
A GRAMMAR USED FOR PARSING AND GENERATION

Jean-Marie LANCEL (~), Frangois ROUSSELOT (**), Nathalie SIMONIN (~)

CAP SOGETI INNOVATION,]29, rue de l'Universit6, 75007 - PARIS

w, University of STRASBOURG If, 22, rue Descartes, 67084 - STRASBOURG

i. INTRODUCTION

This text presents the outline of a system
using the same grammar for parsing and
generating sentences in a given language.
This system has been devised for a
"multilingual document generation" project.

Martin KAY has shown that parsing and
generation could be done using Functional
Grammars. APPELT lAPP85] and McKEOWN
[McK82], among others, have used Functional
Grammars for generation. Usually the grammar
formalism is more suited to parsing than to
generation. The way a grammar is processed
for parsing is rather clear, while the
generating process needs strong assumptions
on the interpreter to be easily readable.

The Functional Grammar notation described
here allows a full symmetry between parsing

and generating. Such a grammar may be read
easily from the point of view of the parsing
and from the point of view of the
generation. This allows to write only one
grammar of a language, which minimizes the
linguistic costs in a multilingual scheme.

Description of the Functional Grammar
notation, in chapter 2, will thoroughly
refer to Functional Descriptions and
Functional Unification. For a detailed
presentation, the reader may refer to
[KAY79] [ROU84] [SIM85].

2. THE GRAMMAR FORMALISM

The formalism we have defined allows us to
write a single grammar of a language which
is used both for analysis and generation by
means of two specialized interpreters.

Sentence analysis is viewed as the
transition from a surface structure to a
semantic representation which is a
Functional Description. Sentence generation
is the transformation of a semantic
representation into a syntactic form. This
symmetry between the two processes has to be
clearly expressed if we want a clear
notation, easy to read and to understand
from the point of view of parsing and of
generating.

A grammar rule is itself represented as a
Functional Description. This FD has three
main "identifiers" : PATTERN, MEANING and
CONSTRAINTS.

536

Example of a simple grammar rule :
simple_gn =
[pattern = (det subst adj)

meaning = [obj = <subst meaning>
definitude = <det type>
qualif = <adj meaning>
number = <subst number>]

constraints = ([equal = (<det gender>
<subst gender>
<adj gender>)

equal = (<det number>
<subst number>
<adj number>)])

det = [cat = det]
subst = [cat = subst]
adj = [cat = adj]]

The ~ part describes the syntactical
structure. Each item of the list associated
to pattern refers to a rule or to a
terminal. In the above example the three
terms refer to terminals. Omissions and
repetitions are allowed.

The meaninq part describes the semantic
representation associated to the syntactical
structure. Bracketed lists represent "paths"
refering to Functional Descriptions inside
the rule or in another rule. During parsing,
these paths are used to build the semantic
representation while in generation they are
used for splitting a semantic structure into
different sub-structures. The two processes,
parsing and generation, are detailed in
chapters 3 and 4.

The constraints part is a list of "set of
constraints" expressed by Functional
Descriptions. At]east one "set of
constraints" must be fulfilled. In the above
example this allows us to express agreement
rules used for both parsing and generating.

As in Martin Kay definitions a rule may have
different derivations. These are represented
by enclosed braces. Example :
simple_phrase = {
pattern = (gnl vtrans gn2)
meaning = [action = <vtrans meaning>

subjsem = <gnl meaning>
objsem = <gn2 meaning>]

constraints = ([equal = (<gnl number>,
<vtrans number>])

pattern = (gnl vintrans)
meaning = [action = <vintrans meaning>

subjsem = <gni meaning>]
constraints = ([equal = (<gnl number>,

<vintrans number>~)
}

3. THE PARSING PROCESS

3.1. Us___e of th e ~rammar for

In order to anaiyze a sentence, the words
and compounds words are converted in
Functional Descriptions, using a
morphological analyzer and a dictionary. The
result is a list of FD's which will be
processed by -the parser.

Example (semantic va]ues are expressed here
by English terms but they are usually
expressed as FD) :

"]es chaussures vertes" ("the green shoes")

Input list of parser is :

(
[cat = det [cat = subst [cat = adj
type =defined gender = fem gender = fem
number:plural number:plural number=plural
lex :]e] lex=ehaussure lex = vert

meaning=shoe] meaning:green]

This sentence matches with the rule
simple_gn described in chapter 2, as the
first FD of the list is funchionnaly
unifiab]e with [cat = de t], the second FD
with [cat = subst] and the third FD with
[c a t = a d j] .

The parsing process builds a structure which
is a copy of the rule simple_gn and
enlarges it with the actual, word analyzed.
The path descriptions are replaced by their
actual values.

3.2. Structure built

sJmple_gn =
[pattern =

meaning =

det =

subst =

adj =

(det subst adj)
[obj = shoe
definitude = defined
qualif = green
number = plural]

[cat = det
type = defined
number =plurai
lex ~ le]

[cat = subst
gender = fem
number = plural
lex = chaussure
meaning = shoe]

[cat = adj
gender = fem
number = plural
lex = vert
meaning = green]

This structure is built if the constraints
are met : for this rule it implies agreement
of gender and number, which is the case for
"les chaussures vertes".

4. THE GENERATING PROCESS

4.1o Use of the ~rammar :for ~eneration

The generation-takes as input a semantic
structure and produces a sentence.

As an example the rule simple_gn (cf
chapter 2), is activated with the semantic
structure

[obj = box
definitude = undefined
qualif = white
number = plural]

A copy of the rule is built. The paths in
• the Functional Description associated to the
identifier "meaning" are used to convey the
semantic information to "the items referred
to by the identifier "pattern" (These items
are named "constituents")

]~n this example Jt gives :

identifier path

obj <subst meaning>
definitude <det type>
qualif <adj meaning>
number < subst number>

p o i n t e d v a l u e

box
undefined
white
p]ura]

The interpretation process of the grammar
"builds" the path, which means that the
needed identifiers are included in the copy
of -the rule.

FD for DET becomes :
det = [cat = deh

type = undefined]
~ere "type" has been added.

FD :for SUBST becomes :
subst = [cat = subst

meaning ~ box
number = plural]

where "meaning" and "number" have been
added.

FD for ADJ becomes :
adj = [cat : adj

meaning = white]
where "meaning" has been added.

Then the constraints are applied. In the
parsing process they are used to eliminate
wrong constructions, while in the generating
process they are used to transmit
information.

Use of the constraints o f the rule simple gn

equal =
(<det gender> <subst gender> <adj gender>)

537

At this step, this rule doesn't transmit any
information because identifier "gender" is
not present in at least one Functional
Description

equal =
(<det number> <subst number> <adjnumber>)

This rule transmits number of substantive
(number = plural), in the two other
Functional descriptions of the output list

After constraints are applied, the output
list is :

([cat = det
type = undefined
number = plural]

[cat = subst
meaning = box
number = plural]

[cat = adj
meaning = white
number = plural])

The next step is word selection : for each
terminal, the semantic structure associated
with it is used to choose a lexical item.
This is done by using Functional
Unification. For each word or compound word
selected, "constraints" are processed again,
in order to transmit informations to
Functional Descriptions of the list.

For a given structure there may be more than
one adequate word. In that case the
appropriate word is chosen by the user
interactively.

The list of terminals is enlarged by the
selected lexical items, as shown in the
following example :

For the first item :
(
[cat=det [cat = subst [cat = adj
type=undefined meaning=box meaning=white
number=plural number=plural] number=plural]
lex = un]
)

For the second item :
(
[cat=det
type=undefined
number=plural
lex=un
gender=fem]

)

[cat=subst [cat=adj
meaning=box meaning=white
number=plural number=plural
lex=boite gender=fem]
gender=fem]

For the third item :
(
[cat=det [cat=subst
type=undefined meaning=box
number=plural
lex=un
gender=fem]

)

[cat=adj
meaning=white

number=plural number=plural
lex=boite gender=fem
gender=fem] lex=blanc]

538

At this step each word of the output list is
completely defined. The morphological
generation processes each Functional
Description using fields LEX, GENDER,
NUMBER, MODE, TENSE and PERSON. The
appropriate form of the lexieal item is
constructed using Functional Unification.

For this example the list constructed by the
morphological generation is :

("des", "boites", "blanches")
which gives :

"des boites blanches"

This example is a simple case where items of
a "pattern" do not refer to other rules.
Presence of a rule name in a pattern leads
to activation of this rule with a subset of
the initial meaning (transmitted by a path,
as for a terminal).

4.2. Generation models

The generation of the sentence associated to
a semantic structure may lead to various
syntactical constructs. In order to reduce
the number of constructs, and to allow
control of text style, a specific feature
has been introduced, named "generation
model". A generation model associates a
semantic pattern to a precise grammar rule.

Example :

Semantic structure associated to the advice
"Do not expose to rain" in a user's manual :

[advice
advice-type = directive
advice-giver = constructor
content = [link = negation

argl = [action
action-type = expose
subjsem = user
objsem = machine
obj2 = rain]]]

Among the "generation models" of the system,
the following is Functionnaly Unifiable to
the above structure :

[advice
advice-type = directive
gen-model = [[cat = prop-infinitive

pattern = (gvinf *comp)
meaning = <content>]

[cat = prop-must
pattern = (gvdir *comp)
meaning = <content>]

]]

Remark : the symbol * means that the rule
may be repeated.

This generation model is selected by a
restricted version of Functional
Unification : identifiers "advice" and
"advice-type" must be present in the
semantic structure.

In this example two grammar rules are
candidate once the generation model is
selected. A simple implementation is to
choose a rule at random, another is to have
an evaluation module which choose the most
appropriate rule according to stylistic
knowledge (technical style, telegraphic
style, etc).

5. DEVELOPMENTS

Previous version of the multilingual
generation system uses a grammar for
parsing, and production rules for
generation.

Present work i s the adaptation of the parser
to the new formalism, and the implementation
of the generation interpreter. It includes
the adaptation of the multilingual
dictionary retrieval process.

6. REFERENCES

APPELT,D.E.
"Planning English Sentences." Cambridge
University Press. 1985.

KAPLAN,R.M. and BRESNAN,J.
"Lexical-Functional Grammar : A Formal
System for Grammatical Representation." In :
Bresnan,J. (ed) The Mental Representation of
Grammatical Relations. MIT Press. 1982.

KAY,M.
" F u n c t i o n a l G r a m m a r . " P r o c e e d i n g s o f F i r t h
A n n u a l M e e t i n g o f t he B e r k e l e y I i n g u i s t i c s
S o c i e t y , 1979.

KAY,N.
" U n i f i c a t i o n G r a m m a r s . " X e r o x p u b l i c a t i o n .
1 9 8 1 .

NeKEOWN,K.
" G e n e r a L i n g N a t u r a l L a n g u a g e TexL i n
R e s p o n s e t o Q u e s t i o n s a b o u t D a t a b a s e
S t r u c t u r e . " P h . D . d i s s e r t a t i o n . U n i v e r s i t y
o f P e n n s y l v a n i a . 1 9 8 2 .

R I T C I I I E , G .
" S i m u l a t i n g n - r u r i n g m a c h i n e u s i n g
f u n c t i o n a l u n i f i c a t i o n g r a m m a r . " ECAI 84 .
P i s s . 1984.

ROUSSELOr,F.
" R 4 a l i s a L J o n d ' u n p rog ramme e o m p r e n a n t des
t e x t e s ~ en u L J l i s a n L un f o r m a l i s m e u n i q u e
p o u r r e p r d s e n L e £ r o u t e s l e s c o n n a i s s a n c e s
n d c e s s a i e e s . " Thbse d ' E t a L . U n i v e r s i t y o f
P a r i s V I .] 9 8 6 .

ROUSSEI_OT,I r . and GROSCOT,H.
"Un l a n g s g e d 6 c] e r a t i f u n i f o r m e eL un
a n a l y s e u r s y n t a x i c o - s ~ m a n t : i q u e . " COGN[TIVA
85 . P a r i s .] 9 8 5 .

S IMf lNZN,N.
" U k i l i s a t i o n d ' u n e E x p e r t i s e pout" e n g e n d r e r
des t e x t e s s t P u e t t J F ~ s en f r a n g a i s . " T h ~ s e .
U n i v e t ' s i t y o f P a r i s V I . 1 9 8 5 .

539

