ON LEXICALLY BIASED DISCOURSE ORGANIZATION
 IN TEXT GENERATION

Leo Wanner
University of Stutlgart
Keplerstr.17, 70174 Stuttgart, Germany

Summary

In this paper, we show that Reiteration and Collocation relations as introduced by Italliday and Hasan may function as lexically biased discourse structure relations and that these relations are well represented by sequences of Mel'čuk's Lexical Functions (Lfs). We propose to use LF sequences for the fimal determination and realization of discourse organization during lexical choice in text generation.

1 LEXICAL PHENOMENA IN DISCOURSE

1.1 The Problem

In text generation, the task of content selection and discourse organization, i.e. text plaming, has often been opposed to the task of linguistic realization of the information selected and organized by the text planning process (cf., e.g., McKeown and Swartout, 1987). However, discourse organization is not possible without taking into account linguistic means that are available to express a particular meaning (cr., e.g., Metcer, 1992; Rubinoff, 1992). Eispecially the failure to integrate lexical choice into the planning process may lead to monotonous, awkward, or even ungrammatical text (note that, when used separately, the chases in (1a) and (2a) are fully acceptable):
(1) a. ${ }^{\text {Palle bewahten Ruhe; nur IIans kon- }}$ nte Reine Ruhes/(sie nicht) bewohtren lit. 'All kept calmuess; only llans condd not keep calmness/it'. vs.
b. Alle bewahrlen Ruhe; nur /hans konnte nicht ruhig bleiben
lit. 'All kept calmuess; only Jans coudd not keep calm'.
(2) a. ? Der langyeplante Ausflug fand am Sonntag slatt; wir maternahmen ilon mit der ganzen Pamilie
lit. "The long-planned trip took place on Sunday; we undertook it with the entire family'. vs.
b. Der langgeplante Ausflug fand am Sonntag statt; die ganze Familie nahm daran teil
lit. "The lons-planned trip, took place on Sunday; the entire family took part in it'.

[^0]> (3) a. *Mans machte cinc Eintdeckung; diese Bnhdeckung war wirklich
> lit. 'Ilans made a discovery; this discovery was real'. vs.
> b. Mans machte cine butdeckung; diese Intdeckung war eine lintdeckung im wharsten Sinne des Wortes lit. 'Ilans made a discovery; this discovery was a discovery in the real sense of the word'.

These examples show that lexical constraints are of a special relevance to discourse organization if related discousse segments communicate information on the same or related object, event, process, etc. While in the past, considerable work has been done on the reatization of anaphoric links between related entities via referring expressions (cf., e.g., Tutin and Kittredge, 1992; Dale, 1989; Reiter, 1091), only a few proposals emphasize the relevance of lexical means for the reatizalion of discourse structure relations such as CONTrast in (1b) and elaboration in (2b) and (3b). ${ }^{2}$ It is important to note that the actual realization of a discourse relation may vary with the semantics of the lexemes involved. For example, in (4), the second clause is an Intwapreration or consequences of the first; despite the analogous syntactic construction in (5), the second clanse is a Justrication or an ExillaNATION of the first mather than an interpreftation or Consequence.
(4) Ine travels a lot - he is a 'professional' traveller.
(5) He flics a lot -... he is a professional fies.

1.2 The Proposal

Such retations as those between Ruhe bewahren '[to] kecp calmmess' and ruhig bleiben '[to] keep calm' (in l); between Ausflug findet slall 'trip takes place' and am Ausflug teilnehmen '[to] take part in the trip' (in 2); and between eine Pintdeckung 'discovery' and im wahrsten Sinne des Wortes 'in the real sense of the word' (in 3) have been introduced by (IFalliday and IIasan, 1976) as Reileration and Collocation relations. ${ }^{3}$

[^1]Reiteration stands for a strict repetition of a lexical expression in related discourse segments; for a substitution of a lexical expression by a synonym, or for a substitution by a superordinate. Consider the following examples, which illustrate the three different reiteration relations (strict repetition in (7a), synonymy in (7b), and superordination in (7c)):
(6) Last summer, Monica flew to Italy,
(7) a. while Daniela flew to Norway.
b. while Daniela took the plane to Norway.
c. while Daniela travelled to Norway.

Further substitution relations such as metaphoric repetition (7d), negated antonymy (7e), etc. can be added:

(7) d. while Daniela wafted away to Norway.
 e. Daniela also did not stay at home.

Collocation stands for 'any recognizable lexicosemantic relation' between lexical expressions in related discourse segments. Examples of collocation relations are attribution (7f), partition (7 g), means (7 h), etc.:

$$
\begin{aligned}
& \text { (7) f. } \text { it was a very pleasant journey. } \\
& \text { g. making a stopover in Murich. } \\
& \text { h. } \text { it was one of those lig aircrafts. }
\end{aligned}
$$

As our examples show, reiteration and collocation relations help to ensure not only cohesion, but, also coherence in texts. Therefore, a text generator has to provide an organization of lexical resources that tailors discourse structure relations to reiteration and collocation relations. This presupposes, on the one hand, a precise picture of which reiteration and collocation relations are available in language and how they are realizable; and, on the other hand, a fine-grained discourse model that contains these relations.
To make allowance for the global discourse organization, which is performed independently from lexical resources, we suggest a two level text planning task implementation, with the first level realized by a Rhetorical Structure Theory (RS'T) (Mann and Thompson, 1987) style text planner and the second level --by a separate lexical choice module. Then, the discourse organization of a text is done in two steps: in the first step, the text planner predetermines the discourse structure relations; in the second step, the lexical choice module provides, in accordance with linguistic constraints, the final determination and the realization of these discourse structure relations.
The present paper reports an attempt to define lexically biased discourse structure relations used in a partially implemented lexical choice module. Due to the lack of space, we do not discuss the module itself; it is described in detail in (Wanner, 1992, 1994). Here, we demonstrate how discourse organization for text generation can be refined by lexically biased discourse structure relations and how these relations are related to global discourse relations specified in the output of an RST style text planner.

In contrast to the most discourse models (cf., e.g., McKeown, 1985; Grosz and Sidner, 1986; Mann and Thompson, 1987), which take the clause as the minimal discourse segment, we consider as discourse segments "perspectives" (cf. McCoy, 1989) - specific views taken on a semantic entity (an object, an event, etc.). A perspective is a wording which is tailored to the lexical repertoire of an entity; it is realizable as a clause, a plrase, or as a single lexeme. Fach of the clauses in the examples above can be considered as a realization of a single perspective; and the reiteration and collocation relations that hold between the clauses - as well-defined perspective pairs.

In our model, a single perspective is represented as a composition of Mel'cuk's Lexical Functions (hereafter Lus) (Mel'c̆uk and Polguère, 1987); perspective pairs are represented as Lf sequences.
The following distinctive features characterize our model:

- it makes sure that all relations defined are expressible in language,
- it allows for a realization of lexical relations as subclansal relations between discourse segments,
- it is sensitive to lexical and syntactic variations for the realization of discourse structure relations.

2 LEXICAL FUNCTIONS IN DISCOURSE

2.1 The Basics

Formally speaking, an Lf \mathbf{f} is a standard semanticolexical relation which holds between a lexeme h_{1} (the keyword of f) and a set of lexemes $f(\mathrm{~L}$) (the value of f). Examples of LPS are:

Syn: 'synonym'	Syn(bible $)=$ Cod's Book
Anti: 'antonym'	Anti $($ victory $)=$ defeat
Gener: 'hyperonym'	Gener (lamb) $=$ meat
Figur: 'metaph. rep.'	Figur $($ fog $)=$ wall $[0 / f o g]$
Conv 21 : 'conversion'	Conv 21 (to include) $=[t o\}$ belong
So: 'situation'	$\mathrm{S}_{0}($ to teach $)=$ teaching
S_{1} : 'actor'	$\mathrm{S}_{1}(\mathrm{lic})=\mathrm{lit} \mathrm{t}$
A_{0} : 'sitmational adj.'	$\mathrm{A}_{0}(\mathrm{sun})=$ solar
V_{0} : 'action'	$\mathrm{V}_{0}($ deal $)=[t o]$ deal
Magn: 'intense(ly)'	$\begin{aligned} & \text { Magn }(\text { beauty })=\text { real, } \\ & \text { sturning } \end{aligned}$
Oper : 'perform'	$\mathrm{Oper}_{1}(\mathrm{cry})$
	$=[t o]$ let out (a cry)
Incep: 'begiming'	Incep(to slecp) $=[$ to fall asleep
Fin: 'end'	Fin $($ to sleep $)=[t 0]$ wake up
Caus: 'causation'	Cans(to sleep)
	$=[t 0]$ put to sleen
Manif: 'manifestation'	Manif (happy)

Mel'cuk distinguishes about sixty simple Less of the above kind. Simple trs can further be combined with

Oper $^{\wedge} \wedge \overline{O p e r}_{1}$	strict repetition ($[$ to $]$ have a look $\wedge[t o]$ have a look)
$\mathrm{V}_{0} \wedge \mathrm{Syn}^{\text {V }}$ V	synonymy ([tol distuppear $\wedge[t o]$ vanish)
$\mathrm{V}_{0} \wedge \mathrm{Geners}_{0}$	superordination $([t o]$ search $(a f l a t) \wedge$ reprisal $)$
$S_{0} \wedge$ ligurs ${ }_{0}$	metaph. repetition (fog \wedge wall of $f o g$)
$\mathrm{V}_{0} \wedge$ NOTA AntiV ${ }_{0}$	neg. antonymy (close \wedge not far away)
$\mathrm{V}_{0} \wedge \mathrm{Conv}_{21} \mathrm{~V}_{0}$	conversion ($[t 0]$ sell $\wedge[t o] b u y)$
$V_{0} \wedge S_{1}$	process-actor ($[$ te] lie \wedge liar)
Caus $\wedge \mathrm{V}_{0}$	cause-process ([to] put to sleep $\wedge[t o]$ sleep)
Incep $\wedge \mathrm{V}_{0}$	initialization-process ([to] fall asleep $\wedge[t o]$ slecp
$\mathrm{A}_{0} \wedge \operatorname{Magn} \circ \mathrm{~S}_{0}$	attribution (beantiful \wedge real beauty)
$\mathrm{V}_{0} \wedge$ Manif	manifestation ([to] be happy \wedge [to] beam with joy)

'Table 1: 'The realization of reiteration and collocation relations by fre sequences
each other; the meaning of such compler lis is, as a rule, a combination of the meanings of the participating t.fs. 'Thus, AntiMagn means 'slightly' (e.g., AntiMagn(injury) $=$ minor); and IncepOper ${ }^{\prime}$ 'start performing' (e.g., IncepOper 1 (debate) $)=[t o]$ start $(a$ (debate)). ${ }^{4}$
In text generation, the benefits from thes are threefold: (i) they provide subchansal collocational constraints between the keywords and the values (cf. lor(lanskaja et al, 1991) as, e.g., between narrow and majority $($ with AntiMagn(majority) $=$ narrow) in Houdiai won with a narrow majority; (ii) they provide interclausal cooccurrence links (cf. 'Iutin and Kittredge, 1992) between the keywords and the values as, e.g., between spaghetti and pasta (with Gener(spaghetti) = pasta) in Let's take spaghetti; pasta is not bad here; and (iii) they allow for explicit statements on the cooccurrence between values of various hes in related discourse segments, as, e.g., between the values of $\mathrm{V}_{0}($ slefp $)=$ $[t o]$ sleep and Incep(sleep) $=[t o]$ sink into sleep in Hardly in bed, Tony sank into slecp and slept all the night till the morning.
In our work, we use (i) for single perspective realizations (cf. Wanner and Bateman, 1990); (ii) and (iii) serve for the representation of perspective sequences, i.e. reiteration and collocation relations in discourse. One such relation is given by all pairs if1 $\wedge \mathrm{IFP}_{2}$ ('Ler sequences') which show the same cooccurrence behavior (c.g., the sequences Oper $\mathrm{O}_{1} \wedge O_{p e r}$ and $V_{0} \wedge V_{0}$ show the same cooccurrence behavior; both stand for strict repetition). Consider Table 1.
hF sequences are directed, i.e. $\mathrm{LF}_{1} \wedge \mathrm{IF}_{2} \neq \mathrm{L} \mathrm{F}_{2} \wedge$

[^2]LF ${ }_{1}$. Moreover, the existence of $\mathrm{LF}_{1} \wedge \mathrm{LFP}_{2}$ in a langlage does not mean that wra $\wedge L_{1}$ is also available. 'Therefore, in LF sequences, one argument is the 'hab, - the point of departure (or the expancled of) and the other argument is the 'hub expander'. How a specilic Lf can be expanded, i.e. which LF secuences are possible, depends individnally on this LF, and on which ffs are further available for the entity the tess are applied to. Compare, e.g., the fr sequences that instantiate the negated antonymy reiteration for $V_{0}($ forgelting $)$ and the two, which instantiate the same retation for $V_{0}($ lie $):$
Forgetting (the V_{0} clanse is in all examples realized as I forgot; to abbreviate, we write '...' instead):

$$
\begin{aligned}
& \mathrm{V}_{0} \wedge \mathrm{Nes}^{\prime} \text { Conval }_{21} \text { Antiv }_{0} \quad \text {...; it does not } \\
& \mathrm{V}_{0} \wedge(\text { Magn } 0) \text { NO'1 AntiV } \quad \text { remind me of anything } \\
& \text {...; can (absolulely) } \\
& \text { nol think of it (now). } \\
& \text {...; it (totally) } \\
& \text { has slipped my mind. } \\
& \mathrm{V}_{0} \wedge \text { (Magno) Nor AntiSynso ...; (absolutcly) no idea. }
\end{aligned}
$$

Lio ('...' stands here for He is lying):
$V_{0} \wedge$ NOT Oper o S_{0} AntiV $\quad \ldots$ (simply) does not tell the truth.
$\mathrm{V}_{0} \wedge$ (iener V_{0} o $\left.N\right)^{\prime}{ }^{\prime} \operatorname{Anti} A_{0} \quad \ldots$; what he says is not true.
Apart from the reiteration or collocation relation it stands for, an la sequence is further characterized by its possible syntaclic realizations and its functional content.

2.2 Syntactic Realizations of LIF Scquences

As a rule, an whequence is realizable by several different syntactic constructions. How these constructions can look like is predetermined by each the sequence individually (and by the information to be commomicated). For example, Operi $\wedge O_{\text {per }}$ (more precisely, strict repetition) is in general realizable only as a paralaclic comples clatese; ci. Mave a look at il; please. have a look. In contrast, for example, Oper \wedge Magn o S_{0} is realizable.... when applied to, e.g., decisionby all syutatic construchions possible, ef.:

> (8) a. John made a decision; his decision was importanl to him (paratactic complex clanse);
> b. John made a decision, which was important to him (hypotactic complex clatuse);
> c. The decision, which John made, was important to him (cmbedded clanse);
> John made an important decision (simple clanse);
> John's recently made important decision (phrase).
'The relevance of syntactic varialions for the realization of discourse structure relations is well known, cf., e.g., (llovy, 1993).

2.3 Functional Content of LF Sequences

Semantics, lexis, and syntax of ar sequences do not provide sufficient criteria for the choice of one sequence over all other comparable ones. These criteria must be provided by the functional content we associate with each sequence (or reiteration and collocation relation, respectively). The functional content of the reiteration and collocation relations listed in Table 1 is presented in Table $2 .{ }^{5}$

strict repetition	insisting restatement
synonymy	clarifying restatement
superordination	generalizing restatement, clarifying restatement, class-referencing
metaphor. repetition	illustrative restatement, pictoresque restatenent, intensifying restatement
negated antonymy	contrastive restatement constitnent enhancement,, pespective shifting
process-actor	identification, actor-introduction
cause-process	processual enlancement, cansal enlancement, causer introduction
initialization-process	processual extension, beginning extension
attribution	attributive refinement

Table 2: Functional content of some reiteration and collocation relations

3 TOWARDS LEXICALLY BIASED DISCOURSE RELATIONS

Due to their functional content, we sequences serve as instantiations of individual discourse struchure relations. In our work, we suggest that these individual discourse structure relations can be organized coherently in terms of the functions and semantic distinctions they represent. In accordance with the claim that the availability of specific LF sequences is dependent on the entities the las are applied to, we further suggest that this organization must be done individually for each predicative entity (cf. Wanner, 1994).

Based on this, we define taxonomies (one for each predicative entity) which have been inspired by Halliday's proposal for grouping interclansal logicosemantic relations (cf. Halliday, 1985). How such an organization can be realized efficiently using inheritance techniques is described in (Wanner, 1992).

[^3]Although our model is not restricted to interclansal relations, two features of Italliday's proposal are valuable to us: (i) Chat a logico-semantic relation 'expands' one wording by an another one rather than connecting two given wordings and (ii) that a logico-semantic relation can be further decomposed with respect to its: 1. semantics, 2. syntactic realization, 3. communicative structure, and 4. with respect to the speaker's intention, which molivates the selection of this relation during the text production process.

In what follows, we discuss first the general taxonomy of our 'expanding' discourse structure relations for processes and then the decomposition of the relations along these four dimensions. Following the conventions in RST, we call the expanded part 'nucleus' and the expanding one 'satellite'.

3.1 Taxonomy of Lexical Discourse Relations

A taxonomy of lexical discourse structure relations is to be understood as a hierarcly of alternative choices of increasingly delicate relations. The most delicate relations are Lf sequences represented by their functional content. The top level of the taxonomy represents, thus, the most global types of expansion. In accorlance with (Halliday, 1985), these are Elabobation, extension, and binianchment. blaboraTION subsumes all those expansions which ensure a deeper understanding of the meaning communicated by the nucleus wording. A deeper understanding of the nucleus wording is ensured by restating, refiniag, or clarifying it (the next level of emaboration in the taxonomy). For example, all reiteration relations are of the elaboration type.

The extension expansions extend the meaning communicated by the nucleus wording. This can be done by introducing a new constituent that is related to what has been said in the nuclens, by adding a new action of the known constituents, elc. Beginning extension is, c.g., an extension.

The eniancement expansions qualify the meaning communcated by the nucleus wording by adding a reference of causation, time, location, manner, mode, ctc. An example of eniancement is causal enhancement.

Figure 1 shows in more detail the rhaboration fragment of the taxonomy in network form. According to this figure, Restatembent can be realized as a contrastive, a generalized, or as a repeating restatement, respectively. As shown in Table 2, contrastive res'attement corresponds to the reiteration negated antonymy, omentadizing restateMENT to superordination, respectively. reprating restatement is further insisting, clarifying, illustrative, pictoresque, etc. (see again Table 2 for corresponding reiteration relations).

Figure 1: A fragment of a lexical discourse structure relation taxonomy

3.2 Decomposition of Lexical Discourse Structure Relations

As presented in Figure 1, the relations are still too global to be useful for lexical choice. Consider, e.g. atotribution - a subtype of the reminment relation; it allows for various decompositions witla respect to all four dimensions mentioned above:

- Semantics; thus, atrrmbution can mean attrubution, e.g., of a process, of one of the participants of this process, or of one of the circumstances of this process; if atrubution of a participant (let's say the $1 C^{\prime} O R$) is meant, it is still undetermined what kind of attribution this is (e.g., a one which enables the actor to engage in the process, a one which prevents him from engaging in this process, etc.).
- Syntactic realization; how the varions Aymbrbu'tions can be realized syntactically depends on the semantic and lexical properties of the information to be communicated. For example, Monica flew to Ilaly; it was a very pleasant journey is also realizable as a subordinated clause (Monica flew to Italy, which was very pleasant); as a simple clause (Monica had a very pleasant journey to Italy); and as a phrase (Monica's pleasant journey to Italy).
- Commmicative structure; the commonicative structure of a morrbution varies depending on the order in which nucleus and satellite are realized. Cf., e.g.: Monica flew to Italy; it was a very pleasant journey vs. It was very pleasant, Monica's journey to Italy.
- Speaker's intention; selecting the ATr RemuTION relation the speaker is assumed to intend,

(R1/CONSEQUENCE

:action (lyING/ SITUATION
:actor (PERSON
:in-focus +
:sex male
: name \#unknown\#)
:obligatory-roles (:actor,
;situation))
; consequence (Lying/ chass-ASCHIDTHON
: domain (person
:in-focus +
:sex male
: name \#unknown\#)
:range (:actor
:situation LYYNG)
:obligatory-roles (: domain,
(range)))
ligure 2: The text plan for the text with the meaning "The man is lying; the consequence of this is that this mam is a liar'
e.g., a justification of what has been commmicated in the muclens as in John failed the exam; it was wery difficull; a consequence of it John has been shot - - he ist dead, etc.

The increasingly delicate specifications achieved by decomposition are also represented hicrarchically in network form; one network for each dimension.

4 GETTING THE RELATIONS ACCROSS

The lexical choice process, which makes use of the discussed discourse structure relation taxonomies, and the representation of lexical resources are described in detail in (Wanner, 1992, 1994). Here we focus on the interface between the first level text planning and the lexical choice module; and on the output as produced by the lexical choice module.

The computational framework in which our model has partially been implemented, is the systemic text generator Komet (Bateman el al, 1991). One source of constratints for the first level text organization comes
 this planner is a collection of case frames with rss' relations holding between them as shown in Figure 2.

Starting from a text plan of this kind, the lexical choice module traverses a multilayered collection of networks (one of these layers is given by a taxonomy of lexical discourse structure relations discussed). During the traversal, the text plan is transformed into a lexicalized Partial (irammatical Structure (PGS); ${ }^{7}$ it is called 'partial' because it contains precisely that amount of grammatical information which is necessary

[^4]

Figure 3: PGS structure for the sentence The man is lying; he is a liar
for lexical choice. The pas is passed to the grammar (a systemic grammar of German; cf. Teich, 1992) for final syntactic realization. Figure 3 shows a sample pgs encoded as a Typed Features Structure (cf. Bateman et al., 1992).
The first and the most important task in tailoring the text plan to linguistic resources is to find a lexically biased discourse structure relation for the RST relation specified in the text plan. The search is done in accordance with the functional content, the intention of the speaker, and the contents of the arguments of the RST relation. If the rser relation connects unrelated case frames ${ }^{8}$ (as, e.g., evidines in In winter, the days are short. It is getting light late and early dark.) these case frames are realized independently without being connected by a lexical discourse structure relation. If the case frames are related, the following three variations are possible:
(i) An RST relation instantiation coincides with a lexical discourse structure relation; as, e.g., the instantiation of restatement in the following rudimentary text plan coinsides with our restatement:

```
(R2/aESTATEMENT
    :statement, (SAYING/ SITUATION
    :sayer Sveta/ person
    :verbiage #unknown#
    :manner (quiet
                :scale #minimal#)
    :obligatory-roles (:sayer,
        :verbiage, :manner,
        :situation))
    :statement (saying/ SITUATION
    :sayer Sveta/ person
    :manner (quiet
                :scale #minimal#)
    :obligatory-roles (:sayer,
        :verbiage, :manner,
```

If so, the subclassification of fhe) exical discourse
structure relation determines its final realization. For
example, the above text plan could be realized as
a generalized restatement: Svela flüsterle; sie
sagte etwas ganz leise lit. 'Sveta whispered; she said
something very quietly'; an intensifying restate-
ment: Sveta sagte etwas sehr leise; sie hatuchte es
kaum hörbar hin lit. 'Sveta saicl something very quietly;
she breathed it hardly audible', etc.
(ii) An rst relation instantiation subsumes several dis-

[^5]tinct classes of lexical discourse structure relations; as, e.g., the instantiation of the rst relation CONTRAST in (this plan is also highly simplified):

```
(R2/CONTRAST
    :action, (occupatron/ SIJUATION
        :actor Roman/ mation
                        :actee Gaul/ state
                        :obligatory-roles (:actor,
                actee, :situation))
    :action2 (occupation/ slTUATION
        :actor Roman/ nation
        :actee (village/location
                :part-of: Gaul)
    negation +
    :obligatory-roles (:actor,
        actee, :situation)))
```

may be realized either as contrastive charmfication (9a) or as contrastive beniancement (9b):
(9) a. Gaul is entirely occupied by the Romans; well, not enlirely ... one small village still holds out.
b. Gaud is almost entirely occupied by the Romans; but one small village still holds out.

In this case, the taxonomy of lexical discourse structure relations is entered at a relatively general level (in the worst case at TOP).
(iii) An rs'r relation is not captured by our taxonomy (as, e.g., concession). Then, the corresponding case frames are treated as unrelated (see above).

5 RELATED WORK

Our proposal for the description of texically biased discourse structure relations resembles Danlos' work (Danlos, 1987), who presented acceptable clanse pattern sequences explicitly in a Discourse Grammar. The basic difference between Danlos' work and ours is that in the Discourse Grammar, clause pattern sequences are represented as concrete valency schematia while in our model they are represented as functional distinctions that encode sequences of liss. As a result, we do not face the problem of being restricted to a concrete small domain as Danlos does.

Meteer's text planmer (Meteer, 1092) is another proposal for the realization of lexically biased discourse structure relations. But, while we argue that lexically biased discourse structure relations are to be realized by a functionally motivated lexical choice model, Meteer sugggests a single structurally motivated model for text. planning, which also subsumes lexical choice. 'This is diflerent from, eg., (Rubinoff, 1992), who ensures the expressibility of discourse structure relations provided by a conventional text, planner by annotating linguistic structures.

Elladad's proposal (Elhadad, 1992) to use Topoi (inference rules that encode relations between propositions incorporating lexical material) as discourse structure relations is aimed at exploiting lexical phenomena for discourse organization. Jlhadad focuses, however, on the 'argumentative potential' of lexical items rather than on lexically biased discourse structure relations.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we argued that it is useful to distinguish between two levels of discourse organization: a global discourse organization, which is not affected by linguistic means; and a fincr discourse organization, which is built up in accordance with the linguistic material that is available for the meaning communicated.

We have shown that reiteration and collocation relations may function as discourse structure relations and that these relations are well represented by Lexical Function sequences. We presented a taxonomy of lexically biased discourse structure relations, which is related to Halliday's proposal for grouping interclausal logico-semantic relations and suggested to use this taxonomy in a lexical choice module.

One of the open problems we face is how sufficiently detailed contextual constraints can be acquired in order to guide the choice of one discourse structure retation over others. This will certainly be one of the topics we will have to address in the future.

ACKNOWLEDGEMENTS

This work has been carried out while the anthor was affiliated with the Integrated Publication and Information Systems Institute of the (imD, Darmstadt. Many thanks are due to John Baternan, Lidija Iordanskaja, and Igor Mel'čuk for valuable comments on an earlier draft of this paper.

References

Bateman, I. A. et al. (1991). 'Powarts an Architecture for Situated 'Iext Generation. In ICCICL, Penang, Malaysia. Bateman, J. A. et al. (1992). The Nondirectional Representation of Systemic Functional Grammars and Semantics as Typed Feature Structures. In Procecdings of COLING-92, volume III, pages $916 \cdots 920$.
Dale, R. (1989). Generating Referring Crapressions in a Domain of Olyects and Processess. PliD) thesis, University of Edinburgh.
Danlos, L. (1987). The Linguistic Basis of Trat Geneqation. Cambridge: Cambridge University Press
Elhadad, M. (1992). Generating Coherent Argumentative Paragraphs. In I'roceedings of COLING '92, volume II, pages 638-644.
Grosz, B. J. and L. Sidner (1986). Attention, Intentions and the Structure of Discourse. In Computational Linguistics Journal, 12(3):175-204.
IIalliday, M. A. K. and R. Hasan (1976). Cohesion in English. London: Longman.
Ilalliday, M. A. K. (1985). An Introduction to Functional Grammar. London: Edward Arnold.
Hovy, E. II. (1993). Antomated Discourse Ceneration Using Discourse Structure Relations. In Arlificial /uteligence, 63(1-2):341-386.
Hovy, E. et al. (1992). Pmploying Knowledge Resources in a New 'lext Plamer Architecture. In Proceedings of the 6th. Natural Language Genevation Workshop, 'Trento, Italy.

Iordanskaja, L. N. et al. (1991). Texical Selection and Paraphrase in a Meaning- 'Vext Generation Model. In (., L. Paris et al. (editors), Natural Language Generation in Artificial Intelligence and Computational Linguistics. Dordrecht: Kluwer Academic Publishers.
Mam, W. C. and S. A. Thompson (1987).
Rhetorical Structure 'Theory: A Theory of 'Text Organization. In L. Polanyi (editor), The Structure of Discourse. Norwood, New Jersey: Ablex Publishing Corporation.
McCoy, K. F. (1989). Generating Context Sensitive Responses to Object-related Misconceptions. In Artificial Intelligence, 41:157-195.
McKeown, K. R. and W. R. Swartout (1987).
Language Generation and Fxplanation. In Annual Reviews in Compuler Science.
McKeown, K. R., et al. (1991). Natural Janguage Generation in COMET. In R. Date, et al. (editors), Curent Research in Nahural Language Generation. Iondon: Academic Press.
Mckeown, K. R. (1985). Text Generation: Using Dis. course Strategies and Foons Conshaints to Generate Natural Languaye Text. Cambridge: Cambridge University Press.
Mel'čuk, I. A. and A. Polgnère (1987). A Formal Lexicon in the Meaning- Text Theory (or How to Do Lexica with Worels). In Compulational Linguistics, 13(3-4):276-289.
Metcer, M. W. (1992). Lrpressibility and the Problem of Efficient Teat Planning. London: Pinter Publishers.
Reiter, L. (1991). A New Model of Lexical Choice for Nouns. In Computalional Intelligence, $7(1)$.
Rubinof, R. (1992). Integrating 'Rextplanning and linguistic Choice by Amotaling linguistic Structures. In Proceedings of the 6th. Natural Language Geneqation Workshop, 'rento, Italy.
Teich, E. (1992). Komet: Grammar Docnmentation. Technical report, GMD/Institut fïr Integrierte Publikations- und Informationssysteme, Dammstadt, Cermany.
Tutin, A. and R. Kitiredge (1992). Lexical Choice in Context: Gencrating Procedmal 'lexts. In Proceedings of COLING '90, volume II, pages 763-769.
Watner, I. and I. A. Bateman (1990). Lexical Cooccurrence Relations in T'ext. Cencration. In Proceedings of the 5th. Nalural Langutge Genewation Workshop, Dawson, P^.
Wanner, h. (I992). Lexical Choice and the Organization of Lexical Resources in 'lext Generation. In Proceedings of the Buropent Confernece on Aytificial Intelligence, Viemma, Austria.
Wanner, L. (1994). Buidding Another Bridge over the Generation Gap. In Procecdings of the 7th. Natural Language Generation Workshop, Kemehnnkport, Maine.

Parsing

[^0]: ${ }^{1}$ In the following examples, the inappropriate texical expression in the (a) sentences and its more appropriate altemative in the (b) sentences are underlined.

[^1]: ${ }^{2}$ In this paper, we tise the names of discourse structure relations as they are known from the Rhetorical Structure Theory (Mann and Thompson, 1987).
 ${ }^{3}$ Although preferably nsed so far to describe discomrse links between information segments realized by noms, Reiteration and Collocation relations may well hold between segmenta which are vealized by other parts of speech and even by multiple word expressions.

[^2]: ${ }^{4}$ If several (simple or complex) Les compose a phase or a clause (as, e.g., AntiMagn and S_{0} compose minor injury), we separate these des by a 'o' sign. For the theoretical hackground and further details of how thes can be composed with each other, see the literature on Meaning 'Text Theory; e.g., (Mel'cuk and Polguère, 1987).

[^3]: ${ }^{5}$ This is not to say that these functions are the only ones that are possible

[^4]: ${ }^{6}$ IRecent developments of this planner are deseribed in (Hovy et al., 1992).
 ${ }^{7}$ A Pras corresponds, roughly speaking, to the Partial Surface Functional Description (ISFD) specification in the COMET system (Mckeown et al., 1990).

[^5]: ${ }^{8}$ Case frames are considered to be unrelated if between them or one of their roles no identity, is-a, causer, location, etc. relation holds.

