
Strategic Lazy Incremental Copy Graph Unification

Kiyoshi KOGUREt

ATR Interpreting Telephony Research Laboratories
Sanpeidani Inuidani, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

keg ure% atom.ntt.jp@relay.cs.net

Abstract

The strategic lazy incremental copy graph unification

method is a combination of two methods for unifying

hmture structures. One, called the lazy incremental copy

graph unification method, achieves structure sharing

with constant order data access time which reduces the

cequired memory. The other, cal led ti~e s t r a t eg ic

incremental copy graph unification method, uses an early

fai lure f inding s t ra tegy which f i rs t t r ies to unify

:;ubstructures tending to fail in unification; this method

is; based on stochastic data on tim likelihood of failure and

,'educes unnecessary computation. The combined method

.makes each feature structure unification efficient and

also reduces garbage collection and page swapping

occurrences, thus increas ing the total efficiency of

natural language processing systems mainly based on

I.yped feature s t ructure unif icat ion such as na tu ra l

language analysis and generation sysl~ems.

1. Introdu(tion

Various kinds of grammatical formalisms without

t ,ranstormation were proposed from the late 1970s

I;hrough the 1980s l(]azder eL al 85, l(aplan and Bresnan 82, Kay
1~5, Pollm'd and Sag 871. These furnmlisms were developed

re la t ively independentIy but ac tual ly had common

properties; th'~t is, they used data s t ructures called

ftmctional structures or feature structures and they were

based on unilieathm operation on these data structures.

These formalisms were applied in the field of natural

language processing and, based on these formalisms,

~:~ystems such as machine t rans la t ion systems were

developed [l<ol;u, e et a l 8gJ.
In such un i f i ca t ion-based fo rma l i sms , f e a t u r e

~trueture (FS) unification is the most fundamental and

..~ignifieant operation. The efficiency of systems based on

..~uch formalisms, such as natural language analysis and

generation systems very much depends on their FS

~lnifieatlon efficiencies. Tiffs dependency is especially

c ruc i a l for l e x i c o n - d r i v e n a p p r o a c h e s such as

tlPSO[Pollard and Sag 861 and JPSG[Gunji 871 because rich

lexieal information and phrase structure information is

described in terms of FSs. For example, a spoken

Present. affiliation: Infi)rmation Science Research 1,aboratory,
NTT Basic Research i.aboratories.

lh'esenl, address: 9 11, Midori cho 3-theme, Musashino-shi,
Tokyo 180, Japan.

Japanese analysis system based on llPSG[Kogure 891 uses

90% - 98% of the elapsed time in FS unification.

Several FS unificatioa methods were proposed in

IKarttunen 86, l'ereira 85, Wroblewski 871. These methods uses

rooted directed graphs (DGs) to represent FSs. These

methods take two DGs as their inputs and give a

unification result DG. Previous research identified DG

copying as a significant overhead. Wroblewski claims

that copying is wrong when an algorithm copies too much

(over copying) or copies too soon (early copying). Ile

proposed an incremental copy graph unification method

to avoid over copying and early copying.
i towever, the problem with his method is tha t a

unitication result graph consists only of newly created

structures. This is unnecessary because there are often

input snbgraphs that can be used as part of the result

graph without any modification, or as sharable parts

between one of the input graphs and the result graph.

Copying sharable parts is called redundant copying. A
better method would nfinimize the copying of sharable

varts. The redundantly copied parts are relatively large

when input graphs have few common feature paths. In

natural language processing, such cases are ubiquitous.

I"or example, in unifying an FS representing constraints

on phrase structures and an FS representing a daughter

phrase structure, such eases occur very h'equent, ly. In

Kasper's dis junct ive feature descript ion unif icat ion

[Kasper 861, such cases occur very h'equently in unifying

definite and disjunct's definite parts. Memory is wasted

by such redundant copying and this causes f requent

garbage collection and page swapping which decrease the

total system efficiency. I)eveloping a method which

avoids memory wastage is very important.

Pereira's structure sharing FS unification method can

avoid this problem. The method achieves s tructure

sharing by importing the Bayer and Moore approach for

term structurestl~oyer and Moore 721. The method uses a

data structure consisting of a skeleton part to represent

or iginal i n fo rma t ion and an e n v i r o n m e n t par t to

represent updated information. 3'he skeleton part is

shared by one of the input FSs and the resul t FS.

Therefore, Pereira 's method needs relat ively few new

structures when two input FSs are difference in size and

which input is larger are known before unification.

However, Pere i ra ' s method can create ske le ton-

enviromnent structures that are deeply embedded, for

example, in reeurs ively cons t ruc t ing large phrase

structure fl'om their parts. This causes O(log d) graph

node access time overhead in assembling the whole DG

2 2 3

from the skeleton and environments where d is the
number of nodes in the DG. Avoiding this problem in his

method requires a special operat ion of me r g i ng a
skeleton-environment structure into a skeleton structure,

but this prevents structure sharing.
This paper proposes an FS unification method that

allows structure sharing with constant m'der node access
time. This method achieves s t ruc ture s h a r i n g by

introducing lazy copying to Wroblewski's incremental
copy graph unification method. The method is called the

lazy i2!cremental copy IFaph unification reel, hod (the
LING unifieation method for short).

In a natural language proeessing system that uses
dee la ra t ive cons t r a in t ru les in terms of FSs, FS
unification provides constraint-checking and structure-

building mechanisms. The advantages of such a system

include:
(1)rule writers are not required to describe control

infimnation such as eonstraiut application order in a
rule, and

(12) rule descriptions can be used iu different processing
directions, i.e., analysis and general,ion.

However, these advantages in describing rules are
disadvantages in applying them because of tt~e lack of
control information. For example, when constructing a

phrase structure from its parts (e.g., a sentence fi'om a
subject NP and VP), unueeessary computation can be

reduced if the semantic representation is assembled after
checking constraints such as grammatical agreements,

which can fail. This is impossible in straightforward

unification-based formalisms.
In contrast, in a procedure-based system which uses

IF-TItEN style rules (i.e., consisting of explicit test and

structure-building operations), it is possible to construct
the semantic representation (TIIEN par'g) after checking

the agreement (IF part). Such a system has the
advantage of processing efficiency but the disadvantage
of lacking multi-directionality.

In this paper, some of the efficiency of the procedure-
based system is introduced into an FS unification-based

system. That is, an FS unification method is proposed
that introduces a strategy called the e_arly failure £inding
strategy (the EFF strategy) to make FS unif ica t ion
efficient, in this method, FS unification orders are not
specified explicitly by rule wril.ers, but are controlled by
learned information on tendencies of FS cons t ra in t
application failures. This method is called the strategic
ij!~crementaI copy graph unification method (the SING
unification method).

These two methods can be combined into a single
method called the strategic lazy ijAcremeatal copy g~raph
unification method (the SLING unification method).

Section 2 explains typed feature structures (TFSs) and

unification on them. Section 3 explains a TFS unification

method based on Wroblewski's method and then explains
the problem with his method. The section also introduces
the key idea of the EFF strategy wlfich comes from
observations of his method. Section 3 and 4 introduce the

LING method and the SING method, respectively.

2. Typed Feature Structures

Ordinary FSs used in unification-based grammar
formalisms such as PAT].{[Shieher 851 arc classified into
two classes, namely, atomic leSs and complex FSs. An
atomic FS is represented by an atomic symbol and a

complex FS is represented by a set of feature-value pairs.
Complex FSs are used to partially describe objects by

specifying values for certain features or at tr ibutes of
described objects. Complex FSs can have complex FSs as

their feature values and can share certain values among
features. For ordinary FSs, unification is defined by
u s i n g p a r t i a l o r d e r i n g based on s u b s u m p t i o n

r e l a t i onsh ips . These p rope r t i e s e n a b l e f lex ib le

descriptions.
An extension allows complex FSs to have type symbols

which define a lattice structure on them, for example, as
in [Pollard and Sag 8"11. The type symbol lattice contains the
greatest type symbol Top, which subsumes every type

symbol, and the least type symbol Bottom, which is
subsumed by every I.ype symbol. An example of a type

symbol lattice is shown in Fig. 1.
An extended complex FS is represented by a type

symbol and a set of feature-value pairs. Once complex
IeSs are extended as above, an atomic FS can be seen as an

extended complex FS whose type symbol has only Top as

its greater type symbol and only Bottom as its lesser type
symbol and which has an empty set of feature value pairs.
Extended complex FSs are called typed feature structures
(TFSs). TFSs are denoted by feature-value pair matrices

or rooted directed graphs as shown in Fig. 2.
Among such structures, unification c'm be defined IAP,-

Kaci 861 by using the following order;

ATFS tl is less than or equal to a TFS t2 if and only if:

• the type symbol of tl is less than or equal to the type
syn'bol of/2; and

• each of the features of t2 exists in t1 and. has as its

value a TFS which is not less than its counterpart in

tl ; and
each of the coreference relationships in t2 is also held
in t l .

Top

Sign Syn Head List POS

Lexical Phrase
Slgn

/77
Sign NonEmpty Empty V N P ADV
Li . Lis~ ust I I I I

NonEmpty Emply I I i I
Sign Sign I I / /
List List 5 / / 5

.... U_
Bottom

Figure 1: Exainple of a type symbol lattice

2 2 4

- - 2 - -

T I

peSymb°10
eaturel TypeSymboll]]]

I feature2 TypeSymbol2
I feature3 ?Tag T ypeSymbol3
]]feature4 TypeSymbol4
L [.feature5 TypeSymbol5

eature3 7Tag

(a) feature-value matrix notation
"?" i~ the prefix for a tag and TFSs with the same tag are

token-identical.

TypeSym bol/~

feo~.,o/ I
TypeSymboll ~ [. .

TypeSymbol2 4¢" '~°~'~/.~ypeSymbol3
f e a t u r y "X~ature5

TypeSymbol4 4r "~TypeSymbol5

(b) directed graph notation

Figure 2: TFS notations

Phrase

[sub(at ?X2 SignList
dtrs CHconst

i 'oo Sign

syn I head
Syn

I
u b c a t

]
U

?Xl .]
NonEmptySignLIst |
['first ?×3]1
Lrest ?X2 J j

Phrase
-dtrs CHconst

hdtr LexicalSign
-syn Syn

-head Head
pos P
orm Ga

subcat NonEmptySignList
Sign

yn Syn
ead Head

L~,os N]
Irest EmptySignkist ,11

Phrase
"syn Syn

h e a d ?X1 Head
Fpos P
Lform Ga

Lsubcat ?X2 Empl.ySignList
dtrs CHconst

ccltr ?X3 Sign

syn iyn head Head
_ [pos N

hdtr

]

LexicalSign
l-syn Syn l I F head :x~ 7/ Lsubcat NonEinptySignList l l [

P"" ~×~ l l l l
Lrest ?X2 J J j J

Figure 3: Example of TFS unification

Then, the unification of tl anti t2 is defined as their

greatest lower bound or the meet. A unification example

is shown in Fig. 3. In tile directed graph notation, TFS

unification corresponds to graph mergi ng. TFSs are very

convenient for descr ibing l inguis t ic informat ion in

unlfication-based formalisms.

3. Wroblewski's Incremental Copy Graph Unifi tat ion

Method and Its Problems

In TFS unification based on Wrobtewski's method, a

DG is represented by tile NODE and ARC st ructures

corresponding to a TFS and a f e a t u r e - v a l u e pair

respectively, as shown in Fig. 4. The NODE structure has

the slots TYPESYMBOL to represent a type symbol, ARCS

to represent a set of feature-value pairs, GENERATION to

specify the unification process in which the structure has

been created, FORWARD, and COPY. When a NODE's

GENERATION value is equal to the global value specifying

the current unit]cation process, the structure has been

created in the current process or that the structure is

c u r r e l ~ l .

The character is t ics which al low n o n d e s t r u c t i v e

incremental copy are the NODE's two different slots,

FORWARD and COPY, for r ep resen t ing fo rward ing

relationships. A FORWARD slot value represents an

eternal relationship while a COPY slot value represents a

temporary relationship. When a NODE node1 has a NODE

node2 as its FORWARD value, the other contents of tile

node1 are ignored and tim contents of node2 are used.

t{owever, when a NODE has another NODE as its COPY

value, the contents of the COPY value are used only when

the COPY value is cub:rent. After the process finishes, all

COPY slot values are ignored and thus original structures

are not destroyed.

The unification procedure based on this method takes

as its input two nodes which are roots of the DGs to be

unified. The procedure incrementally copies nodes and

ares on the subgraphs of each input 1)G until a node with

an empty ARCS value is found.

The procedure first dereferences both root nodes of the

input DGs (i.e., it follows up FORWARD and COPY slot

values). If the dereferenee result nodes arc identical, the

procedure finishes and returns one of the dereference

result nodes.

Next, the procedure calculates the meet of their type

symbol . I f the m e e t is B o t t o m , wh ich m e a n s

inconsistency, the procedure finishes and returns Bottom.

Otherwise, the procedure obtains the output node with

the meet as its TYPESYMBOL. The output node has been

created only when nei ther input node is current; or

otherwise the output node is an existing current node.

Next, the procedure t reats arcs. The procedure

assumes the existence of two procedures , namely ,

SharedArcs and ComplementArcs. The SharedArcs
procedure takes two lists of arcs as its arguments and

gives two lists of arcs each of which contains arcs whose

labels exists in both lists with the same arc label order.

The ComplementArcs procedure takes two lists of arcs as

2 2 5

NODE

TYPESYMBOL: < s y m b o l >
[ARCS: < a list of ARC structures >
FORWARD: "<a NODE structure o r N I L >

/ COPY: < a NODE structure or N i l , >
GENERATION: < a n integer>

ARC

LABEL: <symbol>
VALUE: <:a NODE st ruc ture>

Figure 4: Data Structures for Wroblewski's method

Input graph GI Input graph 62

....... ' 7 7 ¢ i

: Sobg,'aphs not required to be copied
L .

Output graph G3

Figure 5: Incremental copy graph unification
In this figure, type symbols are omitted.

its arguments and gives one list of arcs whose labels are

unique to one input list.

The unif icat ion procedure first t r ea t s arc pai rs

obtained by SharedArcs. The procedure applies itself

,'ecursively to each such arc pair values and adds to the

output node every arc with the same label as its label and

the un i f i ca t ion r e su l t of the i r va lues un less the

tmification result is Bot tom.

Next , the p rocedure t r e a t s arcs o b t a i n e d by

ComplementArcs. Each arc value is copied and an arc

with the same label and the copied value is added to the

output node. For example, consider the case when feature

a is first treated at the root nodes of G1 and G2 in Fig. 5.

The unif icat ion procedure is applied recurs ive ly to

feature a values of the input nodes. The node specified by

the feature path < a > fi'om input graph G1 (G l / < a >)

has an arc with the label c and the corresponding node of

input graph G2 does not. The whole subgraph rooted by

6 l / < a c> is then copied. This is because such subgraphs

can be modified later. For example, the node Y(G3/<o c

g >) will be modified to be the unification result of G 1 /<a

c g > (or G 1 / < b d>) and G 2 / < b d > when the feature

path < b d > will be treated.

Inc rementa l Copy Graph Un i f i ca t ion

PROCEDURE Unify(node1, node2)
node1 = Dereference(nodel).
node2 = Dereferencelnode2).
IF Eq?(nodel, node2) THEN

Return(node1).
ELSE

meet = Meet(nodel.typesymbol, node2.typesymbol)
IF Equal?(meet, Bottom) THEN

Return(Bottom).
ELSE

outnode = GetOutNode(nodel, node2, meet).
(sharedst, shareds2)

= SharedArcs(nodel.arcs, node2.arcs).
complements1

= ComplementArcs(node|.arcs, node2.arcs).
complements2

= ComplementArcs(node2.arcs, nodel.arcs).
FOR ALL (sharedt, shared2) IN (sharedsl, shareds2)
DO

arcnode = Unify(sharedl.value, shared2.value).
IF Equal?(arcnode, Bottom)]HEN

Return(Bottom).
ELSE

AddArc(outnode, sharedl.label, arcnode).
ENDIF

IF Eq?(outnode, node1) THEN
coi'nplements = complement2.

ELSE IF Eq?(outnode, node2) THEN
complements = complementL

ELSE
complements

= Append(complements1, complements2].
ENDIF
FORALL complement IN complements
DO

newnode = CopyNode(complement.value).
AddArc(outnode, complement.label, newnode).

Return(outnode).
ENDIF

ENDIE
ENDPROCEDURE

Figure 6: Incremental copy graph unification procedure

The problem with Wroblewski's method is that tile

whole result DG is created by using only newly created

structures. In the example in Fig. 5, the subgraphs of the
result DG surrounded by the dashed rectangle can be

shared with subgraphs of input structures G1 and G2,
Section 4 proposes a method t.hat avoids this problem,

Wroblewski's method first treats arcs with labels that

exist in both input nodes and then treats arcs with unique
labels. This order is related to the unification failure
tendency. Unification fails in treating arcs with common
labels more often than in t reat ing arcs with un ique

labels. Finding a failure can stop further computation as
previously described, and thus f inding fai lures first
reduces unnecessary computation. This order strategy

can be generalized to the EFF and applied to the ordering

of arcs with common labels. In Section 5, a method which

uses this generalized strategy is proposed.

4. The Lazy Incremental Copy Graph Unification Method

In Wroblewski's method, copying unique label arc

values whole in order to treat cases like]Pig. 5 disables

structure sharing, ttowever, this whole copying is not
necessary if a lazy evaluation method is used. With such

a method, it is possible to delay copying a node unt i l
either its own contents need to change (e.g., node G 3 / K a c

226

!7>) or until it is found to have an arc (sequence) to a node

t, hat needs to be copied (e.g., node X G3/<a c> in Fig. 5

due to a change of node Y G3/<a c g>) . To achieve this,

I, he LING u n i f i c a t i o n me thod , wh ich uses copy

dependency information, was developed.

The LING unif icat ion procedure uses a rev i sed

CopyNode procedure which does not copy s t ructures

immedia te ly . The revised procedure uses a newly

introduced slot COPY-DEPENDENCY. The slot has pairs

consisting of nodes and arcs as its value. The revised

CopyNode procedure takes as its inputs the node to be

copied n o d e I and the arc arc I with n o d e I as its value and

n o d e 2 as its immediate ancestor node (i.e., the arc's

initial node), and does the following (set Fig. 7):

(1) if n o d e l ', the dereference result of node / , is current,

then C o p y N o d e returns node l" to indicate that the

ancestor node n o d e 2 must be coiffed immediately;

(2)otherwise, CopyArcs is applied to n o d e 1 " and if it

returns ,~;everal arc copies, CopyNode creates a new

copy node. It then adds the arc copies and arcs of

n o d e / ' that are not copied to the new node, and

returns the new node;

(3) otherwise, CopyNode adds the pair consisting of the

ancestor node n o d e 2 and the are arcl into the COPY-

DEPENDENCY slot of node 1" and returns Nil_.

, ' , :opyArcs applies CopyNode to each arc value with

n o d e l ' as the new ancestor node and returns the set of

new arcs for non-Nil_ CopyNode results.

When a new copy of a node is needed later, the LING

unification procedure will actually copy structures using

t h e C O P Y - D E P E N D E N C Y slot va lue of the node (in

G e t O u t N o d e procedure in lJ'ig. 6). It substitutes arcs with

newly copied nodes for existing arcs. That is, antecedent

nodes in the COPY-DEPENDENCY values are also copied.

In the above explanation, both COPY-DEPENDENCY

and COPY slots are used for the sake of simplici ty.

]lowever, this method can be achieved with only the

COPY slot because a node does not have non-NIL COPY-

I)EPENDENCY and COPY values simultaneously.

The da t a in the COPY-DEPENDENCY slot a re

I;emporary and they are discarded during an extensive

process such as analyzing a sentence, ttowever, this does

not result in any incompleteness or in any par t ia l

analysis structure being test. Moreover, data can be

accessed in a constant order time relative to the number

of DG nodes and need not be reconstructed because this

method does not use a data s t ruc ture consisl, ing of

,';keleton and environments as does Pereira's method.

The efficiency of the LING unification method depends

on the proportion of newly created structures in the

unification result structures. Two worst eases can be

considered:

(t) If there are no arcs whose labels are unique to an input

node witlh respect to each other, the procedure in LING

unification method behaves in the same way as the

procedure in the Wroblewski's method.

(2) In the worst eases, in which there are unique label arcs

but all result structures are newly created, the method

C o p y N o d e

PROCEDURE CopyNode(node, arc, ancestor)
node = Dereference(node).
IF Current?(node) THEN

Return(node).
ELSE IF NotEmpty?(newarcs = CopyArcs(node))
THEN

newnode = Create(node.typesymbol).
node.copy = newnode.
FOR ALL arc IN node.arcs DO

IF NotNIL?(newarc = FindArc(arc.label, newarcs))
THEN

AddArc(newnode, newarc.label, newarc.value}.
ELSE

AddArc(newnode, arc.label, arc.value).
ENDIF

Returo(newnode).
ELSE

node.copy-dependency
= node.copy-dependency U {Cons(ancestor, arc)}.

Return(Nil_).
ENDIF

ENDPROCEDURE

CopyArcs

PROCEDURE AlcsCopied(node)
newarcs = O-
FOR ALL arc IN node.arcs DO

newnode = CopyNode(arc.value, arc, node).
IF NotNIL?(newnode) THEN

newarc = CreateArc(arc.label, newnode).
newarcs = {newarc} U newarcs.

ENDIF
Return(newarcs).

ENDPROCEDURE

Figure 7: The revised CopyNode procedure

has the disadvantage of t reat ing copy dependency

information.

However, these two cases are very rare. Usually, the

number of features in two input structures is relatively

small and the sizes of the two input structures are often

very different. For example, in Kasper 's disjunctive

feature description unification, a definite part ["S is

larger than a disjunet definite part t"S.

5. The Strategic Incremental Copy Graph Unification

Method

In a system where FS unification is applied, there are

features whose values fail relatively often in unification

with other values and there are features whose values do

not fail so often. For example, in Japanese sentence

analysis, unification of features for conjugation forms,

case markers, and semantic selectional restrictions tends

to fai l but u n i f i c a t i o n of f e a t u r e s for s e m a n t i c

representations does not fail. In such cases, application of

the EFF strategy, that is, treating features tending to fall

in unification first, reduces unnecessary computation

when the unification finally fails. For example, when

unification of features for case markers does fail, treating

these features first avoids treating features for senmntic

representations. The SING unification method uses this

failure tendency infornmtion.

These unif icat ion fa i lure t endenc ies depend on

systems such as analysis systems or generation systems.

2 2 7

U n l i k e the analys is case, uni f ica t ion of f ea tu r e s for

semantic representat ions tends to fail. in this method,

theretbre, the fai lure tendency information is acquired by

a learning process. Tha t is, the SING unification method

applied in an analysis system uses the fai lure tendency

information acquired by a learning analysis process.

in the l e a r n i n g process, when FS u n i f i c a t i o n is

applied, feature t r ea tment orders are randomized for the

sake of random extract ion. As in TFS uni f ica t ion ,

fai lure tendency information is recorded in terms of a

t r iplet consisting of the greates t lower bound type symbol

of t he i n p u t T F S s ' t y p e s y m b o l s , a f e a t u r e a n d

success/failure flag. This is because the type symbol of a

' rFS represents sa l ient information on the whole TFS.

By us ing l e a rned f a i l u r e t endency i n f o r m a t i o n ,

feature va lue unification is applied in an order that first

t reats features with the greatest tendency to fail. This is

achieved by the sorting procedure of common label arc

pairs at tached to the meet type symbol. The arc pairs

obtained by the SharedArcs procedure are sorted before

t rea t ing arcs.

The efficiency of the SING unification method depends

on the following factors:

(1) The overal l FS unification failure rate of the process:

in extreme cases, if Go unification fai lure occurs, the

method has no advan tages except the ove rhead of

feature unification order sorting. However, such cases

do not occur in practice.

(2) Number of features FSs have: i f each FS has only a

small number of features, the efficiency gain from the

SING unification method is small.

(3) Unevenness of FS unification fa i lu re tendency: in

e x t r e m e cases , i f e v e r y f e a t u r e h a s t he s a m e

uni f ica t ion fa i lu re t endency , th is m e t h o d has no

advantage. However, such cases do not occur or are

very rare, and for example, in many cases of na tu ra l

language analysis, FS unif icat ion fai lures occur in

t r e a t i ng only l imi ted k inds of fea tu res r e l a t ed to

g rammat ica l agreement such as number and/or person

agreement and semant ic selectional constraints. In

such cases, the SING un i f i ca t ion m e t h o d o b t a i n s

efl]ciency gains.

The above factors can be examined by in spec t ing

fai lure tendency information, from which the efficiency

gain from the SING method can be predicted. Moreover,

i t is possible for each type symbol to select whether to

apply feature unification order sort ing or not.

6. Conclusion

The strategic lazy incremental copy graph (SLING)

unification method combines two incrementa l copy graph

unif icat ion methods: the lazy incremental copy graph

(LING) unification method and the strategic incremental

copy graph (SING) u n i f i c a t i o n me thod . The LING

unification method achieves s t ructure sha r i ng wi thou t

the O(log d) data access overhead of Perei ra ' s method.

Structure shar ing avoids memory wastage'. Fur thermore ,

s t ructure shar ing increases the portion of token identical

substructures of FSs which makes i t ef f ic ient to keep

uni f ica t ion resul t s of subs t ruc tu res of FSs and reuse

them. This reduces repeated calculation of substructures.

The SING unificat ion method introduces the concept

of fea ture u n i f i c a t i o n s t r a t e g y . ' t h e m e t h o d t r e a t s

features tending to fail in unification first. Thus, the

efficiency gain fi'om this method is high when the overall

FS unif icat ion fai lure rate of the application process is

high.

The combined method Inakes each FS un i f i c a t i on

efficient and also reduces garbage col lect ion and page

swapping occurrences by avoiding memory wastage, thus

increas ing the total efficiency of li'S un i f ica t ion-based

na tura l l anguage processing sys tems such aa ana lys i s

and generat ion systems based on I l I 'SG.

Acknowledgement

I would like to thank Akira Kurematsu , tI i toshi Iida,

and my o t h e r c o l l e a g u e s hoth a t A'I'I~ i n t e r p r e t i n g

T e l e p h o n y R e s e a r c h L a b o r a t o r i e s and N T T Bas ic

Research l , abora to r ies for the i r e n c o u r a g e m e n t and

thought-provoklng discussions.

Reference

[A~td~aci 861 t[. Ait--Kaei. An algebraic .'romantics approach to the
effective resolution of tyite equations. In Journal of Theoretical
Computer Science 45, 1986.
[Boyerand Moore721 R.S. [loyerandd. S. Moore. The sharing of
structures in t}',eoretn-provillg programs, lit B. Meltzer and D.
Miehie, editors, Machine ir~teliigence 7, 19'12.
[Gazder etal 851 (3. (.;azder, G. K. l'ullum, E. Klein and 1. A. Sag.
G~neraIizedPhrase ,'~traela,'e (/ramnzar. BuM[lllackwell, 1985.
[Gunji 871 T. Ounji. Jttpanese Phrr*se St,',cture Grammar. 1). l~.eidel,
1987.
[Kaplan and Bresnan 821 R. Kaplan and ,I. l;resnan. Lexical
Functional Grammar: a formal system f,~r grammatical
representation. In d. Bresnan, edilor, The ,'~fetlg,:ff Representation of
Gramntalieoll~elrdions, .\'liT Pres.% 1982.
[Karttunen 86} L. Karttunen. D-PATIt - A Development
Environment for Ur6fication-Based Grammar.~. CS1,1-86-91, CSLI,
t986,
[Kasper 871 R. '1'. Kasper. A unification method for disjunctive
feature descriptions. In the Proceedi~lgs of the 25th Annual Meeting
of the Assoeiatioa for Com putatianal l.iulj,istics, 1987.
[Kay 85[M. Kay. I~at'sing in funel, imm[grammar. ,in D. Dowry, L.
Kartttmen and A. Zwieky, editors, Natura(I,anguage Parsing,
Cambridge University Press, 1985.
[Kogure eL al 88J l(. Kogure et al. A method ofanalyzlng Japanese
speech act types. In the Proceedings of the 2~td International
Corlferenee oa Theoretical attd Metl~odological Issues in Machine
Traasl~lion of Natural t,anguages, 1988.
[Kogure891 K. Kogute. Parsing Japanese spoken sentences based
on IIPSG. In the Proceedings of the lateraationcd Workshop on
Parsing Technologies, 1989.
[Pereira8,SI F.C.N. Pereira. Structure sharlngrepresentaLion for
unificatiort-based formalisms, in the Proceedings of the 23rd Anttua[
Meeang of the Association for Computalianal Linguistics, 1985.
IPollard and Sag 871 (3. Pollard and I. Sag. Art Information.Based
Syntax and Semantics. CSI,I Lecture Notes No. 13, CSI,I, 198'/.
[Shieber 8131 S. Shieber. An Introduction to Unification-Based
Approaches to Grammar. CSL1 Lecture. Notes No. 4, CSLI, lg86.
[Wroblewski 871 1). Wroblewski. Nondestructive graph unification.
In the Proceedings of the 6th National Conference on Arlificial
httelligenee, 1987.

228

