Valency Theory in a stratificational MT-System

```
Paul Schmidt
IAI Eurotra-D
Martin-Luther-str. 14
6600 Saarbrücken
West Germany
```


Abstract:

Inis paper tries to investigate valency theory as a linguistic tool. in machine translation. There are three main areas in which major questions arise:
(1) Valency theory itself. I sketch a valency theory in linguistic terms which includes the discussion of the nature of dependency representation as an interface for semantic description.
(2) The dependency representation in the translation process. I try to sketch the different noles of dependency representation in analysis and generation.
3) The implementation of valency theory in an MIsystem. I give a few examples for how a valency description could be implemented in the EUROIRAformalism.

0. Introduction

This paper tries to apply a piece of established linguistics, known as valency theory, to the problem of machine translation. As such, it is meant to fit into the forthcoming EUROTRA MT system, though it does not deal with EUROTRA problems spexifically.

There are two aspects which play a role in the building of an Mr-system:
(1) the development of linguistic specifications and
(2) the development of a formalism which allows for the implementation of linguistic results.

This paper mainly deals with the first aspect and thus relates not only to EUROTRA but also at least to all stratificational systems, i.e. systems that break up the translation process into a sequence of simpler transiation processes.
Furthemore it relates at least to any system which uses dependency/valency information as e.g. IFG does with its functional structure.

In EUROTRA, the level where information about dependency/valency is used is the ERS (Eurotra-Relational-structure) which lies between the constituent siructure (ECS) and the semantic interface structure (IS).

So, in EUROTRA terms I try here to give a kind of ERS-definition in the language of empirical linguistics without touching the formalism itself.

The irvestigation divides into three parts:
(1) the sketch of a valency theory which comprises the following points:

- the informal definition of the concepts valency, complement, and adjunct, thereby trying to give a definition which holds for verbs, adjectives, nouns, and prepositions,
- the operationalization of the complement adjunct distinction derived from this definition,
- the classification of the complements, a subclassification of the complement classes (cclasses) according to their syntactic realization, and the determination of the relevant sentence patterns,
- a short discussion of the relation of the dependency level to constituency level and from dependency level to semantic representation.
(2) the application of the linguistic specifications to the problem of MI which has to investigate the role of dependency representation (D-representation) (or: rather the role of the transitions to D-representation, since levels do not "play a role") in analysis and generation.
(3) the way the gained linguistic information can be implemented according to the EUROITRA formalism.

1. Outline of a Syntactio Valency Theory

1.1 Definition of Conceptes

The syntactic valency of an element of a word class (a nonterminal category) is its property to bind a certain number and a certain kind of syntagma.

Those valency-bound syntagmas are the complements. The syntagmas which are not valenoy-bound are the adjuncts. A11. syntagmas which are obligatory in a syntactical sense are valency-bound, i.e. the sentence must contain that item otherwise it would not be complete.
Besides the obligatory syntagmas the wordsubclass specific elements are valency-bound (Engel 1982). Wordsubclass specific elements are those syntagmas which can occur only with elements of wordsubclasses.

1.2 operationalization of valency

This point usually forms the major part of each paper on valency theory and mostly consists of a discussion of various proposed tests in the literature on valency theory showing their deficiencies and coming up with a new proposal.

The discussion of proposed tests will be left out In this paper and the proposal for an operationalization that will. be made consists of an adaption of a test which has already been established and which could be called "the free addibility test". This test will be refined here and is thus a "nodified addibility test." It will be explained mainly by applying it to verd valency but is also meant to apply to word-classes other than verbs.

In ordex to operationalize the term "obligatory complement" the elimination test is applied. The syntagma in a given sentence is obligatory if it cannot be eliminated without rembering the sentence ungramatical. In Genman, only verbs, adjectives ard prepositions can have obligatory complements.

In order to operationajize sublass specivicity, a modified addibility test is applied. 'Theoughont the history or the theory of valency, many tests have bean proposed. The one propoed hexe is considered the most adequate as there is an obvious relation between definitim on omacet and operatinaliuation tie also has the property or being wartialty applicable thestingually, which is not vatmextant for muonen.

The ofree addibinsty bestw consists of onecking which syntagmas can occax together. if there are 30 xestrictions sox a eyrcagna, i.e. in it tan be freely added, it io am adjunct and not valency bomad. 'dhis test' however, ommot handle ibhe fothowing problesus. The respective explatatione lead to a refinement on the test and thus to the "noditied addibility test".
a) There awe restrictions in combining temporal adfuncts with terses or thes vech.
(1) whe kem haryers.
(the cout fomorrow)
b) 'Mexe are restrictiont in oonbining dextath alenthte of adjunct clarses with certain subjects.
(2) bDew Baun sicht absichtlich am Hang. (whe dnee is deliberately on the slope.)

In (a) and (b), it can be proved that the restrictions do not come trom the verb but ane caused by other reasome Tt is possible to roza combet sentences containing both the verw ard the adjunct. 'therefore, there is no principled int possibility of theix conbination.
(3) Ere leommit moryens. (He will come tomorrow.) Frita steht absichtich am Abhang. (Frite stards deliberately on the shope.)
c) More problematic is the case where elenents of sublasses of adjunet classes are in fact not cont binable with a verb. in
(4) *Etite atrot qemutlich. (weritz breathes oosily.)
the restriction coness fin fact from the verb. Fixe symtagma "gemuttich" which is denoted as an adjunct would fulfil the requirement of being subcilass spe cific. Therefore, the addibility test has to be restricted.

(5) Mrits atnet schwer: (Pritz breathes heavily.)

de (5) is corrcet and "schwar" belongs to the same class of adjuncts, i.e. adjuncts oit manner, the addibtidity test whi have to be restricted to classes of Byntaguas. It elements from adjunct chasses axe Treely combinable, the adability test is considered as fulfilued.
d) Mowever, there are dextain moblematic ocses.
(6a) mes regmet mit einen Hamer. (*Tt is taining with a hanter.)
(b) mas Avto ist rot bis morgen. (whe car is red motil tonerrow.)
 con suacely bu descoibed ats being treely adable ats thoy ondy combine with action verbe and to futhil the criterion of sukclass spechficity. on the ofther hand, they oas be stbstued verare such as large mbelass of vorbs that we em no longer talk masomaby or sumbes spountuty in fact, these tow wases we the mote difficult to hardle and heve led ingousts to draw diferent concluetone, as a.g. the absumgitan of difiement degece of whesion this, houcver, means that the distinction of syntegnes into complements and adjuncte in a mentenoe (Somses lega) bas ghmply bexa abardoned.

It: most be steted bere that a) - d) is not a compete list of groblemtic cases. This point needs to have more investigation and thus the modified addibility test needs more moxdification.
 io the tollowing:
.. Tr thexe is free addibility, the oymagma is ar adjunci:

- Ti thene are addibinity mestriction Erom other sources than the vert (see a) os above) the symagna is an adjurco
- All other sytugnas are complenthts.

1. 3 Complement classes

1.3.1 Verys

The above proposed tests (elimination test and modified addibility test) lead to ten complenert classes fox German verbs, which car be sub elassified further aceording to their moxpho symactie realizatios.

There are five case-determined C-tasses, including the preporitional complement. the following table shows the first 5 C-classes as an example:

rinere is as efxth class the sidative oxygentent: It. Cam be realined as JP as in (7)

or as adverbial phrase or as wheclause.
The seventh C-class iss the temporal complement as in (8) ,
(8) Der Vortuag deuert tange. (The lecture laste a lorg tine.),

Th con be realized as Pe, adve and as whelause. Whe directional complenent as in (9) car alse be dealized as yp, adve and as wh-clause.
(9) Er fabte nach Mause. (lie driver honk.)

Whe identifying complenent as in (10), odn be realized as ND (nominative) as om (aconsative), Ae ar as wiew any as alsen.
(10) Pr its doos:
(Ma is stupich),
 reatized as intuitual monswantion, theti-matse, matir clause.
(11) Int: Labt ima komerte
(we hats hinin come.)

 Go bat posmble tembente is a reatimai, on on
 Whare ne aturate

L. 2.2 Bm M

 of the vatacy of nomes finde there are we dider bosy Eunplenomits with nomos. Thats only the

 (13) as chuldemte but thone in (1A) be rajugts.
(15) Mrimemager an Meideibers (wempes oi: Meiditherg)
Totsnube dut Hexeden (hope tor yence) spariergarg durch den Weta falk througo the formet
Erwardume das der Winter sume (expaination that winter with, cone)
nuties aus iggypien (Tetiex hom Egypt)
(1A) ber Man mit dem Kimot (the mon with the doy) Peters Hand (Eeter's hand)
Ein Whenschaftiol whe ex (a soiontirt like him)
min ropi mus staht (a pot made of steel)
The moditiod addibility test rules out the complements in (13). There axe restrictions in
addibility as shown in (15).
(15) *die Mutter auf Frieden (*the mother for peace) *der Tisch durch den Wald (*the table through the forest)
*der Tisch, daß der Winter kommt (*the table that winter comes)

The adjuncts in (13) are freely addable to all nouns. There are some semantic restrictions at most holds for those with verbs.

There are six complement classes for German nouns: Two case-determined CO (nominative) and Cl (nps in genitve, that-clause), prepositional complement, directional, situative and identifying complement.

1.3.3 Adtiectives

The determination of adjective complements works according to our two tests. There are even some adjectives which have obligatory complements, e.g. situated. They are determined by the elimination test.
There are six complementclasses for German adjectives: four case determined complement classes accusative, genitive and dative complements and the prepositional complement, there are quantificational complements and the situational complement as shown in (16):
(16) ziemlich groß (CO)
(quite large)
die Arbeit gewohnt (C1)
(accustomed to work)
der Arbeit müde (C2)
(fed up with work)
den Elitern fremd (C3)
(alienated from the parents)
interessiert an Linguistik (CA)
(interested in linguistics)
am Fluß gelegen (C5)
(situated at the river)

1.4 The theoretical nature of dependency

The description of the theoretical nature will consist of a short description of the relation to the "higher" level of constituency and the "lower" level of semantic representation.

1.4.1 Constituency and dependency

The relation between constituency and dependency is usually regarded as complementary. Constituentgrammars (C-grammars) are based on the part/whole relation and define a hierarchical structure with the respective higher ranking category defined as being composed of the lower ranking ones. In contrast to this, the dependency-grammars (D-grammans) define relations between categories of the same rank, i.e. there is no hierarchical structure in this ranking sense.
However, this is not sufficient for a description
of the relation between constituency and dependency. The relation becomes problematic if the C grammar is a recursive subject/predicate grammar: generating a deep tree. In this case, a translation in the sense of a stratificational MT-system is very problematic without a tree-flattening procedure. This procedure could be justified linguistically because a c-grammar generating flat trees can generate the same sentences as a C grammar which generates deep trees.

1.4.1 Dependency and semantic representation

The complement/adjunct distinction which has been made on the syntactic level using purely syntactic tests is of sentence-semantic importance. Each semantic representation, be it based on symbolic logic e.g. Montague Grammar or on a case grammar, is usually implicitly based on the complement adjunct distinction, There are, however, exceptions. E.g. Fillmore's "instrumental" is an adjunct according to the above mentioned tests (however, marked as doubtful) since it has the very same status as the other roles in Fillmore's framework.

The differentiation between complement and adjunct is made in Systemic Functional Grammar (Falliday, Fawcett) by distinguishing between participant roles and circumstantial roles. The participant role is a semantic interpretation of the comple-ment-verb relation, whereas the circum-stantial role is the semantic interpretation of the adjunctverb or adjunct-clause relation.

As has been shown (Projektgruppe verbvalenz 1981) the complement verb relation can be interpreted semantically in a lambda categorial grammar. A semantic description of an expression of natural language in a lambda categorial grammar consisits of a translation into an expression of the artificial language lambda L and of a model theoretic interpretation of this lambda x expression.

Valency frames of verbs are represented in a lambda categorial grammax as the number of lambda prefixes the translated expression receives by the translation into lambda L .

The lambda operator can bind a variable in its scope and makes predicates out of sentences.

$$
\begin{array}{lr}
\text { (17) lambda } \times[\text { schläft (x)] } & \text { (ein } x \text { sein, das } \\
\text { schleft) } \\
\text { lambda } x[\text { sleeps (x)] } & \text { (to be an } x \text { that } \\
\text { sleeps) }
\end{array}
$$

Two-place predicates are represented like (18).
(18) Lambda x1 [lambda x2 [betrachtet (x1,x2)] lambda xl [lambda $x 2$ [looks at ($\mathrm{x} 1, \mathrm{x} 2$)]
I shall not try to show how such an expression is
interpreted in a model. The point that is made here is that a semantic description in the frame of a lambda categorial grammar uses the syntactic relation between complement and governing verb as the basis of its sentence - semantic description.

2. The role of the syntactic dependency representation level in MT

The facts discussed purely linguistically in section 1 give clear guidelines for application in MT.

2.1 Dependency structure (D-structure) in analysis

The dependency representation (D-representation) serves two purposes:
a) The translation into the D-representation relates the D-structure to the syntagmas analyzed on the C -level and thus contributes to the disambiguation of the c-structures which cannot be achieved on the c-level as these can only be reached by the valency statements. (This at least is the case if the two levels axe strictly separated.) Usually, the constituent analysis delivers several readings for a longer sentence. Each NP in the genitive case for example, which is an attribute to a noun, has to be interpreted as a potential genitive valency of a verb. In this case, the transition from c-representation to D-representation filters many ambiguous structures by assigning the appropriate d-relation. As there are only a few German verios with genitive valency, these readings are filtered out in miost cases.
b) A second function of the dependency structure is the disambiguation of the verbs (and other elements of word classes which have a valency frame). Different vect readings often are discriminated by different valency frames. An arbitrary example proves this:

(19) anziehen COanziehen $\mathrm{Co} / \mathrm{Cl}$		Die Mieten ziehen an. (Rents are rising.)
		Fritz zieht die Bremse an.
		(Fritz pulles the brake.)
anzieherı $\mathrm{CO} / \mathrm{Cl} /$ (C 3)		Die Mutter zieht dem
		Kind die Schuhe an. (The mother helps the child with the shoes.)

In a sentence in which the verb "anziehen" occurs with only one co, the reading can be identified unambiguously and translated by t-rules into the IS (Interface) atom with the corresponding case role. (In EUROTRA, the IS is designed as a semantic interpreted D-structure).

2.2 D-structure in generation

The task of the D-level in generation is the generation of the target language D-structure from IS by assingning the appropriate (cornect) surface syntactic valency frames:
In the source language, e.g. German, the vert "sich erinnern" has the syntactic valency frame $\mathrm{C} 0 / \mathrm{C} 4$, (which is the complement in the nominative case and a prepositional complement). In the target language English the verb "remember" has the frame $\mathrm{C} 0 / \mathrm{Cl}$ (which is the subject and the direct object). In the target language the language-specific surface syntactic valency frame (the direct object) is generated from the interlingual IS. The D-structure is thus a precondition for the generation of correct constituent surface structures according to their valencies.
(20) is an example. (It uses the case roles "prom cessor" and "phenomenon" according to systemic functional grammar.)
The translation undergoes the mentioned levels. Relevant for generation is IS (T) to ERS(T).

3.1. Some Remarks on the EuRoIRA - Fomalism

The most important assumption in EUROTRA is "that translation between natural languages is a sequence of primitive translations between a number of levels of representation" (Arnold et al. 1985b).
Such a level of representation is a "language L generated by a gramnar G and an interpretation I" (Arnold et al.1985b). I specifies the syntactically and semantically well-fonmed expressions of L. G consists of a set of atons and a set of constructors. Basically Atoms ane the lexical entries, the constructors are the grammar rules on the different level.s. Atoms have a name and a set of featunes. Constructors have a name and a set of features and a set of arguments which can either be atoms or constructors themselves. They look like (21):

```
(21) Atom: name {featl, ..., featn}
    Constructor: name {feat1,..., featn} [arg1,...
            .,argi]
```

A constructor is syntactically well-formed if its arity equals the number of its arguments and if the anguments are well-formed. It is semantically wellformed if its arguments unify with the argument
places of the constructor arguments.
The adjacent representational levels are related by a translator which is a set of t-rules. It has been said that translations between representational levels are primitive which means that they are (a) compositional and (b) "one shot" (Arnold et al. 1985b).
(a) means that atom is translated to atom and constructor to constructor, where at least the relaxation is allowed that the number and order of constructors differ.
(b) means that the translator takes only wellformed expressions of Gi and yields only well. formed expressions of Gi+1 (Arnold et ail. 1985b). This means that there is no internal stratogy in the twile.
3.2. Some ideas for the implementation of D structure in the murotra fomalism

The implementation of D-structure consists of what has been called patterns, in 1 and it has to be done in the formalism sketched in 3.1. That means that for each of the patterns there has to be a set of constructors.

As implementation has just begun the ideas here are acmewhat vague, and the proposals certainly do not use all the possibilities the fomalism provides.

3.2.1 Sentence patterns

For sentences the general. pattern looks like (22)

$$
\text { (22) } \mathrm{S}\{\mathrm{FD}\}\{[\operatorname{gov}\{\mathrm{FD}\}, \text { complif } \mathrm{FD}\}, \ldots,
$$

This is just what has been stated above. A sentence S with a feature description FD consistes of the pattern with a governing verb with a feature description FD and a complement configuration each complement with a feature description FD plus an arbitrary number of adjuncts each adjunct with a feature description FD .
The above proposed subclassification by syntactic realization can be handled by a cat feature. For pattern C 0/C 1 (sentences with transitive verbs) (23) is an example.
(23) S\{ FD \} [gov \{cat=v,....\}, co (cat=np, case $=$ nom,\}, Cl \{cat=np, case=acc,\}, adjunct $\left.\{\text { FD }\}^{*}\right]$

So, the implementation of the 150 subclassified sentence patterns consists in an enumeration of the S - constructors according to (23).

3.2.2 NP-patterns and AP-Patterns

For NPs and APs the general patterns look like (24):
(24) $N P\{F D\}[$ gov $\{\operatorname{FD}\}$, compll $\{F D\}, \ldots$,
compln (FD \},adjunct(FD)*]

The subclassification according to syntactic realization has to use the cat feature as in 3.2.1.

1. Conclusion

The D-structuce is of major importance for an MT system and a careful lingustic definiton of this level chould be made. It is important particularly in a multilingual. MT-system like Eunourn as it is a precondition for is and thus for transfer. The way in which the D-structure has been presented here, it represents an interface between language specific and interlingual levels. it is interlingual in the sense that the somplement//adjunct distinction is regardea interlingualiy, and language speciric insofar as the classification of complements is larguage specific.

5. References:

(1) Arnold, D_{0}, des tombes, L_{0}, Jaspaert, L. , : Eurotra ringuistic specifications, (manuscript), 1985, ($=1985 a$)
(2) Arnold, D., ot al.: A Mu-1 View of the $\langle\mathrm{C}, \mathrm{A}$, , T Framework in kurorka, in: proceedings of the confexence on Theoretical and Methodological Issues in Machine Translation of Natural Ianguages. Colgate University, Hamilton, New York, August: 1985, RP 1-14. ($=19853$).
(3) Arnold et al.: The Eurotra Reference Manual, (manuscript), February 1986
(4) Engel, Ulicich: Syntax der deutschen cogenwartssprache, Berlin 1932, (Grundlagen der Germanistik 22)
(5) Engel, Ulxich, Schumacher, Helmut: Kleines Valenzlexikon deutscher Verben, ruübingen 1978, (Forschungsberichte des Instituts für deutsche Sprache 31)
(6) Projektgruppe Verbvalenz: Konzeption eines Wörterbuchs deutscher Verben, Tübingen 1981, (Forschungsberichte des Instituts für deutsche sprache 45)
(7) Somers, Harold: on the Validity of the comple-ment-Adjunct Distinction in Valency-Grammar, in: J.ínguistics 22, 1984, pp 507-530

