
The procedure to construct a word predictor in a speech understanding system
from a task-specific grammar defined ill a CFG or a DCG

Yasuhisa Nilmi, Shigeru Uzuhara and Yutaka Kobayashi

Department of Computer Science
Kyoto Insti tute of Technology

Matsugasaki, Sakyo-ku, Kyoto 606, Japan

Abstract

This paper describes a method for converting a
task-dependent grammar into a word predictor of a
speech understanding system, Since tile word
prediction is a top-down operation, le f t recursive
rules induces an i n f i n i t e looping. We have solved
this problem by applying an algorithm for bottom-up
parsing,

1. Introduction

which tile ends terminate at dif ferent portions on the
phonetic sequence, and the other represents the se-
quences of syntactic categories (called category
sequences), each of which is associated with one of
the word strings, ln this situation, the control ler
chooses the word string with tile highest score,
sends tile associated category sequence to the word
predictor and asks i t to predict those syntactic
categories which can syntactically follow the se-
lected sequence.

In this paper we present a method for converting a
task-specific gravmnar into a word predictor, an im-
portant component of a speech understanding system.
A context free grammar (CFG) or an augmented transi-
tion network grammar (ATNG) have been used to des-
cribe task-speclfic constraint. When a CFG is used,
Early's algori thm[l] , one of the most ef f ic ient top-
down parsing algorithms, has been used to make word
prediction[2]. When an ATNG is used, word prediction
is simply made by tentatively traveling along arcs
going out freln a state in an ATNG[3],[4],[5]. Since
the word prediction is a top-down operation, i t is
d i f f i cu l t to avoid fa l l ing into an in f in i te loop i f
the task-specific grammar includes a le f t recurslve
rule.

F. Perelra and D. Warren have developed a def ini te
clause grammar (DCG)[6]. The rules described in a DCG
are direct ly converted into a set of Pro]og clauses,
which works as a parser with an aid of tile powerful
pattern matching mechanism of Prolog. Thus syntactic
analysis can be done without writ ing a specia] parser
working on the rules of the grammar. Since tile syn-
tactic analysis based on a DCG parser also works in
top-down fashion, i t shares the same d i f f i cu l t y as
the top-down parsers have. ¥. Matsumoto et at. have
developed a method for converting a set of rules
described in a DCG into a bottom-up parser which has
overcome thls d i f f i cu l t y without any loss of the
advantages of a DCG[7].

We discuss an application of this method to a word
predictor, that is, the method for transforming task-
specific l inguist ic constraint defined in a CFG or a
DCG into a Prolog program which acts as a le f t - to -
r ight word predictor.

2. Word predictlon in a ~eech understandlnq~sj(stem

Fig.l shows a typical configuration of a speech
understanding system based on a hierarchical model.
An acoustic-phonetic processor analyzes of an input
uttereance and transforms i t into a sequence of pho-
net ical ly labeled segments. Provided that a part of
an utterance has been dealt with, the control ler
manages its interpretations in the two kinds of trees
i l lustrated in Fig.2; one represents word strings, of

l inguist ic processor

predicted c a t e g o r i e s ~ t e g o r y sequence

~ . r o l ler)

predicted words T- rocog, i ed words

I lexlcal processor]
Phonetic la t t ice

I ac°ustic-ph°netic
processor I

speec~ wave

Fig. I A typical configuration of a speech
understanding system.

category
tree

word tree

sequence
of
phonetic
segments

C3 #3
Cl #I

' ~ C2 '~ ~ ,

I \ ! t %
i ~ I "?', /'r"

i,l~ .L ~ \ \ I

W1

i
'1 ' I \

Fig. 2 A search space of a speech understanding
system.

605

The word predictor could parse a given category
sequence and predict the categories which can follow
i t . I t is, however, inef f ic ient to analyze the given
sequence whenever asked to predict. In fact, each
node of the category tree is associated with a par-
sing history on how rules of the grammar have been
applied to analyze the category sequence. The word
predictor receives a node and i ts parsing history
from the controller and predicts the syntactic cate~
gories following the node.

3_. The bottom-up parser and i ts application to word
prediction

We give a b r i e f explanatlon of the bottom-up par-
ser proposed by Y. Matsumoto e t a l . Assume simply
that the rules of the grammar are described in a CFG.
Then, wi thout loss of genera l i t y each of the rules
can be expressed as e i ther of the fo l lowings.

c -> Cl,C2,..,c n

(c, c i (i=l n): nonterminals) l)

c -> w (w: a terminal) 2)

(l) These rules are transformed into the following
Prolog clauses.

cI(G,XI,X) : - link(c,G),goal(c2,Xi,X2)

goal(cn,Xn_l,Xn), c(G,Xn, X). l ')

dict(c,[wJX],X). ?')

X and X~ (i=l n) are arguments to denote
word strifig to be analyzed as a l i s t . 'link(C,G)
is a predicate to express that a string of which
the le f t most symbol is a nonterminal C can be
reduced to a nonterminal G. G is called a goal
argument in this sense. ' l i nk ' is defined as
follows: i f the rule I) is included in the gram-
mar, then ' l i n k (c l , c) ' holds, and i f ' l ink(a ,b) '
and ' l i nk (b ,c) ' &old, then ' l i nk (a ,c) ' holds
(t ransi t ive law), and ' l i nk (c ,c) ' holds for every
nonterminal c (ref lect ive law). A predicate
'dict(C,X,Y)', searching the dictionary for the
f i r s t word of a word string X, unifies C with i ts
syntactic category and Y with the remaining
string.

(2) A predicate goal(G,X,Z) is defined as follows.

goal(G,X,Z) : - dict(C,X,Y),link(C,G),
exec(C,G,Y,Z). 3)

where 'exec' is a predicate to execute a predi-
cate 'c(G,Y,Z)'.

(3) Furthermore, fGr any nonterminal C, the fo l -
lowing assertion called a terminal condition
holds:

c(c,X,X). 4)

The parser for the given grammar consists of a l l
these Prolog clauses.

In order to use the bottom-up parser as a le f t -
to-r ight word predictor, we change the predicate
'goal' as follows:

goal (G, [] , []) : - llnk(C,G),terminal(C),
output(C),fai}. 3 ' - I)

606

goal(G,X,Z) : - dict(C,X,Y),link(C,G),
exec(C,G,Y,Z). 3'-2)

where 'terminal(C)' is a predicate to be true when a
nonterminal C appears in the left-hand side of a
productlonof 2).

The modified parser, receiving a word string from
the controller, executes the second of 'goal' clauses
in which the second argument X is unified with the
given word string. Syntactic analysis of X is con-
tinued unt i l X becomes empty. Then, the f i r s t of
'goal' clauses is invoked and predicts al l the syn-
tactic categories which make both ' l ink(C,G)' and
'terminal(C)' hold.

4. Word grediction under a l e f t - t o - r i ~

In this section we discuss the method for conver-
tion of a set of productions defined in a CFG into a
set of Prolog clauses which acts as a le f t - to - r igh t
word predictor. In order that this predictor can work
without re-analyzing a given category sequence, we
must)lave a table (named a history table) which
contains an association of a category sequence with
i ts parsing history, that is, a history on how pro-
ductions are used to parse the sequence.

Considering a transit ion network depicted in Fig.3
for a production 'c->clc~..c ' , we express a parsing
history with a l i s t of Lpai~s of a state name in a
transit ion network and a goal argument appearing in
bottom-up parsing. For the grammar shown in Fig.4, a
category sequence 'N N' is parsed as shown in
Fig.5(a) and the corresponding state transit ion is
shown in Fig.5(b). A parsing history for this se-
quence can be expressed as a l i s t [nps2,s]. The
state name 'nps2' indicates that the last 'N' of the

C l C 2 C n

Fig. 3 A transit ion network for a rule
C - , C I C 2 . . . C n.

S -> NP VP NP -> N
NP -> NP N VP -> V NP
NP -> ART NP

Fig. 4 An example of context free grammar.

. ~.>_>-.s /

I
N N

(a) (b)

Fig. 5 The parse tree of 'N N' and the
corresponding state transit ion.

sequence 'N N' has been parsed as 'N' in the produc-
Lion 'NP->NP N', and the goal a rgumen t ' s ' ind icates
that the sequence is the l e f t most par t of the s t r ing
der ived by the s ta r t symbol ' s ' .

Now we shal l describe the procedure to transform a
set of product ions described in a CFG in to a word
p red ic to r .

(I) For a product ion ' c ->c .c~ . .c ' , t i le fo l l ow ing set
• / L: n of Prolog clauses Is generated:

cI([GIH]) :- link(c,G),al([GIHI).

al(E) :-. pred(c2,[a21E]).

a2(E) :-- pred(c3,[a31E]),

an~l(E) : - pred(cn, [anJE]) ,

an(E) : - c (E) . 4 - I)

where H and E are the arguments to store parsing
h i s t o r i e s , the f i r s t element of H is a s ta te name
and that o f E is a goal argument.

(2) For a nonterminal c, the fo l low ing terminal con-
d i t i o n holds:

c([c,alE]) :- exec(a,E), 4-2)

(3) Corresponding to ' goa l ' in the bottom-up parser,
a pred icate 'pred' is def ined as fo l lows:

pred(G,H) : - l i nk (C ,G) , te rm ina l (C) ,
newface(No),hand to(No,C),
makenode(No,C,[GTH]), fai l . 4-3)

A pred icate 'newface(No)' generates a new node
number in 'No' , 'hand_to(No,C)' sends a pa i r of a
node number 'No' and a predic ted syn tac t i c cate-
gory C to the c o n t r o l l e r , and 'makenode()' stores
a node number and i t s corresponding parsing h is -
t o r y expressed as 'C([GIN]) ' in the h i s t o r y
tab le .

(4) The c o n t r o l l e r in a speech understanding system
communicates the word p red ic to r through a p red i -
cate 'wantword' which sends to the word p red ic to r
a node number associated wi th a category sequence
which the c o n t r o l l e r has selected, whi le the word
p red ic to r returns through 'hand to ' a set o f the
syn tac t i c categor ies which can fo l l ow the se-
lected category sequence. The d e f i n i t i o n of
'wantword' is as follows:

wantword(O) : - ! , p r e d (s , []) . 4-4)
wantword(No) : - p i ck_up (No ,Z) , ! , ca l l (Z) . 4-5)

The symbol s in 4-4) s i g n i f i e s the s t a r t symbol,
and the clause 4-4) is used to make a p red ic t i on
at the l e f t most par t of an ut terance. The
pred icate 'p ick up(No,Z)' looks up the h i s t o r y
tab le fo r a node number 'No' , and picks up i t s
associated h i s t o r y expressed as 'C ([G IH]) ' , the
execut ion of which invokes the clause of 4 - I) or
4-2).

5. Conclusions

In th is paper we have proposed the procedure to
convert a grammar def ined in a CFG or a DCG in to a
Prolog program which funct ions as a word p red ic to r .

The procedure is give@ for the l e f t - t o - r i g h t con t ro l ,
but i t is not d i f f i c u l t to expand i t fo r the is land-
dr iven con t ro l .

To s imp l i f y the desc r ip t ion , we have given the
conversion procedure for a grammar def ined in a CFG,
but i t is easy to expand i t fo r a grammar def ined in
a DCG, As long as one concernes on a speech under-
standing system in which syntax and semantics are
wel l def ined, one could take an advantage of a DCG in
which a nonterminal can have some arguments as para-
meters, and could use semantic r e s t r i c t i o n s e f f ec -
t i v e l y to i n t e r p r e t an ut terance. In developing a
speech understanding system of which the task is to
access a database, we use semantic markers to des-
cr ibe semantic r e s t r i c t i o n s between an ad jec t i ve and
a noun, a noun phrase and a pos tpos i t ion (i n Japan-
ese), and case s lo ts of a verb and i t s f i l l e r s . In
th is case a ru le can be expressed as fo l lows:

C(So) -> [Po(So, S I) }C I (S I) {P I (S I ,S2) }C2(S2) . . .

{Pn_l(Sn_l,Sn))Cn(Sn),

where S~ (i=O, l n) is a l i s t of semantic markers,
Pi (i = l , 2 n) is a pred icate to denote a cons t ra in t
among semantic markers. Considering a t r a n s i t i o n
network fo r th is DCG ru le , we associate P. wi th i t s]
i - t h s ta te and l e t Pi funct ion as a conver ter o f
semantic markers. Since Pi would be def ined in the
form of a tab le , th is converter could work
b i d i r e c t i o n a l l y . In add i t ion , stacking a pair" of a
syntac t ic goal va r i ab le and a l i s t of semantic
markers in the parsing h i s to r y , we can develop a
procedure to transform a grammar described in a DCG
in to a word p red ic to r .

Acknowledgement

This research was supported by the g r a n t - i n - a i d
for the special p ro jec t research ' I n t e l l i g e n t Proces-
sing and In teg ra t i on of Knowledge Informat ions in
Mul t i -Media ' by the M in i s t r y o f Education, Science
and Cul ture of Japan.

References

[I] J. Ear ly: An e f f i c i e n t con tex t - f ree parsing a lgo-
r i thm, Comm, ACM, 13--2 (1970).

[2] T. Sakai and S. Nakagawa: A speech understanding
system of simple Japanese sentences in a task
domain, Trans. of IECEJ, E60-1 (1977).

[3] W.A. Woods et a l . : Speech understanding systems
- - Final technica l progress repor t 30 October
1974 to 29 October 1976, BBN Tech. Rep . 3438,
vo l . 4 (1976).

[4] D.R. Reddy et a l . ; Speech understanding system
- - Summary of resu l ts o f t i le f i ve year research
e f f o r t at Carnegie-Me]Ion Univ., Carnegie-Mellon
Univ. Tech. Rep. (1977).

[5] Y. Niimi and Y. Kobayashi: A vo ice - inpu t program-
ming system using BASIC-l ike language, Proc. IEEE
In t . Conf. ASSP (1978).

[6] F.C.N. Pereira and D.II.D. Warren: De f i n i t e clause
grammar for language analys is - - A survey of the
formalism and comparison wi th augmented t r a n s i -
t i on networks, A r t i f i c i a l I n te l l i gence , 13
(1980).

[7] Y. Matsumoto et a l . : BUP -- -A bottom-up parser
embedded in Prolog, New Generation Computing, I -2
(1983).

607

