
N O T E S O N LR P A R S E R D E S I G N

Chris ter S a m u e l s s o n

Swed i sh I n s t i t u t e of C o m p u t e r Sc i ence ,

Box 1263 S -164 28 K l s ' r a , Sweden . lg -maih christer@sics.se

1 I N T R O D U C T I O N

This paper discusses the design of an LR parser for
a specific high-coverage English grammar. The de-
sign principles, though, are applicable to a large class
of unification-based grammars where the constraints
are realized as Prolog terms and applied monotonically
through instantiation, where there is no right move-
ment, and where left movement is handled by gap

threading.
The I,R. parser was constructed for experiments on

probabilistic parsing and speedup learning, see [10]. LI{
parsers are suitable for probabilistic parsing since they
contain a representation of the current parsing state,
namely the stack and the input string, and since the
actions of the parsing tables are easily attributed prob-
abilities conditional on this parsing state. LR parsers
are suitable for the speedup learning application since
tile learne~ grantmar Ls much larger than the original
grammar, and the prefixes of tile learned rules over-
lap to a very high degree, circumstances that are far"
from ideal for the system's original parser. Even though
these ends influenced the design of the parser, this ar-
ticle does not focus on these applications but rather on
the design and testing of the parser itself.

2 L R P A R S I N G

An LI{ parser is a type of shift-reduce parser originally
devised by Knuth for programming languages [4]. The
success of LR. parsing lies ill handling a number of gram-
mar rules simultaneously, rather than attempting one
at a time, by the use of prefix merging. LI~. parsing in
general is well described in [1], and its application to
natural-language processing in [12].

An LR parser is basically a pushdown automaton,
i.e. it has a pushdown stack in addition to a finite set
of internal states, and a reader head for scanning the
input string from left to right, one symbol at a time. In
fact, the " b " in "LW' stands for left-to-right scanning
of the input string. The "W' stands for eonstr, cting
the rightmost derivation in reverse.

The stack is used in a characteristic way: The items
on the stack consist of alternating grammar symbols
and states. The current state is the state on top of the
stack. The most distinguishing feature of an LR. parser
is however the form of the transition relation - - the
action and gore tables. A non-deterministic LR parser
can in each step perform one of four basic actions. In
state S with lookahead symbol Syra it can:

1. accep t (S, Sym) : l lal t and signal success.

2. s h i f t (S , S y m , S 2) : Consume the sylnbol Sym,
place it on tile stack, and transit to state $2.

3. reduce (S, Sym, R) : l 'op off a number of items Dora
tile stack corresponding to tim I{IIS of grammar
rule R, inspect the stack for tile ohl state S1, place
the LttS of rule tt on tile stack, and transit to state
$2 determined by go to (S l ,LHS,S2) .

4. e r ro r (S ,Sym) : Fail and backtrack.

PreIix merging is accomplished by each internal
state corresponding to a set of l)artially processed gram-
mar rules, so-called "dotted items" containing a dot (.)
to mark the current position. Since the grammar of
Fig. 1 contains Rules 2, 3, and 4, there will be a state
containing the dotted items

V P -~ V .

V P --~ V . N P

V P -~ V . N P N P

This state corresponds to just having found a verb (V).
Which of the three rules to apply in the end will be
determined by the rest of the inl)ut string; at this point
no commitment has been made to either.

Cornpiling L[{. parsing tables consists of construct-
ing the internal states (i.e. sets of dotted items) and
from these deriving the sl,ift, reduce, accept and to te
entrie.s of tile transition relation. New states can be in-
(h, ced from previous ones; given a state S1, another
state S2 reachable from it. by go to (S l ,Sym,S2) (or
s h i f t (S l , S y m , S 2) if Sym is a terulinal symlml) can be
constructed as Ibllows:

I. Select all items in state S1 where a particular sym-
bol gym follows immediately afte,' the (lot and move
the dot to after this symbol. This yiehls the kernel
items of state S2.

2. Construct the non-kernel closure by repeatedly
adding a so-called non-kernel item (with the dot
at the beginning of the I{IIS) for each grammar
rule whose LIIS matches a syn,bo] following the
(lot of some item in $2.

Consider for example the grammar of Fig. 1, which will
generate the states of Fig. 2. State I can be constructed
from State 0 by adwmcing the dot in S --~ . N P V P and
N P --+ • N P I ' P to form the items S ---+ N P . V P a n d

N P --~ N I ' • P P , which constitute tire kernel of State 1.
The non-kernel items are generated by the grauunar

386

S --~ N P VP (1)
l q ' - ~ v (2)
vs , .-+ V NS' (3)
V P - ~ V N P N P (4)
VP - + VP P I ' (5)
N P - , l) e t N (6)

N I ' - ~ t b ' o n (7)
N I ' -+ N I ' I ' P (8)
1 ' t > -+ P r e p N P (9)

Figure 1: A toy grainniar

rules for VPs and PPs, the categories following the dot
in the new items, namely Ihlles 2, 3, 4, 5 aml 9.

Using this method, the set <>f all parsing slates can
I>e induced from an initial s tate whose single kernel item
has the top symbol of the g rammar preceded by the
dot as its RI[S (the item S' --+ • S of State 0 in Vig. 2).
The accept, shift and goto e.ntries fall out autonmtical ly
from this procedure. Any dotted item where the dot
is at the end of the I{,IIS gives rise to a reduction l)y
the corresl>onding gramm~tr rule. Thus it remains to
determine the lookahead sylnbols of the reduce enl, ries.

In Simple LIt (SLR) the h)okahead is any termiual
symbol that can imnlediately follow any symbol of the
saltle tylie as the LIIS of tile rule. In l,ookAhead 1,1L
(LALIL) it is lilly terminal sylnbol tha t cali ilriiue(liately
follow the LIlS giwm tha t it was constructed using this
rule in this state, hi general, I,AI,R gives COilsiderably
fewer reduce entries than SI,I{., and thus results in faster
parsing. Ill the experiments this reduced the l)arsing
tiines by 30 %.

3 P R O B L E M S W I T H L R P A R S I N G

The l)roblems of applying the Lit-parsing scheme to
large tmification grammars for natural language, rather
than small context:free g rammars for progranmling lan-
guages, stem from three sources. The tirst is that syu>
bol matching no h)nger consists of checlcing atomic sym-
bols for equality, but rather comparing COml)h~x ['eaLur(~
structm'es. The second is tile high lewq of ambiguity
of natural hmguage and the resulting non-determinism.
The third is tile sheer size. of the gratllli'mrs.

Straight-forward resorting to a context-free back:
bone g rammar and subsequent filtering using the full
constraints of the underlying unification gramnrar (U(1)
is an al>proaeh taken by lbr example [3], The I)roblem
with this al>proaeh is tha t the I>redictive power of I, he
unification g rammar is so vastly diluted when feature
l>ropagation is omitted. Firstly, the context-free l>ack-
bone gramniar will ill general allow very irutlly Illore
analyses titan the unification grammar, leading to l>oor
parser performance. Secondly, the fe.ature propagation
necessary for gap threa<ling to prevent n<mq.ermination
due to empty productions is obstructed.

On the other haml, the t rea tment of 1,he full [l(~
constraiuts in the parsing-tal)le consLructioil phase is
associated with a nmnber of problemg most of which

S t a l e 0 f i l a t e 1

,q ' - ~ . S S -+ N P . V I "

S - + . N P V P N P -+ N P . P P

N P -+ • l) , q N V f ' - , • V

N P ~ • l ' r o n V I ' -+ . V N P

N P - , . N P P P V P -> . V N I ' N I '

S t a t e ~ V I ' - ~ • V P 1 ' 1 '

N P ~ l) c t . N P P - ~ . i b ' c p N P

,(;talc 3 ,fftalc
N P ~ l ' r o n . ,';' ~ ,q •

Elate 5 Slalc 6'

,S' - , N P V f ' . V P - - , V.

V P -+ V P . l ' F V P - , V . N I '

I ' P - , . P r e p N I ' V P - ~ V . N I ' N P

S t a l e 7 NI> - ~ . t e l N

N P - ~ N I ' I ' P . N P - ~ . t ' r o n

S t a t e 3 N P - ~ • N I ' P P

I ' P - ~ P r e p • N P S t a l e O

N I ' ~ • l)ct N V P - , V I ' I ' P .

N t ' ~ . P r o u S l a t e 1 0

N P - , . N P 1'1 > N P - + l) e t N .

f i t<de 1 1 , ~ t a l c 1 2

V P - , V N P . V P ~ V N I > N P .

V I > - ~ V N P . N P N P -+ N P . P P

N] > - - , N P . P P P P - - , . P r e p N P

N P - - , . I) c t N S t a l e 1 3

N I ' 15"on I ' P - , l b ' c v N F .

N l ' ~ . N P P l ' N P --* N P . P I '

P P - - . l b ' c p N I ' P f ' - ~ • P r e p N P

Figure 2: The internal stales of the toy g rammar

are discussed in [,5]. One of the main questions is tha t
of cquality or similarity between linguistic objects.

Consider constructing the non-kernel items using
U(~ phrases following the dot in items ah'eady in the
set fo~/l>rediction. If such a phrase unifies with the
IAISld a graulmar rule and we add the uew item with
this instantiat ion, we Ilee([a mecl,ufism to ensure ter-
minat ion the risk is that we add more aim more
iilsl.anLiated versiolls of the same il.e.nl hl(lelhdtely. One
might object tha t this is easily renmdied I)y only addiug
items I.hat are llot sllbsllllled by :Lily previous ones. UN-
['ortunaLely, this does uot work, since it is quite possible
to g e l l e r a t e all infinite se(luence of items none of which
suhsunles tile other, see [9]. This problem call I)e solved
by using so called "resl;rictors" to block out the feature
l)rol)agatioll leading t o non-terminat ion, see Il l] , hut
still the number of items t[lat are slight variants of one-
another may I)e quite large. In her paper [5], Nakazawa
proposes a simple and elegant solution to this problem:

"While the C LOS U ILE proced u re makes top-down
predictions in the same way its beh)re [using the
full constraints of the unitication grammar], new
items ;tre added without instantlation. Since
only original productions in a gl'itlllltl~Lr appear as
items, productions ~tre added am new items only
once and the nontermlnation problem does not
occur, as is the case of the I,R parsing algorithm
with atomic categoric.s."

3 8 7

Unfortunately, even with this simplification, computing
tile non-kernel closure is quite time-consuming for large
unification grammars.

Empty productions are a type of grammar rules that
constitutes a notorious problem for parser developers.
The LIIS of these grammar rifles have no realization
in the inlmt string since their RIIS are empty. They
are used to model movement as in the sentence Whali
does John seek ei .,2, which is viewed as a transfornration
of John seeks what?. This is an example of left move-
ment, since the word "what" has been moved to the
left. Examples of right movement are rare in English,
but frequent in other languages, the prime exarnple be-
ing German subordinate clauses.

The particular unification grammar used keeps
track of moved phrases by employing gap threading,
i.e. by passing around a list of moved phrases to ensure
that an empty production is only applicable if there
is a moved phrase elsewhere in the sentence to license
its use, see [6] pp. 125--129. As LR parsing is a pars-
lug strategy employing bottom-up rule prediction, it is
necessary to limit the applicability of these empty pro-
ductions by the use of top-down filtering.

4 P A R S E R D E S I G N

The parser was implemented and tested in SICStus Pro-
log using a version of the SRI Core Language Engine
(CLE) [2] adapted to the air4ravel information-service
(NFIS) domain for a spoken-language translation task
[8]. The CLE ordinarily employs a shift-reduce parser
where each rule is tried in turn, although filtering us-
ing precompiled parsing tables makes it acceptably fast.
The ATIS domain is a common ARPA testbench, attd
the CLE performance on it is comparable to that of
other systems.

In fact, two slightly ditferent versions of tile parser
were constructed, one for the original grammar, em-
ploying a mechanism for gap handling, as described in
Section 4.2, and one for the learned grammar, where
no such mechanism is needed, since this grammar lacks
empty productions, l~xperirnents were carried out ow~r
corpora of 100-200 test sentences, using SLI{ parsing
tables, to measure the impact on parser performance of
the various modifications described below.

A depth-first, backtracking LI/. parser was used were
the parsing is split into three phases:

1. Phase one is the LI{ parsing phase. The grammar
used here is the generalized unification grammar
described in Section 4.1 below. The output is a
parse tree indicating how tile rules were applied to
the input word string and what constraints were
associated with eaelt word.

2. Phase two applies the full constraints of the syn-
tactic rules of the unification grammar and lexicon
to the output parse tree of phase one.

3. Phase three applies the constraints of the compo-
sitional semantic rules of the grammar.

For tile learned grarmnar, phase two and three coin-
cide, since tile learned rules include coml)ositional se-
mantic constraints. Each rule referred to in the output
parse tree of phase one may be a generalization over
several ditDrent rules of tit(; unification grammar. Like-
wise, the constraints associated with each word can be
a generalization over several distinct lexicon entries. In
phase two, these difli~rent ways of applying the full con-
straints of the syntactic rules and the lexicon, and with
the learned grammar also tile compositional semantic
constraints, are attempted non-deterministically.

The lookahead symbols, on the other hand, are
ground Prolog terms. Firstly, this means that they
can be computed e[llciently in the LAI,I{. case. Sec-
ondly, this avoids trivial reduction ambignities where a
particular reduction is performed once for each possi-
ble ruapping of the next word to a lookahead symbol.
This is done by producing the set of all possible looka-
head symbols ['or the next word at once, rather than
producing one at a time non-deterministieally. Each
reduction is associated with another set of lookahead
symbols. The intersection is taken, and the result is
passed on to the next parsing cycle.

Prefix merging means theft rules starting with sim-
ilar phrases are processed together until they branch
away. q'he problem with this in conjunction with a
unification gramrnar is that it is not clear what "simi-
lar phrase" means. The choice made here is to regard
phrases that rnap to tile same CF symbol as similar:

D e f i n i t i o n : Two phrases are similar if they
map to the same conic*t-free symbol.

Since the processing is performed by applying colt-
straints incrementally and monotonically, where con-
straints are realized as Prolog terms and these are ill-
stantiated stepwise, it is important that a UG phrase
map to tile same CF symbol regardless of its degree of
instantiation l'or this delinition to be useful. The map-
ping of t i c phrases to CF symbols used in the experi-
ments was the naive one, where UG phrases mapl)ed to
their syntactic categories, (i.e. Prolog terms mapped to
their ['unctors), save that vert)s with different comple-
ments (intransitive, transitive, etc.) were distinguished.

4.1 G , m e r a l i z a t i o n

The grammar used in phase one is not a eontexl.-fl'ee
backbone grammar, nor the original unification gram-
mar. Instead a generalized unification grammar is em-
ployed. This generalization is accomplish using anti-
unification. Tiffs is the dual of uniIication it con-
structs tim least general term that subsumes two giwm
terms --- and was first described in [7]. This operation is
often refe.rred to as generalization in the computational-
linguistics literature. If 7' is the anti-unification of Tt
and 7), then 7' subsumes Tl and 5" subsumes 5".,, and
if any other terrn 7" subsumes both of 7'1 and 5/~, then
T' snbsunqes 7'. Anti-uniflcation is a built-in predicate
of SICStus Prolog and quite acceptably fast.

For each context-free rule, a generalized UG rule is
constructed that is the generalization over all UG rules

388

tha t lnltp to t ha t context-free rule. If there is only
one such orightal UG rule, the full constraints of the
nnification g rammar are applied already ill phase one.

Siwilarly, the symbols of the action and gore tables
are not context-free symbols. Tliey are the general-
izations of all relevant similar UG phrases. For exam-
pie, each entry in the goto table will have as a sym-
bol the generalization of a set of UG phrases. These
UG phrases are those tha t map to the same context-
free symbol; occur in a UG rule tha t corresponds to
an item where this CF symlml immedhttely follows the
clot; and ill such a UC, rule occur at tile position im-
mediately following tile clot. For example, tile synibol
of the gore (or shift) entry for verbs between State 1
and State 6 of Fig. 2 is the anti-unification of tim RIIS
verbs of tile UG rules inapping to lhlles 2, 3 and 4, e.g.

vp: [agr=Agr] => [v : [agr=Agr,sub=intran]] .
vp : [a g r = A g r] => [v : [a g r = / l g r , sub=Áran[,np : [a g r =]] .
vp: [agr=Jtgr] =>

[v : [a g r = A g r , s u b = d i t r a n] , np : l a s t =] , np : [a g r =]] .

which is v: [agr=_,sub=]. llere the vahle of the sub-
categorization feature sub is left unspecilied.

l,exical arnbignity iii the input sentence is handled
in the same wliy. For each word, a generalized phrase is
constructed from all similar phrases it can lie analyzed
as. Again, if there is no lexical ambiguity within the CF
symbol, the fllll UO constraints are apl)lied. Nothing is
done about lexical an-lbignities outside of the sltnie CF
symbol, though.

In the experiments, using the UG constraints, in-
stead of their generalizations, for tile LR-parsing phase
led to an increase in median normalized parsing tinie l
from a.1 to 3.8, i.e. by 20 %. This wits also typi-
Gaily tile case for the individual parsing times. In the
machine-learning experiments, where normally several
UG rules mapped to the same CF rule, this effect was
more marked; it led to an increase hi parsing time by a
factor of fiw.'.

On tile other hand, using truly context-free sylnbols
for I, II. parsing actually leads to non-ternqhiation due to
the empty productions. Even when banning einpty pro-
ductions, the parsing times increase, by orders of lilag~-
nitude; tim vast major i ty (86 %) of the. test sentences
were t imed out after ten minutes and still the nornial-
ized parsing t ime exceeded 100 hi more than half (,54
%) of the cases. This shouhl be compared with the
0,220 tigure using generalized UG eonstraiuts. Ill the
maehine-learnlng experiments, this lead to an increase
in processhig t ime by ~ factor 100.

4.2 G a p h a n d l i n g

A technique for l im i t ing the applicability of enll)ty pro-
dueÁions is eniployed in the version for tile original
gr~ulllnar. It is only correct for left lnoveFltellt. ~illoe
there are no empty productions in the learned gram-
mar, there is no need for gap handl ing here.

The idea is tha t in order for an empty production to
be applicable, some g rammar rule must have placed a

'rite parsing time for the Lit parser divided by the parsing
time for the original l)arser.

phrase corresponding to tile inow;d one on the gap list.
'['htls a ga 1) list is mainta ined where phrases corresl)ond-
ins to ltotenti~d left uloventent are added whenever ~l
s tate is visited where there is a "gap-adding phrase" im-
n-lediately following the dot in any item. The elements
of the gap list ar0 tile corresponding CF symbols. At
this point the stack is "back-checked", as defined below,
to see if the gap-adding rule really is applicalde.

Ilack-cl/ecking ineans matching the prefixes of the
kernel itelns agldnst tile stack in each state. The. ratio-
nale for this is twofohl. Firstly, capturing constraints
on phrases previously obscured by gra inmar rules tha t
have now brancl,ed off. Secondly, cal)tur}ng feature
agreement between phrases lit prefixes of greater length
than one. In general this was not useful; it simply re-
suited in a small overhead. Ill conjunction with gap
handlhlg, however, it proved essential.

The gap list is enlptled after al~plying ~ui einpty pro-
duction. This is not correct if several phrases are mow;d
using the same gap list, or for conjunctions where tile
gall threading is shared between thecoit iuncts. For the
refiner reasoli two different gap lists are employed
()lie for (auxiliary) verbs and erie for lnaXillrlal l:,rojec-
tions such as Nl's, PPs, Adj l ' s a.lid AdvPs.

Ill the experhnents, on[itÁins the gal)-handlhlg pro-
oedure led to non-tern-ihiatlon; even just o ln i t th ig the
back-checking did so. I ly reinovhlg enipty produc-
tions all together, the parshig tinies decreased all Of
der of nl,%gnitude.; tile lnedian normalized parsing tinle
dropped to 0.270. Thls reduced ti le number of analyses
of some selitences, and n],%lly seato[ices f~dled to parse
at all. New~rtheless, this indicates that these rules liaw~
a strollS, adverse effect ell parser performallce,

5 C O M P I L E R D E S I G N

We turn now to the design of the compiler tha t con-
structs tile parshlg tables for tile gra lnmar . All, hough
the conlpilal, ion step involves a fair alnonnt of pro- and
ImStl)rocessing, tile latter two consist (if rather Illlilltel'-
esting ltlenial tasks.

The llarsilig, t;dlles are constrllcted ilslng the
cont, ext-free backbolle l~ralllllial', liul, also here there
is Ol)llorl,unity for interleaving wi th the full U(-', ('Oll-
strahlts. The clomlre oller~d, ion w.r. t , the non-kernel
itchiS is characteristic for the method.

The first point is viewing the closure operation as
operal.htg oi1 sots. (Jonsider the closltrel3 predicate
of Fig. 3. u Froin ~ui item already hi the set, a set
of non-kernel iteins is generated and its union with the
original set is taken. The. truly new items are added to
tiu; agenda driving tile process.

The second point is nutl, ehhtg the correspondhlg
phrases of the unification g rammar when predicting
non-kernel items. This is done by the call to the predi-
cate check ug r u l e s / 4 of Fig. 3, and ensures tha t the

2 [ain hldebted to M a t s C&rlssOli for this sc'lielill.'. All eMcleiit
ilnl)lelnellt&tlol/of the])l'illiii01v{! sl.'L operD.tlons Sllch its illllOll ;llld
illtel'sectloll is provided by [.he Ol'¢lt!l'ed-.set-illaniliillli£1Oll package
of the SICStus library. These ln'hnitiw:s presuppose that the sets
;ire represented its el'tiered lists D.Iltl COIISlSt Of grotlnd tel'illS.

389

c l o s u r e (S e t , C l o s u r e) : -
c l o s u r e (S e t , S e t , C l o s u r e) .

closure([], Closure, Closure).
closure([ItemlItems], SetO, Closure) :-

findall(Nkltem,
n k_item(Item,NkItem),
RkItems),

union(SetO,Nkltems,Setl,NewItems),
merge(NewItems,Items,ltemsl),
closure(Itemsl,Setl,Closure).

n _ k _ i t em (i t e m (R u l e l , _ , RHS0,RItS),
i t em(Rule2 , LHS2, RHS2 ,RIIS2)) : -

gllS = [LHS2I_],
c f r u l e (Rule2, LIIS2, RtlS2),
check_ug_ru le s (Rule 1, Rule2 ,RHS0 ,RHS).

Figure 3: The non-kernel closnre flmction

phrase immediately following the "(lot" in some UCI
rule mapping to Rulo l unifies with the LIIS of some UG
rule mapping to Rule2 . In i t em(Ruqe, LHS, RltS0, RIts),
R u l e is an atomic rule identifier and RltS0 and RHS form
a difference list marking the position of the (lot.

This is a compromise between performing the clo-
sure operation with full UG constraints and perform-
ing it efficiently, and achieves the same net effect as the
method in Section 3 advocated by Nakazawa. Espe-
cially in the machine-learning application, where rather
large grammars are used, compiler performance is a
most critical issue.

In the experiments, omitt ing the checking of UG
rules when performing the closure operation leads to
non-termination when parsing. This is because the
back-checking table for the gap handler becomes too
general. For the learned grammar, this made construct-
ing the internal states prohibitively time-consuming.

6 SUMMARY

The design of the Lit. parser and compiler is based ol,
interleaving context-free processing with applying the
full constraints of the unification grammar.

Using a context-free description-level has the ad-
vantages of providing a criterion for similarity between
UG phrases, allowing efficient processing both at com-
pile time and runtime, and providing a basis for prob-
M>ilistic analysis. The former makes prefix merging,
which is tim very core of LR parsing, well-defined for
unification grammars, and enables using a generalized
unification grammar in the Ll{ parsing phase, which is
one of the major innovations of the scheme. This and
prefix merging are vital when working with the learned
grammar since many rules overlap totally or partially
on the context-free level.

Interleaving context-free processing with applying
the fidl constraints of the unitlcation grammar to prune
the search space restores some of the predictive power
lost using a context-free backbone grammar. In par-

ticular, using the full U(~ constraints "inside" the non-
kernel closure operation to achieve the effect of using
the unification grammar itself for performing this oper-
ation constitutes another important innow~tlon.

The experiments emphasize the importance of re-
stricting the applicability of emI)ty productions through
the use of top-down filtering. Thus the main remain-
ing issue is to improve the gap handliIlg nm(;hanisrn to
l)erform real gap threading.

A C K N O W L E D G E M E N T S

I wish to thank Mats Carlsson for wduabh." advice on
Prolog implementation issues and Ivan I]retan, Robert
Moore and Manny I{ayner for clear-sighted comments
on draft versions of this article and related publications,
and for useful suggestions to improvements.

R e f e r e n c e s

[1] Aho, Alfred V., Ra.vi Sethi and .leffrey D. Ulhnan
(1986). Compiler.s, l'rineiples, Techniques and Tools,
Addlso n- Wesley.

[2] Alshawl, lliyan editor (1992). 77++: Core Lan~luage l'SJ-
ginc, MIT Press.

[3] Briscoe, Ted, and John Carroll (1993). "Generldized
Probabilistic LR Parsing of Nattmd Language (Cor-
pora) with lJnifiea.tion-Hased C, rgltllnltrs", Computa-
tionalLin.q~dslies 19 1, pp. 25 59, 1993.

[4] Knnth, l)onatd l". (1965). "On the translation of la.n-
guages from left to fight.", h~formation aud Conhvl 8
6, pp. 607 (;:19.

[5] Nakaza.wa, Tsuneko (19'.)1). "An I"xtended LR Parsing.
Algorithm for Qrammltrs [Jsing l;'eltture-l~ased Syntac-
tic Categories", EA (.'L 91, pp. 69 -74.

[6] Pereira, l?ernando C. N., and Stuart M. Shieber (1987).
Prolog a,M Natural Language Analgsis, CSLI Le(:ture
Note 1O.

[7] Plotkht, (;ordon 1). (1970). "A Note on Inductive (1en-
eralization", Machi~w lntelllg+mee 5, pp. 153-163.

[8] Rayner, M., I1. Alshawi, I. Bretan, 1). C+trter, V. I)i-
ggdakis, B. (laml)il.ck, .I. I(a..ia, .I. I(arlgren, It. l,yberg,
P. Price, ,q. Puhnan and (;. Samuelsson (1993). "A
.qpeeeh to Speech Translation System Fh,ilt l"rom ~tan-
dam Coml)onents" , I'roes. A RI'A workshop on Iluman
Language 7}ehnologg.

[9] $a,nuelsson, Christer (199a). "Avoiding Non-termina-
tion in Unification (',ramm~trs", NLULP 98, pp. 4--16.

[i0] Samuelsson, Christer, and Manny Ibt.y,,er (1991).
"Quantitative Evahmtion of]'~xphulation-Based Learll-
ing its itll Optimization Tool for a I+a)'ge-Seale Natural
l+angu,'tge System", IJCAI 91, pp. 609-615.

[11] Shieber, Stuart M. (1985). "Using Restrictions to Ex-
tend Parsing Algorithms for Complex-l?e;tture-lbtsed
Formalisms", ACL 85, pp. 145 152.

[12] To,nita, M~ttsurn (I986). EJfieicnt l'a,'si),g of Natu-
ral Lauguage. A Fast Algorithm.[or l))'aetical Sgstem.%
Khtwer.

390

