
An alternative LR algorithm for TAGs 

M a r k - J a n  N e d e r h o f  
DFKI  

Stuhlsatzenhausweg 3 
D-66123 Saarbriicken, Germany  

E-mail: nederhof@dfki.de 

A b s t r a c t  

We present a new LR algorithm for tree- 
adjoining grammars. It is an alternative to an 
existing algorithm that is shown to be incorrect. 
Furthermore, the new algorithm is much sim- 
pler, being very close to traditional LR parsing 
for context-free grammars. The construction of 
derived trees and the computation of features 
also become straightforward. 

1 I n t r o d u c t i o n  

The efficiency of LR(k) parsing techniques 
(Sippu and Soisalon-Soininen, 1990) appears 
to be very attractive from the perspective of 
natural language processing. This has stim- 
ulated the computational linguistics commu- 
nity to develop extensions of these techniques 
to general context-free grammar parsing. The 
best-known example is generalized LR parsing 
(Tomita, 1986). 

A first attempt to adapt LR parsing to tree- 
adjoining grammars (TAGs) was made by Scha- 
bes and Vijay-Shanker (1990). The description 
was very complicated however, and not surpris- 
ingly, no implementation of the algorithm seems 
to have been made up to now. Apart from pre- 
sentational difficulties, the algorithm as it was 
published is also incorrect. Brief indications of 
the nature of the incorrectness have been given 
before by Kinyon (1997). There seems to be no 
straightforward way to correct the algorithm. 

We therefore developed an alternative to 
the algorithm from Schabes and Vijay-Shanker 
(1990). This alternative is novel in presenta- 
tional aspects, and is fundamentally different in 
that it incorporates reductions of subtrees. 

The new algorithm has the benefit that many 
theoretically and practically useful properties 
carry over from the context-free case. For ex- 
ample, by making a straightforward translation 

from TAGs to linear indexed grammars, one 
may identify computations of the parser with 
rightmost derivations in reverse. Also the ex- 
tensions needed for construction of parse trees 
(or "derived trees" as they are often called for 
TAGs) and the computation of features are al- 
most identical to the corresponding extensions 
for context-free LR parsing. 

Section 2 discusses our notation. The algo- 
rithm for constructing the LR table is given in 
Section 3, and the automaton that operates on 
these tables is given in Section 4. Section 5 
first explains why the algorithm from Schabes 
and Vijay-Shanker (1990) is incorrect, and then 
provides an example of how our new algorithm 
works. Some extensions are discussed in Sec- 
tion 6, and the implementation in Section 7. 

2 N o t a t i o n  

For a good introduction to TAGs, the reader 
is referred to Joshi (1987). In this section we 
merely summarize our notation. 

A tree-adjoining grammar is a 4-tuple 
(~,  NT,  I, A), where Z is a finite set of termi- 
nals, I is a finite set of initial trees and A is 
a finite set of auxiliary trees. We refer to the 
trees in IU A as elementary trees. The set NT,  
a finite set of nonterminals, does not play any 
role in this paper. 

Each auxiliary tree has a distinguished leaf, 
call the foot. We refer to the foot of an aux- 
iliary tree t as Ft. We refer to the root of an 
elementary tree t as Rt. The set of all nodes 
of an elementary tree t is denoted by Af(t), and 
we define the set of all nodes in the grammar by 
.Af = UtEIun JV'( t ) .  

For each non-leaf node N we define 
children(N) as the list of children nodes. For 
other nodes, the function children is undefined. 
The dominance relation <~* is the reflexive and 

946 



transitive closure of the l)arent relation <1 de- 
lined t)y N <l M if and only if chi ldren(N)  = 
(~M(3, for some ,z,/3 C N'*. 

Each leaf N in an elementary tree, except 
when it; is a foot, is labelled by either a termi- 
nal from )3 or the empty string e. We identify 
such a node N labelled by a terminal with tha t  
terminal. Thus, we consider L' to be a subset 
of Af.* 

l, br now, we will disallow labels to be g, since 
this causes a slight technical problem. We will 
return to this issue in Section 6. 

l?or ea(:h node N that  is not a leaf or that  
is a foot, we define A d j u n c t ( N )  as the set of 
auxiliary trees that  can l)e adjoined at N. This 
set may contain the element nil to indicate that  
adjunction at that  node is not obligatory. 

An example of a TAG is given in Figure 1. 
There are two initial trees, o~1 and (~2, and one 
auxiliary tree [3. For each node N, A d j u n c t ( N )  
has been indicated to the right of that  node, 
unless A d j u n c t ( N )  - {ni l} ,  in which case that  
information is onfitted from the picture. 

3 C o n s t r u c t i o n  o f  t h e  L R  t a b l e  

For technical reasons, we assume a n  additional 
node for each elementary tree t, which we de- 
note by V. This node has only one child, viz. 
the actual root node t~t. We also assume an 
additional node for each auxiliary tree t, which 
we denotc by _L. This is the unique child of the 
actual fool; node Ft. The domain of the func- 
tion children is extended to im:lude foot nodes, 
by defining children(Ft)  -- ±,  for each t E A. 

For the algorithm, two kinds of tree need to 
t)e distinguished: elementary trees and subtrees 
of elementary trees. A subtree can be identified 
|)y a pair (t, N ) ,  where t is an elementary tree 
and N is a node in tha t  tree; the pair indicates 
the subtree of t rooted at N. The set of all trees 
needed by our algorithm is given by: 

T - -  I U A t O { ( t , N )  I t E I U A , N E A f ( t ) }  

From here on, we will use the symbol t exclu- 
sively to range over I U A, and r to range over 
5/' in general. 

1With this convention,  we can no longer dist inguish 
between different leaves in the g r ammar  with the same 
terminal  label. This  merging of leaves with identical la- 
1)els is not  an inherent  par t  of our algori thm, but  it sim- 
plifies the nota t ion  considerably. 

For each r E T, we may consider a part of the 
tree consisting of a node N in r and tile list of its 
children nodes 7. Analogously to the notation 
for context-free parsing, we separate the list; of 
children nodes into two lists, separated by a (tot, 
and write N -+ a • fl, where af t  = 7, to indicate 
that  the children nodes in a have already been 
matched against a part of the input string, and 
those in/3 have as yet not been processed. 

The set of such objects for an elementary tree 
-t is given by: 

= { ( T  - +  • I = u 
{(N -+ a • fl) I N E N'( t ) ,  ch i ldren(N)  = a(~} 

For subtrees (t, M) we define: 

/ ' ( t y )  = 

Such objects are at tached to the trees r E T to 
which they pertain, to form the set of i tems: 

{ [ r , N --~ a o ¢~ ] I r E T , ( N ~ o~ , fJ ) ~ I-# } 

A completed item is an item that  indicates a 
comt)letely recognized elementary tree or sub- 
tree. FormMly, items arc completed if they 
arc of the form [ t ,T  --~ Rt  °] or of the form 
[(t, N ) , N - - ~  a °]. 

The main concept needed for the construction 
of the LR table is that  of L R  states.  These 
are particular elements from 2 lt~m~ to t)e defined 
shortly. 

First, we introduce the flmetion closure from 
2 Items to 2 Items and the flmetions goto and 9oto± 
from 2 Items x iV" to 2 Items. For any q C_ I tems ,  
closure(q) is the smallest set such that:  

1. q C closure(q); 

2. • c clo 'ure(q), ,,,il < 
A d j u n c t ( M )  and ch i ldren(M)  = q' implies 
[% • e c l o s , . ' e ( q ) ;  

3. [%N • Mp] e eto.  ,'e(q)and 
t E Ad j 'anc t (M)  implies It, T -~ • I~.t] e 
closure (q); 

4. [r, Ft -+ ° ±] E closure(q), t E A d j u n c t ( N ) ,  
N E Af(t') and ch i ldren(N)  = 7 implies 
[ ( t ' , U ) , N  -~ • 7] E closure(q); and 

5. [% M ~ 7 "] E elosu,~(q) and [% N ~ ,~M • 
f l ] E  I t ems  implies [%N -~ a M  ° fl] C 
closure (q). 

The clauses 1 thru  4 are reminiscent of the clo- 

947 



(al) 

a@ 
b 

(a~) 

a@ 
b I 

d e 

Figure 1: A tree-adjoining grammar.  

d N2~ e 

b I 

Figure 2: An incorrect 
"parse tree" (Section 5). 

sure function for tradit ional LR parsing. Note 
that  in clause 4 we set out to recognize a sub- 
tree (t I, N)  of elementary tree t I. Clause 5 is 
unconventional: we traverse the tree 7- upwards 
when the dot indicates that  all children nodes 
of M have been recognized. 

Next we define the function goto, for any 
q C_ Items, and any M E ~' or M E N" such 
that  Adjunct(M) includes at least one auxiliary 
tree. 

goto(q,M) = {[7, N - 4 a M - / 3 ]  I 
N - 4  • C c l o s u r e ( q ) }  

The function goto± is similar in that  it shifts 
the dot over a node, in this case the imaginary 
node _1_ which is the unique child of an actual 
foot node Ft. However, it only does this if t is a 
tree which can be adjoined at the node that  is 
given as the second argmnent. 

goto±(q,M) = {[%Ft -4 _1_ .] ] 
[% Ft --+ " _L] E closure(q) A t  E Adjunct(M)} 

The initial LR state is the set 

= (It ,  T - 4  • I t e I }  

We construct  the set Q of all LR states as the 
smallest collection of sets satisfying the condi- 
tions: 

1. qin E Q; 
2. q E Q, M E A/" and q' = goto(q,M) 7 ~ ¢ 

imply ql E Q; and 

3. q E Q, M E iV 'and  q' = goto±(q,M) 7~ 
imply ql E Q. 

An LR state is final if its closure includes a 
completed item corresponding to an initial tree: 

Q~n = {q E Q I 
closure(q) CI {[t, T --4 Rt .] I t E I }  ¢ O} 

Final LR states indicate recognition of the in- 
put.  Other completed items give rise to a re- 
duction, a type of stack manipulat ion by the 
LR au tomaton  to be defined ill the next sec- 
tion. As defined below, reductions are uniquely 
identified by either auxiliary trees t or by nodes 
N obtained from the corresponding completed 
items. 

reductions (q) = 
{t E A [ [ t ,T -+ Rt ,,] E closure(q)} U 
{N e H I [(t, N),  N .4 .] e closure(q)} 

For each node N in a tree, we consider the 
set CS(N) of strings that  represent horizontal 
cross-sections through the subtree rooted at N.  
If we do not want to include the cross-section 
through N itself, we write CS(N) +. A cross- 
section can also be seen as the yield of the sub- 
tree after removal of a certain number  of its sub- 
trees. 

For convenience, each node of an auxiliary 
tree (or subtree thereof) that  dominates  a foot 
node is paired with a stack of nodes. The intu- 
ition behind such a stack of nodes [ N 1 , . . . ,  Nm] 
is that  it indicates a path,  the so called spine, 
through the derived tree in the direction of the 
foot nodes, where each Ni, with 1 < i < m, 
is a node at which adjunct ion has taken place. 
Such stacks correspond to the stacks of linear 
indexed grammars.  

The set of all stacks of nodes is denoted by 
N'*. The empty  stack is denoted by [], and 
stacks consisting of head H and tail T are de- 
noted by [HIT ] . We define: 

34 = 3 / u ( N × 2 ( * )  

and we simultaneously define the functions CS 
and CS + from Af to 2 ~ "  as the least functions 

948 



satisfying: 

• US(N) + C CS(N), for each N; 

• (N, L) E CS(N), for each N such that  N <3* 
±,  and each L EAf*; 

• N E CS(N), for each N such that  -~(N<I*_L); 
a n d  

• tbr each N, children(N) = M I ' " M , ~  and 
a:L E CS(M1),.. . ,Xm E CS(Mm) implies 
x l " " x m  E CS+(N). 

4 T h e  r e c o g n i z e r  

Relying on the functions defined in the previous 
section, we now explore the steps of the LR au- 
tomaton,  which as usual reads input fi'om left 
to right and manipulates a stack. 

We can divide the stack elements into two 
(:lasses. One class contains the LR states from 
(2, the other contains elements of A4. A stack 
consists of an alternation of elements fi'om these 
two classes. More precisely, each stack is an 
element from the following set of strings, given 
by a regular expression: 

S = qi,,(.AdQ)* 

Note that  the bo t tom element of the stack is 
always qin. We will use the symbol  A to range 
over stacks and substrings of stacks, and the 
symbol  X to range over elements from 3.4. 

A configuration (A, w) of the au tomaton  con- 
sists of a stack A E $ and a remaining input w. 
The steps of the au tomaton  are given by the bi- 
nary relation ~- on pairs of configurations. There 
are three kinds of step: 

sh i f t  (Aq, aw) ~- (Aqaq',w), provided q' = 
 soto(q, ) ¢ O. 

r e d u c e  s u b t r e e  (AqoX~qlX2q2'" Xmqm, w) t- 
( Aqo(-l-, [NIL])q', w), provided N E 
reductions(qm), X1. . .  Xm E CS+(N) and q ' =  
gotol_(qo, N) ¢ O, where L is determined by the 
following. If for some j (1 < j _< m) Xj is of 
the form (M, L) then this p r o v i d e s  the value of 
L, otherwise we set L = []2 

r e d u c e  a u x  t r e e  (AqoXlqlX2q2"-Xmqm, W) 
t- (AqoXq',w), provided t E reductions(qm), 
X l ' "  Xm E CS(Rt) and q' = 9oto(qo, g )  ¢ O, 
where we obtain node N from the (unique) Xj 
(1 < j <_ m) which is of the form (M,[NIL]) ,  

2Exactly in the case that N dominates a footnote will 
(e, xactly) one of the Xj be of the form (M, L), some M. 

and set X = N if L = [] and X = (N ,L)  
otherwise. 3 

Tile shift step is identical to that  for context- 
fi'ee LR parsing. There are two reduce steps 
that  must be distinguished. The first takes 
place when a subtree of an elementary tree 
t has been recognized. We then remove the 
stack symbols corresponding to a cross-section 
through that  subtree, together with the associ- 
ated LR states. We replace these by 2 other 
symbols, the first of which corresponds to the 
tbot of an auxiliary tree, and the second is the 
associated LR state. In the case that  some node 
M of tile cross-section dominates the foot of t, 
then we must copy the associated list L to the 
first of the new stack elements, after pushing N 
onto that  list to reflect that  the spine has grown 
one segment upwards. 

The second type  of reduction deals with 
recognition of an auxiliary tree. Here, the head 
of the list [NIL], which indicates the node at 
which the auxiliary tree t has been adjoined 
according to previous bo t tom-up  calculations, 
must match a node that  occurs directly above 
the root node of the auxiliary tree; this is 
checked by the test q' = goto(qo, N) ¢ ~. 

Input  v is recognized if (qin,V) ~-* (qinAq, e) 
for some A and q E Q//,. Then A will be of the 
form XlqlX2q2 ' ' '  qm_lXm, where X1 ... Xm E 
CS(Rt), for some t E I. 

Up to now, it has been tacit ly assumed that 
the recognizer has some mechanism to its dis- 
posal to find the strings X 1 . . ' X , ,  E CS(t~,t) 
and X1 ... Xm E CS+(N) in the stack. We will 
now explain how this is done. 

For each N,  we construct  a deterministic fi- 
nite au tomaton  that  recognizes the strings from 
CS+(N) from right to left. There is only one 
final state, which has no outgoing transitions. 
This is related to the fact that  CS + (N) is sutfix~ 
closed. A consequence is that,  given any stack 
that may occur and any N,  there is at most one 
string X 1 " " X m  E CS+(N)  that  can be tbund 
from the top of the stack downwards, and this 
string is tbund in linear time. For each t E 1 U A 
we also construct  a deterministic finite automa- 
ton for CS(Rt). The procedure for t E I is given 
in Figure 3, and an example of its application 
is given in Figure 4. The procedure for t E A is 

aExactly in the case that N dominates a footnote will 
L¢[]. 

949 



let  K =  0, T = 0 ;  
let  s = fresh_state, f = fresh_state; 
make_f a ( f , Rt , s ) . 

p r o c e d u r e  make_fa(ql, M,  q0): 
let 7" = T U  {(qo, M,  ql)}; 
if  children(M) is defined 

t h e n  make_fa_list(ql, children (M),  qo) 
e n d p r o c .  

p r o c e d u r e  make_fa_list(ql , M a ,  q0): 
i f a = c  

t h e n  make_fa(ql, M,  qo) 
else let  q = fresh_state; 

make_fa_list(q, o~, q0); make_fa(ql, M,  q) 
e n d p r o c .  

p r o c e d u r e  fresh_state (): 
create some fresh object q; 
let K = K [ 2 { q } ;  r e t u r n q  
e n d p r o c .  

Figure 3: Producing a finite automaton 
(K, N, T, s, {f}) that  recognizes CS(Rt) ,  given 
some t G I. K is the set of states, N acts as 
alphabet here, 7" is the set of transitions, s is 
the initial state and f is the (only) final state. 

similar except that  it also has to introduce tran- 
sitions labelled with pairs (N, L), where N dom- 
inates a foot and L is a stack in Af*; it is obvious 
that we should not actually construct different 
transitions for different L EAf*, but  rather one 
single transition (N, _), with the placeholder " " 
representing all possible L EAf*. 

The procedure for CS +(N) can easily be ex- 
pressed in terms of those for CS(Rt).  

5 E x t e n d e d  e x a m p l e  

For the TAG presented in Figure 1, the algo- 
r i thm fl'om Schabes and Vijay-Shanker (1990) 
does not work correctly. The language de- 
scribed by the grammar contains exactly the 
strings abe, a~b~ c ~, adbee, and a~db~ ec~. The al- 
gori thm from Schabes and Vijay-Shanker (1990) 
however also accepts adb~ec ~ and aPdbec. In the 
former string, it acts as if it were recognizing 
the (ill-formed) tree in Figure 2: it correctly 
matches the part  to the "south" of the adjunc- 
tion to the part to the "north-east". Then, after 
reading c ~, the information that  would indicate 

f 

Figure 4: Example of the construction for 
CS(R1), where R1 is the root node of al (Fig- 
ure 1). 

whether a or a p was read is retrieved from the 
stack, but this information is merely popped 
without investigation. Thereby, the algorithm 
fails to perform the necessary matching of the 
elementary tree with regard to the part to the 
"north-west" of the adjunction. 

Our new algorithm recognizes exactly the 
strings in the language. For the running ex- 
ample, the set of LR states and some opera- 
tions on them are shown in Figure 5. Arrows 
labelled with nodes N represent the goto flmc- 
tion and those labelled with ± ( N )  represent the 
goto± function. The initial state is 0. The thin 
lines separate the items resulting from the goto 
and goto± functions from those induced by the 
closure function. (This corresponds with the 
distinction between kernel and nonkernel items 
as known from context-free LR parsing.) 

That  correct input  is recognized is illustrated 
by the following: 

Stack Input  Step 
0 adbec shift a 
O a 1 dbec shift d 
O a 1 d 5  bec shift b 
O a 1 d  5 b 7 ec reduce N1 
0 a  l d 5  (_I_,[N1]) 9 ec sh i f te  
0 a  1 d 5  (_t_,[N]]) 9 e  10 c reducefl  
0 a l N 1 3  c shift c 
0 a 1 N1 3 c 6  accept 

Note that  as soon as all the terminals in the aux- 
iliary tree have been read, the "south" section of 
the initial tree is matched to the "north-west" 
section through the goto function. Through 
subsequent shifts this is then matched to the 
"north-east" section. 

This is in contrast to the situation when in- 
correct input, such as adblec p, is provided to the 

950 



2 0 
[a2,R2 ~ a' • N2c'] . [[a].,T -e. • RI]  

[A T -~ • .a~] [~1, R~ -+ • aN~c] 
[A R~ -~ • dre] [~2, R2 -~ • a'N#] 

~b'. [fl, n~ -4 d • Fe] 12 

~ ,  N~-~ ~,' . ]  ~ [AF -~ • -q 
a, 2--,-,~2-~a'N2°c'] [(al ,  N1), N, --~ ° b] 

11 [(a2, N2), 
c'] 

[~2, T -~ R2 ,] J 

s Z 
[[(~, N~), N2 + b'. 

/ 
10 . _ e  

• I 
I [ ~ , ~  -~ dr° .] 
[[fl, T + / ~  , ] . . .  

1 
[0~1, /~1 ---} a II,  Nlc] 
[OL1, N;  --} • b] 
[A T - ,  • Re] 
[A Re -~ • d r 4  

4 1 
I[c~I,N1 -+ bo] 
[[at, R1 ~ aN1 • c] 

ibl ,  ~1 -~ ,~N, • c] I 
le ie 

b 6 ,, 

\ [ioq,R1 -+ aNleo 
[[Oq,-[- --)" /{1 "] 

\ 
[(a,, N~), ~ -~ ~ "]l 

Figure 5: The set of LR states. 

automaton:  

Stack 
0 
0 a l  
0 a l d 5  
O a l d S b ' 8  
Oa 1 d 5  (A_,[N2]) 9 
0 a  l d 5  (_L,[N2]) 9 e 10 

Input  
adb ~ ed 

db' ec' 
b f e c  I 

e c  ! 

c c  ! 

c t 

Step 
shift a 
shift d 
shift b' 
reduce N2 
shift e 

Here, the comt)utation is stuck. In particular, a 
reduction with auxiliary tree /3 fails due to the 
fact that  goto(1, N2) = O. 

6 E x t e n s i o n s  

The recognizer can be turned into a parser 
by at taching information to the stack elements 
fi:om 3d. At reductions, such information is 
gathered and combined, and the resulting data  
is; a t tached to the new element fl'om A// that  
is pushed onto the stack. This can be used 
for computat ion of derived trees or derivation 
trees, and for computat ion of features. Since 
this technique is ahnost identical to that  for the 
context-free case, it suffices to refer to existing 
literature, e.g. Aho et al. (1986, Section 5.3). 

We have t reated a classical type of TAG, 
which has adjunction as the only operation ibr 
composing trees. Many modern  types of TAG 

also allow tree substi tut ion next to adjunc- 
tion. Our algorithm can be straightforwardly 
extended to handle tree substitution. The main 
changes that  are required lie in the closure 
flmction, which needs an extra  case (much like 
the corresponding operation in context-fl'ee LR 
parsing), in adding a third type of goto time- 
tion, and in adding a fourth step, consisting of 
reduction of initial trees, which is ahnost iden- 
tical to the reduction of auxiliary trees. The 
main difference is that  all Xj are elements fl'om 
N'; the X that  is pushed (:an be a substi tut ion 
node or a nonterminal  (see also Section 7). 

Up to now we have assumed that  the gram- 
mar does not assign the empty  string as label 
to any of the leaves of the elementary trees. 
Tile problem introduced by allowing the empty 
string is that  it does not leave any trace on 
the stack, and therefore CS(Rt) and CS+(N) 
are no longer suffix-closed. We have solved this 
by extending items with a third component  E,  
which is a set of nodes labelled with e that  have 
been traversed by the closure function. Upon 
encountering a completed i tem [% N ~ a o, El, 
a reduction is performed according to the sets 
CS(Rt, E) or CS+(N,E), which are subsets of 
US(Rt) and CS+(N), respectively, containing 
only those cross-sections in which the nodes la- 

951 



belled with e are exactly those in E. An au- 
tomaton for such a set is deterministic and has 
one final state, without outgoing transitions. 

7 I m p l e m e n t a t i o n  

We have implemented the parser generator, 
with the extensions from the previous section. 
We have assumed that  each set Adjunct(N), if 
it is not {nil}, depends only on the nonterminal 
label of N. This allows more compact storage 
of the entries goto±(q,M): for a fixed state q 
and nonterminal B, several such entries where 
M has B as label can be collapsed into a single 
entry goto~ (q, B). The goto function for tree 
substi tution is represented similarly. 

We have constructed the LR table for the En- 
glish grammar developed by the XTAG project 
at the University of Pennsylvania. This gram- 
mar contains 286 initial trees and 316 auxiliary 
trees, which together have 5950 nodes. There 
are 9 nonterminals that  allow adjunetion, and 
10 that  allow substitution. There are 21 sym- 
bols that  fimction as terminals. 

Our findings are that  for a grammar of this 
size, the size of the LR table is prohibitively 
large. The table represented as a collection of 
unit clauses in Prolog takes over 46 MB for stor- 
age. The majority of this is needed to represent 
the three goto functions, which together require 
over 2.5 million entries, almost 99% of which is 
consumed by goto, and the remainder by gotoj_ 
and the goto function for tree substitution. The 
reduction functions require almost 80 thousand 
entries. There are 5610 LR states. The size of 
the au tomata  for recognizing the sets CS(Rt, E) 
and CS + (N, E) is negligible: together they con- 
tain just  over 15 thousand transitions. 

The time requirements for generation of the 
table were acceptable: approximately 25 min- 
utes were needed on a standard main frame with 
moderate load. 

Another obstacle to practical use is the equiv- 
alent of hidden left recursion known from tradi- 
tional LR parsing (Nederhof and Sarbo, 1996), 
which we have shown to be present in the 
grammar for English. This phenomenon pre- 
cludes realization of nondeterminism by means 
of backtracking. Tabular realization was inves- 
tigated by Nederhof (1998) and will be the sub- 
ject of further research. 

A c k n o w l e d g m e n t s  

Anoop Sarkar provided generous help with mak- 
ing the XTAG available for testing purposes. 

Parts of this research were carried out within 
the framework of the Priority Programme Lan- 
guage and Speech Technology (TST), while 
the author was employed at the University of 
Groningen. The TST-Programme is sponsored 
by NWO (Dutch Organization for Scientific Re- 
search). This work was further funded by the 
German Federal Ministry of Education, Science, 
Research and Technology (BMBF) in the frame- 
work of the VERBMOBIL Project under Grant 01 
IV 701 V0. 

R e f e r e n c e s  

A.V. Aho, R. Sethi, and J.D. Ullman. 1986. 
Compilers: Principles, Techniques, and 
Tools. Addison-Wesley. 

A.K. Joshi. 1987. An introduction to tree ad- 
joining grammars. In A. Manaster-Ramer, 
editor, Mathematics of Language, pages 87- 
114. John Benjamins Publishing Company. 

A. Kinyon. 1997. Un algorithme d'analyse 
LR(0) pour les grammaires d'arbres adjoints 
lexicalis5es. In D. Genthial, editor, Qua- 
tri~me confdrence annuelle sur Le Traitement 
Automatique du Langage Naturel, Actes, 
pages 93-102, Grenoble, June. 

M.-J. Nederhof and J.J. Sarbo. 1996. In- 
creasing the applicability of LR parsing. In 
H. Bunt and M. Tomita, editors, Recent 
Advances in Parsing Technology, chapter 3, 
pages 35-57. Kluwer Academic Publishers. 

M.-J. Nederhof. 1998. Linear indexed automata  
and tabulation of TAG parsing. In Actes des 
premieres journdes sur la Tabulation en Ana- 
lyse Syntaxique et Ddduction (Tabulation in 
Parsing and Deduction), pages 1-9, Paris, 
France, April. 

Y. Schabes and K. Vijay-Shanker. 1990. Deter- 
ministic left to right parsing of tree adjoin- 
ing languages. In 28th Annual Meeting of the 
A CL, pages 276-283. 

S. Sippu and E. Soisalon-Soininen. 1990. 
Parsing Theory, Vol. II: LR(k) and LL(k) 
Parsing, volume 20 of EATCS Monographs 
on Theoretical Computer Science. Springer- 
Verlag. 

M. Tomita. 1986. Efficient Parsing for Natural 
Language. Kluwer Academic Publishers. 

952 


