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A b s t r a c t  

This l)al)er describes novel and practical .lal)anesc 
parsers that uses decision trees, l"irst, we COl> 
struct a single, decision tree to estimate modifica-- 
lion probabilities; how one phrase tends t.o modify 
another. Next, we introduce a boosting algorithm 
in which several decision t.rees are COllst.ructed and 
then combined for probalfility estiinat.ion. 'lThe two 
constructed parsers are evalua.ted I)y using the El)t{ 
.Japanese annotated corpus. The single-tree method 
outperforlns the conventional Japanese stochastic 
reel.hods by 4%. Moreover, the boosting version is 
shown to h;we significant adwmtages; 1 ) better pars- 
ing accuracy than ils single-tree counl.erparl for any 
alnoullt o[" training data and 2) no over-titling 1o 
data. for va.rious iterations. 

1 I n t r o d u c t i o n  

Conventional parsers with practical levels of per f o r  
mance require a number of sophisticated rules that. 
haw" to be hand-crafted by human linguists. It is 
time-consuming and cumbersome to mainl.ahl tltese 
rules for two reasons. 

* The rules are specific to the application domain. 

* Specific rules handling collocat.ional expressions 
create side effects. Such rules often deteriorate 
the overall performance of the parser. 

q'he stochastic approach, on the other hand, has 
the potential to overcome these difficulties. Because 
il induces stochastic rules to maximize ow~'ra.ll per- 
['onnance against t.raining data, it. llOf Ollly adapts 
to any application domain but also may avoid ow>r- 
fitting to the data. In the late 80s and early 90s, lhe 
induction and parameter estimation of l)robabilis - 
tie context, free grammars (PCF(',s) from corpora 
were intensively studied, la;ecause these grammars 
comprise only nonterminal and part-of-speech tag 
symbols, their performances were not enough to be 
used in practical applications (Charniak, 1993). A 
broa.der range of information, in lmrticular lexical in- 
forinatiolq was tbund to be essential in disambiguat- 
ing the syntactic structures of real-world sentences. 
SI 'ATTEt{ (Magerman, 1995) augmented the pure 

I'(:I"G by introducing a. mnnl)er of lexical at.tributes. 
The parser controlled applications of each rule by us- 
ing the lexical constraints induced by decision tree 
algorithnl (Quinlan, 1993). rFhe SI)N]'TEt{ parser 
attained 87% accuracy and first made stochastic 
parsers a practical choice. The other type of high- 
precision parser, which is based on dependency ana[- 
5'sis was introduced by Collins (Collins, 1996). l)e- 
pendency a.mdysis first, segments a sentence into syn- 
tactically meaningful sequences of words and then 
considers the modificatioll of each segment. Collins" 
parser computes the likelihood that  each segment 
modifies the other (2 term relation) by using large 
corpora. These moditication probabilities are con- 
ditioned by head words of two S{"glnelltS, distance 
between the two segments and otlmr syntactic %a- 
tures. Although these two parsers have showll silni- 
lar performance, the keys of their success are slight ly 
diflk~renl.. SPA'[.'TER parser perforlnanee greatly de- 
pelldS on the feat.tire sehection ability of the decision 
tree algorithm rather than its linguistic representa- 
tion. On t, he other hand, dependency analysis plays 
an essential role in Collins' parser for elficienlly ex- 
tracting inK)rmation from corpora. 

In lifts i)al)er, we (lescribe practical .]apanes(" de- 
pendency parsers that uses decisio11, trees, in the 
.lal)anese language, dependency analysis has I)ecn 
showll to ])e powerful because seglllellI (bullselsll) 
order in a sentence is relal:ively free compared to 
l!',uropean languages. Japanese dependency parsers 
generally proceed in three steps. 

l. ,qeglnent a sentence into a sequence of t)unsetsu. 

2. Prel)are a modification matrix, each value of 
which rel)resents how one ])/illSet.Sll is likely to 
modify another. 

3. Find optimal modifications in a sentence by a 
dynanfic progranmfing technique. 

The most diIficult part is the second; how to con- 
struct a. sophisticated lnodifieation matrix. With 
conventiolml ,]apanese parsers, the linguist nmst 
classify the tmnset.su and select appropriate fealures 
to compute modificatioll values. The parsers thus 
suffer from application domain diversity and t.he side 
effects of specific rules. 
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Stochastic dependency parsers like Collins', on the 
other hand, define a set of at tr ibutes for condition- 
lug the modification probabilities. Tile parsers con- 
sider all of the at t r ibutes  regardless of bunsetsu type. 
These methods can encompass only a small number  
of features if the probabilities are to be precisely 
evaluated from finite number of data. Our decision 
tree method constructs a more sophisticated modi- 
fication matrix. It. automatical ly selects a sufficient 
number of significant at tr ibutes according to bun- 
setsu type. We can use arbi trary numbers of the 
at tr ibutes which potentially increase parsing accu- 
racy. 

Natural  languages are full of exceptional and collo- 
cational expressions. It is ditfieult for machine learn- 
ing algorithms, as well as human linguists, to judge 
whether a specific rule is relevant in terms of over- 
all performance. To tackle this problem, we test 
the mixture of sequentially generated decision trees. 
Specifically, we use the Ada-Boost algorithm (Ere- 
und and Schapire, 1996) which iterat.ively performs 
two procedures: 1. construct a decision tree based 
on the current data  distribution and 2. updat ing 
the distribution by focusing on data that  are not 
well predicted by the constructed tree. The final 
modification probabilities are computed by mixing 
all the decision trees according to their performance. 
The sequential decision trees gradually change from 
broad coverage to specific exceptional trees that  can- 
not be captured by a single general tree. In other 
words, the method incorporates not only general ex- 
pressions but also infi'equent specific ones. 

The rest of the paper  is constructed as follows. 
Section 2 summarizes dependency analysis for the 
Japanese language. Section 3 explains our decision 
tree models that  compute modification probabili- 
ties. Section 4 then presents experimental  results 
obtained by using EDR Japanese annotated corpora. 
Finally, section 5 concludes the paper. 

2 D e p e n d e n c y  Analys i s  in J a p a n e s e  
Language  

This section overviews dependency analysis ill the 
Japanese language. Tile parser generally performs 
the following three steps. 

1. Segment a sentence into a sequence of bunsetsu. 

2. Prepare modification matrix each value of which 
represents how one bunsetsu is likely to modify 
the other. 

3. Find optimal modifications in a sentence by a 
dynamic programming technique. 

Because there are no explicit delimiters between 
words in Japanese,  input sentences are first, word 
segmented, part-of-speech tagged, and then chunked 
into a sequence of bunsetsus. Tile first step yields, 
for the following example, the sequence of bunsetsu 

displayed below. The parenthesis in tile Japanese  
expressions represent the internal s tructures of the 
bunsetsu (word segmentations).  

Example :  tl~g H (D/Y)i[Z~P)r'(D-J"~ ~ 4o 7~"7 4 > ~ '~/v/ '~ 

((~H)(e))) ((Y;k-)(l:))((~)(©)) 
kinou-no yuugata-ni ki~u'o-t~o 
yesterda~NO et,enit~y-NI neighbor-No 
((~k S )(~),)) (( v 4 > )(~)) ((~):/~)(tZ) 
kodom(>ga wain-wo r~omu+ta 
childrcr~-GA wine -WO drit~k+PAST 

The second step of parsing is t.o construct a modifi- 
cation matrix whose values represent the likelihood 
that  one bunsetsu modifies another in a sentence. 
In the Japanese language, we usually make two as- 
sumptions: 

1. Every bunsetsu except, the last. one modifies 
only one posterior bunsetsu. 

2. No modification crosses t.o other modifications 
in a sentence. 

Table 1 illustrates a modification matr ix  for the 
example sentence. In the matrix,  co]unms and rows 
represent anterior and posterior bunsetsus, respec- 
tively. For example, the f r s t  bunsetsu 'kinou- no" 
modifies the second 'yuugala-7~i'with score 0.70 and 
the third 'kil~jo-~o'with score 0.07. The aim of this 
paper  is to generate a modification matr ix  by using 
decision trees. 

kmou-no 
yu~gala, nt 0 . 7 0  y u ~ g a ~ a - n ,  
klnjo-no 0 . 0 7  0 . 1 0  L'lnjo-no 
kodorno.ga 0 . 1 0  0 . 1 0  0 . 7 0  kodoHio*ga 
~l, ain-wo 0 , 1 0  O . 1 0  0 . 2 0  0 . 0 . 5  ~'a~T~-u,o 
71orllu-oa 0 0 3  0 . ' 7 0  O . I O  0 . 9 5  I O 0  

'/Fable 1: Modification Matrix for Sample Sentence 

The final step of parsing optimizes the entire de- 
pendency structure by using the values in the mod- 
ification matrix.  

Before going into our model, we introduce the no- 
tations that  will be used in the model. Let. ,5' be 
the input sentence. S comprises a bunsetsu set. B of 
length m ({< b~,f~ > , . . . , <  b , , , f , ,  >) )  in which 
bi and J'i represent the ith bunsetsu and its features, 
respectively. We define D t.o be a modification set; D 
= { m o d ( l ) , - . . , m o d ( , n -  l)} in which rood(i)indi- 
cates tim number  of busetsu modified by the ith bun- 
setsu. Because of the first assumption,  the length of 
D is always m -  1. Using these notations, the result 
of the third step for the example call be given as D 
= {2, 6, 4, 6, 6} as displayed in Figure 1. 

3 Dec i s ion  Trees  for D e p e n d e n c y  
Analys i s  

3.1 S t o c h a s t i c  M o d e l  a n d  D e c i s i o n  T r e e s  

Tile stochastic dependency parser assigns the most 
pla.usible modification set Da~s¢ to a sentence 5" in 
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1 
kin0u-n0 yuugat 

3 4 
ni kinj n0 k0d0m ga 

_ll 
5 

 ain-w0 n0mu.t 

Figure 1: Modification Set for Sample Sentence 

terms of the training da.ta distribution. 

D b . ,  = P(Z)IS)  = P(Z)IB)  
By assuming the independence of modifica- 
tions, P ( D I H )  can be transformed as follows. 
P ( y e s l b i ,  bj , f ~ , . . . ,  f , ,  ) means the probabili ty that  
a pair of bunsetsu bi and bj haw" a modification rela- 
tion. Note that  each modification is constrained by 
all f e a t u r e s { f ~ , . . . , f m }  in a sentence despite of the 
assumption of independence.tNe use decision trees 
to dynamically select appropriate  features for each 
combination of bunsetsus fi'om {f~ , . . . ,  f , , ,  }. 

f ' (1)[ l , )  = 1 - I  l ' (  g , b s  , f , , . . . , f , ,  ) 

l,et us first consider tit(.' single tree case. The 
lraining data  for the decision tree comprise any un- 
ordered combination of two bunsetsu in a sentence. 
Features used for learning are the linguistic informa- 
tion associated with the two bunsetsu. The next sec- 
tion will explain these features in detail. The class 
set for learning has binary values yes and no which 
delineate whether the data (the two bunstsu) has 
a moditication relation or not. In this setting, the 
decision tree algorithm automatical ly and consecu- 
tively selects the significant Datures for discriminat- 
ing modify/non-modify relations. 

We slightly changed C4.5 (Quinlan, 1993) pro- 
grants to be able to extract  class Dequen- 
des at every' node in the decision tree be- 
cause our task is regression rather than classi- 
fication. 13y using the class distribution, we 
conllmte the prol)ability l ' o T ( y e s l b i  , bj, J'~ , . . . ,  f ,n) 
which is the Laplace est imate of empirical likeli- 
hood that  bi modifies bj in the constructed deci- 
sion tree DT.  Note that  it. is necessary to nor- 
malize P D W ( y e s l b i , b j , f , , . . . , f m )  to approximate  
P ( y e s [ b i , b j , f ~ , . . . , f m  ). By considering all can- 
didates posterior to hi, P ( y e s l b i ,  bj,  f ~ , . . . ,  f ro )  is 
computed using a heulistic rule (1). It is of course 
reasonable to normalize class frequencies instead of 
the probabilit.y P o T ( y e s l b i ,  bj, , f ~ , . . . , f ro) .  Equa- 
tion (1) tends to emphasize long distance dependen- 
cies more than is true for frequency-I)ased normal- 
ization. 

P ( y c s l b i  ,bj ,  f ~ , . . . ,  f , , , )  ~_ 

P D T ( y e s l b i ,  bj, f ~ , . . . , f , ,  ) 
(1) 

k >i"' P DT(yeslbi, bj , f ~ , . . . ,  f m ) 
Let us extend the above to use a set of decision 

trees. As brietty mentioned in Section 1, a number  
of infrequent and exceptional expressions appear  in 
any natural  language phenomena; they deteriorate 
the overall performance of apl)lication systems. It  
is also difficult for au tomated  learning systems to 
detect and handle these expressions because excep- 
tional expressions are placed in the same class as 
frequent ones. To tackle this ditficulty, we gener- 
ate a set of decision trees by adaboost  (Freund and 
Schapire, 1996) algorithm illustrated in Tabh-. 2. The 
algorithm first sets the weights to 1 for all exam- 
pies (2 in Table 2) and repeats the following two 
procedures T times (3 in Table 2). 

1. A decision tree is constructed by using the cur- 
rent weight vector ((a) in Table 2) 

2. Example da ta  are then I)arsed by using the tree 
and tim weights of correctly handled examples 
are reduced ( (b ) , (c ) in  Table 2) 

1. 

3. 

In lmt :  sequence of N examples < c,, w, >, .. . ,  < 
eN, WN > in which ei ~1.11(| Wz represent. ~11 exalKlple 
and its weigld, respectively. 

Ini t ia l ize the weight vector w, =1 for i = 1 . . . . . .  ~,r 

Do for  t = I , ' 2 , . . . , T  

(a) Call  C.t.5 providing it wilh |he weight vcclor 
w,s attd C o n s t r u c t  a modification l)robability 
set, ht 

(b) Let. Er ror  be a set of examples that are not 
ident.itied by ht 
Compute the pseudo error rate of ht: 
(t  -~- E iCE,.,.o,.Wi/ E i=aN wi 
iI'{t > }, then  abort loop 

l ~ e  t 

(c) For examples correctly predicted by h t, update 
the weights vector to be wi = I I ' i / ~ t  

4. O u t p u t  a fill~tl probability set.: 

hf  E ,=, 7 ~ /Jr z ' ' ' ~ l  t = . . l o Y ~ t  ) = , '( 

Table 2: Combiniug 1)ecisiou Trees by Ada-boost  
Algorithm 

Tile final l)rol)ability set h j is then comfmted 
by mixing T trees according to their perfor- 
mance (4 in Table 2). Using h r instead of 
P o T ( y e s [ b e ,  bj, f , , . . . ,  f , , , ) ,  in equation (1) goner- 
ates a boosting version of the dependency parser. 

3 . 2  L i n g u i s t i c  F e a t u r e  T y p e s  U s e d  for  
L e a r n i n g  

This section explains the concrete feature setting we 
used for learning. The feature set mainly focuses on 
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1 lexical information of head word 
2 part-of-speech of head word 
3 type of bunsetsu 
4 punctuat ion 
5 parentlmses 

Table 3: Linguistic Feature Types  Used for Learning 

6 distance between two bunsetsu 
7 particle 'wa'  between two bunsetsu 
8 punctuat ion between two bunsetsu 

F e a t u r e  T y p e  V a l u e s  

gJ~ga=], }~lJ].J. N0a,]lt.~f~m)l-;a,]. ~itja.jfl~-,t.]. ~',.l#]ft~,*al{mij~,~], g.~.]'I~gj,;}ll)fi.~:,~i'. 

&~', & 6,  ~P'l~, ta', f~'$~, t.¢~., ~ '~ 'L ,  fd~.~Ll~, ~]fiG, t,.~' fdG, ~'GC¢:2, ta'~l, 
**']J)', fa ' /~ ' ,  : : ,  fa, a), tO.g, {~*, l.*~),;),--., l t~ ' ,  ~t:,  ~t:t*-, ~[-~, ~a, 6 L < { / ,  
6,,% 6¢1a), ~-., < ' b ,  . t . . 1 :5 ,  . t : ! ,  &, ab, ~ .  ~t~£.l.}. 0:.&:, t,~,f~l, '~,M.]. l£V.. ,El). 

-~fl:. Ale,, IlU~I, Ira4, ¢g,~¢~,4, tRI'~, q,, ~jtd.{~l,tsj. l'~iI[,~Ja.I. ~/~,'0J, ~,{hllja4, ,i.l:fllfi/g]aaJ, 

n o n ,  a:~."L, t,JfL 

n o n ,  ' ,  q, , 1 ,  I ,  [ ,  ' , .  l ,  ' ,  " , ,  , ,  , l , l , ] ,  I 

7 
8 0 ,  1 

"graph dBt" 

A(o), B ( l - 4 ) ,  c(>,5) 
O,  1 

Table 4: Values for Each Feature Type  

84 

8.35 

83 

82 5 

82 

Two Bunsetsu ~ Others 

sooo  l o o 0 o  l s o o o  20000  25o0o aoooo  a s o o o  4o0oo  45o00  soooo  
Number  o l  Training Data 

Figure 2: Learning Curve of Single-Tree Parser 

the two bunsetsu constituting each data. Tile class 
set consists of binary values which delineate whether 
a sample (the two bunsetsu) have a modification re- 
lation or not.. We use 1"3 features for the task, 10 di- 
rectly fi'om the 2 bunsetsu under consideration and 
3 for other bunsetu information as SUlnmarized in 
'Fable 3. 
Each bunsetsu (anterior and posterior) has the 5 
features: No.1 to No.5 in Table 3. Features No.6 
to No.8 are ]'elated to bunsetsu pairs. Both No.1 
and No.2 concern the head word of the bunsetsu. 
No.1 takes values of frequent words or thesaurus cat- 
egories (NLRI, 1964). No.2, on tile other hand, takes 
values of part-of-speech tags. No.3 deals with bun- 
setsu types which consist of functional word chunks 
or the part-of-speech tags that  dominate the bun- 
setsu's syntactic characteristics. No.4 and No.5 are 

binary features and correspond to punctuat ion and 
parentheses, respectively. No.6 represents how many 
bunsetsus exist, between the two bunsetsus. Possible 
values are A(0), B(0--4)  and C(>_5). No.7 deals with 
t.he post-positional particle 'wa '  which greatly inttu- 
ences the long distance dependency of subject-verb 
modifications. Finally, No.8 addresses the punct.ua- 
t.ion between the two bunsetsu. The detailed values 
of each feature type are summarized in Table 4. 

4 E x p e r i m e n t a l  R e s u l t s  
We evaluated the proposed parser using the EDR 
Japanese annotated corpus (EDR, 1995). The ex- 
periment  consisted of two parts. One evaluated tim 
single-tree parser and the other the boosting coun- 
t.erpart. In the rest of this section, parsing accuracy 
refers only to precision; how many of the system's  
output  are correct in t.erms of the annotated corpus. 
We do not show recall because we assume every bun- 
setsu modifies only one posterior bunsetsu. The fea- 
tures used for learning were non head-word features, 
(i.e., type 2 to 8 in Table 3). Section 4.1.4 investi- 
gates lexical information of head words such as fi'e- 
quent words and thesaurus categories. Before going 
into details of the experimental  results, we summa-  
rize here how training and test data  were selected. 

1. Afl.er all sentences ill the EDR corpus 
were word-segmented and part-of-speech 
tagged (Matsumoto  and others, 1996), they 
were then chunked into a sequence of bunsetsu. 

2. All bunsetsu pairs were compared with EI )R 
bracketing annotat ion (correct. segmentations 
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C o n f i d e n c e  L e v e l  25(/o 50% 75% ~3 .) ~('~, 
P a r s i n g  A c c m ' a c y  82.01% 83.43% 83.52% 83.35% 

Table 5: Number of Training Sentences v.s. Parsing Accuracy 

N u m b e r  of  T ra in ing  Sentences 3000 6000 1 0 0 0 0  20000 30000 
~2.0~ ~, 82.70% '83.52% 84.(}7% 8,1.27% P a r s i n g  A c c u r a c y  ~ '  -(' 

50000 
8,t .33% 

Table 6: Pruning Confidence Lewd v.s.Parsing Accuracy 

and modifications). If a sentence conlairied a 
pair inconsistent with the EDR annotation,  the 
sentence was removed from the data. 

3. All data exanfined (total nuniber of sell- 
t.enees::207802, total unlllber of }.)till- 
setsu:1790920) were divided into 20 files. 
The training data were same number of first 
sentences of the 20 files according to the 
training data size. Test dai.a (10000 sentences) 
were the 2501th to 3000th sentences of each 
lile. 

4.1 Sil lgle T r e e  E x p e r i m e n t s  

lit the single tree experiments,  we evaluated tile fol- 
lowing 4 properties of the new dependency parser. 

• Tree pruning and parsing accuracy 

• Nulnber of training data and parsing accuracy 

• S'ignificance of featin'es other than tlead-word 
Lexical lnforniatiou 

• Significance of llead-word l,exical hlfornlation 

4.1.1 P r u n i l l g  an(1 P a r s i n g  A e o u r a e y  
Table 5 sutinnarizes the parsing accuracy with var- 
ious confidence levels of pruning. The number of 
t.raining sentences was 10000. 

In C4.5 programs, a larger value of confidence 
means weaker pruning and 25% is commonly used in 
various donlaius (Quinlan, 1993). Our experintental 
results show that  75% pruning at tains the best per- 
forlnance, i.e. weaker prnuing than usual. In the 
reniaining single tree experinients, we used the 75% 
confidence level. Although strong l)runing treats  in- 
fl:equent data  as noise, parsing involves many ex- 
ceptional and infrequent modifications as mentioned 
befbre. Our restllt means ttiat only intbrmation in- 
chided in small numbers of samples are useful for 
disambigua.ting the syntactic s tructure of sentences. 

4:.1.2 T h e  a m o u n t  o f  T r a i n i n g  D a t a  a n d  
P a r s i n g  A c c u r a c y  

Table 6 and Figure 2 show how the number of train- 
ing sentences infhienees parsing accuracy for the 
same 10000 test sentences. They ilhlstrate the for  
lowing two characteristics of the learning curve. 

1. 'file parsing accuracy rapidly rises up to 30000 
sentences and converges at a.round 50000 sen- 
t, enees. 

2. The maxinlunl parsing accuracy is 84.33% at 
50000 training sentences. 

We will discuss the nlaxinmm accuracy of 84.33%. 
Compared to recent stochastic Fnglish parsers that  
yield 86 to 87(/o accuracy (Collins, 1996; Mager- 
man, 1995), 84.33% seems unsatisfactory at. the first 
glance. The main reason behind this lies in the dig 
ference between the two corpora used: Pelm Tree- 
bank (Marcus et al., 1993) and El) I f  corpus (EI)F{,, 
1995). l 'enn Treebank(Marcus  et M., 1993) was also 
used to induce part-of-sl)eech (POS) taggers because 
the corpus contains very precise and det.ailed POS 
markers as well as bracket annotations.  In addition, 
h;nglish parsers incorporate the. syntact ic  tags that  
are contained in the corpns. The EDI{ corpus, oil t.he 
other haud, contains only coarse POS tags. We used 
another d apanese POS tagger (M atsnmoto and oth- 
ers, 1996) to make use of well-grained information 
for disanibiguating syntactic structures.  Only the 
bracket information in the EDI{ corpus was consid- 
ered. We conjecture that  the difference between the 
parsing accuracies is due to the difference of the cor- 
pus infonnation. (Fujio and Matsunioto, 1997) con- 
structed an El)l~-based dependency parser by using 
a simila.r method t.o Collins' (Collins, 19!)6). The 
parser attained 80.48% accuracy. Although thier 
training and Zest. sent.enees are not exactly same as 
ours, the restllt seems to SUl)port our conjecture on 
the data difference between EDR and Penn Tree- 
bank. 

4.1.3 S ign i f i cance  o f  N o n  H e a d - W o r d  
F e a t u r e s  

We will now summarize the significance of each non 
head-word feature introduced in Section 3. The in- 
fluence of the lexieal information of head words will 
be discussed in the next section. Table 7 ilhlslrates 
how the parsing accuracy is reduced when each fea- 
ture is removed. The mnnber  of training setttences 
was 10000. In the table, ant and post. represent the 
anterior and the posl.erior bnnsetsu, respectiwdy. 

Table 7 clearly denlonstrates that. the ll]OSl signifi- 
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Feature 
ant POS of head 
ant bunsetsu type 
ant punctuation 
ant parentheses 
post POS of head 
post bunsetsu type 

Accuracy Decrease ][ Feature 
-0.07% post punctuation 

+9.34% post parentheses 
+1.15% distance between two blul.setsus 
=1=0.00% punctuation between two bunsetsus 
+2.13% 'wa' between two bunsetsus 
+0.52% 

Accuracy  Decrease 
+1.62% 
+0.00% 
+5.21% 
+0.o1% 
+1.79% 

Table 7: Decrease of Parsing Accuracy When Each Attr ibute  Removed 

Head Word Informat ion  
Parsing Accuracy  

I 100 words 200 words Level 1 Level 2 ] 
83.34% 82.68% 82.51% 81.67% I 

Table 8: Head Word Information v.s. Parsing Accuracy 

cant features are anterior bunsetsu type and distance 
betweell the two bunsetsu. This result may partially 
support  an often used heuristic; bunsetsu modifica- 
tion should be as short range as possible, provided 
the modification is syntactically possible. In partic- 
ular, we need to concentrate on the types of bunsetsu 
to at ta in a higher level of accuracy. Most features 
contribute,  to some extent,  to the parsing perfor- 
mance. In our experiment,  information on paren- 
theses has no effect, Oil the performance.  The reason 
may be that  EDR contains only a small number  of 
parentheses. One exception in our features is an- 
t.erior POS of head. We currently hypothesize that  
this drop of accuracy arises from two reasons. 

* In mauy cases, the POS of head word can be 
determined from bunsetsu type. 

• Our POS tagger sometimes assigns verbs for 
verb-derived nouns. 

4.1.4 Significance of  Head-words  Lexical 
I n t b r l n a t i o n  

\Ve focused Oil the head-word feature by testing the 
following 4 lexical sources. The first and the second 
are the 100 and 200 most frequent words, respec- 
tively. The third and the fourth are derived fl:om a 
broadly used Japanese thesaurus, Word IAst by Se- 
mantic Principles (NLRI, 1964). Level 1 and Level 2 
classify" words into 15 and 67 categories, respectively. 

1. 100 most Frequent words 

2. 200 most Frequent words 

3. \Vord List. Level 1 

4. Word List Level 2 

Table 8 displays the parsing accuracy when each 
head word inforlnation was used in addition to the 
previous features. The number of training sentences 
was 10000. In all cases, the performance was worse 
than 83.52% which was attained without head word 
lexical information. More surprisingly, more head 

word information yielded worse performance. From 
this result, it. may be safely said, at. least for the 
Japanese language, that  we cannot expect lexical in- 
forrnation t.o always improve the performance. Fur- 
ther investigation of other thesaurus and cluster- 
ing (Charniak, 1997) techniques is necessary to fully 
understalld the influence of lexical information. 

4.2 B o o s t i n g  Exper iments  
This section reports experimental  results on the 
boosting version of our parser. In all experiments,  
pruning confidence levels were set. to 55%. Table 9 
and Figure 3 show the parsing accuracy when the 
nulnber of training examples was increased. Because 
the number of iterations in each data set. changed be- 
tween 5 and 8, we will show the accuracy by combin- 
ing the first 5 decision trees. In Figure 3, the dotted 
line plots the learning of the single tree case (identi- 
cal to Figure 2) for reader's convenience. The char- 
acteristics of the boosting version can be SUlmna- 
rized as follows compared to the single tree version. 

* The learning curve rises more rapidly with a 
small number  of examples. It is surprising that  
the boosting version with 10000 sentences per- 
forms bet ter  than the single tree version with 
50000 sentences. 

. The boosting version significantly outperforms 
the single tree counterpart, for any number of 
sentences although they use the same features 
for learning. 

Next, we discuss how the number of iterations in- 
fluences the parsing accuracy. Table 10 shows the 
parsing accuracy for various iteration numbers when 
50000 sentences were used as training data. The re- 
suits have two characteristics. 

. Parsing accuracy rose up rapidly at the second 
iteration. 

• No over-fitting to data was seen although the 
performance of each generated tree fell around 
30% at the final stage of iteration. 
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[ N m n b e r  o f  T r a i n i n g  S e n t e n c e s  3000 6000 10000 20000 30000 50000 ] 
P a r s i n g  A c c u r a c y  83.10% 84.03% 84.44% 84.74% 84.91% 85.03% / 

Ta.l>le 9: Number of Training Sentences v.s. Parsing Accuracy 

[ N u m b e r  o f  I t e r a t i o n  1 2 3 4 5 
85.03¢{, P a r s i n g  A c e u r a e y  84.32% 84.93% 84.89% 84.86% ". c, 

Table 10: Number  of I terat ion v.s. Parsing Accuracy 

5 Conclus ion 
We have described a new Japanese dependency 
parser that  uses decision trc~,s. First, we introduced 
the single tree parser to clarify the basic character- 
istics of our method. The experimental  results show 
that  it. outperforms conventional stochastic parsers 
by 4%. Next, the boosting version of our parser w~s 
introduced, rFhe promising results of the boosting 
parser can be smmnarized as follows. 

• The boosting version outperforms the single- 
tree counterpart  regardless of training da ta  
a n l o l l n t .  

* No data over-titling was seen when the number  
of iterations changed. 

We now plan to contitme otlr research ill two direc- 
tions. One is to make our parser available to a broad 
range of researchers and to use their feedback to re- 
vise the features for learning. Second, we will apply 
our method to other languages, say English. Al- 
though we have focused on the Japanese language, 
it is st.raightforward to modify our parser to work 
with other languages. 
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