Word Knowledge Acquisition, Lexicon Construction and Dictionary Compilation

Antonio Sanfilippo*
SHARP Laboratories of Europe Itid.
Oxford Science Park, Oxford OXA 4GA, UK
antonio@sharp.co.uk

Abstract

We describe an approach to semiautomatic lexicon development from machine readable dictionaries with specific reference to verbal diatheses, envisaging ways in which the results obtained can be used to guide word classification in the construction of dictionary databases.

1 Introduction

The acquisition and representation of lexical knowledge from machine-readable dictionaries and text corpora have increasingly become major concerns in Computational Lexicography/Lexicology. While this trend was essentially set by the need to maximize costeffectiveness in building large scale Lexical Knowledge Bases for NLP (LKBs), there is a clear sense in which the construction of such knowletge bases also caters to the demand for better dictionaries. Currently available dictionaries and thesauri provide an undoubtedly rich source of lexical information, but often omit or neglect to make explicit salient syntactic and semantic properties of word entries. For example, it is well known that the same verb sense can appear in a variety of subcategorization frames which can be related to one another through valency alternations (diatheses). Some dictionaries provide subcategorization information by means of grammar codes, as shown below for the "sail" sense of the verb dock in LDOCE - Longman's Diclionary of Contemporary English (Procter, 1978).
(1) dock $^{4} v[\mathrm{~T} 1 ; \mathrm{IO}:(a t)], \ldots$

The codes $[T 1 ; 10:(a t)]$ indicate that the verl can be either transitive or intransitive with the possible addition of an oblique complement introduced by the preposition at:
(2) a. [T1 (at)]: Kim docked his ship (at Clasgow)
b. [10 (at)]: The ship docked (at Clasgow)

Unfortunately, an indication of diatheses which relate the various occurrences of the verb to one another is rarely provided. Consequently, if we were to use the grammar code information found in IDOCE to create verb entries in an LKB by automatic conversion we would construct four seemingly unrelated entries for the verb dock (see $\S 3$). Inadequacies of this kind may be redressed through semiantomatic techniques

[^0]which make it possible to supply information concerning amemability to diathesis alternations so as to avoid expanding distinct entries for related uses of the same verb. This practice would allow us to develop an IKB from dictionary databases which offers a more complete and linguistically refined repository of lexical information than the source databases. Such an IKBB would be used to generate lexical components for NLIP systems, and could also be integrated into a lexicographer's workstation to guide word classification.

2 The ACQUILEX Lexicon Development Environment

Our points of departure are the tools for lexical acquisition and knowledge representation developed as part of the ACQUIINX project ('The Acquisition of Lexical Knowledge for NLP Systems').
'The $A C Q U E P E X$ Lexicon Development Environment uses typed graph unification with inheritance as its lexical representation language (For details, see Copestake (1992), Sanfilippo \& Poznański (1992), and papers by Copestake, de Paiva and Sanfilippo in Briscoe et al. (1993)). It allows the user to define an inheritance hierarchy of types with associated restrictions expressed in terms of attribute-value pairs as shown in lig 1 , and to create lexicons where such bypes are used to create lexical templates which encode word-sense specific information extracted from MRD)s such as the one in Fig 2. (Bold lowercase is used for types, caps for attributes, and boxes enclosing types indicate total omission of attribute-value pairs. Details conceming the encoding of verls syntax and semanties can be found in Sanfilippo (1993).)

Feature Structure (FS) descriptions of word senses such as the one in Fig 2 are created semiatomatically through a progran which converts syntactic and

Figure 1: Type Mierarchy \& Constraints (fragment).

Figure 2: LKB Entry for swim (simplified).
semantic specifications encoded in MRDs into LKB types. For example, the choice of LKB types used in the characterization of the verb swim above was induced from the syntactic and semantic codes found in LDOCE and the Longman Lexicon of Contemporary English (LLOCE, McArthur 1980). In LDOCE, the first sense of the verb swim is marked as a strict intransitive verb ([IO]) whose subject is animate ((box ---0)); in LLOCE, the same verb sense is semantically classified as a movement verb with manner of motion specified (M19):

```
swim 1 (1)
LDOCE
LLOCE M19 - Particular ways of moving
[10] (box ----0) ...
```

The MRD-to-LKB equivalences induced by the conversion algorithm are as shown in (1) where agt-cause-move-manner indicates that the subject participant relation implies self-induced movement with manner specified.

3 Verbal Diatheses and Lexical Acquisition

In the example discussed above, MRD-to-LKB conversion is relatively straightforward: a single LKB entry is created for swim since a single grammar code is found in the MRD sources used. Where a verb-sense entry gives more than one grammar code, however, the question arises whether or not each grammar code should be mapped into a distinct LKB entry. For example the codes given in LDOCE for the verb dock (sec (1)) could potentially be used to derive four LKB verb entries:

	LKB Typr	EXAMPLLE
a.	strict-trans-sign	Kim docked the boat
b. obl-trans-sign	Kim docked the boat	
at Southampton		

Notice, however, that in this case the creation of four distinct LKB entries is unnecessary insofar as the use of the verb exemplified in (5b) contains enough information to derive the remaining uses of the verb through lexical rules which progressively reduce the verb's valency by dropping the subject and/or prepositional argument(s). Such a step would be linguistically motivated in that it establishes a clear link between alternative uses of the same verb sense. Moreover, compact representation of verb use extensions is desirable from an engineering perspective as it reduces the size of the lexicon, allowing verb use expansion to be delayed till parsing time. This practice can be made to facilitate the resolution of lexical ambiguity by enforcing selective application of lexical rules (Copestake \& Briscoe, 1994).

Compact representation of verb use extensions due to valency alternations requires that a note of all applicable lexical rules be made in each kernel entry. In choosing obl-trans-sign as the LKB type for dock, for example, specifications would be added saying that the verb is amenable to the causative-inchoative alternation relating agentive and agentless uses ($(5 \mathrm{a}, \mathrm{b})$ vs. ($5 \mathrm{c}, \mathrm{d}$)), and the path alternation pertaining to the omission of the prepositional argument ($(5 a, c)$ vs. ($5 \mathrm{~b}, \mathrm{~d}$)). In addition, the path alternation would have to be specified as to whether it preserves amenability to a telic interpretation (accomplishment or achievement) of the event described by the verb or not. For example, the omission of the goal argument for a verb such as drive, push or carry induces an atelic (process) interpretation as indicated by incompatibility with a terminative adverbial:
(6) a. Jolin drove his car to London in one hour b. John drove his car (*in one hour)

Within a (partial) decompositional approach to verb semantics ('Talmy, 1985; Jackendoff, 1990; Sanfilippo, 1993; Sanlilippo et al., 1992)), this contrast can be explained with reference to the meaning component path. In (6a), the goal argument (to London) fixes a final bound for the path along which the driving event. takes place. Assuming that the compositional meaning of the sentence involves establishing a homomorphism between the event described by the verb and the path along which such an event takes place (Dowty, 1991; Sanflippo, 1991), it follows that with an unbounded path (e.g. (6b)) only a process interpretation is possible, whereas with a bounded path (e.g. (6a)) a telic interpretation is more likely. By contrast, the omission of the goal argument with verbs such as deliver, bring, dock and send does not inhibit amenability to a telic interpretation, c.g.
(7) We can deliver the goods (to your door) in one hour

Our aim, then, was to capture regularities across distinct uses of the same verb sense by relating the subcategorization frames relative to these uses via regular syntactic and semantic changes. 'To assess the feasibility of this approach, we augmented the MRD-to-LKB conversion code with facilities which make it possible to infer amenability to specific diathesis alternations from occurrence of multiple grammar codes and their associated semantic codes in the MR,Ds. To improve on the informational content of LDOCE grammar codes, we used an intermediate dictionary semiautomatically derived from LDOCE (LDOCE Inter) where the subcategorization information inferrable from grammar codes and other orthographic conventions was made more explicit (Boguraev \& Briscoe, 1989; Carroll \& Grover, 1989). Semantic information about verb classes was obtained by mapping across II)OCE and LLOCE so as to augment LDOCE queries with thesaurus information, i.e. semantic codes (Sanfilippo \& Poznański, 1992).
Syntactic and semantic information relative to verb senses was extracted through special functions which operate on pointers to dictionary entries. The extracted info was used to gencrate FS representations of word senses. The conversion process was carried out in such a way that whenever multiple subeategorization frames were found in association with a verb sense, only those which could not be derived via diat hesis alternation were expanded into LKB entries. For example, the LDOCE-Inter entry for dock gives four subcategorization frames:

```
(dock)
    (((Cat V) (Takes NP) (Type 1))
    ((Cat V) (Takes NP PP) (Type 2) (PFORM at))
    ((Cat V) (Takes NP NP) (Type 2 Transitive))
    ((Cat V) (Takes NP NP PP) (Type 3) (PFORM at)))
```

In this case, the four uses of the verb cam all be derived from the last one through application of the causative-inchoative and boundel-path alternations mentioned above; all that needs doing is to mark what diatheses are possible in the LKB entry derived, e.g.

The algorithm which guides this process checks whether information regarding diathesis alternations can be inferred from dictionary entries in the MRD sources or must be manually supplied. In performing this check, subcategorization options relative to a given verb sense which can be inferred from a more informative subcategorization frame are ignored. 'This technique was successfully employed in semiautomatic derivation of lexicons for 360 movement verbs yielding over 500 additional possible expansions by application of lexical rules.

4 Verbal Diatheses and Knowledge Representation

To encode amenability to verbal diatheses, the feirture diatmeses was introduced as an extension of the morphological features associated with verbs (see (8)). This feature takes as value the type alternations which is in turn defined as having a variety of
specialized types according to which diathesis alternations are admissible for each choice of verb type (e.g. intransitive, transitive, ditransitive), as shown in Figure 3 (see next page). The following table provides examples of the diatheses referred to in Fig 3.

DIATMESAS caus-inch	P, XAMPIE
	Kim broke the glass vs.
	the glass broke
middle	Kim scares Sally vs,
	Sally scares easily
indef-ohj	John ate a sandwich vs.
	John ale
def-obj	John did not nolice the sign vs.
	John did not notice
recip	Kim met Bill vs.
	Kim and Bill mel
puss	Bill read the Guardian vs.
	The Guardian was read by Bill
b-path	Kim returned the book to Sue vs.
	Kim relurned the book
	Kim came avay vs.
	Kime came (particle alternation)
u-path	Kim swatn across the river vs.
	Kim swam
	Kim walked away vs.
	Kim walked (particle alternation)
to/fore	John brought a book to/for Sue vs.
	John brought Sue a book

Diathesis alternations are enforced by means of lexical rules which, on par with all other information structures in the LKB, are hierarchically arranged, as shown in Fig 4 with relerence to the bound and mbound path alternations for intransitive verbs. Lexical rules

Figure 4: Lexical Rule Iierarchy (fragment).
enforcing diathesis alternations may involve a variety of syntactic, semantic and orthographic changes. For example, the u-path-obl-intrans-alt rule shown in F'ig 5 below takes as input an l'S of type obl-intranssign which represents a verb describing a non-stative eventuality (dyn-eve) whose subject participant (with semantics 团) is implied as moving along a directed path (th-move-dir) the endpoint of which is specified by the oblique argument (pp-sign), e.g. the use of suim in Kim swam across the river. The ontput is an IS representing a strict intransitive verb (strict-intrans-sign) which describes a process and whose subject participant is like that of the input with the directed path specification removed (th-move instead of th-move-dir), e.g. swim in Kim swam).

5 Using the LKIB to Guide Dictionary Compilation

There are at least two ways in which an LKB such as the one developed in \triangle CQUILSX offers the means to

trans-alt 들 caus-inch, midde, indef-obj, def-obj, recip, pass
prt-or-obl-alt $[$ b-path, w-path
det-movt to, for
Figure 3: Verbal Diatheses Hierarchy

Figure 5: The "unbounded path" lexical rule for intransitives

Figure 6: TBA
facilitate word classification in the compilation of new lexical databases.

First, the links between LKl3 types and dictionary entries established in the conversion stage can be used to run consistency checks on the MRID sources and to supply missing information or correct errors. This offers an efficient and cost-effective way of generating improved versions of the same dictionary.

Second, the types associated with specific word classes can be made to guide lexical aquisition from corpora when creating new dictionaries. It is now widely recognized that corpora are indispensable in the acquisition of lexical information relating to issues of usage such as the range and frequency of different patterns of syntactic realization. The availability of software tools for partial analysis of texts (e.g. morphological and semantic tagging, phrasal parsing etc.) has increased significantly the utility of corpora in lexical acquisition by providing ways to structure the information contained in them (see Briscoe (1991) and references therein). Further advances yet can be made by using LKll types to classify words in text corpora. Suppose, for example, we linked the input and output of lexical rules to semantically tagged subeategorization frames extracted from bracketed corporit (Poznański \& Sanfilippo, 1903). As inclicated in Fig 6, this would allow us to assess which alternations might be of interest in establishing regular verb sense/usage shifts. Such an assessment would provide an elfective way to drive verb categorization from corpora in the domain of valency alternations.

6 Final Remarks

A key element in our approach to lexical acquisition and representation of verbal diathesis concerns the use of semantics constraints in formulating MRD queries and characterizing FS descriptions. This practice ensures that the results achieved in this work for motion verbs can be suitably extended to other semantic verb classes. For example, the class of verbs which undergo "extraposition" - e.g. That Kim lefl early bothers Sue vs. Il bothers Sue that Kim lefl early --. can be identified by using semantic constraints ol MRD queries which identify psychological verbs with stimu-
lus subject such as bother, please, etc. (Sanfilippo \& Poznanski, 1992). This approach provides an effective way of employing semiatutomatic extraction of infor mation from MRDs for lexicon construction, and it facilitates word classification from text corpora when compiling new dictionary databases.

References

Briscoe, T. (1991) Lexical Issucs in Natural Ianguage Processing. In Klein, F. \& F. Veltman (eds.). Natural Language and Speech, Springer-Verlag, 39-68.
Priscoe, Tr., A. Copestake and V. de Paiva (1993) Defaull Inheritance wilhin Unificalion-Based $A p$ proaches to the Lexicon, CUP.
Boghraev, B. \& T. Briscoe (1989) Utilising the LIDOCE Grammar Codes. In Boguraev, IS. \& Briscoe, 'T. (eds.) Computational Lexicography for Natural Language Jrocessing. Longman, London.
Carroll, J. \& (. Grover (1989) The Derivation of a Latge Computational Lexicon for English from LDOCP. In Boguraev, B. \& Briscoe, ''. (eds.) Compulalional Lexicography for Natural Language Processing. Longman, London.
Copestake, A. (1992) The ACQUILFX LKB: Representation Issues in Semi-Automatic Acquisition of Large Lexicons. In Procedings of the Bral Conference on Applied Natural Language Processing.
Copestake, A. and T. Briscoe (1994) Semi-productive Polysemy and Sense Pxtensions. Ms. Computer Laboratory University of Cambridge, Xerox Park (Menlo Park) and Rank Xerox Research Laboratory (Grenoble).
Dowty, D. (1991) Thematic Proto-Roles and Mrgnment Selection. Language 67, pp, 547-619,
Jackendoff, R. (1990) Semantic Strtectures. MI'I Press, Cambridge, Mass.
McArthur, T. (1981) Longman Sexicon of Contemporary Einglish. Longman, London.
Poznaniski \& Sanfilippo (1993) Detecting Bependencies between Semantic Verb Subelasses and Subeategorization Prames in Text Corpora. In B. Boguraev \& J. Pustejovsky (eds) Acquisition of Lexical Ǩnowtedge from That, Proceedings of a SIGLEX workshop, ACL, 93, Olio.
Procter, P. (1978) Longman Diciionary of Contemporary linglish. Longman, London.
Sanfilippo, A. (1991) Thematic and Aspectual Information in Verb Semantics. Belgian Journal of Lingutslics, 6.
Sanfilippo, A. (1993) LKB lincoding of Lexical Knowledge. In Briscoe, ' I ., A. Copestake and V. de Paiva (eds.).
Sanfilippo, 1 \& V. Poznanski (1992) T'he Açuisition of Lexical Knowledge from Combined MachineReadable Dictionary Sources. In Proceedings of the Sol Conference on Applied Nalural Language. Pro. cessing, 'Irento.
Sanfilipjo, A., 'T'. Briscoe, A. Copestake, M. Martí, M. 'Taulé and A. Alonge (1992) 'Iranslation Dquivalence and Lexicalization in the $A C Q U I L E X$ IKB . Proceedings of 'I'M1-92, Montreal, Canada.
'Tahny, I. (1985) Lexicalization Patterns: Semantic Structure in Lexical liorm. In Shopen, 'T. (ed) Languaye Typology and Syntactic Descriplion 3. Grammatical Categoriesv and the Lexicon, CUI.

[^0]: *The research reported in this paper was carried out within the ACQUIIFX project. I am indebted to Ted Briscoe, Ann Copestake and Pete Whitelock for helpfin] comments.

