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A b s t r a c t  

In this paper we examine how the differences in 
modelling between different data driven systems 
performing the same NLP task can be exploited 
to yield a higher accuracy than the best indi- 
vidua| system. We do this by means of an ex- 
periment involving the task of morpho-syntactic 
wordclass tagging. Four well-known tagger gen- 
erators (Hidden Markov Model, Memory-Based, 
Transformation Rules and Maximum Entropy) 
are trained on the same corpus data. Af- 
ter comparison, their outputs are combined us- 
ing several voting strategies and second stage 
classifiers. All combination taggers outperform 
their best component, with the best combina- 
tion showing a 19.1% lower error rate than the 
best individual tagger. 

I n t r o d u c t i o n  
In all Natural Language Processing (NLP) 
systems, we find on(; or more language 
models which are used to predict, classify 
and/or interpret language related observa- 
tions. Traditionally, these models were catego- 
rized as either rule-base(t/symbolic or corpus- 
based/probabilistie. Recent work (e.g. Brill 
1.992) has demonstrated clearly that this cat- 
egorization is in fact a mix-u t) of two distinct 
categorization systems: on the one hand there is 
the representation used for the language model 
(rules, Markov model, neural net, case base, 
etc.) and on the other hand the manner in 
which the model is constructed (hand crafted 
vs. data driven). 

Data driven methods appear to be the more 
popular. This can be explained by the fact that, 
in general, hand crafting an explicit model is 
rather difficult, especially since what is being 
modelled, natural language, is not (yet) well- 
mlderstood. When a data (triven method is 

used, a model is automatically learned from tile 
implicit structure of an annotated training cor- 
pus. This is much easier and can quickly lead 
to a model which produces results with a 'rea- 
sonably' good quality. 

Obviously, 'reasonably good quality' is not 
tile ultimate goal. Unfortunately, the quality 
that can be reached for a given task is limited, 
and not merely by tile potential of the learn- 
ing method used. Other limiting factors are the 
power of the hard- and software used to imple- 
ment the learning method and the availability of 
training material. Because of these limitations, 
we find that for most tasks we are (at any point 
in time) faced with a ceiling to the quality that 
can be reached with any (then) available ma- 
chine learning system. However, the fact that 
any given system cannot, go beyond this ceiling 
does not mean that machine learning as a whole 
is similarly limited. A potential loophole is that 
each type of learning method brings its own 'in- 
ductive bias' to the task and theretbre different 
methods will tend to produce different errors. 
In this paper, we are concerned with the ques- 
tion whether these differences between models 
can indeed be exploited to yield a data driven 
model with superior performance. 

In tile machine learning literature this ap- 
proach is known as ensemble, stacked, or com- 
bined classifiers. It has been shown that, when 
the errors are uncorrelated to a sufficient degree, 
the resulting combined classifier will often per- 
form better than all the individual systems (All 
and Pazzani 1996; Chan and Stolfo 1995; Turner 
and Gosh 1996). The underlying assumption is 
twofold. First, the combined votes will make 
the system more robust to the quirks of each 
learner's particular bias. Also, the use of infor- 
mation about each individual method's behav- 
iour in principle even admits the possibility to 
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fix collective errors. 
We will execute our investigation by means 

of an experiment. The NLP task used in the 
experiment is morpho-syntactic wordclass tag- 
ging. The reasons for this choice are several. 
First of all, tagging is a widely researched and 
well-understood task (cf. van Halteren (ed.) 
1998). Second, current performance levels on 
this task still leave room for improvement: 
'state of the art' performance for data driven au- 
tomatic wordclass taggers (tagging English text 
with single tags from a low detail tagset) is 96- 
97% correctly tagged words. Finally, a number 
of rather different methods are available that 
generate a fully functional tagging system from 
annotated text. 

1 Component taggers 
In 1992, van Halteren combined a number of 
taggers by way of a straightforward majority 
vote (cf. van Halteren 1996). Since the compo- 
nent taggers all used n-gram statistics to model 
context probabilities and the knowledge repre- 
sentation was hence fundamentally the same in 
each component, the results were limited. Now 
there are more varied systems available, a va- 
riety which we hope will lead to better com- 
bination effects. For this experiment we have 
selected four systems, primarily on the basis of 
availability. Each of these uses different features 
of the text to be tagged, and each has a com- 
pletely different representation of the language 
model. 

The first and oldest system uses a tradi- 
tional trigram model (Steetskamp 1995; hence- 
tbrth tagger T, for Trigrams), based on context 
statistics P(tilti_l,ti_2) and ]exical statistics 
P(ti[wi) directly estimated from relative cor- 
pus frequencies. The Viterbi algorithm is used 
to determine the most probable tag sequence. 
Since this model has no facilities for handling 
unknown words, a Memory-Based system (see 
below) is used to propose distributions of po- 
tential tags for words not in the lexicon. 

The second system is the Transformation 
Based Learning system as described by Brill 
(19941; henceforth tagger R, for Rules). This 

1Brill's system is available as a collec- 
tion of C programs and Perl scripts at 
f t p  : / / f t p .  cs. j hu. e d u / p u b / b r i l l / P r o g r a m s /  
KULE_BASED_TAGGEK_V. 1.14. t a r .  Z 

system starts with a basic corpus annotation 
(each word is tagged with its most likely tag) 
and then searches through a space of transfor- 
mation rules in order to reduce the discrepancy 
between its current annotation and the correct 
one (in our case 528 rules were learned). Dur- 
ing tagging these rules are applied in sequence 
to new text. Of all the four systems, this one 
has access to the most information: contextual 
information (the words and tags in a window 
spanning three positions before and after the 
focus word) as well as lexical information (the 
existence of words formed by suffix/prefix addi- 
tion/deletion). However, the actual use of this 
information is severely limited in that the indi- 
vidual information items can only be combined 
according to the patterns laid down in the rule 
templates. 

The third system uses Memory-Based Learn- 
ing as described by Daelemans et al. (1996; 
henceforth tagger M, for Memory). During 
the training phase, cases containing informa- 
tion about the word, the context and the cor- 
rect tag are stored in memory. During tagging, 
the case most similar to that of the focus word 
is retrieved from the memory, which is indexed 
on the basis of the Information Gain of each 
feature, and the accompanying tag is selected. 
The system used here has access to information 
about the focus word and the two positions be- 
fore and after, at least for known words. For 
unknown words, the single position before and 
after, three suffix letters, and information about 
capitalization and presence of a hyphen or a 
digit are used. 

The fourth and final system is the MXPOST 
system as described by Ratnaparkhi (19962; 
henceforth tagger E, for Entropy). It uses a 
number of word and context features rather sim- 
ilar to system M, and trains a Maximum En- 
tropy model that assigns a weighting parameter 
to each feature-value and combination of fea- 
tures that is relevant to the estimation of the 
probability P(tagIfeaturcs ). A beam search is 
then used to find the highest probability tag se- 
quence. Both this system and Brill's system are 
used with the default settings that are suggested 
in their documentation. 

2Ratnaparkhi's Java implementation of this sys- 
tem is available at f t p : / / f t p ,  c i s . u p e n n . e d u /  
pub/adwait/jmx/ 
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2 T h e  d a t a  

The data we use tbr our experiment consists of 
the tagged LOB corpus (Johansson 1986). The 
corpus comprises about one million words, di- 
vided over 500 samples of 2000 words fl'om 15 
text types. Its tagging, which was manually 
checked and corrected, is generally accepted to 
be quite accurate. Her('. we use a slight adapta- 
tion of the tagset. The changes are mainly cos- 
metic, e.g. non-alphabetic characters such as 
"$" in tag names have been replaced. However, 
there has also been some retokenization: geni- 
tive markers have been split off" and the negative 
marker "n't" has been reattached. An example 
sentence tagged with the resulting tagset is: 

The ATI singular or plural 
article 

Lord NPT singular titular 
n o n n  

Major NPT singular titular 
n o u n  

extended VBD past tense of verb 
an AT singular article 
invitation NN singular common 

n o u n  

to IN preposition 
all ABN pre-quantifier 
the ATI singular or plural 

article 
parliamentary JJ adjective 
candidates NNS plural common 

n o u n  

SPER, period 

The tagset consists of 170 different tags (in- 
cluding ditto tags 3) and has an average ambigu- 
ity of 2.69 tags per wordtbrm. The difficulty of 
the tagging task can be judged by the two base- 
line measurements in Table 2 below, represent- 
ing a completely random choice from the poten- 
tial tags for each token (Random) and selection 
of the lexically most likely tag (LexProb). 

For our experiment, we divide the corpus into 
three parts. The first part, called Train, consists 
of 80% of the data (931062 tokens), constructed 

3Ditto tags are used for the  components  of mult i-  
token uni ts ,  e,g. if "as well ,~s" is taken to be a coor- 
d ina t ion  conjunct ion,  it is tagged ",~s_CC-I well_CC-2 
~Ls_CC-3", us ing three related bu t  different di t to  tags. 

by taking the first eight utterances of every ten. 
This part is used to train the individual tag- 
gers. The second part, Tune, consists of 10% of 
the data (every ninth utterance, 114479 tokens) 
and is used to select the best tagger parameters 
where applicable and to develop the combina- 
tion methods. The third and final part, ~lhst, 
consists of the remaining 10% (! 15101 tokens) 
and is used tbr the final performance measure- 
ments of all taggers. Both Tune and Test con- 
tain around 2.5% new tokens (wrt Train) and a 
further 0.2°~ known tokens with new tags. 

The data in ~lYain (for individual taggers) 
and Tune (for combination taggers) is to be the 
only information used in tagger construction: 
all components of all taggers (lexicon, context 
statistics, etc.) are to be entirely data driven 
and no manual adjustments are to be done. The 
data in Test is never to be inspected in detail 
but only used as a benchmark tagging for qual- 
ity measurement. 4 

3 Potential  for improvement 

In order to see whether combination of the com- 
ponent taggers is likely to lead to improvements 
of tagging quality, we. first examine the results 
of the individual taggers when applied to Tune. 
As far as we know this is also one of the first 
rigorous measnrements of the relative quality of 
different tagger generators, using a single tagset 
and dataset and identical circumstances. 

The quality of the individual taggers (cf. Ta- 
ble 2 below) certainly still leaves room for im- 
provement, although tagger E surprises us with 
an accuracy well above any results reported so 
far and makes us less confident about the gain 
to be accomplished with combination. 

However, that there is room for improvement 
is not enough. As explained above, tot combi- 
nation to lead to improvement, the component 
taggers must differ in the errors that they make. 
That this is indeed the case can be seen in Ta- 
ble 1. It shows that for 99.22% of Tune, at least 
one tagger selects the correct tag. However, it 
is unlikely that we will be able to identify this 

4This implies tha t  it is impossible to note  if errors 
counted ag~finst a tagger are in fact errors in tile bench- 
mark tagging. We accept tha t  we are measur ing  quali ty 
in relation to a specific tagging rather  than  tile l inguistic 
t ru th  (if such exists) and carl only hope tile tagged LOB 
corpus lives up to its reputa t ion.  
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All Taggers Correct 
Majority Correct (3-1,2-1-1) 
Correct Present, No Majority 
(2-2,1-1-M) 
Minority Correct (1-3,1-2-1) 
All Taggers Wrong 

92.49 
4.34 
1.37 

1.01 
0.78 

Table 1: Tagger agreement on Tune. The pat- 
terns between the brackets give the distribution 
of co r rec t / incor rec t  tags over the systems. 

tag in each case. We should rather aim for op- 
timal selection in those cases where the correct 
tag is not outvoted, which would ideally lead 
to correct tagging of 98.21% of the words (in 
Tune). 

4 S i m p l e  V o t i n g  

There are many ways in which the results of 
the component  taggers can be combined, select- 
ing a single tag from the set proposed by these 
taggers. In this and the following sections we 
examine a number of them. The accuracy mea- 
surements for all of them are listed in Table 2. 5 
The most straightforward selection method is 
an n-way vote. Each tagger is allowed to vote 
for the tag of its choice and the tag with the 
highest number of votes is selected. 6 

The question is how large a vote we allow 
each tagger. The most democratic option is to 
give each tagger one vote (Majority). However, 
it appears more useful to give more weight to 
taggers which have proved their quality. This 
can be general quality, e.g. each tagger votes its 
overall precision (TotPrecision), or quality in re- 
lation to the current situation, e.g. each tagger 
votes its precision on the suggested tag (Tag- 
Precision). The information about each tagger's 
quality is derived from an inspection of its re- 
sults on Tune. 

5For any tag X, precision measures which percentage 
of the tokens tagged X by the tagger are also tagged X in 
the benchmark and recall measures which percentage of 
the tokens tagged X in the benchmark are also tagged X 
by the tagger. When abstracting away from individual 
tags, precision and recall are equal and measure how 
many tokens are tagged correctly; in this case we also 
use the more generic term accuracy. 

Sin our experiment, a ra~tdom selection from among 
the winning tags is made whenever there is a tie. 

T u n e  Test 
B a s e l i n e  
Random 73.68 73.74 
LexProb 92.05 92.27 

Single Tagger 
T 95.94 96.08 
R 96.34 96.46 
M 96.76 96.95 
E 97.34 97.43 
S i m p l e  Voting 
Majority 97.53 97.63 
TotPrecision 97.72 97.80 
TagPrecision 97.55 97.68 
Precision-Recall 97.73 97.84 
Pairwise Voting 
TagPair 97.99 97.92 
Memory-Based 
Tags 98.31 97.87 
Tags+Word 99.21 97.82 
Tags+Context  99.46 97.69 
Decision trees 
Tags 98.08 97.78 
Tags+Word - - 
Tags+Context 98.67 97.63 

taggers and Table 2: Accuracy of individual 
combination methods. 

But we have even more information on how 
well the taggers perform. We not only know 
whether we should believe what they propose 
(precision) but  also know how often they fail to 
recognize the correct tag (recall). This informa- 
tion can be used by forcing each tagger also to 
add to the vote for tags suggested by the oppo- 
sition, by an amount equal to 1 minus the recall 
on the opposing tag (Precision-Recall). 

As it turns out, all voting systems outperform 
the best single tagger, E. r Also, the best voting 
system is the one in which the most specific in- 
formation is used, Precision-Recall. However, 
specific information is not always superior, for 
TotPrecision scores higher than TagPrecision. 
This might be explained by the fact that  recall 
information is missing (for overall performance 
this does not matter, since recall is equal to pre- 
cision). 

7Even the worst combinator, Majority, is significantly 
better than E: using McNemar's chi-square, p=0. 
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5 P a i r w i s e  V o t i n g  

So far, we have only used information on the 
pertbrmance of individual taggers. A next step 
is to examine them in pairs. We can investigate 
all situations where one tagger suggests 7'1 anti 
the other  T~ and est imate the probabili ty that  in 
this situation the tag should actually be Tx, e.g. 
i r E  suggests DT and T suggests CS (which (:an 
happen if the token is "that")  the probabilities 
for the appropriate tag are: 

CS subordinat ing conjunction 0.3276 
DT determiner  0.6207 
QI~ quantifier 0.0172 
WPR. wh-pronoun O.0345 

When combining the taggers, every tagger 
pair is taken in turn  and allowed to vote (with 
the probabil i ty described above) for each pos- 
sible tag, i.e. not just  the ones suggested by 
the component  taggers. If a tag pair T1-2) has 
new;r been observed in Tune, we fall back on 
information on the individual taggers, viz. the 
probabili ty of each tag 7':r given that  tile tagger 
suggested tag Ti. 

Note tha t  with this method (and those in the 
next section) a tag suggested by a minority (or 
even none) of the taggers still has a chance to 
win. In principle, this could remove the restric- 
tion of gain only in 2-2 and 1-1-1-1 cases. In 
practice, the chance to beat  a majori ty is very 
slight indeed and we should not get our hopes 
up too high that  this should hal)pen w~'ry often. 

When used on Test, the pairwise voting strat- 
egy (TagPair) clearly outperforms the other vot- 
ing strategies, s but  does not yet approach the 
level where all tying majori ty votes are handled 
correctly (98.31%). 

t3 S t a c k e d  c l a s s i f i e r s  

From the measurements  so far it appears that  
the use ot" more detailed information leads to a 
better  accuracy improvement.  It ought there- 
fore to be advantageous to step away Dora t, he 
underlying mechanism of voting anti to model 
the situations observed in ~lSme more closely. 
The practice of feeding the outputs  of a num- 
ber of classifiers as features for a next learner 

sit is significantly better than the runner-up 
(Precision-l{ecall) with p=0. 

is usually called stacking (Wolpert 1992). The 
second stage can be provided with the first level 
outputs, and with additional information, e.g. 
about the original input pat tern.  

The first choice for this is to use a Memory- 
Based second level learner. In the basic ver- 
sion (Tags), each case consists of the tags sug- 
gested by the component taggers and the cor- 
rect tag. In the more advanced versions we 
also add inlbrmation about  the word in ques- 
tion (Tags+Word) and the tags suggested by all 
taggers for the previous and the next position 
(Tags+Context) .  For tile first two the similm'ity 
metric used during tagging is a straightforward 
overlap count; for the third we need to use an 
Information Gain weighting (Daelemans et al. 
19:)7). 

Surprisingly, none of the Memory-Based 
based methods reaches the quality of TagPair. 9 
The explanation for this can be found when 
we examine the differences within the Memory- 
Based general strategy: the more feature infor- 
mation is stored, the higher the accuracy on 
Tune, but  the lower the accuracy on :l~'.st. This 
is most likely an overtraining efl'ect: Tune is 
probably too small to collect case bases which 
can leverage the stacking effect convincingly, es- 
pecially since only 7.51% of the second stage 
material  shows disagreement between the fea- 
tured tags. 

To examine if the overtraining effects are spe- 
cific to this particular second level classifier, we 
also used the C5.0 system, a commercial  version 
of the well-known program C4.5 (Qninlan 1993) 
for the induction of decision trees, on tile same 
training material. 1° Because C5.0 prunes the 
decision tree, the overfitting of training material  
(Tune) is less than with Memory-Based learn- 
ing, but  the results on Test are also worse. We 
conjecture that  pruning is not beneficial when 
the interesting cases are very rare. ~lb realise the 
benefits of stacking, either more da ta  is needed 
or a second stage classifier tha t  is bet ter  suited 
to this type of problem. 

9Tags (Menmry-Based) scores significantly worse 
than TagPair (p=0.0274) and not significantly better 
than Precision-Recall (p=0.2766). 

lOTags+Word could not be handled by C5.0 due to tile 
huge nmnber of feature values. 
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Test Increase vs 
Component 
Average 

T 96.08 - 
R 96.46 - 
M 96.95 
MR 97.03 96.70+0.33 
RT 97.11 96.27+0.84 
MT 97.26 96.52+0.74 
E 97.43 
MRT 97.52 96.50+1.02 
ME 97.56 97.19+0.37 
ER 97.58 96.95+0.63 
ET 97.60 96.76+0.84 
MER 97 .75  96.95+0.80 
ERT 9 7 . 7 9  96.66+1.13 
MET 97.86 96.82+1.04 
MERT 97.92 96.73+1.19 

% Reduc- 
tion Error 
Rate Best 
Component 

26 (M) 
18.4 (R) 
10.2 (M) 

18.7 (M) 
(E) 

5.8 (S) 
6.6 (E) 
12.5 (E) 
 4.0 (S) 
16.7 (S) 
19.1 (E) 

Table 3: Correctness scores on Test for Pairwise 
Voting with all tagger combinations 

7 T h e  va lue  of  c o m b i n a t i o n  

The relation between the accuracy of combina- 
tions (using TagPair) and that of the individual 
taggers is shown in Table 3. The most impor- 
tant observation is that every combination (sig- 
nificantly) outperforms the combination of any 
strict subset of its components. Also of note 
is the improvement yielded by the best combi- 
nation. The pairwise voting system, using all 
four individual taggers, scores 97.92% correct 
on Test, a 19.1970 reduction in error rate over 
the best individual system, viz. the Maximum 
Entropy tagger (97.43%). 

A major factor in the quality of the combi- 
nation results is obviously the quality of the 
best component: all combinations with E score 
higher than those without E (although M, R 
and T together are able to beat E alone11). Af- 
ter that, the decisive factor appears to be the 
difference in language model: T is generally a 
better combiner than M and R, 1~ even though it 
has the lowest accuracy when operating alone. 

A possible criticism of the proposed combi- 

11 By a margin at the edge of significance: p=0.0608. 
~2Although not significantly better, e.g. the differ- 

ences within the group ME/ER/ET arc not significant. 

nation scheme is the fact that for the most suc- 
cessful combination schemes, one has to reserve 
a non-trivial portion (in the experiment 10% 
of the total material) of the annotated data to 
set the parameters for the combination. To see 
whether this is in fact a good way to spend the 
extra data, we also trained the two best individ- 
ual systems (E and M, with exactly the same 
settings as in the first experiments) on a con- 
catenation of Train and Tune, so that they had 
access to every piece of data that the combina- 
tion had seen. It turns out that the increase 
in the individual taggers is quite limited when 
compared to combination. The more exten- 
sively trained E scored 97.51% correct on Test 
(3.1% error reduction) and M 97.07~ (3.9% er- 
ror reduction). 

C o n c l u s i o n  

Our experiment shows that, at least for the task 
at hand, combination of several different sys- 
tems allows us to raise the performance ceil- 
ing for data driven systems. Obviously there 
is still room for a closer examination of the dif- 
ferences between the combination methods, e.g. 
the question whether Memory-Based combina- 
tion would have performed better if we had pro- 
vided more training data than just Tune, and 
of the remaining errors, e.g. the effects of in- 
consistency in the data (cf. Ratnaparkhi 1996 
on such etfects in the Penn Treebank corpus). 
Regardless of such closer investigation, we feel 
that our results are encouraging enough to ex- 
tend our investigation of combination, starting 
with additional component taggers and selec- 
tion strategies, and going on to shifts to other 
tagsets and/or languages. But the investiga- 
tion need not be limited to wordclass tagging, 
for we expect that there are many other NLP 
tasks where combination could lead to worth- 
while improvements. 
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