact names. This makes it
difficult to directly use review features in a pricing
model for individual menu items.

Menu planning and pricing has been studied for
many years by the culinary and hospitality research
community (Kasavana and Smith, 1982; Kelly et al.,
1994), often including recommendations for writing
menu item descriptions (Miller and Pavesic, 1996;
McVety et al., 2008). Their guidelines frequently
include example menus from successful restaurants,
but typically do not use large corpora of menus or
automated analysis, as we do here. Other work
focused more specifically on particular aspects of
the language used on menus, such as the study by
Zwicky and Zwicky (1980), who made linguistic ob-
servations through manual analysis of a corpus of
200 menus.

Relatedly, Wansink et al. (2001; 2005) showed
that the way that menu items are described af-
fects customers’ perceptions and purchasing behav-
ior. When menu items are described evocatively,
customers choose them more often and report higher
satisfaction with quality and value, as compared to
when they are given the same items described with
conventional names. Wansink et al. did not use a
corpus, but rather conducted a small-scale experi-
ment in a working cafeteria with customers and col-
lected surveys to analyze consumer reaction. While
our goals are related, our experimental approach is
different, as we use automated analysis of thousands
of restaurant menus and rely on a set of one mil-
lion reviews as a surrogate for observing customer
behavior.

Finally, the connection between products and
prices is also a central issue in economics. How-
ever, the stunning heterogeneity in products makes
empirical work challenging. For example, there are
over 50,000 menu items in New York that include
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City # Restaurants # Menu Items # Reviews
train dev. test train dev. test train dev. test

Boston 930 107 113 63,422 8,426 8,409 80,309 10,976 11,511
Chicago 804 98 100 51,480 6,633 6,939 73,251 9,582 10,965
Los Angeles 624 80 68 17,980 2,938 1,592 75,455 13,227 5,716
New York 3,965 473 499 365,518 42,315 45,728 326,801 35,529 37,795
Philadelphia 1,015 129 117 83,818 11,777 9,295 52,275 7,347 5,790
San Francisco 1,908 255 234 103,954 12,871 12,510 499,984 59,378 67,010
Washington, D.C. 773 110 121 47,188 5,957 7,224 71,179 11,852 14,129
Total 10,019 1,252 1,252 733,360 90,917 91,697 1,179,254 147,891 152,916

Table 1: Dataset statistics.

the word chicken. What is the price of chicken? This
is an important practical and daunting matter when
measuring inflation (e.g., Consumer Price Index is
measured with a precisely-defined basket of goods).
Price dispersion across goods and the variation of
the goods is an important area of industrial organi-
zation economic theory. For example, economists
are interested in models of search, add-on pricing,
and obfuscation (Baye et al., 2006; Ellison, 2005).

3 Data

We crawled Allmenus.com (www.allmenus.
com) to gather menus for restaurants in seven
U.S. cities: Boston, Chicago, Los Angeles, New
York, Philadelphia, San Francisco, and Washing-
ton, D.C. Each menu includes a list of item names
with optional text descriptions and prices. Most All-
menus restaurant pages contain a link to the cor-
responding page on Yelp (www.yelp.com) with
metadata and user reviews for the restaurant, which
we also collected.

The metadata consist of many fields for each
restaurant, which can be divided into three cate-
gories: location (city, neighborhood, transit stop),
services available (take-out, delivery, wifi, parking,
etc.), and ambience (good for groups, noise level,
attire, etc.). Also, the category of food and a price
range ($ to $$$$, indicating the price of a typical
meal at the restaurant) are indicated. The user re-
views include a star rating on a scale of 1 to 5.

The distribution of prices of individual menu
items is highly skewed, with a mean of $9.22 but
a median of $6.95. On average, a restaurant has
73 items on its menu with a median price of $8.69
and 119 Yelp reviews with a median rating of 3.55
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Figure 1: Frequency distributions of restaurant price
ranges (left) and review ratings (right).

stars. The star rating and price range distributions
are shown in Figure 1.

The set of restaurants was randomly split into
three parts (80% for training, 10% for development,
10% for evaluation), independently for each city.
The sizes of the splits and the full set of dataset
statistics are provided in Table 1.

4 Predictive Tasks

We consider several prediction tasks using the
dataset just described. These include predicting
individual menu item prices (§5), predicting the
price range for each restaurant (§6), and finally
jointly predicting median price and sentiment for
each restaurant (§7). To do this, we use two types
of models: linear regression (§5 and §6) and logis-
tic regression (§7), both with `1 regularization when
sparsity is desirable. We tune the regularization co-
efficient by choosing the value that minimizes de-
velopment set loss (mean squared error and log loss,
respectively).

For evaluation, we use mean absolute error
(MAE) and mean relative error (MRE). Given a
dataset 〈xi, yi〉Ni=1 with inputs xi and outputs yi, and
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denoting predicted outputs by ŷi, these are defined
as follows:

MAE =
1
N

N∑
i=1

|yi − ŷi|

MRE =
1
N

N∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣
In practice, since we model log-prices but eval-

uate on real prices, the final prediction is often a
non-linear transformation of the output of the linear
classifier of weight vector w, which we denote by:
ŷi = f(w>xi).

We also frequently report the total number of fea-
tures available in the training set for each model (nf)
as well as the number of non-zero feature weights
following learning (nnz).

5 Menu Item Price Prediction

We first consider the problem of predicting the price
of each item on a menu. In this case, every in-
stance xi corresponds to a single item in the menu
parametrized by the features detailed below and yi is
the item’s price. In this section, our models always
use the logarithm of the price1 as output values and
therefore: ŷi = ew>xi .

Baselines We evaluate several baselines which
make independent predictions for each distinct item
name. The first two predict the mean or the me-
dian of the prices in the training set for a given
item name, and use the overall price mean or me-
dian when a name is missing in the training set. The
third baseline is an `1-regularized linear regression
model trained with a single binary feature for each
item name in the training data. These baselines are
shown as the first three rows in Table 2.

We note that there is a wide variation of menu
item names in the dataset, with more than 400,000
distinct names. Although we address this issue later
by introducing local text features, we also performed
simple normalization of the item names for all of
the baselines described above. To do this normal-
ization, we first compiled a stop word list based on
the most frequent words in the item names.2 We

1The price distribution is more symmetric in the log domain.
2This list can be found in the supplementary material.

removed stop words and then ordered the words in
each item name lexicographically, in order to col-
lapse together items such as coffee black and black
coffee. This normalization reduced the unique item
name count by 40%, strengthening the baselines.

5.1 Features

We use `1-regularized linear regression for feature-
rich models. We now introduce several sets of fea-
tures that we add to the normalized item names:3

I. METADATA: Binary features for each restaurant
metadata field mentioned above, excluding price
range. A separate binary feature is included for
each unique 〈field, value〉 tuple.

II. MENUNAMES: n-grams in menu item names.
We used binary features for unique unigrams, bi-
grams, and trigrams. Here, stop words were re-
tained as they can be informative (e.g., with and
large correlate with price).

III. MENUDESC: n-grams in menu item descrip-
tions, as in MENUNAMES.

Review Features In addition to these features, we
consider leveraging the large amount of text present
in user reviews to improve predictions. We at-
tempted to find mentions of menu items in the re-
views and to include features extracted from the sur-
rounding words in the model. Perfect item mentions
being relatively rare, we consider inexact matches
weighted by a coefficient measuring the degree of
resemblance: we used the Dice similarity between
the set of words in the sentence and in the item name.
We then extracted n-gram features from this sen-
tence, and tried several ways to use them for price
prediction.

Given a review sentence, one option is to add the
corresponding features to every item matching this
sentence, with a value equal to the similarity coeffi-
cient. Another option is to select the best matching
item and use the same real-valued features but only
for this single item. Binary feature values can be
used instead of the real-valued similarity coefficient.
We also experimented with the use of part-of-speech
tags in order to restrict our features to adjective and
adverb n-grams instead of the full vocabulary. All of

3The normalized item names are present as binary features
in all of our regression models
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MAE MRE nf nnz
Predict mean 3.70 43.32 n/a n/a
Predict median 3.67 43.93 n/a n/a
Regression 3.66 45.64 267,945 240,139
METADATA 3.55 43.11 268,450 258,828
P̂R 3.47 43.11 267,946 205,176
MENUNAMES 3.23 38.33 896,631 230,840
+ MENUDESC 3.19 36.23 1,981,787 151,785
+ P̂R 3.08 34.51 1,981,788 140,954
+ METADATA 3.08 34.97 1,982,363 148,774
+ MENTIONS 3.06 34.37 4,959,488 458,462

Table 2: Results for menu item price prediction. MAE =
mean absolute error ($), MRE = mean relative error (%),
nf = total number of features, nnz = number of features
with non-zero weight.

these attempts yielded negative or only slightly pos-
itive results, of which we include only one example
in our experiments: the MENTIONS feature set con-
sists of n-grams for the best matching item with the
Dice coefficient as the feature value.

We also tried to incorporate the reviews by using
them in aggregate via predictions from a separate
model; we found this approach to work better than
the methods described above which all use features
from the reviews directly in the regression model. In
particular, we use the review features in a separate
model that we will describe below (§6) to predict
the price range of each restaurant. The model uses
unigrams, bigrams, and trigrams extracted from the
reviews. We use the estimated price range (which we
denote P̂R) as a single additional real-valued feature
for individual item price prediction.

5.2 Results
Our results are shown in Table 2. We achieve a fi-
nal reduction of 50 cents in MAE and nearly 10%
in MRE compared with the baselines. Using menu
name features (MENUNAMES) brings the bulk of
the improvement, though menu description features
(MENUDESC) and the remaining features also lead
to small gains. Interestingly, as the MENUDESC and
P̂R features are added to the model, the regulariza-
tion favors more general features by selecting fewer
and fewer non-zero weights.

While METADATA features improve over the
baselines when used alone, they do not lead to im-
proved performance over the MENU* + P̂R features,
suggesting that the text features may be able to sub-

stitute for the information in the metadata, at least
for prediction of individual item prices.

The MENTIONS features resulted in a small im-
provement in MAE and MRE, but at the cost of ex-
panding the model size significantly. A look at the
learned feature weights reveals that most of the se-
lected features seem more coincidental than generic
(rachel’s, highly negative) when not totally unintu-
itive (those suicide, highest positive). This suggests
that our method of extracting features from men-
tions is being hampered by noise. We suspect that
these features could be more effective with a better
method of linking menu items to mentions in review
text.

5.3 Analysis
We also inspected the feature weights of our learned
models. By comparing the weights of related fea-
tures, we can see the relative differences in terms
of contribution to menu item prices. Table 3 shows
example feature weights, manually arranged into
several categories (taken from the model with ME-
NUNAMES + MENUDESC + P̂R + METADATA).

Table 3(a) shows selected features for the “am-
bience” field in the Yelp restaurant metadata and
pane (b) lists some unigrams related to cooking
methods. Pane (c) shows feature weights for n-
grams often used to market menu items; we see
larger weights for words targeting those who want to
eat organically- or locally-grown food (farmhouse,
heirloom, wild, and hormone), compared to those
looking for comfort food (old time favorite, tradi-
tional, real, and fashioned). This is related to ob-
servations made by Freedman and Jurafsky (2011)
that cheaper food is marketed by appealing to tra-
dition and historicity, with more expensive food de-
scribed in terms of naturalness, quality of ingredi-
ents, and the preparation process (e.g., hand picked,
wild caught, etc.). Relatedly, in pane (e) we see
that real mashed potatoes are expected to be cheaper
than those described as creamy or smooth.

Pane (d) shows feature weights for trigrams con-
taining units of chicken; we can see an ordering in
terms of size (bits < cubes < strips < cuts) as well
as the price increase associated with the use of the
word morsels in place of less refined units. We also
see a difference between pieces and pcs, with the
latter being frequently used to refer to entire cuts of
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(a) METADATA: (c) MENUDESC:
ambience descriptors

dive-y -0.015 old time favorite -0.112
intimate -0.013 fashioned -0.034
trendy -0.012 line caught -0.028
casual -0.005 all natural -0.028
romantic -0.004 traditional -0.009
classy -7e-6 natural 3e-4
touristy 0.058 classic 0.002
upscale 0.099 free range 0.004

(b) MENUDESC: real 0.004
cooking fresh 0.006

panfried -0.094 homemade 0.010
chargrilled -0.029 authentic 0.012
cooked -0.012 organic 0.020
boiled -0.006 specialty 0.025
fried -0.005 special 0.033
steamed 0.011 locally 0.037
charbroiled 0.015 natural grass fed 0.038
grilled 0.022 artisanal 0.064
simmered 0.025 raised 0.066
roasted 0.034 heirloom 0.083
sauteed 0.034 wild 0.084
broiled 0.053 hormone 0.085
seared 0.066 farmed 0.099
braised 0.068 hand picked 0.101
stirfried 0.071 wild caught 0.116
flamebroiled 0.106 farmhouse 0.133

(d) MENUDESC: (e) MENUDESC:
= “of chicken” = “potatoes”

slices -0.102 real mashed -0.028
bits -0.032 mashed -0.005
cubes -0.030 creamy mashed -5e-9
pieces -0.024 smashed 0.018
strips -0.001 smooth mashed 0.129
chunks 0.015 (f) MENUDESC:
morsels 0.025 = “potato”
pcs 0.040 mash -0.022
cuts 0.042 mashed -0.019

(g) MENUDESC: “crisp” vs. “crispy”
crisp -0.022 crispy bacon 0.008
crispy -0.011 crisp bacon 0.033

(h) MENUDESC: “roast” vs. “roasted”
roasted 0.034 roasted potatoes 0.026
roast 0.040 roast potatoes 0.110
roasted chicken -0.041 roasted salmon 0.091
roast chicken -0.012 roast salmon 0.151
roast pork -0.038 roasted tomato 0.010
roasted pork 0.055 roast tomato 0.026

Table 3: Selected features from model for menu item
price prediction. See text for details.

chicken (e.g., wings, thighs, etc.) and the former
more often used as a synonym for chunks.

Panes (f), (g), and (h) reveal price differences due
to slight variations in word form. We find that, even
though crispy has a higher weight than crisp, crisp
bacon is more expensive than crispy bacon. We also
find that food items prefixed with roast lead to more
expensive prices than the similar roasted, except in
the case of pork, though here the different forms may
be evoking two different preparation styles.

Also of note is the slight difference between
the nonstandard mash potato and mashed potato.
We observed lower weights with other nonstandard
spellings, notably portobella having lower weight
than each of the more common spellings portabella,
portobello, and portabello.

6 Restaurant Price Range Prediction

In addition to predicting the prices of individual
menu items, we also considered the task of predict-
ing the price range listed for each restaurant on its
Yelp page. The values for this field are integers from
1 to 4 and indicate the price of a typical meal from
the restaurant.

For this task, we again train an `1-regularized
linear regression model with integral price ranges
as the true output values yi. Each input xi corre-
sponds to the feature vector for an entire restaurant.
For evaluation, we round the predicted values to the
nearest integer: ŷi = ROUND(w>xi) and report the
corresponding mean absolute error and accuracy.

We compared this simple approach with an or-
dinal regression model (McCullagh, 1980) trained
with the same `1 regularizer and noted very little im-
provement (77.32% vs. 77.15% accuracy for META-
DATA). Therefore, we only report in this section re-
sults for the linear regression model.

In addition to the feature sets used for individ-
ual menu item price prediction, we used features on
reviews (REVIEWS). Specifically, we used binary
features for unigrams, bigrams, and trigrams in the
full set of reviews for each restaurant. A stopword
list was derived from the training data.4 Bigrams
and trigrams were filtered if they ended with stop-
words. Additionally, features occurring fewer than
three times in the training set were discarded.

4This list is included in the supplementary material.
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Features MAE Acc. nf nnz
Predict mode 0.5421 48.22 n/a n/a
MENU* 0.3875 66.29 1,910,622 995
METADATA 0.2372 77.15 591 219
REVIEWS 0.2172 79.76 3,027,470 1,567
+METADATA 0.2111 80.36 3,027,943 1,376

Table 4: Results for restaurant price range prediction.
MAE = mean absolute error, Acc = classification accu-
racy (%), nf = total number of features, nnz = number of
features with non-zero weight.

6.1 Results

Our results for price range prediction are shown
in Table 4. Predicting the most frequent price
range gave us an accuracy of 48.22%. Performance
improvements were obtained by separately adding
menu (MENU*), metadata (METADATA), and re-
view features (REVIEWS). Unlike individual item
price prediction, the reviews were more helpful than
the menu features for predicting overall price range.
This is not surprising, since reviewers will often gen-
erally discuss price in their reviews. We combined
metadata and review features to get our best accu-
racy, exceeding 80%.

We also wanted to perform an analysis of senti-
ment in the review text. To do this, we trained a lo-
gistic regression model predicting polarity for each
review; we used the REVIEWS feature set, but this
time considering each review as a single training in-
stance. The polarity of a review was determined by
whether or not its star rating was greater than the
average rating across all reviews in the dataset (3.7
stars). We achieved an accuracy of 87% on the test
data. We omit full details of these models because
the polarity prediction task for user reviews is well-
known in the sentiment analysis community and our
model is not an innovation over prior work (Pang
and Lee, 2008). However, our purpose in training
the model was to use the learned weights for under-
standing the text in the reviews.

6.2 Interpreting Reviews

Given learned models for predicting a restaurant’s
price range from its set of reviews as well as polar-
ity for each review, we can turn the process around
and use the feature weights to analyze the review
text. Restricting our attention to reviews of 50–60
words, Table 5 shows sample reviews from our test

set that lead to various predictions of price range and
sentiment.5

This technique can also be useful when trying to
determine the “true” star rating for a review (if pro-
vided star ratings are noisy), or to show the most
positive and most negative reviews for a product
within a particular star rating. The 5-point scale
is merely a coarse approximation to the reviewer’s
mental state; using fitted models can provide addi-
tional clues to decode the reviewer’s sentiment.

We can also do a more fine-grained analysis of
review text by noting the contribution to the price
range prediction of each position in the text stream.
This is straightforward because our features are sim-
ply n-grams of the review text. In Figure 2, we show
the influence of each word in a review sentence on
the predicted polarity (brown) and price range (yel-
low). The height of a bar at a given position is pro-
portional to the sum of the feature weights for every
unigram, bigram, and trigram containing the token
at that position (there are at most 6 active n-grams
at a position).

The first example shows the smooth shift in ex-
pressed sentiment from the beginning of the sen-
tence to the end. The second sentence is a difficult
example for sentiment analysis, since there are sev-
eral positive words and phrases early but the senti-
ment is chiefly expressed in the final clause. Our
model noted the steady positive sentiment early in
the sentence but identified the crucial negation due
to strong negative weight on bigrams fresh but, left
me, and me yearning. In both examples, the yellow
bars show that price estimates are reflected mainly
through isolated mentions of offerings and ameni-
ties (drinks, atmosphere, security, good service).

7 Joint Prediction of Price and Sentiment

Although we observe no interesting correlation (r =
0.06) between median star rating and median item
price in our dataset, this does not imply that senti-

5To choose the 9 reviews in the table, we took the reviews
from our test set in the desired length range and computed pre-
dicted sentiment and price range for each; then we scaled the
predicted price range so that its range matched that of predicted
sentiment, and maximized various linear combinations of the
two. This accounts for the four corners. The others were found
by maximizing a linear combination of one (possibly negated)
prediction minus the absolute value of the other.
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← cheap expensive→

↑
⊕

i love me a cheap vietnamese sandwich .
mmm , pate . this place has the best ones i
’ve had in the city , and i conveniently live
a few blocks away . the ladies behind the
counter are always courteous and fast , and
who can beat a $ 3 sandwich ?! crazy ass
deli .

this place is tiny ! the pork buns are so tender
and flavorful . i dream about these things .
manila clams were awesome , not the biggest
clam fan either , but i loved it . mmm 7 spice
chips . i ca n’t wait to go back !

amazing service and desserts . nice wine
list and urban decor . i went with a girl-
friend and we split an entree , appetizer and
dessert and they happily brought us separate
portions which were just the right size . the
bread is awesome , too . definitely a bit of a
splurge , but worth it in moderation .

great place to get fast food that tastes good .
paneer and chicken are both good . i would
prefer to go thursday thru saturday night .
thats when they have their good shift work-
ing . also it stays open late until 4 am on
weekends . really enjoyable !

had some solid thai here for lunch last week
. ordered the special of the day , a chicken
curry . quick service and nice interior . only
issue was , had a bit of a stomach ache after-
wards ? prefer their sister restaurant , citizen
thai and the monkey , in north beach .

weekday evening was quiet , not every ta-
ble was filled . our waiter was amicable and
friendly , which is always a plus . the co-
conut bread pudding was ok and very sweet
. it ’s definitely a dessert plate that can be
shared with a glass of wine .

	
↓

for some reason my friend wanted me to
go here with him . it was a decent standard
greasy slice of pizza . it was n’t bad by any
means , but it was nothing special at all .
on the plus side , cheap and fast . so in
summary : cheap , fast , greasy , average .

ugh ! the salt ! all 5 dishes we ordered were
so unbearably salty , i ’d rather just have the
msg . greasy , oily , salty - there is much
better chinese food to be had in sf than here .
i was very disappointed and wo n’t be back .

downhill alert ... had a decent lunch at
dragon well this week marred by pretty
spotty service . our waiter just did n’t have
it together , forgetting to bring bowls for our
split soup , our beverages , etc. . food was
good but pretty pricey for what we got .

Table 5: Reviews from the test set deemed by our model to have particular values of sentiment and price.
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Figure 2: Local (position-level) sentiment (brown) and price (yellow) estimates for two sentences in the test corpus.

ment and price are independent of each other.6 We
try to capture this interaction by modeling at the
same time review polarity and item price: we con-
sider the task of jointly predicting aggregate senti-
ment and price for a restaurant.

For every restaurant in our dataset, we compute
its median item price p̄ and its median star rating
r̄. The average of these two values for the entire
dataset ($8.69 and 3.55 stars) split the plane (p̄, r̄)
in four sections: we assign each restaurant to one of
these quadrants which we denote ↓ 	, ↓ ⊕, ↑ 	 and
↑ ⊕. This allows us to train a 4-class logistic regres-

6Price and sentiment are both endogenous outcomes reflect-
ing the characteristics of the restaurant. E.g., “better” restau-
rants can charge higher prices.

sion model using the REVIEWS feature set for each
restaurant. We achieve an accuracy of 65% on the
test data, but we are mainly interested in interpret-
ing the estimated feature weights.

7.1 Analysis

To visualize the top feature weights learned by the
model, we have to map the four weight vectors
learned by the model back to the underlying two-
dimensional sentiment/price space. Therefore, we
compute the following values:

w$ = (w↑⊕ + w↑	)− (w↓⊕ + w↓	)
wF = (w↑⊕ + w↓⊕)− (w↑	 + w↓	)
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We then select for display the features which are the
furthest from the origin (max w2

$ + w2
F) and rep-

resent the selected n-grams as points in the senti-
ment/price space to obtain Figure 3.

We notice that the spread of the sentiment values
is larger, which suggests that reviews give stronger
clues about consumer experience than about the cost
of a typical meal. However, obvious price-related
adjectives (inexpensive vs. expensive) appear in this
limited selection, as well as certain phrases indicat-
ing both sentiment and price (overpriced vs. very
reasonable). Other examples of note: gem is used in
strongly-positive reviews of cheap restaurants; for
expensive restaurants, reviewers use highly recom-
mended or amazing. Also, phrases like no flavor and
manager appear in negative reviews of more expen-
sive restaurants, while dirty appears more often in
negative reviews of cheaper restaurants.

8 Conclusion

We have explored linguistic relationships between
food prices and customer sentiment through quan-
titative analysis of a large corpus of menus and re-
views. We have also proposed visualization tech-
niques to better understand what our models have
learned and to see how they can be applied to new
data. More broadly, this paper is an example of us-
ing extrinsic variables to drive model-building for
linguistic data, and future work might explore richer
extrinsic variables toward a goal of task-driven no-
tions of semantics.
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Figure 3: Top 50 features from joint prediction of price and sentiment. The black circle is the origin. See text for
details on how the coordinates for each feature were computed. Insets show enlargements of dense areas of the graph.
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Abstract

We present an automatic method for mapping
language-specific part-of-speech tags to a set
of universal tags. This unified representation
plays a crucial role in cross-lingual syntactic
transfer of multilingual dependency parsers.
Until now, however, such conversion schemes
have been created manually. Our central hy-
pothesis is that a valid mapping yields POS
annotations with coherent linguistic proper-
ties which are consistent across source and
target languages. We encode this intuition
in an objective function that captures a range
of distributional and typological characteris-
tics of the derived mapping. Given the ex-
ponential size of the mapping space, we pro-
pose a novel method for optimizing over soft
mappings, and use entropy regularization to
drive those towards hard mappings. Our re-
sults demonstrate that automatically induced
mappings rival the quality of their manually
designed counterparts when evaluated in the
context of multilingual parsing.1

1 Introduction

In this paper, we explore an automatic method for
mapping language-specific part-of-speech tags to a
universal tagset. In multilingual parsing, this uni-
fied input representation is required for cross-lingual
syntactic transfer. Specifically, the universal tagset
annotations enable an unlexicalized parser to capi-
talize on annotations from one language when learn-
ing a model for another.

1The source code and data for the work presented in this
paper is available at http://groups.csail.mit.edu/
rbg/code/unitag/emnlp2012

While the notion of a universal POS tagset is
widely accepted, in practice it is hardly ever used
for annotation of monolingual resources. In fact,
available POS annotations are designed to capture
language-specific idiosyncrasies and therefore are
substantially more detailed than a coarse universal
tagset. To reconcile these cross-lingual annotation
differences, a number of mapping schemes have
been proposed in the parsing community (Zeman
and Resnik, 2008; Petrov et al., 2011; Naseem et
al., 2010). In all of these cases, the conversion is
performed manually and has to be repeated for each
language and annotation scheme anew.

Despite the apparent simplicity, deriving a map-
ping is by no means easy, even for humans. In fact,
the universal tagsets manually induced by Petrov
et al. (2011) and by Naseem et al. (2010) disagree
on 10% of the tags. An example of such discrep-
ancy is the mapping of the Japanese tag “PVfin” to
the universal tag “particle” according to one scheme,
and to “verb” according to another. Moreover, the
quality of this conversion has a direct implication on
the parsing performance. In the Japanese example
above, this difference in mapping yields a 6.7% dif-
ference in parsing accuracy.

The goal of our work is to induce the mapping
for a new language, utilizing existing manually-
constructed mappings as training data. The exist-
ing mappings developed in the parsing community
rely on gold POS tags for the target language. A
more realistic scenario is to employ the mapping
technique to resource-poor languages where gold
POS annotations are lacking. In such cases, a map-
ping algorithm has to operate over automatically in-
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duced clusters on the target language (e.g., using
the Brown algorithm) and convert them to universal
tags. We are interested in a mapping approach that
can effectively handle both gold tags and induced
clusters.

Our central hypothesis is that a valid mapping
yields POS annotations with coherent linguistic
properties which are consistent across languages.
Since universal tags play the same linguistic role
in source and target languages, we expect similar-
ity in their global distributional statistics. Figure 1a
shows statistics for two close languages, English and
German. We can see that their unigram frequencies
on the five most common tags are very close. Other
properties concern POS tag per sentence statistics –
e.g., every sentence has to have at least one verb. Fi-
nally, the mappings can be further constrained by ty-
pological properties of the target language that spec-
ify likely tag sequences. This information is readily
available even for resource poor language (Haspel-
math et al., 2005). For instance, since English and
German are prepositional languages, we expect to
observe adposition-noun sequences but not the re-
verse (see Figure 1b for sample sentences). We en-
code these heterogeneous properties into an objec-
tive function that guides the search for the optimal
mapping.

Having defined a quality measure for mappings,
our goal is to find the optimal mapping. However,
such partition optimization problems2 are NP hard
(Garey and Johnson, 1979). A naive approach to
the problem is to greedily improve the map, but it
turns out that this approach yields poor quality map-
pings. We therefore develop a method for optimiz-
ing over soft mappings, and use entropy regulariza-
tion to drive those towards hard mappings. We con-
struct the objective in a way that facilitates simple
monotonically improving updates corresponding to
solving convex optimization problems.

We evaluate our mapping approach on 19
languages that include representatives of Indo-
European, Semitic, Basque, Japonic and Turkic fam-
ilies. We measure mapping quality based on the
target language parsing accuracy. In addition to
considering gold POS tags for the target language,

2Instances of related hard problems are 3-partition and
subset-sum.

we also evaluate the mapping algorithm on auto-
matically induced POS tags. In all evaluation sce-
narios, our model consistently rivals the quality
of manually induced mappings. We also demon-
strate that the proposed inference procedure outper-
forms greedy methods by a large margin, highlight-
ing the importance of good optimization techniques.
We further show that while all characteristics of
the mapping contribute to the objective, our largest
gain comes from distributional features that capture
global statistics. Finally, we establish that the map-
ping quality has a significant impact on the accuracy
of syntactic transfer, which motivates further study
of this topic.

2 Related Work

Multilingual Parsing Early approaches for multi-
lingual parsing used parallel data to bridge the gap
between languages when modeling syntactic trans-
fer. In this setup, finding the mapping between var-
ious POS annotation schemes was not essential; in-
stead, the transfer algorithm could induce it directly
from the parallel data (Hwa et al., 2005; Xi and
Hwa, 2005; Burkett and Klein, 2008). However,
more recent transfer approaches relinquish this data
requirement, learning to transfer from non-parallel
data (Zeman and Resnik, 2008; McDonald et al.,
2011; Cohen et al., 2011; Naseem et al., 2010).
These approaches assume access to a common input
representation in the form of universal tags, which
enables the model to connect patterns observed in
the source language to their counterparts in the tar-
get language.

Despite ongoing efforts to standardize POS tags
across languages (e.g., EAGLES initiative (Eynde,
2004)), many corpora are still annotated with
language-specific tags. In previous work, their map-
ping to universal tags was performed manually. Yet,
even though some of these mappings have been de-
veloped for the same CoNLL dataset (Buchholz and
Marsi, 2006; Nivre et al., 2007), they are not identi-
cal and yield different parsing performance (Zeman
and Resnik, 2008; Petrov et al., 2011; Naseem et al.,
2010). The goal of our work is to automate this pro-
cess and construct mappings that are optimized for
performance on downstream tasks (here we focus on
parsing). As our results show, we achieve this goal
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Figure 1: Illustration of similarities in POS tag statistics across languages. (a) The unigram frequency statistics on five
tags for two close languages, English and German. (b) Sample sentences in English and German. Verbs are shown in
blue, prepositions in red and noun phrases in green. It can be seen that noun phrases follow prepositions.

on a broad range of languages and evaluation sce-
narios.

Syntactic Category Refinement Our work also
relates to work in syntactic category refinement in
which POS categories and parse tree non-terminals
are refined in order to improve parsing perfor-
mance (Finkel et al., 2007; Klein and Manning,
2003; Matsuzaki et al., 2005; Petrov et al., 2006;
Petrov and Klein, 2007; Liang et al., 2007). Our
work differs from these approaches in two ways.
First, these methods have been developed in the
monolingual setting, while our mapping algorithm is
designed for multilingual parsing. Second, these ap-
proaches are trained on the syntactic trees of the tar-
get language, which enables them to directly link the
quality of newly induced categories with the quality
of syntactic parsing. In contrast, we are not given
trees in the target language. Instead, our model is
informed by mappings derived for other languages.

3 Task Formulation

The input to our task consists of a target corpus writ-
ten in a language T , and a set of non-parallel source
corpora written in languages {S1, . . . , Sn}. In the
source corpora, each word is annotated with both
a language-specific POS tag and a universal POS
tag (Petrov et al., 2011). In the target corpus each
word is annotated only with a language-specific POS
tag, either gold or automatically induced.

Our goal is to find a map from the set of LT target
language tags to the set of K universal tags. We as-

sume that each language-specific tag is only mapped
to one universal tag, which means we never split a
language-specific tag and LT ≥ K holds for every
language. We represent the map by a matrix A of
size K × LT where A(c|f) = 1 if the target lan-
guage tag f is mapped to the universal tag c, and
A(c|f) = 0 otherwise.3 Note that each column of
A should contain a single value of 1. We will later
relax the requirement thatA(c|f) ∈ {0, 1}. A candi-
date mappingA can be applied to the target language
to produce sentences labeled with universal tags.

4 Model

In this section we describe an objective that reflects
the quality of an automatic mapping.

Our key insight is that for a good mapping, the
statistics over the universal tags should be similar for
source and target languages because these tags play
the same role cross-linguistically. For example, we
should expect the frequency of a particular universal
tag to be similar in the source and target languages.

One choice to make when constructing an objec-
tive is the source languages to which we want to be
similar. It is clear that choosing all languages is not a
good idea, since they are not all expected to have dis-
tributional properties similar to the target language.
There is strong evidence that projecting from sin-
gle languages can lead to good parsing performance

3We use c and f to reflect the fact that universal tags are
a coarse version (hence c) of the language specific fine tags
(hence f ).
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(McDonald et al., 2011). Therefore, our strategy is
to choose a single source language for comparison.
The choice of the source language is based on sim-
ilarity between typological properties; we describe
this in detail in Section 5.

We must also determine which statistical proper-
ties we expect to be preserved across languages. Our
model utilizes three linguistic phenomena which are
consistent across languages: POS tag global distri-
butional statistics, POS tag per sentence statistics,
and typology-based ordering statistics. We define
each of these below.

4.1 Mapping Characterization
We focus on three categories of mapping properties.
For each of the relevant statistics we define a func-
tion Fi(A) that has low values if the source and tar-
get statistics are similar.
Global distributional statistics: The unigram and
bigram statistics of the universal tags are expected
to be similar across languages with close typological
profiles. We use pS(c1, c2) to denote the bigram dis-
tribution over universal tags in the source language,
and pT (f1, f2) to denote the bigram distribution over
language specific tags in the target language. The
bigram distribution over universal tags in the target
language depends on A and pT (f1, f2) and is given
by:

pT (c1, c2;A) =
∑
f1,f2

A(c1|f1)A(c2|f2)pT (f1, f2)

(1)
To enforce similarity between source and target dis-
tributions, we wish to minimize the KL divergence
between the two: 4

Fbi(A) = DKL[pS(c1, c2)|pT (c1, c2;A)] (2)

We similarly define Funi(A) as the distance be-
tween unigram distributions.

Per sentence statistics: Another defining property
of POS tags is their average count per sentence.
Specifically, we focus on the verb count per sen-
tence, which we expect be similar across languages.

4We use the KL divergence because it assigns low weights
to infrequent universal tags. Furthermore, this choice results in
a simple, EM-like parameter estimation algorithm as discussed
in Section 5.

To express this constraint, we use nv(s,A) to
denote the number of verbs (i.e., the universal
tags corresponding to verbs according to A) in
sentence s. This is a linear function of A. We also
use E[nv(s,A)] to denote the average number of
verbs per sentence, and V [nv(s,A)] to denote the
variance. We estimate these two statistics from
the source language and denote them by ESv, VSv.
Good mappings are expected to follow these
patterns by having a variance upper bounded by
VSv and an average lower bounded by ESv.5 This
corresponds to minimizing the following objectives:

FEv(A) = max [0, ESv − E[nv(s,A)]]

FV v(A) = max [0, V [nv(s,A)]− VSv]

Note that the above objectives are convex in A,
which will make optimization simpler. We refer to
the two terms jointly as Fverb(A).

Typology-based ordering statistics: Typolog-
ical features can be useful for determining the
relative order of different tags. If we know that
the target language has a particular typological
feature, we expect its universal tags to obey the
given relative ordering. Specifically, we expect it to
agree with ordering statistics for source languages
with a similar typology. We consider two such
features here. First, in pre-position languages the
preposition is followed by the noun phrase. Thus, if
T is such a language, we expect the probability of
a noun phrase following the adposition to be high,
i.e., cross some threshold. Formally, we define C1 =
{noun, adj, num, pron, det} and consider the set of
bigram distributions Spre that satisfy the following
constraint: ∑

c∈C1

pT (adp,c) ≥ apre (3)

where apre =
∑

c∈C1
pS(adp,c) is calculated from

the source language. This constraint set is non-
convex in A due to the bilinearity of the bi-
gram term. To simplify optimization6 we take an

5The rationale is that we want to put a lower bound on the
number of verbs per sentence, and induce it from the source
language. Furthermore, we expect the number of verbs to be
well concentrated, and we induce its maximal variance from
the source language.

6In Section 5 we shall see that this makes optimization eas-
ier.
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approach inspired by the posterior regularization
method (Ganchev et al., 2010) and use the objective:

Fc(A) = min
r(c1,c2)∈Spre

DKL[r(c1, c2)|pT (c1, c2;A)]

(4)
The above objective will attain lower values for A
such that pT (c1, c2;A) is close to the constraint set.
Specifically, it will have a value of zero when the
bigram distribution induced by A has the property
specified in Spre. We similarly define a set Spost
for post-positional languages.

As a second typological feature, we consider the
Demonstrative-Noun ordering. In DN languages we
want the probability of a determiner to come be-
fore C2 = {noun, adj, num}, (i.e., frequent universal
noun-phrase tags), to cross a threshold. This con-
straint translates to:∑

c∈C2

pT (det, c) ≥ adet (5)

where adet =
∑

c∈C2
pS(det, c) is a threshold de-

termined from the source language. We denote the
set of distributions that have this property by SDN,
and add them to the constraint in (4). The overall
constraint set is denoted by S.

4.2 The Overall Objective
We have defined a set of functions Fi(A) that are
expected to have low values for good mappings. To
combine those, we use a weighted sum: Fα(A) =∑

i αi · Fi(A). (The weights in this equation are
learned; we discussed the procedure in Section 5)

Optimizing over the set of mappings is difficult
since each mapping is a discrete set whose size is
exponential size in LT . Technically, the difficulty
comes from the requirement that elements of A are
integral and its columns sum to one. To relax this
restriction, we will allow A(c|f) ∈ [0, 1] and en-
courage A to correspond to a mapping by adding an
entropy regularization term:

H[A] = −
∑
f

∑
c

A(c|f) logA(c|f) (6)

This term receives its minimal value when the con-
ditional probability of the universal tags given a
language-specific tag is 1 for one universal tag and
zero for the others.

The overall objective is then: F (A) = Fα(A) +
λ ·H[A], where λ is the weight of the entropy term.7

The resulting optimization problem is:

min
A∈∆

F (A) (7)

where ∆ is the set of non-negative matrices whose
columns sum to one:

∆ =

{
A :

A(c|f) ≥ 0 ∀c, f∑K
c=1A(c|f) = 1 ∀f

}
(8)

5 Parameter Estimation

In this section we describe the parameter estimation
process for our model. We start by describing how
to optimize A. Next, we discuss the weight selec-
tion algorithm, and finally the method for choosing
source languages.

5.1 Optimizing the Mapping A

Recall that our goal is to solve the optimization
problem in Eq. (7). This objective is non convex
since the function H[A] is concave, and the objec-
tive F (A) involves bilinear terms in A and loga-
rithms of their sums (see Equations (1) and (2)).

While we do not attempt to solve the problem
globally, we do have a simple update scheme that
monotonically decreases the objective. The update
can be derived in a similar manner to expectation
maximization (EM) (Neal and Hinton, 1999) and
convex concave procedures (Yuille and Rangarajan,
2003). Figure 2 describes our optimization algo-
rithm. The key ideas in deriving it are using pos-
terior distributions as in EM, and using a variational
formulation of entropy. The term Fc(A) is handled
in a similar way to the posterior regularization algo-
rithm derivation. A detailed derivation is provided
in the supplementary file. 8

The kth iteration of the algorithm involves several
steps:

• In step 1, we calculate the current esti-
mate of the bigram distribution over tags,
pT (c1, c2;Ak).

7Note that as λ → ∞, only valid maps will be selected by
the objective.

8The supplementary file is available at http://groups.
csail.mit.edu/rbg/code/unitag/emnlp2012.
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• In step 2, we find the bigram distribution in
the constraint set S that is closest in KL di-
vergence to pT (c1, c2;Ak), and denote it by
rk(c1, c2). This optimization problem is con-
vex in r(c1, c2).

• In step 3, we calculate the bigram posterior
over language specific tags given a pair of uni-
versal tags. This is analogous to the standard
E-step in EM.

• In step 4, we use the posterior in step 3 and the
bigram distributions pS(c1, c2) and rk(c1, c2)
to obtain joint counts over language specific
and universal bigrams.

• In step 5, we use the joint counts from step 4
to obtain counts over pairs of language specific
and universal tags.

• In step 6, analogous to the M-step in EM, we
optimize over the mapping matrix A. The ob-
jective is similar to the Q function in EM, and
also includes the Fverb(A) term, and a linear
upper bound on the entropy term. The objec-
tive can be seen to be convex in A.

As mentioned above, each of the optimization prob-
lems in steps 2 and 6 is convex, and can therefore be
solved using standard convex optimization solvers.
Here, we use the CVX package (Grant and Boyd,
2008; Grant and Boyd, 2011). It can be shown that
the algorithm improves F (A) at every iteration and
converges to a local optimum.

The above algorithm generates a mapping A that
may contain fractional entries. To turn it into a hard
mapping we round A by mapping each f to the c
that maximizes A(c|f) and then perform greedy im-
provement steps (one f at a time) to further improve
the objective. The regularization constant λ is tuned
to minimize the Fα(A) value of the rounded A.

5.2 Learning the Objective Weights

Our Fα(A) objective is a weighted sum of the in-
dividual Fi(A) functions. In the following, we de-
scribe how to learn the αi weights for every target
language. We would like Fα(A) to have low values
when A is a good map. Since our performance goal
is parsing accuracy, we consider a map to be good

Initialize A0.
Repeat

Step 1 (calculate current bigram estimate):

pT (c1, c2;Ak) =
∑

f1,f2

Ak(c1|f1)Ak(c2|f2)pT (f1, f2)

Step 2 (incorporate constraints):

rk(c1, c2) = arg min
r∈S

DKL[r(c1, c2)|pT (c1, c2;Ak)]

Step 3 (calculate model posterior):

p(f1, f2|c1, c2;Ak) ∝ Ak(c1|f1)Ak(c2|f2)pT (f1, f2)

Step 4: (complete joint counts):

N
k
(c1, c2, f1, f2) = p(f1, f2|c1, c2; A

k
)
(

r
k
(c1, c2) + pS(c1, c2)

)
Step 5 (obtain pairwise):

Mk(c, f) = Nk
1 (c, f) +Nk

2 (c, f)

where Nk
1 (c, f) =

∑
c2,f2

Nk(c, c2, f, f2) and similarly for
Nk

2 (c, f).
Step 6 (M step with entropy linearization): Set Ak+1 to be the
solution of

min
A∈∆

−
∑
c,f

[
M

k
(c, f) log A(c|f) + A(c|f) log A

k
(c|f)

]
+ Fverb(A)

Until Convergence of Ak

Figure 2: An iterative algorithm for minimizing our ob-
jective in Eq. (7). For simplicity we assume that all the
weights αi and λ are equal to one. It can be shown that
the objective monotonically decreases in every iteration.

if it results in high parsing accuracy, as measured
when projecting a parser from to S to T .

Since we do not have annotated parses in T , we
use the other source languages S = {S1, . . . , Sn}
to learn the weight. For each Si as the target, we
first train a parser for each language in S \ {Si} as
if it was the source, using the map of Petrov et al.
(2011), and choose S∗i ∈ S \ {Si} which gives the
highest parsing accuracy on Si. Next we generate
7000 candidate mappings for Si by randomly per-
turbing the map of (Petrov et al., 2011). We evalu-
ate the quality of each candidate A by projecting the
parser of S∗i to Si, and recording the parsing accu-
racy. Among all the candidates we choose the high-
est accuracy one and denote it by A∗(Si). We now
want the score F (A∗(Si)) to be lower than that of all
other candidates. To achieve this, we train a ranking
SVM whose inputs are pairs of mapsA∗(Si) and an-
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other worse A(Si). These map pairs are taken from
many different traget languages, i.e. many different
Si. The features given to the SVM are the terms of
the score Fi(A). The goal of the SVM is to weight
these terms such that the better map A∗(Si) has a
lower score. The weights assigned by the SVM are
taken as αi.

5.3 Source Language Selection

As noted in Section 4 we construct F (A) by choos-
ing a single source language S. Here we describe the
method for choosing S. Our goal is to choose S that
is closest to T in terms of typology. Assume that
languages are described by binary typological vec-
tors vL. We would like to learn a diagonal matrix
D such that d(S, T ;D) = (vS − vT )TD(vS − vT )
reflects the similarity between the languages. In our
context, a good measure of similarity is the perfor-
mance of a parser trained on S and projected on T
(using the optimal map A). We thus seek a matrix
D such that d(S, T ;D) is ranked according to the
parsing accuracy. The matrix D is trained using an
SVM ranking algorithm that tries to follow the rank-
ing of parsing accuracy. Similar to the technique for
learning the objective weights, we train across many
pairs of source languages.9

The typological features we use are a subset
of the features described in “The World Atlas of
Languages Structure” (WALS, (Haspelmath et al.,
2005)), and are shown in Table 1.

6 Evaluation Set-Up

Datasets We test our model on 19 languages: Ara-
bic, Basque, Bulgarian, Catalan, Chinese, Czech,
Danish, Dutch, English, German, Greek, Hungar-
ian, Italian, Japanese, Portuguese, Slovene, Span-
ish, Swedish, and Turkish. Our data is taken from
the CoNLL 2006 and 2007 shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007). The
CoNLL datasets consist of manually created depen-
dency trees and language-specific POS tags. Fol-
lowing Petrov et al. (2011), our model maps these
language-specific tags to a set of 12 universal tags:
noun, verb, adjective, adverb, pronoun, determiner,
adposition, numeral, conjunction, particle, punctua-
tion mark and X (a general tag).

9Ties are broken using the F (A) objective.

Evaluation Procedure We perform a separate ex-
periment for each of the 19 languages as the tar-
get and a source language chosen from the rest (us-
ing the method from Section 5.3). For the selected
source language, we assume access to the mapping
of Petrov et al. (2011).

Evaluation Measures We evaluate the quality of
the derived mapping in the context of the target lan-
guage parsing accuracy. In both the training and
test data, the language-specific tags are replaced
with universal tags: Petrov’s tags for the source lan-
guages and learned tags for the target language. We
train two non-lexicalized parsers using source anno-
tations and apply them to the target language. The
first parser is a non-lexicalized version of the MST
parser (McDonald et al., 2005) successfully used in
the multilingual context (McDonald et al., 2011). In
the second parser, parameters of the target language
are estimated as a weighted mixture of parameters
learned from supervised source languages (Cohen et
al., 2011). For the parser of Cohen et al. (2011), we
trained the model on the four languages used in the
original paper — English, German, Czech and Ital-
ian. When measuring the performance on each of
these four languages, we selected another set of four
languages with a similar level of diversity.10

Following the standard evaluation practice in
parsing, we use directed dependency accuracy as our
measure of performance.

Baselines We compare mappings induced by our
model against three baselines: the manually con-
structed mapping of Petrov et al. (2011), a randomly
constructed mapping and a greedy mapping. The
greedy mapping uses the same objective as our full
model, but optimizes it using a greedy method. In
each iteration, this method makes |LT | passes over
the language-specific tags, selecting a substitution
that contributes the most to the objective.

Initialization To reduce the dimension of our al-
gorithm’s search space and speed up our method, we
start by clustering the language-specific POS tags of
the target into |K| = 12 clusters using an unsuper-

10We also experimented with a version of the Cohen et al.
(2011) model trained on all the source languages. This set-up
resulted in decreased performance. For this reason, we chose to
train the model on the four languages.
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ID Feature Description Values
81A Order of Subject, Object and Verb SVO, SOV, VSO, VOS, OVS, OSV
85A Order of Adposition and Noun Postpositions, Prepositions, Inpositions
86A Order of Genitive and Noun Genitive-Noun, Noun-Genitive
87A Order of Adjective and Noun Adjective-Noun, Noun-Adjective
88A Order of Demonstrative and Noun Demonstrative-Noun, Noun-Demonstrative, before and after

Table 1: The set of typological features that we use for source language selection. The first column gives the ID of
the feature as listed in WALS. The second column describes the feature and the last column enumerates the allowable
values for each feature; besides these values each feature can also have a value of ‘No dominant order’.

vised POS induction algorithm (Lee et al., 2010).11

Our mapping algorithm then learns the connection
between these clusters and universal tags.

For initialization, we perform multiple random
restarts and select the one with the lowest final ob-
jective score.

7 Results

We first present the results of our model using the
gold POS tags for the target language. Table 2 sum-
marizes the performance of our model and the base-
lines.

Comparison against Baselines On average, the
mapping produced by our model yields parsers with
higher accuracy than all of the baselines. These re-
sults are consistent for both parsers (McDonald et
al., 2011; Cohen et al., 2011). As expected, random
mappings yield abysmal results — 20.2% and 12.7%
for the two parsers. The low accuracy of parsers that
rely on the Greedy mapping — 29.9% and 25.4% —
show that a greedy approach is a poor strategy for
mapping optimization.

Surprisingly, our model slightly outperforms the
mapping of (Petrov et al., 2011), yielding an aver-
age accuracy of 56.7% as compared to the 55.4%
achieved by its manually constructed counterpart for
the direct transfer method (McDonald et al., 2011).
Similar results are observed for the mixture weights
parser (Cohen et al., 2011). The main reason for
these differences comes from mistakes introduced in
the manual mapping. For example, in Czech tag “R”
is labeled as “pronoun”, while actually it should be
mapped to “adposition”. By correcting this mistake,
we gain 5% in parsing accuracy for the direct trans-
fer parser.

11This pre-clustering results in about 3% improvement, pre-
sumably since it uses contextual information beyond what our
algorithm does.

Overall, the manually constructed mapping and
our model’s output disagree on 21% of the assign-
ments (measured on the token level). However,
the extent of disagreement is not necessarily predic-
tive of the difference in parsing performance. For
instance, the manual and automatic mappings for
Catalan disagree on 8% of the tags and their pars-
ing accuracy differs by 5%. For Greek on the other
hand, the disagreement between mappings is much
higher — 17%, yet the parsing accuracy is very
close. This phenomenon shows that not all mistakes
have equal weight. For instance, a confusion be-
tween “pronoun” and “noun” is less severe in the
parsing context than a confusion between “pronoun”
and “adverb”.

Impact of Language Selection To assess the
quality of our language selection method, we com-
pare the model against an oracle that selects the best
source for a given target language. As Table 2 shows
our method is very close to the oracle performance,
with only 0.7% gap between the two. In fact, for
10 languages our method correctly predicts the best
pairing. This result is encouraging in other contexts
as well. Specifically, McDonald et al. (2011) have
demonstrated that projecting from a single oracle-
chosen language can lead to good parsing perfor-
mance, and our technique may allow such projection
without an oracle.

Relations between Objective Values and Opti-
mization Performance The suboptimal perfor-
mance of the Greedy method shows that choosing
a good optimization strategy plays a critical role in
finding the desired mapping. A natural question to
ask is whether the objective value is predictive of the
end goal parsing performance. Figure 3 shows the
objective values for the mappings computed by our
method and the baselines for four languages. Over-
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Direct Transfer Parser (Accuracy) Mixture Weight Parser (Accuracy)
Tag Diff.

Random Greedy Petrov Model Best Pair Random Greedy Petrov Model.
Catalan 15.9 32.5 74.8 79.3 79.3 12.6 24.6 65.6 73.9 8.8
Italian 16.4 41.0 68.7 68.3 71.4 11.7 33.5 64.2 61.9 6.7
Portuguese 15.8 24.6 72.0 75.1 75.1 10.7 14.1 70.4 72.6 12.2
Spanish 11.5 27.4 72.1 68.9 68.9 6.4 26.5 58.8 62.8 7.5
Danish 35.5 23.7 46.6 46.5 49.2 4.2 23.7 51.4 51.7 5.0
Dutch 18.0 22.1 58.2 56.8 57.3 7.1 15.3 54.9 53.2 4.9
English 14.7 19.0 51.6 49.0 49.0 13.3 15.1 47.5 41.8 17.7
German 15.8 24.3 55.7 50.4 51.6 20.9 18.7 52.4 51.8 15.0
Swedish 15.1 26.3 63.1 63.1 63.1 9.1 36.5 55.7 55.9 8.2
Bulgarian 17.4 28.0 51.6 63.4 63.4 22.6 39.9 64.6 60.4 35.7
Czech 19.0 34.4 47.7 57.3 57.3 12.7 26.2 48.3 55.7 28.5
Slovene 15.6 21.8 43.5 51.4 52.8 11.3 20.7 42.2 53.0 38.8
Greek 17.3 19.5 62.3 59.7 59.8 22.0 15.2 56.2 57.0 17.0
Hungarian 28.4 44.1 53.8 52.3 52.3 4.0 43.8 46.4 51.7 18.1
Arabic 22.1 45.4 51.5 51.2 52.9 3.9 40.9 48.3 51.1 15.7
Basque 18.0 19.2 27.9 33.1 35.1 6.3 8.3 32.3 30.6 43.8
Chinese 22.4 34.1 46.0 47.6 49.5 17.7 34.9 44.0 40.4 38.1
Japanese 36.5 46.2 51.4 53.6 53.6 15.4 18.0 25.7 28.7 73.8
Turkish 28.8 34.9 53.2 49.8 49.8 19.7 20.3 27.7 27.5 9.9
Average 20.2 29.9 55.4 56.7 57.4 12.7 25.4 50.8 51.7 21.3

Table 2: Directed dependency accuracy of our model and the baselines using gold POS tags for the target language.
The first section of the table is for the direct transfer of the MST parser (McDonald et al., 2011). The second section
is for the weighted mixture parsing model (Cohen et al., 2011). The first two columns (Random and Greedy) of each
section present the parsing performance with a random or a greedy mapping. The third column (Petrov) shows the
results when the mapping of Petrov et al. (2011) is used. The fourth column (Model) shows the results when our
mapping is used and the fifth column in the first section (Best Pair) shows the performance of our model when the best
source language is selected for every target language. The last column (Tag Diff.) presents the difference between our
mapping and the mapping of Petrov et al. (2011) by showing the percentage of target language tokens for which the
two mappings select a different universal tag.

all, our method and the manual mappings reach sim-
ilar values, both considerably better than other base-
lines. While the parsing performance correlates with
the objective, the correlation is not perfect. For in-
stance, on Greek our mapping has a better objective
value, but lower parsing performance.

Ablation Analysis We next analyze the contribu-
tion of each component of our objective to the result-
ing performance.12 The strongest factor in our ob-
jective is the distributional features capturing global
statistics. Using these features alone achieves an
average accuracy of 51.1%, only 5.6% less than
the full model score. Adding just the verb-related
constraints to the distributional similarity objectives
improves the average model performance by 2.1%.

12The results are consistent for both parsers, here we report
the accuracy for the direct transfer method (McDonald et al.,
2011).

Adding just the typological constraints yields a very
modest performance gain of 0.5%. This is not sur-
prising — the source language is selected to be typo-
logically similar to the target language, and thus its
distributional properties are consistent with typolog-
ical features. However, adding both the verb-related
constraints and the typological constraints results in
a synergistic performance gain of 5.6% over the dis-
tributional similarity objective, a gain which is much
better than the sum of the two individual gains.

Application to Automatically Induced POS Tags
A potential benefit of the proposed method is to re-
late automatically induced clusters in the target lan-
guage to universal tags. In our experiments, we in-
duce such clusters using Brown clustering,13 which

13In our experiments, we employ Liang’s implementation
http://cs.stanford.edu/∼pliang/software/. The number of clus-
ters is set to 30.
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Figure 3: Objective values for the different mappings
used in our experiments for four languages. Note that
the goal of the optimization procedure is to minimize the
objective value.

has been successfully used for similar purposes in
parsing research (Koo et al., 2008). We then map
these clusters to the universal tags using our algo-
rithm.

The average parsing accuracy on the 19 languages
is 45.5%. Not surprisingly, automatically induced
tags negatively impact parsing performance, yield-
ing a decrease of 11% when compared to mappings
obtained using manual POS annotations (see Ta-
ble 2). To further investigate the impact of inaccu-
rate tags on the mapping performance, we compare
our model against the oracle mapping model that
maps each cluster to the most common universal tag
of its members. Parsing accuracy obtained using this
method is 45.1%, closely matching the performance
of our mapping algorithm.

An alternative approach to mapping words into
universal tags is to directly partition words into K
clusters (without passing through language specific
tags). In order for these clusters to be meaningful
as universal tags, we can provide several prototypes
for each cluster (e.g., “walk” is a verb etc.). To test
this approach we used the prototype driven tagger of
Haghighi and Klein (2006) with 15 prototypes per
universal tag.14 The resulting universal tags yield
an average parsing accuracy of 40.5%. Our method
(using Brown clustering as above) outperforms this

14Oracle prototypes were obtained by taking the 15 most
frequent words for each universal tag. This yields almost the
same total number of prototypes as those in the experiment of
(Haghighi and Klein, 2006).

baseline by about 5%.

8 Conclusions

We present an automatic method for mapping
language-specific part-of-speech tags to a set of uni-
versal tags. Our work capitalizes on manually de-
signed conversion schemes to automatically create
mappings for new languages. Our experimental re-
sults demonstrate that automatically induced map-
pings rival the quality of their hand-crafted coun-
terparts. We also establish that the mapping quality
has a significant impact on the accuracy of syntactic
transfer, which motivates further study of this topic.
Finally, our experiments show that the choice of
mapping optimization scheme plays a crucial role in
the quality of the derived mapping, highlighting the
importance of optimization for the mapping task.
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Abstract

In modern Chinese articles or conversations,
it is very popular to involve a few English
words, especially in emails and Internet liter-
ature. Therefore, it becomes an important and
challenging topic to analyze Chinese-English
mixed texts. The underlying problem is how
to tag part-of-speech (POS) for the English
words involved. Due to the lack of specially
annotated corpus, most of the English words
are tagged as the oversimplified type, “foreign
words”. In this paper, we present a method
using dynamic features to tag POS of mixed
texts. Experiments show that our method
achieves higher performance than traditional
sequence labeling methods. Meanwhile, our
method also boosts the performance of POS
tagging for pure Chinese texts.

1 Introduction

Nowadays, Chinese-English mixed texts are
prevalent in modern articles or emails. More and
more English words are used in Chinese texts as
names of organizations, products, terms and abbre-
viations, such as “eBay”, “iPhone”, “GDP”, “An-
droid” etc. On the other hand, it is also a common
phenomenon to use Chinese-English mixed texts
in daily conversation, especially in communication
among employers in large international corporations.
There are some challenges for analyzing Chinese-

English mixed texts:

1. How to define the POS tags for English words
in these mixed texts. Since the standard of
POS tags for English and Chinese are different,
we cannot use English POS to tag the English
words in mixed texts.

2. Due to lack of annotated corpus for mixed texts,
most of the English words are tagged as “for-
eign words”, which is oversimplified. So we
cannot use them in further processing for the
syntactic and semantic analysis.

3. Most English words used in mixed texts are of-
ten out-of-vocabulary (OOV), which thus in-
creases the difficulties to tag them.

Currently, the mainstream method of Chinese
POS tagging is joint segmentation & tagging with
cross-labels, which can avoid the problem of error
propagation and achieve higher performance on both
subtasks(Ng and Low, 2004). Each label is the cross-
product of a segmentation label and a tagging la-
bel, e.g. {B-NN, I-NN, E-NN, S-NN, ...}. The fea-
tures are generated by position-based templates on
character-level.
Since the main part of mixed texts is in Chinese

and the role of English word is more like Chinese,
we use Chinese POS tags (Xia, 2000) to tag English
words. Since the categories of the most commonly
used English words are nouns, verbs and adjectives,
we can use “NN”, “NR”, “VV”, “VA”, “JJ” to label
their POS tags.
For the English proper nouns and verbs, there

are no significant differences in Chinese and En-
glish POS tags except that English features plural
and tense forms.
For the English nouns, these are some English

nouns used as verbs, such as “我很 [fan/VV]他。(I
adore him very much.)” where “fan” means “adore”
and is used as a verb.
For the English adjectives, there are two corre-

sponding Chinese POS tags “VA” and “JJ”. For ex-
ample, the roles of some English words in Table 1,
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Table 1: The POS tags of English Adjectives in Mixed
Texts
Chinese English
我 非 常 [profes-
sional/VA]。

I am very profes-
sional.

感觉很 [high/VA]。 Feel very high.
他是 [super/JJ] [star/NN] He is a super star.

such as “professional” and “high”, are different with
their original ones.

Therefore, the POS tagging for mixed texts cannot
be settled with simple methods, such as looking up
in a dictionary.

One of the main differences between Chinese and
English in POS tagging is that the two languages
have character-based features and word-based fea-
tures respectively. To ensure the consistency of tag-
ging models, we prefer to use word-level informa-
tion in Chinese, which is both useful for Chinese-
English mixed texts and Chinese-only texts. For in-
stance, in a sentence “X 或者 Y ... (X or Y ...)”,
the word Y ought to have the same POS tag as the
word X . Another example is that the word follow-
ing a pronoun is usually a verb, and adjectives of-
ten describe nouns. Some related works show that
word-level features can improve the performance of
Chinese POS tagging (Jiang et al., 2008; Sun, 2011).

In this paper, we propose a method to tag mixed
texts with dynamic features. Our method combines
these dynamic features, which are dynamically gen-
erated at the decoding stage, with traditional static
features. For Chinese-English mixed texts, the tra-
ditional features cannot yield a satisfied result due to
lack of training data. The proposed dynamic features
can improve the performance by using the informa-
tion of a word, such as POS tag or length of the whole
word, which is proven effective by experiments.

The rest of the paper is organized as follows: In
section 2, we introduce the sequence labeling mod-
els, thenwe describe our method of dynamic features
in section 3 and analyze its complexity in section 4.
Section 5 describes the training method. The exper-
imental results are manifested in section 6. Finally,
We review the relevant research works in section 7
and conclude our work in section 8.

2 Sequence Labeling Models

Sequence labeling is the task of assigning labels
y = y1, . . . , yn to an input sequence x = x1, . . . , xn.
Given a sample x, we define the feature Φ(x, y).
Thus, we can label x with a score function,

ŷ = argmax
y

F (w, Φ(x, y)), (1)

where w is the parameter of function F (·).
For sequence labeling, the feature can be denoted

asϕk(yi, yi−1, x, i), where i stands for the position in
the sequence and k stands for the number of feature
templates.
we use online Passive-Aggressive (PA) algorithm

(Crammer and Singer, 2003; Crammer et al., 2006)
to train the model parameters. Following (Collins,
2002), the average strategy is used to avoid the over-
fitting problem.

3 Dynamic Features

The form of traditional features is shown in Table
2, where C represents a Chinese character, and T
represents the character-based tag. The subscript i
indicates its position related to the current character.

Table 2: Traditional Feature Templates
Ci, T0(i = −2,−1, 0, 1, 2)

Ci, Cj , T0(i, j = −2,−1, 0, 1, 2 and i ̸= j)

T−1, T0

Traditional features are generated by position-
fixed templates. Since the length of Chinese word
is unfixed, their meanings are incomplete. We cat-
egorize them as “static” features since they can be
calculated before tagging (except “T−1, T0”).
The form of dynamic features is shown in Table

3, where WORD represents a Chinese word, and
POS (LEN ) is the POS tag (length) of the word.
The subscript of dynamic feature template indicates
its position related to the current word.
Table 4 shows an example. If the current posi-

tion is “ Apple”, then {POS−1=CC, POS−2=NR,
WORD−1=“和”, LEN−2=2}. Since these features
are unavailable before tagging, we call them “dy-
namic” features.
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Table 3: Examples of Dynamic Feature Templates
POSi, POSj , T0(i, j = −2,−1, 0 and i ̸= j)

POSi, WORDj , T0(i, j = −2,−1, 0)

WORDi, LENj , POSk, T0(i, j, k = −2,−1, 0)

…

Dynamic features are more flexible because the
number of involved characters is dependent on the
length of previous words. Unlike static features, dy-
namic features do not merely rely on the input se-
quence C1:n, so the weights of dynamic features, in
which POS/LEN are involved, can be trained by
Chinese-only texts and used by mixed texts, which
resolve the problem of the lack of training data.

4 Tagging with Dynamic Features

In the tagging stage, we use the current best result
to approximately calculate the unknown tag infor-
mation. For an input sequence C1:n, the current best
tags from index 0 to i−1 can be calculated by Viterbi
algorithm and they can be used to generate dynamic
features for index i. The specific algorithm is shown
in Algorithm 1.
Here is an example to explain the time com-

plexity of the dynamic features. Normal template
xi−2xi−1yi requires to look for the positions of
i − 2 and i − 1 related to the current character
xi, but dynamic template posi−2posi−1yi needs to
know the pos tags of two words. If the length of
wordi−1/wordi−2 is 2, then the positions of i−4, i−
3, i−2, i−1 are needed to generate the dynamic fea-
tures.
For all dynamic features, it is unnecessary to

repetitively calculate the POS/WORD/LEN ar-
ray. Apart from that one time calculation of the ar-
ray, no distinction can be found between the time
complexity of the dynamic features and the tradi-
tional features. For input C1:n, the time complexity
isO(n∗[O(op.2)+(Ts.num+Td.num)∗O(op.1)+
O(op.4)]), n.b. O(op.1) = O(op.3). Universally
the dynamic features only require the information of
position i − 2 and i − 1, so the time complexity of
calculating the POS/WORD/LEN array can be
ignored as compared with the complexity of Viterbi
algorithm and feature extraction. The approximate
algorithm is thus faster than the Brute-Force way by

input : character sequence C1:n

static templates Ts

dynamic templates Td

number of labels m
trans matrix M

output: results Max & Vp

Initialize: weight matrix W (n×m)
viterbi score matrix Vs (n×m)
viterbi path matrix Vp (n×m)
the index of current best label Max

for i = 1 · · ·n do
for ts in Ts do

// create feature string Fs (Op.1)
Fs = createFeature(C1:n, ts);
W [i] += getWeightVector(Fs);

end
// create a list of <posk,wordk,lenk>
// (k = 0,−1,−2 . . .) (Op.2)
dList = getCurrentBestPath(Max, Vp);
for td in Td do

// create dynamic features string Fd

// (Op.3)
Fd = createFeature(C1:n, td, dList);
W [i] += getWeightVector(Fd);

end
// Update Vs[i], Vp[i] (Op.4)
viterbi_OneStep(Vs[i− 1], W [i], M );
Max = argmaxi(Vs[i]) ;

end
Algorithm 1: Tagging Algorithm with Dynamic
Features

using word-level information.

5 Training

Given an example (x, y), ŷ are denoted as the in-
correct labels with the highest score

ŷ = argmax
z ̸=y

wT Φ(x, z). (2)

The margin γ(w; (x, y)) is defined as

γ(w; (x, y)) = wT Φ(x, y)− wT Φ(x, ŷ). (3)

Thus, we calculate the hinge loss ℓ(w; (x, y), (ab-
breviated as ℓw) by

1381



Table 4: Example for Chinese-English Mixed POS Tagging
微 软 和 Apple 的 OS 风 格 不 同 。

B-NR E-NR S-CC S-NR S-DEG S-NN B-NN E-NN B-VA E-VA S-PU

ℓw =

{
0, γ(w; (x, y)) > 1
1− γ(w; (x, y)), otherwise (4)

In round k, the new weight vector wk+1 is calcu-
lated by

wk+1 = argmin
w

1

2
||w− wk||2 + C · ξ,

s.t. ℓ(w; (xk, yk)) <= ξ and ξ >= 0 (5)

where ξ is a non-negative slack variable, and C is
a positive parameter which controls the influence of
the slack term on the objective function.
Following the derivation in PA (Crammer et al.,

2006), we can get the update rule,

wk+1 = wk + τk(Φ(xk, yk)− Φ(xk, ŷk)), (6)

where

τk = min(C, ℓwk

∥Φ(xk, yk)− Φ(xk, ŷk)∥2
) (7)

Our algorithm based on PA algorithm is shown in
Algorithm 2.

6 Experiments

We implement our system based on FudanNLP1.
We employ the commonly used label set {B, I, E,
S} for the segmentation part of cross-labels. {B,
I, E} represent Begin, Inside, End of a multi-node
segmentation respectively, and S represents a Single
node segmentation.
The F1 score is used for evaluation, which is the

harmonic mean of precision P (percentage of pre-
dict phrases that exactlymatch the reference phrases)
and recallR (percentage of reference phrases that re-
turned by system).
The feature templates, which are used to extract

features, are listed in Table 5. We set traditional
method (static features) as the baseline. The detailed
experimental settings and results are reported in the
following subsections.

1Available at http://code.google.com/p/fudannlp/

input : training data sets:
(xi, yi), i = 1, · · · , N , and parameters:
C,K

output: wK

Initialize: wTemp← 0,w← 0;
for k = 0 · · ·K − 1 do

for i = 1 · · ·N do
receive an example (xi, yi);
predict: ŷi = argmax

y
⟨wk, Φ(xi, y)⟩;

if ŷi ̸= yi then
update wk+1 with Eq. 6;

end
end
wTemp = wTemp+ wk+1 ;

end
wK = wTemp/K ;

Algorithm 2: Training Algorithm

Table 5: Feature Templates

Static
xi−2yi, xi−1yi, xiyi, xi+1yi, xi+2yi

xi−1xiyi, xi+1xiyi, xi−1xi+1yi,
yi−1yi

Dynamic

posi−2posi−1yi, posi−1posiyi

posi−2wordi−1yi, posi−1wordiyi

posi−1wordi−1yi, posiwordiyi

wordi−2wordi−1yi, wordi−1wordiyi

wordileniyi

6.1 POS Tagging for Chinese-only Texts
Before the experiments onChinese-Englishmixed

texts, we evaluate the performance of our method on
Chinese-only texts. We use the CTB dataset from
the POS tagging task of the Fourth International Chi-
nese Language Processing Bakeoff (SIGHAN Bake-
off 2008)(Jin and Chen, 2008). The details are
shown in Table 6.
The performance comparison on joint segmenta-

tion & POS tagging is shown in Table 7. Our method
obtains an error reduction of 6.7% over the baseline.
The reason is that our dynamic features can utilize
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Table 6: POS Tagging Dataset in SIGHAN Bakeoff 2008
Train Set Test Set
(number) (number)

Sentence 23444 2079

Word

Total 642246 59955
NN 168896 16793
NR 42906 3970
VV 92887 8641
VA 9106 649
JJ 15640 1581

word-level information effectively and the feature
templates are more flexible.

Table 7: Performances of POS Tagging on Chinese-only
Texts with Static and Dynamic Features

Method P R F1
Baseline 89.68 89.60 89.64
Our 90.35 90.31 90.33

6.2 POS Tagging for Chinese-English Mixed
Texts

Without annotated corpus for Chinese-English
mixed texts, we use synthetic data as the alternative.
In Chinese-English mixed texts, English words of
noun(NN/NR), verb(VV/VA) and adjective(JJ) cat-
egories are the most commonly used, so we ran-
domly transform a certain percentage of Chinese
words with these POS tags in the SIGHAN Bakeoff
2008 dataset(Jin and Chen, 2008) into their English
counterparts.

6.2.1 Synthetic Data
Before trying out an experiment, we first study

how to generate the data of mixed texts.
We use two ways to produce the synthetic data:

“Respective Replacement” and “Unified Replace-
ment”.

Respective Replacement We replace the selected
Chinese words into their corresponding English
counterparts.

Unified Replacement We replace the selected Chi-
nese words with a unified labelENG. The rea-
son we use the labelENG instead of real words
is that we want to consider the context of these

words but not the words themselves and over-
come the problem of out-of-vocabulary (OOV)
English words.

For our experiments, we just select 5% of the Chi-
nese nouns and verbs from SIGHAN dataset, and re-
place them in the above two ways. After replace-
ment, the training and test data have 12780 and 1254
English words, respectively. 5189 words are gener-
ated by way of “Respective Replacement”. In the
test data, 326words are OOV, which comprises 25%
of the whole vocabulary. The information of gener-
ated data is shown in Table 8.

Table 8: The Synthetic Chinese-English Mixed Dataset
H

Dataset Numbers of ENG
NN VV

H
Train Set 8191 4589
Test Set 842 412

We use H1 to represent the dataset generated by
way of “Respective Replacement”, and H2 for the
dataset by way of with “Unified Replacement”. The
experimental results on these two datasets are shown
in Table 9.

Table 9: Performances of POS Tagging on Dataset H1

and H2

Method Dataset ENG OOV Total
F1 F1oov F1

Baseline H1 73.60 54.91 88.93
H2 77.59 73.93 89.11

Our H1 75.60 54.60 89.79
H2 79.82 77.61 89.81

From Table 9, we can see that the “Unified
Replacement” way is better than the “Respective
Replacement” way for both the baseline and our
method. The main reason is that the “Unified Re-
placement” way can greatly improve the tagging per-
formance of OOV words.

6.2.2 Detail Comparisons
For detail comparisons of all situations of

mixed texts, we design six synthetic datasets,
A/B/C/D1/D2/E by randomly selecting 10% or
15% of Chinese words (“NN/NR/VV/VA/JJ”) in the
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above SIGHANBakeoff 2008 dataset, and replacing
them with English label ENG.
The differences of these datasets are as following:

• Dataset A only contains English words with
tags “NN/VV”.

• Dataset B contains English words with tags
“NN/VV/VA”.

• Dataset C contains one more tag “NR” than
Dataset B.

• Datasets D1 and D2 contain one more tag “JJ”
than Dataset B. The difference between D1

and D2 is that D2 has about 50%more English
words than D1 in training set.

• Dataset E contains English words with all the
tags “NN/NR/VV/VA/JJ”.

The detailed information of datasets
A/B/C/D1/D2/E is shown in Table 10.

Table 10: The Synthetic Chinese-English Mixed Dataset

Dataset Numbers of ENG
NN NR VV VA JJ

A
Train 16302 0 9007 0 0
Test 1675 0 841 0 0

B
Train 16116 0 8882 906 0
Test 1573 0 830 58 0

C
Train 16312 4057 9067 899 0
Test 1549 400 795 61 0

D1
Train 16042 0 8957 855 1539
Test 1588 0 845 58 150

D2
Train 23705 0 13154 1300 2211
Test 1588 0 845 58 150

E
Train 16066 4162 9156 886 1547
Test 1647 415 809 57 141

The results are shown in Table 11. On dataset E,
our method achieves 6.78% higher performance on
tagging ENG labels than traditional static features.
This result is reasonable because our model can use
more flexible feature templates to extract features
and reduce the problem of being dependent on spe-
cific English words.
Tables 12/13/14/15/16/17 show the detailed re-

sults on datasets A/B/C/D1/D2/E.

Table 11: Performances of POS Tagging on Datasets
A/B/C/D1/D2/E

Dataset Method ENG labels Total
F1 F1

A
Baseline 80.25 88.74
Our 83.03 89.72

B
Baseline 76.72 88.51
Our 80.54 89.55

C
Baseline 68.16 88.13
Our 70.34 88.99

D1
Baseline 71.30 88.33
Our 74.02 89.15

D2
Baseline 69.59 88.09
Our 74.10 89.15

E
Baseline 61.58 87.71
Our 68.36 88.83

Experiment on dataset A gets the best result be-
cause “NN” and “VV” can be easily distinguished by
its context. Sometimes, “VA” has the similar context
with “VV”, experiment on datasetB shows its influ-
ence. The performances on datasetsB/C/E descend
in turn. The reason is that words with tag “NN” or
“NR/JJ” have the similar usage/contexts in Chinese.
Since we use the same form ENG instead of real
words, there are no differences between these words,
which leads to some errors. Though the datasets is
generated randomly, we can see our method perform
better on every dataset than the baseline.

Table 12: Performances on Dataset A
POS tag Method P R F1

NN Baseline 84.36 86.33 85.33
Our 85.37 89.91 87.58

VV Baseline 71.45 68.13 69.75
Our 77.53 69.32 73.20

Table 13: Performances on Dataset B
POS tag Method P R F1

NN Baseline 84.89 80.36 82.56
Our 83.51 88.87 86.11

VV Baseline 65.90 72.65 69.11
Our 75.75 67.35 71.30

VA Baseline 36.84 36.21 36.52
Our 51.02 43.10 46.73
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Table 14: Performances on Dataset C
POS tag Method P R F1

NN Baseline 73.77 78.24 75.94
Our 76.84 77.99 77.41

VV Baseline 61.67 66.79 64.13
Our 64.94 67.80 66.34

NR Baseline 55.22 37.00 44.31
Our 55.65 50.50 52.95

VA Baseline 63.64 34.43 44.68
Our 60.00 39.34 47.52

Table 15: Performances on Dataset D1

POS tag Method P R F1

NN Baseline 77.15 81.42 79.23
Our 76.70 88.54 82.20

VV Baseline 67.53 64.50 65.98
Our 79.65 59.76 68.29

JJ Baseline 25.00 18.00 20.93
Our 22.92 14.67 17.89

VA Baseline 36.00 31.03 33.33
Our 28.57 37.93 32.59

Table 16: Performances on Dataset D2

POS tag Method P R F1

NN Baseline 79.11 74.87 76.93
Our 79.29 82.68 80.95

VV Baseline 55.77 72.78 65.64
Our 69.17 70.89 70.02

JJ Baseline 27.27 12.00 16.67
Our 34.38 22.00 26.83

VA Baseline 37.21 27.59 31.68
Our 52.17 20.69 29.63

6.3 POS Tagging for Mixed Texts with a Real
Dataset

To investigate the actual performance, we collect
a real dataset from Web, which consists of 142 rep-
resentative Chinese-English mixed sentences. This
dataset contains 4, 238 Chinese characters and 275
English words. Since we focus on the performance
for English words, we only label the POS tags of the
English words. Table 18 shows some examples in
the real dataset of mixed texts.

Table 17: Performances on Dataset E
POS tag Method P R F1

NN Baseline 72.41 68.85 70.59
Our 71.18 84.88 77.43

VV Baseline 63.65 59.09 61.28
Our 76.19 55.38 64.14

JJ Baseline 28.57 25.53 26.97
Our 30.21 20.57 24.47

VA Baseline 44.83 45.61 45.22
Our 60.42 50.88 55.24

NR Baseline 38.03 52.05 43.95
Our 52.01 46.75 49.24

Table 18: Examples in Real Dataset of Mixed Texts
通过 [Ninja Cloud/NR] 的云服务， [Ninja
Blocks/NR] 能 与 [Facebook/NR]、 [Twit-
ter/NR]、[Dropbox/NR]等无缝连接。
By using [Ninja Cloud/NR], [Ninja
Blocks/NR] can connect to [Facebook/NR],
[Twitter/NR], [Dropbox/NR].
你去 [follow/VV]一下这个人的工作。
You should [follow/VV] this man’s work.
强烈的视觉震撼！！很 [COOL/VA]！
... very [COOL/VA]!

The information of the real dataset is shown in Ta-
ble 19. If all involved English words are tagging as
“NN”, the precision is just 56%.

Table 19: The Numbers of English Words with Different
Tags in Dataset R

Dataset NN VV VA NR
R 154 58 28 35

Since there is no noun-modifier “JJ” in our col-
lected data. We use the models trained on dataset
B and C to tag the real data. The results are shown
in Table 20. The difference between model B and
C is that model B regards all words with tag “NR”
as “NN”. Since it is difficult to distinguish between
“NR” and “NN” merely according to the context,
model B performs better than model C.
The detail results of model B and C are shown in

Table 21 and 22.
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Table 20: Performances of POS Tagging on R

Model Method ENG
F1

B
Baseline 74.91
Our 82.55

C
Baseline 70.91
Our 74.91

Table 21: Performances of Model B on Dataset R
POS tag Method P R F1

NN Baseline 88.62 78.31 83.15
Our 91.67 87.30 89.43

VV Baseline 48.31 74.14 58.50
Our 60.53 79.31 68.66

VA Baseline 78.95 53.57 63.83
Our 84.21 57.14 68.09

Table 22: Performances of Model C on Dataset R
POS tag Method P R F1

NN Baseline 80.25 81.82 81.03
Our 84.56 81.82 83.17

VV Baseline 54.88 77.59 64.29
Our 61.25 84.48 71.01

VA Baseline 84.62 39.29 53.66
Our 88.24 53.57 66.67

NR Baseline 56.52 37.14 44.83
Our 55.17 45.71 50.00

7 Related Works

In recent years, POS tagging has undergone great
development. The mainstream method is to regard
POS tagging as sequence labeling problems (Ra-
biner, 1990; Xue, 2003; Peng et al., 2004; Ng and
Low, 2004).
However, the analysis of Chinese-English mixed

texts is rarely involved in previous literature. In
the aspect of the general multilingual POS tagging,
most works focus on modeling cross-lingual corre-
lations and tagging multilingual POS on respective
monolingual texts, not on mixed texts (Cucerzan and
Yarowsky, 2002; Yarowsky et al., 2001; Naseem et
al., 2009).
Since we choose to use dynamic word-level fea-

tures to improve the performance of POS tagging,
we also review some works on word-level features.

Semi-Markov Conditional Random Fields (semi-
CRF) (Sarawagi and Cohen, 2004) is a model in
which segmentation task is implicitly included into
the decoding algorithm. In this model, feature rep-
resentation would be more flexible than traditional
CRFs, since features can be extracted from the previ-
ous/the next segmentation within a window of vari-
able size. The problem of this approach lies in that
the decoding algorithm depends on the predefined
window size to exploit the boundaries of segmenta-
tions but not the real length of words.

Bunescu (2008) presents an improved pipeline
model in which the output of the previous subtasks
are considered as hidden variables, and the hidden
variables together with their probabilities denoting
the confidence are used as probabilistic features in
the next subtasks. One shortcoming of this method
is inefficiency caused by the calculation of marginal
probabilities of features. The other disadvantages
of the pipeline method are error propagation and the
need of separate training of different subtasks in the
pipeline. Another disadvantage of pipeline method
is error propagation.

Jiang et al. (2008) proposes a cascaded linear
model for joint Chinese word segmentation and POS
tagging. With a character-based perceptron as the
core, combinedwith real-valued features such as lan-
guage models, the cascaded model can efficiently
utilize knowledge sources that are inconvenient to
incorporate into the perceptron directly. However,
they use POS tags or word information in a Brute-
Force way, which may suffer from the problem of
time complexity.

Sun (2011) presents a stacked sub-word model for
joint Chinese word segmentation and POS tagging.
By merging the outputs of the three predictors (in-
cluding one word-based segmenter) into sub-word
sequences, rich contextual features can be approx-
imately derived. The experiments are conducted to
show the effectiveness of using word-based informa-
tion.

The difference between the above methods and
ours is that our word-level features are dynamically
generated in the decoding stage without exhaustive
or preprocessed word segmentation.
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8 Conclusion

In this paper, we focus on Chinese-English mixed
texts and use dynamic features for POS tagging.
To overcome the problem of the lack of annotated
corpus on mixed texts, our features use both lo-
cal and non-local information and take advantage of
the characteristics of Chinese-English mixed texts.
The experiments demonstrate the effectiveness of
our method. It should be noted that our method is
also effective for the mixed texts of Chinese and any
foreign languages since we use “Unified Replace-
ment”.
For future works, we plan to improve our approx-

imate tagging algorithm to reduce error propagation.
In addition, we will refer to an English dictionary
to generate some useful features to distinguish be-
tween “NR” and “NN” in Chinese-English mixed
texts and add some statistical features derived from
English resources, such as the most common tag of
each English word. We would also like to investi-
gate these features in more applications of natural
language processing, such as name entity recogni-
tion, information extraction, etc.

Acknowledgements

We would like to thank the anonymous reviewers
for their valuable comments. We also thanks Amy
Zhou for her help in spell and grammar checking.
This work was funded by NSFC (No.61003091 and
No.61073069), 863 Program (No.2011AA010604)
and 973 Program (No.2010CB327900).

References
Razvan C. Bunescu. 2008. Learning with probabilistic
features for improved pipeline models. In EMNLP,
pages 670–679. ACL.

Michael Collins. 2002. Discriminative training methods
for hidden markov models: theory and experiments
with perceptron algorithms. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing - Volume 10, EMNLP ’02, pages
1–8, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Koby Crammer and Yoram Singer. 2003. Ultraconser-
vative online algorithms for multiclass problems. J.
Mach. Learn. Res., 3:951–991, March.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online

passive-aggressive algorithms. J. Mach. Learn. Res.,
7:551–585, December.

Silviu Cucerzan and David Yarowsky. 2002. Boot-
strapping a multilingual part-of-speech tagger in one
person-day. In proceedings of the 6th conference on
Natural language learning - Volume 20, COLING-
02, pages 1–7, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan Lü.
2008. A cascaded linear model for joint chinese word
segmentation and part-of-speech tagging. In Kath-
leen McKeown, Johanna D. Moore, Simone Teufel,
James Allan, and Sadaoki Furui, editors, ACL, pages
897–904. The Association for Computer Linguistics.

C. Jin and X. Chen. 2008. The fourth international chi-
nese language processing bakeoff: Chinese word seg-
mentation, named entity recognition and chinese pos
tagging. In Sixth SIGHAN Workshop on Chinese Lan-
guage Processing, page 69.

T. Naseem, B. Snyder, J. Eisenstein, and R. Barzilay.
2009. Multilingual part-of-speech tagging: Two unsu-
pervised approaches. Journal of Artificial Intelligence
Research, 36(1):341–385.

H.T. Ng and J.K. Low. 2004. Chinese part-of-speech
tagging: One-at-a-time or all-at-once? word-based or
character-based. In Proceedings of EMNLP, volume
2004, page 277.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detection
using conditional random fields. In Proceedings of the
20th international conference on Computational Lin-
guistics, COLING ’04, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Lawrence R. Rabiner. 1990. Readings in speech recog-
nition. chapter A tutorial on hidden Markov mod-
els and selected applications in speech recognition,
pages 267–296. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Sunita Sarawagi and William W. Cohen. 2004. Semi-
markov conditional random fields for information ex-
traction. In NIPS.

Weiwei Sun. 2011. A stacked sub-word model for
joint chinese word segmentation and part-of-speech
tagging. In Dekang Lin, Yuji Matsumoto, and Rada
Mihalcea, editors, ACL, pages 1385–1394. The Asso-
ciation for Computer Linguistics.

F. Xia. 2000. The part-of-speech tagging guidelines for
the Penn Chinese Treebank (3.0).

N. Xue. 2003. Chinese word segmentation as character
tagging. Computational Linguistics and Chinese Lan-
guage Processing, 8(1):29–48.

D. Yarowsky, G. Ngai, and R. Wicentowski. 2001. In-
ducing multilingual text analysis tools via robust pro-
jection across aligned corpora. In Proceedings of

1387



the first international conference on Human language
technology research, pages 1–8. Association for Com-
putational Linguistics.

1388



Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1389–1398, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Wiki-ly Supervised Part-of-Speech Tagging

Shen Li
Computer & Information Science

University of Pennsylvania
shenli@seas.upenn.edu

João V. Graça
L2F INESC-ID

Lisboa, Portugal
javg@l2f.inesc-id.pt

Ben Taskar
Computer & Information Science

University of Pennsylvania
taskar@cis.upenn.edu

Abstract

Despite significant recent work, purely unsu-
pervised techniques for part-of-speech (POS)
tagging have not achieved useful accuracies
required by many language processing tasks.
Use of parallel text between resource-rich and
resource-poor languages is one source of weak
supervision that significantly improves accu-
racy. However, parallel text is not always
available and techniques for using it require
multiple complex algorithmic steps. In this
paper we show that we can build POS-taggers
exceeding state-of-the-art bilingual methods
by using simple hidden Markov models and
a freely available and naturally growing re-
source, the Wiktionary. Across eight lan-
guages for which we have labeled data to eval-
uate results, we achieve accuracy that signifi-
cantly exceeds best unsupervised and parallel
text methods. We achieve highest accuracy re-
ported for several languages and show that our
approach yields better out-of-domain taggers
than those trained using fully supervised Penn
Treebank.

1 Introduction

Part-of-speech categories are elementary building
blocks that play an important role in many natu-
ral language processing tasks, from machine trans-
lation to information extraction. Supervised learn-
ing of taggers from POS-annotated training text is
a well-studied task, with several methods achieving
near-human tagging accuracy (Ratnaparkhi, 1996;
Toutanova et al., 2003; Shen et al., 2007). How-
ever, while English and a handful of other languages

are fortunate enough to have comprehensive POS-
annotated corpora such as the Penn Treebank (Mar-
cus et al., 1993), most of the world’s languages have
no labeled corpora. The annotated corpora that do
exist were costly to build (Abeillé, 2003), and are
often not freely available or restricted to research-
only use. Furthermore, much of the annotated text is
of limited genre, normally focusing on newswire or
literary text. Performance of treebank-trained sys-
tems degrades significantly when applied to new do-
mains (Blitzer et al., 2006).

Unsupervised induction of POS taggers offers the
possibility of avoiding costly annotation, but de-
spite recent progress, the accuracy of unsupervised
POS taggers still falls far behind supervised sys-
tems, and is not suitable for most applications (Berg-
Kirkpatrick et al., 2010; Graça et al., 2011; Lee et
al., 2010). Using additional information, in the form
of tag dictionaries or parallel text, seems unavoid-
able at present. Early work on using tag dictionaries
used a labeled corpus to extract all allowed word-tag
pairs (Merialdo, 1994), which is quite an unrealis-
tic scenario. More recent work has used a subset of
the observed word-tag pairs and focused on gener-
alizing dictionary entries (Smith and Eisner, 2005;
Haghighi and Klein, 2006; Toutanova and Johnson,
2007; Goldwater and Griffiths, 2007). Using corpus-
based dictionaries greatly biases the test results, and
gives little information about the capacity to gener-
alize to different domains.

Recent work by Das and Petrov (2011) builds
a dictionary for a particular language by transfer-
ring annotated data from a resource-rich language
through the use of word alignments in parallel text.
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The main idea is to rely on existing dictionaries for
some languages (e.g. English) and use parallel data
to build a dictionary in the desired language and ex-
tend the dictionary coverage using label propaga-
tion. However, parallel text does not exist for many
pairs of languages and the proposed bilingual pro-
jection algorithms are fairly complex.

In this work we use the Wiktionary, a freely avail-
able, high coverage and constantly growing dic-
tionary for a large number of languages. We ex-
periment with a very simple second-order Hidden
Markov Model with feature-based emissions (Berg-
Kirkpatrick et al., 2010; Graça et al., 2011). We out-
perform best current results using parallel text su-
pervision across 8 different languages, even when
the word type coverage is as low as 20%. Further-
more, using the Brown corpus as out-of-domain data
we show that using the Wiktionary produces bet-
ter taggers than using the Penn Treebank dictionary
(88.5% vs 85.9%). Our empirical analysis and the
natural growth rate of the Wiktionary suggest that
free, high-quality and multi-domain POS-taggers for
a large number of languages can be obtained by stan-
dard and efficient models.

The source code, the dictionary mappings and
the trained models described in this work are
available at http://code.google.com/p/
wikily-supervised-pos-tagger/.

2 Related Work

The scarcity of labeled corpora for resource poor
languages and the challenges of domain adaptation
have led to several efforts to build systems for unsu-
pervised POStagging.

Several lines of research have addressed the fully
unsupervised POS-tagging task: mutual information
clustering (Brown et al., 1992; Clark, 2003) has been
used to group words according to their distributional
context. Using dimensionality reduction on word
contexts followed by clustering has led to accuracy
gains (Schütze, 1995; Lamar et al., 2010). Sequence
models, HMMs in particular, have been used to rep-
resent the probabilistic dependencies between con-
secutive tags. In these approaches, each observa-
tion corresponds to a particular word and each hid-
den state corresponds to a cluster. However, us-
ing maximum likelihood training for such models

does not achieve good results (Clark, 2003): max-
imum likelihood training tends to result in very am-
biguous distributions for common words, in contra-
diction with the rather sparse word-tag distribution.
Several approaches have been proposed to mitigate
this problem, including Bayesian approaches using
an improper Dirichlet prior to favor sparse model
parameters (Johnson, 2007; Gao and Johnson, 2008;
Goldwater and Griffiths, 2007), or using the Poste-
rior Regularization to penalize ambiguous posteri-
ors distributions of tags given tokens (Graça et al.,
2009). Berg-Kirkpatrick et al. (2010) and Graça et
al. (2011) proposed replacing the multinomial emis-
sion distributions of standard HMMs by maximum
entropy (ME) feature-based distributions. This al-
lows the use of features to capture morphological in-
formation, and achieves very promising results. De-
spite these improvements, fully unsupervised sys-
tems require an oracle to map clusters to true tags
and the performance still fails to be of practical use.

In this paper we follow a different line of work
where we rely on a prior tag dictionary indicating for
each word type what POS tags it can take on (Meri-
aldo, 1994). The task is then, for each word token
in the corpus, to disambiguate between the possible
POS tags. Even when using a tag dictionary, disam-
biguating from all possible tags is still a hard prob-
lem and the accuracy of these methods is still fall far
behind their supervised counterparts. The scarcity
of large, manually-constructed tag dictionaries led
to the development of methods that try to generalize
from a small dictionary with only a handful of en-
tries (Smith and Eisner, 2005; Haghighi and Klein,
2006; Toutanova and Johnson, 2007; Goldwater and
Griffiths, 2007), however most previous works build
the dictionary from the labeled corpus they learn on,
which does not represent a realistic dictionary. In
this paper, we argue that the Wiktionary can serve as
an effective and much less biased tag dictionary.

We note that most of the previous dictionary
based approaches can be applied using the Wik-
tionary and would likely lead to similar accuracy in-
creases that we show in this paper. For example, the
work if Ravi and Knight (2009) minimizes the num-
ber of possible tag-tag transitions in the HMM via
a integer program, hence discarding unlikely tran-
sitions that would confuse the model. Models can
also be trained jointly using parallel corpora in sev-
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eral languages, exploiting the fact that different lan-
guages present different ambiguities (Snyder et al.,
2008).

The Wiktionary has been used extensively for
other tasks such as domain specific information
retrieval (Müller and Gurevych, 2009), ontology
matching (Krizhanovsky and Lin, 2009), synonymy
detection (Navarro et al., 2009), sentiment classifi-
cation (Chesley et al., 2006). Recently, Ding (2011)
used the Wiktionary to initialize an HMM for Chi-
nese POS tagging combined with label propagation.

3 The Wiktionary and tagged corpora

The Wiktionary1 is a collaborative project that aims
to produce a free, large-scale multilingual dictio-
nary. Its goal is to describe all words from all lan-
guages (currently more than 400) using definitions
and descriptions in English. The coverage of the
Wiktionary varies greatly between languages: cur-
rently there are around 75 languages for which there
exists more than 1000 word types, and 27 for which
there exists more than 10,000 word types. Neverthe-
less, the Wiktionary has been growing at a consid-
erable rate (see Figure 1), and the number of avail-
able words has almost doubled in the last three years.
As more people use the Wiktionary, it is likely to
grow. Unlike tagged corpora, the Wiktionary pro-
vides natural incentives for users to contribute miss-
ing entries and expand this communal resource akin
to Wikipedia. As with Wikipedia, the questions of
accuracy, bias, consistency across languages, and se-
lective coverage are paramount. In this section, we
explore these concerns by comparing Wiktionary to
dictionaries derived from tagged corpora.

3.1 Labeled corpora and Universal tags

We collected part-of-speech tagged corpora for
9 languages, from CoNLL-X and CoNLL-2007
shared tasks on dependency parsing (Buchholz and
Marsi, 2006; Nivre et al., 2007). In this work we
use the Universal POS tag set (Petrov et al., 2011)
that defines 12 universal categories with a relatively
stable functional definition across languages. These
categories include NOUN, VERB, ADJ = adjective,
ADV = adverb, NUM = number, ADP = adposition,
CONJ = conjunction, DET = determiner, PRON =

1http://www.wiktionary.org/
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Figure 1: Growth of the Wiktionary over the last three
years, showing total number of entries for all languages
and for the 9 languages we consider (left axis). We
also show the corresponding increase in average accuracy
(right axis) achieved by our model across the 9 languages
(see details below).

pronoun, PUNC = punctuation, PRT = particle, and
X = residual (a category for language-specific cat-
egories which defy cross-linguistic classification).
We found several small problems with the mapping2

which we corrected as follows. In Spanish, the fine-
level tag for date (“w”) is mapped to universal tag
NUM, while it should be mapped to NOUN. In Dan-
ish there were no PRT, NUM, PUNC, or DET tags in
the mapping. After examining the corpus guidelines
and the mapping more closely, we found that the tag
AC (Cardinal numeral) and AO (Ordinal numeral)
are mapped to ADJ. Although the corpus guidelines
indicate the category SsCatgram ‘adjective’ that en-
compasses both ‘normal’ adjectives (AN) as well as
cardinal numeral (AC) and ordinal numerals (AO),
we decided to tag AC and AO as NUM, since this
assignment better fits the existing mapping. We also
reassigned all punctuation marks, which were erro-
neously mapped to X, to PUNC and the tag U which
is used for words at, de and som, to PRT.

3.2 Wiktionary to Universal tags

There are a total of 330 distinct POS-type tags
in Wiktionary across all languages which we have
mapped to the Universal tagset. Most of the map-
ping was straightforward since the tags used in the
Wiktionary are in fact close to the Universal tag
set. Some exceptions like “Initialism”, “Suffix”

2http://code.google.com/p/
universal-pos-tags/
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were discarded. We also mapped relatively rare tags
such as “Interjection”, “Symbol” to the “X” tag.
A example of POS tags for several words in the
Wiktionary is shown in Table 1. All the mappings
are available at http://code.google.com/
p/wikily-supervised-pos-tagger/.

3.3 Wiktionary coverage

There are two kinds of coverage of interest: type
coverage and token coverage. We define type cov-
erage as the proportion of word types in the corpus
that simply appear in the Wiktionary (accuracy of
the tag sets are considered in the next subsection).
Token coverage is defined similarly as the portion
of all word tokens in the corpus that appear in the
Wiktionary. These statistics reflect two aspects of
the usefulness of a dictionary that affect learning in
different ways: token coverage increases the density
of supervised signal while type coverage increases
the diversity of word shape supervision. At one ex-
treme, with 100% word and token coverage, we re-
cover the POS tag disambiguation scenario and, on
the other extreme of 0% coverage, we recover the
unsupervised POS induction scenario.

The type and token coverage of Wiktionary for
each of the languages we are using for evaluation
is shown in Figure 2. We plot the coverage bar for
three different versions of Wiktionary (v20100326,
v20110321, v20120320), arranged chronologically.
We chose these three versions of the Wiktionary
simply by date, not any other factors like coverage,
quality or tagging accuracy.

As expected, the newer versions of the Wiktionary
generally have larger coverage both on type level
and token level. Nevertheless, even for languages
whose type coverage is relatively low, such as Greek
(el), the token level coverage is still quite good
(more than half of the tokens are covered). The rea-
son for this is likely the bias of the contributors to-
wards more frequent words. This trend is even more
evident when we break up the coverage by frequency
of the words. Since the number of words varies from
corpus to corpus, we normalize the word counts by
the count of the most frequent word(s) in its corpus
and group the normalized frequency into three cat-
egories labeled as “low”, “medium” and “high” and
for each category, we calculate the word type cover-
age, shown in Figure 3.

Figure 2: Type-level (top) and token-level (bottom) cov-
erage for the nine languages in three versions of the Wik-
tionary.

We also compared the coverage provided by the
Wiktionary versus the Penn Treebank (PTB) ex-
tracted dictionary on the Brown corpus. Figure 4
shows that the Wiktionary provides a greater cover-
age for all sections of the Brown corpus, hence being
a better dictionary for tagging English text in gen-
eral. This is also reflected in the gain in accuracy on
Brown over the taggers learned from the PTB dic-
tionary in our experiments.

3.4 Wiktionary accuracy
A more refined notion of quality is the accuracy of
the tag sets for covered words, as measured against
dictionaries extracted from labeled tree bank cor-
pora. We consider word types that are in both the
Wiktionary (W) and the tree bank dictionaries (T).
For each word type, we compare the two tag sets
and distinguish five different possibilities:

1. Identical: W = T

2. Superset: W ⊃ T

3. Subset: W ⊂ T

4. Overlap: W ∩ T 6= ∅
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Wiktionary Entries
Universal POS Set

Language Word POS Definition
English today Adverb # In the current [[era]]; nowadays.

{ADV, NOUN}English today Adverb # On the current [[day]] or [[date]].
English today Noun # A current day or date.
German achtzig Numeral # [[eighty]] {NUM}
Swedish SCB Acronym # [[statistiska]] ... {NOUN}

Portuguese nessa Contraction # {{contraction ... discard entry

Table 1: Examples of constructing Universal POS tag sets from the Wiktionary.
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Figure 3: Word type coverage by normalized frequency:
words are grouped by word count / highest word count
ratio: low [0, 0.01), medium [0.01, 0.1), high [0.1, 1].

5. Disjoint: W ∩ T = ∅.

In Figure 5, the word types are grouped into the
categories described above. Most of the tag sets
(around 90%) in the Wiktionary are identical to or
supersets of the tree bank tag sets for our nine lan-
guages, which is surprisingly accurate. About 10%
of the Wiktionary tag sets are subsets of, partially
overlapping with, or disjoint from the tree bank tag
sets. Our learning methods, which assume the given
tag sets are correct, may be somewhat hurt by these
word types, as we discuss in Section 5.6.

4 Models

Our basic models are first and second order Hidden
Markov Models (HMM and SHMM). We also used
feature-based max-ent emission models with both
(HMM-ME and SHMM-ME). Below, we denote the
sequence of words in a sentence as boldface x and
the sequence of hidden states which correspond to
part-of-speech tags as boldface y. To simplify nota-
tion, we assume that every tag sequence is prefixed
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Figure 4: PTB vs. Wiktionary type coverage across sec-
tions of the Brown corpus.

with two conventional start tags y0 = start, y−1 =
start, allowing us to write as p(y1|y0, y−1) the ini-
tial state probability of the SHMM.

The probability of a sentence x along with a par-
ticular hidden state sequence y in the SHMM is
given by:

p(x,y) =

length(x)∏
i=1

pt(yi | yi−1, yi−2)po(xi | yi),

(1)
where po(xi | yi) is the probability of observ-
ing word xi in state yi (emission probability), and
pt(yi | yi−1, yi−2) is the probability of being in state
yi, given two previous states yi−1, yi−2 (transition
probability).

In this work, we compare multinomial and maxi-
mum entropy (log-linear) emission models. Specifi-
cally, the max-ent emission model is:

po(x|y) =
exp(θ · f(x, y))∑
x′ exp(θ · f(x′, y))

(2)

where f(x, y) is a feature function, x ranges over all

1393



!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-.# -/# /0# /1# /2# 34# 10# 54# 26#

3-/178.0# 295/:2/4# 29;2/4# <6/:0.5# -32=<314#

Figure 5: The Wiktionary vs. tree bank tag sets. Around
90% of the Wiktionary tag sets are identical or subsume
tree bank tag sets. See text for details.

word types, and θ are the model parameters. We use
the following feature templates:

• Word identity - lowercased word form if the
word appears more than 10 times in the corpus.

• Hyphen - word contains a hyphen

• Capital - word is uppercased

• Suffix - last 2 and 3 letters of a word if they
appear in more than 20 different word types.

• Number - word contains a digit

The idea of replacing the multinomial models of an
HMM by maximum entropy models has been ap-
plied before in different domains (Chen, 2003), as
well as in POS induction (Berg-Kirkpatrick et al.,
2010; Graça et al., 2011).

We use the EM algorithm to learn the models,
restricting the tags of each word to those specified
by the dictionary. For each tag y, the observa-
tions probabilities po(x | y) were initialized ran-
domly for every word type that allows tag y accord-
ing to the Wiktionary and zero otherwise. For the
M-step in max-ent models, there is no closed form
solution so we need to solve an unconstrained op-
timization problem. We use L-BFGS with Wolfe’s
rule line search (Nocedal and Wright, 1999). We
found that EM achieved higher accuracy across lan-
guages compared to direct gradient approach (Berg-
Kirkpatrick et al., 2010).

5 Results

We evaluate the accuracy of taggers trained using
the Wiktionary using the 4 different models: A
first order Hidden Markov Model (HMM), a sec-
ond order Hidden Markov Model (SHMM), a first
order Hidden Markov Model with Maximum En-
tropy emission models (HMM-ME) and a second or-
der Hidden Markov Model with Maximum Entropy
emission models (SHMM-ME). For each model we
ran EM for 50 iterations, which was sufficient for
convergence of the likelihood. Following previous
work (Graça et al., 2011), we used a Gaussian prior
with variance of 10 for the max-ent model param-
eters. We obtain hard assignments using posterior
decoding, where for each position we pick the la-
bel with highest posterior probability: this produces
small but consistent improvements over Viterbi de-
coding.

5.1 Upper and lower bounds
We situate our results against several upper bounds
that use more supervision. We trained the SHMM-
ME model with a dictionary built from the train-
ing and test tree bank (ALL TBD) and also with
tree bank dictionary intersected with the Wiktionary
(Covered TBD). The Covered TBD dictionary is
more supervised than the Wiktionary in the sense
that some of the tag set mismatches of the Wik-
tionary are cleaned using the true corpus tags. We
also report results from training the SHMM-ME in
the standard supervised fashion, using 50 (50 Sent.),
100 (100 Sent.) and all sentences (All Sent.).

As a lower bound we include the results for un-
supervised systems: a regular HMM model trained
with EM (Johnson, 2007) and an HMM model using
a ME emission model trained using direct gradient
(Berg-Kirkpatrick et al., 2010)3.

5.2 Bilingual baselines
Finally, we also compare our system against a strong
set of baselines that use bilingual data. These ap-
proaches build a dictionary by transferring labeled
data from a resource rich language (English) to a re-
source poor language (Das and Petrov, 2011). We
compare against two such methods. The first, pro-
jection, builds a dictionary by transferring the pos

3Values for these systems where taken from the D&P paper.
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tags from English to the new language using word
alignments. The second method, D&P, is the cur-
rent state-of-the-art system, and runs label propaga-
tion on the dictionary resulting from the projected
method. We note that both of these approaches are
orthogonal to ours and could be used simultaneously
with the Wiktionary.

5.3 Analysis
Table 2 shows results for the different models across
languages. We note that the results are not di-
rectly comparable since both the Unsupervised and
the Bilingual results use a different setup, using the
number of fine grained tags for each language as hid-
den states instead of 12 (as we do). This greatly in-
creases the degrees of freedom of the model allow-
ing it to capture more fine grained distinctions.

The first two observations are that using the ME
entropy emission model always improves over the
standard multinomial model, and using a second or-
der model always performs better. Comparing with
the work of D&P, we see that our model achieves
better accuracy on average and on 5 out of 8 lan-
guages.

The most common errors are due to tag set id-
iosyncrasies. For instance, for English the symbol %
is tagged as NUM by our system while in the Penn
treebank it is tagged as Noun. Other common mis-
takes for English include tagging to as an adposition
(preposition) instead of particle and tagging which
as a pronoun instead of determiner. In the next sub-
sections we analyze the errors in more detail.

Finally, for English we also trained the SHMM-
ME model using the Celex2 dictionary available
from LDC4. Celex2 coverage for the PTB cor-
pus is much smaller than the coverage provided
by the Wiktionary (43.8% type coverage versus
80.0%). Correspondingly, the accuracy of the model
trained using Celex2 is 75.5% compared 87.1%
when trained using the Wiktionary.

5.4 Performance vs. Wiktionary ambiguity
While many words overwhelmingly appear with one
tag in a given genre, in the Wiktionary a large pro-
portion of words are annotated with several tags,
even when those are extremely rare events. Around

4http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalogId=LDC96L14

35% of word types in English have more than one
tag according to the Wiktionary. This increases the
difficulty of predicting the correct tag as compared
to having a corpus-based dictionary, where words
have a smaller level of ambiguity. For example, in
English, for words with one tag, the accuracy is 95%
(the reason it is not 100% is due to a discrepancy be-
tween the Wiktionary and the tree bank.) For words
with two possible tags, accuracy is 81% and for three
tags, it drops to 63%.

5.5 Generalization to unknown words

Comparing the performance of the proposed model
for words in the Wiktionary against words not in
the Wiktionary, we see an average drop from 89%
to 63% for out-of-vocabulary words across nine lan-
guages. Table 2 shows that the average loss of accu-
racy between All TBD and Covered TBD of 4.5%
(which is due purely to decrease in coverage) is
larger than the loss between Covered TBD and the
best Wiktionary model, of 3.2% (which is due to tag
set inconsistency).

One advantage of the Wiktionary is that it is a gen-
eral purpose dictionary and not tailored for a partic-
ular domain. To illustrate this we compared several
models on the Brown corpus: the SHMM-ME model
using the Wiktionary (Wik), against using a model
trained using a dictionary extracted from the PTB
corpus (PTBD), or trained fully supervised using the
PTB corpus (PTB). We tested all these models on the
15 different sections of the Brown corpus. We also
compare against a state-of-the-art POS-tagger tagger
(ST)5.

Figure 6 shows the accuracy results for each
model on the different sections. The fully super-
vised SHMM-ME model did not perform as well as
the the Stanford tagger (about 3% behind on aver-
age), most likely because of generative vs. discrim-
inate training of the two models and feature differ-
ences. However, quite surprisingly, the Wiktionary-
tag-set-trained model performs much better not only
than the PTB-tag-set-trained model but also the su-
pervised model on the Brown corpus.

5Available at http://nlp.stanford.edu/
software/tagger.shtml
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Danish Dutch German Greek English Italian Portuguese Spanish Swedish avg.

Unsupervised HMM 68.7 57.0 75.9 65.8 63.7 62.9 71.5 68.4 66.7
HMM-ME 69.1 65.1 81.3 71.8 68.1 78.4 80.2 70.1 73.0

Bilingual Projection 73.6 77.0 83.2 79.3 79.7 82.6 80.1 74.7 78.8
D&P 83.2 79.5 82.8 82.5 86.8 87.9 84.2 80.5 83.4

Wiktionary

HMM 71.8 80.8 77.1 73.1 85.4 84.6 79.1 83.9 76.7 78.4
HMM-ME 82.8 86.1 81.2 80.1 86.1 85.4 83.7 84.6 85.9 83.7
SHMM 74.5 81.6 81.2 73.1 85.0 85.2 79.9 84.5 78.7 79.8
SHMM-ME 83.3 86.3 85.8 79.2 87.1 86.5 84.5 86.4 86.1 84.8

Supervised

Covered TBD 90.1 91.4 89.4 79.7 92.7 86.3 91.5 85.1 91.0 88.6
All TBD 93.6 91.2 95.6 87.9 90.6 92.9 91.2 92.1 83.8 91.0
50 Sent. 65.3 48.5 74.5 74.2 70.2 76.2 79.2 76.2 54.7 68.6
100 Sent. 73.9 52.3 80.9 81.6 77.3 75.3 82.0 80.1 64.8 73.9
All Sent. 93.9 90.9 97.4 95.1 95.8 93.8 95.5 93.8 95.5 94.5

Table 2: Accuracy for Unsupervised, Bilingual, Wiktionary and Supervised models. Avg. is the average of all lan-
guages except English. Unsupervised models are trained without dictionary and use an oracle to map tags to clusters.
Bilingual systems are trained using a dictionary transferred from English into the target language using word align-
ments. The Projection model uses a dictionary build directly from the part-of-speech projection. The D&P model
extends the Projection model dictionary by using Label Propagation. Supervised models are trained using tree bank
information with SHMM-ME: Covered TBD used tree bank tag set for the words only if they are also in the Wiktionary
and All TBD uses tree bank tag sets for all words. 50, 100 and All Sent. models are trained in a supervised manner
using increasing numbers of training sentences.

Figure 6: Model accuracy across the Brown cor-
pus sections. ST: Stanford tagger, Wik: Wiktionary-
tag-set-trained SHMM-ME, PTBD: PTB-tag-set-trained
SHMM-ME, PTB: Supervised SHMM-ME. Wik outper-
forms PTB and PTBD overall.

5.6 Error breakdown

In Section 3.4 we discussed the accuracy of the
Wiktionary tag sets and as Table 2 shows, a dictio-
nary with better tag set quality generally (except for
Greek) improves the POS tagging accuracy. In Fig-
ure 7, we group actual errors by the word type clas-
sified into the five cases discussed above: identical,
superset, subset, overlap, disjoint. We also add oov –
out-of-vocabulary word types. The largest source of
error across languages are out-of-vocabulary (oov)
word types at around 45% of the errors, followed
by tag set mismatch types: subset, overlap, dis-

joint, which together comprise another 50% of the
errors. As Wiktionary grows, these types of errors
will likely diminish.

Figure 7: Tag errors broken down by the word type clas-
sified into the six classes: oov, identical, superset, subset,
overlap, disjoint (see text for detail). The largest source of
error across languages are out-of-vocabulary (oov) word
types, followed by tag set mismatch types: subset, over-
lap, disjoint.

6 Conclusion

We have shown that the Wiktionary can be used
to train a very simple model to achieve state-of-
art weakly-supervised and out-of-domain POS tag-
gers. The methods outlined in the paper are stan-
dard and easy to replicate, yet highly accurate and
should serve as baselines for more complex propos-
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als. These encouraging results show that using free,
collaborative NLP resources can in fact produce re-
sults of the same level or better than using expensive
annotations for many languages. Furthermore, the
Wiktionary contains other possibly useful informa-
tion, such as glosses and translations. It would be
very interesting and perhaps necessary to incorpo-
rate this additional data in order to tackle challenges
that arise across a larger number of language types,
specifically non-European languages.
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A. Abeillé. 2003. Treebanks: Building and Using Parsed
Corpora. Springer.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,
John DeNero, and Dan Klein. 2010. Painless unsuper-
vised learning with features. In Proc. NAACL, June.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Conference on Empirical Methods
in Natural Language Processing, Sydney, Australia.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18:467–479.

S. Buchholz and E. Marsi. 2006. Conll-x shared task
on multilingual dependency parsing. In Proceedings
of the Tenth Conference on Computational Natural
Language Learning, pages 149–164. Association for
Computational Linguistics.

S.F. Chen. 2003. Conditional and joint models for
grapheme-to-phoneme conversion. In Proc. ECSCT.

P. Chesley, B. Vincent, L. Xu, and R.K. Srihari. 2006.
Using verbs and adjectives to automatically classify
blog sentiment. Training, 580(263):233.

Alexander Clark. 2003. Combining distributional and
morphological information for part of speech induc-
tion. In Proc. EACL.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based pro-
jections. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 600–609, Port-
land, Oregon, USA, June. Association for Computa-
tional Linguistics.

Weiwei Ding. 2011. Weakly supervised part-of-speech
tagging for chinese using label propagation. Master’s
thesis, University of Texas at Austin.

Jianfeng Gao and Mark Johnson. 2008. A comparison of
Bayesian estimators for unsupervised hidden Markov
model POS taggers. In In Proc. EMNLP, pages 344–
352, Honolulu, Hawaii, October. ACL.

S. Goldwater and T. Griffiths. 2007. A fully Bayesian
approach to unsupervised part-of-speech tagging. In
In Proc. ACL, volume 45, page 744.

J.V. Graça, K. Ganchev, L. Coheur, F. Pereira, and
B. Taskar. 2011. Controlling complexity in part-of-
speech induction. Journal of Artificial Intelligence Re-
search, 41(2):527–551.

J. Graça, K. Ganchev, F. Pereira, and B. Taskar. 2009.
Parameter vs. posterior sparisty in latent variable mod-
els. In Proc. NIPS.

A. Haghighi and D. Klein. 2006. Prototype-driven learn-
ing for sequence models. In Proc. HTL-NAACL. ACL.

M Johnson. 2007. Why doesn’t EM find good HMM
POS-taggers. In In Proc. EMNLP-CoNLL.

AA Krizhanovsky and F. Lin. 2009. Related
terms search based on wordnet/wiktionary and its
application in ontology matching. Arxiv preprint
arXiv:0907.2209.

Michael Lamar, Yariv Maron, Mark Johnson, and Elie
Bienenstock. 2010. SVD and clustering for unsuper-
vised POS tagging. In Proceedings of the ACL 2010
Conference: Short Papers, pages 215–219, Uppsala,
Sweden, July. Association for Computational Linguis-
tics.

Yoong Keok Lee, Aria Haghighi, and Regina Barzilay.
2010. Simple type-level unsupervised POS tagging.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 853–
861, Cambridge, MA, October. Association for Com-
putational Linguistics.

M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational linguistics,
19(2):313–330.

B. Merialdo. 1994. Tagging English text with a proba-
bilistic model. Computational linguistics, 20(2):155–
171.

C. Müller and I. Gurevych. 2009. Using wikipedia and
wiktionary in domain-specific information retrieval.

1397



Evaluating Systems for Multilingual and Multimodal
Information Access, pages 219–226.

E. Navarro, F. Sajous, B. Gaume, L. Prévot, H. ShuKai,
K. Tzu-Yi, P. Magistry, and H. Chu-Ren. 2009. Wik-
tionary and nlp: Improving synonymy networks. In
Proceedings of the 2009 Workshop on The People’s
Web Meets NLP: Collaboratively Constructed Seman-
tic Resources, pages 19–27. Association for Computa-
tional Linguistics.
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Abstract

We present a multilingual joint approach
to Word Sense Disambiguation (WSD). Our
method exploits BabelNet, a very large mul-
tilingual knowledge base, to perform graph-
based WSD across different languages, and
brings together empirical evidence from these
languages using ensemble methods. The re-
sults show that, thanks to complementing
wide-coverage multilingual lexical knowledge
with robust graph-based algorithms and com-
bination methods, we are able to achieve the
state of the art in both monolingual and multi-
lingual WSD settings.

1 Introduction

Nowadays the textual information needed by a user
accessing websites for content such as news re-
ports, commentaries and encyclopedic knowledge
is provided in an increasingly wide range of lan-
guages. For example, even though English is still
the majority language of the Web, the Chinese and
Spanish languages are moving fast to capture their
“juicy share”, and more languages are about to join
them in the near future. This language explosion
clearly forces researchers to focus on the challeng-
ing problem of being able to analyze and under-
stand text written in any language. However, it also
opens up novel perspectives for multilingual Natural
Language Processing (NLP) such as, for instance,
the development of approaches aimed at “joining
forces” and taking advantage of the lexico-semantic
knowledge provided in the different languages to
improve text understanding. These two aspects are
strongly intertwined: on the one hand, enabling

language-independent text understanding would al-
low for the harvesting of more knowledge in arbi-
trary languages, while, on the other hand, bringing
together the lexical and semantic information avail-
able in different languages would improve the qual-
ity of text understanding in arbitrary languages.

However, these two goals have hitherto never
been achieved, as is attested to by the fact that re-
search in a core language understanding task such as
Word Sense Disambiguation (Navigli, 2009, WSD)
has always been focused mostly on English. His-
torically, English became established as the lan-
guage used and understood by the scientific com-
munity and, consequently, most resources were de-
veloped for it, including large-scale computational
lexicons like WordNet (Fellbaum, 1998) and sense-
tagged corpora like SemCor (Miller et al., 1993).
As a result WSD in other languages was hindered
by a lack of resources, which in turn led to poor re-
sults or low involvement on the part of the research
community (Magnini et al., 2004; Màrquez et al.,
2004; Orhan et al., 2007; Okumura et al., 2010).
Nonetheless, already in the 1990s it had been re-
marked that WSD could be improved by means of
multilingual information: a recurring idea proposed
by several researchers was that plausible transla-
tions of a word in context would restrict its pos-
sible senses to a manageable subset of meanings
(Dagan et al., 1991; Gale et al., 1992; Resnik and
Yarowsky, 1999). While the lack of resources at that
time hampered the development of effective multi-
lingual approaches to WSD, recently this idea has
been revamped with the organization of SemEval
tasks dealing with cross-lingual WSD (Lefever and
Hoste, 2010) and cross-lingual lexical substitution
(Mihalcea et al., 2010). At the same time, new re-
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search on the topic has been done, including the use
of statistical translations of sentences into many lan-
guages as features for supervised models (Banea and
Mihalcea, 2011; Lefever et al., 2011), and the pro-
jection of monolingual knowledge onto another lan-
guage (Khapra et al., 2011).

Yet the above two goals, i.e., disambiguating in
an arbitrary language and using lexical and seman-
tic knowledge from many languages in a joint way
to improve the WSD task, have not hitherto been
attained. In this paper, we address both objectives
and propose a graph-based approach to multilingual
joint Word Sense Disambiguation. Our proposal
brings together the lexical knowledge from differ-
ent languages by exploiting empirical evidence for
disambiguation from each of them, and then com-
bining this information in a synergistic way: each
language provides a piece of sense evidence for the
meaning of a target word in context, and subsequent
integration of these various pieces enables them to
(soft) constrain each other. The results show that
this way we are able to improve over previous, high-
performing graph-based methods in both a monolin-
gual and multilingual setting, thus showing for the
first time the beneficial effects of exploiting multi-
lingual knowledge in a joint fashion.

2 Related Work

Parallel corpora have been used in the literature
for the automatic creation of a sense-tagged dataset
for supervised WSD in different languages (Gale
et al., 1992; Chan and Ng, 2005; Zhong and Ng,
2009). Other approaches include the use of a coher-
ence index for identifying the tendency to lexicalize
senses differently across languages (Ide, 2000) and
the clustering of source words which translate into
the same target word, then used to perform WSD
using a similarity measure (Diab, 2003). A histori-
cal approach (Brown et al., 1991) uses bilingual cor-
pora to perform unsupervised word alignment and
determine the most appropriate translation for a tar-
get word from a set of contextual features.

All the above approaches to multilingual or cross-
lingual WSD rely on bilingual corpora, including
those which exploit existing multilingual WordNet-
like resources (Ide et al., 2002), or use automatically
induced multilingual co-occurrence graphs (Silberer

and Ponzetto, 2010). However, this requirement is
often very hard to satisfy, especially if we need wide
coverage. To overcome this limitation, in this work
we make use of BabelNet (Navigli and Ponzetto,
2010), a very large multilingual lexical knowledge
base. This resource – complementary in nature
to other recent efforts presented by de Melo and
Weikum (2010), Nastase et al. (2010) and Meyer and
Gurevych (2012), inter alia – provides a truly multi-
lingual semantic network by combining Wikipedia’s
multilinguality with the output of a state-of-the-art
machine translation system to achieve high cover-
age for all languages. The key insight here is that
Word Sense Disambiguation and Machine Transla-
tion (MT) are highly intertwined tasks, as previously
shown by Carpuat and Wu (2007) and Chan et al.
(2007), who successfully used sense information to
boost state-of-the-art statistical MT. In this work we
focus instead on the benefits of using multilingual
information for WSD by exploiting the structure of
a multilingual semantic network.

3 Multilingual Joint WSD

We present our methodology for multilingual WSD:
we first introduce BabelNet, the resource used in our
work (Section 3.1) and then present our algorithm
for multilingual joint WSD (Section 3.2), including
its main components, namely graph-based WSD, en-
semble methods and translation weighting (sections
3.3, 3.4 and 3.5).

3.1 BabelNet

BabelNet (Navigli and Ponzetto, 2010) follows the
structure of a traditional lexical knowledge base and,
accordingly, consists of a labeled directed graph
whose nodes represent concepts and named entities,
and whose edges express semantic relations between
them. Concepts and relations are harvested from
the largest available semantic lexicon of English,
i.e., WordNet, and a wide-coverage collaboratively-
edited encyclopedia, i.e., Wikipedia1, thus making
BabelNet a multilingual ‘encyclopedic dictionary’
which combines lexicographic information with en-
cyclopedic knowledge on the basis of an unsuper-
vised mapping framework. In addition to a core

1http://www.wikipedia.org. In the following, we
refer to Wikipedia pages and senses using SMALL CAPS.
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semantic network, BabelNet provides a multilin-
gual lexical dimension. Each of its nodes, called
Babel synsets, contains a set of lexicalizations of
the concept for different languages, e.g., { bankEN

n ,
BankDE

n , bancaIT
n , . . . , bancoES

n }2. Multilin-
gual lexicalizations for all concepts are collected
from Wikipedia’s inter-language links (e.g., the En-
glish Wikipedia page BANK links to the Italian
BANCA), as well as by acquiring missing trans-
lations by means of a statistical machine transla-
tion system applied to sense-tagged data from Sem-
Cor and Wikipedia itself – for instance, most oc-
currences of bank1

n in SemCor3 are translated into
German and Italian as Ufer and riva, respectively.
As a result of combining human-edited translations
from Wikipedia and automatically generated ones
from sense-labeled data, BabelNet is able to achieve
wide coverage for all its languages (Catalan, En-
glish, French, German, Italian and Spanish): accord-
ingly, we chose it to perform graph-based WSD in
a multilingual setting since it is specifically focused
on lexical knowledge. In addition, BabelNet is avail-
able for any language required to perform standard
SemEval cross-lingual disambiguation tasks (e.g.,
Spanish, in order to perform cross-lingual lexical
substitution). Since previous work in knowledge-
based WSD shows the benefits of using rich lexical
resources (Navigli and Lapata, 2010; Ponzetto and
Navigli, 2010), BabelNet is a suitable choice for per-
forming graph-based multilingual WSD.

3.2 Exploiting multilingual information in a
knowledge-based WSD framework

We present a multilingual approach to WSD
which exploits three main factors:

i) the fact that translations of a target word pro-
vide complementary information on the range
of its candidate senses in context;

ii) the wide-coverage, multilingual lexical knowl-
edge stored in BabelNet;

iii) the support for disambiguation from different
languages in a synergistic, unified way.

2BabelNet senses are referred to with wl
p, namely the sense

of a word w in a language l with part of speech p.
3We denote WordNet senses with wi

p, namely the i-th sense
of a word w with part of speech p.

Algorithm 1 Multilingual joint WSD
Input: a word sequence σ = (w1, . . . , wn)

a target word w ∈ σ
BabelNet BN
an ensemble method M

Output: a distribution of scores for the senses of w

(� indicates a comment)

1: S ← SynsetsBN (w)
2: T ← {w}
3: for each s ∈ S
4: T ← T ∪ getTranslations(s)
5: ctx← σ − {w}

6: � LScore := {lScorei,j}i=1,...,|T |, j=1,...,|S|
7: for each ti ∈ T
8: σ′ ← {ti} ∪ ctx
9: � Gi := (Vi, Ei)

10: Gi ← createGraph(σ′, BN)
11: for each sj ∈ S ∩ Vi

12: lScorei,j ← score(Gi, sj)

13: � Score := (score1, . . . , score|S|)
14: Score←M(LScore)

15: return Score

We call this approach multilingual joint WSD,
since disambiguation is performed by exploiting dif-
ferent languages together at the same time. To this
end, we first perform graph-based WSD using the
target word in context as input, and then combine
sense evidence from its translations using an ensem-
ble method. The key idea of our joint approach is
that sense evidence from different translations pro-
vides complementary views for the senses of a tar-
get word in context. Therefore, combining such ev-
idence should produce more accurate sense predic-
tions. We view WSD as a sense ranking problem.
Given a word sequence σ = (w1, . . . , wn), we dis-
ambiguate a target word w ∈ σ by scoring each of
its senses and selecting the highest-ranking one:

ŝ = arg max
s ∈ SynsetsBN (w)

score(s) , (1)

where SynsetsBN (w) is the set of Babel synsets con-
taining the different senses for w.4 We score these

4Babel synsets unambiguously identify different senses
of the target word, e.g., { bankEN

n , BankDE
n , bancoES

n . . . ,
bancaIT

n } corresponds to the ‘financial institute’ sense of
bankEN

n (i.e., bank2
n in WordNet).
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synsets using Algorithm 1, which we illustrate in
the following by means of the example sentence
‘bank bonuses are paid in stock’, where we focus on
bankEN

n as the target word and { bonusEN
n , payEN

v ,
stockEN

n } as its context. The following steps are
performed:

Initialization. We start by gathering the data re-
quired for disambiguation (lines 1–5). First, we
collect in line 1 the set S of Babel synsets corre-
sponding to the different senses of the target word w
– namely, the synsets containing the ‘financial in-
stitution’, ‘money container’, ‘building’ senses of
bankEN

n , among others. Next, we obtain the multi-
lingual lexicalizations of the target word: to this end,
we first include in T the word w itself (line 2), and
then iterate through each synset s ∈ S to collect the
translations of each of its senses in the languages of
interest (lines 3–4). For instance, given the English
word bankEN

n , we collect its sense-specific German,
Italian and Spanish translations and obtain a set of
multilingual terms T = { bankEN

n , . . . , BankDE
n ,

SparbüchseDE
n , BankgebäudeDE

n , . . . , bancaIT
n ,

salvadanaioIT
n , . . . , bancoES

n , huchaES
n }. Finally,

we create a disambiguation context ctx by taking the
word sequence σ and removing w from it (line 5, as
a result, e.g., ctx = { bonusEN

n , payEN
v , stockEN

n }).

Collecting sense distributions. In the next phase
(lines 6–12), we collect a scoring distribution over
the different synsets S of w for each term ti ∈ T .
Each distribution quantifies the empirical support for
the different senses of the target word, obtained us-
ing ti and the context ctx: we store this informa-
tion in a |T | × |S| matrix LScore, where each cell
lScorei,j quantifies the support for synset sj ∈ S,
computed using the term in ti ∈ T . We calculate the
scores as follows:

- We select at each step an element ti from T (line
7), for instance bancoES

n .

- Next, we create a multilingual context σ′ by com-
bining ti with the words in ctx (line 8, e.g., we set
σ′ = { bancoES

n , bonusEN
n , payEN

v , stockEN
n }.

- We use σ′ to build a graph Gi = (Vi, Ei) by
computing the paths in BabelNet which connect
the synsets of ti with those of the other words
in σ′ (line 10, see Section 3.3 for details on the

createGraph function). Note that by selecting at
each step a different element from T we create a
new graph where different sets of Babel synsets
get activated by the context words in ctx. In our
example, Figures 1(a)–(c) show the graphs ob-
tained by setting at different steps ti to bankEN

n ,
bancoES

n and BankDE
n , respectively (we show ex-

cerpts by using only stockEN
n as context word for

ease of readability).

- Finally, we compute the support from term ti for
each synset sj ∈ S of the target word by applying
a graph connectivity measure to Gi and store the
result in lScorei,j (lines 11–12). For instance, us-
ing degree as graph measure, we can compute the
following scores from the graph in Figure 1(b):

bank2
n bank8

n bank9
n

bancoES
n 2 0 1

By repeating the process for each term in T (lines 7–
12) we compute all values in the matrixLScore. For
instance, given T = {bankEN

n , bancoES
n , BankDE

n },
we create the set of graphs in Figures 1(a)–(c), and
compute from each of them the following scores
(again, using degree as scoring measure):
LScore =

bank2
n bank8

n bank9
n

bankEN
n

 2 2 1
bancoES

n 2 0 1
BankDE

n 2 0 0

Combining sense distributions. In the last step
(line 14) we aggregate the scores associated with
each term of T using an ensemble method M (see
Section 3.4 for details). For instance, M could sim-
ply consist of summing the scores associated with
each sense over all distributions and thus return a
score of 6, 2, and 2 for bank2

n, bank8
n and bank9

n,
respectively. As a result of the execution of Al-
gorithm 1, the combined scoring distribution is re-
turned (line 15). This sense distribution in turn can
be used to select the best sense using Equation 1.

The main hunch behind our approach is that using
information from different languages improves dis-
ambiguation performance, as in the example of Fig-
ure 1 where more accurate disambiguation is per-
formed by combining scores computed from trans-
lations in different languages, as opposed to using
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(a) Disambiguation graph using the target word bankEN
n .

bank2
n

BankDE

bancoES

bancaIT

bank8
n

SparbüchseDE

huchaES

salvadanaioIT

bank9
n

BankgebäudeDE

bancoES bancaIT

stock1
n

AktienDE

accionesES

azioniIT

stock4
n

AktienzertifikatDE

accionesES azioniIT

stock17
n

ViehDE

ganadoES

bestiameIT

commercial
bank

investment
banking

stock
broker trader

piggy
bank

pig

building abattoir

(b) Disambiguation graph using bancoES
n as translation.

bank2
n

BankDE

bancoES

bancaIT

bench1
n

BankDE

bancoES

panchinaIT

bank8
n

SparbüchseDE

huchaES

salvadanaioIT

bank9
n

BankgebäudeDE

bancoES bancaIT

stock1
n

AktienDE

accionesES

azioniIT

stock4
n

AktienzertifikatDE

accionesES azioniIT

stock17
n

ViehDE

ganadoES

bestiameIT

commercial
bank

investment
banking

stock
broker trader

piggy
bank

pig

building abattoir

(c) Disambiguation graph using BankDE
n as translation.

bank2
n

BankDE

bancoES

bancaIT

bench1
n BankDE

bancoES panchinaIT

bed4
n BankDE

estratoES lettoIT

bank8
n

SparbüchseDE

huchaES

salvadanaioIT

bank9
n

BankgebäudeDE

bancoES bancaIT

stock1
n

AktienDE

accionesES

azioniIT

stock4
n

AktienzertifikatDE

accionesES azioniIT

stock17
n

ViehDE

ganadoES

bestiameIT

commercial
bank

investment
banking

stock
broker trader

piggy
bank

pig

building abattoir

(d) List of corresponding WordNet senses and their glosses

bank2
n financial institution that accepts deposits and channels

the money into lending activities
bank8

n a container (usually with a slot in the top) for keeping
money at home

bank9
n a building in which the business of banking transacted

stock1
n the capital raised by a corporation through the issue

of shares entitling holders to an ownership interest
stock4

n a certificate documenting the shareholder’s
ownership in the corporation

stock17
n any animals kept for use or profit

Figure 1: Multilingual graph construction for the input sentence ‘bank bonuses are paid in stock’. We show excerpts
using only stockEN

n as context word for ease of readability.

monolingual sense evidence only. Figure 1(a) shows
the graph created to disambiguate the English target
word bankEN

n in our example sentence. In the graph,
some of the possible senses of this word are acti-
vated, including the correct one (bank2

n) but also re-
lated, yet incorrect ones such as bank8

n and bank9
n.

Figure 1(b) and 1(c) show instead the graphs ob-
tained from replacing the target word with its Span-
ish and German translations, respectively. In these
graphs, different subsets of the senses of bankEN

n

are activated, together with others pertaining to the
translations only (e.g., the meaning of bancoES

n cor-
responding to the English bench1

n). However, the
sense that is consistently activated across all graphs
is the correct one – i.e., bankEN

n as financial insti-
tution – which is in fact the sense selected by our
multilingual approach by means of combining the
scoring distributions from all these graphs.

3.3 Graph-based WSD
We use graph-based algorithms to exploit multilin-
gual knowledge from BabelNet for WSD. These are
a natural choice for our approach, since BabelNet is

a semantic network, and such algorithms have been
shown to achieve high performance across domains
(Agirre et al., 2009; Navigli et al., 2011), as well
as to compete with supervised methods on a vari-
ety of lexical disambiguation tasks (Ponzetto and
Navigli, 2010). To this end, we use the method
of Navigli and Lapata (2010) and construct a di-
rected graphG = (V,E) for an input word sequence
σ = (w1, . . . , wn)5 using the lexical and semantic
relations found in BabelNet. The result of this pro-
cedure is a subgraph of BabelNet containing (1) the
senses of the words in context, (2) all edges and in-
termediate senses found in BabelNet along all paths
that connect them. Given G, a target word w ∈ σ
and its set of senses in BabelNet S ⊆ V , we com-
pute a score distribution (score1, . . . , score|S|) over
S, where scorej refers to the confidence score for
the j-th sense of w, e.g. bank2

n, based on some con-
nectivity measure applied to G. In this paper, we
specifically focus on two such measures.

5In our experiments we always take σ to be a single sen-
tence, thus disambiguating on a sentence-by-sentence basis.
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Degree Centrality (Degree): The first measure
ranks the senses of a given word in the graph based
on the number of their incident edges, namely:

scorej = |{{sj , v} ∈ E : v ∈ V }| .

This standard connectivity measure weights a sense
as more appropriate if it has a higher degree. We
chose context-based Degree since, albeit simple, it
had previously been shown to yield a highly com-
petitive performance on various WSD tasks (Navigli
and Lapata, 2010; Ponzetto and Navigli, 2010).

Inverse path length sum (PLength): We then de-
veloped a graph connectivity measure which scores
each sense by summing over the inverse length of all
paths which connect it to other senses in the graph:

scorej =
∑

p∈ paths(sj)

1

elength(p)−1
,

where paths(sj) is the set of simple paths con-
necting sj to the senses of other context words,
length(p) is the number of edges in the path p and
each path is scored with the exponential inverse de-
cay of the path length. This measure overcomes the
locality of Degree by aggregating over all paths be-
tween a sense of the target word and those of the
context words, thus being able to capture the rich-
ness of the BabelNet subgraph and the semantic den-
sity of the underlying knowledge base.

3.4 Ensemble methods for multilingual WSD
At the core of our algorithm lies the combination of
the scores generated using the different translations
of the target word w. For this purpose, we apply so-
called ensemble methods, which have been shown
to improve the performance of both supervised (Flo-
rian et al., 2002) and unsupervised WSD systems
(Brody et al., 2006). Given |T | lexicalizations and
|S| senses for w, the input to the combination com-
ponent consists of a |T |× |S|matrix LScore, where
each cell lScorei,j quantifies the empirical support
for sense sj from a term ti ∈ T (see Section 3.2 for
an example). The ensemble method computes from
this translation-sense matrix a combined scoring, ex-
pressing the joint confidence across terms in differ-
ent languages over the set of senses S. In this work,
we use the ‘Probability Mixture’ (PMixture) method

proposed by Brody et al. (2006), which they show
to be the best performing for WSD. This method
takes the scores associated with each term, normal-
izes and combines them by summing across distri-
butions. Formally, it computes the score for the j-th
sense of w as follows:

scorej =

|T |∑
i=1

p(si,j), p(si,j) =
lScorei,j∑|S|

s=1 lScorei,s
.

For instance, using the (normalized) sense distribu-
tions from our example, the ensemble distribution
will be the following:

bank2
n bank8

n bank9
n

bankEN
n 0.40 0.40 0.20

bancoES
n 0.67 0.00 0.33

BankDE
n 1.00 0.00 0.00

PMixture 2.07 0.40 0.53

3.5 Weighting multilingual sense distribution
Computing a sense distribution for each translation
using the same graph connectivity measure assumes
that all translations are equal. However, a leitmotif
of multilingual WSD research is that translations re-
strict the set of candidate senses of the target word
in the source language. In our example of Figure
1, for instance, BankDE

n provides structural support
only for the financial sense of English bank, since
this is the only sense it covers. Within our frame-
work this can potentially lead to skewed sense dis-
tributions when only some senses of the target word
have a translation. In such cases, in fact, scores tend
to be concentrated mostly on the senses covered by
the translations, with the result that sense evidence
for uncovered English senses is disregarded. In or-
der to cope with this issue, we weight the elements
of each sense distribution lScorei for the i-th trans-
lation ti ∈ T by a factor of 1+log2 cov(ti, w), where
cov(ti, w) is the number of Babel synsets where ti
co-occurs with the target word w – i.e., the number
of senses of w that it covers (we use the log func-
tion to dampen the effect of high coverage values).
This is to say, in order to level off the effects of un-
balanced sense coverage we assume that, all things
being equal, the more senses a translation covers, the
stronger the disambiguation evidence it provides in
context for specific senses. As a result, the contri-
butions of each translation are weighted differently
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and we are thus able to dampen the effects of a
highly skewed distribution like, for instance, that of
BankDE

n :

bank2
n bank8

n bank9
n

bankEN
n 1.72 1.72 0.86

bancoES
n 1.34 0.00 0.66

BankDE
n 1.00 0.00 0.00

Weighted PMixture 4.04 1.70 1.52

4 Experiments

We evaluate our approach in two different settings,
namely a monolingual all-words WSD task in Sec-
tion 4.1, as well as two different cross-lingual dis-
ambiguation gold standards in Section 4.2.

4.1 Monolingual WSD

Experimental setting. We first evaluate the per-
formance of multilingual joint WSD on a standard
monolingual dataset, namely the SemEval-2010 do-
main WSD task 17 (Agirre et al., 2010), since it
provides the latest dataset for fine-grained WSD in
English. We opt for an English all-words task for
two main reasons: first, it is a well-established and
widely-participated task in the WSD community –
thus ensuring a comparison of our method with a
wide range of state-of-the-art approaches, includ-
ing other graph-based techniques (e.g., Personalized
PageRank), as well as weakly-supervised and super-
vised approaches (see Agirre et al. (2010) for de-
tails on the participating systems); second, we want
to assess whether a multilingual approach benefits
lexical disambiguation in all settings, namely even
in a standard monolingual one. We use in our ex-
periments the dataset’s nouns-only subset (1032 in-
stances), since BabelNet currently contains multi-
lingual lexicalizations for nouns only (and thus no
multilingual strategy can be applied to other parts
of speech). We perform graph-based WSD with
BabelNet in two different configurations, namely a
monolingual and multilingual setting. The multi-
lingual system performs WSD by means of the full
joint multilingual approach described in Algorithm
1. The monolingual approach, instead, simply uses
the English input sentence for disambiguation – that
is, we skip lines 3–4 of Algorithm 1. Knowledge-
based systems typically suffer from a low recall –
i.e., they cannot provide an answer if no information

Algorithm P R F1

Monolingual Degree 50.6 45.2 47.7
graph PLength 51.0 47.3 49.1
Multilingual Degree† 53.9 48.6 51.1
ensemble PLength† 54.3 50.2 52.2

SemCor MFS 51.9 51.2 51.5
Random 25.3 25.3 25.3

Table 1: Performance on SemEval-2010 all-words do-
main WSD (nouns only subset). Best results for each
measure are bolded. † indicates statistically significant
differences with respect to the monolingual setting.

can be found with senses of the context words. To
overcome this issue, in both settings we use a type-
based fallback strategy which assigns to the target
word the sense which has been most frequently as-
signed by the system to other instances of the word
in the dataset.

Results and discussion. We report our results in
terms of precision (P), recall (R) and F1 measure in
Table 1, where we compare the monolingual vari-
ant (rows 1–2 of the table) with our multilingual
approach (rows 3–4). Following standard practice,
(1) we benchmark our method against two baselines,
namely a random sense assignment and the most fre-
quent sense (MFS) from SemCor; (2) we test for sta-
tistical significance by computing a 95% confidence
interval on the recall score (i.e., the main evaluation
measure for the WSD task) using bootstrap resam-
pling (Noreen, 1989).

The results show that our multilingual approach
improves over the monolingual one by a substan-
tial (i.e., statistically significant) margin. Combining
multilingual information from different languages
yields a higher precision (+3.3 for both graph algo-
rithms) and recall (+3.4 and +2.9 for Degree and
PLength, respectively). Manual inspection of the
output reveals that these increases in precision are
due to translations in different languages constrain-
ing each other – e.g., an implausible English sense is
‘ruled out’ from the sense distributions of the other
languages (cf. the example in Figure 1). The in-
creases in recall, instead, indicate that using trans-
lations triggers responses in those cases where no
sense of the English target word can be connected
to the senses of the context words – i.e., some trans-
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Algorithm P R F1

Monolingual Degree 52.0 51.3 51.6
graph PLength 55.0 54.2 54.6
Multilingual Degree† 61.6 59.5 60.5
ensemble PLength† 62.5 60.4 61.4

CFILT 61.4 59.4 60.4
IIITH 56.4 55.3 55.8

Table 2: Performance on SemEval-2010 all-words do-
main WSD (nouns only subset) using the most frequent
sense assigned by the system as back-off strategy when
no sense assignment is attempted.

lations activate senses in the knowledge base which
are closer to the senses of the context words. The
result is an overall increase in F1 measure of 3.4
and 3.1 points for Degree and PLength, respectively,
which makes it possible for us to beat the MFS
baseline (notably a difficult competitor for WSD
systems). Among the different graph algorithms,
PLength consistently outperforms Degree: however,
the differences are not statistically significant.

In order to better understand the impact of our ap-
proach we follow previous work (e.g., Navigli and
Lapata (2010)) and explore a weakly-supervised set-
ting where the system attempts no sense assignment
if the highest score among those assigned to the
senses of a target word is below a certain threshold.
If this is the case, in order to provide an answer for
all items, we output the most frequent sense assigned
by the system to other instances of the target word,
and fall back to SemCor’s MFS if no assignment has
been attempted. We estimate the optimal value for
the threshold by maximizing F1 on a development
set obtained by combining the Senseval-2 (Palmer et
al., 2001) and Senseval-3 (Snyder and Palmer, 2004)
English all-words datasets. The results for this set-
ting are shown in Table 2, where we also compare
with the top-performing systems from the SemEval
competition, namely CFILT (Kulkarni et al., 2010)
and IIITH (Reddy et al., 2010).

By complementing our multilingual method with
the MFS heuristic we achieve a performance compa-
rable with the state of the art on this task. Again, the
multilingual ensemble approach consistently outper-
forms the monolingual one and enables us to achieve
the best overall results for this dataset: without mul-

tilingual information, in fact, we achieve only aver-
age performance above the MFS level, whereas by
effectively combining sense evidence from multilin-
gual translations we are able to boost the F1 measure
by a 6-8 point margin, and thus outperform the top-
ranking SemEval systems. While differences with
CFILT are not statistically significant, we still take
this to be good news, since our system is general
purpose in nature and, accordingly, does not use any
domain information such as manually-labeled exam-
ples for the most frequent domain words (CFILT) or
a domain-specific sense ranking (IIITH).

4.2 Cross-lingual lexical disambiguation

Using a multilingual lexical resource makes it possi-
ble to perform WSD in any of its languages. Ac-
cordingly, we complement our evaluation on En-
glish texts with a second set of experiments where
we quantify the impact of our approach on a lex-
ical disambiguation task in a multilingual setting.
To this end, we use the SemEval-2010 cross-lingual
lexical substitution (Mihalcea et al., 2010, CL-LS,
henceforth) and WSD (Lefever et al., 2011, CL-
WSD) tasks and evaluate our methodology on per-
forming disambiguation across different languages.
Both cross-lingual WSD tasks cast disambiguation
as a word translation problem: given an English pol-
ysemous noun in context as input, the system dis-
ambiguates it by providing a translation into another
language (translations are deemed correct if they
preserve the meaning of the source word in the target
language). Their main difference, instead, lies in the
range of translations which are assumed to be valid:
that is, while CL-LS assumes no predefined sense in-
ventory (i.e., any translation can be potentially cor-
rect), CL-WSD makes use of a sense inventory built
on the basis of the Europarl corpus (Koehn, 2005).

Our approach to lexical disambiguation involves
two steps: first, given a target word in context, we
disambiguate it as usual to the highest-ranked Ba-
bel synset; next, given the translations in the se-
lected synset, we return the most suitable lexical-
ization in the language of interest. Since the se-
lected synset can contain multiple translations in a
target language for the input English word, we ex-
plore using an unsupervised strategy to select the
most reliable translation from multiple candidates.
To this end, we return for each test instance only the
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Algorithm P/R/F1

Baseline 23.80
Monolingual Degree 30.52
graph PLength 30.64

Multilingual Degree 32.21
ensemble PLength 32.47

UBA-T 32.17

Table 3: Performance on SemEval-2010 lexical substitu-
tion (best results are bolded).

most frequent translation found in the Babel synset.
Given that the two tasks make different assumptions
on the sense inventory (no fixed inventory for CL-
LS vs. Europarl-based for CL-WSD), the frequency
of a translation is calculated as either the number
of Babel synsets in which it occurs (CL-LS), or its
frequency of alignment with the target word, as ob-
tained by applying GIZA++ (Och and Ney, 2003) to
Europarl (CL-WSD). To provide an answer for all
instances, we return this most frequent translation
even when no sense assignment is attempted – i.e.,
no sense of the target word is connected to any other
sense of the context words – or a tie occurs.

Results and discussion. We report our results for
CL-LS and CL-WSD in Tables 3 and 4. We evalu-
ate using the nouns-only subset of the CL-LS dataset
and the full CL-WSD dataset, consisting of 300 and
1,000 instances of nouns in context, respectively.
The evaluation scheme is based on the SemEval-
2007 English lexical substitution task (McCarthy
and Navigli, 2009), and consists of an adaptation of
the metrics of precision and recall for the translation
setting. For each task, we compare our monolingual
and multilingual approaches against the best per-
forming SemEval systems for these tasks, namely
UBA-T (Basile and Semeraro, 2010) and UVT-v
(van Gompel, 2010) for CL-LS and CL-WSD, re-
spectively, as well as a recent supervised proposal
that exploits automatically generated multilingual
features from parallel text and translated contexts
(Lefever et al., 2011, Parasense). For each task
we also report its official baseline, namely the first
translation from an online-dictionary6 for CL-LS,
and the most frequent word alignment obtained by

6www.spanishdict.com

applying GIZA++ to the Europarl data for CL-WSD.
Our cross-lingual results confirm all trends of the

English monolingual evaluation, namely that: a) our
joint multilingual approach substantially improves
over the simple monolingual graph-based approach;
b) it enables us to achieve state-of-the-art perfor-
mance for these tasks. In the case of both CL-
LS and CL-WSD, using a rich multilingual knowl-
edge base like BabelNet makes it possible to achieve
a respectable performance already with the simple
monolingual approach, thus indicating the viability
of a knowledge-rich approach to sense-driven word
translation. The use of multilingual ensembles al-
ways improves the monolingual setting for all lan-
guages, and allows us to achieve the best overall re-
sults for both CL-LS and CL-WSD. Similarly to the
case of monolingual WSD, manual inspection of the
output reveals that translations help us rule out in-
correct senses and let the disambiguation algorithm
focus on the more coherent set of senses for the in-
put context in a way similar to the one highlighted
by the example in Figure 1. As a result of this we
are able to improve the performance of both mono-
lingual Degree and PLength, and compete with the
state of the art on all disambiguation tasks.

5 Conclusions

In this paper we presented a multilingual joint ap-
proach to WSD. Key to our methodology is the ef-
fective use of a wide-coverage multilingual knowl-
edge base, BabelNet, which we exploit to perform
graph-based WSD across languages and combine
complementary sense evidence from translations in
different languages using an ensemble method. This
is the first proposal to exploit structured multilingual
information within a joint, knowledge-rich frame-
work for WSD. The APIs to perform multilingual
WSD using BabelNet are freely available for re-
search purposes (Navigli and Ponzetto, 2012b).

Thanks to multilingual joint WSD we achieve
state-of-the-art performance on three different gold
standards. The good news about these results is that
not only can further advances be achieved by using
multilingual lexical knowledge, but, more impor-
tantly, that combining multilingual sense evidence
from different languages at the same time yields
consistent improvements over a monolingual ap-
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French German Italian Spanish
P/R/F1 P/R/F1 P/R/F1 P/R/F1

Baseline 21.25 13.16 15.18 19.74
UvT-v N/A N/A N/A 23.39
Parasense 24.54 16.88 18.03 22.80

Monolingual Degree 22.94 17.15 18.03 22.48
graph PLength 23.42 17.72 18.19 22.76

Multilingual Degree 24.02 18.07 18.93 23.51
ensemble PLength 24.61 18.26 19.05 23.65

Table 4: Results on the SemEval-2010 cross-lingual WSD dataset (best results are bolded).

proach in both monolingual and cross-lingual lexical
disambiguation tasks – that is, ‘joining forces pays
off’. Effectively leveraging multilingual knowledge
for WSD helps overcome the shortcomings of the
underlying resource (noise, coverage, etc.), thus in-
dicating that further performance boosts can come
in the future from even better multilingual lexical
resources. Moreover, our methodology is general-
purpose and can be adapted to tasks other than
WSD: in fact, we have already taken the first steps
in this direction by showing the beneficial effects of
a joint multilingual approach to computing semantic
relatedness (Navigli and Ponzetto, 2012a). In ad-
dition, we plan in the very near future to general-
ize our multilingual joint approach and apply it to
high-end tasks such as multilingual textual entail-
ment (Mehdad et al., 2011) and sentiment analysis
(Lu et al., 2011) – so as to provide a general frame-
work for knowledge-rich multilingual NLP.
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Abstract

We present a new minimally-supervised
framework for performing domain-driven
Word Sense Disambiguation (WSD). Glos-
saries for several domains are iteratively ac-
quired from the Web by means of a boot-
strapping technique. The acquired glosses are
then used as the sense inventory for fully-
unsupervised domain WSD. Our experiments,
on new and gold-standard datasets, show that
our wide-coverage framework enables high-
performance results on dozens of domains at
a coarse and fine-grained level.

1 Introduction

Domain information pervades most of the text we
read every day. If we just think of the Web, the vast
majority of its textual content is domain oriented.
A case in point is Wikipedia, which provides ency-
clopedic coverage for a huge number of knowledge
domains (Medelyan et al., 2009), but most blogs,
Web sites and newspapers also provide a great deal
of information focused on specific areas of knowl-
edge. When it comes to automatic text understand-
ing, then, it is crucial to take into account the domain
specificity of a piece of text, so as to perform a fo-
cused and as-precise-as-possible analysis which, in
its turn, can enable domain-aware applications such
as question answering and information extraction.
Domain knowledge also has the potential to improve
open-text applications such as summarization (Cey-
lan et al., 2010) and machine translation (Foster et
al., 2010).

Research in Word Sense Disambiguation (Nav-
igli, 2009, WSD), the task aimed at the automatic
labeling of text with word senses, has been ori-
ented towards domain text understanding for sev-
eral years now. Many approaches have been devised,
including the identification of domain-specific pre-
dominant senses (McCarthy et al., 2007; Lapata and
Keller, 2007), the development of domain resources
(Magnini and Cavaglià, 2000; Magnini et al., 2002),
their application to WSD (Gliozzo et al., 2004), and
the effective use of link analysis algorithms such as
Personalized PageRank (Agirre et al., 2009; Nav-
igli et al., 2011). More recently, semi-supervised ap-
proaches to domain WSD have been proposed which
aim at decreasing the amount of supervision needed
to carry out the task (Khapra et al., 2010).

High-performance domain WSD, however, has
been hampered by the widespread use of a general-
purpose sense inventory, i.e., WordNet (Miller et
al., 1990; Fellbaum, 1998). Unfortunately WordNet
does not contain many specialized terms, making
it difficult to use it in work on arbitrary special-
ized domains. While Wikipedia has recently been
considered a valid alternative (Mihalcea, 2007), it
is mainly focused on covering named entities and,
strictly speaking, does not contain a formal wide-
coverage sense inventory (not even in disambigua-
tion pages, which are often incomplete, especially
in the lexicographic sense).

In this paper we provide three main contributions:

• We tackle the above issues by introducing
a new framework based on the minimally-
supervised acquisition of specialized glossaries
for dozens of domains.
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• In turn, we use the acquired domain glossaries
as a sense inventory for domain WSD. As a re-
sult, we redefine the domain WSD task as one
of picking out the most appropriate gloss (fine-
grained setting) or domain (coarse-grained set-
ting) from a multi-domain glossary.

• We show that our framework represents a con-
siderable departure from the common usage
of a general-purpose sense inventory such as
WordNet, in that, thanks to the wide cov-
erage of domain meanings, it enables high-
performance unsupervised WSD on many do-
mains in the range of 69-80% F1.

Furthermore, our approach can be customized to
any set of domains of interest, and new senses, i.e.,
glosses, can be added at any time (either manually or
automatically) to the multi-domain sense inventory.

2 Related Work

Domain WSD has been the focus of much interest
in the last few years. An important research direc-
tion identifies distributionally similar neighbors in
raw text as cues for determining the predominant
sense of a target word by means of a semantic simi-
larity measure (McCarthy et al., 2004; Koeling et al.,
2005; McCarthy et al., 2007). Other distributional
methods include the use of a word-category cooccur-
rence matrix, where categories are coarse senses ob-
tained from an existing thesaurus (Mohammad and
Hirst, 2006), and synonym-based word occurrence
counts (Lapata and Keller, 2007). Domain-informed
methods have also been proposed which make use of
domain labels as cues for disambiguation purposes
(Gliozzo et al., 2004).

Domain-driven approaches have been shown to
obtain the best performance among the unsupervised
alternatives (Strapparava et al., 2004), especially
when domain kernels are coupled with a syntag-
matic one (Gliozzo et al., 2005). However, their per-
formance is typically lower than supervised systems.
On the other hand, supervised systems fall short
of carrying out high-performance WSD within do-
mains, the main reason being the need for retraining
on each new specific knowledge domain. Nonethe-
less, the knowledge acquisition bottleneck can be
relieved by means of domain adaptation (Chan and

Ng, 2006; Chan and Ng, 2007; Agirre and de La-
calle, 2009) or by effectively injecting a general-
purpose corpus into a smaller domain-specific train-
ing set (Khapra et al., 2010).

However, as mentioned above, most work on
domain WSD uses WordNet as a sense inven-
tory. But even if WordNet senses have been en-
riched with topically-distinctive words and concepts
(Agirre and de Lacalle, 2004; Cuadros and Rigau,
2008), manually-developed domain labels (Magnini
et al., 2002), and disambiguated semantic relations
(Navigli, 2005), the main obstacle of being stuck
with an open-ended fine-grained sense inventory re-
mains. Recent results on the SPORTS and FINANCE

gold standard dataset (Koeling et al., 2005) show
that domain WSD can achieve accuracy in the 50-
60% ballpark when a state-of-the-art algorithm such
as Personalized PageRank is paired with a distribu-
tional approach (Agirre et al., 2009) or with seman-
tic model vectors acquired for many domains (Nav-
igli et al., 2011).

In this paper, we take domain WSD to the next
level by proposing a new framework based on
the minimally-supervised acquisition of large do-
main sense inventories thanks to which high per-
formance can be attained on virtually any domain
using unsupervised algorithms. Glossary acquisi-
tion approaches in the literature are mostly fo-
cused on pattern-based definition extraction (Fujii
and Ishikawa, 2000; Hovy et al., 2003; Fahmi and
Bouma, 2006, among others) and lattice-based su-
pervised models (Navigli and Velardi, 2010) start-
ing from an initial terminology, while we jointly
bootstrap the lexicon and the definitions for sev-
eral domains with minimal supervision and without
the requirement of domain-specific corpora. To do
so, we adapt bootstrapping techniques (Brin, 1998;
Agichtein and Gravano, 2000; Pasca et al., 2006) to
the novel task of domain glossary acquisition from
the Web.

Approaches to domain sense modeling have al-
ready been proposed which go beyond the WordNet
sense inventory (Duan and Yates, 2010). Distinc-
tive collocations are extracted from corpora and used
as features to bootstrap a supervised WSD system.
Experiments in the biomedical domain show good
performance, however only in-domain ambiguity is
addressed. In contrast, our approach tackles cross-
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Figure 1: The bootstrapping process for glossary acquisition.

domain ambiguity, by working with virtually any set
of domains and minimizing the requirements by har-
vesting domain terms and definitions from the Web,
bootstrapped using a small number of seeds.

The existing approach closest to ours is that of
Huang and Riloff (2010), who devised a bootstrap-
ping approach to induce semantic class taggers from
domain text. The semantic classes are associated
with arbitrary NPs and must be established before-
hand. Our objective, instead, is to perform domain
disambiguation at the word level. To do this, we re-
define the domain WSD problem as one of selecting
the most suitable gloss from those available in our
full-fledged multi-domain glossary.

3 A Minimally-Supervised Framework for
Domain WSD

In this section we present our new framework for
performing domain WSD. The framework consists
of two phases: glossary bootstrapping (Section 3.1)
and domain WSD (Section 3.2).

3.1 Phase 1: Bootstrapping Domain Glossaries

The objective of the first phase is to acquire a multi-
domain glossary from the Web with minimal super-
vision. We initially select a set D of domains of
interest. For each individual domain d ∈ D we start
with an empty set of HTML patterns Pd (i.e., Pd :=
∅), used for gloss harvesting. During this phase we
iteratively populate the pattern set by means of six
steps, described in the next six subsections and de-
picted in Figure 1. The final output of this phase will
be a glossary Gd consisting of domain terms and
their automatically-harvested glosses.

3.1.1 Step 1: Initial seed selection
First, given the domain d, we manually

pick out K hypernymy relation seeds Sd =

{(t1, h1), . . . , (tK , hK)}, where the pair (ti, hi)
contains a domain term ti and its generalization hi

(e.g., (firewall, security system)). The only con-
straint we impose is that the selected relations must
be distinctive for the domain d of interest. The cho-
sen hypernymy relations have to be as topical and
representative as possible for the given domain (e.g.,
(compiler, computer program) is an appropriate pair
for computer science, while (byte, unit of measure-
ment) is not, as it might cause the extraction of sev-
eral glossaries of various units and measures). Note
that this is the only human intervention in the entire
glossary acquisition process.

We now set the iteration counter k to 1 and start
the first iteration of the process (steps 2-5). After
each iteration k, we keep track of the set of glosses
Gk

d, acquired during iteration k.

3.1.2 Step 2: Seed queries
For each seed pair (ti, hi), we submit the follow-

ing three queries to a Web search engine: “ti” “hi”
glossary1, “ti” “hi” definition, “ti” “hi”
dictionary and collect the 64 top-ranking results
for each query2. Each resulting page is a candidate
glossary for the domain d identified by our relation
seeds Sd.

3.1.3 Step 3: Pattern and glossary extraction
We initialize the glossary for iteration k as fol-

lows: Gk
d := ∅. Next, from each resulting page,

we harvest all the text snippets s starting with
ti and ending with hi (e.g., firewall</b> -- a
<i>security system), i.e., s = ti . . . hi. For each
such text snippet s, we perform five substeps:

a) extraction of the term/gloss separator: we
1In what follows, we use the typewriter font for key-

words and term/gloss separators.
2We use the Google AJAX API, which returns 64 results.

1413



Term Gloss Hypernym # seeds Gloss score
dynamic
packet filter

A firewall facility that monitors the state of connections and uses this
information to determine which network packets to allow through the firewall

firewall 2 0.75

peripheral Hardware that extends the capabilities of the computer, such as a printer,
modem, or scanner.

hardware 1 0.83

die An integrated circuit chip cut from a finished wafer. integrated circuit 1 0.75
constructor a method used to help create a new object and initialise its data method 0 1.00
schema In database terminology, a schema is the organization of the tables, the fields in

each table, and the relationships between fields and tables.
database 0 0.78

Table 1: Examples of extracted terms, glosses and hypernyms (seeds are in bold, domain terms are underlined).

start from ti and move right until we extract
the longest sequence pM of HTML tags and
non-alphanumeric characters, which we call the
term/gloss separator, between ti and the glossary
definition (e.g., “</b> --” between “firewall”
and “a” in the above example);

b) gloss extraction: we expand the snippet s to
the right of hi in search of the entire gloss of
ti, i.e., until we reach a non-formatting tag el-
ement (e.g., <span>, <p>, <div>), while ig-
noring formatting elements such as <b>, <i>
and <a> which are typically included within a
definition sentence. As a result, we obtain the
sequence ti pM glosss(ti) pR, where glosss(ti)
is our gloss for seed term ti in snippet s (which
includes hi by construction) and pR is the non-
formatting HTML tag element to the right of
the extracted gloss. For example, we extend the
above definition for firewall to: “a <i>security
system</i> for protecting against illegal entry
to a local area network.”.

c) pattern instance extraction: we extract the fol-
lowing pattern instance:

pL ti pM glosss(ti) pR,

where pL and pR are, respectively, the left bound-
ary of ti and the right boundary of glosss(ti), and
pM is the term/gloss separator extracted at step
3(a). The two boundaries pL and pR are obtained
by extracting the longest sequence of HTML
tags and non-alphanumeric characters obtained
when moving to the left of ti and the right of
glosss(ti), respectively3. For the above exam-
ple, we extract the following pattern instance:

3The minimum and maximum length of both pL and pR are
set to 4 and 50 characters, respectively, as a result of a tuning
phase described in Section 4.1.

pL = “<p><b>”, ti = “firewall”, pM = “</b>
--”, glosss(ti) = “a <i>security system</i>
for protecting against illegal entry to a local area
network.”, pR =“</p>”.

d) pattern extraction: we generalize the above pat-
tern instance to the following pattern:

pL ∗ pM ∗ pR,

i.e., we replace ti and glosss(ti) with *. In the
above example, we obtain the following pattern:

<p><b> ∗ </b> -- ∗ </p>.

Finally, we add the generalized pattern to the set
of patterns Pd, i.e., we set Pd := Pd ∪ {pL ∗
pM ∗ pR}. We also add the first sentence of
the retrieved definition glosss(ti) to our glossary
Gk

d, i.e., Gk
d := Gk

d ∪ {(ti, first(glosss(ti)))},
where first(g) returns the first sentence of gloss
g.

e) pattern matching: we look for additional pairs
of terms/glosses in the Web page containing the
snippet s by matching the page against the gen-
eralized pattern pL ∗ pM ∗ pR. We then add
to Gk

d the new (term, gloss) pairs matching the
generalized pattern.

As a result of this step, we obtain a glossary Gk
d

for the terms discovered at iteration k.

3.1.4 Step 4: Gloss ranking and filtering
Importantly not all the extracted definitions per-

tain to the domain of interest. In order to rank by
domain pertinence the glosses obtained at iteration
k, we define the terminology T k−1

1 of the terms
accumulated up until iteration k − 1 as follows:
T k−1

1 :=
⋃k−1

i=1 T
i, where T i := {t : ∃(t, g) ∈ Gi

d}.
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Gloss Domain
Measures undertaken to return a degraded ecosystem’s functions and values, including its hydrology, plant and. . . BIOLOGY

The renewing or repairing of a natural system so that its functions and qualities are comparable to its original. . . GEOGRAPHY

The reign of Charles II in England. ROYALTY

A goal of criminal sentencing that attempts to make the victim ”whole again.” LAW

The process and work of improving the degraded quality of the sound or image in terms of video and audio preservation. MEDIA

A process used by radio astronomers to eliminate the smoothing effect observed in radio maps that is caused by. . . PHYSICS

Table 2: Examples of glosses harvested for the term restoration.

For the base step k = 1, we define T 0
1 := T 1, i.e.,

we use the first-iteration terminology itself. To rank
the glosses, we first transform each acquired gloss
g to its bag-of-words representation Bag(g), which
contains all the single- and multi-word expressions
in g. We then score each gloss g by the ratio of do-
main terms found in its bag of words:

score(g) =
|Bag(g) ∩ T k−1

1 |
|Bag(g)|

. (1)

In Table 1 we show some glosses in the computer
science domain (second column, domain terms are
underlined) together with their score (last column).
Next, we use a threshold θ (tuned on a held-out do-
main, described in Section 4.1) to remove from Gk

d

those glosses g whose score(g) < θ.

3.1.5 Step 5: Seed selection for next iteration
We now aim at selecting the new set of hyper-

nymy relation seeds to be used to start the next it-
eration. We perform three substeps:

a) Hypernym extraction: for each newly-acquired
term/gloss pair (t, g) ∈ Gk

d, we automatically ex-
tract a candidate hypernym h from the textual
gloss g. To do this we use a simple unsupervised
heuristic which just selects the first term in the
gloss. More sophisticated, supervised approaches
could have been used for hypernym extraction
from glosses (Navigli and Velardi, 2010). How-
ever, note that, for the purposes of our glossary
extraction task, it is not crucial to extract ac-
curate hypernyms, but rather to harvest terms h
which are very likely to occur in the glosses of t.
We show an example of hypernym extraction for
some terms in Table 1 (we report the term in col-
umn 1, the gloss in column 2 and the hypernyms
extracted by our hypernym extraction technique
in column 3).

b) (Term, Hypernym)-ranking: we sort all the
glosses in Gk

d by the number of seed terms found
in each gloss. In the case of ties (i.e., glosses with
the same number of seed terms), we further sort
the glosses by the score shown in Formula 1. We
show the number of seed terms and the scores
for some glosses in Table 1 (columns 4 and 5,
respectively), where seed terms are in bold and
domain terms (i.e., in T k−1

1 ) are underlined.

c) New seed selection: as new seeds we select the
(term, hypernym) pairs corresponding to the K
top-ranking glosses.

If k equals the maximum number of iterations, we
stop. Else, we increment the iteration counter (i.e.,
k := k + 1) and jump to step (2) of our glossary
bootstrapping algorithm after replacing Sd with the
new set of seeds.

The output of the glossary bootstrapping phase is
a domain glossary Gd :=

⋃
i=1,...,maxG

i
d, where

max is the total number of iterations.

3.1.6 Step 6: Increasing Coverage
Given the nature of Web domain glossaries one

can rarely find terms and definitions for general
terms (e.g., jurisprudence for the LAW domain). In
order to cover this gap, we apply domain filtering
(see Section 3.1.4) to all the glosses contained in a
general-purpose dictionary (we use WordNet). We
then add the surviving term/gloss pairs to Gd.

3.2 Phase 2: Domain WSD
Now that we have acquired a glossary for each do-
main in our set D, we can create a multi-domain
glossary G := {((t, g), d) : d ∈ D, (t, g) ∈ Gd}.
Our glossary G is thus a set of term/gloss pairs
for many domains. Note that one pair might indi-
vidually belong to more than one domain, as glos-
sary bootstrapping is performed separately for each
domain. In Table 2 we show an example of the
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glosses acquired for the term restoration. We ob-
serve that 5 out of 6 senses are not available in Word-
Net (namely: the BIOLOGY, GEOGRAPHY, LAW, ME-

DIA and PHYSICS senses). Many of them are domain-
specific meanings for the general concept of “the
act of restoring”, with the BIOLOGY and GEOGRA-

PHY senses being very similar. However, this is a
perfectly acceptable phenomenon as any of the two
senses, i.e., glosses, would be equally valid when
disambiguating a domain text dealing with ecosys-
tem restoration.

3.2.1 Gloss-driven WSD
We redefine the task of domain WSD as one of

selecting the most suitable gloss, if one exists, for
an input term t. For instance, consider the sentence:
“He performed the restoration of heavily corrupted
images”. An appropriate option for this occurrence
would be the MEDIA sense of restoration in Table 2.

Our gloss-driven WSD paradigm has the desir-
able property of automatically providing two levels
of sense granularity: a domain, coarse-grained level,
similar in spirit to Word Domain Disambiguation
(Sanfilippo et al., 2006), in which the sense inven-
tory of a term t is just the set of domains for which t
is covered (e.g., BIOLOGY, GEOGRAPHY, ROYALTY, LAW,

MEDIA, PHYSICS in the example of Table 2), and a
fine-grained level, which requires the selection of
the gloss which best describes the sense denoted
by the given word occurrence. A second desirable
property of our gloss-driven WSD paradigm is that
it relies on a flexible framework, which allows for
the bootstrapping of new domain glossaries or the
expansion of existing ones. However, while these
two properties – i.e., double level of granularity dis-
tinctions and flexibility – are naturally inherent in
the gloss-driven paradigm, the same cannot be said
for mainstream open-text WSD in which general-
purpose static dictionaries are typically used.

In order to evaluate our framework for domain
WSD, we propose two fully unsupervised algo-
rithms for gloss-driven domain WSD. Ideally, high
performance could be obtained using state-of-the-art
supervised WSD systems. However, in order to train
such systems, a wide-coverage sense-labeled corpus
should be available for each domain, a heavy task
which we leave to future work. Instead, our objec-
tive is to show that high-performance domain WSD

can be enabled with little effort by our framework.

3.2.2 Algorithm 1: WSD with Personalized
PageRank

Domain Glossaries as Graphs For each domain
d ∈ D, we create an undirected graph Nd =
(Vd, Ed) as follows: Vd is the set of concepts identi-
fied by term/gloss pairs in the domain glossary Gd,
i.e., Vd := Gd; Ed is the set of edges between pairs
of concepts, where an edge {(t, g), (t′, g′)} exists if
and only if t′ is such that t′ 6= t and t′ occurs in the
bag of words of the gloss g of t. In other words, t is
connected to all the domain senses of words used in
its definition g.

Graph-based WSD Given an input text, for each
domain d ∈ D, we produce its bag of domain con-
tent words Cd = {w1, w2, . . . , wn} by perform-
ing tokenization, lemmatization and compounding
based on the lexicon of domain d. Then, given a
target word t, we use Cd \ {t} as the context to dis-
ambiguate t within the domain d. In order to carry
out domain WSD, i.e., to pick out the most suit-
able sense of t across domains, we apply a state-of-
the-art graph-based algorithm, namely Personalized
PageRank (Haveliwala, 2002, PPR), to each domain
graph Nd. PPR is a variant of the popular PageRank
algorithm (Brin and Page, 1998) in which the damp-
ing probability mass is concentrated on a selected
number of graph nodes, instead of being uniformly
distributed across all nodes. Specifically, following
Agirre and Soroa (2009) we concentrate the proba-
bility mass on the nodes (t′, g′) ∈ Vd for which the
term t′ is a context word, i.e., t′ ∈ Cd. Next, for each
domain d ∈ D, we run PPR for a given number of
iterations and obtain as output a probability distribu-
tion PPVd over the graph nodes. Finally, we select
the most suitable gloss of t as follows:

SensePPR(t) = arg max
g:∃d∈D,(t,g)∈Vd

PPVd(t, g) (2)

where PPVd(t, g) is the PPR probability for the
term/gloss pair (t, g) and SensePPR(t) contains the
best interpretation of t across all the domains D.

3.2.3 Algorithm 2: PPR Boosted with Domain
Distribution Information

The words in a given text do not typically deal
with a single domain. Instead, they touch different
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ART BIOLOGY BUSINESS CHEMISTRY COMPUTING EDUCATION ENGINEERING ENVIRONMENT FOOD & DRINK GEOGRAPHY

GEOLOGY HEALTH HISTORY LANGUAGE LAW LITERATURE MATHS MEDIA METEOROLOGY MUSIC

PHILOSOPHY PHYSICS POLITICS PSYCHOLOGY RELIGION ROYALTY SPORTS TOURISM VIDEOGAMES WARFARE

Table 3: List of the 30 domains used in our experiments.

COMPUTING FOOD ENVIRONMENT BUSINESS

chip circuit timbale dish sewage waste eurobond bond
destructor method brioche bread acid rain rain asset play stock
compiler program macaroni pasta ecosystem system income stock security

html language pizza dish air monitoring sampling financial intermediary institution
firewall security system ice cream dessert global warming temperature derivative financial product

remote lan access process pasteurized milk milk fermentation decomposition arbitrage pricing theory economic theory
relational database tabular database salted butter butter attainment area area banker’s draft bill of exchange

admin console user interface prosecco wine fugitive dust matter working capital cash

Table 4: Hypernymy relation seeds used to bootstrap glossary acquisition in four of the 30 domains.

areas of knowledge which are intertwined with each
other within the discourse. For example, a text deal-
ing with VIDEOGAMES will often concern domains
such as BUSINESS, COMPUTING, SPORTS, etc. Given an
input text, we can capture its relevance for each do-
main by calculating the following domain score:

βd =
|Cd|∑

d′∈D |Cd′ |
(3)

where, as above, Cd is the set of content words from
the input text which are covered by domain d. We
thus propose a second algorithm which synergisti-
cally combines the spreading effect of PPR with the
domain distribution information. The best sense for
a given term t is calculated as follows:

SenseDomPPR(t) = arg max
g:∃d∈D,(t,g)∈Vd

βdPPVd(t, g)

(4)
that is, we select as the most suitable gloss for t the
one which maximizes the product of its domain rel-
evance score by its domain PPVd value. Note that
the same gloss can occur in multiple domains and
that it might obtain different scores depending on the
domain. Again, since the approach is gloss-driven,
we do not see this as a problem, but rather as a natu-
ral characteristic of our framework.

4 Experimental Setup

4.1 Domains
We selected 30 domains starting from the Wikipedia
featured articles4. We show the domain labels in Ta-

4http://en.wikipedia.org/wiki/Wikipedia:Featured articles

Table 5: Statistics on the multi-domain acquired glossary.
From the Web From WordNet From both Total

Terms 74,295 83,904 18,313 176,512
Glosses 153,920 68,731 596 223,247

ble 3 (some labels have been conveniently short-
ened, e.g., PHYSICS should read PHYSICS & ASTRON-

OMY). We manually identified 8 hypernym/hyponym
seeds for each domain, totalizing 240 seeds. We
used two criteria for selecting a seed: i) it covers a
separate segment of the domain, and ii) it has to be
specialized enough to avoid ambiguity. We show the
seeds used in four of our domains in Table 4. We
bootstrapped our glossary acquisition technique (cf.
Section 3.1) on each domain and performed 5 itera-
tions. For increasing the coverage of domain terms
we used WordNet glosses (see Section 3.1.6). As a
result, we obtained 30 domain glossaries. We also
kept aside a 31st domain, namely FASHION, which
we employed for tuning the minimum and maximum
length of both pL and pR in Section 3.1.3 and the
threshold θ used to filter out non-domain glosses in
Section 3.1.4.

In Table 5 we show the statistics for the ac-
quired multi-domain glossary by distinguishing
Web-derived and WordNet terms and glosses.

4.2 Sense Inventory

Our sense inventory is given by the 30-domain
glossary obtained as a result of our glossary boot-
strapping phase. Overall we collected 176,512 and
223,247 distinct terms and glosses, respectively,
with an important contribution from both the Web
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and WordNet (see Table 5). The average num-
ber of glosses per term in our inventory is 1.9 (3.6
glosses on polysemous terms). However, note that
a monosemous word in our domain sense inventory
does not necessarily make disambiguation easier,
as i) we might have missed other domain-specific
senses, ii) an uncovered, non-domain sense might fit
a word occurrence (in this case, the domain WSD
algorithms might be (wrongly) biased towards re-
turning the only possible choice if a non-zero dis-
ambiguation score is calculated for it).

In order to determine the suitability of our multi-
domain sense inventory, we compared it with the
latest version of WordNet Domains (Magnini et al.,
2002, WND 3.2), a well-known resource which
provides domain labels for almost 65,000 nomi-
nal WordNet synsets (we removed all the synsets
tagged with the FACTOTUM label, which indicates no
domain specificity). Since WND uses about 160
finer-grained domain labels, we manually mapped
them to our 30 labels when possible (e.g. SOCCER

and SWIMMING were mapped to SPORTS), totalizing
62,100 domain-labeled synsets.

We calculated the coverage of our sense inventory
against WND at the synset and the sense level, for
each non-FACTOTUM synset. Given a WordNet synset
S, let d =

⋃
s∈S ds be the union of the domains ds

provided for each synonym s ∈ S by our sense in-
ventory (ds = ∅ if not present), and let d′ be the do-
main labels assigned to S by WND. A synset is cov-
ered if d and d′ intersect. At the sense level, instead,
we consider a synonym s ∈ S to be covered if ds and
d′ intersect. Our synset and sense coverage is 65.9%
(40,969/62,100) and 63.7% (71,950/112,875), re-
spectively. We also calculated an extra-coverage of
203.2% (229,384/112,875), that is the fraction of do-
main senses which are not available in WND, but
we are able to provide in our sense inventory (see
e.g. the example in Table 2) over the total number of
senses in WND. While coverage and extra-coverage
provide a good indicator of the completeness of our
sense inventory, we need to calculate its precision to
determine its correctness. To do so, we randomly
sampled 500 domain glosses of terms for which no
WordNet sense was tagged with the same domain in
WND. A manual validation of this sample resulted
in an 87.0% (435/500) estimate of the precision of
our sense inventory.

4.3 Datasets

A dataset for 30 domains We used the Giga-
word corpus (Graff and Cieri, 2003) to extract a 6-
paragraph text snippet for each of the 30 domains.
As a result, we obtained a domain dataset made up
of 180 paragraphs to which we applied tokeniza-
tion, lemmatization and compounding, totaling 1432
domain content words overall (47.7 content words
per domain on average). The average polysemy of
the words in the dataset was of 9.7 glosses and 4.4
domains per word. Each content word was manu-
ally tagged with the most suitable glosses from our
multi-domain glossary (3.9 glosses, i.e., senses per
word were assigned on average). The annotation
task was performed by two annotators with adjudi-
cation.

Sports and Finance We also experimented with
the gold standard produced by Koeling et al. (2005).
The dataset covers two domains: SPORTS and FI-

NANCE. The dataset comprises 41 ambiguous words
(with an average polysemy of 6.7 senses), many
of which express different meanings in the two do-
mains. In each domain, and for each word, around
100 sentences were sense-annotated with WordNet.

Environment Finally, we also carried out an ex-
periment on the ENVIRONMENT dataset from the
Semeval-2010 domain WSD task (Agirre et al.,
2010). The dataset includes 1,398 content words (of
which 1,032 content nouns) tagged with WordNet
senses.

4.4 Systems

We applied the two algorithms proposed in Section
3.2, namely vanilla PPR and domain-boosted PPR.
For both versions of PPR we employed UKB, a
readily-available implementation of PPR for WSD5,
successfully experimented by Agirre and Soroa
(2009) and Agirre et al. (2009).

4.5 Baselines

Random baseline We compared our algorithms
with the random baseline, which associates a ran-
dom gloss among those available for each word oc-
currence according to a uniform distribution.

5http://ixa2.si.ehu.es/ukb/
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Predominant domain We also compared our al-
gorithms with a predominant sense baseline which
assigns to each word occurrence the domain label
with the highest domain score βd among those avail-
able for the word (cf. Formula 3). Note that this is
a strong baseline, because it aims at identifying the
domain covered by the majority of terms in the input
text, however it can disambiguate only at a coarse-
grained level, i.e., at the domain level.

5 Experimental Results

30 domains We ran our WSD systems and the
baselines on our 30-domain dataset, on a sentence-
by-sentence basis. We calculated results at the two
levels of granularity enabled by our WSD frame-
work: a coarse-grained setting where systems out-
put the most appropriate domain label for each word
item to be disambiguated; a fine-grained setting
where systems are required to output the most suit-
able gloss for the input word. The results are shown
in Table 6. Domain PPR outperforms Vanilla PPR
by some points in precision, recall and F1 in both the
coarse-grained and the fine-grained setting, achiev-
ing an F1 around 80% and 69%, respectively (dif-
ferences in recall performance are statistically sig-
nificant using a χ2 test). The predominant domain
baseline, available only in the coarse-grained set-
ting, lags behind Domain PPR by more than 3 points
in precision and 2 in recall. While these differences
are not statistically significant, the variance across
domains is much higher, thus suggesting lower reli-
ability of the method.

These results were obtained in a fully unsuper-
vised setting in which no structured knowledge was
provided, unlike previous applications of PPR to
WSD (Agirre et al., 2009; Agirre and Soroa, 2009)
which relied on the underlying WordNet graph, a
manually created resource. Furthermore, our graph
contains “noisy” semantic relations, as we connect
each gloss to all the senses of its gloss words (cf.
Section 3.2.2). Finally, we note that the results
shown in Table 6 could never have been obtained
with WordNet. In fact, drawing on our domain map-
ping, we calculated that the correct domain sense is
not in WordNet for about 68% of the words in the
dataset. Instead, the results in Table 6 show that our
framework enables high-performance unsupervised

Coarse-grained Fine-grained
P R F1 P R F1

Vanilla PPR 76.7 74.3† 75.5 66.1 64.1† 65.1
Domain PPR 81.2 78.7† 79.9 69.7 67.6† 68.6
Predom. domain 77.9 76.8 77.3 - - -
Random baseline 42.5 42.5 42.5 44.1 44.1 44.1

Table 6: Performance results on the 30-domain dataset
(† differences between the two systems are statistically
significant using a χ2 test, p < 0.05).

WSD thanks to the wide coverage of domain mean-
ings.

As regards the random baseline, this performs
42.5% and 44.1% in the two settings. Despite the
higher polysemy of glosses (9.7 glosses vs. 4.4 do-
mains per word in the dataset), the performance is
higher in the fine-grained setting because often there
is more than one gloss covering the same meaning of
a domain word.

Sports, Finance and Environment For the
SPORTS, FINANCE and ENVIRONMENT datasets (cf. Sec-
tion 4.3) we did not have gloss-based sense annota-
tions, so we could not perform a fine-grained evalu-
ation. Therefore, we first studied the different sys-
tems at a coarse level on the basis of the domain dis-
tribution of the senses returned for the word items
in the dataset. We show the 3 most frequent domain
labels for each system and each dataset in Figure 2.
The figure seems to confirm our results showing Do-
main PPR as being more robust than its Vanilla ver-
sion. Next, to get a more accurate evaluation, we
randomly sampled 200 sentences from each dataset
and manually validated the coarse-grained senses,
i.e., domain assignments, output by each system on
this set of sentences. We remark that several words
in the datasets did not pertain to the domain of inter-
est. For instance, will and share do not have any
sports sense in WordNet, while the same applies
to half and chip for the business domain. Table 7
shows the results of our validation, where a domain
output by a system was considered correct if a suit-
able gloss existed for that domain in our inventory.

The results show that our framework enables
coarse-grained recall in the 70-80% ballpark even
on difficult gold standard datasets for which fine-
grained recall with WordNet struggles to surpass the
50-60% range. For instance, the best performance
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Vanilla PPR Domain PPR Pred. dom. Vanilla PPR Domain PPR Pred. dom. Vanilla PPR Domain PPR Pred. dom.
FINANCE SPORTS ENVIRONMENT

Figure 2: Frequency of the most common domain labels returned by our 3 systems on standard domain datasets.

FINANCE SPORTS ENVIRONMENT

P R F1 P R F1 P R F1
Vanilla PPR 57.8 56.5 57.1 65.5 63.2 64.3 81.5 77.9 79.7
Domain PPR 77.8 76.1 76.9 72.1 71.3 71.7 83.1 79.4 81.2
Predom. domain 80.0 78.3 79.1 72.6 70.1 71.3 72.7 70.6 71.6

Table 7: Coarse-grained performance results on gold-standard domain datasets.

on the ENVIRONMENT dataset was around 60% re-
call (Kulkarni et al., 2010) using a semi-supervised
WSD system, trained on the domain. Similarly, both
the FINANCE and SPORTS datasets are notoriously dif-
ficult gold standards on which state-of-the-art recall
using WordNet is lower than 60% (Navigli et al.,
2011).

Interestingly, the predominant domain baseline
shows a bias towards BUSINESS, thus performing best
on the FINANCE dataset. This is because of the large
number of terms covered in our domain glossary,
and consequently the high overlap with cue words
in context. On the other two domains, we observe
performance in line with our 30-domain experiment.

6 Conclusion

We have here presented a new framework for do-
main Word Sense Disambiguation. We depart from
the use of general-purpose sense inventories like
WordNet and propose a bootstrapping approach to
the acquisition of sense inventories for virtually any
domain. While we selected 30 domains for this
study, nothing would prevent us from using a smaller
or larger set of these domains, or a set of completely
different domains.

Our work provides three main contributions:

i) we propose a new, flexible approach to glossary
bootstrapping which harvests hundreds of thou-
sands of term/gloss pairs; the resulting multi-

domain glossary is shown to have wide cov-
erage across domains and to include a large
amount of terms not available in WordNet;

ii) we propose a novel framework for fully-
unsupervised domain WSD which uses the
multi-domain glossary as our sense inventory;

iii) we show that high performance can be achieved
by means of simple, unsupervised WSD algo-
rithms (around 80% and 69% in a coarse- and
fine-grained setting, respectively).

Note that our aim here has not been to determine
which system performs best, but rather to show that
a reliable, full-fledged framework for domain WSD
can be set up with minimal supervision. Addition-
ally, our framework can be applied to any language
of interest, provided enough glossaries are available
online, by simply translating the keywords used for
our queries.

The multi-domain glossary (and sense inven-
tory) together with the seeds used for bootstrapping
are available from http://lcl.uniroma1.
it/dwsd.
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Abstract

A popular tradition of studying semantic rep-
resentation has been driven by the assump-
tion that word meaning can be learned from
the linguistic environment, despite ample ev-
idence suggesting that language is grounded
in perception and action. In this paper we
present a comparative study of models that
represent word meaning based on linguistic
and perceptual data. Linguistic information is
approximated by naturally occurring corpora
and sensorimotor experience by feature norms
(i.e., attributes native speakers consider impor-
tant in describing the meaning of a word). The
models differ in terms of the mechanisms by
which they integrate the two modalities. Ex-
perimental results show that a closer corre-
spondence to human data can be obtained by
uncovering latent information shared among
the textual and perceptual modalities rather
than arriving at semantic knowledge by con-
catenating the two.

1 Introduction

Distributional models of lexical semantics have seen
considerable success at accounting for a wide range
of behavioral data in tasks involving semantic cog-
nition (Landauer and Dumais, 1997; Griffiths et
al., 2007). These models have also enjoyed last-
ing popularity in natural language processing. Ex-
amples involve information retrieval (Salton et al.,
1975), word sense discrimination (Schütze, 1998),
text segmentation (Choi et al., 2001), and numerous
studies of lexicon acquisition (Grefenstette, 1994;

Lin, 1998). Despite their widespread use, distribu-
tional models have been criticized as “disembodied”
in that they learn exclusively from linguistic infor-
mation but are not grounded in perception and ac-
tion (Perfetti, 1998; Barsalou, 1999; Glenberg and
Kaschak, 2002).

This lack of grounding contrasts with many ex-
perimental studies suggesting that word meaning is
acquired not only from exposure to the linguistic
environment but also from our interaction with the
physical world (Landau et al., 1998; Bornstein et al.,
2004). Beyond language acquisition, there is consid-
erable evidence across both behavioral experiments
and neuroimaging studies that the perceptual asso-
ciates of words play an important role in language
processing (for a review see Barsalou (2008)).

It is thus no surprise that recent years have wit-
nessed the emergence of perceptually grounded dis-
tributional models. An important question in the for-
mulation of such models concerns the provenance
of perceptual information. A few models use fea-
ture norms as a proxy for sensorimotor experience
(Howell et al., 2005; Andrews et al., 2009; Steyvers,
2010; Johns and Jones, 2012). These are obtained
by asking native speakers to write down attributes
they consider important in describing the meaning
of a word. The attributes represent perceived phys-
ical and functional properties associated with the
referents of words. For example, apples are typi-
cally green or red, round, shiny, smooth, crunchy,
tasty, and so on; dogs have four legs and bark,
whereas chairs are used for sitting. Other models fo-
cus solely on the visual modality under the assump-
tion that it represents a major source of data from
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which humans can learn semantic representations
of both linguistic and non-linguistic communicative
actions (Regier, 1996). For example, Feng and Lap-
ata (2010) learn semantic representations from cor-
pora of texts paired with naturally co-occurring im-
ages (e.g., news articles and their associated pic-
tures), whereas Bruni et al. (2011) learn textual and
visual representations independently from distinct
data sources.

Aside from the type of data used to capture per-
ceptual information, another important issue con-
cerns how the two modalities (perceptual and tex-
tual) are integrated. A simple solution would be
to learn both modalities independently (Bruni et al.,
2011) or to infer one modality by means of the other
(Johns and Jones, 2012) and to arrive at a grounded
representation simply by concatenating the two. An
alternative is to learn from both modalities jointly
(Andrews et al., 2009; Feng and Lapata, 2010;
Steyvers, 2010). According to this view, seman-
tic knowledge is gained by simultaneously learning
from the statistical structure within each modality
assuming both data sources have been generated by
a shared set of meanings or topics.

In this paper we undertake the first comparative
study of perceptually grounded distributional mod-
els. We examine three models with different as-
sumptions regarding the integration of perceptual
and linguistic data. The first model, originally pro-
posed by Andrews et al. (2009), is an extension of
latent Dirichlet allocation (LDA, Blei et al. (2003)).
It simultaneously considers the distribution of words
across contexts in a text corpus and the distribu-
tion of words across perceptual features and extracts
joint information from both data sources. Our sec-
ond model is based on Johns and Jones (2012) who
represent the meaning of a word as the concatena-
tion of its textual and its perceptual vector. Interest-
ingly, their model allows to infer a perceptual vector
for words without feature norms, simply by taking
into account similar words for which perceptual in-
formation is available.

Finally, we propose Canonical Correlation Anal-
ysis (Hotelling, 1936; Hardoon et al., 2004) as our
third model. CCA is a data analysis and dimen-
sionality reduction method similar to PCA. While
PCA deals with only one data space, CCA is a tech-
nique for joint dimensionality reduction across two

Features table dog apple
has 4 legs .28 .60 0
used for eating .50 0 0
a pet 0 .40 0
is brown 0 0 0
is crunchy 0 0 .58
is round .22 0 .42
has fangs 0 0 0

Table 1: Feature norms for the nouns table, dog, and
apple shown as a distribution.

(or more) spaces that provide heterogeneous repre-
sentations of the same objects. The assumption is
that the representations in these two spaces contain
some joint information that is reflected in correla-
tions between them.

In all three models we use feature norms as a
proxy for perceptual information. Despite their
shortcomings (e.g., they often cover a small frac-
tion of the vocabulary of an adult speaker due to
the effort involved in eliciting them), feature norms
provide detailed knowledge about meaning repre-
sentations and are a useful starting point for study-
ing the integration of perceptual and textual infor-
mation without being susceptible to the effects of
noise, e.g., coming from image processing. In other
words, feature norms can serve as an upper bound
of what can be achieved when integrating detailed
perceptual information with vanilla text-based dis-
tributional models.

Our experimental results demonstrate that joint
models give a better fit to human word similarity and
association data than a model that considers only
one data source, or the simple concatenation of the
two sources.

2 Perceptually Grounded Models

In this study we examine semantic representation
models that rely on linguistic and perceptual data.
The linguistic environment is approximated by cor-
pora such as the British National Corpus (BNC).
As mentioned earlier, we resort to feature norms
as proxy for perceptual information. In our exper-
iments, we relied on the norming study of McRae et
al. (2005), in which a large number of human par-
ticipants were presented with a series of words and
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asked to list relevant features of the words’ refer-
ents. Table 1 presents examples of features partici-
pants listed for the nouns apple, dog, and table. The
number of participants listing a certain feature for a
word can be used to compute a probability distribu-
tion over features given the word:

P( fk|w) =
f ( fk,w)

F
∑

m=1
f ( fm,w)

(1)

where f ( fk,w) is the number of participants who
listed feature fk for word w and F is the total number
of features.

In the remainder of this section we will describe
our models and how they arrive at an integrated per-
ceptual and linguistic representation.

2.1 Feature-topic Model
Andrews et al. (2009) present an extension of LDA
(Blei et al., 2003) where words in documents as well
as their associated features are treated as observed
variables that are explained by a generative process.
The underlying training data consists of a corpus D
where each document is represented by words and
their frequency of occurrence within the document.
In addition, those words of a document that are also
included in the feature norms are paired with one of
their features, where a feature is sampled according
to the feature distribution given that word. For ex-
ample, suppose a document d j consists of the sen-
tence Mix in the apple, celery, raisins, and apple
juice. Suppose further that all content words ex-
cept of mix and juice are included in the feature
norms. Then, a representation for d j is mix:1, ap-
ple;is red:2, celery;has leaves:1, raisin;is edible:1,
juice:1.

The plate diagram in Figure 1 illustrates the
graphical model in detail. Each document d j

in D is generated by a mixture of components
{x1, ...,xc, ...,xC} ∈ C ; a component xc comprises a
latent discourse topic coupled with a feature clus-
ter originating from the feature norms. A dis-
course topic belonging to xc, in turn, is a distribu-
tion φc ∈ φ = {φ1, ...,φC} over words, and a feature
cluster is a distribution ψc ∈ ψ = {ψ1, ...,ψC} over
features.

In order to create document d j, a distribution π j

over components is sampled from a Dirichlet distri-

π

x

ψ w, f φ

α

γ β

∀xc ∈ C ∀i ∈ {1, ...,n j}

∀ j ∈ {1, ...,D}

∀xc ∈ C

Figure 1: Feature-topic model. The components x ji of a
document d j are sampled from π j. For each xc = x ji, a
word w ji is drawn from distribution φc and a feature f ji is
drawn from distribution ψc.

bution parametrized by α. To generate each word
w ji ∈ {w j1, ...,w jn j}, a component xc = x ji is drawn
from π j; w ji is then drawn from the corresponding
distribution φc. If w ji is in the feature norms, it is
coupled with a feature f ji which is correspondingly
drawn from ψc. A symmetric Dirichlet prior with
hyperparameters β and γ is placed on φ and ψ, re-
spectively. The probability of the corpus D is de-
fined as:

P((w∪ f )1:D|φ,ψ,α) =
D

∏
j=1

ˆ
dπ j

n j

∏
i=1

P(π j|α)

C

∑
c=1

P(w ji|x ji = xc,φ)P( f ji|x ji = xc,ψ)P(x ji = xc|π j)

(2)

where D is the number of documents and C the
predefined number of components. Computing the
posterior distribution P(φ,ψ,α,β,γ|(w ∪ f )1:D) of
the hidden variables given the data is generally in-
tractable:

P(φ,ψ,α,β,γ|(w∪ f )1:D) ∝ P((w∪ f )1:D|φ,ψ,α)

P(φ|β)P(ψ|γ)P(α)P(β)P(γ)
(3)

Equation (3) may be approximated using the Gibbs
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[ x1 x2 x12 ... x28 x75 x107 x119 x125 x148 x182 ... x266 x326 x349 x350

apple 3e-5 3e-5 0 . . . 5e-4 9e-4 .09 .002 7.6e-5 2e-4 .003 . . . 0 0 3e-6 0
]

Figure 2: Example of the representation of the meaning of apple with the model of (Andrews et al., 2009) .

[ ... d16 ... d322 ... d2469 d2470 ... dD

apple . . . 1 . . . 1 . . . 0 1 . . . 0
][ a f ruit has f angs is crunchy ... is yellow is red is green is round

0 0 0 . . . 0 0 0 0
]

[ ... d16 ... d322 ... d2469 d2470 ... dD

apple . . . 1 . . . 1 . . . 0 1 . . . 0
][ a f ruit has f angs is crunchy ... is yellow is red is green is round

.006 1.8e-5 8e-4 . . . .004 .004 .006 .02
]

Figure 3: Example representation for apple before (first row) and after (second row) applying the perceptual inference
method of Johns and Jones (2012).

sampling procedure described in Andrews et al.
(2009).

Inducing feature-topic components from a docu-
ment collection D with the extended LDA model
just described gives two sets of parameters: word
probabilities given components PW (wi|X = xc) for
wi, i = 1, ...,N, and feature probabilities given com-
ponents PF( fk|X = xc) for fk, k = 1, ...,F . For exam-
ple, most of the probability mass of component x107
would be reserved for the words apple, fruit, lemon,
orange, tree and the features is red, tastes sweet,
is round and so on.

Word meaning in this model is represented by the
distribution PX |W over the learned components (see
Figure 2 for an example). Assuming a uniform dis-
tribution over components xc in D , PX |W can be ap-
proximated as:

PX=xc|W=wi =
P(wi|xc)P(xc)

P(wi)
≈ P(wi|xc)

C
∑

l=1
P(wi|xl)

(4)

where C is the total number of components. The
model can be also used to infer features for words
that were not originally included in the feature
norms. The probability distribution PF |W over fea-
tures given a word wi is simply inferred by summing
over all components xc for each feature fk:

PF( fk|W = wi) =
C

∑
c=1

P( fk|xc)P(xc|wi) (5)

2.2 Global Similarity Model

Johns and Jones (2012) propose an approach for
generating perceptual representations for words by
means of global lexical similarity. Their model does

not place so much emphasis on the integration of
perceptual and linguistic information, rather its main
focus is on inducing perceptual representations for
words with no perceptual correlates. Their idea is to
assume that lexically similar words also share per-
ceptual features and hence it should be possible to
transfer perceptual information onto words that have
none from their linguistically similar neighbors.

Let T ∈ {1,0}N×D denote a binary term-
document matrix, where each cell records the pres-
ence or absence of a term in a document. Let
P ∈ [0,1]N×F denote a perceptual matrix, represent-
ing a probability distribution over features for each
word (see Table 1). A word’s meaning is repre-
sented by the concatenation of its textual and per-
ceptual vectors (see Figure 3). If a word has not
been normed, its perceptual vector will be all zeros.
Johns and Jones (2012) propose a two-step estima-
tion process for words without perceptual vectors.
Initially, a perceptual vector is constructed based on
the word’s weighted similarity to other words that
have non-zero perceptual vectors:

pin f =
N

∑
i=1

ti ∗ sim(ti,p)λ (6)

where p is the representation of a word with a tex-
tual vector but an empty perceptual vector, ts are
composite representations consisting of textual and
perceptual vectors, sim is a measure of distributional
similarity such as cosine, λ a weighting parameter,
and pin f the resulting inferred representation of the
word. The process is repeated a second time, so
as to incorporate the inferred perceptual vector in
the computation of the inferred vectors of all other
words. An example of this inference procedure is
illustrated in Figure 3.
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[ ... d16 ... d322 ... d2470 ... dD

apple . . . .006 . . . .003 . . . .1e-6 . . . 0
][ a f ruit has f angs is crunchy ... is yellow is red is green is round

.13 0 .06 . . . .04 .14 .09 .04
]

[ k1 k2 k3 ... k409 k410

apple −.003 −.01 .002 . . . −.002 −.01
][ k1 k2 k3 ... k409 k410

.008 −.03 −.008 . . . −.02 −.07
]

Figure 4: Example representation for apple before (first row) and after (second row) applying CCA.

2.3 Canonical Correlation Analysis

Our third model uses Canonical Correlation Analy-
sis (CCA, Hardoon et al. (2004)) to learn a joint se-
mantic representation from the textual and percep-
tual views. Given two random variables x and y
(or two sets of vectors), CCA can be seen as de-
termining two sets of basis vectors in such a way,
that the correlation between the projections of the
variables onto these bases is mutually maximized
(Borga, 2001). In effect, the representation-specific
details pertaining to the two views of the same phe-
nomenon are discarded and the underlying hidden
factors responsible for the correlation are revealed.

In our case the linguistic view is represented by a
term-document matrix, T ∈ RN×D, containing infor-
mation about the occurrence of each word in each
document. The perceptual view is captured by a
perceptual matrix, P ∈ [0,1]N×F , representing words
as a probability distribution over normed features.
CCA is concerned with describing linear dependen-
cies between two sets of variables of relatively low
dimensionality. Since the correlation between the
linguistic and perceptual views may exist in some
nonlinear relationship, we used a kernelized version
of CCA (Hardoon et al., 2004) which first projects
the data into a higher-dimensional feature space and
then performs CCA in this new feature space. The
two kernel matrices are KT = T T ′ and KP = PP′.
After applying CCA we obtain two matrices pro-
jected onto L basis vectors, Ct ∈ RN×L, resulting
from the projection of the textual matrix T onto the
new basis and Cp ∈RN×L, resulting from the projec-
tion of the corresponding perceptual feature matrix.
The meaning of a word can thus be represented by
its projected textual vector in CT , its projected per-
ceptual vector in CP or their concatenation. Figure 4
shows an example of the textual and perceptual vec-
tors for the word apple which were used as input for
CCA (first row) and their new representation after
the projection onto new basis vectors (second row).

The CCA model as sketched above will only ob-

tain full representations for words with perceptual
features available. One solution would be to apply
the method from Johns and Jones (2012) to infer the
perceptual vectors and then perform CCA on the in-
ferred vectors. Another approach which we assess
experimentally (see Section 4) is to create a percep-
tual vector for a word that has none from its k-most
(textually) similar neighbors, simply by taking the
average of their perceptual vectors. This inference
procedure can be applied to the original vectors or
the projected vectors in CT and CP, respectively,
once CCA has taken place.

2.4 Discussion

Johns and Jones (2012) primarily present a model of
perceptual inference, where textual data is used to
infer perceptual information for words not included
in feature norms. There is no means in this model to
obtain a joint representation resulting from the mu-
tual influence of the perceptual and textual views.
As shown in the example in Figure 3 the textual
vector on the left-hand side does not undergo any
transformation whatsoever. The generative model
put forward by Andrews et al. (2009) learns meaning
representations by simultaneously considering doc-
uments and features. Rather than simply adding per-
ceptual information to textual data it integrates both
modalities jointly in a single representation which
is desirable, at least from a cognitive perspective.
It is unlikely that we have separate representations
for different aspects of word meaning (Rogers et al.,
2004). Similarly to Johns and Jones (2012), An-
drews et al’s (2009) feature-topic model can also
infer perceptual representations for words that have
none. The inference is performed automatically in
an implicit manner during component induction.

In CCA, textual and perceptual data represent two
different views of the same objects and the model
operates on these views directly without combining
or manipulating any of them a priori. Instead, the
combination of the two modalities is realized via
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correlating the linear relationships between them. A
drawback of the model lies in the need of additional
methods for inferring perceptual representations for
words not available in feature norms.

3 Experimental Setup

Data All our experiments used a lemmatized ver-
sion of the British National Corpus (BNC) as a
source of textual information. The feature norms of
McRae et al. (2005) were used as a proxy for percep-
tual information. The BNC comprises 4,049 texts
totalling approximately 100 million words. McRae
et al.’s feature norms consist of 541 words and 2,526
features; 824 of these features occur with at least two
different words.

Evaluation Tasks Our evaluation experiments
compared the models discussed above on three
tasks. Two of them have been previously used
to evaluate semantic representation models, namely
word association and word similarity. In order
to simulate word association, we used the human
norms collected by (Nelson et al., 1998).1 These
were established by presenting a large number of
participants with a cue word (e.g., rice) and ask-
ing them to name an associate word in response
(e.g., Chinese, wedding, food, white). For each cue
word, the norms provide a set of associates and the
frequencies with which they were named. We can
thus compute the probability distribution over asso-
ciates for each cue. Analogously, we can estimate
the degree of similarity between a cue and its as-
sociates using our models (see the following sec-
tion for details on the similarity measures we em-
ployed). The norms contain 63,619 unique normed
cue-associate pairs in total. Of these, 25,968 pairs
were covered by all models and 520 appeared in
McRae et al.’s (2005) norms. Using correlation anal-
ysis, we examined the degree of linear relationship
between the human cue-associate probabilities and
the automatically derived similarity values.

Our word similarity experiments used the
WordSimilarity-353 test collection (Finkelstein et
al., 2002)2 which consists of relatedness judgments

1Available at http://www.usf.edu/Freeassociation.
2Available at http://www.cs.technion.ac.il/˜gabr/

resources/data/wordsim353/.

for word pairs. For each pair, a similarity judg-
ment (on a scale of 0 to 10) was elicited from 13 or
16 human subjects (e.g., tiger-cat are very similar,
whereas delay–racism are not). The average rating
for each pair represents an estimate of the perceived
similarity of the two words. The task varies slightly
from word association. Here, participants are asked
to rate perceived similarity rather than to generate
the first word that came to mind in response to a cue
word. The collection contains similarity ratings for
353 word pairs. Of these, 76 pairs appeared in our
corpus and 3 in McRae et al.’s (2005) norms. Again,
we evaluated how well model produced similarities
correlate with human ratings. Throughout this paper
we report correlation coefficients using Pearson’s r.

Our third task assessed the models’ ability to in-
fer perceptual vectors for words that have none. To
do this, we conducted 10-fold cross-validation on
McRae et al.’s (2005) norms. We treated the per-
ceptual vectors in each test fold as unseen, and used
the data in the corresponding training fold together
with the models presented in Section 2 to infer them.
Then, for each word, we examined how close the in-
ferred vector was to the actual one, via correlation
analysis.

Model Parameters The feature-topic model has a
few parameters that must be instantiated. These in-
clude, C, the number of predefined components and
the priors α, β, and γ. Following Andrews et al.
(2009), the components C were set to 350.3 A vague
inverse gamma prior was placed on α, β, and γ.4 To
measure word similarity within this model, we adopt
Griffiths et al.’s (2007) definition. The underlying
idea is that word association can be expressed as a
conditional distribution. If we have seen word w1,
then we can determine the probability that w2 will
be also generated by computing P(w2|w1). Assum-
ing that both w1 and w2 came from a single compo-
nent, P(w2|w1) can be estimated as:

P(w2|w1) =
C
∑

c=1
P(w2|xc)P(xc|w1)

P(xc|w1) ∝ P(w1|xc)P(xc)

(7)

3As we explain in Section 4 the feature-topic model was
compared to a vanilla LDA model trained on the BNC only.
For that model, C was set to 250.

4That is P(•) = exp(− 1
• )•
−2.
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where P(xc) is uniform, a single component xc is
sampled from the distribution P(xc|w1), and an over-
all estimate is obtained by averaging over all C com-
ponents.

Johns and Jones’ (2012) model uses binary tex-
tual vectors to represent word meaning. If the word
is present in a given document, that vector element
is coded as one; if it is absent, it is coded as zero.
We built a binary term-document matrix from the
BNC over 14,000 lemmas. The value of the similar-
ity weighting parameter λ was set to the same values
reported by Johns and Jones (λ1=3 for Step 1 and
λ2 = 13 for Step 2).

For the CCA model, we represented the textual
view with a term-document co-occurrence matrix.
Matrix cells were set to their tf-idf values.5 The tex-
tual and perceptual matrices were projected onto 410
vectors. As mentioned in Section 2.3, CCA does not
naturally lend itself to inferring perceptual vectors,
yet a perceptual vector for a word can be created
from its k-nearest neighbors. We inferred a percep-
tual vector by averaging over the perceptual vectors
of the word’s k most similar words; textual similarity
between two words was measured using the cosine
of the angle of the two vectors representing them.
To find the optimal value for k, we used one third of
Nelson’s (1998) cues as development set. The high-
est correlation was achieved with k = 2 when the
perceptual vectors were created prior to CCA and
k = 8 when they were inferred on the projected tex-
tual and perceptual matrices.

4 Results

Our experiments were designed to answer three
questions: (1) Does the integration of perceptual and
textual information yield a better fit with behavioral
data compared to a model that considers only one
data source? (2) What is the best way to integrate
the two modalities, e.g., via simple concatenation or
jointly? (3) How accurately can we approximate the
perceptual information when the latter is absent?

To answer the first question, we assessed the mod-
els’ performance when textual and perceptual infor-
mation are both available. The results in Table 2
are thus computed on the subset of Nelson’s (1998)

5Experiments with a binarized version of the term-document
matrix consistently performed worse.

Models Modality Pearson’s r

Feature-topic +t +p .35
Feature-topic +t −p .12
Feature-topic −t +p .22
Global similarity +t +p .23
Global similarity +t −p .11
Global similarity −t +p .22
CCA +t +p .32
CCA +t −p .14
CCA −t +p .29
Upper Bound — .91

Table 2: Performance of feature-topic, global similarity,
and CCA models on a subset of the Nelson et al. (1998)
norms when taking into account the textual and percep-
tual modalities on their own (+t−p and −t+p) and in
combination (+t+p). All correlation coefficients are sta-
tistically significant (p < 0.01).

norms (520 cue-associate pairs) that also appeared in
McRae et al. (2005) and for which a perceptual vec-
tor was present. The table shows different instanti-
ations of the three models depending on the type of
modality taken into account: textual, perceptual or
both.

As can be seen, Andrews et al.’s (2009) feature-
topic model provides a better fit with the association
data when both modalities are taken into account
(+t+p). A vanilla LDA model constructed solely
on the BNC (+t−p) or McRae et al.’s (2005) fea-
ture norms (−t+p) yields substantially lower corre-
lations. We observe a similar pattern with Johns and
Jones’ (2012) global similarity model. Concatena-
tion of perceptual and textual vectors yields the best
fit with the norming data, relying on perceptual in-
formation alone (−t+p) comes close, whereas tex-
tual information on its own seems to have a weaker
effect (+t−p).6 The CCA model takes perceptual
and textual information as input in order to find a
projection onto basis vectors that are maximally cor-
related. Although by definition the CCA model must
operate on the two views, we can nevertheless iso-
late the contribution of each modality by considering
the vectors resulting from the projection of the tex-

6In this evaluation setting, the model does not infer any per-
ceptual representations; perceptual vectors are taken directly
from McRae et al. (2005).
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tual matrix (+t−p), the perceptual matrix (−t+p) or
their concatenation (+t+p). We obtain best results
with the latter representation; again we observe that
the perceptual information is more dominant.

Overall we find that the feature-topic model and
CCA perform best. In fact the correlations achieved
by the two models do not differ significantly, us-
ing a t-test (Cohen and Cohen, 1983). The per-
formance of the global similarity model is signifi-
cantly worse than the feature-topic model and CCA
(p < 0.01). Recall that the feature-topic model
(+t+p) represents words as distributions over com-
ponents, whereas the global similarity model sim-
ply concatenates the textual and perceptual vectors.
The same input is also given to CCA which in turn
attempts to interpret the data by inferring common
relationships between the two views. In sum, we
can conclude that the higher correlation with human
judgments indicates that integrating textual and per-
ceptual modalities jointly is preferable to concatena-
tion.

However, note that all models in Table 2 fall
short of the human upper bound which we mea-
sured by calculating the reliability of Nelson et al.’s
(1998) norms. Reliability estimates the likelihood
of a similarly-composed group of participants pre-
sented with the same task under the same circum-
stances producing identical results. We split the col-
lected cue-associate pairs randomly into two halves
and computed the correlation between them; this
correlation was averaged across 200 random splits.
These correlations were adjusted by applying the
Spearman-Brown prediction formula (Voorspoels et
al., 2008).

The results in Table 2 are computed on a small
fraction of Nelson et al.’s (1998) norms. One might
even argue that the comparison is slightly unfair as
the global similarity model is more geared towards
inferring perceptual vectors rather than integrating
the two modalities in the best possible way. To gain
a better understanding of the models’ behavior and
to allow comparisons on a larger dataset and more
equal footing, we also report results on the entire
dataset (20,556 cue-associate pairs).7 This entails
that the models will infer perceptual vectors for the

7This excludes the data used as development set for tuning
the k-nearest neighbors for CCA.

Models Pearson’s r

Feature-topic .15
Global similarity .03
Global similarity� CCA .12
k-NN� CCA .11
CCA� k-NN .12
Upper Bound .96

Table 3: Performance of the feature-topic, global simi-
larityand CCA models on the Nelson et al. (1998) norms
(entire dataset). All correlation coefficients are statisti-
cally significant (p < 0.01).

words that are not attested in McRae et al.’s norms.
Recall from Section 2.3 that CCA does not have
a dedicated inference mechanism. We thus experi-
mented with three options (a) interfacing the infer-
ence method of Johns and Jones (2012) with CCA
(global similarity � CCA) (b) creating a percep-
tual vector from the words’ k-nearest neighbors be-
fore (k-NN � CCA) or (c) after CCA takes place
(CCA� k-NN).

Our results are summarized in Table 3. The up-
per bound was estimated in the same fashion as for
the smaller dataset. Despite being statistically sig-
nificant (p < 0.01), the correlation coefficients are
lower. This is hardly surprising as perceptual infor-
mation is approximate and in several cases likely to
be wrong. Interestingly, we observe similar mod-
eling trends, irrespective of whether the models are
performing perceptual inference or not. The feature-
topic model achieves the best fit with the data, fol-
lowed by CCA. The inference method here does not
seem to have much of an impact: CCA � k-NN
does as well as global similarity � CCA. This is
perhaps expected as the inference procedure adopted
by Johns and Jones (2012) is a generalization of our
k-nearest neighbor approach. The global similarity
model performs worst; we conjecture that this is due
to the way semantic information is integrated rather
than the inference method itself. CCA works with
similar input, yet achieves better correlations with
the human data, due to its ability to represent the
commonalities shared by the two modalities. Taken
together the results in Tables 2 and 3 provide an an-
swer to our second question. Models that capture la-
tent information shared between the two modalities
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Models Pearson’s r

Feature-topic .17
Global similarity .25
Global similarity� CCA .21
k-NN� CCA .19
CCA� k-NN .13

Table 4: Mean correlation coefficients between origi-
nal and inferred feature vectors in McRae et al.’s (2005)
norms.

create more accurate semantic representations com-
pared to simply treating the two as independent data
sources.

In order to isolate the influence of the inference
method from the resulting semantic representation
we evaluated the inferred perceptual vectors on their
own by computing their correlation with the original
feature distributions in McRae et al.’s (2005) norms.
The correlation coefficients are reported in Table 4
and were computed by averaging the coefficients ob-
tained for individual words. Here, the global simi-
larity model achieves the highest correlation, and for
a good reason. It is the only model with an empha-
sis on inference, the other two models do not have
such a dedicated mechanism. CCA has in fact none,
whereas in the feature-topic model the inference of
missing perceptual information is a by-product of
the generative process. The results in Table 4 indi-
cate that the perceptual vectors are not reconstructed
very accurately (the highest correlation coefficient
is .25) and that better inference mechanisms are re-
quired for perceptual information to have a positive
impact on semantic representation.

In Table 5 we examine the models’ performance
on semantic similarity rather than association using
the WordSimilarity-353 dataset (Finkelstein et al.,
2002). The models were evaluated on 76 word pairs
that appeared in the BNC. We inferred the percep-
tual vectors for 51 words. We computed the upper
bound using the reliability method described ear-
lier. Again, the joint models achieve better results
than the simple concatenation model. The feature-
topic and CCA models perform comparably, with
the global similarity model lagging substantially be-
hind. In sum, our results indicate that the issue
of how to best integrate the two modalities has a

Models Pearson’s r

Feature-topic .35
Global similarity .08
Global similarity� CCA .38
k-NN� CCA .39
CCA� k-NN .28
Upper Bound .98

Table 5: Model performance on predicting word similar-
ity. All correlation coefficients are statistically significant
(p < 0.01), except for the global similarity model.

greater impact on the resulting semantic representa-
tions compared to the mechanism by which missing
perceptual information is inferred.

5 Conclusions

In this paper, we have presented a comparative study
of semantic representation models which compute
word meaning on the basis of linguistic and per-
ceptual information. The models differ in terms
of the mechanisms by which they integrate the two
modalities. In the feature-topic model (Andrews et
al., 2009), the textual and perceptual views are in-
tegrated via a set of latent components that are in-
ferred from the joint distribution of textual words
and perceptual features. The model based on Canon-
ical Correlation Analysis (Hardoon et al., 2004) in-
tegrates the two views by deriving a consensus rep-
resentation based on the correlation between the lin-
guistic and perceptual modalities. Johns and Jones’
(2012) similarity-based model simply concatentates
the two representations. In addition, it uses the lin-
guistic representations of words to infer perceptual
information when the latter is absent.

Experiments on word association and similarity
show that all models benefit from the integration of
perceptual data. We also find that joint models are
superior as they obtain a closer fit with human judg-
ments compared with an approach that simply con-
catenates the two views. We have also examined
how these models perform on the perceptual infer-
ence task which has implications for the wider appli-
cability of grounded semantic representation mod-
els. Johns and Jones’ (2012) inference mechanism
goes some way towards reconstructing the informa-
tion contained in the feature norms, however, further
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work is needed to achieve representations accurate
enough to be useful in semantic tasks.

In this paper we have used McRae et al.’s (2005)
norms without any extensive feature engineering
other than applying a frequency cut-off. In the fu-
ture we plan to experiment with feature selection
methods in an attempt to represent perceptual in-
formation more succinctly. For example, it may
be that different features are appropriate for differ-
ent word classes (e.g., color versus event denoting
nouns). Although feature norms are a useful first ap-
proximation of perceptual data, the effort involved in
eliciting them limits the scope of any computational
model based on normed data. A natural avenue for
future work would be to develop semantic represen-
tation models that exploit perceptual data that is both
naturally occurring and easily accessible (e.g., im-
ages, physical simulations).

Acknowledgments We are grateful to Brendan
Johns for his help with the re-implementation of his
model. Thanks to Frank Keller and Michael Roth for
their input on earlier versions of this work, Ioannis
Konstas for his help with the final version, and mem-
bers of the ILCC at the School of Informatics for
valuable discussions and comments. We acknowl-
edge the support of EPSRC through project grant
EP/I032916/1.

References

M. Andrews, G. Vigliocco, and D. Vinson. 2009. Inte-
grating Experiential and Distributional Data to Learn
Semantic Representations. Psychological Review,
116(3):463–498.

Lawrence Barsalou. 1999. Perceptual Symbol Systems.
Behavioral and Brain Sciences, 22:577–609.

Lawrence W. Barsalou. 2008. Grounded Cognition. An-
nual Review of Psychology, 59:617–845.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research, 3:993–1022, March.

Magnus Borga. 2001. Canonical Correlation - a Tutorial,
January.

M. H. Bornstein, L. R. Cote, S. Maital, K. Painter, S.-Y.
Park, and L. Pascual. 2004. Cross-linguistic Analy-
sis of Vocabulary in Young Children: Spanish, Dutch,
French, Hebrew, Italian, Korean, and American En-
glish. Child Development, 75(4):1115–1139.

Elia Bruni, Giang Binh Tran, and Marco Baroni. 2011.
Distributional Semantics from Text and Images. In
Proceedings of the GEMS 2011 Workshop on GEomet-
rical Models of Natural Language Semantics, pages
22–32, Edinburgh, UK, July. Association for Compu-
tational Linguistics.

Freddy Choi, Peter Wiemer-Hastings, and Johanna
Moore. 2001. Latent Semantic Analysis for Text Seg-
mentation. In Proceedings of the 6th EMNLP, pages
109–117, Seattle, WA.

J Cohen and P Cohen. 1983. Applied Multiple Regres-
sion/Correlation Analysis for the Behavioral Sciences.
Hillsdale, NJ: Erlbaum.

Yansong Feng and Mirella Lapata. 2010. Visual Infor-
mation in Semantic Representation. In Human Lan-
guage Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 91–99, Los Ange-
les, California, June. Association for Computational
Linguistics.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2002. Placing Search in Context: The Con-
cept Revisited. ACM Transactions on Information Sys-
tems, 20(1):116–131, January.

Arthur M. Glenberg and Michael P. Kaschak. 2002.
Grounding Language in Action. Psychonomic Bulletin
and Review, 9(3):558–565.

Gregory Grefenstette. 1994. Explorations in Automatic
Thesaurus Discovery. Kluwer Academic Publishers.

T. L. Griffiths, M. Steyvers, and J. B. Tenenbaum. 2007.
Topics in Semantic Representation. Psychological Re-
view, 114(2):211–244.

David R. Hardoon, Sandor R. Szedmak, and John R.
Shawe-Taylor. 2004. Canonical Correlation Analysis:
An Overview with Application to Learning Methods.
Neural Computation, 16(12):2639–2664.

H Hotelling. 1936. Relations between Two Sets of Vari-
ates. Biometrika, 28:312–377.

Steve R. Howell, Damian Jankowicz, and Suzanna
Becker. 2005. A Model of Grounded Language Ac-
quisition: Sensorimotor Features Improve Lexical and
Grammatical Learning. Journal of Memory and Lan-
guage, 53(2), 258-276, 53(2):258–276.

Brendan T. Johns and Michael N. Jones. 2012. Percep-
tual Inference through Global Lexical Similarity. Top-
ics in Cognitive Science, 4(1):103–120.

B. Landau, L. Smith, and S. Jones. 1998. Object Percep-
tion and Object Naming in Early Development. Trends
in Cognitive Science, 27:19–24.

T. Landauer and S. T. Dumais. 1997. A Solution to
Plato’s Problem: the Latent Semantic Analysis The-
ory of Acquisition, Induction, and Representation of
Knowledge. Psychological Review, 104(2):211–240.

1432



Dekang Lin. 1998. Automatic Retrieval and Clustering
of Similar Words. In Proceedings of the joint Annual
Meeting of the Association for Computational Linguis-
tics and International Conference on Computational
Linguistics, pages 768–774, Montréal, Canada.
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Abstract

State-of-the-art statistical parsers and POS
taggers perform very well when trained with
large amounts of in-domain data. When train-
ing data is out-of-domain or limited, accuracy
degrades. In this paper, we aim to compen-
sate for the lack of available training data by
exploiting similarities between test set sen-
tences. We show how to augment sentence-
level models for parsing and POS tagging with
inter-sentence consistency constraints. To deal
with the resulting global objective, we present
an efficient and exact dual decomposition de-
coding algorithm. In experiments, we add
consistency constraints to the MST parser
and the Stanford part-of-speech tagger and
demonstrate significant error reduction in the
domain adaptation and the lightly supervised
settings across five languages.

1 Introduction

State-of-the-art statistical parsers and POS taggers
perform very well when trained with large amounts
of data from their test domain. When training data is
out-of-domain or limited, the performance of the re-
sulting model often degrades. In this paper, we aim
to compensate for the lack of available training data
by exploiting similarities between test set sentences.
Most parsing and tagging models are defined at the
sentence-level, which makes such inter-sentence in-
formation sharing difficult. We show how to aug-
ment sentence-level models with inter-sentence con-
straints to encourage consistent descisions in similar

∗ Both authors contributed equally to this work.

contexts, and we give an efficient algorithm with for-
mal guarantees for decoding such models.

In POS tagging, most taggers perform very well
on word types that they have observed in training
data, but they perform poorly on unknown words.
With a global objective, we can include constraints
that encourage a consistent tag across all occur-
rences of an unknown word type to improve accu-
racy. In dependency parsing, the parser can benefit
from surface-level features of the sentence, but with
sparse or out-of-domain training data these features
are very noisy. Using a global objective, we can add
constraints that encourage similar surface-level con-
texts to exhibit similar syntactic behaviour.

The first contribution of this work is the use of
Markov random fields (MRFs) to model global con-
straints between sentences in dependency parsing
and POS tagging. We represent each word as a node,
the tagging or parse decision as its label, and add
constraints through edges. MRFs allow us to include
global constraints tailored to these problems, and to
reason about inference in the corresponding global
models.

The second contribution is an efficient dual de-
composition algorithm for decoding a global ob-
jective with inter-sentence constraints. These con-
straints generally make direct inference challenging
since they tie together the entire test corpus. To alle-
viate this issue, our algorithm splits the global infer-
ence problem into subproblems - decoding of indi-
vidual sentences, and decoding of the global MRF.
These subproblems can be solved efficiently through
known methods. We show empirically that by iter-
atively solving these subproblems, we can find the
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exact solution to the global model.
We experiment with domain adaptation and

lightly supervised training. We demonstrate that
global models with consistency constraints can im-
prove upon sentence-level models for dependency
parsing and part-of-speech tagging. For domain
adaptation, we show an error reduction of up to 7.7%
when adapting the second-order projective MST
parser (McDonald et al., 2005) from newswire to
the QuestionBank domain. For lightly supervised
learning, we show an error reduction of up to 12.8%
over the same parser for five languages and an error
reduction of up to 10.3% over the Stanford trigram
tagger (Toutanova et al., 2003) for English POS tag-
ging. The algorithm requires, on average, only 1.7
times the costs of sentence-level inference and finds
the exact solution on the vast majority of sentences.

2 Related Work

Methods that combine inter-sentence information
with sentence-level algorithms have been applied to
a number of NLP tasks. The most similar models to
our work are skip-chain CRFs (Sutton and Mccal-
lum, 2004), relational markov networks (Taskar et
al., 2002), and collective inference with symmetric
clique potentials (Gupta et al., 2010). These mod-
els use a linear-chain CRF or MRF objective mod-
ified by potentials defined over pairs of nodes or
clique templates. The latter model makes use of La-
grangian relaxation. Skip-chain CRFs and collective
inference have been applied to problems in IE, and
RMNs to named entity recognition (NER) (Bunescu
and Mooney, 2004). Finkel et al. (2005) also inte-
grated non-local information into entity annotation
algorithms using Gibbs sampling.

Our model can be applied to a variety of off-the-
shelf structured prediction models. In particular, we
focus on dependency parsing which is characterized
by a more complicated structure compared to the IE
tasks addressed by previous work.

Another line of work that integrates corpus-level
declarative information into sentence-level models
includes the posterior regularization (Ganchev et al.,
2010; Gillenwater et al., 2010), generalized expec-
tation (Mann and McCallum, 2007; Mann and Mc-
Callum, ), and Bayesian measurements (Liang et al.,
2009) frameworks. The power of these methods has

been demonstrated for a variety of NLP tasks, such
as unsupervised and semi-supervised POS tagging
and parsing. The constraints used by these works
differ from ours in that they encourage the posterior
label distribution to have desired properties such as
sparsity (e.g. a given word can take a small number
of labels with a high probability). In addition, these
methods use global information during training as
opposed to our approach which applies test-time in-
ference global constraints.

The application of dual decomposition for infer-
ence in MRFs has been explored by Wainwright et
al. (2005), Komodakis et al. (2007), and Globerson
and Jaakkola (2007). In NLP, Rush et al. (2010)
and Koo et al. (2010) applied dual decomposition to
enforce agreement between different sentence-level
algorithms for parsing and POS tagging. Work on
dual decomposition for NLP is related to the work
of Smith and Eisner (2008) who apply belief prop-
agation to inference in dependency parsing, and to
constrained conditional models (CCM) (Roth and
Yih, 2005) that impose inference-time constraints
through an ILP formulation.

Several works have addressed semi-supervised
learning for structured prediction, suggesting objec-
tives based on the max-margin principles (Altun and
Mcallester, 2005), manifold regularization (Belkin
et al., 2005), a structured version of co-training
(Brefeld and Scheffer, 2006) and an entropy-based
regularizer for CRFs (Wang et al., 2009). The com-
plete literature on domain adaptation is beyond the
scope of this paper, but we refer the reader to Blitzer
and Daume (2010) for a recent survey.

Specifically for parsing and POS tagging, self-
training (Reichart and Rappoport, 2007), co-training
(Steedman et al., 2003) and active learning (Hwa,
2004) have been shown useful in the lightly su-
pervised setup. For parser adaptation, self-training
(McClosky et al., 2006; McClosky and Charniak,
2008), using weakly annotated data from the tar-
get domain (Lease and Charniak, 2005; Rimell and
Clark, 2008), ensemble learning (McClosky et al.,
2010), hierarchical bayesian models (Finkel and
Manning, 2009) and co-training (Sagae and Tsujii,
2007) achieve substantial performance gains. For a
recent survey see Plank (2011). Constraints simi-
lar to those we use for POS tagging were used by
Subramanya et al. (2010) for POS tagger adaptation.
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Their work, however, does not show how to decode
a global, corpus-level, objective that enforces these
constraints, which is a major contribution of this pa-
per.

Inter-sentence syntactic consistency has been ex-
plored in the psycholinguistics and NLP literature.
Phenomena such as parallelism and syntactic prim-
ing – the tendency to repeat recently used syntactic
structures – have been demonstrated in human lan-
guage corpora (e.g. WSJ and Brown) (Dubey et al.,
2009) and were shown useful in generative and dis-
criminative parsers (e.g. (Cheung and Penn, 2010)).
We complement these works, which focus on con-
sistency between consecutive sentences, and explore
corpus level consistency.

3 Structured Models

We begin by introducing notation for sentence-
level dependency parsing as a structured prediction
problem. The goal of dependency parsing is to
find the best parse y for a tagged sentence x =
(w1/t1, . . . , wn/tn) with words w and POS tags t.
Define the index set for dependency parsing as

I(x) = {(m,h) : m ∈ {1 . . . n},
h ∈ {0 . . . n},m 6= h}

where h = 0 represents the root word. A depen-
dency parse is a vector y = {y(m,h) : (m,h) ∈
I(x)} where y(m,h) = 1 if m is a modifier of the
head word h. We define the set Y(x) ⊂ {0, 1}|I(x)|

to be the set of all valid dependency parses for a sen-
tence x. In this work, we use projective dependency
parses, but the method also applies to the set of non-
projective parse trees.

Additionally, we have a scoring function f :
Y(x)→ R. The optimal parse y∗ for a sentence x is
given by, y∗ = arg maxy∈Y(x) f(y). This sentence-
level decoding problem can often be solved effi-
ciently. For example in commonly used projec-
tive dependency parsing models (McDonald et al.,
2005), we can compute y∗ efficiently using variants
of the Viterbi algorithm.

For this work, we make the assumption that we
have an efficient algorithm to find the argmax of

f(y) +
∑

(m,h)∈I(x)

u(m,h)y(m,h) = f(y) + u · y

where u is a vector in R|I(x)|. In practice, u will be
a vector of Lagrange multipliers associated with the
dependencies of y in our dual decomposition algo-
rithm given in Section 6.

We can construct a very similar setting for POS
tagging where the goal is to find the best tagging
y for a sentence x = (w1, . . . , wn). We skip the
formal details here.

We next introduce notation for Markov random
fields (MRFs) (Koller and Friedman, 2009). An
MRF consists of an undirected graph G = (V,E),
a set of possible labels for each node Li for i ∈
{1, . . . , |V |}, and a scoring function g. The index
set for MRFs is

IMRF = {(i, l) : i ∈ {1 . . . |V |}, l ∈ Li}
∪ {((i, j), li, lj) : (i, j) ∈ E, li ∈ Li, lj ∈ Lj}

A label assignment in the MRF is a binary vector
z with z(i, l) = 1 if the label l is selected at node i
and z((i, j), li, lj) = 1 if the labels li, lj are selected
for the nodes i, j.

In applications such as parsing and POS tagging,
some of the label assignments are not allowed. For
example, in dependency parsing the resulting struc-
ture must be a tree. Consequently, if every node
in the MRF corresponds to a word in a document
and its label corresponds to the index of its head
word, the resulting dependency structure for each
sentence must be acyclic. The set of all valid la-
bel assignments (one label per node) is given by
Z ⊂ {0, 1}|IMRF|.

We score label assignments in the MRF with a
scoring function g : Z → R. The best assignment
z∗ in an MRF is given by, z∗ = arg maxz∈Z g(z).
We focus on pairwise MRFs where this function g is
a linear function of z whose parameters are denoted
by θ

g(z) = z · θ =
∑

(i,l)∈IMRF

z(i, l)θ(i, l) +

∑
((i,j),li,lj)∈IMRF

z((i, j), li, lj)θ((i, j), li, lj)

As in parsing, we make the assumption that we
have an efficient algorithm to find the argmax of

g(z) +
∑

(i,l)∈IMRF(x)

u(i, l)z(i, l)
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He/PRP saw/VBD an/DT American/JJ man/NN

The/DT smart/JJ girls/NNS stood/VBD outside/RB

Danny/DT walks/VBZ a/DT long/JJ distance/NN

NN

Figure 1: An example constraint from dependency pars-
ing. The black nodes are modifiers observed in the train-
ing data. Each gray node corresponds to a possible mod-
ifier in the test corpus. The constraint applies to all mod-
ifiers in the context DT JJ. The white node corresponds
to the consensus POS tag of the head word of these mod-
ifiers.

4 A Parsing Example

In this section we give a detailed example of global
constraints for dependency parsing. The aim is to
construct a global objective that encourages similar
contexts across the corpus to exhibit similar syntac-
tic behaviour. We implement this objective using an
MRF with a node for each word in the test set. The
label of each node is the index of the word it mod-
ifies. We add edges to this MRF to reward consis-
tency among similar contexts. Furthermore, we add
nodes with a fixed label to incorporate contexts seen
in the training data.

Specifically, we say that the context of a word is
its POS tag and the POS tags of some set of the
words around it. We expand on this notion of con-
text in Section 8; for simplicity we assume here that
the context includes only the previous word’s POS
tag. Our constraints are designed to bias words in
the same context to modify words with similar POS
tags.

Figure 1 shows a global MRF over a small parsing
example with one training sentence and two test sen-
tences. The MRF contains a node associated with
each word instance, where the label of the node is
the index of the word it modifies. In this corpus, the
context DT JJ appears once in training and twice in
testing. We hope to choose head words with similar

POS tags for these two test contexts biased by the
observed training context.

More concretely, for each context c ∈
{1, . . . , C}, we have a set Sc of associated
word indices (s,m) that appear in the context,
where s is a sentence index and m is a position
in that sentence. For instance, in our example
S1 = {(1, 2), (2, 4)} consists of all positions in
the test set where we see JJ preceded by DT.
Futhermore, we have a set Oc of indices (s,m,TR)
of observed instances of the context in the training
data where TR denotes a training index. In our
example O1 = {(1, 4,TR)} consists of the one
training instance. We associate each word instance
with a single context c.

We then define our MRF to include one consensus
node for each set Sc as well as a word node for each
instance in the set Sc ∪Oc. Thus the set of variables
corresponds to V = {1, . . . , C} ∪ (

⋃C
c=1 Sc ∪ Oc).

Additionally, we include an edge from each node
i ∈ Sc∪Oc to its consensus node c,E = {(i, c) : c ∈
{1, . . . , C}, i ∈ Sc ∪Oc}. The word nodes from Sc

have the label set of possible head indices L(s,m) =
{0, . . . , ns} where ns is the length of the sentence s.
The observed nodes from Oc have a singleton label
set L(s,m,TR) with the observed index. The consen-
sus nodes have the label set Lc = T ∪ {NULL}
where T is the set of POS tags and the NULL sym-
bol represents the constraint being turned off.

We can now define the scoring function g for this
MRF. The scoring function aims to reward consis-
tency among the head POS tag at each word and the
consensus node

θ((i, c), li, lc) =


δ1 if pos(li) = lc
δ2 if pos(li) is close to lc
δ3 lc = NULL
0 otherwise

where posmaps a word index to its POS tag. The pa-
rameters δ1 ≥ δ2 ≥ δ3 ≥ 0 determine the bonus for
identical POS tags, similar POS tags, and for turning
off the constraint .

We construct a similar model for POS tagging.
We choose sets Tc corresponding to the c’th un-
known word type in the corpus. The MRF graph
is identical to the parsing case with Tc replacing Sc

and we no longer have Oc. The label sets for the
word nodes are now L(s,m) = T where the label is
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the POS tag chosen at that word, and the label set for
the consensus node is Lc = T ∪ {NULL}. We use
the same scoring function as in parsing to enforce
consistency between word nodes and the consensus
node.

5 Global Objective

Recall the definition of sentence-level parsing,
where the optimal parse y∗ for a single sentence
x under a scoring function f is given by: y∗ =
arg maxy∈Y(x) f(y). We apply this objective to
a set of sentences, specified by the tuple X =
(x1, ..., xr), and the product of possible parses
Y(X) = Y(x1) × . . . × Y(xr). The sentence-level
decoding problem is to find the optimal dependency
parses Y ∗ = (Y ∗1 , ..., Y

∗
r ) ∈ Y(X) under a global

objective

Y ∗ = arg max
Y ∈Y(X)

F (Y ) = arg max
Y ∈Y(X)

r∑
s=1

f(Ys)

where F : Y(X) → R is the global scoring func-
tion.

We now consider scoring functions where the
global objective includes inter-sentence constraints.
Objectives of this form will not factor directly
into individual parsing problems; however, we can
choose to write them as the sum of two convenient
terms: (1) A simple sum of sentence-level objec-
tives; and (2) A global MRF that connects the local
structures.

For convenience, we define the following index
set.

J (X) = {(s,m, h) : s ∈ {1, . . . , r},
(m,h) ∈ I(xs)}

This set enumerates all possible dependencies at
each sentence in the corpus. We say the parses Ys

are consistent with a label assignment z if for all
(s,m, h) ∈ J (X) we have that z((s,m), h) =
Ys(m,h). In other words, the labels in z match the
head words chosen in parse Ys.

With this notation we can write the full global de-
coding objective as

(Y ∗, z∗) = arg max
Y ∈Y(X), z∈Z

F (Y ) + g(z) (1)

s.t. ∀(s,m, h) ∈ J (X), z((s,m), h) = Ys(m,h)

Set u(1)(s,m, h)← 0 for all (s,m, h) ∈ J (X)
for k = 1 to K do
z(k) ← arg max

z∈Z
(g(z) +∑

(s,m,h)∈J (X)

u(k)(s,m, h)z((s,m), h))

Y (k) ← arg max
Y ∈Y(X)

(F (Y ) −∑
(s,m,h)∈J (X)

u(k)(s,m, h)Ys(m,h))

if Y (k)
s (m,h) = z(k)((s,m), h)
for all (s,m, h) ∈ J (X) then

return (Y (k), z(k))
for all (s,m, h) ∈ J (X),
u(k+1)(s,m, h)← u(k)(s,m, h) +

αk(z(k)((s,m), h)− Y (k)
s (m,h))

return (Y (K), z(K))

Figure 2: The global decoding algorithm for dependency
parsing models.

The solution to this objective maximizes the local
models as well as the global MRF, while maintain-
ing consistency among the models. Specifically, the
MRF we use in the experiments has a simple naive
Bayes structure with the consensus node connected
to all relevant word nodes.

The global objective for POS tagging has a similar
form. As before we add a node to the MRF for each
word in the corpus. We use the POS tag set as our
labels for each of these nodes. The index set con-
tains an element for each possible tag at each word
instance in the corpus.

6 A Global Decoding Algorithm

We now consider the decoding question: how to
find the structure Y ∗ that maximizes the global ob-
jective. We aim for an efficient solution that makes
use of the individual solvers at the sentence-level.
For this work, we make the assumption that the
graph chosen for the MRF has small tree-width, e.g.
our naive Bayes constraints, and can be solved effi-
ciently using dynamic programming.

Before we describe our dual decomposition al-
gorithm, we consider the difficulty of solving the
global objective directly. We have an efficient dy-
namic programming algorithm for solving depen-
dency parsing at the sentence-level, and efficient al-
gorithms for solving the MRF. It follows that we
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could construct an intersected dynamic program-
ming algorithm that maintains the product of states
over both models. This algorithm is exact, but it
is very inefficient. Solving the intersected dynamic
program requires decoding simultaneously over the
entire corpus, with an additional multiplicative fac-
tor for solving the MRF. On top of this cost, we need
to alter the internal structure of the sentence-level
models.

In contrast, we can construct a dual decomposi-
tion algorithm which is efficient, produces a certifi-
cate when it finds an exact solution, and directly
uses the sentence-level parsing models. Considering
again the global objective of equation 1, we note that
the difficulty in decoding this objective comes en-
tirely from the constraints z((s,m), h) = Ys(m,h).
If these were not there, the problem would factor
into two parts, an optimization of F over the test
corpus Y(X) and an optimization of g over possible
MRF assignments Z . The first problem factors nat-
urally into sentence-level parsing problems and the
second can be solved efficiently given our assump-
tions on the MRF topology G.

Recent work has shown that a relaxation based
on dual decomposition often produces an exact so-
lution for such problems (Koo et al., 2010). To
apply dual decomposition, we introduce Lagrange
multipliers u(s,m, h) for the agreement constraints
between the sentence-level models and the global
MRF. The Lagrangian dual is the function L(u) =
maxz g(z, u) + maxy F (y, u) where

g(z, u) = g(z) +
∑

(s,m,h)∈J (X)

u(s,m, h)z((s,m), h)),

F (y, u) = F (Y ) −
∑

(s,m,h)∈J (X)

u(s,m, h)Ys(m,h)

In order to find minu L(u), we use subgradient de-
scent. This requires computing g(z, u) and F (y, u)
for fixed values of u, which by our assumptions from
Section 3 are efficient to calculate.

The full algorithm is given in Figure 2. We start
with the values of u initialized to 0. At each itera-
tion k, we find the best set of parses Y (k) over the
entire corpus and the best MRF assignment z(k). We
then update the value of u based on the difference
between Y (k) and z(k) and a rate parameter α. On
the next iteration, we solve the same decoding prob-

≥ 0.7 ≥0.8 ≥ 0.9 1.0
All Contexts 66.8 57.9 46.8 33.3

Head in Context 76.0 67.9 57.2 42.3

Table 1: Exploratory statistics for constraint selection.
The table shows the percentage of context types for which
the probability of the most frequent head tag is at least p.
Head in Context refers to the subset of contexts where the
most frequent head is within the context itself. Numbers
are based on Section 22 of the Wall Street Journal and are
given for contexts that appear at least 10 times.

lems modified by the new value of u. If at any point
the current solutions Y (k) and z(k) satisfy the con-
sistency constraint, we return their current values.
Otherwise, we stop at a max iteration K and return
the values from the last iteration.

We now give a theorem for the formal guarantees
of this algorithm.

Theorem 1 If for some k ∈ {1 . . .K} in the algo-
rithm in Figure 2, Y (k)

s (m,h) = z(k)(s,m, h) for
all (s,m, h) ∈ J , then (Y (k), z(k)) is a solution to
the maximization problem in equation 1.

We omit the proof for brevity. It is a slight variation
of the proof given by Rush et al. (2010).

7 Consistency Constraints

In this section we describe the consistency con-
straints used for the global models of parsing and
tagging.

Parsing Constraints. Recall from Section 4 that
we choose parsing constraints based on the word
context. We encourage words in similar contexts to
choose head words with similar POS tags.

We use a simple procedure to select which con-
straints to add. First define a context template to
be a set of offsets {r, . . . , s} with r ≤ 0 ≤ s that
specify the neighboring words to include in a con-
text. In the example of Figure 1, the context tem-
plate {−1, 0, 1, 2} applied to the word girls/NNS
would produce the context JJ NNS VBD RB. For
each word in the corpus, we consider all possible
templates with s− r < 4. We use only contexts that
predict the head POS of the context in the training
data with probability 1 and prefer long over short
contexts. Once we select the context of each word,
we add a consensus node for each context type in

1439



the corpus. We connect each word node to its corre-
sponding consensus node.

Local context does not fully determine the POS
tag of the head word, but for certain contexts it pro-
vides a strong signal. Table 1 shows context statis-
tics for English. For 46.8% of the contexts, the most
frequent head tag is chosen ≥ 90% of the time. The
pattern is even stronger for contexts where the most
frequent head tag is within the context itself. In
this case, for 57.2% of the contexts the most fre-
quent head tag is chosen ≥ 90% of the time. Con-
sequently, if more than one context can be selected
for a word, we favor the contexts where the most
frequent head POS is inside the context.

POS Tagging Constraints. For POS tagging, our
constraints focus on words not observed in the train-
ing data. It is well-known that each word type ap-
pears only with a small number of POS tags. In Sec-
tion 22 of the WSJ corpus, 96.35% of word types
appear with a single POS tag.

In most test sets we are unlikely to see an un-
known word more than once or twice. To fix this
sparsity issue, we import additional unannotated
sentences for each unknown word from the New
York Times Section of the NANC corpus (Graff,
1995). These sentences give additional information
for unknown word types.

Additionally, we note that morphologically re-
lated words often have similar POS tags. We can
exploit this relationship by connecting related word
types to the same consensus node. We experimented
with various morphological variants and found that
connecting a word type with the type generated by
appending the suffix “s” was most beneficial. For
each unknown word type, we also import sentences
for its morphologically related words.

8 Experiments and Results

We experiment in two common scenarios where
parsing performance is reduced from the fully su-
pervised, in-domain case. In domain adaptation, we
train our model completely in one source domain
and test it on a different target domain. In lightly su-
pervised training, we simulate the case where only
a limited amount of annotated data is available for a
language.

Base ST Model ER
WSJ→ QTB 89.63 89.99 90.43 7.7
QTB→WSJ 74.89 74.97 75.76 3.5

Table 2: Dependency parsing UAS for domain adapta-
tion. WSJ is the Penn TreeBank. QTB is the Question-
Bank. ER is error reduction. Results are significant using
the sign test with p ≤ 0.05.

Data for Domain Adaptation We perform do-
main adaptation experiments in English using the
WSJ PennTreebank (Marcus et al., 1993) and the
QuestionBank (QTB) (Judge et al., 2006). In the
WSJ → QTB scenario, we train on sections 2-21
of the WSJ and test on the entire QTB (4000 ques-
tions). In the QTB→WSJ scenario, we train on the
entire QTB and test on section 23 of the WSJ.

Data for Lightly Supervised Training For all
English experiments, our data was taken from the
WSJ PennTreebank: training sentences from Sec-
tion 0, development sentences from Section 22, and
test sentences from Section 23. For experiments
in Bulgarian, German, Japanese, and Spanish, we
use the CONLL-X data set (Buchholz and Marsi,
2006) with training data taken from the official train-
ing files. We trained the sentence-level models with
50-500 sentences. To verify the robustness of our
results, our test sets consist of the official test sets
augmented with additional sentences from the offi-
cial training files such that each test file consists of
25,000 words. Our results on the official test sets are
very similar to the results we report and are omitted
for brevity.

Parameters The model parameters, δ1, δ2, and δ3
of the scoring function (Section 4) and α of the
Lagrange multipliers update rule (Section 6), were
tuned on the English development data. In our dual
decomposition inference algorithm, we use K =
200 maximum iterations and tune the decay rate fol-
lowing the protocol described by Koo et al. (2010).

Sentence-Level Models For dependency parsing
we utilize the second-order projective MST parser
(McDonald et al., 2005)1 with the gold-standard
POS tags of the corpus. For POS tagging we use
the Stanford POS tagger (Toutanova et al., 2003)2.

1http://sourceforge.net/projects/mstparser/
2http://nlp.stanford.edu/software/tagger.shtml
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50 100 200 500
Base ST Model (ER) Base ST Model (ER) Base ST Model (ER) Base ST Model (ER)

Jap 79.10 80.19 81.78 (12.82) 81.53 81.59 83.09 (8.45) 84.84 85.05 85.50 (4.35) 87.14 87.24 87.44 (2.33)
Eng 69.60 69.73 71.62 (6.64) 73.97 74.01 75.27 (4.99) 77.67 77.68 78.69 (4.57) 81.83 81.90 82.18 (1.93)
Spa 71.67 71.72 73.19 (5.37) 74.53 74.63 75.41 (3.46) 77.11 77.09 77.44 (1.44) 79.97 79.88 80.04 (0.35)
Bul 71.10 70.59 72.13 (3.56) 73.35 72.96 74.61 (4.73) 75.38 75.54 76.17 (3.21) 81.95 81.75 82.18 (1.27)
Ger 68.21 68.28 68.83 (1.95) 72.19 72.29 72.76 (2.05) 74.34 74.45 74.95 (2.4) 77.20 77.09 77.51 (1.4)

Table 3: Dependency parsing UAS by size of training set and language. English data is from the WSJ. Bulgarian,
German, Japanese, and Spanish data is from the CONLL-X data sets. Base is the second-order, projective dependency
parser of McDonald et al. (2005). ST is a self-training model based on Reichart and Rappoport (2007). Model is the
same parser augmented with inter-sentence constraints. ER is error reduction. Using the sign test with p ≤ 0.05, all
50, 100, and 200 results are significant, as are Eng and Ger 500.

50 100 200 500
Base Model (ER) Base Model (ER) Base Model (ER) Base Model (ER)

Acc 79.67 81.77 (10.33) 85.42 86.37 (6.52) 88.63 89.37 (6.51) 91.59 91.98 (4.64)
Unk 62.88 67.16 (11.53) 71.10 73.32 (7.68) 75.82 78.07 (9.31) 80.67 82.28 (8.33)

Table 4: POS tagging accuracy. Stanford POS tagger refers to the maximum entropy trigram tagger of Toutanova et
al. (2003). Our inter-sentence POS tagger augments this baseline with global constraints. ER is error reduction. All
results are significant using the sign test with p ≤ 0.05.

Evaluation and Baselines To measure parsing
performance, we use unlabeled attachment score
(UAS) given by the CONLL-X dependency parsing
shared task evaluation script (Buchholz and Marsi,
2006). We compare the accuracy of dependency
parsing with global constraints to the sentence-level
dependency parser of McDonald et al. (2005) and to
a self-training baseline (Steedman et al., 2003; Re-
ichart and Rappoport, 2007). The parsing baseline is
equivalent to a single round of dual decomposition.
For the self-training baseline, we parse the test cor-
pus, append the labeled test sentences to the training
corpus, train a new parser, and then re-parse the test
set. We run this procedure for a single iteration.

For POS tagging we measure token level POS ac-
curacy for all the words in the corpus and also for
unknown words (words not observed in the train-
ing data). We compare the accuracy of POS tagging
with global constraints to the accuracy of the Stan-
ford POS tagger 3.

Domain Adaptation Accuracy Results are pre-
sented in Table 2. The constrained model reduces
the error of the baseline on both cases. Note that
when the base parser is trained on the WSJ corpus its
UAS performance on the QTB is 89.63%. Yet, the
constrained model is still able to reduce the baseline
error by 7.7%.

3We do not run self-training for POS tagging as it has been
shown unuseful for this application (Clark et al., 2003).

Lightly Supervised Accuracy The parsing results
are given in Table 3. Our model improves over
the baseline parser and self-training across all lan-
guages and training set sizes. The best results are
for Japanese and English with error reductions of
2.33 – 12.82% and 1.93 – 6.64% respectively. The
self-training baseline achieves small gains on some
languages, but generally performs similarly to the
standard parser.

The POS tagging results are given in Table 4. Our
model improves over the baseline tagger for the en-
tire training size range. For 50 training sentences
we reduce 10.33% of the overall error, and 11.53%
of the error on unknown words. Although the tagger
performance substantially improves when the train-
ing set grows to 500 sentences, our model still pro-
vides an overall error reduction of 4.64% and of
8.33% for unknown words.

9 Discussion

Efficiency Since dual decomposition often re-
quires hundreds of iterations to converge, a naive im-
plementation would be orders of magnitude slower
than the underlying sentence-level model. We use
two techniques to speed-up the algorithm.

First, we follow Koo et al. (2010) and use lazy
decoding as part of dual decomposition. At each it-
eration k, we cache the result of the MRF z(k) and
set of parse tree Y (k). In the next iteration, we only
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Figure 3: Efficiency of dependency parsing decoding for
three languages. The plot shows the speed of each iter-
ation of the subgradient algorithm relative to a round of
unconstrained parsing.

Most Effective Contexts
WSJ→ QTB QTB→WSJ
WRB VBP VBD NN NN ,
DT JJS NN IN IN PRP VBZ
VBP PRP VB JJ JJ NN ,
DT NN NN VB IN JJ JJ NN
RBS JJ NN IN NN POS NN NN

Table 5: The five most effective constraint contexts from
the domain adaptation experiments. The bold POS tag
indicates the modifier word of the context.

Where/
WRB

VBN

are/
VBP

diamonds/
NNS

mined/
VBN

?

How/
WRB

VBP

do/
VBP

you/
PRP

measure/
VB

earthquakes/
NNS

?

Why/
WRB

VBP

do/
VBP

people/
NNS

get/
VB

calluses/
NNS

?

VBP

Figure 4: Subset of sentences with the context WRB VBP
from WSJ→ QTB domain adaptation. In the first round,
the parser chooses VBN for the first sentence, which is in-
consistent with similar contexts. The constraints correct
this choice in later rounds.

recompute the solution Y ∗s for a sentence s if the
weight u(s,m, h) for some m,h was updated. A

similar technique is applied to the MRF.
Second, during the first iteration of the algorithm

we apply max-marginal based pruning using the
threshold defined by Weiss and Taskar (2010). This
produces a pruned hypergraph for each sentence,
which allows us to avoid recomputing parse features
and to solve a simplified search problem.

To measure efficiency, we compare the time spent
in dual decomposition to the speed of unconstrained
inference. Across experiments, the mean dual de-
composition time is 1.71 times the cost of uncon-
strained inference. Figure 3 shows how this time is
spent after the first iteration. The early iterations are
around 1% of the total cost, and because of lazy de-
coding this quickly drops to almost nothing.

Exactness To measure exactness, we count the
number of sentences for which we should remove
the constraints in order for the model to reach con-
vergence. For dependency parsing, across languages
removing constraints on 0.6% of sentences yields
exact convergence. Removing these constraints has
very little effect on the final outcome of the model.
For POS tagging, the algorithm finds an exact so-
lution after removing constraints from 0.2% of the
sentences.

Constraint Analysis We can also look at the num-
ber, size, and outcome of the constraints chosen in
the experiments. In the lightly supervised experi-
ments, the average number of constraints is 3298 for
25000 tokens, where the median constraint connects
19 different tokens. Of these constraints around 70%
are active (non-NULL). The domain adaptation ex-
periments have a similar number of constraints with
around 75% of constraints active. In both experi-
ments many of the constraints are found to be con-
sistent after the first iteration, but as Figure 3 im-
plies, other constraints take multiple iterations to
converge.

Qualitative Analysis In order to understand why
these simple consistency constraints are effective,
we take a qualitative look at the the domain adap-
tation experiments on the QuestionBank. Table 5
ranks the five most effective contextual constraints
from both experiments. For the WSJ→ QTB exper-
iment, the most effective constraint relates the inital
question word with an adjacent verb. Figure 4 shows
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sentences where this constraint applies in the Ques-
tionBank. For the QTB→WSJ experiment, the ef-
fective contexts are mostly long base noun phrases.
These occur often in the WSJ but are rare in the sim-
pler QuestionBank sentences.

10 Conclusion

In this work we experiment with inter-sentence
consistency constraints for dependency parsing and
POS tagging. We have proposed a corpus-level ob-
jective that augments sentence-level models with
such constraints and described an exact and effi-
cient dual decomposition algorithm for its decod-
ing. In future work, we intend to explore efficient
techniques for joint parameter learning for both the
global MRF and the local models.
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Abstract

Most previous approaches to syntactic pars-
ing of Chinese rely on a preprocessing step
of word segmentation, thereby assuming there
was a clearly defined boundary between mor-
phology and syntax in Chinese. We show
how this assumption can fail badly, leading
to many out-of-vocabulary words and incom-
patible annotations. Hence in practice the
strict separation of morphology and syntax in
the Chinese language proves to be untenable.
We present a unified dependency parsing ap-
proach for Chinese which takes unsegmented
sentences as input and outputs both morpho-
logical and syntactic structures with a single
model and algorithm. By removing the inter-
mediate word segmentation, the unified parser
no longer needs separate notions for words
and phrases. Evaluation proves the effective-
ness of the unified model and algorithm in
parsing structures of words, phrases and sen-
tences simultaneously.1

1 Introduction

The formulation of the concept of words has baf-
fled linguists from ancient to modern times (Hock-
ett, 1969). Things are even worse for Chinese, partly
due to the fact that its written form does not delimit
words explicitly. While we have no doubt that there
are linguistic units which are definitely words (or
phrases, for that matter), it’s a sad truth that in many
cases we cannot manage to draw such a clear bound-
ary between morphology and syntax, for which we
now give two arguments.

1Corresponding author is Guodong Zhou.

The first argument is that many sub-word linguis-
tic units (such as suffixes and prefixes) are so pro-
ductive that they can lead to a huge number of out-
of-vocabulary words for natural language process-
ing systems. This phenomenon brings us into an
awkward situation if we adhere to a rigid separa-
tion of morphology and syntax. Consider charac-
ter者 ‘someone’ as an example. On the one hand,
there is strong evidence that it’s not a word as it can
never be used alone. On the other hand, taking it as a
mere suffix leads to many out-of-vocabulary words
because of the productivity of such characters. For
instance, Penn Chinese Treebank (CTB6) contains
失败者 ‘one that fails’ as a word but not成功者
‘one that succeeds’, even with the word成功 ‘suc-
ceed’ appearing 207 times. We call words like成
功者 ‘one that succeeds’pseudo OOVs. By defini-
tion, pseudoOOVs areOOVs since they do not occur
in the training corpus, though their components are
frequently-seen words. Our estimation is that over
60% ofOOVs in Chinese are of this kind (Section 2).

Of course, the way out of this dilemma is to parse
the internal structures of these words. That is to
say, we can still regard characters like者 as suf-
fixes, taking into account the fact that they cannot be
used alone. Meanwhile, pseudoOOVs can be largely
eliminated through analyzing their structures, thus
greatly facilitating syntactic and semantic analysis
of sentences. In fact, previous studies have revealed
other good reasons for parsing internal structures of
words (Zhao, 2009; Li, 2011).

The second argument is that in Chinese many lin-
guistic units can form both words and phrases with
exactly the same meaning and part-of-speech, which
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环境 NN 保护 NN 法 NN

MOD MOD

刑 NN 法 NN

MOD

Figure 1: Unified parsing of words and phrases.

causes lots ofincompatible annotations in currently
available corpora. Take character法 ‘law’ as an ex-
ample. It is head of both刑法 ‘criminal law’ and环
境保护法 ‘environmental protection law’, butCTB

treat it as a suffix in the former (with the annotation
being刑法_NN) and a word in the later (the anno-
tation is环境_NN保护_NN法_NN). These annota-
tions are incompatible since in both cases the char-
acter法 ‘law’ bears exactly the same meaning and
usage (e.g. part-of-speech). We examined several
widely used corpora and found that about 90% of
affixes were annotated incompatibly (Section 2). In-
compatibility can be avoided through parsing struc-
tures of both words and phrases. Figure 1 conveys
this idea. A further benefit of unified parsing is to
reduce data sparseness. As an example, inCTB6器
‘machine’ appears twice in phrases but 377 times in
words (e.g.加速器 ‘accelerator’). Word structures
in Chinese can be excellent guide for parsing phrase
structures, and vice versa, due to their similarity.

The present paper makes two contributions in
light of these issues. Firstly, in order to get rid of
pseudoOOVs and incompatible annotations, we have
annotated structures of words inCTB6, after which
statistical models can learn structures of words as
well as phrases from the augmented treebank (Sec-
tion 4). Although previous authors have noticed
the importance of word-structure parsing (Li, 2011;
Zhao, 2009), no detailed description about annota-
tion of word structures has been provided in the liter-
ature. Secondly, we designed a unified dependency
parser whose input is unsegmented sentences and
its output incorporates both morphological and syn-
tactic structures with a single model and algorithm
(Section 5). By removing the intermediate step of
word segmentation, our unified parser no longer de-
pends on the unsound notion that there is a clear
boundary between words and phrases. Evaluation
(Section 6) shows that our unified parser achieves
satisfactory accuracies in parsing both morphologi-
cal and syntactic structures.

corpus OOV pseudo percent
CTB6 158 112 70.9
MSR 1,783 1,307 73.3
PKU 2,860 1,836 64.2

AS 3,020 2,143 71.0
CITYU 1,665 1,100 66.0

Table 1: Statistics of pseudoOOVs for five corpora.

2 PseudoOOVs and Incompatible
Annotations

In this section we show the surprisingly pervasive
nature of pseudoOOVs and incompatible annota-
tions through analysis of five segmented corpora,
which are CTB6 and corpus byMSR, PKU, AS

andCITYU provided inSIGHAN word segmentation
Bakeoffs2.

First we use the standard split of training and test-
ing data and extract allOOVs for each corpus, then
count the number of pseudoOOVs. Table 1 gives the
result. It’s amazing that for every corpus, over 60%
of OOVs are pseudo, meaning they can be avoided if
their internal structures were parsed. Reduction of
OOVs at such a large scale can benefit greatly down-
stream natural language processing systems.

We then sample 200 word types containing a pro-
ductive affix from each corpus, and check whether
the affix also occurs somewhere else in a phrase,
i.e, the affix is annotated as a word in the phrase.
The results are in Table 2. It’s clear and somewhat
shocking that most affixes are annotated incompat-
ibly. We believe it is not the annotators to blame,
rather the root cause lies deeply in the unique char-
acteristics of the Chinese language. This becomes
obvious in comparison with English, where suffix
like ‘-ism’ in ‘capitalism’ cannot be used alone as a
word in phrases.3 Incompatible annotations can
be removed only through unified parsing of word
and phrase structures, as mentioned earlier and il-
lustrated in Figure 1.

2http://www.sighan.org/bakeoff2005/
3Actually English allows examples like “pre- and post-war

imperialism” where a prefix like “pre” can appear on its own as
long as the hyphen is present and it is in a coordination struc-
ture. Note that such examples are much rarer than what we
discuss in this paper for Chinese. We thank the reviewer very
much for pointing this out and providing this example for us.
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corpus incompatible percent
CTB6 190 95
MSR 178 89
PKU 192 96

AS 182 91
CITYU 194 97

Table 2: Statistics of incompatibly annotated affixes in
200 sampled words for five segmented corpora.

甘肃 NR 省 NN 重视 VV 保险 NN 业 NN

MOD MOD

OBJ

SUBJ

Figure 2: Example output of unified dependency parsing
of Chinese morphological and syntactic structures.

3 Unified Parsing Defined

Given an unsegmented sentence甘肃省重视保险
业 ‘Gansu province attaches great importance to in-
surance industry’, the output of unified dependency
parser is shown in Figure 2. As can be seen, this
output contains information about word (such as重
视_VV) as well as phrase structures (such as重
视_VV保险_NN业_NN), which is what we mean
by ‘unified’ parsing. Now, it’s no longer vital to dif-
ferentiate between morphology and syntax for Chi-
nese. People could regard保险业 ‘insurance indus-
try’ as a word or phrase, but either way, there will be
no disagreements about its internal structure. From
the perspective of the unified parser, linguistic units
are given the same labels as long as they function
similarly (e.g, they have the same parts-of-speech).

As a bonus, output of unified parsing incorpo-
rates Chinese word segmentation, part-of-speech
tagging and dependency parsing. To achieve these
goals, previous systems usually used a pipelined
approach by combining several statistical models,
which was further complicated by different decod-
ing algorithms for each of these models. The present
paper shows that a single model does all these jobs.
Besides being much simpler in engineering such a
parser, this approach is also a lot more plausible for
modeling human language understanding.

4 Annotation of Word Structures

Unified parsing requires a corpus annotated with
both morphological and syntactic structures. Such
a corpus can be built with the least effort if we be-
gin with an existing treebank such asCTB6 already
annotated with syntactic structures. It only remains
for us to annotate internal structures of words in this
treebank.

4.1 Scope of Annotation

In order to get rid of pseudoOOVs and incompati-
ble annotations, internal structures are annotated for
two kinds of words. The first kind contains words
with a productive component such as suffix or pre-
fix. One example is陈述人 ‘speaker’ whose suffix
is the very productive人 ‘person’ (e.g, inCTB6 there
are about 400 words having this suffix). The second
kind includes words with compositional semantics.
Examples are星期一 ‘Monday’ and星期天 ‘Sun-
day’. Though星期 ‘week’ is not very productive,
the meaning of words with this prefix is deducible
from semantics of their components.

Other compound words such as研究 ‘research’
have no productive components and are not a cause
of pseudo OOVs. They are universally consid-
ered as words instead of phrases due to their non-
compositional semantics. Hence their structures are
not annotated in the present research. Meanwhile,
for single-morpheme words with no structures what-
soever, like伊拉克 ‘Iraq’ and蝙蝠 ‘bat’, annotation
of internal structures is of course unnecessary either.

Of all the 54, 214 word types inCTB6, 35% are
annotated, while the percentage is 24% for the 782,
901 word tokens. Around 80% of sentences contain
words whose structures need annotation. Our anno-
tations will be made publicly available for research
purposes.

4.2 From Part-of-speeches to Constituents

Of all 33 part-of-speech tags inCTB, annotation of
word structures is needed for nine tags:NN, VV, JJ ,
CD, NT, NR, AD, VA andOD. Since part-of-speech
tags are preterminals and can only have one terminal
word as its child, POS tags of words become con-
stituent labels after annotation of word structures.
The mapping rules from POS tags to constituent la-
bels are listed in Table 3. Readers should note that
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POS tags constituent label
NR, NN, NT NP
JJ ADJP
AD ADVP
CD, OD QP
VV, VA VP

Table 3: Correspondence between POS tags and con-
stituent labels after annotation.

PP
❩

❩
✚

✚
P

跟

NP

NN

教育界

⇒ PP
❍

❍❍
✟

✟✟

P

跟

NP
❝
❝

★
★

NN

教育

NN

界

Figure 3: Example annotation for the word教育界 NN
in CTB6: POS tag NN changes to constituent label NP
after annotation.

such mapping is not arbitrary. The constraint is that
in the treebank the POS tag must somewhere be the
unique child of the constituent label. Figure 3 de-
picts an example annotation, in which we also have
an example ofNPhaving a tagNNas its only child.

4.3 Recursive Annotation

Some words inCTB have very complex structures.
Examples include原子核物理学家 ‘physicist ma-
joring in nuclear physics’,反托拉斯法 ‘anti-trust
laws’ etc. Structures of these words are anno-
tated to their full possible depth. Existence of such
words are characteristic of the Chinese language,
since they are further demonstrations of the blurred
boundary between morphology and syntax. A full-
fledged parser is needed to analyze structures of
these words, which incidentally provides us with an-
other motivation for unified morphological and syn-
tactic parsing of Chinese.

5 Unified Dependency Parsing

All previous dependency parsers for Chinese take it
for granted that the input sentence is already seg-
mented into words (Li et al., 2011). Most systems
even require words to be tagged with their part-of-
speeches (Zhang and Nivre, 2011). Hence current
off-the-shelf algorithms are inadequate for parsing

unsegmented sentences. Instead, a new unified pars-
ing algorithm is given in this section.

5.1 Transitions

To map a raw sentence directly to output shown in
Figure 2, we define four transitions for the unified
dependency parser. They act on a stack containing
the incremental parsing results, and a queue holding
the incoming Chinese characters of the sentence:

SHIFT : the first character in the queue is shifted into
the stack as the start of a new word. The queue
should not be empty.

LEFT : the top two words of the stack are connected
with an arc, with the top one being the head. There
should be at least two elements on the stack.

RIGHT : the top two words of the stack are con-
nected, but with the top word being the child. The
precondition is the same as that of LEFT.

APPEND: the first character in the queue is appended
to the word at the top of the stack. There are two
preconditions. First, the queue should not be empty.
Second, the top of the stack must be a word with no
arcs connected to other words (i.e, up to now it has
got neither children nor parent).

We see that these transitions mimic the general arc-
standard dependency parsing models. The first three
of them were used, for example, by Yamada and
Matsumoto (2003) to parse English sentences. The
only novel addition isAPPEND, which is necessary
because we are dealing with raw sentences. Its sole
purpose is to assemble characters into words with
no internal structures, such as西雅图 ‘Seattle’.
Thus this transition is the key for removing the need
of Chinese word segmentation and parsing unseg-
mented sentences directly.

To also output part-of-speech tags and depen-
dency labels, the transitions above can be aug-
mented accordingly. Hence we can changeSHIFT to
SHIFT·X whereX represents a certain POS tag. Also,
LEFT andRIGHT should be augmented with appro-
priate dependency relations, such asLEFT·SUBJ for
a dependency between verb and subject.

As a demonstration of the usage of these tran-
sitions, consider sentence我喜欢西雅图 “I love
Seattle”. Table 4 lists all steps of the parsing pro-
cess. Readers interested in implementing their own

1448



step stack queue action
1 我喜欢西雅图 SHIFT·PN

2 我 PN 喜欢西雅图 SHIFT·VV

3 我 PN喜 VV 欢西雅图 APPEND

4 我 PN喜欢 VV 西雅图 LEFT·SUBJ

5 我 PN
SUBJ
←−−−喜欢 VV 西雅图 SHIFT·NR

6 我 PN
SUBJ
←−−−喜欢 VV 西 NR 雅图 APPEND

7 我 PN
SUBJ
←−−−喜欢 VV 西雅 NR 图 APPEND

8 我 PN
SUBJ
←−−−喜欢 VV 西雅图 NR RIGHT·OBJ

9 我 PN
SUBJ
←−−−喜欢 VV

OBJ
−−→西雅图 NR STOP

Table 4: Parsing process of a short sentence with the four transitions defined above.

unified dependency parsers are invited to study this
example carefully.

5.2 Model

Due to structural ambiguity, there might be quite a
lot of possibilities for parsing a given raw sentence.
Hence at each step in the parsing process, all four
transitions defined above may be applicable. To re-
solve ambiguities, each candidate parse is scored
with a global linear model defined as follows.

For an input sentencex, the parsing resultF (x) is
the one with the highest score in all possible struc-
tures for thisx:

F (x) = arg max
y∈GEN(x)

Score(y) (1)

HereGEN(x) is a set of all possible parses for sen-
tencex, andScore(y) is a real-valued linear func-
tion:

Score(y) = Φ(y) · ~w (2)

whereΦ(y) is a global feature vector extracted from
parsing resulty, and ~w is a vector of weighting pa-
rameters. Because of its linearity,Score(y) can be
computed incrementally, following the transition of
each parsing step. Parameter vector~w is trained
with the generalized perceptron algorithm of Collins
(2002). The early-update strategy of Collins and
Roark (2004) is used so as to improve accuracy and
speed up the training.

5.3 Feature Templates

For a particular parsey, we now describe the way
of computing its feature vectorΦ(y) in the linear

Description Feature Templates
1 top of S S0wt; S0w; S0t
2 next top of S S1wt; S1w; S1t
3 S0 and S1 S1wtS0wt; S1wtS0w

S1wS0wt; S1wtS0t
S1tS0wt; S1wS0w; S1tS0t

4 char unigrams Q0; Q1; Q2; Q3
5 char bigrams Q0Q1; Q1Q2; Q2Q3
6 char trigrams Q0Q1Q2; Q1Q2Q3
7 ST+unigrams STwtQ0; STwQ0; STtQ0
8 ST+bigrams STwtQ0Q1; STwQ0Q1

STtQ0Q1
9 ST+trigrams STwtQ0Q1Q2

STwQ0Q1Q2; STtQ0Q1Q2
10 parent P of ST PtSTtQ0; PtSTtQ0Q1

PtSTtQ0Q1Q2
11 leftmost child STtLCtQ0; STtLCtQ0Q1

LC and STtLCtQ0Q1Q2
rightmost STtRCtQ0; STtRCtQ0Q1
child RC STtRCtQ0Q1Q2

Table 5: Transition-based feature templates. Q0 is the
first character in Q, etc. w = word, t = POS tag.

model of Equation (2). If S denotes the stack hold-
ing the partial results, and Q the queue storing the
incoming Chinese characters of a raw sentence, then
transition-based parsing features are extracted from
S and Q according to those feature templates in Ta-
ble 5.

Although we employ transition-based parsing,
nothing prevents us from using graph-based fea-
tures. As shown by Zhang and Clark (2011), depen-
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Description Feature Templates
1 parent word Pwt; Pw; Pt
2 child word Cwt; Cw; Ct
3 P and C PwtCwt; PwtCw; PwCwt

PtCwt; PwCw; PtCt
PwtCt

4 neighbor word PtPLtCtCLt; PtPLtCtCRt
of P and C PtPRtCtCLt; PtPRtCtCRt
left (L) or PtPLtCLt; PtPLtCRt
right (R) PtPRtCLt; PtPRtCRt

PLtCtCLt; PLtCtCRt
PRtCtCLt; PRtCtCRt
PtCtCLt; PtCtCRt
PtPLtCt; PtPRtCt

5 sibling(S) of C CwSw;CtSt; CwSt
CtSw; PtCtSt

6 leftmost and PtCtCLCt
rightmost child PtCtCRCt

7 left (la) and Ptla; Ptra
right (ra) Pwtla; Pwtra
arity of P Pwla; Pwra

Table 6: Graph-based feature templates for the unified
parser. Most of these templates are adapted from those
used by Zhang and Clark (2011). w = word; t = POS tag.

dency parsers using both transition-based and graph-
based features tend to achieve higher accuracy than
parsers which only make use of one kind of features.
Table 6 gives the graph-based feature templates used
in our parser. All such templates are instantiated at
the earliest possible time, in order to reduce as much
as possible situations where correct parses fall out of
the beam during decoding.

5.4 Decoding Algorithm

We use beam-search to find the best parse for a given
raw sentence (Algorithm 1). This algorithm uses
double beams. The first beam contains unfinished
parsing results, while the second holds completed
parses. Double beams are necessary because the
number of transitions might well be different for dif-
ferent parses, and those parses that finished earlier
are not necessarily better parses. During the search-
ing process, correct parse could fall off the beams,
resulting in a search error. However, in practice
beam search decoding algorithm works quite well.

In addition, it’s not feasible to use dynamic program-
ming because of the complicated features used in the
model.

The B in Algorithm 1 is the width of the two
beams. In our experiments we setB to 64. This
value ofB was determined empirically by using the
standard development set of the data, with the goal
of achieving the highest possible accuracy within
reasonable time. Note that in line 20 of the algo-
rithm, the beam for completed parsers are pruned at
each iteration of the parsing process. The purpose
of this action is to keep this beam from growing too
big, resulting in a waste of memory space.

Algorithm 1 Beam Search Decoding
1: candidates← {STARTITEM()}
2: agenda← φ
3: completed← φ
4: loop
5: for all candidate in candidates do
6: for all legalaction of candidate do
7: newc← EXPAND(candidate, action)
8: if COMPLETED(newc) then
9: completed.INSERT(newc)

10: else
11: agenda.INSERT(newc)
12: end if
13: end for
14: end for
15: if EMPTY(agenda) then
16: return TOP(completed)
17: end if
18: candidates← TOPB(agenda, B)
19: agenda← φ
20: completed← TOPB(completed, B)
21: end loop

6 Experiments and Evaluation

We describe the experiments carried out and our
method of evaluation of the unified dependency
parser. We used Penn2Malt4 to convert constituent
trees ofCTB to dependency relations. The head rules
for this conversion was given by Zhang and Clark
(2008). In all experiments, we followed the stan-

4http://w3.msi.vxu.se/ ˜ nivre/research/
Penn2Malt.html
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P R F
our method, labeled 78.54 80.93 79.72

our method, unlabeled 81.01 83.77 82.37
ZC2011, unlabeled N/A N/A 75.09

Table 7: Evaluation results on the originalCTB5. N/A
means the value is not available to us. ZC2011 is Zhang
and Clark (2011).

dard split of the data into training, testing and devel-
opment data (Zhang and Clark, 2011). Though we
annotated structures of words inCTB6, most previ-
ously results were onCTB5, a subset of the former
treebank. Hence we report our results of evaluation
on CTB5 for better comparability.

6.1 Dependency Parsing of Morphological and
Syntactic Structures

If we look back at the Figure 2, it’s clear that a
dependency relation is correctly parsed if and only
if three conditions are met: Firstly, words at both
ends of the dependency are correctly segmented.
Secondly, part-of-speech tags are correct for both
words. Thirdly, the direction of the dependency re-
lation are correct. Of course, if labeled precision and
recall is to be measured, the label of the dependency
relation should also be correctly recovered. Letnc
be the number of dependencies correctly parsed with
respect to these criterion,no be the total number of
dependencies in the output, andnr the number of
dependencies in the reference. Then precision is de-
fined to bep = nc/no and recall is defined to be
r = nc/nr.

6.1.1 Results on the OriginalCTB5

We first train our unified dependency parser with
the original treebankCTB5. In this case, all words
are considered to be flat, with no internal structures.
The result are shown in Table 7. Note that on ex-
actly the same testing data, i.e, the originalCTB5,
unified parser performs much better than the result
of a pipelined approach reported by Zhang and Clark
(2011). There are about 30% of relative error reduc-
tion for the unlabeled dependency parsing results.
This is yet another evidence of the advantage of joint
modeling in natural language processing, details of
which will be discussed in Section 7.

P R F
original dependencies 82.13 84.49 83.29

in CTB5
ZN2011 with Gold N/A N/A 84.40

segmentation & POS

original dependencies 85.71 87.18 86.44
plus word structures

Table 8: Evaluation results onCTB5 with word structures
annotated. All results are labeled scores.

6.1.2 Results onCTB with Structures of Words
Annotated

Then we train the parser withCTB5 augmented
with our annotations of internal structures of words.
For purpose of better comparability, we report re-
sults on both the original dependencies ofCTB5 and
on the dependencies ofCTB5 plus those of the in-
ternal structures of words. The results are shown
in Table 8. First, note that compared to another re-
sult by Zhang and Nivre (2011), whose input were
sentences with gold standard word segmentation and
POS tags, our F-score is only slightly lower even
with input of unsegmented sentences. This is un-
derstandable since gold-standard segmentation and
POS tags greatly reduced the uncertainty of parsing
results.

For the unified parser, the improvement of F-score
from 79.72% to 83.29% is attributed to the fact that
with internal structures of words annotated, parsing
of syntactic structures is also improved due to the
similarity of word and phrase structures mentioned
in Section 1, and also due to the fact that many
phrase level dependencies are now facing a much
less severe problem of data sparsity. The improve-
ment of F-score from 83.29% to 86.44% is attributed
to the annotation of word structures. Internal struc-
tures of words are be mostly local in comparison
with phrase and sentence structures. Therefore, with
the addition of word structures, the overall depen-
dency parsing accuracy naturally can be improved.

6.2 Chinese Word Segmentation

From the example in Figure 2, it is clear that output
of unified parser contains Chinese word segmenta-
tion information. Therefore, we can get results of
word segmentation for each sentence in the test sets,
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P R F
K2009 N/A N/A 97.87
This Paper 97.63 97.38 97.50

Table 9: Word segmentation results of our parser and
the best performance reported in literature on the same
dataset. K2009 is the result of Kruengkrai et al. (2009).

P R F
K2009 N/A N/A 93.67
ZC2011 N/A N/A 93.67
This Paper 93.42 93.20 93.31

Table 10: Joint word segmentation and POS tagging
scores. K2009 is result of Kruengkrai et al. (2009).
ZC2011 is result of Zhang and Clark (2011).

and evaluate their accuracies. For maximal compa-
rability, we train the unified parser on the original
CTB5 data used by previous studies. The result is
in Table 9. Despite the fact that the performance
of our unified parser does not exceed the best re-
ported result so far, which probably might be caused
by some minute implementation specific details, it’s
fair to say that our parser performs at the level of
state-of-the-art in Chinese word segmentation.

6.3 Joint Word Segmentation and POS Tagging

From Figure 2 we see that besides word segmenta-
tion, output of the unified parser also includes part-
of-speech tags. Therefore, it’s natural that we evalu-
ate the accuracy of joint Chinese word segmentation
and part of speech tagging, as reported in previous
literature (Kruengkrai et al., 2009). The results are
in Table 10, in which for ease of comparison, again
we train the unified parser with the vanilla version
of CTB5. We can see that unified parser performs at
virtually the same level of accuracy compared with
previous best systems.

7 Related Work

Researchers have noticed the necessity of parsing
the internal structures of words in Chinese. Li
(2011) gave an method that could take raw sentences
as input and output phrase structures and internal
structures of words. This paper assumes that the in-
put are unsegmented, too, and our output also in-
cludes both word and phrase structures. There are

甘 肃 省 重 视 保 险 业

Figure 4: Example output of Zhao’s parser.

two key differences, though. The first is we output
dependency relations instead of constituent struc-
tures. Although dependencies can be extracted from
the constituent trees of Li (2011), the time complex-
ity of their algorithm isO(n5) while our parser runs
in linear time. Secondly, we specify the details of
annotating structures of words, with the annotations
being made publicly available.

Zhao (2009) presented a dependency parser which
regards each Chinese character as a word and then
analyzes the dependency relations between charac-
ters, using ordinary dependency parsing algorithms.
Our parser is different in two important ways. The
first is we output both part-of-speech tags and la-
beled dependency relations, both of which were ab-
sent in Zhao’s parser. More importantly, theAP-
PEND transition for handling flat words were unseen
in previous studies as far as we know. The difference
can best be described with an example: For the sen-
tence in Section 3, Zhao’s parser output the result in
Figure 4 while in contrast our output is Figure 2.

In recent years, considerable efforts have been
made in joint modeling and learning in natural lan-
guage processing (Lee et al., 2011; Sun, 2011; Li et
al., 2011; Finkel and Manning, 2009; Kruengkrai et
al., 2009; Jiang et al., 2008; Goldberg and Tsarfaty,
2008). Joint modeling can improve the performance
of NLP systems due to the obvious reason of being
able to make use of various levels of information si-
multaneously. However, the thesis of this paper, i.e,
unified parsing of Chinese word and phrase struc-
tures, bears a deeper meaning. As demonstrated in
Section 1 and by Li (2011), structures of words and
phrases usually have significant similarity, and the
distinction between them is very difficult to define,
even for expert linguists. But for real world applica-
tions, such subtle matters can safely be ignored if we
could analyzed morphological and syntactic struc-
tures in a unified framework. What applications re-
ally cares is structures instead of whether a linguistic
unit is a word or phrase.
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Another notable line of research closely related
to the present work is to annotate and parse the flat
structures of noun phrases (NP) (Vadas and Curran,
2007; Vadas and Curran, 2011). This paper dif-
fers from those previous work on parsing NPs in at
least two significant ways. First, we aim to parse
all kinds of words (e.g, nouns, verbs, adverbs, ad-
jectives etc) whose structures are not annotated by
CTB, and whose presence could cause lots of pseudo
OOVs and incompatible annotations. Second, the
problem we are trying to solve is a crucial obser-
vation specific to Chinese language, that is, in lots
of cases forcing a separation of words and phrases
leads to awkward situations for NLP systems. Re-
member that in Section 2 we demonstrated that all
corpora we examined had the problem of pseudo
OOVs and incompatible annotations. In comparison,
the problem Vadas and Curran (2007) tried to solve
is a lack of annotation for structures of NPs in cur-
rently available treebanks, or to put it in another way,
a problem more closely related to treebanks rather
than certain languages.

8 Discussion and Conclusion

Chinese word segmentation is an indispensable step
for traditional approaches to syntactic parsing of
Chinese. The purpose of word segmentation is to
decide what goes to words, with the remaining pro-
cessing (e.g, parsing) left to higher level structures
of phrases and sentences. This paper shows that it
could be very difficult to make such a distinction
between words and phrases. This difficulty cannot
be left unheeded, as we have shown quantitatively
that in practice it causes lots of real troubles such as
too manyOOVs and incompatible annotations. We
showed how these undesirable consequences can be
resolved by annotation of the internal structures of
words, and by unified parsing of morphological and
syntactic structures in Chinese.

Unified parsing of morphological and syntactic
structures of Chinese can also be implemented with
a pipelined approach, in which we first segment in-
put sentences into words or affixes (i.e, with the
finest possible granularity), and then we do part-
of-speech tagging followed by dependency (or con-
stituent) parsing. However, a unified parsing ap-
proach using a single model as presented in this

paper offers several advantages over pipelined ap-
proaches. The first one is that joint modeling tends
to result in higher accuracy and suffer less from er-
ror propagation than do pipelined methods. Sec-
ondly, both the unified model and the algorithm
are conceptually much more simpler than pipelined
approaches. We only need one implementation of
the model and algorithm, instead of several ones in
pipelined approaches. Thirdly, our model and al-
gorithm might comes closer to modeling the pro-
cess of human language understanding, because hu-
man brain is more likely a parallel machine in un-
derstanding languages than an alternative pipelined
processor. Hence this work, together with previ-
ous studies by other authors like Li (2011) and Zhao
(2009), open up a possibly new direction for future
research efforts in parsing the Chinese language.
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Abstract

Most current dependency parsers presuppose
that input words have been morphologically
disambiguated using a part-of-speech tagger
before parsing begins. We present a transition-
based system for joint part-of-speech tagging
and labeled dependency parsing with non-
projective trees. Experimental evaluation on
Chinese, Czech, English and German shows
consistent improvements in both tagging and
parsing accuracy when compared to a pipeline
system, which lead to improved state-of-the-
art results for all languages.

1 Introduction

Dependency-based syntactic parsing has been the
focus of intense research efforts during the last
decade, and the state of the art today is represent-
ed by globally normalized discriminative models
that are induced using structured learning. Graph-
based models parameterize the parsing problem by
the structure of the dependency graph and normally
use dynamic programming for inference (McDonald
et al., 2005; McDonald and Pereira, 2006; Carreras,
2007; Koo and Collins, 2010; Bohnet, 2010), but
other inference methods have been explored espe-
cially for non-projective parsing (Riedel and Clarke,
2006; Smith and Eisner, 2008; Martins et al., 2009;
Martins et al., 2010; Koo et al., 2010). Transition-
based models parameterize the problem by elemen-
tary parsing actions and typically use incremental
beam search (Titov and Henderson, 2007; Zhang
and Clark, 2008; Zhang and Clark, 2011). Despite
notable differences in model structure, graph-based

and transition-based parsers both give state-of-the-
art accuracy with proper feature selection and opti-
mization (Koo and Collins, 2010; Zhang and Nivre,
2011; Bohnet, 2011).

It is noteworthy, however, that almost all depen-
dency parsers presuppose that the words of an input
sentence have been morphologically disambiguated
using (at least) a part-of-speech tagger. This is in s-
tark contrast to the best parsers based on PCFG mod-
els, such as the Brown parser (Charniak and John-
son, 2005) and the Berkeley parser (Petrov et al.,
2006; Petrov and Klein, 2007), which not only can
perform their own part-of-speech tagging but nor-
mally give better parsing accuracy when they are al-
lowed to do so. This suggests that joint models for
tagging and parsing might improve accuracy also in
the case of dependency parsing.

It has been argued that joint morphological and
syntactic disambiguation is especially important for
richly inflected languages, where there is consid-
erable interaction between morphology and syntax
such that neither can be fully disambiguated with-
out considering the other. Thus, Lee et al. (2011)
show that a discriminative model for joint morpho-
logical disambiguation and dependency parsing out-
performs a pipeline model in experiments on Latin,
Ancient Greek, Czech and Hungarian. However, Li
et al. (2011) and Hatori et al. (2011) report improve-
ments with a joint model also for Chinese, which
is not a richly inflected language but is nevertheless
rich in part-of-speech ambiguities.

In this paper, we present a transition-based mod-
el for joint part-of-speech tagging and labeled de-
pendency parsing with non-projective trees. Exper-
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iments show that joint modeling improves both tag-
ging and parsing accuracy, leading to state-of-the-art
accuracy for richly inflected languages like Czech
and German as well as more configurational lan-
guages like Chinese and English. To our knowledge,
this is the first joint system that performs labeled de-
pendency parsing. It is also the first joint system that
achieves state-of-the-art accuracy for non-projective
dependency parsing.

2 Transition-Based Tagging and Parsing

Transition-based dependency parsing was pioneered
by Yamada and Matsumoto (2003) and Nivre et al.
(2004), who used classifiers trained to predict indi-
vidual actions of a deterministic shift-reduce parser.
Recent research has shown that better accuracy can
be achieved by using beam search and optimizing
models on the entire sequence of decisions needed
to parse a sentence instead of single actions (Zhang
and Clark, 2008; Huang and Sagae, 2010; Zhang
and Clark, 2011; Zhang and Nivre, 2011; Bohnet,
2011). In addition, a number of different transition
systems have been proposed, in particular for deal-
ing with non-projective dependencies, which were
beyond the scope of early systems (Attardi, 2006;
Nivre, 2007; Nivre, 2009; Titov et al., 2009).

In this section, we start by defining a transition
system for joint tagging and parsing based on the
non-projective transition system proposed in Nivre
(2009). We then show how to perform beam search
and structured online learning with this model, and
conclude by discussing feature representations.

2.1 Transition System
Given a set P of part-of-speech tags and a set D
of dependency labels, a tagged dependency tree for
a sentence x = w1, . . . , wn is a directed tree T =
(Vx, A) with labeling functions π and δ such that:

1. Vx = {0, 1, . . . , n} is a set of nodes,

2. A ⊆ Vx × Vx is a set of arcs,

3. π : Vx → P is a labeling function for nodes,

4. δ : A→ D is a labeling function for arcs,

5. 0 is the root of the tree.

The set Vx of nodes is the set of positive integers up
to and including n, each corresponding to the lin-
ear position of a word in the sentence, plus an extra

artificial root node 0. The set A of arcs is a set of
pairs (i, j), where i is the head node and j is the
dependent node. The functions π and δ assign a u-
nique part-of-speech label to each node/word and a
unique dependency label to each arc, respectively.
This notion of dependency tree differs from the s-
tandard definition only by including part-of-speech
labels as well as dependency labels (Kübler et al.,
2009).

Following Nivre (2008), we define a transition
system for dependency parsing as a quadruple S =
(C, T, cs, Ct), where

1. C is a set of configurations,

2. T is a set of transitions, each of which is a (par-
tial) function t : C → C,

3. cs is an initialization function, mapping a sen-
tence x to a configuration c ∈ C,

4. Ct ⊆ C is a set of terminal configurations.

A transition sequence for a sentence x in S is a
sequence of configuration-transition pairs C0,m =
[(c0, t0), (c1, t1), . . . , (cm, tm)] where c0 = cs(x),
tm(cm) ∈ Ct and ti(ci) = ci+1 (0 ≤ i < m).1

In this paper, we take the set C of configurations
to be the set of all 5-tuples c = (Σ, B,A, π, δ) such
that Σ (the stack) and B (the buffer) are disjoin-
t sublists of the nodes Vx of some sentence x, A
is a set of dependency arcs over Vx, and π and δ
are labeling functions as defined above. We take the
initial configuration for a sentence x = w1, . . . , wn

to be cs(x) = ([0], [1, . . . , n], { },⊥,⊥), where ⊥
is the function that is undefined for all arguments,
and we take the set Ct of terminal configurations
to be the set of all configurations of the form c =
([0], [ ], A, π, δ) (for anyA, π and δ). The tagged de-
pendency tree defined for x by c = (Σ, B,A, π, δ)
is the tree (Vx, A) with labeling functions π and δ,
which we write TREE(x, c).

The set T of transitions is shown in Figure 1. The
LEFT-ARCd and RIGHT-ARCd transitions both add
an arc (with dependency label d) between the two
nodes on top of the stack and replaces these nodes
by the head node of the new arc (which is the right-
most node for LEFT-ARCd and the leftmost node for
RIGHT-ARCd). The SHIFTp transition extracts the

1This definition of transition sequence differs from that of
Nivre (2008) but is equivalent and suits our presentation better.
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Transition Condition
LEFT-ARCd ([σ|i, j], B,A, π, δ)⇒ ([σ|j], B,A∪{(j, i)}, π, δ[(j, i)→ d]) i 6= 0

RIGHT-ARCd ([σ|i, j], B,A, π, δ)⇒ ([σ|i], B,A∪{(i, j)}, π, δ[(i, j)→ d])

SHIFTp (σ, [i|β], A, π, δ)⇒ ([σ|i], β, A, π[i→ p], δ)

SWAP ([σ|i, j], β, A, π, δ)⇒ ([σ|j], [i|β], A, π, δ) 0 < i < j

Figure 1: Transitions for joint tagging and dependency parsing extending the system of Nivre (2009). The stack Σ is
represented as a list with its head to the right (and tail σ) and the buffer B as a list with its head to the left (and tail β).
The notation f [a→ b] is used to denote the function that is exactly like f except that it maps a to b.

first node in the buffer, pushes it onto the stack and
labels it with the part-of-speech tag p. The SWAP

transition extracts the second topmost node from the
stack and moves it back to the buffer, subject to the
condition that the two top nodes on the stack are still
in the order given by the sentence.

Except for the addition of a tag parameter p to
the SHIFT transition, this is equivalent to the sys-
tem described in Nivre (2009), which thanks to the
SWAP transition can handle arbitrary non-projective
trees. The soundness and completeness results giv-
en in that paper trivially carry over to the new sys-
tem. The only thing to note is that, before a terminal
configuration can be reached, every word has to be
pushed onto the stack in a SHIFTp transition, which
ensures that every node/word in the output tree will
be tagged.

2.2 Inference and Learning

While early transition-based parsers generally used
greedy best-first inference and locally trained clas-
sifiers, recent work has shown that higher accura-
cy can be obtained using beam search and global
structure learning to mitigate error propagation. In
particular, it seems that the globally learned models
can exploit a much richer feature space than local-
ly trained classifiers, as shown by Zhang and Nivre
(2011). Since joint tagging and parsing increases the
size of the search space and is likely to require nov-
el features, we use beam search in combination with
structured perceptron learning.

The beam search algorithm used to derive the best
parse y for a sentence x is outlined in Figure 2. In
addition to the sentence x, it takes as input a weight
vector w corresponding to a linear model for scor-
ing transitions out of configurations and two prun-

PARSE(x,w, b1, b2)
1 h0.c← cs(x)
2 h0.s← 0.0

3 h0.f← {0.0}dim(w)

4 BEAM ← [h0]
5 while ∃h ∈ BEAM : h.c 6∈ Ct

6 TMP ← [ ]
7 foreach h ∈ BEAM

8 foreach t ∈ T : PERMISSIBLE(h.c, t)
9 h.f← h.f + f(h.c, t)

10 h.s← h.s+ f(h.c, t) · w
11 h.c← t(h.c)
12 TMP ← INSERT(h, TMP)
13 BEAM← PRUNE(TMP, b1, b2)
14 h← TOP(BEAM)
15 y ← TREE(x, h.c)
16 return y

Figure 2: Beam search algorithm for joint tagging and de-
pendency parsing of input sentence x with weight vector
w and beam parameters b1 and b2. The symbols h.c, h.s
and h.f denote, respectively, the configuration, score and
feature representation of a hypothesis h; h.c.A denotes
the arc set of h.c.

ing parameters b1 and b2. A parse hypothesis h is
represented by a configuration h.c, a score h.s and
a feature vector h.f for the transition sequence up to
h.c. Hypotheses are stored in the list BEAM, which
is sorted by descending scores and initialized to hold
the hypothesis h0 corresponding to the initial con-
figuration cs(x) with score 0.0 and all features set
to 0.0 (lines 1–4). In the main loop (lines 5–13), a
set of new hypotheses is derived and stored in the
list TMP, which is finally pruned and assigned as
the new value of BEAM. The main loop terminates
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when all hypotheses in BEAM contain terminal con-
figurations, and the dependency tree extracted from
the top scoring hypothesis is returned (lines 14–16).

The set of new hypotheses is created in two nest-
ed loops (lines 7–12), where every hypothesis h in
BEAM is updated using every permissible transition
t for the configuration h.c. The feature representa-
tion of the new hypothesis is obtained by adding the
feature vector f(t, h.c) for the current configuration-
transition pair to the feature vector of the old hy-
pothesis (line 9). Similarly, the score of the new
hypothesis is the sum of the score f(t, h.c) · w of
the current configuration-transition pair and the s-
core of the old hypothesis (line 10). The feature
representation/score of a complete parse y for x
with transition sequence C0,m is thus the sum of the
feature representations/scores of the configuration-
transition pairs in C0,m:

f(x, y) =
∑

(c,t)∈C0,m

f(c, t)

s(x, y) =
∑

(c,t)∈C0,m

f(c, t) · w

Finally, the configuration of the new hypothesis is
obtained by evaluating t(h.c) (line 11). The new hy-
pothesis is then inserted into TMP in score-sorted or-
der (line 12).

The pruning parameters b1 and b2 determine the
number of hypotheses allowed in the beam and at
the same time control the tradeoff between syntactic
and morphological ambiguity. First, we extract the
b1 highest scoring hypotheses with distinct depen-
dency trees. Then we extract the b2 highest scoring
remaining hypotheses, which will typically be tag-
ging variants of dependency trees that are already in
the beam. In this way, we prevent the beam from
getting filled up with too many tagging variants of
the same dependency tree, which was found to be
harmful in preliminary experiments.

One final thing to note about the inference algo-
rithm is that the notion of permissibility for a transi-
tion t out of a configuration c can be used to capture
not only formal constraints on transitions – such as
the fact that it is impossible to perform a SHIFTp

transition with an empty buffer or illegal to perform
a LEFT-ARCd transition with the special root node
on top of the stack – but also to filter out unlike-

ly dependency labels or tags. Thus, in the experi-
ments later on, we will typically constrain the parser
so that SHIFTp is permissible only if p is one of the
k best part-of-speech tags with a score no more than
α below the score of the 1-best tag, as determined by
a preprocessing tagger. We also filter out instances
of LEFT-ARCd and RIGHT-ARCd, where d does not
occur in the training data for the predicted part-of-
speech tag combination of the head and dependent.
This procedure leads to a significant speed up.

In order to learn a weight vector w from a training
set {(xj , yj)}Tj=1 of sentences with their tagged de-
pendency trees, we use a variant of the structured
perceptron, introduced by Collins (2002), which
makes N iterations over the training data and up-
dates the weight vector for every sentence xj where
the highest scoring parse y∗ is different from yj .
More precisely, we use the passive-aggressive up-
date of Crammer et al. (2006):

wi+1 = wi + τ(f(xj , yj)− f(xj , y
∗))

where

τ =
f(xj , yj)− f(xj , y

∗)

||f(xj , yj)− f(xj , y∗)||2

We also use the early update strategy found benefi-
cial for parsing in several previous studies (Collins
and Roark, 2004; Zhang and Clark, 2008; Huang
and Sagae, 2010), which means that, during learn-
ing, we terminate the beam search as soon as the
hypothesis corresponding to the gold parse yj falls
out of the beam and update with respect to the par-
tial transition sequence constructed up to that point.
Finally, we use the standard technique of averaging
over all weight vectors, as originally proposed by
Collins (2002).

2.3 Feature Representations

As already noted, the feature representation f(x, y)
of an input sentence x with parse y decomposes into
feature representations f(c, t) for the transitions t(c)
needed to derive y from cs(x). Features may refer to
any aspect of a configuration, as encoded in the stack
Σ, the bufferB, the arc setA and the labelings π and
δ. In addition, we assume that each word w in the
input is assigned up to k candidate part-of-speech
tags πi(w) with corresponding scores s(πi(w)).
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Features involving word prefixes and suffixes
πi(B0)p2(B0), πi(B0)s2(B0), πi(B0)p1(B0)p1(Σ0)
πi(Σ0)p1(Σ0)p1(Σ1), πi(Σ0)s1(Σ0)s1(Σ0)
πi(Σ0)p2(Σ0)s3(Σ1),πi(Σ0)s3(Σ0)p2(Σ1)
πi(Σ0)w(B0)s1(Σ0), πi(Σ0)w(B0)s2(Σ0)
Features involving tag score differences and ranks
πi(B0)[s(π1(B0))− s(πi(B0))]
πi(B0)πi(Σ0)[s(π1(B0))− s(πi(B0))] i
πi(B0)[s(π1(B0))− s(πi(B0))]π(Σ0)
w(B0)[s(π1(B0))− s(πi(B0))]π(Σ0)

Figure 3: Specialized feature templates for tagging. We
use Σi and Bi to denote the ith token in the stack Σ and
bufferB, respectively, with indexing starting at 0, and we
use the following functors to extract properties of a token:
πi() = ith best tag; s(πi()) = score of ith best tag; π() =
finally predicted tag; w() = word form; pi() = word prefix
of i characters; si() = word suffix of i characters. Score
differences are binned in discrete steps of 0.05.

The bulk of features used in our system are tak-
en from Zhang and Nivre (2011), although with t-
wo important differences. First of all, like Hatori et
al. (2011), we have omitted all features that presup-
pose an arc-eager parsing order, since our transition
system defines an arc-standard order. Secondly, any
feature that refers to the part-of-speech tag of a word
w in the buffer B will in our system refer to the top-
scoring tag π1(w), rather than the finally predicted
tag. By contrast, for a word in the stack Σ, part-of-
speech features refer to the tag π(w) chosen when
shifting w onto the stack (which may or may not be
the same as π1(w)).

In addition to the standard features for transition-
based dependency parsing, we have added features
specifically to improve the tagging step in the joint
model. The templates for these features, which are
specified in Figure 3, all involve the ith best tag as-
signed to the first word of the buffer B (the next
word to be shifted in a SHIFTp transition) in combi-
nation with neighboring words, word prefixes, word
suffixes, score differences and tag rank.

Finally, in some experiments, we make use of two
additional feature sets, which we call graph features
(G) and cluster features (C), respectively. Graph fea-
tures are defined over the factors of a graph-based
dependency parser, which was shown to improve the
accuracy of a transition-based parser by Zhang and
Clark (2008). However, while their features were

limited to certain first- and second-order factors, we
use features over second- and third-order factors as
found in the parsers of Bohnet and Kuhn (2012).
These features are scored as soon as the factors are
completed, using a technique that is similar to what
Hatori et al. (2011) call delayed features, although
they use it for part-of-speech tags in the lookahead
while we use it for subgraphs of the dependency tree.
Cluster features, finally, are features over word clus-
ters, as first used by Koo et al. (2008), which replace
part-of-speech tag features.2

We use a hash kernel to map features to weights.
It has been observed that most of the computing time
in feature-rich parsers is spent retrieving the index
of each feature in the weight vector (Bohnet, 2010).
This is usually done via a hash table, but significan-
t speedups can be achieved by using a hash kernel,
which simply replaces table lookup by a hash func-
tion (Bloom, 1970; Shi et al., 2009; Bohnet, 2010).
The price to pay for these speedups is that there may
be collisions, so that different features are mapped to
the same index, but this is often compensated by the
fact that the lower time and memory requirements of
the hash kernel enables the use of negative features,
that is, features that are never seen in the training set
but occur in erroneous hypotheses at training time
and can therefore be helpful also at inference time.
As a result, the hash kernel often improves accuracy
as well as efficiency compared to traditional tech-
niques that only make use of features that occur in
gold standard parses (Bohnet, 2010).

3 Experiments

We have evaluated the model for joint tagging and
dependency parsing on four typologically diverse
languages: Chinese, Czech, English, and German.

3.1 Setup

Most of the experiments use the CoNLL 2009 da-
ta sets with the training, development and test s-
plit used in the Shared Task (Hajič et al., 2009),
but for better comparison with previous work we
also report results for the standard benchmark data
sets for Chinese and English. For Chinese, this is
the Penn Chinese Treebank 5.1 (CTB5), converted

2For replicability, a complete description of all features can
be found at http://stp.lingfil.uu.se/∼nivre/exp/emnlp12.html.
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Parser Chinese Czech English German
k α TLAS LAS UAS POS TLAS LAS UAS POS TLAS LAS UAS POS TLAS LAS UAS POS
1 0.0 73.85 76.12 80.01 92.78 82.36 82.65 88.03 93.26 85.82 87.17 90.41 97.32 85.08 86.60 89.17 97.24
2 0.1 74.39 76.52 80.41 93.37 82.74 83.01 88.34 99.39 86.43 87.79 91.02 97.49 86.12 87.22 89.69 97.85
3 0.1 74.47 76.63 80.50 93.38 82.76 82.97 88.33 99.40 86.40 87.78 90.99 97.43 86.03 87.27 89.60 97.74
3 0.2 74.35 76.48 80.38 93.43 82.85 83.11 88.44 99.32 86.35 87.79 91.01 97.52 86.24 87.37 89.72 97.90
3 0.3 74.18 76.33 80.28 93.48 82.78 83.05 88.38 99.33 85.94 87.57 90.87 96.97 86.35 87.46 89.86 97.90
3 0.4 86.14 87.23 89.66 97.79

Table 1: Accuracy scores for the CoNLL 2009 shared task development sets as a function of the number of tags k and
the score threshold α. Beam parameters fixed at b1 = 40, b2 = 4.

with the head-finding rules and conversion tools of
Zhang and Clark (2008), and with the same split as
in Zhang and Clark (2008) and Li et al. (2011).3 For
English, this is the WSJ section of the Penn Tree-
bank, converted with the head-finding rules of Ya-
mada and Matsumoto (2003) and the labeling rules
of Nivre (2006).4

In order to assign k-best part-of-speech tags and
scores to words in the training set, we used a per-
ceptron tagger with 10-fold jack-knifing. The same
type of tagger was trained on the entire training set
in order to supply tags for the development and test
sets. The feature set of the tagger was optimized
for English and German and provides state-of-the-
art accuracy for these two languages. The 1-best
tagging accuracy for section 23 of the Penn Tree-
bank is 97.28, which is on a par with Toutanova et
al. (2003). For German, we obtain a tagging accura-
cy of 97.24, which is close to the 97.39 achieved by
the RF-Tagger (Schmid and Laws, 2008), which to
our knowledge is the best tagger for German.5 The
results are not directly comparable to the RF-Tagger
as it was evaluated on a different part of the Tiger
Treebank and trained on a larger part of the Tree-
bank. We could not use the larger training set as
it contains the test set of the CoNLL 2009 data that
we use to evaluate the joint model. For Czech, the 1-
best tagging accuracy is 99.11 and for Chinese 92.65
on the CoNLL 2009 test set.

We trained parsers with 25 iterations and report

3Training: 001–815, 1001–1136. Development: 886–931,
1148–1151. Test: 816–885, 1137–1147.

4Training: 02-21. Development: 24. Test: 23.
5The RF-Tagger can take advantage of an additional lexicon

and then reaches 97.97. The lexicon supplies entries for addi-
tional words that are not found in the training corpus and addi-
tional tags for words that do occur in the training data (Schmid
and Laws, 2008).

results for the model obtained after the last iteration.
For cluster features, available only for English and
German, we used standard Brown clusters based on
the English and German Gigaword Corpus. We re-
stricted the vocabulary to words that occur at least
10 times, used 800 clusters, and took cluster prefix-
es of length 6 to define features.

We report the following evaluation metrics: part-
of-speech accuracy (POS), unlabeled attachment s-
core (UAS), labeled attachment score (LAS), and
tagged labeled attachment score (TLAS). TLAS is
a new metric defined as the percentage of words that
are assigned the correct part-of-speech tag, the cor-
rect head and the correct dependency label. In line
with previous work, punctuation is included in the
evaluation for the CoNLL data sets but excluded for
the two benchmark data sets.

3.2 Results
Table 1 presents results on the development sets of
the CoNLL 2009 shared task with varying values
of the two tag parameters k (number of candidates)
and α (maximum score difference to 1-best tag) and
beam parameters fixed at b1 = 40 and b2 = 4. We
use the combined TLAS score on the development
set to select the optimal settings for each language.
For Chinese, we obtain the best result with 3 tags
and a threshold of 0.1.6 Compared to the baseline,
we observe a POS improvement of 0.60 and a LAS
improvement of 0.51. For Czech, we get the best T-
LAS with k = 3 and α = 0.2, where POS improves
by 0.06 and LAS by 0.46. For English, the best set-
ting is k = 2 and α = 0.1 with a POS improvement of
0.17 and a LAS improvement of 0.62. For German,
finally, we see the greatest improvement with k = 3

6While tagging accuracy (POS) increases with larger values
of α, TLAS decreases because of a drop in LAS.
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Parser Chinese Czech English German
TLAS LAS UAS POS TLAS LAS UAS POS TLAS LAS UAS POS TLAS LAS UAS POS

Gesmundo et al. (2009) 76.11 92.37 80.38 99.33 88.79 97.48 87.28 95.46
Bohnet (2010) 76.99 92.37 80.96 99.33 90.33 97.48 88.06 95.46
Baseline (k = 1), b1 = 40 73.66 76.55 80.77 92.65 82.07 82.44 87.83 99.11 87.89 89.19 91.74 97.57 86.11 87.78 90.13 97.24
Best dev setting, b1 = 40 74.72 77.00 81.18 93.06 82.56 82.70 88.07 99.32 88.26 89.54 92.06 97.77 86.91 88.23 90.43 97.63
Adding G, b1 = 80 75.84 78.51 82.52 93.19 83.38 83.73 88.82 99.33 88.92 90.20 92.60 97.77 87.86 89.05 91.16 97.78
Adding G+C, b1 = 80 89.22 90.60 92.87 97.84 88.31 89.38 91.37 98.05

Table 2: Accuracy scores for the CoNLL 2009 shared task test sets. Rows 1–2: Top performing systems in the shared
CoNLL Shared Task 2009; Gesmundo et al. (2009) was placed first in the shared task; for Bohnet (2010), we include
the updated scores later reported due to some improvements of the parser. Rows 3–4: Baseline (k = 1) and best settings
for k and α on development set. Rows 5–6: Wider beam (b1 = 80) and added graph features (G) and cluster features
(C). Second beam parameter b2 fixed at 4 in all cases.

and α = 0.3, where POS improves by 0.66 and LAS
by 0.86.

Table 2 shows the results on the CoNLL 2009 test
sets. For all languages except English, we obtain
state-of-the-art results already with b1 = 40 (row 4),
and for all languages both tagging and parsing ac-
curacy improve compared to the baseline (row 3).
The improvement in TLAS is statistically significant
with p < 0.01 for all languages (paired t-test). Row
5 shows the scores with a beam of 80 and the addi-
tional graph features. Here the LAS scores for Chi-
nese, Czech and German are higher than the best re-
sults on the CoNLL 2009 data sets, and the score
for English is highly competitive. For Chinese, we
achieve 78.51 LAS, which is 1.5 percentage points
higher than the reference score, while the POS s-
core is 0.54 higher than our baseline. For Czech, we
get 83.73 LAS, which is by far the highest score re-
ported for this data set, together with state-of-the-art
POS accuracy. For German, we obtain 89.05 LAS
and 97.78 POS, which in both cases is substantially
better than in the CoNLL shared task. We believe
it is also the highest POS accuracy ever reported for
a tagger/parser trained only on the Tiger Treebank.
Row 6, finally, presents results with added cluster
features for English and German, which results in
additional improvements in all metrics.

Table 3 gives the results for the Penn Treebank
converted with the head-finding rules of Yamada and
Matsumoto (2003) and the labeling rules of Nivre
(2006). We use k = 3 and α = 0.4, which gave the
best results on the development set. The UAS im-
proves by 0.24 when we do joint tagging and pars-
ing. The POS accuracy improves slightly by 0.12

Parser TLAS UAS LAS POS
McDonald et al. (2005) 90.9
McDonald and Pereira (2006) 91.5
Zhang and Clark (2008) 92.1
Huang and Sagae (2010) 92.1
Koo and Collins (2010) 93.04
Zhang and Nivre (2011) 92.9
Martins et al. (2010) 93.26
Koo et al. (2008) † 93.16
Carreras et al. (2008) † 93.5
Suzuki et al. (2009) † 93.79
Baseline (k = 1), b1 = 40 89.42 92.79 91.71 97.28
Best dev setting, b1 = 40 89.75 93.03 91.92 97.40
Adding G, b1 = 40 90.12 93.38 92.44 97.33
Adding G+C, b1 = 80 † 90.41 93.67 92.68 97.42

Table 3: Accuracy scores for WSJ-PTB converted with
head rules of Yamada and Matsumoto (2003) and labeling
rules of Nivre (2006). Best dev setting: k = 3, α = 0.4.
Results marked with † use additional information sources
and are not directly comparable to the others.

but to a lower degree than for the English CoNL-
L data where we observed an improvement of 0.20.
Nonetheless, the improvement in the joint TLAS s-
core is statistically significant at p < 0.01 (paired
t-test). Our joint tagger and dependency parser with
graph features gives very competitive unlabeled de-
pendency scores for English with 93.38 UAS. To
the best of our knowledge, this is the highest score
reported for a (transition-based) dependency parser
that does not use additional information sources. By
adding cluster features and widening the beam to
b1 = 80, we achieve 93.67 UAS. We also obtain
a POS accuracy of 97.42, which is on a par with the
best results obtained using semi-supervised taggers
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Parser TLAS UAS LAS POS
MSTParser1 75.56 93.51
MSTParser2 77.73 93.51
Li et al. (2011) 3rd-order 80.60 92.80
Li et al. (2011) 2nd-order 80.55 93.08
Hatori et al. (2011) HS 79.60 94.01
Hatori et al. (2011) ZN 81.20 93.94
Baseline (k = 1), b1 = 40 61.95 80.33 76.79 92.81
Best dev setting, b1 = 40 62.54 80.59 77.06 93.11
Adding G, b1 = 80 63.20 81.42 77.91 93.24

Table 4: Accuracy scores for Penn Chinese Treebank
converted with the head rules of Zhang and Clark (2008).
Best dev setting: k = 3, α = 0.1. MSTParser results from
Li et al. (2011). UAS scores from Li et al. (2011) and Ha-
tori et al. (2011) recalculated from the separate accuracy
scores for root words and non-root words reported in the
original papers.

(Søgaard, 2011).
Table 4 shows the results for the Chinese Penn

Treebank CTB 5.1 together with related work. In ex-
periments with the development set, we could con-
firm the results from the Chinese CoNLL data set
and obtained the best results with the same settings
(k = 3, α = 0.1). With b1 = 40, UAS improves by
0.25 and POS by 0.30, and the TLAS improvement
is again highly significant (p < 0.01, paired t-test).
We get the highest UAS, 81.42, with a beam of 80
and added graph features, in which case POS accu-
racy increases from 92.81 to 93.24. Since our tagger
was not optimized for Chinese, we have lower base-
line results for the tagger than both Li et al. (2011)
and Hatori et al. (2011) but still manage to achieve
the highest reported UAS.

The speed of the joint tagger and dependency
parser is quite reasonable with about 0.4 seconds
per sentence on the WSJ-PTB test set, given that we
perform tagging and labeled parsing with a beam of
80 while incorporating the features of a third-order
graph-based model. Experiments were performed
on a computer with an Intel i7-3960X CPU (3.3 GHz
and 6 cores). These performance values are prelim-
inary since we are still working on the speed-up of
the parser.

3.3 Analysis

In order to better understand the benefits of the joint
model, we performed an error analysis for German

Confusion Baseline Joint
Freq F-score Freq F-score

VVINF→ VVFIN 28 91.1 2 97.7
VVINF→ VVPP|ADJ*|NN 5 9
VVFIN→ VVINF 43 94.2 5 98.5
VVFIN→ VVPP 20 2
VAINF→ VAFIN 10 99.1 1 99.9
NE→ NN 184

90.7
128

92.4NE→ ADJ*|ADV|FM 24 18
NE→ XY 12 21
NN→ NE 85 97.5 67 98.1
NN→ ADJ*|XY|ADV|VV* 39 29
PRELS→ ART 13 92.9 5 95.4
PRELS→ PWS 0 2

Table 5: Selected entries from the confusion matrix for
parts of speech in German with F-scores for the left-hand-
side category. ADJ* (ADJD or ADJA) = adjective; ADV
= adverb; ART = determiner; APPR = preposition; NE
= proper noun; NN = common noun; PRELS = relative
pronoun; VVFIN = finite verb; VVINF = non-finite verb;
VAFIN = finite auxiliary verb; VAINF = non-finite auxil-
iary verb; VVPP = participle; XY = not a word. We use
α* to denote the set of categories with α as a prefix.

and English, where we compared the baseline and
the joint model with respect to F-scores for individu-
al part-of-speech categories and dependency labels.
For the part-of-speech categories, we found an im-
provement across the board for both languages, with
no category having a significant decrease in F-score,
but we also found some interesting patterns for cat-
egories that improved more than the average.

Table 5 shows selected entries from the confu-
sion matrix for German, where we see substantial
improvements for finite and non-finite verbs, which
are often morphologically ambiguous but which can
be disambiguated using syntactic context. We al-
so see improved accuracies for common and proper
nouns, which are both capitalized in standard Ger-
man orthography and therefore often mistagged, and
for relative pronouns, which are less often confused
for determiners in the joint model.

Table 6 gives a similar snapshot for English, and
we again see improvements for verb categories that
are often morphologically ambiguous, such as past
participles, which can be confused for past tense
verbs, and present tense verbs in third person sin-
gular, which can be confused for nouns. We also
see some improvement for the singular noun catego-
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Confusion Baseline Joint
Freq F-score Freq F-score

VBN→ VBD 40 90.5 19 91.5
VBN→ JJ|VB|VBP|NN 13 18
VBZ→ NN|NNS 19 97.8 13 98.3
VBZ→ POS|JJ|RB 6 6
NN→ VBG|VB|VBN|VBD 72

96.8
58

97.2NN→ JJ|JJR 79 69
NN→ NN*|RB|IN|DT 58 57
RB→ IN 126 92.4 93 92.9
RB→ JJ*|RP|NN*|RBR|UH 86 89

Table 6: Selected entries from the confusion matrix for
parts of speech in English with F-scores for the left-hand-
side category. DT = determiner; IN = preposition or sub-
ordinating conjunction; JJ = adjective; JJR = compara-
tive adjective; NN = singular or mass noun; NNS = plural
noun; POS = possessive clitic; RB = adverb; RBR = com-
parative adverb; RP = particle; UH = interjection; VB =
base form verb; VBD = past tense verb; VBG = gerund or
present participle; VBN = past participle; VBP = present
tense verb, not 3rd person singular; VBZ = present tense
verb, 3rd person singular. We use α* to denote the set of
categories with α as a prefix.

ry and for adverbs, which are less often confused for
prepositions or subordinating conjunctions thanks to
the syntactic information in the joint model.

For dependency labels, it is hard to extract any
striking patterns and it seems that we mainly see an
improvement in overall parsing accuracy thanks to
less severe tagging errors. However, it is worth ob-
serving that, for both English and German, we see
significant F-score improvements for the core gram-
matical functions subject (91.3→ 92.1 for German,
95.6 → 96.1 for English) and object (86.9 → 87.9
for German, 90.2→ 91.9 for English).

4 Related Work

Our work is most closely related to Lee et al. (2011),
Li et al. (2011) and Hatori et al. (2011), who al-
l present discriminative models for joint tagging and
dependency parsing. However, all three models only
perform unlabeled parsing, while our model incor-
porates dependency labels into the parsing process.
Whereas Lee et al. (2011) and Li et al. (2011) take
a graph-based approach to dependency parsing, Ha-
tori et al. (2011) use a transition-based model similar
to ours but limited to projective dependency trees.
Both Li et al. (2011) and Hatori et al. (2011) only

evaluate their model on Chinese, and of these only
Hatori et al. (2011) report consistent improvements
in both tagging and parsing accuracy. Like our sys-
tem, the parser of Lee et al. (2011) can handle non-
projective trees and experimental results are present-
ed for four languages, but their graph-based model
is relatively simple and the baselines therefore well
below the state of the art. We are thus the first to
show consistent improvements in both tagging and
(labeled) parsing accuracy across typologically di-
verse languages at the state-of-the-art level. More-
over, the capacity to handle non-projective depen-
dencies, which is crucial to attain good performance
on Czech and German, does not seem to hurt per-
formance on English and Chinese, where the bench-
mark sets contain only projective trees.

The use of beam search in transition-based depen-
dency parsing in order to mitigate the problem of
error propagation was first proposed by Johansson
and Nugues (2006), although they still used a local-
ly trained model. Globally normalized models were
first explored by Titov and Henderson (2007), who
were also the first to use a parameterized SHIFT tran-
sition like the one found in both Hatori et al. (2011)
and our own work, although Titov and Henderson
(2007) used it to define a generative model by pa-
rameterizing the SHIFT transition by an input word.
Zhang and Clark (2008) was the first to combine
beam search with a globally normalized discrimi-
native model, using structured perceptron learning
and the early update strategy of Collins and Roark
(2004), and also explored the addition of graph-
based features to a transition-based parser. This
approach was further pursued in Zhang and Clark
(2011) and was used by Zhang and Nivre (2011) to
achieve state-of-the-art results in dependency pars-
ing for both Chinese and English through the ad-
dition of rich non-local features. Huang and Sagae
(2010) combined structured perceptron learning and
beam search with the use of a graph-structured stack
to allow ambiguity packing in the beam, a technique
that was reused by Hatori et al. (2011).

Finally, as noted in the introduction, although
joint tagging and parsing is rare in dependency pars-
ing, most state-of-the-art parsers based on PCFG
models naturally incorporate part-of-speech tagging
and usually achieve better parsing accuracy (albeit
not always tagging accuracy) with a joint model than
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with a pipeline approach (Collins, 1997; Charniak,
2000; Charniak and Johnson, 2005; Petrov et al.,
2006). Models that in addition incorporate mor-
phological analysis and segmentation have been ex-
plored by Tsarfaty (2006), Cohen and Smith (2007),
and Goldberg and Tsarfaty (2008) with special ref-
erence to Hebrew parsing.

5 Conclusion

We have presented the first system for joint part-
of-speech tagging and labeled dependency parsing
with non-projective dependency trees. Evaluation
on four languages shows consistent improvements
in both tagging and parsing accuracy over a pipeline
system with state-of-the-art results across the board.
The error analysis reveals improvements in tagging
accuracy for syntactically central categories, mainly
verbs, with improvement in syntactic accuracy for
core grammatical functions as a result. In future
work we intend to explore joint models that incorpo-
rate not only basic part-of-speech tags but also more
fine-grained morphological features.
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Abstract

Activities on social media increase at a dra-
matic rate. When an external event happens,
there is a surge in the degree of activities re-
lated to the event. These activities may be
temporally correlated with one another, but
they may also capture different aspects of an
event and therefore exhibit different bursty
patterns. In this paper, we propose to iden-
tify event-related bursts via social media activ-
ities. We study how to correlate multiple types
of activities to derive a global bursty pattern.
To model smoothness of one state sequence,
we propose a novel function which can cap-
ture the state context. The experiments on a
large Twitter dataset shows our methods are
very effective.

1 Introduction

Online social networks (e.g., Twitter, Facebook,
Myspace) significantly influence the way we live.
Activities on social media increase at a dramatic
rate. Millions of users engage in a diverse range
of routine activities on social media such as posting
blog messages, images, videos or status messages,
as well as interacting with items generated by oth-
ers such as forwarding messages. When an event
interesting to a certain group of individuals takes
place, there is usually a surge in the degree of ac-
tivities related to the event (e.g., a sudden explosion
of tweets). Since social media activities may indi-
cate the happenings of external events, can we lever-
age on the rich social media activities to help iden-
tify meaningful external events? This is the research
problem we study in this paper. By external events,
we refer to real-world events that happen external to
the online space.

∗Corresponding author.

2 4 6 8 100

20

40

60

80

100

120

140

Time index

 

 

all tweets
retweets
url embedded
tweetsNoise

(a) Query=“Amazon.”

2 4 6 8 100

50

100

150

Time index

 

 

all tweets
retweets
url embedded
tweetsNoise

(b) Query=“Eclipse”.

Figure 1: The amount of activities within a 10-hour
window for two queries. Three types of activities
are considered: (1) posting a tweet (upward triangle),
(2) retweet (downward triangle), (3) posting a URL-
embedded tweet (excluding retweet) (filled circle). As
explained in Table 1, both bursts above are noisy.

Mining events from text streams is usually
achieved by detecting bursty patterns (Swan and Al-
lan, 2000; Kleinberg, 2003; Fung et al., 2005). How-
ever, previous work has mostly focused on tradi-
tional text streams such as scientific publications and
news articles. There is still a lack of systematic in-
vestigations into the problem of identifying event-
related bursty patterns via social media activities.
There are at least two basic characteristics of social
media that make the problem more interesting and
challenging.

First, social media involve various types of activ-
ities taking place in real time. These activities may
be temporally correlated with one another, but they
may also capture different aspects of an event and
therefore exhibit different bursty patterns. Most of
previous methods (Swan and Allan, 2000; Klein-
berg, 2003; Fung et al., 2005) deal with a single type
of textual activities. When applied to social media,
they oversimplify the complex nature of online so-
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Bursty Activity Time # in Sr # in Su # in St Noisy?
Sr,St 23:00∼23:59, Nov. 23, 2009 108 5 147 Y

See Fig. 1(b) [Query=eclipse] major bursty reason: The tweet from Robert Pattinson “@twilight: from rob cont .
- i hope you are looking forward to eclipse as much as i am .” has been retweeted many times.

Su,St 07:00∼07:59, Jul. 25, 2009 6 122 133 Y
See Fig. 1(a) [Query=Amazon] major bursty reason: Advertisement tweets like “@fitnessjunkies amazon.com deals

: http://tinyurl.com/lakz3h.” have been posted many times.
St,Su,Sr 09:00∼9:59, Oct. 9, 2009 1562 423 2848 N

[Query=Nobel] major bursty reason: The news “Obama won Nobel Peace Prize” flood Twitter.

Table 1: Examples of bursts. The first two bursts are judged as noise since they do not correspond to any meaningful
external events. In fact, the reasons why a burst appears in social media can be quite diverse. In this paper, we only
focus on event-related bursts. St denotes posting a tweet, Su denotes posting a url-embedded tweet, and Sr denotes
retweet.

cial activities, and therefore they may not be well
suitable to social media. Let us consider a moti-
vating example. Figure 1 shows the change of the
amount of activities of three different types over a
10-hour time window for two queries. If we consider
only the total number of tweets, we can see that for
both queries there is a burst. However, neither of the
two bursts corresponds to a real-world event. The
first burst was caused by the broadcast of an adver-
tisement from several Twitter bots, and the second
burst was caused by numerous retweets of a status
update of a movie star1. The detailed explanations
of why the two bursts are noisy are also shown in
Table 1. On the other hand, interestingly, we can see
that not all the activity streams display noisy bursty
patterns at the same time. It indicates that we may
make use of multiple views of different activities
to detect event-related bursts. The intuition is that
using multiple types of activities may help learn a
better global picture of event-related bursty patterns.
Learning may also be more resistant to noisy bursts.

Second, in social media, burst detection is chal-
lenged by irregular, unpredictable and spurious
noisy bursts. To overcome this challenge, a reason-
able assumption is that a burst corresponding to a
real event should not fluctuate too much within a
relatively short time window. To illustrate it, we
present an example in Figure 2, in which we first
use a simple threshold method to detect bursts and
then analyze the effect of local smoothness. In par-
ticular, if the amount of activities at a certain time
is above a pre-defined threshold, we set its state to
1, which indicates a bursty state. Otherwise, we set
the state to 0. Figure 2(a) shows that for the query
“Eclipse,” with a threshold of 50, the state sequence
for the time window we consider is “0000100000.”

1The reasons for these bursts were revealed by manually
checking the tweets during the corresponding periods.
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(a) Query=“Eclipse”.
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(b) Query=“Nobel”.

Figure 2: Analysis of the effect of local smoothness on
threshold method. It shows two examples of threshold
methods for burst detection in a 10-hour window. The
red line denotes the bursty threshold. If the number of
activities is above the threshold in one time interval, the
state of this time interval is judge as bursty. Detailed de-
scriptions of these cases are shown in Table 1.

Although there is a burst in this sequence, its dura-
tion is very short. In fact, this is the first example
shown in Table 1, which is a noisy burst. In con-
trast, in Figure 2(b), the state sequence for the query
“Nobel” is “0000011111,” in which the longer and
smoother burst corresponds to a true event. A good
function for evaluating the smoothness of a state se-
quence should be able to discriminate these cases
and model the context of state sequences effectively.

With its unique characteristics and challenges,
there is an emergent need to deeply study the prob-
lem of event-related burst detection via social me-
dia activities. In this paper, we conduct a system-
atic investigation on this problem. We formulate
this problem as burst detection from time series of
social media activities. We develop an optimiza-
tion model to learn bursty patterns based on multiple
types of activities. We propose to detect bursts by
considering both local state smoothness and correla-
tion across multiple streams. We define a function to
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quantitatively measure local smoothness of one sin-
gle state sequence. We systematically evaluate three
types of activities for burst detection on a large Twit-
ter dataset and analyze different properties of these
three streams for burst detection.

2 Problem Definition

Before formally introducing our problems, we first
define some basic concepts.
Activity: An activity refers to some type of action
that users perform when they are interested in some
topic or event.
Activity Stream: An activity stream of length
N and type m is a sequence of numbers
(nm

1 , nm
2 , ..., nm

N ), where each nm
i denotes the

amount of activities of type m that occur during the
ith time interval.
Query: A query Q is a sequence of terms q1, ..., q|Q|
which can represent the information needs of users.
For example, an example query related to President
Obama is “barack obama.”
Event-related Burst: Given a query Q, an event-
related burst is defined as a period [ts, te] in which
some event related with Q takes place, where ts and
te are the start timestamp and end timestamp of the
event period respectively. During the event period
the amount of activities is significantly higher than
average.

Based on these definitions, our task is to try to
identify event-related bursts via multiple social me-
dia activity streams.

3 Identifying Event-related Bursts from
Social Media

In this section, we discuss how to identify event-
related bursts via social media activities. For-
mally, given a query Q, we first build M ac-
tivity streams related with Q on T timestamps:
{(nm

1 , ..., nm
T )}M

m=1. The definition of activity in our
methods is very general; it includes various types of
social media activities, including textual and non-
textual activities, e.g., a click on a shared photo and
a link formation between two users.

Given the input, we try to infer a state sequence
over these T timestamps: z = (z1, ..., zT ), where
zi is 1 or 0. 1 indicates a time point within a burst
while 0 indicates a non-bursty time point.

3.1 Modeling a Single Activity Stream

3.1.1 Generation function
In probability theory and statistics, the Poisson

distribution2 is a discrete probability distribution
that can measure the probability of a given number
of “activities” occurring in a fixed time interval. We
use the Poisson distribution to study the probability
of observing the number of social media activities,
and we treat one hour as one time interval in this
paper.
Homogeneous Poisson Distribution The genera-
tive probability of the ith number in one activity
stream of type m is defined as f(nm

i , i, zm
i ) =

(λzm
i

)nm
i exp(−λzm

i
)

nm
i ! , where λ0 is the (normal) expec-

tation of the number of activities in one time inter-
val. If one state is bursty, it would emit activities
with a faster rate and result in a larger expectation
λ1. We can set λ1 = λ0 × ρ, where ρ > 1.
Heterogeneous Poisson Distribution The two-state
machine in (Kleinberg, 2003) used two global refer-
ences for all the time intervals: one for bursty and
the other for non-bursty. In our experiments, we ob-
serve temporal patterns of user behaviors, i.e., activ-
ities in some hours are significantly more than those
in the others. Instead of using fixed global rates λ0

and λ1, we try to model temporal patterns of user
behaviors by parameterizing λ(·) with the time in-
dex. By following (Ihler et al., 2006), we use a
set of hour-specific rates {λ1,h}24

h=1 and {λ0,h}24
h=1.3

Given a time index h, we set λ0,h to be the expecta-
tion of the number of activities in hth time interval
every day, then we have λ1,h = λ0,h × ρ. In this
paper, ρ is empirally set as 1.5.

3.1.2 Smoothness of a State Sequence
For burst detection, the major aim is to identify

steady and meaningful bursts and to discard tran-
sient and spurious bursts. Given a state sequence
z1z2...zT , to quantitatively measure the smoothness
and compactness of it, we introduce some measures.

One simple method is to count the number of
change in the state sequence. Formally, we use the
following formula:

g1(z) = T −
T−1∑
i=1

I(zi 6= zi+1), (1)

2http://en.wikipedia.org/wiki/Poisson distribution
3We can also make the rates both day-specific and hour-

specific, i.e., {λ(·),d,h}h∈{1,...,24},d∈{1,...,7}.
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where T is length of the state sequence and I(·)
is an indicator function which returns 1 only if the
statement is true. Let us take the state sequence
“0000100000” (shown in Figure 2(a)) as an example
to see how g1 works. State changes 0pos=4 → 1pos=5

and 1pos=5 → 0pos=6 each incur a cost of 1, there-
fore g1(0000100000) = 10 − 2 = 8. Similarly, we
can get g1(0000000000) = 10. There is a cost dif-
ference between these two sequences, i.e., ∆g1 = 2.
Kleinberg (2003) uses state transition probabilities
to model the smoothness of state sequences. With
simple derivations, we can show that Kleinberg’s
model essentially also uses a cost function that is
linear in terms of the number of state changes in a
sequence, and therefore similar to g1.

In social media, very short noisy bursts like
“0000100000” are very frequent. To discard such
noises, we may multiply g1 by a big cost factor to
punish short-term fluctuations. However, it is not
sensitive to the state context4 and may affect the
detection of meaningful bursts. For example, state
change 0pos=4 → 1pos=5 in “0000111100” would
receive the same cost as that of 0pos=4 → 1pos=5

in “0000100000” although the later is more like a
noise.

To better measure the smoothness of a state se-
quence , we propose a novel context-sensitive func-
tion, which sums the square of the length of the max-
imum subsequences in which all states are the same.
Formally, we have

g2(z1, z2, ..., zT ) =
∑

si<ei

(ei − si + 1)2, (2)

where si and ei are the start index and end in-
dex of the ith subsequence respectively. To define
“maximum”, we have the constraints zsi = zsi+1 =
... = zei , zsi−1 6= zsi , zei 6= zei+1. For example,
g2(0000000000)= 102 = 100, g2(0000100000)=
42 + 12 + 52 = 42, we can see that ∆g2 =
100 − 42 = 58, which is significantly larger than
∆g1(= 2). g2 rewards the continunity of state se-
quences while punish the fluctuating changes, and it
is context-sensitive. State change 0pos=4 → 1pos=5

in “0000111100” receives a cost of 4,5 which is
4Here context refers to the window of hidden state se-

quences.
5Indeed, g2 is not designed for a single state change but for

the overall smoothness patterns, so we choose a referring se-
quence generated by making the corresponding state negative to
compute the cost, i.e., |g2(0000011110)−g2(0000001110)| =
4.

much smaller than that of 0pos=4 → 1pos=5 in
“0000100000”. g2 is also sensitive to the po-
sition of state changes, e.g., g2(0000100000) 6=
g2(0100000000).

3.2 Burst Detection from a Single Activity
Stream

Given an activity stream (nm
1 , ..., nm

T ), we would
like to infer a state sequence over these T times-
tamps, i.e., to find out the most possible state se-
quence z = (zm

1 , ..., zm
T ) based on the data, where

zm
i = 1 or 0. We formulate this problem as

an optimization problem. The cost of a state se-
quence includes two parts: generation of activities
and smoothness of the state sequence. The objective
function is to find a state sequence which incurs the
minimum cost. Formally, we define the total cost
function as

Cost(z) = −
T∑

i=1

log f(nm
i , i, zm

i )︸ ︷︷ ︸
generating cost

+
(
− Φ(zm

1 , ..., zm
T )× γ1

)
︸ ︷︷ ︸

smoothness cost

,

(3)
where γ1 > 0 is a scaling factor which balance these
two parts. Φ(·) function is the smoothness function,
and we can set it as either g1(·) or g2(·).

To seek the optimal state sequence, we can min-
imize Equation 3. However, exact inference is hard
due to the exponential search space. Instead of ex-
amining the smoothness of the whole state sequence,
we propose to measure the smoothness of all the L-
length subsequences, so called “local smoothness”.
The assumption is that the states in a relatively short
time window should not change too much. The new
objective function is defined as

Cost(z) = −
T∑

i=1

log f(nm
i , i, zm

i ) (4)

−
(∑

i≥L

Φ(zm
i , ..., zm

i+L−1)

)
× γ1.

The objective function in Equation 4 can be
solved efficiently by a dynamic programming algo-
rithm shown in Algorithm 1. The time complexity
of this algorithm is O(T · 2L). Note that the meth-
ods we present in Equation 4 and Algorithm 1 are
quite general. They are independent of the concrete
forms of f(·) and Φ(·), which leaves room for flexi-
ble adaptation or extension in specific tasks. In pre-
vious methods (Kleinberg, 2003), L is often fixed as
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2. Indeed, as shown in Figure 2, in some cases, we
may need a longer window to infer the global pat-
terns. In our model, L can be tuned based on real
datasets. We can seek a trade-off between efficiency
and length of context windows.

Algorithm 1: Dynamic Programming for Equation 4.

d[i][s][zi...zi−L+1] denotes the minimum cost of the first1
i timestamps with the state subsequence: zi...zi−L+1 and
zi = s;
set d[0][·][·] = 0;2
set c1[i] = log f(nm

i , i, zm
i );3

set c2[i] = Φ(zi, ..., zi−L+1);4
b, b′: previous and current state window are represented as5
L-bit binary numbers;

for i = 1 to T do6
for s = 0 to 1 do7

for b = 0 to 2L − 1 do8
b′ = (b << 1|s)&(1 << L− 1);9
d[i][s][b′]←−10
min(d[i][s][b′], d[i−1][s][b]+c1[i]+c2[i]);

end11
end12

end13

3.3 Correlating Multiple Activity Streams

In this section, we discuss how to correlate multi-
ple activity streams to learn a global bursty patterns.
The hidden state sequences corresponding to these
activity streams are not fully independent. An ex-
ternal event may intricate surges in multiple activity
streams simultaneously.

We propose to correlate multiple activity streams
in an optimization model. The idea is that activ-
ity streams related with one query might be depen-
dent, i.e., the states of multiple activity streams on
the same timestamp tend to be the same6; if not,
it would incur a cost. To implement this idea, we
develop an optimization model. For convenience,
we call the states of each activity stream as “local
states” while the overall states learnt from multiple
activity streams as “global states”.

The idea is that although various activity streams
are different in the scale of frequencies, they tend to
share similar trend patterns. We incorporate the cor-
relation between local states on the same timestamp.

6In our experiments, we compute the cross correlation be-
tween different streams with a lag factor δ, we find the cross
correlation achieves maximum consistantly when δ = 0.

Formally, we have

Cost(Z) =

M∑
m=1

{
−

T∑
i=1

log f(nm
i , i, zm

i )

−
∑
i≥L

Φ(zm
i , ..., zm

i+L−1)× γ1

}

+

T∑
i=1

∑
m1,m2

I(zm1
i 6= zm2

i )× γ2, (5)

where I(·) is indicator function, and γ2 is the cost
when a pair of states are different across multiple
streams on the same timestamp.

The objective function in Equation 5 can be
solved by a dynamic programming algorithm pre-
sented in Algorithm 2. The time complexity of this
algorithm is O(T · 2M ·L+M ). Generally, L can be
set as one small value, e.g., L =2 to 6, and we can
select just a few representative activity streams, i.e.,
M =2 to 6. In this case, the algorithm can be effi-
cient.

Algorithm 2: Dynamic Programming for Equation 5.

d[i][z1
i ...z1

i−L+1; ...; z
M
i ...zM

i−L+1] denotes the minimum1
cost of the first i timestamps with the local state
subsequence zm

i ...zm
i−L+1 in the mth stream;

set d[0][...] = 0;2

bl, bl′ : previous and current state windows represented as3
M · L-bit binary numbers;
c[i, bl, bl′ ] denotes all the cost in the tth timestamp;4

for i = 1 to T do5
for bl = 0 to 2M·L − 1 do6

deriving current local state sequences bl′ from bl;7
d[i][b′l]←−8

min(d[i][bl′ ], d[i− 1][bl] + c[i, bl, bl′ ]);
end9

end10

Given M types of activity streams, we can get
M (local) state sequences {(zm

1 , ..., zm
T )}M

m=1. The
next question is how to learn a global state sequence
(zG

1 , ..., zG
T ) based on local state sequences. Here we

give a few options:
CONJUNCT: we set a global state zi as bursty if

all local states are bursty, i.e., zG
i = ∩M

m=1z
m
i .

DISJUNCT: we set a global state zi as bursty if
one of the local states is bursty, i.e., zG

i = ∪M
m=1z

m
i .

BELIEF: we set a global state zi as the most con-
fident local state, i.e., zG

i = argmaxmbelief(zm
i ).

The belief(·) function can be defined as the ratio be-
tween generating costs from states zm

i and 1 − zm
i :

belief(zm
i ) = f(nm

i ,i,zm
i )

f(nm
i ,i,1−zm

i ) .
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Table 2: Basic statistics of our golden test collection.
# of queries 17

Aver. # of event-related bursts per query 19
Min. bursty interval 3 hours
Max. bursty interval 163 hours
Aver. bursty interval 17.8 hours

L2G: we treat the states of one local stream as the
global states.

4 Experiments

4.1 Construction of Test Collection
We test our algorithms on a large Twitter dataset,
which contains about 200 million tweets and ranges
from July, 2009 to December 2009. We manually
constructed a list of 17 queries that have high vol-
umes of relevant tweets during this period. These
queries have a very broad coverage of topics. Exam-
ple queries are “Barack Obama”, “Apple”, “Earth-
quake”, “F1” and “Nobel Prize”. For each query, we
invite two senior graduate students to manually iden-
tify their golden bursty intervals, and each bursty in-
terval is represented as a pair of timestamps in terms
of hours. Specifically, to generate the golden stan-
dard, given a query, the judges first manually gen-
erate a candidate list of external events7; then for
each event, they look into the tweets within the cor-
responding period and check whether there is a surge
on the frequency of tweets. If so, the judges fur-
ther determine the start timepoint and end timepoint
of it. If there is a conflict, a third judge will make
the final decision. We used Cohen’s kappa coeffi-
cient to measure the agreement of between the first
two judges, which turned out to be 0.67, indicating a
good level of agreement8. We present basic statistics
of the test collection in Table 2.

4.2 Evaluation Metrics
Before introducing our evaluation metrics, we first
define the Bursty Interval Overlap Ratio (BIOR)

BIOR(f,X ) =

∑
f ′∈X ∆l(f, f ′)

L(f)
,

f is a bursty interval, ∆l(f, f ′) is the length of
overlap between f ′ and f , L(f) is the length of

7We refer to some gold news resources, e.g., Google News
and Yahoo! News.

8http://en.wikipedia.org/wiki/Cohen’s kappa

Figure 3: Examples to illustrate BIOR. X0, X1

and X2 are three sets of bursty intervals. X0

and X2 consist of one interval, and X1 consists of
two intervals. BIOR(f,X0)=1, BIOR(f,X1)=0.5 and
BIOR(f,X2)=0.5.

bursty period of f . X is a set of bursty intervals,
BIOR measures the proportion of the timestamps in
f which are covered by one of bursty intervals in
X . We use BIOR to measure partial match of inter-
vals, because a system may not return all the exact
bursty intervals9. We show some examples of BIOR
in Figure 3.

We use modified Precision, Recall and F as ba-
sic measures. Given one query, P, R and F can be
defined as follows

R =

∑
f∈B I

(
1

|Mf |BIOR(f,M) > 0.5

)
|B|

,

P =
1
|M|

∑
f ′∈M

(BIOR(f ′,B)),

F =
2× P ×R

P + R
,

where M is the set of bursty intervals identified
by one candidate method, B is the set of bursty in-
tervals in golden standards, and Mf is the set of in-
tervals which overlap with f in M. We incorporate
the factor 1

|Mf | in Recall to penalize the incontin-
uous coverage of the golden interval, and we also
require that the overlap ratio with penalized factor
is higher than a threshold of 0.5. Given two sets of
bursty intervals which have the same value of BIOR,
we prefer the one with fewer intervals. In Figure 3,
we can easily derive X1 and X2 have the same value

9A simple evaluation method is that we label each one hour
time slot as being part of a burst or not and compare with the
gold standard. However, in our experiments, we find that some
methods tend to break one meaningful burst into small parts and
easier to be affected by small fluctuations although they may
have a good coverage of bursty points. This is why we adopt a
different evaluation approach.
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Table 3: Average cross-correlation between different
streams.

St Sr Su

St 1 0.830235 0.851514
Sr 0.830235 1 0.59905
Su 0.851514 0.59905 1

of BIOR, when computing Recall, we prefer X2 to
X1 since X2 consists of only one complete inter-
val while X1 consists of two inconsecutive intervals.
I(·) is an indicator function which returns 1 only if
the statement if true. In our experiments, we use the
average of R, P and F over all test queries.

4.3 Experiment Setup
Selecting activity streams

We consider three types of activity streams in
Twitter: 1) posting a tweet, denoted as St; 2) for-
warding a tweet (retweet), denoted as Sr; 3) post-
ing a URL-embedded tweet, denoted as Su. It is
natural to test the performance of St in discover-
ing bursty patterns, while Su and Sr measure the
influence of external events on users in Twitter in
two different aspects. Sr: An important convention
in Twitter is the “retweeting” mechanism, through
which users can actively spread the news or related
information; Su: Another characteristic of Twitter is
that the length of tweets is limited to 140 characters,
which constrains the capacity of information. Users
often embed a URL link in the tweets to help others
know more about the corresponding information.

We compute the average cross correlation be-
tween different activity streams for these 17 queries
in our test collection, and we summarize the results
in Table 3. We can see that both Sr and Su have a
high correlation with St, and Sr has a relatively low
correlation with Su. 10

Methods for comparisons
S(·): using Equation 4 and considers a single ac-

tivity stream, namely St, Su and Sr.
MBurst(·): using Equation 5 and considers mul-

tiple activity streams.
To compare our methods with previous methods,

we adopt the following baselines:
StateMachine: This is the method proposed

in (Kleinberg, 2003). We use heterogeneous Poisson
10We also consider the frequencies of unique users by hours,

however, we find it has a extremely high correlation coefficient
with St, about 0.99, so we do not incorporate it.

function as generating functions instead of binomial
function Cn

k because sometimes it is difficult to get
the exact total number n in social media.

Threshold: If we find that the count in one time
interval is higher than a predefined threshold, it is
treated as a burst. The threshold is set as 1.5 times
of the average number.

PeakFinding: This is the method proposed
in (Marcus et al., 2011), which aims to automatically
discover peaks from tweets.

Binomial: This is the method proposed in (Fung et
al., 2007a), which uses a cumulative binomial distri-
bution with a base probability estimated by remov-
ing abnormal frequencies.

As for multiple-stream burst detection, to the best
of our knowledge, the only existing work is pro-
posed by (Yao et al., 2010), which is supervised and
requires a considerable amount of training time, so
we do not compare our work with it. We compare
our method with the following heuristic baselines:

SimpleConjunct: we first find the optimal state se-
quences for each single activity stream. We then de-
rive a global state sequence by taking the conjunc-
tion of all local states.

SimpleDisjunct: we first find the optimal state se-
quences for each single activity stream, and then we
derive a global state sequence by take the disjunction
of all local states.

Another possible baseline is that we first merge
all the activities, then apply the single-stream algo-
rithm. However, in our data set, we find that the
number of activities in St is significantly larger than
that of the two types. St dominantly determines the
final performance, so we do not incorporate it here
as a comparison.

4.4 Experimental Results

Preliminary results on a single stream
We first examine the performance of our proposed

method on a single stream. Note that, our method
in Equation 4 has two merits: 1) the length of lo-
cal window can be tuned on different datasets; 2) a
novel state smoothness function is adopted.

We set the Φ function in Equation 4 respectively
as g1 and g2, and apply our proposed methods to
three streams (St,Sr,Su) mentioned above. Note
that, when L = 2 and Φ = g1, our method becomes
the algorithm in (Kleinberg, 2003). We tune the pa-
rameter γ1 in Equation 4 from 2 to 20 with a step of
2. We record the best F performance and compute
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the corresponding standard deviation. In Table 5, we
can observe that 1) streams St and Sr perform better
than Su; 2) the length of local window significantly
affects the performance; 3) g2 is much better than g1

in our proposed burst detection algorithm; 4) gen-
erally speaking, a longer window size (L = 3, 4)
performs better than the most common used size 2
in (Kleinberg, 2003).

We can see that our proposed method is more ef-
fective than the other baselines. The major reason is
that none of these methods consider state smooth-
ness in a systematic way. In our preliminary ex-
periments, we find that these baselines usually out-
put a lot of bursts, most of which are broken mean-
ingful bursts. To overcome this, baseline method
StateMachine (g1 + L = 2) requires larger ρ and
γ1, which may discard relatively small meaningful
bursts; while our proposed single stream method
(g2 + L = 3, 4) tends to identify steady and con-
secutive bursts through the help of longer context
window and context sensitive smoothness function
g2, it is more suitable to be applied to social media
for burst detection.

Compared with the other baselines, (Kleinberg,
2003) is still one good and robust baseline since it
models the state smoothness partially. These prelim-
inary findings indicate that state smoothness is very
important for burst detection, and the length of state
context window will affect the performance signifi-
cantly.

To get a deep analysis of the performance of dif-
ferent streams, we set up three classes, and each
class corresponds to a single stream. Since for each
query, we can obtain multiple results in different ac-
tivity streams, we further categorize the 17 anno-
tated queries to the stream which leads to the opti-
mal performance on that query. Interestingly, we can
see: 1) the url stream gives better performance on
queries about big companies because users in Twit-
ter usually talk about the release of new products
or important evolutionary news via url-embedded
tweets; 2) the retweet stream gives better perfor-
mance on queries which correspond to unexpected
or significant events, e.g., diasters. It is consistent
with our intuitions that users in Twitter do actively
spread such information. Combining previous anal-
ysis of Table 5, overall we find the retweet stream is
more capable to identify bursts which correspond to
significant events.

Table 4: Categorization of 17 queries according to the
optimal performance.

Streams Queries
url Apple,Microsoft,Nokia, climate

retweet bomb,crash,earthquake,typhoon,
F1,Google,Olympics

all tweet Amazon, eclipse, Lakers,
NASA, Nobel Prize, Barack Obama

Table 5: Performance (average F) on a single stream.
“??” indicates that the improvement our proposed single-
stream methodg2,L=4 over all the other baselines is ac-
cepted at the confidence level of 0.95, i.e., StateMachine,
PeakingFinding, Binomial and Threshold.

Φ L St Sr Su

4 0.545/0.015 0.543/0.037 0.451/0.036
g2 3 0.536/0.013 0.549??/0.019 0.464/0.025

2 0.468/0.055 0.542/0.071 0.455/0.045
4 0.513/0.059 0.546/0.058 0.465/0.047

g1 3 0.469/0.055 0.542/0.071 0.455/0.045
2 0.396/0.043 0.489/0.074 0.374/0.035

StateMachine 0.396 0.489 0.374
PeakFinding 0.410 0.356 0.302

Binomial 0.315 0.420 0.341
Threshold 0.195 0.181 0.175

Preliminary results on multiple streams
After examining the basic results on a single

stream, we continue to evaluate the performance of
our proposed models on multiple activity streams.
For MBurst in Equation 5, we have three parame-
ters to set, namely L, γ1 and γ2. We do a grid search
for both γ1 and γ2 from 1 to 12 with a step of 1, and
we also examine the performance when L = 2, 3, 4.
We can see that MBurst has four candidate meth-
ods to derive global states from local states; for L2G,
we use the states of St as the final states, and we em-
pirically find that it performs best compared with the
other two streams in L2G.

Recall that our proposed single-stream method
is better than all the other single-stream baselines,
so here single-best denotes our method in Equa-
tion 4 (Φ = g2, L = 4) on Sr. For SimpleConjunct
and SimpleDisjunct, we first find the optimal state
sequences for each single activity stream using our
proposed method in Equation 4 (Φ = g2, L = 4),
and then we derive a global state sequence by take
the conjunction or disjunction of all local states re-
spectively.

Besides the best performance, we further compute
the average of the top 10 results of each method
by tuning parameters to check the average perfor-
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Table 6: Performance (average F) on multiple streams.
“?” indicates that the improvement our proposed
multiple-stream method over our proposed single-stream
method at the confidence level of 0.9 in terms of average
performance.

Methods best average
single-best (g2 + Sr) 0.549 0.526

SimpleConjunct 0.548 -
SimpleDisjunct 0.465 -

MBurst+CONJUNCTr,t,u 0.555 0.548
MBurst+DISJUNCTr,t,u 0.576 0.570?

MBurst+BELIEFr,t,u 0.568 0.561
MBurst+L2Gr,t,u(t) 0.574 0.567
MBurst+L2Gr,t,u(r) 0.560 0.558

mance. The average performance can show the sta-
bility of models in some degree. If one model out-
puts the maximum in a very limited set of parame-
ters, it may not work well in real data, especially in
social media.

In Table 6, we can see MBurst+DISJUNCTr,t,u

gives the best performance. MBurst performs
consistently better than single-best which is a very
strong single-stream method, especially for average
performance. MBurst+DISJUNCTr,t,u has an im-
provement of average performance over single-best
by 8.4%. And simply combining three different
streams may hit results (SimpleConjunct and Sim-
pleDisjunct). It indicates that MBurst is more sta-
ble and shows a higher performance.

For different methods to derive global bursty pat-
terns, we can see that MBurst+DISJUNCT per-
forms best while MBurst+CONJUNCT performs
worst. Interestingly, however, SimpleConjunct is
better than SimpleDisjunct, the major reason is that
MBurst performs a local-state correlation of mul-
tiple activity streams to correct possible noisy fluc-
tuations from single streams before the conjunction
or disjunction of local states. After such correlation,
the performance of each activity stream should im-
prove. To see this, we present the optimal results of a
single stream without/with local-state correlation in
Table 7. Local-state correlation significantly boosts
the performance of a single stream. Indeed, we find
that the step of local-state correlation is more impor-
tant for our multiple stream algorithm than the step
of how to derive global states based on local states.

We test our MBurst algorithm with the setting:
T = 4416, L = 4 and M = 3, and for all the test

Table 7: Comparison between the optimal results of a
single stream with/without local-state correlation.

all retweet retweet url
without 0.536 0.549 0.464

with 0.574 0.560 0.547
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Figure 4: Parameter sensitivity of MBurst + DIS-
JUNCT.

queries, our algorithm can respond in 2 seconds 11,
which is efficient to be deployed in social media.

Parameter sensitivity
We have shown the performance of different pa-

rameter settings for single stream algorithm in Ta-
ble 5. Next, we check parameter sensitivity in
MBurst. In our experiments, we find a longer lo-
cal window (L = 3, 4) is better than L = 2, so
we first set L = 4, then we select parameter set-
tings of γ2 = 4 and γ1 = 11, which give best per-
formance for MBurst+DISJUNCT. We vary one
with the other fixed to see how one single parame-
ter affects the performance. The results are shown in
Figure 4, and we can see MBurst+DISJUNCT is
consistently better than single-best.

5 Related Work

Our work is related to burst detection from text
streams. Pioneered by the automaton model pro-
posed in (Kleinberg, 2003), many techniques have
been proposed for burst detection such as the χ2-
test based method (Swan and Allan, 2000), the
parameter-free method (Fung et al., 2005) and mov-
ing average method (Vlachos et al., 2004). Our work
is related to the applications of these burst detection
algorithms for event detection (He et al., 2007; Fung
et al., 2007b; Shan et al., 2012; Zhao et al., 2012).

11All experiments are tested in a Mac PC, 2.4GHz Intel Core
2 Duo.
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Some recent work try to identify hot trends (Math-
ioudakis and Koudas, 2010; Zubiaga et al., 2011;
Budak et al., 2011; Naaman et al., 2011) or make
use of the burstiness (Sakaki et al., 2010; Aramki
et al., 2011; Marcus et al., 2011) in social media.
However, few of these methods consider modeling
the local smoothness of one state sequence in a sys-
tematic way and often use a fixed window length of
2.

Little work considers making use of different
types of social media activities for burst detection.
(Yao et al., 2010; Kotov et al., 2011; Wang et al.,
2007; Wang et al., 2009) conducted some prelim-
inary studies of mining correlated bursty patterns
from multiple sources. However, they either highly
relies on high-quality training datasets or require a
considerable amount of training time. Online social
activities are dynamic, with a large number of new
items generated continuously. In such a dynamic
setting, burst detection algorithms should effectively
collect evidence, efficiently adjust prediction models
and respond to the users as social media activities
evolve. Therefore it is not suitable to deploy such
algorithms in social media.

Our work is also similar to studies which aim
to mine and leverage knowledge from social me-
dia (Mathioudakis et al., 2010; Ruiz et al., 2012;
Morales et al., 2012). We share the common point
with these studies that we try to utilize the under-
lying rich knowledge in social media, while our fo-
cus of this work is quite different from theirs, i.e., to
identify event-related bursts.

Another line of related research is Twitter related
studies (Kwak et al., 2010; Sakaki et al., 2010). Our
proposed methods can provide event-related bursts
for downstream applications.

6 Conclusion

In this paper, we propose to identify event-related
bursts via social media activities. We propose one
optimization model to correlate multiple activity
streams to learn the bursty patterns. To better mea-
sure local smoothness of the state sequence, we pro-
pose a novel state cost function. We test our meth-
ods in a large Twitter dataset. The experiment re-
sults show that our methods are both effective and
efficient. Our work can provide a preliminary un-
derstanding of the correlation between the happen-
ings of events and the degree of online social media
activities.

Finally, we present a few promising directions
which may potentially improve or enrich current
work.

1) Variable-length context. In this paper, L is a
pre-determined parameter which controls the size of
context window. It cannot be modified when the al-
gorithm runs. A large L will significantly increases
the algorithm complexity, and we may not need a
large L for all the states in a Markov chain. This
problem can be addressed by using the variable-
length hidden Markov model (Wang et al., 2006),
which is able to learn the “minimum” context length
for accurately determining each state.

2) Incorporation of more useful features. Our
current model mainly considers temporal variations
of streaming data and searches the surge patterns ex-
isting in it. In some cases, simple frequency infor-
mation may not be capable to identify all the mean-
ingful bursts. It can be potentially useful to leverage
up more features to help filter out noisy bursts, e.g.,
semantic information (Zhao et al., 2010).

3) Modeling multi-modality data. We have ex-
amined our multi-stream algorithm by using three
different activity streams. These streams are textual-
based. It will be interesting to check our algorithm in
multi-modality data streams. E.g., in Facebook, we
may collect a stream consisting of the daily frequen-
cies of photo sharing and another stream consisting
of the daily frequencies of text status updates.

4) Evaluation of the identified bursts. In most
of previous work, they seldom construct a gold stan-
dard for quantitative test, instead they qualitatively
evaluate their methods. In our work, we invite hu-
man judges to generate the gold standard. It is time-
consuming, and the bias from human judges cannot
be completely eliminated although more judges can
be invited. A possible evaluation method is to exam-
ine the identified bursts in downstream applications,
e.g., event detection.
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Zürich, 8004 Switzerland
katjaf@google.com

Abstract

We consider the task of predicting the gender
of the YouTube1 users and contrast two infor-
mation sources: the comments they leave and
the social environment induced from the af-
filiation graph of users and videos. We prop-
agate gender information through the videos
and show that a user’s gender can be predicted
from her social environment with the accuracy
above 90%. We also show that the gender can
be predicted from language alone (89%). A
surprising result of our study is that the latter
predictions correlate more strongly with the
gender predominant in the user’s environment
than with the sex of the person as reported in
the profile. We also investigate how the two
views (linguistic and social) can be combined
and analyse how prediction accuracy changes
over different age groups.

1 Introduction

Over the past decade the web has become more and
more social. The number of people having an iden-
tity on one of the Internet social networks (Face-
book2, Google+3, Twitter4, etc.) has been steadily
growing, many users communicate online on a daily
basis. Their interactions open new possibilities for
social sciences, and linguistics is no exception. For
example, with the development and growth of Web
2.0, it has become possible to get access to masses
of text data labeled with respect to different social

1www.youtube.com
2www.facebook.com
3www.plus.google.com
4www.twitter.com

parameters such as country, age, gender, profession
or religion. The study of language varieties between
groups separated by a certain social variable belongs
to the field of sociolinguistics which more generally
investigates the effect of society on how language is
used (Coulmas, 1998). Historically, sociolinguistics
is connected to dialectology whose focus has been
primarily on the phonetic aspect of the regional di-
alects but was later extended to sociolects (Cham-
bers & Trudgill, 1998). A usual study would involve
sampling speakers from a population, interviewing
them and analyzing the linguistic items with respect
to social variables (Hudson, 1980).

The last decade has seen several studies inves-
tigating the relationship between the language and
the demographics of the users of blogs or Twitter
(see Sec. 2 for references). Most of those studies
used social network sites to collect labeled data–
samples of text together with the demographics vari-
able. However, they did not analyse how social en-
vironment affects language, although very similar
questions have been recently posed (but not yet an-
swered) by Ellist (2009). In our work we attempt to
address precisely this issue. In particular, we con-
sider the task of user gender prediction on YouTube
and contrast two information sources: (1) the com-
ments written by the user and (2) her social neigh-
borhood as defined by the bipartite user-video graph.
We use the comments to train a gender classifier on
a variety of linguistic features. We also introduce a
simple gender propagation procedure to predict per-
son’s gender from the user-video graph.

In what follows we will argue that although lan-
guage does provide us with signals indicative of the
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user’s gender5 (as reported in the user’s profile), it
is in fact more indicative of a socially defined gen-
der. Leaving aside the debate on the intricate rela-
tionship between language and gender (see Eckert &
McConnell-Ginet (2003) for a thorough discussion
of the subject), we simply demonstrate that a classi-
fier trained to predict the predominant gender in the
user’s social environment, as approximated by the
YouTube graph of users and videos, achieves higher
accuracy for both genders than the one trained to
predict the user’s inborn gender. We also investi-
gate ways of how the language-based and the so-
cial views can be combined to improve prediction
accuracy. Finally, we look at three age groups –
teenagers, people in their twenties and people over
thirty – and show that gender identity is more evi-
dent in the language of younger people but also that
there is a higher correlation between their inborn
gender and the predominant gender in their social
environment.

The paper is organized as follows: we first re-
view related work on the language of social media
and user demographics (Sec. 2) and elaborate on the
goals of our research (Sec. 3). Then we describe
our data (Sec. 4), introduce the demographics prop-
agation experiments (Sec. 5) and the experiments on
supervised learning gender from language (Sec. 6).

2 Related work

Previous studies on language and demographics
which looked at online data can be distinguished
with respect to their aims. (1) Studies coming from
the sociolinguistic community aim at empirically
confirming hypotheses, such as that female speakers
use more pronouns, or that males tend to use longer
words. (2) A standard goal of an NLP study is to
build an automatic system which accurately solves
a given task which in the case of demographics is
predicting user age, gender or country of origin. In
this section we start by reviewing the first kind of
studies, which are about data analysis and hypothe-
ses checking. These are relevant for our choice of
features. Then we briefly summarize a selection of

5Although it might be more correct to talk about the user’s
sex in place of gender (Eckert & McConnell-Ginet, 2003), we
stick to the terminology adopted in previous NLP research on
gender prediction.

studies on demographics prediction to better situate
and motivate our approach.

2.1 Language and demographics analysis

Previous sociolinguistic studies mostly checked hy-
potheses formulated before the widespread use of
the Internet, such as that women use hedges more
often (Lakoff, 1973) or that men use more negations
(Mulac et al., 2000), or looked at specific words or
word classes. Newman et al. (2008) provide a com-
prehensive review of such work and a description of
the non-web corpora used therein. Some of those
hypotheses were confirmed by empirical evidence,
some not.

For example, Herring & Paolillo (2006) analyse
gender- and genre-specific use of language in on-
line communication on a sample of about 130 blog
entries. Looking at a number of stylistic features
which had previously been claimed to be predic-
tive of gender (Argamon et al., 2003; Koppel et al.,
2004), such as personal pronouns, determiners and
other function words, they find no gender effect. Un-
like them, Kapidzic & Herring (2011) analyse re-
cent chat communications and find that they are gen-
dered. Similarly, Huffaker & Calvert (2005) inves-
tigate the question of identity of teenager bloggers
(e.g., age, gender, sexuality) and find language fea-
tures indicative of gender (e.g., use of emoticons by
males). Burger & Henderson (2006) consider the
relationship between different linguistic (e.g., text
length, use of capital and punctuation letters) and
non-linguistic (e.g., interests, mood) features and
blogger’s age and location. They find that many fea-
tures correlate with the age and run an experiment
with the goal of predicting whether the blog author
is over 18.

2.2 Demographics prediction from language

The studies we review here used supervised ma-
chine learning to obtain models for predicting gen-
der or age. Other demographic attributes, like lo-
cation, ethnicity, or educational level, have also
been predicted automatically (Gillick, 2010; Rao &
Yarowsky, 2011, inter alia). Also, generative ap-
proaches have been applied to discover associations
between language and demographics of social media
users (Eisenstein et al., 2011, inter alia) but these are
of less direct relevance for the present work. For su-
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pervised approaches, major feature sources are the
text the user has written and also her profile which
may list the name, interests, friends, etc. There have
also been studies which did not look at the language
at all but considered the social environment only.
For example, MacKinnon & Warren (2006) aim at
predicting the age and the location of the LiveJour-
nal6 users. What they found is that there is a remark-
able correlation between the age and the location of
the user and those of her friends, although there are
interesting exceptions.

Burger et al. (2011) train a gender classifier on
tweets with word and character-based ngram fea-
tures achieving accuracy of 75.5%. Adding the full
name feature alone gives a boost to 89.1%, fur-
ther features like self-written description and screen
name further help to get 92%. Also, a self-training
method exploring unlabeled data is described but its
performance is worse. Other kinds of sociolinguistic
features and a different classifier have been applied
to gender prediction on tweets by Rao & Yarowsky
(2010).

Nowson & Oberlander (2006) achieve 92% accu-
racy on the gender prediction task using ngram fea-
tures only. Their corpus consist of 1,400/450 posts
written by 47 females and 24 males, respectively.
However, the ngram features were preselected based
on whether they occurred with significant relative
frequency in the language of one gender over the
other. Since the complete dataset was used to pre-
select features, the results are inconclusive.

Yan & Yan (2006) train a Naive Bayes classifier
to predict the gender of a blog entry author. In to-
tal they looked at 75,000 individual blog entries au-
thored by 3,000 bloggers, all of them posted their
genders on the profile page. They measure precision
and recall w.r.t. the minority class (males) and get
the best f-measure of 0.64 (precision and recall are
65% and 71%, respectively).

Rosenthal & McKeown (2011) predict the age of
a blogger, most features they use are extracted from
the blog posts, other features include blogger’s inter-
ests, the number of friends, the usual time of post-
ing, etc. Similarly to Schler et al. (2006), they run
a classification experiment with three age classes re-
moving intermediate ages and use the majority-class

6www.livejournal.com

baseline for comparison. In their other experiment
they experiment with a binary classifier for age dis-
tinguishing between the pre- and post-social media
generations and using the years from 1975-1988 as a
boundary. The prediction accuracy increases as later
years are taken.

Interestingly, it has been shown that demograph-
ics can be predicted in more restricted genres than
the personal blog or tweets and from text frag-
ments even shorter than tweets (Otterbacher, 2010;
Popescu & Grefenstette, 2010).

3 Motivation for the present study

Similarly to previous NLP studies, our starting goal
is to predict the self-reported user gender. The first
novelty of our research is that in doing so we con-
trast two sources of information: the user’s social
environment and the text she has written. Indeed,
a topic which has not yet been investigated much
in the reviewed studies on language and user demo-
graphics is the relationship between the language of
the user and her social environment. The data analy-
sis studies (Sec. 2.1) verified hypotheses concerning
the dependency between a language trait (e.g., aver-
age sentence length) and a demographic parameter
(e.g., gender). The demographics prediction studies
(Sec. 2.2) mostly relied on language and user pro-
file features and considered users in isolation. An
exception to this is Garera & Yarowsky (2009) who
showed that, for gender prediction in a dialogue, it
helps to know the interlocutor’s gender. However,
we aim at investigating the impact of the social en-
vironment in a much broader sense than the immedi-
ate interlocutors and in a much broader context than
a conversation.

Language is a social phenomenon, and it is this
fact that motivates all the sociolinguistic research.
Many if not most language traits are not hard-wired
or inborn but can be explained by looking at who
the person interacts most with. Since every lan-
guage speaker can be seen as a member of multiple
overlapping communities (e.g., computer scientists,
French, males, runners), the language of the person
may reflect her membership in different communi-
ties to various degrees. Repeated interactions with
other language speakers influence the way the per-
son speaks (Baxter et al., 2006; Bybee, 2010), and
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the influence is observable on all the levels of the
language representation (Croft, 2000). For exam-
ple, it has been shown that the more a person is in-
tegrated in a certain community and the tighter the
ties of the social network are, the more prominent
are the representative traits of that community in
the language of the person (Milroy & Milroy, 1992;
Labov, 1994). In our study we adopt a similar view
and analyse the implications it has for gender pre-
diction. Given its social nature, does the language
reflect the norms of a community the user belongs
to or the actual value of a demographic variable?

In our study we address this issue with a particular
modeling technique: we assume that the observed
online behavior adequately reflects the offline life of
a user (more on this in Sec. 4 and 5) and based on
this assumption make inferences about the user’s so-
cial environment. We use language-based features
and a supervised approach to gender prediction to
analyse the relationship between the language and
the variable to be predicted. To our knowledge, we
are the first to question whether it is really the in-
born gender that language-based classifiers learn to
predict. More concrete questions we are going to
suggest answers to are as follows:

1. Previous studies which looked at online data re-
lied on self-reported demographics. The pro-
file data are known to be noisy, although it is
hard to estimate the proportion of false profiles
(Burger et al., 2011). Concerning the predic-
tion task, how can we make use of what we
know about the user’s social environment to re-
duce the effect of noise? How can we bene-
fit from the language samples from the users
whose gender we do not know at all?

2. When analyzing the language of a user, how
much are its gender-specific traits due to the
user’s inborn gender and to which extent can
they be explained by her social environment?
Using our modeling technique and a language-
based gender classifier, how is its performance
affected by what we know about the online so-
cial environment of the user?

3. Concerning gender predictions across different
age groups, how does classifier performance

change? Judging from the online communica-
tion, do teenagers signal their gender identity
more than older people? In terms of classifier
accuracy, is it easier to predict a teenager’s gen-
der than the gender of an adult?

The final novelty of our study is that we are the
first to demonstrate how YouTube can be used as
a valuable resource for sociolinguistic research. In
the following section we highlight the points which
make YouTube interesting and unique.

4 Data

Most social networks strive to protect user privacy
and by default do not expose profile information or
reveal user activity (e.g., posts, comments, votes,
etc.). To obtain data for our experiments we use
YouTube, a video sharing site. Most of the YouTube
registered users list their gender, age and location on
their profile pages which, like their comments, are
publicly available. YouTube is an interesting domain
for sociolinguistic research for several reasons:

High diversity: it is not restricted to any particular
topic (e.g., like political blogs) but covers a vast va-
riety of topics attracting a very broad audience, from
children interested in cartoons to academics watch-
ing lectures on philosophy7.

Spontaneous speech: the user comments are ar-
guably more spontaneous than blogs which are more
likely to conform to the norms of written language.
At the same time they are less restricted than tweets
written under the length constraint which encour-
ages highly compressed utterances.

Data availability: all the comments are publicly
available, so we have do not get a biased subset of
what a user has written for the public. Moreover,
we observe users’ interactions in different environ-
ments because every video targets particular groups
of people who may share origin (e.g., elections in
Greece) or possession (e.g., how to unlock iPhone)
or any other property. Some videos attract a well-
defined group of people (e.g., the family of a new-
born child), whereas some videos appeal to a very
broad audience (e.g., a kitten video).

7For more information and statistics see the official
YouTube demographics on http://www.youtube.com/
yt/advertise/affinities.html.
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female male nn
26% 62% 12%

Table 1: Gender distribution for the extracted 6.9M users.

From the users, videos and the comment relation-
ship we build an affiliation graph (Easley & Klein-
berg, 2010): a user and a video are connected if the
user commented on the video (Fig. 1(a)). Our graph
is unweighted although the number of comments
could be used to weight edges. The co-comment
graph is a stricter version of a more popular co-view
graph used in, e.g., video recommendation studies
(Baluja et al., 2008, inter alia).

We obtained a random sample of videos by con-
sidering all the videos whose YouTube ID has a spe-
cific prefix8. From those, we collected the profiles of
the users whose commented on the videos. In total,
we extracted about 6.9M profiles of users who have
written at least 20 comments, not more than 30 com-
ments were collected for every user. The threshold
on the minimum number of comments is set in or-
der to reduce the proportion of users who have used
YouTube only a few times and possibly followed
the suggestions of the site in their video choice.
The users’ gender distributions is presented in Table
1. Although females, in particular teenagers, have
been reported to be more likely to blog than males
(Herring et al., 2004), males are predominant in our
dataset. A random sample from a pool of users with-
out the 20-comments threshold showed that there are
more male commenters overall, although the differ-
ence is less remarkable for teenagers: 58% of the
teenagers with known gender are male as opposed
to 74% and 79% for the age groups 20-29 and 30+.
Teenagers are also more numerous accounting for
about 35% in our data.

Although we did not filter users based on their lo-
cation or mother tongue as many users comment in
multiple languages, the comment set is overwhelm-
ingly English.

8The YouTube API (http://code.google.com/
apis/youtube/getting_started.html) can be used
to retrieve user profiles and video metadata as well as the com-
ments.

5 Gender propagation

We first consider the user’s social environment to see
whether there is any correlation between the gender
of a user and the gender distribution in her vicinity,
independent of the language. We use a simple prop-
agation procedure to reach the closest neighbors of
a user, that is, other users “affiliated” with the same
videos. Specifically, we perform the following two
steps:

1. We send the gender information (female, male
or unknown) to all the videos the user has com-
mented on. This way for every video we obtain
a multinomial distribution over three classes
(see Fig. 1(b)).

2. We send the gender distributions from every
video back to all the users who commented on
it and average over all the videos the user is
connected with (see Fig. 1(c)). However, in do-
ing so we adjust the distribution for every user
so that her own demographics is excluded. This
way we have a fair setting where the original
gender of the user is never included in what
she gets back from the connected videos. Thus,
the gender of a user contributes to the vicinity
distributions of all the neighbors but not to her
own final gender distribution.

In line with our motivation and modeling tech-
nique, we chose such a simple method (and not,
say, classification) in order to approximate the of-
fline encounters of the user: does she more often
meet women or men? The way we think of the
videos is that they correspond to places (e.g., a cin-
ema, a cosmetic shop, a pub) visited by the user
where she is unintentionally or deliberately exposed
to how other speakers use the language. Similar to
Baxter et al. (2006), we assume that these encoun-
ters influence the way the person speaks. Note that
if the user’s gender has no influence on her choice
of videos, then, on average, we would expect every
video to have the same distribution as in our data
overall: 62% male, 26% female and 12% unknown
(Table 1).

To obtain a single gender prediction from the
propagated distribution, for a given user we select
the gender class (female or male) which got more
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(a) Color represents gender information:
blue=male, red=female, grey=unknown.

(b) Propagating gender from users to
videos.

(c) Propagating gender distribution from
videos to users.

Figure 1: Affiliation graph of users (circles) and videos (rectangles).

of the distribution mass. The exact procedure is as
follows: given user u connected with videos Vu =
{v1, ..., vm}, there are m gender distributions sent
to u: PV (u) = {p(g|vi) : 1 ≤ i ≤ m, g ∈
{f,m, n}}. A single distribution is obtained from
PV (u): p̂(g|u) =

∑
i p(g|vi)/m.

To address the skewness in the data, i.e., the fact
that 70% of our users (62/(26 + 62)) with known
gender are male, we select the female gender if (a) it
got more than zero mass and at least as much mass
as male: p̂(f) > 0 ∧ p̂(f) ≥ p̂(m), or (b) it got at
least τ of the mass: p̂(f) ≥ τ . We set τ = 0.26 ini-
tially because it corresponds to the expected propor-
tion of females (26%) but further experimented with
different τ values in the range of 0.25-0.4. We ob-
tained best accuracy and f-measures with the thresh-
old of 0.33, the difference in accuracy from the ini-
tial threshold of 0.26 being less than 2%. The fact
that the optimal τ value is different from the overall
proportion of females (26%) is not surprising given
that we aggregate per video distributions and not raw
user counts.

The predictions obtained with the described prop-
agation method are remarkably accurate, reaching
90% accuracy (Table 2). The baseline of assigning
all the users the majority class (all male) provides us
with the accuracy of 70% – the proportion of males
among the users with known gender.

Although the purpose of this section is not to
present a gender prediction method, we find it worth
emphasizing that 90% accuracy is remarkable given
that we only look at the immediate user vicinity.
In the following section we are going to investigate
how this social view on demographics can help us in

Acc% P% R% F1
Baseline 70 - - -
all 90 - - -
fem - 84.3 80.8 83
male - 92.2 93.8 93

Table 2: Precision and recall for propagated gender.

predicting gender from language.

6 Supervised learning of gender

In this section we start by describing our first gen-
der prediction experiment and several extensions to
it and then turn to the results.

6.1 Experiments
Similar to previous studies on demographics predic-
tion, we start with a supervised approach and only
look at the text (comments) written by the user. We
do not rely on any information from the social en-
vironment of the user and do not use any features
extracted from the user profile, like name, which
would make the gender prediction task consider-
ably easier (Burger et al., 2011). Finally, we do
not extract any features from the videos the user has
commented on because our goal here is to explore
the language as a sole source of information. Here
we simply want to investigate the extent to which
the language of the user is indicative of her gender
which is found in the profile and which, ignoring the
noise, corresponds to the inborn gender.

In our experiments we use a distributed imple-
mentation of the maximum entropy learner (Berger
et al., 1996; McDonald et al., 2010) which outputs
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a distribution over the classes, the final prediction is
the class with the greater probability. We take 80%
of the users for training and generate a training in-
stance for every user who made her gender visible on
the profile page (4.9M). The remaining 20% of the
data are used for testing (1.2M). We use the follow-
ing three groups of features: (1) character-based:
average comment length, ratio of capital letters to
the total number of letters, ratio of punctuation to the
total number of characters; (2) token-based: average
comment length in words, ratio of unique words to
the total tokens, lowercase unigrams with total count
over all the comments (10K most frequent unigrams
were used, the frequencies were computed on a sep-
arate comment set), use of pronouns, determiners,
function words; (3) sentence-based: average com-
ment length in sentences, average sentence length in
words.

Enhancing the training set. The first question we
consider is how the affiliation graph and propagated
gender can be used to enhance our data for the super-
vised experiments. One possibility would be to train
a classifier on a refined set of users by eliminating
all those whose reported gender did not match the
gender predicted by the neighborhood. This would
presumably reduce the amount of noise by discard-
ing the users who intentionally provided false infor-
mation on their profiles. Another possibility would
be to extend the training set with the users who did
not make their gender visible to the public but whose
gender we can predict from their vicinity. The idea
here is similar to co-training where one has two in-
dependent views on the data. In this case a social
graph view would be combined with the language-
based view.

Profile vs. vicinity gender prediction. The next
question posed in the motivation section is as fol-
lows: Does the fact that language is a social phe-
nomenon and that it is being shaped by the social
environment of the speaker impact our gender clas-
sifier? If there are truly gender-specific language
traits and they are reflected in our features, then
we should not observe any significant difference be-
tween the prediction results on the users whose gen-
der matches the gender propagated from the vicinity
and those whose gender does not match. A contrary
hypothesis would be that what the classifier actually

learns to predict is not as much the inborn but a so-
cial gender. In this case, the classifier trained on the
propagated gender labels should be more accurate
than the one trained on the labels extracted from the
profiles.

To address these questions we contrast two classi-
fiers: (1) the one described in the beginning of the
section which is trained on the gender labels col-
lected from the user profiles; (2) a classifier trained
on the vicinity gender, that is the dominating gender
of the environment of a speaker as obtained with the
procedure described in Section 5.

Age groups and gender prediction. Finally, we
look at how gender predictions change with age and
train three age-specific models to predict gender for
teenagers (13-19), people in their twenties (20-29)
and people over thirty (30+), the age is also ex-
tracted from the profiles. These groups are identified
in order to check whether teenagers tend to signal-
ize their gender identity more than older people, a
hypothesis investigated earlier on a sample of blog
posts (Huffaker & Calvert, 2005).

6.2 Results
We report the results of the supervised experiments
for all the settings described above. As an estimate
of the lowest bound we also give the results of the
majority class baseline (all male) which guarantees
70% accuracy. For the supervised classifiers we re-
port accuracy and per-gender precision, recall and f-
measure. Table 3 presents the results for the starting
classifier trained to predict profile gender.

Acc% P% R% F1 Total
Baseline 70 - - - 619K
all 89 - - - 619K
fem - 83 78 80 182K
male - 91 94 93 437K

Table 3: Results on the test set.

In order to investigate the relationship between the
social environment of a person, her gender and the
language, we split the users from the test set into
two groups: those whose profile gender matched the
gender propagated from the vicinity and those for
whom there was a mismatch. Thus Table 4 presents
the same results as Table 3 but separated for these
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two groups of users. It also gives user counts w.r.t.
the profile gender.

Acc% P% R% F1 Total
all (same) 94 - - - 557K
fem (same) - 89 87 88 147K
male (same) - 95 96 96 410K
all (diff) 47 - - - 62K
fem (diff) - 54 39 45 35K
male (diff) - 42 56 48 27K

Table 4: Results for users whose profile gender
matches/differs from the vicinity gender.

Enhanced training set. In the next experiment we
refined the training set by removing all the users
whose vicinity gender did not match the gender re-
ported in the profile. The evaluation was done on
the unmodified set (Table 5). The predictions made
by the model trained on a refined set of users turned
out to be slightly less accurate than those made by
the model trained on the full training set (Table 3).
The refined model performed slightly (< 1%) bet-
ter than the starting one on the users whose vicinity
and the profile genders matched but got very poor
results on the users with a gender mismatch, the ac-
curacy being as low as 37%. The accuracy of the
starting model on those users is 47% (Table 4).

Acc% P% R% F1
all 88 - - -
fem - 83 76 79
male - 90 94 92

Table 5: Results of the models trained on the refined
training set.

In another experiment we extended the training
data with the users whose gender was unknown but
was predicted with the propagation method. How-
ever, a larger training set makes a difference only if
there is a substantial performance gain over the in-
creasing size of the training set. We observed only a
minor gain in performance (< 1%) when the train-
ing data size was increased by an order of magni-
tude. Given that, it is not surprising that adding 12%
did not affect the results.

Language, the vicinity and the profile genders.
The gap in accuracies of predictions for the two user
groups in Table 4 is remarkable: 47% vs. 94%. If
we extrapolate what we observe in the affiliation
graph to other online and offline life, then this re-
sult may suggest that gender traits are more promi-
nent in the language of people spending more time
with the people of their gender than in that of the
people who spend more time with the people of the
opposite gender. Given the remarkable difference,
a further question arises whether the classifier actu-
ally learns to predict a kind of socially rather than the
profile gender. To investigate this, we looked at the
results of the model which knew nothing about the
profile gender but was trained to predict the vicinity
gender instead (Table 6). This model relied on the
exact same set of features but both for training and
testing it used the gender labels obtained from the
propagation procedure described in Section 5.

Acc% P% R% F1
all 91 - - -
fem - 86 80 83
male - 92 95 94

Table 6: Results of the models trained and tested on the
propagated gender.

According to all the evaluation metrics, for both gen-
ders the performance of the classifier trained and
tested on the propagated gender is higher (cf. Ta-
ble 3): the differences in f-measure for female and
male are four and two points respectively, both sta-
tistically significant. This indicates that it is the pre-
dominant environment gender that a language-based
classifier is better at learning rather than the inborn
gender.

Predictions across age groups. Finally, to ad-
dress the question of whether gender differences are
more prominent and thus easer to identify in the lan-
guage of younger people, we looked at the accu-
racy of gender predictions across three age groups.
Table 7 summarizes the results and gives the accu-
racy of the all male baseline as well as of the prop-
agation procedure (Prop-acc). Although the over-
all accuracy over the three groups does not degrade
much, from 89% to 87%, both precision and recall
do decrease significantly for females. This is not
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directly reflected in the accuracy because the num-
ber of females drops dramatically from 42% among
teenagers to 26% and then 21% in the latter groups.
For a comparison, the accuracy of the propagated
gender (Prop-acc) also decreases from younger to
older age groups although it is slightly higher than
that of language-based predictions. One conclusion
we can make at this point is that a teenager’s gen-
der is easier to predict from the language which is
in line with the hypothesis that younger people sig-
nalize their gender identities more than older people.
Another observation is that, as the person gets older,
we can be less sure about her gender by looking at
her social environment. This in turn might be an
explanation of why there are less gender signals in
the language of a person: the environment becomes
more mixed, and the influence of both genders be-
comes more balanced.

13-19 20-29 30+ Overall
Base-acc% 58 74 79 70
Prop-acc% 91 90 88 90
Accuracy% 89 89 87 89
Fem-P% 87 81 74 83
Fem-R% 87 76 62 78
Fem-F1 87 78 68 80
Male-P% 90 92 90 91
Male-R% 90 94 94 94
Male-F1 90 93 92 93

Table 7: Results across the age groups.

7 Conclusions

In our study we addressed the gender prediction task
from two perspectives: (1) the social one where we
looked at an affiliation graph of users and videos and
propagated gender information between users, and
(2) the language one where we trained a classifier
on features which have been claimed to be indica-
tive of gender. We demonstrated that both perspec-
tives provide us with comparably accurate predic-
tions (around 90%) but that they are far from be-
ing independent. We also investigated a few ways of
how the performance of a language-based classifier
can be enhanced by the social aspect, compared the
accuracy of predictions across different age groups

and found support for hypotheses made in earlier so-
ciolinguistic studies.

We are not the first to predict gender from lan-
guage features with online data. However, to our
knowledge, we are the first to contrast the two views,
social and language-based, using online data and to
question whether there is a clear understanding of
what gender classifiers actually learn to predict from
language. Our results indicate that from the standard
language cues we are better at predicting a social
gender, that is the gender defined by the environment
of a person, rather than the inborn gender.

The theoretical significance of this result is that
it provides support for the usage-based view on lan-
guage (Bybee, 2010), namely that the person’s lan-
guage is largely shaped by the interactions with her
social environment. On the practical side, it may
have implications for targeted advertisement as it en-
riches the understanding of what gender classifiers
predict.
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Abstract

The question “how predictable is English?”
has long fascinated researchers. While prior
work has focused on formal English typically
used in news articles, we turn to texts gener-
ated by users in online settings that are more
informal in nature. We are motivated by a
novel application scenario: given the difficulty
of typing on mobile devices, can we help re-
duce typing effort with message completion,
especially in conversational settings? We pro-
pose a method for automatic response comple-
tion. Our approach models both the language
used in responses and the specific context pro-
vided by the original message. Our experi-
mental results on a large-scale dataset show
that both components help reduce typing ef-
fort. We also perform an information-theoretic
study in this setting and examine the entropy
of user-generated content, especially in con-
versational scenarios, to better understand pre-
dictability of user generated English.

1 Introduction

How predictable is language? As early as 1951, long
before large quantities of texts (or the means to pro-
cess them) were easily available, Shannon had raised
this question and proceeded to answer it with a set
of clever analytical estimations. He studied the pre-
dictability of printed English, or “how well can the
next letter of a text be predicted when the preced-
ing N letters are known” (Shannon, 1951). This
was quantified as the conditional entropy, which
measures the amount of information conveyed from
statistics over the preceding context. In this paper,
we discuss a novel application setting which mirrors
the predictability study as defined by Shannon.

(a) Google (b) Amazon (c) Netflix

Figure 1: Query completion as users type into the “Search
using Google” box on a browser, as well as the search box
in Amazon and Netflix.

Text completion for user-generated texts: Con-
sider a user who is chatting with her contact or post-
ing to a social media site using a mobile device. If
we can predict the next word given the preceding
words that were already typed in, we can help reduce
the typing cost by offering users suggestions of pos-
sible completions of their partially typed messages
(e.g., in a drop-down list). If the intended word is
ranked reasonably high, the user can select the word
instead of typing it. Assuming a lower cost associ-
ated with selections, this could lead to less typing
effort for the user.

An interface like this would be quite familiar to
Web users today. Providing suggestions of possi-
ble completions to partially typed queries, which we
will refer to as query completion,1 is a common fea-
ture of search boxes (Figure 1). In spite of the
similarity in the interface, the underlying technical
challenge can be quite different. Query completion
does not necessarily rely on language models: can-

1Note that this feature is often tagged as “query suggestion”
in the user interface; we avoid that terminology since it is often
used to refer to query re-formulation (of a completely entered
query) in the literature, which is a very different task.
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didate completions can be limited to popular queries
that were previously submitted to the site or entries
in a closed database of available objects, and rank-
ing can be done by overall popularity. In contrast,
our scenario requires generation of unseen texts.

Given the difficulty of generating full-length text,
we consider a more realistic setting, where we per-
form completion on a word-by-word basis. Each
time, we propose candidate completions at the word-
level when the user is about to start a new word,
or has partially entered the first few letters; once
this word is successfully completed, we move on
to the next one. This predict-verify-predict process
exactly mirrors the human experiment described by
Shannon (1951), except we do this at the word-level
rather than the letter-level: having the user examine
and verify predictions at the letter level would not be
a practical solution for the intended application.

The response completion task: In addition, our
task has another interesting difference from Shan-
non’s human experiment. Consider the mobile-
device user mentioned previously. If the user is re-
plying to a piece of text (e.g., an instant message
sent by a contact), we have an additional source of
contextual information in the stimulus, or the text
which triggered the response that the user is try-
ing to type. Can we learn from previously observed
stimulus-response pairs (which we will refer to as
exchanges)? That is, can we take advantage of this
conversational setting and effectively use the infor-
mation provided by stimulus to better predict the
next word in the response? We refer to this task as
the response completion task.

Our task is different from “chatter-bots” (Weizen-
baum, 1966), where the goal is to generate a re-
sponse to an input that would resemble a human con-
versation partner. Instead, we want to complete a
response as the replier intends to. Recently, Ritter
et. al (2011) experimented with automatic response
generation in social media. They had a similar con-
versational setting, but instead of completion based
on partial input, they attempted to generate a re-
sponse in its entirety given only the stimulus. While
many of the generated responses are deemed possi-
ble replies to the stimulus, they have a low chance
of actually matching the real response given by the
user: they reported BLEU scores between 0 and 2

for various systems. This clearly shows the diffi-
culty of the task. While we are addressing a more
modest setting, would the problem prove to be too
difficult even in this case?

In this paper, we propose a method for auto-
matic response completion. Our approach models
the generic language used in responses, as well as
the contextual information provided by the stim-
ulus. We construct a large-scale dataset of user-
generated textual exchanges, and our experimental
results show that both components help reduce typ-
ing effort. In addition, to better understand pre-
dictability of user generated English, we perform
an information-theoretic study in this conversational
setting to investigate the entropy of user-generated
content.

2 Related work
There has been previous work in the area of human-
computer interaction that examined text entry for
mobile devices (MacKenzie and Soukoreff, 2002).
In particular, one line of work looked into predic-
tive text input, which examined input effort reduc-
tion by language prediction. Previous work in pre-
dictive text input had very different focus from our
study. Oftentimes, the focus was to model actual
typing efforts using mobile device keypads, examine
the speed and cognitive load of different input meth-
ods, and evaluate with emprical user studies in lab
settings (James and Reischel, 2001; How and Kan,
2005), where the underlying technique for language
prediction can be as simple as unigram frequency
(James and Reischel, 2001), or restricted to narrow
domains such as grocery shopping lists (Nurmi et
al., 2009). In addition, to the best of our knowledge,
no previous work in predictive text input addressed
the conversationl setting.

As discussed in Section 1, the response genera-
tion task (Ritter et al., 2011) also considered the con-
verstational setting, but the MT-based technique was
not well-suited to produce responses as intended by
the user. There has been extensive previous research
in language modeling (Rosenfeld, 2000). While pre-
vious work has explored Web text sources that are
“better matched to a conversational speaking style”
(Bulyko et al., 2003), we are not aware of much pre-
vious work that has taken advantage of information
in the stimulus for word predictions in responses.
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Previous work on entropy of language stems from
the field of information theory (Shannon, 1948),
starting with Shannon (1951). An extensive bibliog-
raphy covering early related work (e.g., insights into
the structure of language via information theory, en-
tropy estimates via other techniques and/or for dif-
ferent languages, as well as a broad range of applica-
tions of such estimates) can be found in (Cover and
King, 1978). More recently, Brown et. al (1992)
computed an upper bound for the entropy of En-
glish with a trigram model, using the Brown corpus.
Some other related works on this topic include (Tea-
han and Cleary, 1996; Moradi et al., 1998). There
was also a recent study using entropy in the context
of Web search (Mei and Church, 2008). In other set-
tings, entropy has also been employed as a tool for
studying the linguistic properties of ancient scripts
(e.g., Indus Script) (Rao et al., 2009). While this
seems like an interesting application of information
theory for linguistic studies, it has also generated
some controversies (Farmer et al., 2004).

In contrast, our work departs from traditional sce-
narios significantly. We perform entropy studies
over texts generated in online settings which are
more informal in nature. Additionally, we utilize the
properties of language predictability within a novel
application for automatically completing responses
in conversational settings. Also, in our case we do
not have to worry about issues like “is this a lan-
guage or not?” because we work with real English
news data which include articles written by pro-
fessional editors and comments generated by users
reading those articles.

3 Model

In this section, we first state our problem more for-
mally, followed by descriptions of the basicN -gram
language model we use, as well as two approaches
that model both stimulus and preceding words in
response as the context for the next-word genera-
tion. Given the intended application, we hope to
achieve better prediction without incurring signifi-
cant increase in model size.

3.1 Problem definition

Consider a stimulus-response pair, where the stim-
ulus is a sequence of tokens s = (s1, s2, ..., sm),

and the response is a sequence of tokens r =
(r1, r2, ..., rn). Let r1..i = (r1, r2, ..., ri), our task
is to generate and rank candidates for ri+1 given s
and r1..i.

Note the models described in this section do not
assume any knowledge of partial input for ri+1. For
the setting where the first c characters of ri+1 were
also entered, we can restrict the candidate list to the
subset with the matching prefix, and use the same
ranking function.

3.2 Generic Response Language Model
First, we consider an N -gram language model
trained on all responses in the training data as our
generic response language model. Here we consider
N = 3. Normally, trigram models use back-off to
both bigrams and unigrams; in order to compare the
effectiveness of trigram models vs. bigram models
under comparable model size, we use back-off only
to unigrams in both cases:

trigram: P (ri+1 | r1..i) = λ1 ∗ P3(ri+1 | ri, ri−1)

+(1− λ1) ∗ P1(ri+1)

bigram: P (ri+1 | r1..i) = λ1 ∗ P2(ri+1 | ri)

+(1− λ1) ∗ P1(ri+1)

If we ignore the context provided by texts in the
stimulus, we can simply generate and rank candidate
words from the dictionary according to the generic
response LM: P (ri+1 | r1..i).

As we will discuss in more detail in Section 6.2,
modeling s and r1..i jointly in the prediction of ri+1

would be rather expensive. In the following sec-
tions, we follow two main approaches to break this
down into separate components: P (ri+1 | r1..i) and
P (ri+1 | s), and model each one separately.

3.3 Translating Stimuli to Responses
As mentioned in Section 1, Ritter et. al (2011) have
considered a related task of generating a response in
its entirety given only the text in the stimulus. They
cast the problem as a translation task, where the
stimulus is considered as the source language and
the response is considered as the target language.
We can adapt this approach for our response com-
pletion task.

Consider the noisy channel model used in statisti-
cal machine translation: P (r|s) ∝ P (r)∗P (s|r). In
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order to predict ri+1 given r1..i and s, for each can-
didate ri+1, in principle one can marginalize over
all possible completions of r1..i+1, and rank candi-
date ri+1 by that. That is, let P(n) be the distribution
of response length, let r′ be a possible completion
of r1..i+1 (i.e., a response whose first i + 1 tokens
match r1..i+1). For each possible n > i, we need to
marginalize over all possible r′ of length n, and rank
ri+1 according to

P (r1..i+1 | s) =
∑
n>i

P (n) ·
∑
|r′|=n

P (r′ | s)

Clearly this will be computationally expensive. In-
stead, we take a greedy approach, and choose ri+1

which yields the optimal partial response (without
looking ahead):

P (r1..i+1 | s) ∝ P (r1..i+1) ∗ P (s | r1..i+1)

which is equivalent to ranking candidate ri+1 by

P (ri+1 | r1..i) ∗ P (s | r1..i+1) (1)

Since the first component is our LM model, and the
second component is a translation model, we denote
this as the LM+TM model. We use IBM Model-1 to
learn the translation table on the training data. At
test time, equal number of candidates are generated
by each component, and combined to be ranked by
Eq. 1.

3.4 Mixture Model

One potential concern over applying the translation
model is that the response can often contain novel in-
formation not implied by the stimulus. While tech-
nically this could be generated from the so-called
null token used in machine translation (added to the
source text to account for target text with no clear
alignment in the source text), significant amount of
text corresponding to new information not in the
source text is not what null tokens are meant to be
capturing. In general, our problem here is a lack of
clear word-to-word or phrase-to-phrase mapping in
a stimulus-response pair, at least not what one would
expect in clean parallel data.

Alternatively, one can model the response genera-
tion process with a mixture model: with probability
λs, we generate a word according to a distribution

over s (P (w | s)), and with probability 1 − λs, we
generate a word using the response language model:

P (ri+1 | s, r1..i) = λs · P (ri+1 | s)
+ (1− λs) · P (ri+1 | r1..i)

(2)

We examine two concrete ways of exploiting the
context provided by s.

Model 1 — LM + Selection model First, we ex-
amine a very simple instantiation of P (w | s) where
we select a token in s uniformly at random. This
is based on the intuition that to be semantically co-
herent, a reply often needs to repeat certain content
words in the stimulus. (Similar intuition has been
explored in the context of text coherency (Barzilay
and Lapata, 2005).) This is particularly useful for
words that are less frequently used: they may not
be able to receive enough statistics to be promoted
otherwise. More specifically,

P (ri+1 | s) =
1ri+1∈s

|s|

We can take λs to be a constant λselect, which can be
estimated in the training data as the probability of a
response token being a repetition of a token in the
corresponding stimulus.

Model 2 — LM + Topic model Another way to
incorporate information provided in s is to use it to
constrict the topic in r. We can learn a topic model
over conversations in the training data using Latent
Dirchlet Allocation (LDA) (Blei et al., 2003). At test
time, we identify the most likely topic of the conver-
sation based on s, and expect ri+1 to be generated
from this topic. That is,

P (ri+1 | s) = P (ri+1 | t∗)

where t∗ = argmaxtP (topic = t | s)

More specifically, we first train a topic model on (s,
r) pairs from the training data. Given a new stim-
ulus s, we then select the highest ranked topic as
being representative of s. Note that alternatively we
could consider all possible topic assignments; in that
case we would have had to sum probabilities over
all topics, and that could also introduce noise. A
similar strategy has been previously employed for
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other topic modeling applications in information re-
trieval, where documents are smoothed with their
highest ranked topic (Yi and Allan, 2009). We lower
the weight λs if P (t∗ | s) is low. That is, we use
λs = λtopic ∗ P (t∗ | s) in Eq. 2.

4 Data
In order to investigate text completion in a conver-
sational setting, we need to construct a large-scale
dataset with textual exchanges among users. An
ideal dataset would have been a collection of in-
stant messages, but these type of datasets are diffi-
cult to obtain given privacy concerns. To the best
of our knowledge, existing SMS (short message ser-
vice) datasets only contain isolated text spans and do
not provide enough information to reconstruct the
conversations. There are, however, a high volume
of textual exchanges taking places in public forums.
Many sites with a user comment environment allow
other users to reply to existing comments, where the
original comment and its reply can form a (stimulus,
response) pair for our purposes.

To this end, we extracted (comment, reply) pairs
from Yahoo! News2, where under each news article,
a user can post a new comment or reply to an exist-
ing comment. In fact, a popular comment can have a
long thread of replies where multi-party discussions
take place. To ensure the reply is a direct response to
the original comment, we took only the first reply to
a comment, and consider the resulting pair as a tex-
tual exchange in the form of a (stimulus, response)
pair. We gathered data from a period of 14 weeks
between March and May, 2011. A random sample
yielded a total of 1,487,995 exchanges, representing
237,040 unique users posting responses to stimuli
comments authored by 357,811 users. In the raw
dataset (i.e., before tokenization), stimuli average at
59 tokens (332 characters), and responses average at
26 tokens (144 characters).

We took the first 12 weeks of data as training data
(1,269,732 exchanges) and the rest 2 weeks of data
as test data (218,263 exchanges).

2Note that previous work has used a dataset with 1 million
Twitter conversations extracted from a scraping of the site (Rit-
ter et al., 2011), where a status update and its replies in Twitter
form “conversations”. This dataset is no longer publicly avail-
able. At the time of this writing, we were not able to identify a
data source to re-construct a dataset like that.

5 Experiments

5.1 Evaluation measures

Recall@k : Here, we follow a standard evaluation
strategy used to assess ranking quality in informa-
tion retrieval applications. For each word, we check
if the correct answer is one of the top-k tokens being
suggested. We then compute the recall at different
values of k. While this is a straight-forward mea-
sure to assess the overall quality of different top-k
lists, it is not tailored to suit our specific task of re-
sponse completion. In particular, this measure (a)
does not distinguish between (typing) savings for a
short word versus a long one, and (b) does not dis-
tinguish between the correct answer being higher up
in the list versus lower as long as the word is present
in the top-k list.

TypRed : Our main evaluation measure is based on
“reduction in typing effort for a user of the system”,
which is a more informative measure for our task.
We estimate the typing reduction via a hypothetical
typing model3 in the following manner:

Suppose we show top k predictions for a given
setting. Now, there are two possible scenarios:

1. if the user does not find the correct answer in
the top-k list, he/she gives up on this word and
will have to type the entire word. The typing
cost is then estimated to be the number of char-
acters in the word lw;

2. if the user spots the correct answer in the list,
the cost for choosing the word is proportional
to the rank of the word rankw, with a fixed cost
ratio c0. Suppose the user scrolls down the list
using the down-arrow (↓) to reach the intended
word (instead of typing), then rankw · c0 re-
flects the scrolling effort required, where c0 is
the relative cost of scrolling down versus typing
a character.

In general, pressing a fixed key can have a lower
cost than typing a new one, in addition, we can
imagine a virtual keyboard where navigational keys
occupy bigger real-estate, and thus incur less cost
to press. As a result, it’s reasonable to assume c0
value that is smaller than 1. In all our experiments,
c0 = 0.5 unless otherwise noted. Note that if the

3More accurate measures can be be developed by observing
user behavior in a lab setting. We leave this as future work.
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System TypRed (c = 0) TypRed (c = 1) TypRed (c = 2)

1. Generic Response LM (trigram) 15.10 22.57 14.29

2. Generic Response LM (trigram) + TM 9.03 17.53 11.56

3. Mixture Model 1: 15.18∗ 23.43∗ 15.13∗

Generic Response LM (trigram) + Selection

4. Mixture Model 2: 15.10 22.57 14.33
Generic Response LM (trigram) + Topic Model

Table 1: Comparison of various prediction models (in terms of TypRed score @ rank 5) on all (stimulus,response)
pairs from a large test collection (218,263 exchanges) when the first c characters of each word are typed in by the user.
A higher score indicates better performance. ∗ indicates statistical significance (p < 0.05) over the baseline score.

typing model assumes a user selects the intended
word using an interface that is similar to a mousing
device, the cost may increase with rankw at a sub-
linear rate; in that case, our measure will be over-
estimating the cost.

In order to have a consistent measure that al-
ways improves as the ranking improves, we assume
a clever user who will choose to finish the word by
typing or by selecting, depending on which cost is
lower. Combining these two cases under the clever-
user model, we estimate the reduction in typing cost
for every word as follows:

TypRed(w, rankw) = 100·[1−min(lw, rankw · c0)
lw

]

where w is the correct word, lw is the length of
w, and rankw is the rank of w in the top-k list.
A higher value of TypRed implies higher savings
achieved in typing cost and thereby better prediction
performance.

5.2 Experimental setup
We run experiments using the models described in
Section 3 under two different settings: (1) previous
words from the response are provided, and (2) pre-
vious words from response + first c characters of the
current word are provided.

During the candidate generation phase, for every
position in the response message we present the top
1,000 candidates (as scored by the generic response
language model or mixture models). We reserve a
small subset of (∼1,000) exchanges as development
data for tuning parameters from our models.

For the generic response language models, we
set the interpolation weight λ1 = 0.9. For the
selection-based mixture model, we estimate the mix-
ture weights on the training data and set λselect

(0.09). For the topic-based mixture model, we ran
a grid search with different parameter settings for
λtopic on the held-out development set and chose the
value (0.01) that gave the best performance (in terms
of TypRed).

5.3 Results

Previous words from response observed: We first
present results for the setting where only previous
words from the response are provided as context.
We use TypRed scores as our evaluation measure
here (higher TypRed implies more savings in typ-
ing effort). Even with a unigram LM we achieve
a small but non-negligible reduction (TypRed=2.15)
in the typing cost. But a bigram LM significantly
improves performance (TypRed=11.91), and with
trigram LM we observe even better performance
(TypRed=15.10). Since the trigram LM yields a
high performance, we set this as our default LM for
all other models.

Recall that in all experiments, we set c0, the cost
ratio of selecting a candidate from the ranked top-
k list (via scrolling) versus typing a character to a
value of 0.5. But we also experimented with a hy-
pothetical setting where c0 = 1 and noticed that the
trigram LM achieves a slightly lower but still signif-
icant typing reduction (TypRed score of 9.58 versus
15.10 for the earlier case).

The first column of Table 1 (c = 0) compares the
performance of other models for this setting. We
find that adding a translation model (LM+TM) does
not help for this task; in fact, it results in lower
scores than using the LM alone. This suggests that
a translation-based generative approach may not be
suitable, if the goal is to predict text as intended by
the user. This is consistent with previous observa-
tions on a related task (Ritter et al., 2011), as we
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discussed in Section 1.
In contrast, the mixture models do much better.

In fact, LM+Selection model produces better results
than trigram LM alone. We also note that estimat-
ing the mixture parameter on the training data rather
than using a fixed value increases TypRed scores:
14.02 with a fixed λselect = 0.5 versus 15.18 with
λ∗select = 0.09. This comparison also holds for
c > 0 — that is, a naive version of LM+Selection
that selects a word from the stimulus whenever the
prefix allows would not have worked well.

In principle the LM+Topic model is potentially
more powerful in that P (w | s) is not limited to
the words in s. However, in our experiments it
does not yield any considerable improvement over
the original LM. We postulate that this could be due
to the following reason: once the context provided
by s is reduced to the topic level, it is not specific
enough to provide additional information over pro-
ceding words in the response.

Previous words from response + first c characters
of current word observed: Table 1 also compares
the TypRed performance of all the models under set-
tings where c > 0. We notice striking improve-
ments in performance for c = 1 which is consistent
across all models. Our best model is able to save
the user approximately 23% in terms of typing ef-
fort (according to TypRed scores). Interestingly a lot
less reduction was observed for c = 2: the second
character, on average, does not improve the ranking
enough to justify the cost of typing this extra char-
acter.

Next, we pick our best model (Mixture Model 1)
and perform some further analysis. We examine the
effect of providing longer list (shown in Table 2) and
notice little further improvement beyond k = 10.
We also note that the TypRed improvement achieved
over the baseline (LM) model at rank 10 is more than
twice the gain achieved at rank 5.

We also evaluated its performance using a stan-
dard measure (Recall@k). Figure 2 plots the recall
achieved by the system at different ranks k. An in-
creasing recall at even high ranks (k = 100) sug-
gests that the quality of the candidate list retrieved
by this model is good. This also suggests that there
is still room for improvements, and we leave that as
interesting future work.

Rank (k) TypRed score

1 9.02
5 15.18

10 16.14
15 16.28
20 16.29
25 16.29

Table 2: Comparison of typing reductions achieved over
the entire test data when top k list is provided to the user.
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Figure 2: Recall @ rank k for Mixture Model 1 on the
entire test data.
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Figure 3: Average TypRed score versus Word length (#
of characters) for Mixture Model 1 when the first c char-
acters of the word is typed in by the user.

Finally, in Figure 3, we plot the average TypRed
scores against individual token (word) length. Fig-
ure 3 indicates that the model is able to achieve a
higher reduction for shorter words compared to very
long ones. This demonstrates the utility of such a re-
sponse completion system, especially since shorter
words are predominant in conversational settings.
We also compared the average reduction achieved
on messages of different lengths (number of words).
Overall we observe consistent reduction for differ-
ent message lengths. This suggests our system can
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Source Top translations

:) :) ! you ? :D
lmao lol lmao u ... i
feeling feeling feel better ! you
question . question the , to
Are I . , are yes

Table 3: Examples of a few stimulus/response transla-
tions learned using IBM Model-1.

OBAMA, USA, Fact, Meghan, GIVE, PRESIDENT, Canadian,
Mitch, Jon, Kerry, TODAY, Justice, Liberalism, ...

President, Notice, Tax, LMAO, Hmmm, Trump, people,
OBAMA, common, Aren, WAIT, Bachman, mon, McCain, ...

Great, Cut, Release, Ummm, Rest, Mark, isnt, YAHOO, Sad,
END, RON, jesus, Ugh, TRUMP, ...

Nice, Navy, Make, Interesting, Remember, Excuse, WAKE,
Hooray, Birth, mon, Yeah, Dumb, Michael, geronimo, ...

Table 4: Examples of top representative words for a few
topics generated by the LDA topic model trained on news
comment data.

be useful for both Tweet-like short messages as well
as more lengthy exchanges in detailed discussions.

5.4 Discussion

Table 3 displays some sample translations learned
using the TM model described in Section 3.3. In-
terestingly, emoticons and informal expressions like
:) or lmao in the stimulus tend to evoke similar
type of expressions in the response (as seen in Ta-
ble 3). Some translations (e.g., feeling→ better) are
indicative of question/answer type of exchanges in
our data. But most of the other translations are noisy
or uninformative (e.g., Are→ .). This provides fur-
ther evidence as to why a translation-based approach
is not well suited for this particular task and hence
does not perform as well as other methods.

Finally, in Table 4, we provide a few sample top-
ics generated by the LDA topic model (which is used
by Mixture Model 2 described in Section 3.4). We
find that while a few topics display some seman-
tic coherence (e.g., political figures), many of them
are noisy (or too generic) which further supports our
earlier observation that they are not useful enough to
help in the prediction task.

6 Entropy of user comments

We adapt the notion of predictability of English as
examined by Shannon (1951) from letter-prediction
to token-prediction, and define the predictability of

English as how well can the next token be predicted
when the precedingN tokens are known. How much
does the immediate context in the response help re-
duce the uncertainty? How does user-generated con-
tent compare with more formal English in this re-
spect? And how about the corresponding stimuli —
given the preceding N tokens, does the knowledge
of stimulus further reduce the uncertainty? These
questions motivated a series of studies over entropy
in different datasets.4

6.1 Comparison of N -gram entropy

Following Shannon (1951), we consider the follow-
ing function FN , which can be called the N -gram
entropy, as the measure of predictability:

FN = −
∑
i,j

p(bi, j) log2 p(j | bi)

where bi is a block of N − 1 tokens, j is an arbitrary
token following bi, and p(j | bi) is the conditional
probability of j given bi. This conditional entropy
reflects how much is the uncertainty of the next to-
ken reduced by knowing the precedingN−1 tokens.

Under this measure, is user-generated content
more predictable or less predictable than the more
formal “printed” English examined by Shannon?
Maybe it is more predictable, since most users in
informal settings use simpler English, which may
contain fewer variations than the complex structures
observed in more formal English. Or perhaps it is
less predictable — variations among different users
(who may not follow proper grammar) may lead
to more uncertainty in the prediction of “the next
word”. Which would be the case?

To answer this question empirically, we construct
a reference dataset written in more formal English
(Df ) to be compared against the user comments
dataset described in Section 4 (Du). If Df covers
very different topics fromDu, then even if we do ob-
serve differences in entropy, it could be due to topi-
cal differences. A standard mixed-topic dataset like

4Note that our findings are not to be interpreted as prediction
performance over unseen texts. For that, one needs to compute
cross-entropy between training and test corpora. Since Section
5 is already addressing this question with proper training / test
split, in this section, we focus on the variability of language
usage in a corpus. This also avoids having to control for “com-
parable” training/test splits in different types of datasets.
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the Brown Corpus (Kucera and Francis, 1967) may
not be ideal in this sense (e.g., it contains fiction cat-
egories such as “Romance and Love Story”, which
may not be represented in our Du). Instead, we ob-
tained a sample of news articles on Yahoo! News
during March - May, 2011, and extracted unique
sentences from these articles. This yields a Df with
more comparable subject matters to Du.5

Next, we compare both the entropy over unigrams
and N -gram entropy in three datasets: the news ar-
ticle dataset described above, and comments data
(Section 4) separated into stimuli and responses. We
also report corresponding numbers computed on the
Brown Corpus as references. Note that datasets with
different vocabulary size can lead to different en-
tropy: the entropy of picking a word from the vo-
cabulary uniformly at random would have been dif-
ferent. Thus, we sample each dataset at different
rates, and plot the (conditional) entropy in the sam-
ple against the corresponding vocabulary size.

As shown in Figure 4(a), the entropy of unigrams
in Du (both stimuli and responses) is consistently
lower than in Df .6 On the other hand, both stimuli
and responses exhibit higher uncertainty in bigram
entropy (Figure 4(b)) and trigram entropy (Figure
4(c)). That is, when no contexts are provided, word
choices (from similarly-sized vocabularies) in Df is
more evenly distributed than in Du; but once the
proceeding words are given, the next word is more
predictable in Df than in Du. We postulate that
the difference in unigram entropy could be due to
(a) more balanced topic coverage in Df vs. more
skewed topic coverage in Du, or (b) professional re-
porters mastering a more balanced use of the vocab-
ulary. If (b) is the main reason, however, the lower
trigram entropy in Df would seem unexpected —
shouldn’t professional journalists also have a more
balanced use of different phrases? Upon further
contemplation, what we hypothesized earlier could
be true: professional writers use the “proper” En-
glish expected in news coverage, which could limit

5We note that this does not guarantee the exact same topic
distribution as in the comment data.

6For reference, Shannon (1951) estimated the entropy of En-
glish to be 11.82 bits per word, due to an incorrect calculation
of a 8727-word vocabulary given Zipf distribution. The correct
number should be 9.27 bits per word for a vocabulary size of
12,366 (Yavuz, 1978).
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Figure 4: Entropy of unigrams and N -gram entropy.

their trigram uncertainties; on the other hand, users
are not bound by conventions (or even grammars),
which could lead to higher variations.

Interestingly, distributions in the stimulus dataset
are closer to news articles: they have a higher uni-
gram entropy than responses, but a lower trigram en-
tropy at comparable vocabulary sizes. In particular,
recall from Section 4 that our comments dataset con-
tains roughly 237K repliers and 357K original com-
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Figure 5: Predicting the next word in responses: bigram
entropy vs. bigram+stimulus entropy vs. trigram entropy.

menters. If higher trigram entropy is due to variance
among different users, the stimulus dataset should
have had a higher trigram entropy. We leave an ex-
planation of this interesting behavior as future work.

6.2 Information in stimuli

We now examine the next question: does knowing
words in the stimulus further reduce the uncertainty
of the next word in the response? For simplicity,
we model the stimulus as a collection of unigrams.
Consider the following conditional entropy:

GN = −
∑
i,k,j

p(bi, j, sk) log2 p(j | bi, sk)

where bi is a block of N − 1 tokens in a response
r, j is an arbitrary token following bi, and sk is an
arbitrary token in the corresponding stimulus s for r.
Note that for each bi, we consider every token in the
corresponding s. That is, a (stimulus, response) pair
withm and n tokens respectively generatesm∗(n−
N +1) observations of (bi, j, sk) tuples. We refer to
this as the N -gram+stimulus entropy. If knowing sk

in addition to bi does not provide extra information,
then p(j | bi, sk) = p(j | bi), and GN = FN .

Figure 5 plots GN for N = 2. Interestingly, we
observe F2 > G2 > F3 (this trend holds for larger
values ofN , omitted here for clarity). That is, know-
ing both the preceding N − 1 tokens and tokens in
the stimulus results lowers the uncertainty over the
next token in response (bigram+stimulus entropy <
bigram entropy); on the other hand, this is not as ef-
fective as knowing one more token in the preceding
block (trigram entropy< bigram+stimulus entropy).

Note that from the model size perspective, mod-
eling p(j | bi, sk) as in GN would have been much

more expensive than p(j | bi) in FN+1. Take the
case of G2 vs. F3. Let V be the vocabulary of
user comments (ignore for now differences in re-
sponses and stimuli). While both seem to require
computations over V × V × V , the number of
unique observed (bi, j, sk) tuples for G2 (i.e., num-
ber of unique bigrams in responses paired up with
unigrams in corresponding stimuli) is 725,458,892,
whereas the number of unique observed (bi, j) pairs
for F3 (i.e., number of unique trigrams) is only
14,692,952. This means modeling trigrams would
result in a model 2% the size of bigram+stimulus,
yet it could achieve better reduction in uncertainty.

Note that in order to reduce model complex-
ity, the models proposed in Section 3 all broke
down P (ri+1 | s, r1..i) into independent components
P (ri+1 | s) and P (ri+1 | r1..i), rather than model-
ing the effect of s and r1..i jointly as the underlying
model corresponding to GN . Indeed, it would have
been impractical to model p(j | bi, sk) directly. Our
studies confirmed the validity of this choice: even if
we look at the performance on the training data itself
(i.e., igoring data sparseness issues), the smaller tri-
gram model would have yielded better results than
the significantly more expensive bigram+stimulus
model. Still, since GN shows a consistent improve-
ment over FN , there could be more information in
the stimulus that we are not yet fully utilizing, which
can be interesting future work.

7 Conclusions
In this paper, we examined a novel application: au-
tomatic response completion in conversational set-
tings. We investigated the effectiveness of several
models that incorporate contextual information pro-
vided by the partially typed response as well as the
stimulus. We found that the partially typed response
provides strong signals. In addition, using a mix-
ture model which also incorporates stimulus content
yielded the best overall result. We also performed
empirical studies to examine the predictability of
user-generated content. Our analysis (entropy es-
timates along with upper-bound numbers observed
from experiments) suggest that there can be interest-
ing future work to explore the contextual informa-
tion provided by the stimulus more effectively and
further improve the response completion task.
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Abstract

The geographical properties of words have re-
cently begun to be exploited for geolocating
documents based solely on their text, often in
the context of social media and online content.
One common approach for geolocating texts is
rooted in information retrieval. Given training
documents labeled with latitude/longitude co-
ordinates, a grid is overlaid on the Earth and
pseudo-documents constructed by concatenat-
ing the documents within a given grid cell;
then a location for a test document is chosen
based on the most similar pseudo-document.
Uniform grids are normally used, but they are
sensitive to the dispersion of documents over
the earth. We define an alternative grid con-
struction using k-d trees that more robustly
adapts to data, especially with larger training
sets. We also provide a better way of choosing
the locations for pseudo-documents. We eval-
uate these strategies on existing Wikipedia and
Twitter corpora, as well as a new, larger Twit-
ter corpus. The adaptive grid achieves com-
petitive results with a uniform grid on small
training sets and outperforms it on the large
Twitter corpus. The two grid constructions
can also be combined to produce consistently
strong results across all training sets.

1 Introduction

The growth of the Internet in recent years has
provided unparalleled access to informational re-
sources. It is often desirable to extract summary
metadata from such resources, such as the date of
writing or the location of the author – yet only a
small portion of available documents are explicitly
annotated in this fashion. With sufficient training

data, however, it is often possible to infer this infor-
mation directly from a document’s text. For exam-
ple, clues to the geographic location of a document
may come from a variety of word features, e.g. to-
ponyms (Toronto), geographic features (mountain),
culturally local features (hockey), and stylistic or di-
alectical differences (cool vs. kewl vs. kool).

This article focuses on text-based document ge-
olocation, the prediction of the latitude and lon-
gitude of a document. Among the uses for this
are region-based search engines; tracing the sources
of historical documents; location attribution while
summarizing large documents; tailoring of ads while
browsing; phishing detection when a user account is
accessed from an unexpected location; and “activist
mapping” (Cobarrubias, 2009), as in the Ushahidi
project.1 Geolocation has also been used as a fea-
ture in automatic news story identification systems
(Sankaranarayanan et al., 2009).

One of the first works on document geolocation is
Ding et al. (2000), who attempt to automatically de-
termine the geographic scope of web pages. They
focus on named locations, e.g. cities and states,
found in gazetteers. Locations are predicted based
on toponym detection and heuristic resolution al-
gorithms. A related, recent effort is Cheng et al.
(2010), who geolocate Twitter users by resolving
their profile locations against a gazetteer of U.S.
cities and training a classifier to identify geographi-
cally local words.

An alternative to using a discrete set of locations
from a gazetteer is to use information retrieval (IR)
techniques on a set of geolocated training docu-
ments. A new test document is compared with each

1http://ushahidi.com/
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training document and a location chosen based on
the location(s) of the most similar training docu-
ment(s). For image geolocation, Chen and Grauman
(2011) perform mean-shift clustering over training
images to discretize locations, then estimate a test
image’s location with weighted voting from the k
most similar documents. For text, both Serdyukov
et al. (2009) and Wing and Baldridge (2011) use a
similar approach, but compute document similarity
based on language models rather than image fea-
tures. Additionally, they group documents via a uni-
form geodesic grid rather than a clustered set of lo-
cations. This reduces the number of similarity com-
putations and removes the need to perform location
clustering altogether, but introduces a new param-
eter controlling the granularity of the grid. Kinsella
et al. (2011) predict the locations of tweets and users
by comparing text in tweets to language models as-
sociated with zip codes and broader geopolitical en-
closures. Sadilek et al. (2012) discretize by simply
clustering data points within a small distance thresh-
old, but only perform geolocation within fixed city
limits.

While the above approaches discretize the contin-
uous surface of the earth, Eisenstein et al. (2010)
predict locations based on Gaussian distributions
over the earth’s surface as part of a hierarchical
Bayesian model. This model has many advantages
(e.g. the ability to compute a complete probability
distribution over locations), but we suspect it will be
difficult to scale up to the large document collections
needed for high accuracy.

We build on the IR approach with grids while ad-
dressing some of the shortcomings of a uniform grid.
Uniform grids are problematic in that they ignore the
geographic dispersion of documents and forgo the
possibility of greater-granularity geographic resolu-
tion in document-rich areas. Instead, we construct
a grid using a k-d tree, which adapts to the size of
the training set and the geographic dispersion of the
documents it contains. This can better benefit from
more data, since it enables the training set to support
more pseudo-documents when there is sufficient ev-
idence to do so, while still ensuring that all pseudo-
documents contain comparable amounts of data. It
also has the desirable property of generally requiring
fewer active cells than a uniform grid, drastically re-
ducing the computation time required to label a test

document.
We show that consistently strong results, robust

across both Wikipedia and Twitter datasets, are ob-
tained from the union of the pseudo-documents from
a uniform and adaptive grid. In addition, a sim-
ple difference in the choice of location for a given
grid cell – the centroid of the training documents
in the cell, rather than the cell midpoint – results
in across-the-board improvements. We also con-
struct and evaluate on a much larger dataset of ge-
olocated tweets than has been used in previous pa-
pers, demonstrating the scalability and robustness of
our methods and confirming the ability of the adap-
tive grid to more effectively use larger datasets.

2 Data

We work with three datasets: a corpus of geotagged
Wikipedia articles and two corpora of geotagged
tweets.

GEOWIKI is a collection of 1,019,490 geotagged
English articles from Wikipedia. The dump from
Wikimedia requires significant processing to obtain
article text and location, so we rely on the prepro-
cessed data used by Wing and Baldridge (2011).

GEOTEXT is a small dataset consisting of
377,616 messages from 9,475 users tweeting across
48 American states, compiled by Eisenstein et al.
(2010). A document in this dataset is the concate-
nation of all tweets by a single user, with a location
derived from the earliest tweet with specific, GPS-
assigned latitude/longitude coordinates.

UTGEO2011 is a new dataset designed to ad-
dress the sparsity problems resulting from the size
of the previous dataset. It is based on 390 mil-
lion tweets collected across the entire globe be-
tween September 4th and November 29th, 2011, us-
ing the publicly available Twitter Spritzer feed and
global search API. Not all collected tweets were
geotagged. To be comparable to GEOTEXT, we
discarded tweets outside of North America (out-
side of the bounding box with latitude/longitude
corners at (25,−126) and (49,−60)). Following
Eisenstein et al. (2010), we consider all tweets
of a user concatenated as a single document, and
use the earliest collected GPS-assigned location as
the gold location. Users without a gold location
were discarded. To remove many spammers and
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robots, we only kept users following 5 to 1000
people, followed by at least 5 users, and author-
ing no more than 1000 tweets in the three month
period. The resulting dataset contains 38 million
tweets from 449,694 users, or roughly 85 tweets
per user on average. We randomly selected 10,000
users each for development and held-out test eval-
uation. The remaining 429,694 users serve as a
training set termed UTGEO2011-LARGE. We also
randomly selected a 10,000 user training subset
(UTGEO2011-SMALL) to facilitate comparisons
with GEOTEXT and allow us to investigate the rel-
ative improvements for different models with more
training data.

Our code and the UTGEO2011 data set are both
available for download.2

3 Model

Assume we have a collection d of documents and
their associated location labels l. These docu-
ments may be actual texts, or they can be pseudo-
documents comprised of a number of texts grouped
via some algorithm (such as the grids discussed in
the next section).

For a test document di, its similarity to each la-
beled document is computed, and the location of the
most similar document assigned to di. Given an ab-
stract function sim that can be instantiated with an
appropriate similarity function (e.g. cosine distance
or Kullback-Leibler divergence),

loc(di) = loc(arg max
dj∈d

sim(di, dj)).

This is a winner-takes-all strategy, which we follow
in this paper. In related work on image geoloca-
tion, Hays and Efros (2008) use the same general
framework, but compute the location based on the
k-nearest neighbors (kNN) rather than the top one.
They compute a distribution from the 120 nearest
neighbors using mean shift clustering (Comaniciu
and Meer, 2002) and choose the cluster with the
most members. This produced slightly better re-
sults than choosing only the closest image. In future
work, we will explore the kNN approach to see if it
is more effective for text geolocation.

2https://github.com/utcompling/
textgrounder/wiki/RollerEtAl_EMNLP2012

Following previous work in document geoloca-
tion, particularly Serdyukov et al. (2009) (hence-
forth SMvZ) and Wing and Baldridge (2011)
(henceforth W&B), we geolocate texts using a lan-
guage modeling approach to information retrieval
(Ponte and Croft, 1998; Zhai and Lafferty, 2001).
For each document di, we construct a unigram prob-
ability distribution θdi

over the vocabulary.
We smooth documents using the pseudo-Good-

Turing method of W&B, a nonparametric discount-
ing model that backs off from the unsmoothed distri-
bution θ̃di

of the document to the unsmoothed distri-
bution θ̃D of all documents. A general discounting
model is as follows:

P (w|θdi
) =

{
(1− λdi

)P (w|θ̃di
), if P (w|θ̃di

) > 0

λdi

P (w|θ̃D)
Udi

, otherwise,

where Udi
= 1 −

∑
w∈di

P (w|θ̃D) is a normaliza-
tion factor that is precomputed when the distribution
for di is constructed. The discount factor λdi

indi-
cates how much probability mass to reserve for un-
seen words. For pseudo-Good-Turing, it is

λdi
=
|w ∈ di s.t. count(w ∈ di) = 1|

|w ∈ di|
,

i.e. the fraction of words seen once in di.
We experimented with other smoothing methods,

including Jelinek-Mercer and Dirichlet smoothing.
A disadvantage of these latter two methods is that
they have an additional tuning parameter to which
their performance is highly sensitive, and even with
optimal parameter settings neither consistently out-
performed pseudo-Good-Turing. We also found no
consistent improvement from using interpolation in
place of backoff.

We also follow W&B in using Kullback-Leibler
(KL) divergence as the similarity metric, since it out-
performed both naive Bayes classification probabil-
ity and cosine similarity:

KL(θdi
||θdj

) =
∑

k

θdi
(k) log

θdi
(k)

θdj
(k)

.

The motivation for computing similarity with KL is
that it is a measure of how well each document in
the labeled set explains the word distribution found
in the test document.
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4 Collapsing Documents with an Adaptive
Grid

In the previous section, we used the term “docu-
ment” loosely when speaking of training documents.
A simplistic approach might indeed involve com-
paring a test document to each training document.
However, in the winner-takes-all model described
above, we can rely only on the result of comparing
with the single best training document, which may
not contain enough information to make a good pre-
diction.

A standard strategy to deal with this problem is
to collapse groups of geographically nearby docu-
ments into larger pseudo-documents. This also has
the advantage of reducing the computation time,
as fewer training documents need to be compared
against. Formally, this involves partitioning the
training documents into a set of sets of documents
G = {g1 . . . gn}. A collection d̃ of pseudo-
documents is formed from this set, such that the
pseudo-document for a particular group gi is simply
the concatenation of the documents in the group:

d̃gi =
⋃

dj∈gi

dj .

A location must be associated with each pseudo-
document. This can be chosen based on the parti-
tioning function itself or the locations of the docu-
ments in each group.

Both W&B and SMvZ use uniform grids consist-
ing of cells of equal degree size to partition doc-
uments. We explore an alternative that uses k-d
(k-dimensional) trees to construct a non-uniform
grid that adapts to training sets of different sizes
more gracefully. It ensures a roughly equal num-
ber of documents in each cell, which means that all
pseudo-documents compete on similar footing with
respect to the amount of training data.

W&B define the location for a cell to be its ge-
ographic center, while SMvZ only perform error
analysis in terms of choosing the correct cell. We
obtain consistently improved results using the cen-
troid of the cell’s documents, which takes into ac-
count where the documents are concentrated.

4.1 k-d Trees
A k-d tree is a space-partitioning data structure for
storing points in k-dimensional space, which groups
nearby points into buckets. As one moves down the
tree, the space is split into smaller regions along
chosen dimensions. In this way, it is a generaliza-
tion of a binary search tree to multiple dimensions.
The k-d tree was first introduced by Bentley (1975)
and has since been applied to numerous problems,
e.g. Barnes-Hut simulation (Anderson, 1999) and
nearest-neighbors search (Friedman et al., 1977).

Partitioning geolocated documents using a k-d
tree provides finer granularity in dense regions and
coarser granularity elsewhere. For example, doc-
uments from Queens and Brooklyn may show sig-
nificant cultural distinctions, while documents sepa-
rated by the same distance in rural Montana may ap-
pear culturally identical. A uniform grid with large
cells will mash Queens and Brooklyn together, while
small cells will create unnecessarily sparse regions
in Montana.

An important parameter for a k-d tree is its bucket
size, which determines the maximum number of
points (documents in our case) that a cell may con-
tain. By varying the bucket size, the cells can be
made fine- or coarse-grained.

4.2 Partitioning with a k-d Tree
For geolocation, we consider the surface of earth to
be a 2-dimensional space (k=2) over latitude, longi-
tude pairs. We form a k-d tree by a recursive proce-
dure over the training data. Initially, all documents
are placed in the root node of the tree. If the number
of documents in the node exceeds the bucket size,
the node is split into two nodes along a chosen split
dimension and point. This procedure is recursively
called on each of the new child nodes, and repeats
until no node is overflowing. The resulting leaves of
the k-d tree form a patchwork of rectangles which
cover the entire earth.3

When splitting an overflowing node, the choice of
splitting dimension and point can greatly impact the
structure of the resulting k-d tree. Following Fried-
man et al. (1977), we choose to always split a node

3We note that the grid “rectangles” are actually trapezoids
due to the nature of the latitude/longitude coordinate system.
We assume the effect of this is negligible, since most documents
are away from the poles, where distortion is the most extreme.
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Figure 1: View of North America showing k-d leaves cre-
ated from GEOWIKI with a bucket size of 600 and the
MIDPOINT method, as visualized in Google Earth.

Figure 2: k-d leaves over the New York City and nearby
areas from the same dataset and parameter settings as in
Figure 1.

along the dimension exhibiting the greatest range of
values. However, there still exist multiple methods
for determining the split point, i.e. the point separat-
ing documents into “left” and “right” nodes. In this
paper, we consider two possibilities for selecting this
point: the MIDPOINT method, and the FRIEDMAN
method. The latter splits at the median of all the
points, resulting in an equal number of points in both
the left and right nodes and a perfectly balanced k-d
tree. The former splits at the midpoint between the
two furthest points, allowing for a greater difference
in the number of points in each bin. For geolocation,
the FRIEDMAN splitting method will likely lead to
less sparsity, and therefore more accurate cell selec-
tion. On the other hand, the MIDPOINT method is
likely to draw more geographically desirable bound-
aries.

Figure 1 shows the leaves of the k-d tree formed
over North America using the GEOWIKI dataset,

the MIDPOINT node division method, and a bucket
size of 600. Figure 2 shows the leaves over New
York City and its surrounding area for the same
dataset and settings. More densely populated ar-
eas of the earth (which in turn tend to have more
Wikipedia documents associated with them) contain
smaller and more numerous leaf cells. The cells
over Manhattan are significantly smaller than those
of Queens, the Bronx, and East Jersey, even at such
a coarse bucket size. Though the leaves of the k-d
tree implicitly cover the entire surface of the earth,
our illustrations limit the size of each box by its data,
leaving gaps where no training documents exist.

4.3 Selecting a Representative Location

W&B use the geographic center of a cell as the
geolocation for the pseudo-document it represents.
However, this ignores the fact that many cells will
have imbalances in the dispersion of the documents
they contain – typically, they will be clumpy, with
documents clustering around areas of high popula-
tion or activity. An alternative is to select the cen-
troid of the locations of all the documents contained
within a cell. Uniform grids with small cells are
not especially sensitive to this choice since the abso-
lute distance between a center or centroid prediction
will not be great, and empty cells are simply dis-
carded. Nonetheless, using the centroid has the ben-
efit of making a uniform grid less sensitive to cell
size, such that larger cells can be used more reliably
– especially important when there are few training
documents.

In contrast, when choosing representative loca-
tions for the leaves of a k-d tree, it is quite important
to use the centroid because the leaves necessarily
span the entire earth and none are discarded (since
all have a roughly similar number of documents in
them). Some areas with low document density are
thus assigned very large cells, such as those over
the oceans, as seen in Figures 1 and 2. Using the
centroid allows these large leaves to be in the mix,
while still predicting the locations in them that have
the greatest document density.

5 Experimental Setup

Configurations. We experiment with several con-
figurations of grids and representative locations.
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Figure 3: Development set comparisons for (a) GEOWIKI, (b) GEOTEXT, and (c) UTGEO2011-SMALL.

W&B refers to a uniform grid and geographic-
center location selection, UNIFCENTROID to a
uniform grid with centroid location selection,
KDCENTROID to a k-d tree grid with centroid
location selection, and UNIFKDCENTROID to
the union of pseudo-documents constructed by
UNIFCENTROID and KDCENTROID.

We also provide two baselines, both of which are
based on a uniform grid with centroid location selec-
tion. RANDOM predicts a grid cell chosen at random
uniformly; MOSTCOMMONCELL always predicts
the grid cell containing the most training documents.
Note that a most-common k-d leaf baseline does not
make sense, as all k-d leaves contain approximately
the same number of documents.

Evaluation. We use three metrics to measure ge-
olocation performance. The output of each exper-
iment is a predicted coordinate for each test docu-
ment. For each prediction, we compute the error dis-
tance along the surface of the earth to the gold coor-
dinate. We report the mean and median of all such
distances as in W&B and Eisenstein et al. (2011).
We also report the fraction of error distances less
than 161 km, corresponding to Cheng et al. (2010)’s
measure of predictions within 100 miles of the true
location. This third measure can reveal differences
between models not obvious from just mean and me-
dian.

6 Results

This section provides results for the datasets
described previously: GEOWIKI, GEOTEXT,
UTGEO2011-LARGE and UTGEO2011-SMALL.

We first give details for how we tuned parameters
and algorithmic choices using the development sets,
and then provide performance on the test sets based
on these determinations.

6.1 Tuning

The specific parameters are (1) the partition location
method; (2) the bucket size for k-d partitioning; (3)
the node division method for k-d partitioning; (4) the
degree size for uniform grid partitioning. We tune
with respect to mean error, like W&B.

Partition Location Method. Development set
results show that the centroid always performs bet-
ter than the center for all datasets, typically by a
wide margin (especially for large partition sizes). To
save space, we do not provide details, but point the
reader to the differences in test set results between
W&B and UNIFCENTROID (which are identical ex-
cept that the former uses the center and the latter
uses the centroid) in Tables 1 and 2. All further pa-
rameter tuning is done using the centroid method.

k-d Tree Bucket Size. Bucket size should not be
too large as a proportion of the total number of train-
ing documents. Larger bucket sizes tend to produce
larger leaves, so documents in a partition will have
a higher average distance to the center or centroid
point. This will result in predictions being made at
too coarse a granularity, greatly limiting obtainable
precision even when the correct leaf is chosen.

Conversely, small bucket sizes lead to fewer train-
ing documents per partition. A bucket size of one
reduces to the situation where no pseudo-documents
are used. While this might work well if location pre-
diction is done using the kNNs for a test document, it
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Test dataset GEOWIKI GEOTEXT

Method Parameters Mean Med. Acc. Parameters Mean Med. Acc.
RANDOM 0.1◦ 7056 7145 0.3 5◦ 2008 1866 1.6
MOSTCOMMONCELL 0.1◦ 4265 2193 5.0 5◦ 1158 757 31.3
Eisenstein et al. - - - - - 845 501 -
Wing & Baldridge 0.1◦ 221 11.8 - 5◦ 967 479 -
UNIFCENTROID 0.1◦ 181 11.0 90.3 5◦ 897 432 35.9
KDCENTROID B100, MIDPT. 192 22.5 87.9 B530, FRIED. 958 549 35.3
UNIFKDCENTROID 0.1◦, B100, MIDPT. 176 13.4 90.3 5◦, B530, FRIED. 890 473 34.1

Table 1: Performance on the held-out test sets of GEOWIKI and GEOTEXT, comparing to the results of Wing and
Baldridge (2011) and Eisenstein et al. (2011).

is likely to perform very poorly for the 1NN rule we
adopt. It would also require efficient similarity com-
parisons, using techniques such as locality-sensitive
hashing (Kulis and Grauman, 2009).

The graphs in Figure 3 show development set per-
formance when varying bucket size. For GEOWIKI

and UTGEO2011-LARGE (not shown), increments
of 100 were used, but for the smaller GEOTEXT

and UTGEO2011-SMALL, more fine-grained incre-
ments of 10 were used. In the case of plateaus, as
was common with the FRIEDMAN method, we chose
the middle of the plateau as the bucket size. Overall,
we found optimal bucket sizes of 100 for GEOWIKI,
530 for GEOTEXT, 460 for UTGEO2011-SMALL,
and 1050 for UTGEO2011-LARGE. That the
Wikipedia data requires a smaller bucket size is un-
surprising: the documents themselves are generally
longer and there are many more of them, so a small
bucket size provides good coverage and granularity
without sacrificing the ability to estimate good lan-
guage models for each partition.

Node Division Method. The graphs in Fig-
ure 3 also display the difference between the
two splitting methods. MIDPOINT is clearly bet-
ter for GEOWIKI, while FRIEDMAN is better for
GEOTEXT in the range of bucket sizes produc-
ing the best results. FRIEDMAN is best for
UTGEO2011-LARGE (not shown), but MIDPOINT

is best for UTGEO2011-SMALL.
These results only partly confirm our expecta-

tions. We expected FRIEDMAN to perform bet-
ter on smaller datasets, as it distributes the doc-
uments evenly and avoids many sparsity issues.
We expected MIDPOINT to win on larger datasets,
where all nodes receive plentiful data and the k-d

tree would choose more representative geographical
boundaries.

Cell Size. Following W&B, we choose a
cell degree size of 0.1◦ for GEOWIKI, and a
cell degree size of 5.0◦ for GEOTEXT. For
UTGEO2011-LARGE and UTGEO2011-SMALL,
we follow the procedure of W&B, trying sizes
0.1◦, 0.5◦, 1.0◦, 5.0◦, and 10.0◦, selecting the one
which performed best on the development set. For
UTGEO2011-SMALL, this resulted in coarse cells
of 10.0◦, while for UTGEO2011-LARGE, cell sizes
of 0.1◦ were best.

With these tuned parameters, the average num-
ber of training tokens per k-d leaf was approx-
imately 26k for GEOWIKI, 197k for GEOTEXT,
250k for UTGEO2011-SMALL, and 954k for
UTGEO2011-LARGE.

6.2 Held-out Test Sets

Table 1 shows the performance on the test sets of
GEOWIKI and GEOTEXT of the different configu-
rations, along with that of W&B and Eisenstein et
al. (2011) where possible. The results obtained by
W&B on GEOWIKI are already very strong, but we
do see a clear improvement by changing from the
center-based locations for pseudo-documents they
used to the centroid-based locations we employ:
mean error drops from 221 km to 181 km, and me-
dian error from 11.8 km to 11.0 km. Also, we reduce
the mean error further to 176 km for the configu-
ration that combines the uniform grid and the k-d
partitions, though at the cost of increasing median
error somewhat. The 161 km accuracy is around
90% for all configurations, indicating that the gen-
eral language modeling approach we employ is very

1506



Test dataset UTGEO2011
Training dataset UTGEO2011-SMALL UTGEO2011-LARGE

Method Parameters Mean Med. Acc. Parameters Mean Med. Acc.
RANDOM 10◦ 1975 1833 2.3 0.1◦ 1627 1381 2.0
MOSTCOMMONCELL 10◦ 1522 1186 9.3 0.1◦ 1525 1185 11.8
Wing & Baldridge 10◦ 1223 825 3.4 0.1◦ 956 570 30.9
UNIFCENTROID 10◦ 1147 782 12.3 0.1◦ 956 570 30.9
KDCENTROID B460, MIDPT. 1098 733 18.1 B1050, FRIED. 860 463 34.6
UNIFKDCENTROID 10◦, B460, MIDPT. 1080 723 18.1 0.1◦, B1050, FRIED. 913 532 33.0

Table 2: Performance on the held-out test set of UTGEO2011 for different configurations trained on
UTGEO2011-SMALL (comparable in size to GEOTEXT) and UTGEO2011-LARGE. The numbers given for W&B
were produced from their implementation, and correspond to uniform grid partitioning with locations from centers
rather than centroids.

robust for fact-oriented texts that are rich in explicit
toponyms and geographically relevant named enti-
ties.

For GEOTEXT, the results show that the uniform
grid with centroid locations is the most effective of
our configurations. It improves on Eisenstein et al.
(2011) by 69 km with respect to median error, but
has 52 km worse performance than their model with
respect to mean error. This indicates that our model
is generally more accurate, but that it is compara-
tively more wildly off on some documents. Their
model is a sophisticated one that attempts to build
detailed models of the geographic linguistic varia-
tion found in the dataset. Dialectal cues are actually
the most powerful ones in the GEOTEXT dataset,
and it seems our general approach of winner-takes-
all (1NN) hurts performance in this respect, espe-
cially with a very small training set.

Table 2 shows the performance on the test set of
UTGEO2011 with the UTGEO2011-SMALL and
UTGEO2011-LARGE training sets. (Performance
for W&B is obtained from their code.4) With
the small training set, error is worse than with
GEOTEXT, reflecting the wider geographic scope of
UTGEO2011. KDCENTROID is much more effec-
tive than the uniform grids, but combining it with the
uniform grid in UNIFKDCENTROID edges it out by
a small amount. More interestingly, KDCENTROID

is the strongest on all measures when using the large
training set, beating UNIFCENTROID by an even
larger margin for mean and median error than with

4https://bitbucket.org/utcompling/
textgrounder/wiki/WingBaldridge2011

the small training set. The bucket size used with the
large training set is double that for the small one,
but there are many more leaves created since there
are 42 times more training documents. With the ex-
tra data, the model is able to adapt better to the dis-
persion of documents and still have strong language
models for each leaf that work well even with our
greedy winner-takes-all decision method.

Note that the accuracy measurements for all
UTGEO2011 experiments are substantially lower
than those reported by Cheng et al. (2010), who
report a best accuracy within 100 miles of 51%.
While UTGEO2011-LARGE contains a substan-
tially larger number of tweets, Cheng et al. (2010)
limit themselves to users with at least 1,000
tweets, while we have an average of 85 tweets
per user. Their reported mean error distance of
862 km (versus our best mean of 860 km on
UTGEO2011-LARGE) indicates that their perfor-
mance is hurt by a relatively small number of ex-
tremely incorrect guesses, as ours appears to be.

Figure 4 provides a learning curve on
UTGEO2011’s development set for KDCENTROID.
Performance improves greatly with more data,
indicating that GEOTEXT performance would also
improve with more training data. Parameters, espe-
cially bucket size, need retuning as data increases,
which we hope to estimate automatically in future
work

Finally, we note that the KDCENTROID

method was faster than other methods. While
UNIFCENTROID took nearly 19 hours to com-
plete the test run on GEOWIKI (approximately
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Figure 4: Learning curve of KDCENTROID on the
UTGEO2011 development set.

1.38 seconds per test document), KDCENTROID

took only 80 minutes (.078 s/doc). Similarly,
UNIFCENTROID took about 67 minutes to
run on UTGEO2011-LARGE (0.34 s/doc), but
KDCENTROID took only 27 minutes (0.014 s/doc).
Generally, the KDCENTROID partitioning results
in fewer cells, and therefore fewer KL-divergence
comparisons. As expected, the UNIFKDCENTROID

model needs as much time as the two together,
taking roughly 21 hours for GEOWIKI (1.52 s/doc)
and 85 minutes for UTGEO2011-LARGE (0.36
s/doc).

7 Discussion

7.1 Error Analysis

We examine some of the greatest error distances
to better understand and improve our models. In
many cases, landmarks in Australia or New Zealand
are predicted in European locations with similarly-
named landmarks, or vice versa — e.g. the Theatre
Royal, Hobart in Australia is predicted to be in Lon-
don’s theater district, and the Embassy of Australia,
Paris is predicted to be in the capital city of Aus-
tralia. Thus, our model may be inadvertently cap-
turing what Clements et al. (2010) call wormholes,
places that are related but not necessarily adjacent.

Some of the other large errors stem from incorrect
gold labels, in particular due to sign errors in latitude
or longitude, which can place documents 10,000 or
more km from their correct locations.

Word Error Word Error
paramus 78 6100 130
ludlow 79 figueroa 133
355 99 dundas 138
ctfuuu 101 120th 139
74th 105 mississauga 140
5701 105 pulaski 144
bloomingdale 122 cucina 146
covina 133 56th 153
lawrenceville 122 403 157
ctfuuuu 124 428 161

Table 3: The 20 words with least average error
(km) in the UTGEO2011 development set, trained
on the UTGEO2011-SMALL training set, using the
KDCENTROID approach with our best parameters. Only
words that occur in at least 10 documents are shown.

Word Error Word Error
seniorpastor 1.1 KS01 2.4
prebendary 1.6 Keio 2.5
Wornham 1.7 Vrah 2.5
Owings 1.9 overspill 2.5
Londoners 2.0 Oriel 2.5
Sandringham 2.1 Holywell 2.6
Sheffield’s 2.2 \’vr&h 2.6
Oxford’s 2.2 operetta 2.6
Belair 2.3 Supertram 2.6
Beckton 2.4 Chanel 2.7

Table 4: Top 20 words with the least average er-
ror (km) in the GEOWIKI development set, using the
UNIFKDCENTROID approach with our best parameters.
Only words occurring in at least 10 documents are shown.

7.2 Most Predictive Words

Our approach relies on the idea that the use of certain
words correlates with a Twitter user or Wikipedia
article’s location. To investigate which words tend
to be good indicators of location, we computed, for
each word in a development set, the average error
distance of documents containing that word. Table 3
gives the 20 words with the least error, among
those that occur in at least 10 documents (users),
for the UTGEO2011 development set, trained on
UTGEO2011-SMALL.

Many of the best words are town names (paramus,
ludlow, bloomingdale), street names (74th, figueroa,
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120th), area codes (403), and street numbers (5701,
6100). All are highly locatable terms, as we would
expect. Many of the street addresses are due to
check-ins with the location-based social networking
service Foursquare (e.g. the tweet I’m at Starbucks
(7301 164th Ave NE, Redmond Town Center, Red-
mond)), where the user is literally broadcasting his
or her location. The token ctfuuu(u)—an elongation
of the internet abbreviation ctfu, or cracking the fuck
up—is a dialectal or stylistic feature highly indica-
tive of the Washington, D.C. area.

Similarly, several place names (Wornham, Belair,
Holywell) appear in GEOWIKI. Operettas are a cul-
tural phenomenon largely associated with France,
Germany, and England and particularly with specific
theaters in these countries. However, other highly
specific tokens such as KS01 have a very low aver-
age error because they occur in few documents and
are thus highly unambiguous indicators of location.
Other terms, like seniorpastor and \’vr&h, are due
to extraction errors in the dataset created by W&B,
and are carried along because of a high correlation
with specific documents.

8 Conclusion

We have shown how to construct an adaptive grid
with k-d trees that enables robust text geolocation
and scales well to large training sets. It will be inter-
esting to consider how it interacts with other strate-
gies for improving the IR-based approach. For ex-
ample, the pseudo-document word distributions can
be smoothed based on nearby documents or on the
structure of the k-d tree itself. Integrating our system
with topic models or Bayesian methods would likely
provide more insight with regard to the most dis-
criminative and geolocatable words. We also expect
predicting locations based on multiple most similar
documents (kNN) to be more effective in predict-
ing document location, as the second and third most
similar training documents together may sometimes
be a better estimation of its distribution than just the
first alone. Employing k Nearest Neighbors also al-
lows for more sophisticated methods of location es-
timation than a single leaf’s centroid. Other possi-
bilities include constructing multiple k-d trees using
random subsets of the training data to reduce sensi-
tivity to the bucket size.

In this article, we have considered each user in
isolation. However, Liben-Nowell et al. (2005) show
that roughly 70% of social network links can be de-
scribed using geographic information and that the
probability of a social link is inversely proportional
to geographic distance. Backstrom et al. (2010) ver-
ify these results on a much larger scale using ge-
olocated Facebook profiles: their algorithm geolo-
cates users with only the social graph and signif-
icantly outperforms IP-based geolocation systems.
Given that both Twitter and Wikipedia have rich,
linked document/user graphs, a natural extension to
our work here will be to combine text and network
prediction for geolocation. Sadilek et al. (2012)
also show that a combination of textual and so-
cial data can accurately geolocate individual tweets
when scope is limited to a single city.

Tweets are temporally ordered and the geographic
distance between consecutive tweeting events is
constrained by the author’s movement. For tweet-
level geolocation, it will be useful to build on work
in geolocation that considers the temporal dimen-
sion (Chen and Grauman, 2011; Kalogerakis et al.,
2009; Sadilek et al., 2012) to make better predictions
for documents/images that are surrounded by others
with excellent cues, but which are hard to resolve
themselves.
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Abstract

Discriminative training in query spelling cor-
rection is difficult due to the complex inter-
nal structures of the data. Recent work on
query spelling correction suggests a two stage
approach a noisy channel model that is used
to retrieve a number of candidate corrections,
followed by discriminatively trained ranker
applied to these candidates. The ranker, how-
ever, suffers from the fact the low recall of the
first, suboptimal, search stage.

This paper proposes to directly optimize the
search stage with a discriminative model
based on latent structural SVM. In this model,
we treat query spelling correction as a multi-
class classification problem with structured in-
put and output. The latent structural informa-
tion is used to model the alignment of words
in the spelling correction process. Experiment
results show that as a standalone speller, our
model outperforms all the baseline systems. It
also attains a higher recall compared with the
noisy channel model, and can therefore serve
as a better filtering stage when combined with
a ranker.

1 Introduction

Query spelling correction has become a crucial com-
ponent in modern information systems. Particularly,
search engine users rely heavily on the query cor-
rection mechanism to formulate effective queries.
Given a user query q, which is potentially mis-
spelled, the goal of query spelling correction is to
find a correction of the query c that could lead to a

better search experience. A typical query spelling
correction system employs a noisy channel model
(Kernighan et al., 1990). The model assumes that
the correct query c is formed in the user’s mind be-
fore entering the noisy channels, e.g., typing, and
get misspelled. Formally, the model maximizes the
posterior probability p(c|q):

ĉ = arg max
c

p(c|q). (1)

Applying Bayes rule, the formulation can be
rewritten as:

ĉ = arg max
c

p(q|c)p(c)

= arg max
c

[log p(q|c) + log p(c)].
(2)

The model uses two probabilities. The prior prob-
ability p(c) represents how likely it is that c is the
original correct query in the user’s mind. The prob-
ability is usually modeled by a language model es-
timated from a sizable corpus. The transformation
probability p(q|c) measures how likely it is that q is
the output given that c has been formed by the user.
This probability can be either heuristic-based (edit
distance) or learned from samples of well aligned
corrections. One problem with the noisy channel
model is that there is no weighting for the two kinds
of probabilities, and since they are estimated from
different sources, there are usually issues regarding
their scale and comparability, resulting in subopti-
mal performance (Gao et al., 2010). Another limita-
tion of this generative model is that it is not able to
take advantage of additional useful features.

1511



A discriminative model may solve these problems
by adding the flexibility of using features and apply-
ing weights. But training such a model is not easy.
The difficulty is that the output space of query cor-
rection is enormous, as the candidate corrections for
each a query term could be the entire vocabulary.
This is even worse when word boundary errors (i.e.
merging and splitting of words) exist. The problem
is intractable with standard discriminative models as
we cannot enumerate every candidate correction.

To solve the problem, (Gao et al., 2010) proposed
a two stage approach. In this approach, a ranker is
trained to score each candidate correction of a query.
When a query is issued, the system first uses the
noisy channel model with a standard search algo-
rithm to find the 20 best candidates. Then the ranker
is used to re-rank these candidates and find the best
correction for the query. This ranker based system
has one critical limitation, though. Since the ranking
stage is decoupled from the search, it relies on the
outsourced search algorithm to find the candidates.
Because query spelling correction is an online oper-
ation, only a small number of candidates can enter
the ranker due to efficiency concerns, thus limiting
the ability of the ranker to the ceiling of recall set by
the suboptimal search phase.

The research question we address here is whether
we can directly optimize the search phase of query
spelling correction using a discriminative model
without loss of efficiency. More specifically, we
want 1) a learning process that is aware of the
search phase and interacts with its result; 2) an ef-
ficient search algorithm that is able to incorporate
the learned model and guide the search to the target
spelling correction.

In this paper, we propose a new discriminative
model for query correction that maintains the ad-
vantage of a discriminative model in accommodat-
ing flexible combination of features and naturally in-
corporates an efficient search algorithm in learning
and inference. Similarly to (Chang et al., 2010) we
collapse a two stage process into a single discrim-
inatively trained process, by considering the output
of the first stage as an intermediate latent represen-
tation for the joint learning process. Specifically, we
make use of the latent structural SVM (LS-SVM)
(Yu and Joachims, 2009) formulation. We formu-
late the problem query spelling correction as a multi-

class classification problem on structured inputs and
outputs. The advantage of the structural SVM model
is that it allows task specific, customizable solutions
for the inference problem. This allows us to adapt
the model to make it work directly with the search
algorithm we use for finding the best correction of
the query. To account for word boundary errors, we
model the word alignment between the query and
the correction as a latent structural variable. The
LS-SVM model allows us to jointly search over the
output space and the latent structure space.

As the inference algorithm in the proposed dis-
criminative model we use an algorithm that resem-
bles a traditional noisy channel model. To adapt
the LS-SVM model to enable the efficient search of
query spelling correction, we study how features can
be designed. We analyze the properties of features
that can be used in the search algorithm and propose
a criteria for selecting and designing new features.
We demonstrate the use of the criteria by design-
ing separate features for different types of spelling
errors (e.g. splitting, merging). With the proposed
discriminative model, we can directly optimize the
search phase of query spelling correction without
loss of efficiency. Our model can be used not only as
a standalone speller with high accuracy, but also as
a high recall candidate generation stage for a ranker
based system.

Experiments verify the effectiveness of the dis-
criminative model, as the accuracy of correction can
be improved significantly over baseline systems in-
cluding an award winning query spelling system.
Even though the optimization is primarily based on
the top correction, the weights trained by LS-SVM
can be used to search for more candidate corrections.
The improvement in recall at different levels over the
noisy channel model demonstrates that our model is
superior even when used in the two-stage approach..

2 Related Work

Spelling correction has a long history (Levenshtein,
1966). Traditional techniques were on small scale
and depended on having a small trusted lexicons
(Kukich, 1992). Later, statistical generative mod-
els were shown to be effective in spelling correc-
tion, where a source language model and an er-
ror model were identified as two major components
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(Brill and Moore, 2000). Note that we are not deal-
ing here with the standard models in context sen-
sitive spelling (Golding and Roth, 1999) where the
set of candidate correction is a known “confusion
set”. Query spelling correction, a special form of
the problem, has received much attention in recent
years. Compared with traditional spelling correc-
tion task, query spelling deals with more complex
types of misspellings and a much larger scale of lan-
guage. Research in this direction includes utiliz-
ing large web corpora and query log (Chen et al.,
2007; Cucerzan and Brill, 2004; Ahmad and Kon-
drak, 2005), employing large-scale n-gram models,
training phrase-based error model from clickthrough
data (Sun et al., 2010) and developing additional fea-
tures (Gao et al., 2010).

Query alteration/refinement is a very relevant
topic to query spelling correction. The goal of
query alteration/refinement is to modify the inef-
fective query so that it could . Researches on this
track include query expansion (Xu and Croft, 1996;
Qiu and Frei, 1993; Mitra et al., 1998), query con-
traction(Kumaran and Allan, 2008; Bendersky and
Croft, 2008; Kumaran and Carvalho, 2009) and
other types of query reformulations for bridging the
vocabulary gap (Wang and Zhai, 2008). (Guo et al.,
2008) proposed a unified model to perform a broad
set of query refinements including correction, seg-
mentation and stemming. However, it has very lim-
ited ability in query correction. In this paper, we
study the discriminative training of query spelling
correction, which is potentially beneficial to many
existing studies.

Noisy channel model (or source channel model)
has been widely used in NLP. Many approaches have
been proposed to perform discriminative training of
the model (McCallum et al., 2000; Lafferty, 2001).
However, these approaches mostly deal with a rela-
tively small search space where the number of can-
didates at each step is limited (e.g. POS tagging). A
typically used search algorithm is dynamic program-
ming. In spelling correction, however, the search
space is much bigger and the existing approaches
featuring dynamic programming are difficult to be
applied.

Structural learning and latent structural learning
has been studied a lot in NLP in recent years(Chang
et al., 2010; Dyer et al., 2011), and has been

shown to be useful in a range of NLP applications
from Textual Entailment, Paraphrasing and Translit-
eration (Chang et al., 2010) to sentiment analysis
(Yessenalina et al., 2010).

Work has also been done on integrating discrimi-
native learning in search. Freitag and Khadivi used a
perceptron algorithm to train for sequence alignment
problem. A beam search algorithm was utilized in
the search (Freitag and Khadivi, 2007). Daume et
al. proposed the Searn framework for search based
structural prediction (Daume et al., 2009). Our
model differs from the Searn framework in that it
learns to make global decisions rather than accumu-
lating local decisions. The global decision was made
possible by an efficient search algorithm.

Query spelling correction also shares many sim-
ilarities with statistical machine translation (SMT).
Sun et al. (2010) has formulated the problem within
an SMT framework. However, SMT usually in-
volves more complex alignments, while in query
spelling correction search is the more challenging
part. Our main contribution in this paper is a novel
unified way to directly optimize the search phase of
query spelling correction with the use of LS-SVM.

3 Discriminative Model for Query Spelling
Correction Based on LS-SVM

In this section, we first present the discriminative
formulation of the problem of query spelling correc-
tion. Then we introduce in detail the model we use
for solving the problem.

3.1 The Discriminative Form of Query Spelling
Correction

In query spelling correction, given a user entered
query q, which is potentially misspelled, the goal is
to find a correction c, such that it could be a more
effective query which improves the quality of search
results. A general discriminative formulation of the
problem is of the following form:

f(q) = arg max
c∈V∗

[w ·Ψ(q, c)], (3)

where Ψ(q, c) is a vector of features and w is the
model parameter. This discriminative formulation is
more general compared to the noisy channel model.
It has the flexibility of using features and applying
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weights. The noisy channel model is a special case
of the discriminative form where only two features,
the source probability and the transformation proba-
bility, are used and uniform weightings are applied.
However, this problem formulation does not give us
much insight on how to proceed to design the model.
Especially, it is unclear how Ψ(q, c) can be com-
puted.

To enhance the formulation, we explore the fact
that spelling correction follows a word-by-word pro-
cedure. Let us first consider a scenario where word
boundary errors does not exist. In this scenario,
each query term matches and only matches to a sin-
gle term in the correction. Formally, let us denote
q = q1, ..., qn and c = c1, ..., cm as structured ob-
jects from the space of V∗, where V is our vocabu-
lary of words and V∗ is all possible phrases formed
by words in V . Both q and c have an intrinsic se-
quential structure. When no word boundary error
exists, |c| = |q| holds for any candidate correction
c. qi and ci establish a one-to-one mapping. In this
case, we have a more detailed discriminative form:

f(q) = arg max
c∈V|q|

[w · (Ψ0 +

|q|∑
i=1

Ψ1(qi, ci))], (4)

where Ψ0 is a vector of normalizing factors,
Ψ1(qi, ci) is the decomposed computation of Ψ(q, c)
for each query term qi and ci, for i = 1 to |q|.

Equation 4 is a clearer formulation. The major
challenge of solving this discriminative problem is
the complexity. Theoretically, each term has |V|
candidates and it is impossible to enumerate over
all possible combinations. To make it even worse,
merging and splitting errors are quite common in
misspelling. As a result, the assumption of one-to-
one mapping does not hold in practice.

To account for these word boundary errors and
enhance the discriminative formulation, we intro-
duce a latent variable a to model the unobserved
structural information. More specifically, a =
a1, a2, ...a|a| is the alignment between q and c. Each
alignment node at is a represented by a quadruple
(qstart, qend, cstart, cend). Figure 1 shows a com-
mon merge error and its best alignment. The phrase
”credit card”, in this case, is incorrectly merged into
one word ”creditcard” by the user. Figure 2 shows

Figure 1: Example of Merge Error and Alignment

Figure 2: Example of Split Error and Alignment

the best alignment for a common split error, where
the word ”gamespot” is incorrectly split into a two
word phrase ”game spot”.

Taking into consideration the latent variable, we
arrive at our final discriminative form of query
spelling correction:

f(q) = arg max(c,a)∈Vn×A[w ·Ψ(q, c, a)]

= arg max(c,a)∈V∗×A[w · (Ψ0

+
∑|a|

t=0 Ψ1(qat , cat , at))],
(5)

The challenges of successfully applying a dis-
criminative model to this problem formulation are
1) how can we design a learning algorithm to learn
the model parameter w to directly optimize the max-
imization problem; 2) how can we solve the maxi-
mization efficiently without having to enumerate all
candidates; 3) how can we design features to guar-
antee the correctness of the search algorithm. In the
following subsections we introduce our solutions to
the three challenges in detail.

3.2 Latent Structural SVM

We employ the latent structural SVM (LS-SVM)
model for learning the discriminative model of query
spelling correction. LS-SVM is a large margin
method that deals with structured prediction prob-
lems with latent structural information (Yu and
Joachims, 2009). LS-SVM has the merit of allowing
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task specific, customizable solutions for the infer-
ence problem. This makes it easy to adapt to learn-
ing the model parameters for different problems.
The following is a brief introduction of LS-SVM
that largely mirrors the work by (Yu and Joachims,
2009).

Without loss of generality, let us aim at learning
a prediction function f : X → Y that maps input
x ∈ X to an output y ∈ Y with latent structural
information h ∈ H. The decision function is of the
following form:

f(x) = arg max
(y,h)∈Y×H

[w ·Ψ(x, y, h)], (6)

where Ψ(x, y, h) is the set of feature functions de-
fined jointly over the input x, the output y and the
latent variable h. w is the parameter of the model.
Given a set of training examples that consist of input
and output pairs {(x1, y1), ...(xn, yn)} ∈ (X ×Y)n,
the LS-SVM method solves the following optimiza-
tion problem:

minw
1

2
‖w‖2

+C
n∑
i=1

max
(ŷ,ĥ)∈Y×H

[w ·Ψ(xi, ŷ, ĥ) + ∆(yi, ŷ)]

−C
n∑
i=1

max
h∈H

[w ·Ψ(xi, yi, h)],

(7)
where ∆(yi, ŷ) is the loss function for the ith ex-

ample. The details of the derivation is omitted in
this paper. Readers who are interested can read more
from (Yu and Joachims, 2009).

There are two maximization problems that are es-
sential in Equation 7. The first one is the loss aug-
mented decision function:

max
(ŷ,ĥ)∈Y×H

[w ·Ψ(xi, ŷ, ĥ) + ∆(yi, ŷ)], (8)

and the second is the inference of latent variable
given the label of the training data:

max
h∈H

[w ·Ψ(xi, yi, h)]. (9)

The Latent Structural SVM framework does not
specify how the maximization problems in Equation

8 and Equation 9 are solved, as well as the infer-
ence problem in 6. These maximization problems
are task dependent. Being able to efficiently solve
them is the key to successfully applying the Latent
Structural SVM method. We will show in detail how
we solve these maximization problems to make LS-
SVM work for query spelling correction in the fol-
lowing subsection.

For training the LS-SVM model, a Concave-
Convex Procedure (CCCP) was proposed to solve
this optimization problem (Yu and Joachims, 2009).
The method resembles the Expect-Maximization
(EM) training method as it updates the model by it-
eratively recomputing the latent variable. However,
rather than performing “sum-product” training as in
EM where a distribution over the hidden variable is
maintained, the CCCP method used for LS-SVM is
more similar to the “max-product” paradigm where
we “guess” the best hidden variable in each iteration,
except here we “guess” by minimizing a regularized
loss function instead of maximizing the likelihood.

3.3 Solving the Inference Problems
The essential inference problem is to find the correc-
tion that maximizes the scoring function according
to the model (i.e., the decision function in Equation
6). For this purpose we design a best first search al-
gorithm similar to the standard search algorithm in
the noisy channel model. The essence of the search
algorithm is to bound the score of each candidate
so that we could evaluate the most promising candi-
dates first. The algorithm is given in Algorithm 1.

Essentially, the algorithm maintains a priority
queue of all search paths. Each time the best path is
de-queued, it is expanded with up to m − 1 words
in q by searching over a vocabulary trie of up to
m-gram. Each path is represented as a quadruple
(pos, str, sc, a), representing the current term posi-
tion in query, the string of the path, the path’s score
and the alignment so far. The priority queue is sorted
according to the score of each path in descending or-
der. The GetSuggestions() function retrieves the
top n similar words to the given word with a vocab-
ulary trie according to an error model.

Splitting errors are dealt with in Algorithm 1 by
“looking forward” m words in the query when gen-
erating candidate words. Merging errors are ac-
counted for by including up to m-gram in the vocab-
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ulary trie. It is worth mentioning that performance
of Algorithm 1 could be further improved by com-
puting heuristic scores for each path.

Algorithm 1: Best First Search Algorithm
Input: Vocabulary Trie V , query q, output size k,

max order m, candidate pool size n
Output: List l of top k corrections for q

1 Initialize List l;
2 Initialize PriorityQueue pq;
3 Enqueue to pq a start path with position set to 0,

string set to empty string, score set to w ·Ψ0, and
path alignment set to empty set;

4 while pq is not Empty do
5 Path π ← pq.Dequeue();
6 if π.pos < q.terms.length then
7 for i← 0 to m do
8 ph← q.terms[π.pos+ 1...π.pos+ i];
9 sug ← GetSuggestions(ph, V, n);

10 foreach s in sug do
11 pos′ ← π.pos+ i;
12 str′ ← concat(π.str, s.str);
13 a′ ← π.a ∪ s.a;
14 sc′ ← π.sc+w ·Ψ1(qs.a, cs.a, s.a);
15 Enqueue pq with the new path

(pos′, str′, sc′, a′);

16 else
17 Add suggestion string π.str to l;
18 if l.Count > k then return l;

19 return l;

As Algorithm 1 originates from the noisy channel
model, the two known features that work with the
algorithm are log p(c) and log p(q|c) from the noisy
channel model. However, it is unknown whether
other features can work with the search algorithm
and how we can develop new features to ensure it.
After analyzing the properties of the features and the
search algorithm, we find that a feature ψ has to sat-
isfy the following monotonicity constraint in order
to be used in Algorithm 1.

Monotonicity Property. Given query q, for
any alignment At = At−1 ∪ {at} at time t,
ψ(qAt , cAt , At) ≤ ψ(qAt−1 , cAt−1 , At−1), where
qAt is the concatenation of qa0 to qat and cAt is the
concatenation of ca0 to cat .

That is, the value of the feature (which is com-
puted in an accumulative manner) cannot increase
as the candidate is extended with a new term at

any search step. This ensures that the score of the
best candidate at any search step is guaranteed to be
higher than the score of any future candidates. It
also implies ψt(qat , cat , at) ≤ 0 for any t ∈ T . The
monotonicity feature ensures the correctness of Al-
gorithm 1. We show how we design features with
the guidance of the monotonicity constraint in Sec-
tion 4.

The solution to to the loss augmented inference
depends on the loss function we use. In spelling cor-
rection, usually only one correction is valid for an
input query. Therefore, we apply the 0-1 loss to our
model:

∆(c, ĉ) =

{
0 c = ĉ
1 c 6= ĉ

(10)

Given this loss function, the loss augmented infer-
ence problem can be solved easily with an algorithm
similar to Algorithm 1. This is done by initializing
the loss to be 1 at the beginning of each search path.
During the search procedure, we check if the loss
decreases to 0 given the correction string so far. If
this is the case, we decreases the score by 1 and add
the path back to the priority queue. More advanced
functions may also be used (Dreyer et al., 2006),
which may lead to better training performance. We
plan to further study different loss functions in our
future work.

The inference of the latent alignment variable can
be solved with dynamic programming, as the num-
ber of possible alignments is limited given the query
and the correction.

4 Features

In the following discussions, we will describe how
the features in our discriminative model are devel-
oped under the guidance of the monotonicity con-
straint.

4.1 Source Probability and Transformation
Probability

We know from empirical experience that the source
probability and the transformation probability are
the two most important features in query spelling
correction. We include them in our model in a nor-
malized form. Taking the source probability for ex-
ample, we define the following feature:
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ψ(q, c, a) =
µ+

∑|a|
1 log p(c)
µ

= 1 +
∑|a|

1
log p(c)
µ ,

(11)

where µ is a normalizing factor computed as:

µ = −|q| log pmin, (12)

where pmin is the smallest probability we use in
practice.

The formula fits the general form we define in 5
in that ψ0 = 1 and ψ1(qat , cat , at) = log p(c)

µ for any
t = 1 to |a|.

Similarly, we have the follow feature for the trans-
formation probability:

ψ′(q, c, a) =
µ+

∑|a|
1 log p(q|c)
µ

= 1 +
∑|a|

1
log p(q|c)

µ .
(13)

We use the web Microsoft n-gram model1 to com-
pute source model p(c). We train the unigram trans-
formation model for the transformation probability
p(q|c) according to (Duan and Hsu, 2011).

In generative models, we treat transformation
probabilities from merging and splitting errors in the
same way as single word errors. In our discrimi-
native model we can assign separate weight to the
transformation probabilities resulted from different
types of errors. This allows fine tuning of the query
spelling correction system, making it more adaptive
to environments where the ratio of different types of
errors may vary. Moreover, the model also allows
us to include language models trained over different
resources, such as query log, title of webpages or
anchor texts.

4.2 Local Heuristic Features

Despite the goal of query spelling correction is to
deal with misspellings, in real world most queries
are correctly spelled. A good query spelling correc-
tion system shall prevent as much as possible from
misjudging an correctly spelled query as misspelled.
With this idea in mind, we invent some heuristic
functions to avoid misjudging.

1http://research.microsoft.com/en-
us/collaboration/focus/cs/web-ngram.aspx

Local Heuristic 1. When a query term is matched
against trustable vocabulary, it increases the chance
that the term is already in its correct form. For ex-
ample, we extract a reliable vocabulary from the title
field of Wikipedia2. We therefore design the follow-
ing feature:

φ(q, c, a) = 1 +

|a|∑
t=1

φ1(qat , cat , at), (14)

where φ1(qat , cat , at) is defined as:

φ1(qat , cat , at) =


0 qat /∈ W
0 qat ∈ W, qat = ct
− 1
|q| qat ∈ W, qat 6= cat

(15)
where W is the vocabulary of Wikipedia titles.

Since |q| > |a| always holds, the feature is normal-
ized between 0 and 1.

Local Heuristic 2. Another heuristic is that
words with numbers in it, despite usually not in-
cluded in any vocabulary, should be treated care-
fully as they tend to be correct words. Such words
could be a model, a serial number or a special en-
tity name. Since the number keys on keyboard are
away from the letter keys, they are more likely to be
intentionally typed in if found in user queries. Simi-
lar to Heuristic 1, we design the following feature to
capture this heuristic:

φ′(q, c, a) = 1 +

|a|∑
t=1

φ′1(qat , cat , at), (16)

where φ′1(qat , cat , at) is defined as:

φ′1(qat , cat , aat) =


0 [0...9] /∈ qat

0 [0...9] ∈ qat , qat = cat

− 1
|q| [0...9] ∈ qat , qat 6= cat

(17)

4.3 Global Heuristic Features
Some global heuristics are also important in query
spelling correction. For instance, the total number

2http://www.wikipedia.org

1517



of words being corrected in the query may be an
indicator of whether the system has leaned towards
overcorrecting. To account for this global heuristic,
we design the following feature:

ϕ(q, c, a) =

{
1 wc(q, c, a) < wcmax
0 otherwise

(18)

where wc(q, c, a) is the number of word changes
at step t, wcmax is the maximum number of word
changes we allow in our system (in a soft way). Sim-
ilarly, other thresholded features can be designed
such as the number of total edit operations. The use
of global features is similar to the use of loss func-
tion in the search algorithm.

5 Experiments

In order to test the effectiveness and efficiency of our
proposed discriminative training method, in this sec-
tion we conduct extensive experiments on two web
query spelling datasets. Below we first present the
dataset and evaluation metrics, followed by the ex-
periment results on query spelling correction.

5.1 Dataset Preparation
The experiments are conducted on two query
spelling correction datasets. One is the TREC
dataset based on the publicly available TREC
queries (2008 Million Query Track). This dataset
contains 5892 queries and the corresponding correc-
tions annotated by the MSR Speller Challenge 3 or-
ganizers. There could be more than one plausible
corrections for a query. In this dataset only 5.3% of
queries are judged as misspelled.

We have also annotated another dataset that con-
tains 4926 MSN queries, where for each query there
is at most one correction. Three experts are involved
in the annotation process. For each query, we con-
sult the speller from two major search engines (i.e.
Google and Bing). If they agree on the returned
results (including the case if the query is just un-
changed), we take it as the corrected form of the in-
put query. If the results are not the same from the
two, as least one human expert will manually anno-
tate the most likely corrected form of the query. Fi-
nally, about 13% of queries are judged as misspelled

3http://web-ngram.research.microsoft.com/spellerchallenge/

in this dataset, which is close to the error rate of real
web queries. We’ve made this dataset publicly avail-
able to all researchers4.

Both the two datasets are split randomly into two
equal subsets for training and testing.

5.2 Evaluation Metrics

We evaluate our system based on the evaluation met-
rics proposed in Microsoft Speller Challenge, in-
cluding expected precision, expected recall and ex-
pected F1 measure.

Let q be a user query and C(q) = (c1, c2, , ck)
be the set of system output with posterior probabil-
ities P (ci|q). Let S(q) denote the set of plausible
spelling variations annotated by the human experts
for q. Expected Precision is computed as:

Precision =
1

|Q|
∑
q∈Q

∑
c∈C(q)

Ip(c, q)P (c|q), (19)

where Ip(c, q) = 1 if c ∈ S(q), and 0 otherwise.
And expected recall is defined as:

Recall =
1

|Q|
∑
q∈Q

∑
a∈S(q)

Ir(C(q), a)/|S(q)|, (20)

where Ir(C(q), a) = 1 if a ∈ C(q) for a ∈ S(q),
and 0 otherwise. We use R@N to denote recall for
systems limited to output top N corrections.

Expected F1 measure can be computed as:

F1 =
2 · precision · recall
precision+ recall

(21)

5.3 Experiment Results

Table 1 compares the performance of our LS-SVM
based model with two strong baseline systems. The
first baseline system is an Echo system which sim-
ply echos the input. The echo system is usually con-
sidered as a strong baseline in query spelling cor-
rection as the majority of the queries are correctly
spelled queries. The second baseline Lueck-2011
we use is a award winning speller system5 (Luec,
2011), which was ranked at the first place in Mi-
crosoft Spelling Challenge 2011.

4http://times.cs.uiuc.edu/duan9/msn speller.tar.gz
5http://www.phraselink.com
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Table 1: LSSVM vs Baselines Serving as Standalone Speller

All Queries Misspelled Queries
Dataset Method Precision R@10 F1 Precision R@10 F1

Echo 0.949 0.876 0.911 0 0 0
TREC Lueck-2011 0.963 0.932 0.947 0.391 0.479 0.430

LS-SVM 0.955 0.944 0.949 0.331 0.678† 0.445†

Echo 0.869 0.869 0.869 0 0 0
MSN Lueck-2011 0.896 0.921 0.908 0.334 0.397 0.363

LS-SVM 0.903 0.953 0.928 0.353† 0.662† 0.461†

We show performances for the entire query sets
as well as the query sets consisting only the mis-
spelled queries. As we can see, our system out-
performs both baseline systems on almost all met-
rics, except the precision of Lueck-2011 is better
than ours on TREC dataset. We perform statistical
test and measures where our system shows statisti-
cal significant improvement over both baseline sys-
tems are noted by †. It is theoretically impossible
to achieve statistical significance in the entire query
set as majority queries have almost identical perfor-
mance in different systems due to the large amount
of correct queries. But our method shows signifi-
cant improvement in the dealing with the misspelled
queries. This experiment verified the effectiveness
of our proposed discriminative model. As a stan-
dalone speller, our system achieves very high accu-
racy.

Despite we are primarily focused on optimizing
the top correction in our discriminative model, we
can also use the trained system to output multiple
candidate corrections. Table 2 compare our system
with the noisy channel model (N-C) in terms of re-
call at different levels of cutoff. For all levels, we see
that our system achieves higher recall than the noisy
channel model. This indicates that when used to-
gether with a secondary ranker, our system serves as
a better filtering method than the unoptimized noisy
channel model. Since the ranker makes use of arbi-
trary features, it has the potential of further improv-
ing the accuracy of query spelling correction. We
plan to further explore this idea as a future work.

In Table 3 we study the effect of treating the trans-
formation probability of merging and splitting er-
rors as separate features and including the local and
global heuristic features (rich features). We see that

Table 2: LS-SVM vs Noisy Channel Model Serving as
Filtering Method

Dataset Method R@5 R@10 R@20
TREC N-C 0.896 0.899 0.901

LS-SVM 0.923 0.944 0.955
MSN N-C 0.870 0.873 0.876

LS-SVM 0.950 0.953 0.960

the precision of query spelling correction can bene-
fits from the use of rich features. However, it does
not result in much improvement in recall. This is
reasonable as the additional features are primarily
designed to improve the accuracy of the top correc-
tion generated by the system. In doing so, it actu-
ally regularizes the ability of the system in retrieving
diversified results. For instance, the global heuris-
tic feature on the number of word change tries to
prevent the system from returning candidates hav-
ing more than a certain number of changed words.
For the TREC collection where more than one cor-
rections can be labeled for a query, this phenomena
is aggravated.

Table 3: LSSVM w/ and w/o Rich Features
Dataset Method Precision R@10 F1
TREC w/o 0.942 0.946 0.944

w/ 0.955 0.944 0.949
MSN w/o 0.898 0.952 0.924

w/ 0.903 0.953 0.928

6 Conclusions

In this paper, we present a novel discriminative
model for query spelling correction. The paper made
the following contributions:
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First, to the best of our knowledge, this is a novel
exploration of directly optimizing the search phase
in query spelling correction with a discriminative
model. By modeling word alignment as the latent
structural information, our formulation also deals
with word boundary errors. We propose to use LS-
SVM for learning the discriminative model which
naturally incorporates search in the learning process.
Second, we develop an efficient search algorithm
that solves the inference problems in the LS-SVM
based model. We analyze the criteria for selecting
and designing features to ensure the correctness and
efficiency of the search algorithm. Third, we explore
effective features to improve the accuracy of the
model. Finally, experiments are conducted to verify
the effectiveness of the proposed model. It is shown
that as a standalone speller our system achieves high
accuracy. When used in a two stage approach, it at-
tains higher recall than the noisy channel model and
can thus serve as a superior method for candidate
generation. We also verify that through the use of
rich features, we can further improve the accuracy
of our query spelling correction system.
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Abstract

Much of the writing styles recognized in
rhetorical and composition theories involve
deep syntactic elements. However, most
previous research for computational sty-
lometric analysis has relied on shallow
lexico-syntactic patterns. Some very re-
cent work has shown that PCFG models
can detect distributional difference in syn-
tactic styles, but without offering much in-
sights into exactly what constitute salient
stylistic elements in sentence structure
characterizing each authorship. In this
paper, we present a comprehensive ex-
ploration of syntactic elements in writing
styles, with particular emphasis on inter-
pretable characterization of stylistic ele-
ments. We present analytic insights with
respect to the authorship attribution task
in two different domains.

1 Introduction

Much of the writing styles recognized in rhetor-
ical and composition theories involve deep syn-
tactic elements in style (e.g., Bain (1887), Kem-
per (1987) Strunk and White (2008)). However,
previous research for automatic authorship at-
tribution and computational stylometric analy-
sis have relied mostly on shallow lexico-syntactic
patterns (e.g., Mendenhall (1887), Mosteller
and Wallace (1984), Stamatatos et al. (2001),
Baayen et al. (2002), Koppel and Schler (2003),
Zhao and Zobel (2007), Luyckx and Daelemans
(2008)).

Some very recent works have shown that
PCFG models can detect distributional differ-
ence in sentence structure in gender attribution
(Sarawgi et al., 2011), authorship attribution
(Raghavan et al., 2010), and native language
identification (Wong and Dras, 2011). However,
still very little has been understood exactly what
constitutes salient stylistic elements in sentence
structures that characterize each author. Al-
though the work of Wong and Dras (2011) has
extracted production rules with highest informa-
tion gain, their analysis stops short of providing
insight any deeper than what simple n-gram-
level analysis could also provide.1 One might
even wonder whether PCFG models are hing-
ing mostly on leaf production rules, and whether
there are indeed deep syntactic differences at all.
This paper attempts to answer these questions.

As an example of syntactic stylistic elements
that have been much discussed in rhetorical the-
ories, but have not been analyzed computation-
ally, let us consider two contrasting sentence
styles: loose (cumulative) and periodic:2 a loose
sentence places the main clause at the begin-
ning, and then appends subordinate phrases and
clauses to develop the main message. In con-
trast, a periodic sentence starts with subordi-
nate phrases and clauses, suspending the most

1For instance, missing determiners in English text
written by Chinese speakers, or simple n-gram anomaly
such as frequent use of “according to” by Chinese speak-
ers (Wong and Dras, 2011).

2Periodic sentences were favored in classical times,
while loose sentences became more popular in the modern
age.
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Hobbs Joshi Lin McDon

SˆROOT → S , CC S PPˆPRN → IN NP NPˆS → NN CD NPˆNP → DT NN POS
NPˆPP → DT NPˆPP → NP PRN SBAR NPˆNP → DT NN NNS WHNPˆSBAR → IN
VPˆVP → TO VP SˆROOT → PP NP VP . SˆROOT → SBAR , NP VP . NPˆPP → NP SBAR
PPˆPP → IN S PRNˆNP → -LRB- PP -RRB- NPˆPP → NP : NP SBARˆPP → WHADVP S
NPˆPP → NP , PP NPˆNP → NNP SˆROOT → PP , NP VP . SBARˆS → WHNP S
VPˆS → VBZ ADJP S SˆSBAR → PP NP VP NPˆNP → PDT DT NNS PPˆNP → IN SBAR
VPˆSINV → VBZ SˆROOT → LST NP VP . NPˆVP → DT NN SBAR SBARˆNP → WHNP S
VPˆS → VBD S CONJPˆNP → RB RB IN SBARˆS → WHADVP S SBARˆPP → SBAR CC SBAR
VPˆS → VBG PP NPˆPP → NP PRN PP PRNˆNP → -LRB- NP -RRB- PPˆVP → IN
ADVPˆVP → RB PP NPˆNP → NP , NP NPˆPP → NN NN SˆSBAR → VP

Table 1: Top 10 most discriminative production rules for each author in the scientific domain.

loose Christopher Columbus finally
reached the shores of San Salvador
after months of uncertainty at
sea, the threat of mutiny, and a
shortage of food and water.

periodic After months of uncertainty at sea,
the threat of mutiny, and a short-
age of food and water, Christopher
Columbus finally reached the shores
of San Salvador.

Table 2: Loose/Periodic sentence with identical set
of words and POS tags

important part to the end. The example in Ta-
ble 2 highlights the difference:
Notice that these two sentences comprise of an
identical set of words and part-of-speech. Hence,
shallow lexico-syntactic analysis will not be able
to catch the pronounced stylistic difference that
is clear to a human reader.

One might wonder whether we could gain in-
teresting insights simply by looking at the most
discriminative production rules in PCFG trees.
To address this question, Table 1 shows the
top ten most discriminative production rules
for authorship attribution for scientific articles,3

ranked by LIBLINEAR (Fan et al., 2008).4 Note
that terminal production rules are excluded so
as to focus directly on syntax.

It does provide some insights, but not to a sat-
isfactory degree. For instance, Hobbs seems to
favor inverted declarative sentences (SINV) and
adverbs with prepositions (RB PP). While the
latter can be easily obtained by simple part-of-

3See Section 2 for the description of the dataset.
4We use Berkeley PCFG parser (Petrov and Klein,

2007) for all experiments.

speech analysis, the former requires using parse
trees. We can also observe that none of the
top 10 most discriminative production rules for
Hobbs includes SBAR tag, which represents sub-
ordinate clauses. But examining discriminative
rules alone is limited in providing more compre-
hensive characterization of idiolects.

Can we unveil something more in deep syntac-
tic structure that can characterize the collective
syntactic difference between any two authors?
For instance, what can we say about distribu-
tional difference between loose and periodic sen-
tences discussed earlier for each author? As can
be seen in Table 1, simply enumerating most dis-
criminative rules does not readily answer ques-
tions such as above.

In general, production rules in CFGs do not
directly map to a wide variety of stylistic el-
ements in rhetorical and composition theories.
This is only as expected however, partly because
CFGs are not designed for stylometric analysis
in the first place, and also because some syntac-
tic elements can go beyond the scope of context
free grammars.

As an attempt to reduce this gap between
modern statistical parsers and cognitively recog-
nizable stylistic elements, we explore two com-
plementary approaches:

1. Translating some of the well known stylistic
elements of rhetorical theories into PCFG
analysis (Section 3).

2. Investigating different strategies of analyz-
ing PCFG trees to extract author charac-
teristics that are interesting as well as in-
terpretable (Sections 4 & 5).
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Algorithm 1 Sentence Type-1 Identification
Input: Parse tree t(Nr) of sentence s
Output: Type of s.

if S ∈ Ltop then
if SBAR /∈ Ω(Nr) then

return COMPOUND

else
return COMPLEX-COMPOUND

else
if VP ∈ Ltop then

if SBAR /∈ Ω(Nr) then
return SIMPLE

else
return COMPLEX

return OTHER

We present analytic insights with respect to
the authorship attribution task in two distinct
domains.

2 Data

For the empirical analysis of authorship attri-
bution, we use two different datasets described
below. Sections 3, 4 & 5 provide the details of
our stylometric analysis.

Scientific Paper We use the ACL Anthol-
ogy Reference Corpus (Bird et al., 2008). Since
it is nearly impossible to determine the gold-
standard authorship of a paper written by multi-
ple authors, we select 10 authors who have pub-
lished at least 8 single-authored papers. We in-
clude 8 documents per author, and remove cita-
tions, tables, formulas from the text using sim-
ple heuristics.5

Novels We collect 5 novels from 5 English au-
thors: Charles Dickens, Edward Bulwer-Lytton,
Jane Austen, Thomas Hardy and Walter Scott.
We select the first 3000 sentences from each
novel and group every 50 consecutive sentences
into 60 documents per novel per author.

5Some might question whether the size of the dataset
used here is relatively small in comparison to typical
dataset comprised of thousands of documents in conven-
tional text categorization. We point out that authorship
attribution is fundamentally different from text catego-
rization in that it is often practically impossible to collect
more than several documents for each author. Therefore,
it is desirable that the attribution algorithms to detect
the authors based on very small samples.

Algorithm 2 Sentence Type-II Identification
Input: Parse tree t(Nr) of sentence s
Output: Type of s.
k ← 1
while k ≤ λ do

if Ltop
k 6= VP then

if S ∈ Ω(Ltop
k ) or SBAR ∈ Ω(Ltop

k ) then
return PERIODIC

else
if S ∈ Ω(Ltop

k ) or SBAR ∈ Ω(Ltop
k ) then

return LOOSE

return OTHER

3 Sentence Types

In this section, we examine well-known sentence
types that are recognized in the literature, but
have not been analyzed computationally.

Type-I Identification – Simple/Complex/
Compound/Complex-Compound: PCFG
trees do not provide this information directly,
hence we must construct an algorithm to derive
it. The key to identifying these sentences is the
existence of dependent and independent clauses.
For the former, we rely on the SBAR tag, while
for the latter, we first define the sequence of
nodes right below the root (e.g., [NP VP .] shown
in the horizontal box in Figure 1). We call this
the top structural level. We then check whether
S (in addition to the root S) appears in this
sequence.

Formally, let Ltop = {Ni} be the set of nodes
in the top structural level, and λ = |Ltop|. Let
t(Nr) be the tree rooted at Nr, and Ω(Nr) de-
note the set of nodes in t(Nr). Algorithm 1
shows the procedure to determine the type-I
class of a sentence based on its PCFG tree.6

Type-II Identification – Loose/Periodic:
A sentence can also be classified as loose or
periodic, and we present Algorithm 2 for this
identification. We perform a mini-evaluation on
20 previously unseen sentences for each type7.
Our algorithm was able to perform type-I iden-
tification on all sentences correctly. In type-II

6Note that Algorithm 1 & 2 rely on the use of Berkeley
parser (Petrov and Klein, 2007).

7These were gathered from several online quizzes
for English learners. E.g., http://grammar.about.com,
http://a4esl.org
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Type Hobbs Joshi Lin McDon

simple 40.0 41.7 50.2 27.9
cplex 40.8 40.7 37.6 48.4
cpnd 7.9 5.6 3.9 5.5

cpxnd 8.5 9.2 7.7 15.5
other 2.8 2.8 0.6 2.7

loose 27.6 26.4 26.9 30.8
perio 11.1 11.7 15.2 16.4
other 61.3 61.9 57.9 52.8

Table 3: Sentence Types (%) in scientific data.

identification, it labeled all loose sentences cor-
rectly, and achieved 90% accuracy on periodic
sentences.

Discussion Tables 3 & 4 show the sentence
type distribution in scientific data and novels,
respectively.8 We see that different authors are
characterized by different distribution of sen-
tence types. For instance, in Table 3, Lin is
a prolific user of simple sentences while McDon
prefers employing complex sentences. McDon
also uses complex-compound sentences quite of-
ten (15.5%), more than twice as frequently as
Lin. Notice that all authors use loose sen-
tences much more often than periodic sentences,
a known trend in modern English.

In Table 4, we see the opposite trend among
19th-century novels: with the exception of Jane
Austen, all authors utilize periodic sentences
comparatively more often. We also notice
that complex and complex-compound sentences
abound, as expected from classic literary proses.

Can we determine authorship solely based on the
distribution of sentence types?

We experiment with a SVM classifier using just
6 features (one feature for each sentence type in
Table 3), and we achieve accuracy 36.0% with
the scientific data. Given that a random base-
line would achieve only about 10% accuracy, this
demonstrates that the distribution of sentence
types does characterize an idiolect to some de-
gree.

8Due to space limitation, we present analyses based
on 4 authors from the scientific data.

Type Dickens B-Lyt Austen Hardy Scott

simple 26.0 21.2 23.9 25.6 17.5
cplex 24.4 21.8 24.8 25.6 31.8
cpnd 15.3 15.2 12.6 16.3 11.7
cpxnd 20.8 23.3 31.1 18.9 28.7
other 13.5 18.5 7.6 13.6 10.3

loose 11.5 10.8 17.9 14.5 15.3
perio 19.5 13.6 14.0 16.2 18.0
other 69.0 75.6 68.1 69.3 66.7

Table 4: Sentence Types (%) in Novels

4 Syntactic Elements Based on
Production Rules

In this section, we examine three different as-
pects of syntactic elements based on production
rules.

4.1 Syntactic Variations

We conjecture that the variety of syntactic
structure, which most previous research in com-
putational stylometry has not paid much atten-
tion to, provides an interesting insight into au-
thorship. One way to quantify the degree of syn-
tactic variations is to count the unique produc-
tion rules. In Tables 5, we show the extent of
syntactic variations employed by authors using
the standard deviation σ and the coverage of an
author:

C(a) :=
|R(a)|
| ∪a R(a)|

× 100

whereR(a) denotes the set of unique production
rules used by author a, and ∪a iterates over all
authors. In order to compare among authors,
we also show these parameters normalized with
respect to the highest value. Our default setting
is to exclude all lexicalized rules in the produc-
tions to focus directly on the syntactic varia-
tions. In our experiments (Section 6), however,
we do augment the rules with (a) ancestor nodes
to capture deeper syntactic structure and (b)
lexical (leaf) nodes.

As hypothesized, these statistics provide us
new insights into the authorship. For instance,
we find that McDon employs a wider variety of
syntactic structure than others, while Lin’s writ-
ing exhibits relatively the least variation. More-
over, comparing Joshi and Hobbs, it is inter-
esting to see the standard deviation differ a lot
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Hobbs Joshi Lin McDon Dickens B-Lyt Austen Hardy Scott

C 36.0 37.6 32.8 42.6 30.9 28.8 36.2 30.0 24.1
Cnorm 0.84 0.88 0.77 1.0 0.85 0.79 1.0 0.83 0.67
σ 51.5 39.2 63.3 44.4 88.3 81.6 98.0 125.3 114.7
σnorm 0.81 0.62 1.0 0.7 0.7 0.65 0.78 1.0 0.92

Table 5: Syntactic variations of different authors in the scientific domain.

Hobbs Joshi Lin McDon

# 136 # 142 # 124 # 161
S → S CC S . S → ADVP PP NP VP . S → SBAR NP VP . S → S NP VP .
S → CC NP VP . S → PP NP ADVP VP . FRAG → NP : S . S → S : S .
S → S VP . S → NP VP S → NP VP . S → SBAR VP .
S → NP NP VP . S → S S CC S . S → PP VP . S → SBAR S CC S .
S → PP NP VP . S → ADVP NP VP . S → NP ADVP VP . S → NP PP VP .

Table 6: Most discriminative sentence outlines in the scientific data. #N shows the number of unique
sentence outlines of each author.

(51.5 and 39.2), in spite of their C scores being
similar: 36.0% and 37.6%, respectively. This
indicates that Hobbs tends to use a certain sub-
set production rules much more frequently than
Joshi. Lin exhibits the highest standard devia-
tion in spite of having least syntactic variation,
indicating that he uses a much smaller subset of
productions regularly, while ocassionally deviat-
ing to other rules.

Similarly, among novels, Jane Austen’s writ-
ing has the highest amount of variation, while
Walter Scott’s writing style is the least varied.
Even though authors from both datasets display
similar C scores (Table 5), the difference in σ is
noteworthy. The significantly higher linguistic
variation is to be expected in creative writing
of such stature. It is interesting to note that
the authors with highest coverage – Austen and
Dickens – have much lower deviation in their
syntactic structure when compared to Hardy
and Scott. This indicates that while Austen and
Dickens consistently employ a wider variety of
sentence structures in their writing, Hardy and
Scott follow a relatively more uniform style with
sporadic forays into diverse syntactic constructs.

4.2 Sentence Outlines

Although the approach of Section 4.1 give us a
better and more general insight into the char-
acteristics of each author, its ability to provide
insight on deep syntactic structure is still lim-
ited, as it covers production rules at all levels of

the tree. We thus shift our focus to the top level
of the trees, e.g., the second level (marked in a
horizontal box) in Tree (1) of Figure 1, which
gives us a better sense of sentence outlines.

Tables 6 and 7 present the most discrimina-
tive sentence outlines of each author in the scien-
tific data and novels, respectively. We find that
McDon is a prolific user of subordinate clauses,
indicating his bias towards using complex sen-
tences. The rule “S → SBAR S CC S” shows
his inclination towards complex-compound sen-
tences as well. These inferences are further sup-
ported by the observations in Table 3. Another
observation of possible interest is the tendency
of Joshi and Lin to begin sentences with prepo-
sitional phrases.

In comparing Table 6 and Table 7, notice
the significantly higher presence of complex and
compound-complex structures in the latter9.
The most discriminating sentence outlines for
Jane Austen, for instance, are all indicative of
complex-compound sentences. This is further
supported by Table 4.

5 Syntactic Elements Based on Tree
Topology

In this section, we investigate quantitative tech-
niques to capture stylistic elements in the tree

9The presence of “FRAG” is not surprising. Inten-
tional use of verbless sentence fragments, known as sce-
sis onomaton, was often employed by authors such as
Dickens and Bulwer-Lytton (Quinn, 1995).
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Dickens Bulwer-Lytton Austen Hardy Scott

# 1820 # 1696 # 2137 # 1772 # 1423
SQ → NNP . SBARQ → WHNP S . S → S : CC S . S → S NP VP . S → NP PRN VP .

FRAG → NP . FRAG → INTJ NP . S → S CC S : CC S . S → ADVP NP VP . S → PP NP VP .

SINV → NP VP NP . S → S : S CC S . S → S : CC S : CC S . S → FRAG : S . S → S S : S .

INTJ → UH . FRAG → CC NP . S → S : S : CC S . S → INTJ NP VP . S → NP PP VP .

SBARQ → WHNP SQ . FRAG → NP ADJP . S → SBAR S : CC S . S → NP VP . S → ADVP PRN NP VP .

Table 7: Most discriminative sentence outlines in the novel data. #N shows the number of unique sentence
outlines of each author.

Metrics Scientific Data Novels

Hobbs Joshi Lin McDon Dickens B-Lyt Austen Hardy Scott
sen-len avg 23.7 26.0 21.0 32.2 24.1 26.7 31.4 21.5 34.1
hT avg 5.8 5.3 5.9 4.8 4.7 5.0 5.4 4.9 5.9
hF avg 2.4 2.1 2.5 1.9 1.9 1.9 2.1 1.9 2.1
wL

avg 5.0 4.8 5.5 4.2 4.1 4.4 4.7 3.8 4.9
σH

avg 1.2 1.1 1.1 1.0 1.1 1.1 1.3 1.2 1.4
σS

avg 1.9 1.8 1.8 1.7 1.0 1.1 1.2 1.0 1.4

Table 8: Tree topology metrics for scientific data and novels.

topology. Figure 1 shows three different parse
trees to accompany our discussion.10 Notice
that sentence (1) is a loose sentence, and sen-
tence (2) is periodic. In general, loose sentences
grow deep and unbalanced, while periodic sen-
tences are relatively more balanced and wider.

For a tree t rooted at NR with a height n, let
T be the set of leaf nodes, and let F be the set
of furcation nodes, and let ξ(Ni, Nj) denote the
length of the shortest path from Ni to Nj . In-
spired by the work of Shao (1990), we analyze
tree topology with the following four measure-
ments:

• Leaf height (hT = {hTi , Ni ∈ T }), where
hTi = ξ(Ni, NR) Ni ∈ T . For instance, the
leaf height of “free” of Tree (2) in Fig. 1
is 6.

• Furcation height (hF = {hFi , Ni ∈ F}),
where hFi is the maximum leaf height within
the subtree rooted at Ni. In Figure 1, for
example, the furcation height of the VP in
Tree (2) (marked in triangle) is 3.

• Level width (wL = {wl, 1 ≤ l ≤ n}),
where wl = |{Ni : ξ(Ni, NR) = l}|. E.g., w4

of Tree (1) in Figure 1 is 6.

10Example sentences are taken from Lin (1997), Joshi
(1992), and Lin (1995).

• Horizontal σH = {σH
i , Ni ∈ F} , and

Vertical Imbalance σS = {σS
i , Ni ∈ F}.

Let C be the set of child nodes of Nk. If
|C| ≥ 2, then

σH
k =

√√√√ 1

n

|C|∑
i=1

(hFi −H)2

where H = 1
|C|

∑|C|
i=1 h

F
i . Similarly,

σS
k =

√√√√ 1

n

|C|∑
i=1

(s(Ni)− S)2

where S = 1
|C|

∑|C|
i=1 s(Ni) and s(Ni) is the

number of leaf nodes of tree rooted at Ni.
As shown in Figure 1, the imbalance of the
internal node VP in Tree (2) (marked in
triangle) is 0.5 horizontally, and 0.5 verti-
cally.

To give an intuition on the relation between
these measurements and different tree struc-
tures, Table 9 provides the measurements of the
three trees shown in Figure 1.

Note that all three sentences are of similar
length but show different tree structures. Tree
(1) and Tree (2) differ in that Tree (1) is
highly unbalanced and grows deep, while Tree
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Figure 1: Parsed trees

Metrics Tree (1) Tree (2) Tree (3)
# of tokens 15 13 13
maxi {hTi } 11 6 6
maxi {wL

i } 6 9 9
maxi {σH

i } 4.97 1.6 1.7
maxi {σS

i } 4 1.5 4.7

Table 9: Tree Topology Statistics for Figure 1.

(2) is much better balanced and grows shorter
but wider. Comparing Tree (2) and Tree (3),
they have the same max Leaf height, Level
width, and Horizontal Imbalance, but the
latter has bigger Vertical Imbalance, which
quantifies the imbalance in terms of the text
span covered by subtrees.

We provide these topological metrics for au-
thors from both datasets in Table 8.

6 Experiments & Evaluation

In our experiments, we utilize a set of features
motivated by PCFG trees. These consist of sim-
ple production rules and other syntactic features
based on tree-traversals. Table 10 describes
these features with examples from Tree (2), us-
ing the portion marked by the triangle.

These sets of production rules and syntax fea-

tures are used to build SVM classifiers using LI-
BLINEAR (Fan et al., 2008), wherein all fea-
ture values are encoded as term-frequencies nor-
malized by document size. We run 5-fold cross-
validation with training and testing split first as
80%/20%, and then as 20%/80%.

We would like to point out that the latter con-
figuration is of high practical importance in au-
thorship attribution, since we may not always
have sufficient training data in realistic situa-
tions, e.g., forensics (Luyckx and Daelemans,
2008).

Lexical tokens provide strong clues by creat-
ing features that are specific to each author: re-
search topics in the scientific data, and proper
nouns such as character names in novels. To
lessen such topical bias, we lemmatize and rank
words according to their frequency (in the entire
dataset), and then consider the top 2,000 words
only. Leaf-node productions with words outside
this set are disregarded.

Our experimental results (Tables 11 & 12)
show that not only do deep syntactic features
perform well on their own, but they also signif-
icantly improve over lexical features. We also
show that adding the style11 features further
improves performance.
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Features
pr Rules excluding terminal productions.

E.g., VP → VBG NP
synv Traversal from a non-leaf node to its grand-

parent (embedded rising).
E.g., VPˆS → PP

synh Left-to-right traversal in the set of all non-
leaf children of a node.
E.g., VBG → NP (for node VP)

synv+h synv ∪ synh

syn0 No tree traversal. Feature comprises inte-
rior nodes only.

syn↓ Union of all edges to child nodes, except
when child is a leaf node.
E.g., {VP → VBG, VP → NP}

synl syn↓ ∪ { edge to parent node}
style11 The set of 11 extra stylistic features. 6 val-

ues from the distribution of sentence types
(Section 3), and 5 topological metrics (Sec-
tion 5) characterizing the height, width and
imbalance of a tree.

Variations
p̂r Each production rule is augmented with the

grandparent node.
∗ Terminal (leaf) nodes are included.

Table 10: Features and their lexico-syntactic varia-
tions. Illustration: p̂r∗ denotes the set of production
rules pr (including terminal productions) that are
augmented with their grandparent nodes.

To quantify the amount of authorship infor-
mation carried in the set style11, we experi-
ment with a SVM classifier using only 11 fea-
tures (one for each metric), and achieve accu-
racy of 42.0% and 52.0% with scientific data
and novels, respectively. Given that a random-
guess baseline would achieve only 10% and 20%
(resp.), and that the classification is based on
just 11 features, this experiment demonstrates
how effectively the tree topology statistics cap-
ture idiolects. In general, lexicalized features
yield higher performance even after removing
topical words. This is expected since tokens
such as function words play an important role
in determining authorship (e.g., Mosteller and
Wallace (1984), Garcia and Martin (2007), Arg-
amon et al. (2007)).

A more important observation, however, is
that even after removing the leaf production
rules, accuracy as high as 93% (scientific) and
92.2% (novels) are obtained using syntactic fea-

Features Scientific Novels

+style11 +style11

style11 20.6 – 43.1 –
Unigram 56.9 – 69.3 –

synh 53.7 53.7 68.3 67.9
syn0 22.9 31.1 57.8 62.5
syn↓ 43.4 44.0 63.6 65.7
synl 51.1 51.7 71.3 72.8

synv+h 54.0 55.7 72.0 73.2
syn∗h 63.1 64.0 72,1 73.2
syn∗0 56.6 56.0 73.1 74.1
syn∗↓ 56.3 57.2 74.0 74.9

syn∗l 64.6 65.4 74.9 75.3

syn∗v+h 64.0 67.7 74.0 74.7
pr 50.3 53.4 67.0 66.7
p̂r 59.1 60.6 69.7 68.7
pr∗ 63.7 65.1 71.5 73.2
p̂r∗ 66.3 69.4 73.6 74.9

Table 11: Authorship attribution with 20% train-
ing data. Improvement with addition of style11

shown in bold.

tures, which demonstrates that there are syn-
tactic patterns unique to each author. Also no-
tice that using only production rules, we achieve
higher accuracy in novels (90.1%), but the ad-
dition of style11 features yields better results
with scientific data (93.0%).

Using different amounts of training data pro-
vides insight about the influence of lexical clues.
In the scientific dataset, increasing the amount
of training data decreases the average perfor-
mance difference between lexicalized and unlex-
icalized features: 13.5% to 11.6%. In novels,
however, we see the opposite trend: 6.1% in-
creases to 8.1%.

We further observe that with scientific data,
increasing the amount of training data improves
the average performance across all unlexicalized
feature-sets from 50.0% to 82.9%, an improve-
ment of 32.8%. For novels, the corresponding
improvement is small in comparison: 17.0%.

This difference is expected. While authors
such as Dickens or Hardy have their unique writ-
ing styles that a classifier can learn based on few
documents, capturing idiolects in the more rigid
domain of scientific writing is far from obvious
with little training data.
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Features Scientific Novels

+style11 +style11

style11 42.0 – 52.0 –
Unigram 88.0 – 92.7 –

synh 85.0 85.0 87.6 88.9
syn0 40.0 53.0 66.4 72.3
syn↓ 78.0 82.0 80.3 82.3
synl 85.0 92.0 89.3 92.2

synv+h 89.0 93.0 90.1 91.2
syn∗h 93.0 93.0 93.7 93.9
syn∗0 92.0 94.0 92.1 93.2
syn∗↓ 93.0 94.0 93.4 94.5

syn∗l 93.0 95.0 94.9 95.2

syn∗v+h 94.0 96.0 94.7 94.8
pr 85.0 86.0 86.7 86.7
p̂r 87.0 89.0 88.2 89.3
pr∗ 93.0 94.0 92.1 93.2
p̂r∗ 94.0 95.0 94.5 95.1

Table 12: Authorship attribution with 80% train-
ing data.

Turning to lexicalized features, we note that
with more training data, lexical cues perform
better in scientific domain than in novels. With
80% data used for training, the average per-
formance of lexicalized feature-sets with science
data is 94.4%, and slightly lower at 94.3% for
novels. With less training data, however, these
figures are 63.5% and 74.3% respectively.

Finally, we point out that adding the style
features derived from sentence types and tree
topologies almost always improves the perfor-
mance. In scientific data, syn∗v+h with style11

features shows the best performance (96%),
while syn∗l yields the best results for novels

(95.2%). For unlexicalized features, adding
style11 to synv+h and synl yields respective
improvements of 4.0% and 2.9% in the two
datasets.

7 Related Work

There are several hurdles in authorship attribu-
tion. First and foremost, writing style is ex-
tremely domain-dependent. Much of previous
research has focused on several domains of writ-
ing, such as informal modern writing in blogs
and online messages (Zheng et al., 2006), rela-

tively formal contemporary texts such as news
articles (Raghavan et al., 2010), or classical lit-
erature like novels and proses (e.g., (Burrows,
2002), (Hoover, 2004)).

The nature of these features have also var-
ied considerably. Character level n-grams have
been used by several researchers; most notably
by Peng et al. (2003), by Houvardas and Sta-
matatos (2006) for feature selection, and by Sta-
matatos (2006) in ensemble learning. Keselj et
al. (2003) employed frequency measures on n-
grams for authorship attribution.

Others, such as Zhao and Zobel (2005), Arg-
amon and Levitan (2004), Garcia and Martin
(2007), have used word-level approaches instead,
incorporating the differential use of function
words by authors.

More sophisticated linguistic cues have been
explored as well: parts-of-speech n-grams
(Diederich et al., 2003), word-level statistics to-
gether with POS-sequences (Luyckx and Daele-
mans, 2008), syntactic labels from partial pars-
ing (Hirst and Feiguina, 2007), etc. The use
of syntactic features from parse trees in au-
thorship attribution was initiated by Baayen et
al. (1996), and more recently, Raghavan et al.
(2010) have directly employed PCFG language
models in this area.

Syntactic features from PCFG parse trees
have also been used for gender attribution
(Sarawgi et al., 2011), genre identification (Sta-
matatos et al., 2000), native language identifi-
cation (Wong and Dras, 2011) and readability
assessment (Pitler and Nenkova, 2008). The
primary focus of most previous research, how-
ever, was to attain better classification accuracy,
rather than providing linguistic interpretations
of individual authorship and their stylistic ele-
ments.

Our work is the first to attempt authorship
attribution of scientific papers, a contemporary
domain where language is very formal, and the
stylistic variations have limited scope. In ad-
dition to exploring this new domain, we also
present a comparative study expounding the
role of syntactic features for authorship attri-
bution in classical literature. Furthermore, our
work is also the first to utilize tree topological
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features (Chan et al., 2010) in the context of
stylometric analysis.

8 Conclusion

In this paper, we have presented a comprehen-
sive exploration of syntactic elements in writing
styles, with particular emphasis on interpretable
characterization of stylistic elements, thus dis-
tinguishing our work from other recent work on
syntactic stylometric analysis. Our analytical
study provides novel statistically supported in-
sights into stylistic elements that have not been
computationally analyzed in previous literature.
In the future, we plan to investigate the use of
syntactic feature generators for text categoriza-
tion (e.g., Collins and Duffy (2002), Moschitti
(2008), Pighin and Moschitti (2009)) for stylom-
etry analysis.
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Gómez-Rodrı́guez, Carlos, 308
Gong, Zhengxian, 276
Gorinski, Philip, 356
Goyal, Amit, 1069, 1093
Graça, João, 962, 1389
Grishman, Ralph, 1027
Guerra, Raul, 1069

Hall, David, 1048, 1146
Han, Bo, 421
Han, Xianpei, 105
Hardmeier, Christian, 1179
Hashimoto, Chikara, 368, 619
Hassan, Ahmed, 59
Hastie, Helen, 82
He, He, 1290
He, Xiaodong, 666
Headden, William, 214
Heafield, Kenneth, 1169
Hirst, Graeme, 1255
Honavar, Vasant, 1324
Hong, Kai, 37

Honnibal, Matthew, 790
Hou, Libin, 1006
Huang, Fei, 1313
Huang, Xuanjing, 1379
Huval, Brody, 1201

Isabelle, Pierre, 631

Jagarlamudi, Jagadeesh, 12
Ji, Feng, 1379
Jiang, Jing, 1245, 1466
Jiang, Wenbin, 412
Jin, Huidong, 535
Johnson, Mark, 699
Joshi, Mahesh, 1302
Joty, Shafiq, 904
Ju, Shengfeng, 139
Judea, Alex, 183
Jurafsky, Dan, 489
Jurafsky, Daniel, 688

Kaji, Nobuhiro, 883
Kannan, Sampath, 478
Kawada, Takuya, 368
Kazama, Jun’ichi, 368, 619
Kegelmeyer, Philip, 952
Kim, Doo Soon, 1081
Kim, Joohyun, 433
Kim, Young-Bum, 332
Kit, Chunyu, 1060
Klein, Dan, 1, 863, 995, 1048, 1146
Knight, Kevin, 266
Koehn, Philipp, 1169
Kohler, Christian G., 37
Kolhatkar, Varada, 1255
Koprinska, Irena, 790
Krishnamurthy, Jayant, 754
Krishnamurthy, Rajasekar, 128
Kuhn, Jonas, 928
Kuhn, Roland, 631
Kulesza, Alex, 710
Kummerfeld, Jonathan K., 1048
Kundu, Gourab, 1114

Lao, Ni, 1017
Lapata, Mirella, 233, 546, 1423
Lavie, Alon, 1169



Lee, Heeyoung, 489
Lemon, Oliver, 82
Levenberg, Abby, 223
Li, Chi-Ho, 854
Li, Mu, 445, 854
Li, Peifeng, 1006
Li, Shen, 1389
Li, Shoushan, 139
Li, Si, 800
Li, Sujian, 1245
Li, Xiaojun, 139
Li, Xiaoming, 800, 1466
Li, Yanen, 1511
Li, Zhongguo, 1445
Lin, Chin-Yew, 1027
Lin, Thomas, 893
Lindsey, Robert, 214
Ling, Wang, 962
Liu, Kang, 1346
Liu, Lemao, 402
Liu, Qun, 412, 1191
Liu, Shujie, 854
Liu, Ting, 160
Liu, Yang, 501, 1191
Louis, Annie, 1157
Lu, Shixiang, 512
Lu, Wei, 677
Lü, Yajuan, 412

Manning, Christopher D., 455, 873, 984, 1201
Mao, Qi, 744
Mao, Xian-Ling, 800
March, Mary E., 37
Marcus, Mitchell, 478
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Max, Aurélien, 721
McCallum, Andrew, 732, 1104
McClosky, David, 873
McDonald, Ryan, 320
McNally, Louise, 1223
Meng, Fandong, 412
Mihalcea, Rada, 590
Min, Bonan, 1027
Ming, Zhao-Yan, 800

Mitchell, Tom, 754
Mooney, Raymond, 433
Morante, Roser, 579
Mori, Shinsuke, 843

Nagesh, Ajay, 128
Nakashole, Ndapandula, 1135
Nakov, Preslav, 286
Nallapati, Ramesh, 455
Naradowsky, Jason, 810
Nastase, Vivi, 183
Navigli, Roberto, 1399, 1411
Nenkova, Ani, 37, 1157
Neubig, Graham, 843
Ng, Andrew Y., 1201
Ng, Hwee Tou, 286, 568
Ng, Raymond, 904
Ng, Vincent, 777
Nie, Penghai, 116
Nivre, Joakim, 1179, 1455

O’Keefe, Timothy, 790
Oh, Jong-Hoon, 368, 619

Pang, Bo, 1489
Pareti, Silvia, 790
Parker, Amber A., 37
Paul, Michael J., 94
Pauls, Adam, 1
Pereira, Fernando, 1017
Pitler, Emily, 478
Platt, John, 1212
Ponomareva, Natalia, 655
Ponzetto, Simone Paolo, 1399
Popescu, Ana-Maria, 116

Qian, Xian, 501
Qin, Bing, 160
Qiu, Xipeng, 1379
Qu, Lizhen, 149
Qu, Weiguang, 557

Radev, Dragomir, 59
Rahman, Altaf, 777
Rajkumar, Rajakrishnan, 244
Rallapalli, Sarat, 1500
Ramakrishnan, Ganesh, 128



Ramanath, Maya, 379
Ratinov, Lev, 1234
Ravi, Sujith, 1489
Recasens, Marta, 489
Regneri, Michaela, 916
Reichart, Roi, 1368, 1434
Riedel, Sebastian, 732, 810
Rieser, Verena, 82
Rodu, Jordan, 205
Roller, Stephen, 1500
Rose, Carolyn, 1302
Roth, Dan, 677, 1114, 1234, 1511
Roth, Michael, 171
Routledge, Bryan R., 1357
Rush, Alexander, 1434
Ryang, Seonggi, 256

Satinoff, Brianna, 1290
Sayeed, Asad, 356
Scherlis, Lily, 1357
Schmid, Helmut, 1038
Schmitz, Michael, 523
Seeker, Wolfgang, 928
Sert, Enis, 940
Shi, Shuming, 1027
Shu, Baihan, 1466
Sil, Avirup, 116
Silberer, Carina, 1423
Singh, Amit, 1266
Singh, Sameer, 1104
Smith, David, 732, 810
Smith, Noah A., 1357
Snyder, Benjamin, 332
Socher, Richard, 1201
Soderland, Stephen, 523
Song, Yang, 1245, 1466
Speriosu, Michael, 1500
Spitkovsky, Valentin I., 688
Srikumar, Vivek, 1114
Stanton, Daisy, 972
Steedman, Mark, 71
Stevens, Keith, 952
Stipicevic, Michael, 214
Strapparava, Carlo, 590
Strube, Michael, 183
Subramanya, Amarnag, 1017

Suchanek, Fabian, 1135
Sumita, Eiichiro, 24
Sun, Le, 105
Surdeanu, Mihai, 455, 489
Suzuki, Hisami, 609
Szpektor, Idan, 194

Takaku, Yohei, 883
Tamura, Akihiro, 24
Tan, Chew Lim, 276
Taskar, Ben, 710, 1389
Thelwall, Mike, 655
Tibshirani, Julie, 455
Tiedemann, Jörg, 1179
Torisawa, Kentaro, 368, 619
Toyoda, Masashi, 883
Trancoso, Isabel, 962
Tresp, Volker, 379
Tsang, Ivor Wai-Hung, 744
Tu, Kewei, 1324

Ungar, Lyle, 205

Van Asch, Vincent, 579
Van Durme, Benjamin, 48
Vecchi, Eva Maria, 1223
Verbeke, Mathias, 579
Verma, Kunal, 1081
Vilnat, Anne, 721

Wang, Houfeng, 1245
Wang, Mengqiu, 984
Wang, Pidong, 286
Wang, Rui, 916
Wang, Yiou, 368
Watanabe, Taro, 24, 402, 843
Wei, Wei, 512
Weikum, Gerhard, 149, 379, 1135
Weisman, Hila, 194
White, Michael, 244
Wick, Michael, 1104
Wing, Benjamin, 1500
Wong, Billy T. M., 1060
Wong, Sze-Meng Jojo, 699
Woodsend, Kristian, 233

Xiang, Qiao Liang, 744



Xie, Shasha, 666
Xu, Bo, 512
Xu, Liheng, 1346
Xu, Peng, 972
Xu, Ping, 766

Yahya, Mohamed, 379
Yan, Hongfei, 800, 1466
Yang, Bishan, 1335
Yang, Hui, 1278
Yang, Jian Bo, 744
Yang, Yinfei, 116
Yatbaz, Mehmet Ali, 940
Yates, Alexander, 116, 1313
Yeh, Peter, 1081
Yih, Wen-tau, 1212
Yoon, Su-Youn, 600
Yoshinaga, Naoki, 883
Yu, Jianxing, 391
Yu, Mo, 402
Yuret, Deniz, 940
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