```
Anttin I i vonem
University of Oulu
Institute of Phonetics
```

AUTOMATIC RECOGNITION OF SPEECH SOUNDS BY A DIGITAL COMPUTER

Three contributions concerning the discrimination of the momentan spectrums of some selected Finnish and German sounds

The main difficulties in the speech recognition may be listed in the following way:

1. Which should be the basic linguistic units to be recognized: sounds (allophones), phonemes, segment combinations, syllables, words?
2. Should the output text be written ortographycally?

How then the problem of the differences between the phonemic form of an utterance and the ortography should be resolved?
3. If the word is chosen as basic units for the recognition, how one should resolve the problem of the grammatical flexion (e.ge in Finnish)?
4. How can the recognition automation decide, where there is a boundary between two words or two sentences? 5. How can the automation decide that e.ge the pause during a long voiceless. stop consonant is not a boundary? 6. How can the automation discriminate the tonal and croneme classes in laguagesg in which they are linguistically relevant?
7. The automation should not take into account the irrelevant noise; one must regard also the noise produced by the automation itself.

```
8. How to localize the points in the speech continuum,
which the recognition can be based on; is there one
special acoustic segment (or a momentan spectrum) for
every sound, which is characteristic: for the sound?
9. It has been shown that segments, which are ling u -
istically i dentical, can be acoustically
different. The differences are due to following factors:
(1) The same speaker can not produce two exact similar
sounds, because the conception of the identity is a human
abstraction. (2) Different speakers produce linguistically
the same sound in a different way. (3) Linguistically the
same sound can be modified acoustically by the word promi-
nence, sentence prominence, environment, emotional factors,
speech tempo, dialectal background of the speaker, speech
defects, huskiness, and so on.
10. Lifnguicsticcallydifferent sounds
can be acoustically similar.
11. Should the phonotactic structures (Sigurd) or the
characteristic sequencies (Pike) of a language be regarded
when creating the recognition program?.
12. The technical problems form one great part of the
speech recognition. They concern the mechanical
solutions and the recognitionn pro-
gram.
```


1. Vowel recognition based on some selected vowel variables

``` and discriminant analysis.
The probability of correct identification of the acoustically close German vowel phonemes /i:, I, e:, \(\mathcal{E}\), \(y:\), and \(Y /\) on the basis of spectrographic input data and the discriminant analysis (literat. 1, 2, and 3) was calculated. One male speaker were used. Following variables were measured: the frequencies of the four first formants. (F1... F4); their amplitudes (L1....L4), the amplitude of the zero
```

```
(minimum) point between F1 and F2 (here called LZ1) and that
between F2 and F3 (LZ2), and the duration of the vowels.
    The probability of correct identification was }94\mathrm{ per
cent on average. The highest identification probability
was shown by the phoneme /e:/ (98,9 %) and the lowest by
the phoneme /Y/ (85,7 %). The sounds were picked up from
sentences read by the informant.
    In the real classification procedure which was connec-
ted to the probabilistic recognition program 6 identifi-
cations were false out of }103\mathrm{ possible. The order of the
significance of the variables studied regarding their
discriminatory power was F2, LZ1, F1, F4, duration, L1, F3,
L4, LZ2, L3. - One must take into account the possibili-
ty that two variables, the discriminatory power of which
is good, will correlate with each other. In this case the
better one is placed in a high position in the list, but
the other one comes later than its real discriminatory
power implies, because the correlation is taken into ac-
count. If the better variable was not considered, the
weaker variable would perhaps take its place (if the
correlation is strong enough). This may explain the fact
that F3 comes after F4 (the correlation of F2 with F3 is
strong concerning the vowels studied).
The energy minimum between \(F 1\) and \(F 2\) (LZ1) had a good discriminatory power. This showes that in the acoustic
signal there can be cues, which are available in the autom
matic recognition, such cues, which need not to be relevant
for perception (cf. Tillmann, p. 149).
2. Recognition based on the discrimination of the numerical
models of sounds.
```

In the second experiment the input data of the recognition program consisted of the numerical describers of the sounds. They were formed by using constant points in the

```
measurement of the spectrums of sounds. Thus the describer
of a sound consisted of a serie of numbers, which indicated
the amplitude at constant selected frequencies. The narrow
filter (with 45 Hz bandwidth) was used when producing the
sections, which formed the material measured. }32\mathrm{ measure-
ment points inside the range of 4 kHz were used.
    The describers for 330 Finnish sound manifestations
were calculated. These sounds were representatives for
8 short finnish vowel or 3 nasal phonemes /a, e, i, o, u,
y, \ddot{a,}\ddot{o},m,n,n/. 30 representatives of every phoneme
type were picked up from sentences read by a single male
speaker.
    The data thus obtained were stored and submitted
to the discriminating analysis. The measurement points were
handled as variables.
    The probability of correct recognition was about
60...70% on average. One must regard, however, that the
localization of the sections was (under circumstances) not
very exact and the technical equipment was unfortmately
not the best one.
30 Recognition based on the numerical models of sounds and
a special recognition program.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{9}{*}{nasal sounds belonging to the phonemes /n/ or /m/ were
tried to be classified automatically on basis of the
numerical describers, which are discussed in the preferring
chapter.
Firstly the frequency area of 4 kHz was studied by
means of 33 constant measurement points with distances of
121 Hz. The 'general describers for /n/ and /m/ were calcu-
lated by means of the PROGRAM l}} \\
\hline & \\
\hline
\end{tabular}
```

```
(made with Kay Electric Co. Sound Sona-Graph model 6061-B).
The sections were made from the target point of F2 of the
nasals in single words (all possible environments were
considered). The describers of /n/ and /m/ are presented
graphically in fig. 1. The influence of the environment
on the dental nasals (n) seems not to be very great (fig. 2).
```


Fig. 2
Models of /n/ in different environments. wide band sections were used.

Secondly the numerical describers were restricted so that only nine constant measurement points were considered. The nine points with the best discriminatory power were sought by means of the PROGRAM II (below).

Thirdly the general' numerical models for the both phonemes were calculated on basis of the nine points mentioned. The logic of the procedure is described shortly at the beginning of the program (PROGRAM III).

With the same method the numerical model of a new nasal sound was calculated (PROGRAM III), and the nasal sound was classified by compairing its model with the mean of the models of $/ \mathrm{n} /$ and $/ \mathrm{m} /$.

The main idea of classification is that the amplitudes at the nine measurement points are set on order of magnitude, and then their relative places on the frequency axis are indicated by means of the ordinal numbers (nine possibilities). The ordinal numbers are then placed one after another, so that they form one single number. This number is handled as the numerical model of a group of nasal sounds or a single nasal sound.

The classification time of a sound by means of method described here is only a fraction of that when using the discrimination analysis.

Final comments

Every language needs its own recognition program consisting of subprograms, which can be very different. That the recognition program can be worked, out implies that there is a sufficient amount of acoustic knowledge about the language in question.

It is possible that the complete speech recognition doesn't succeed with the computers available, so that we must waite so long that the biological computers are at our disposal. (contin. after the programs)

```
PROGRAM I (programming language FORTRAN II)
C COMPUTATION OF THE GENERAL MODELS FOR N GROUPS OF
C SOUNDS: CALCULATE THE mEAN SETS FOR THE GROUPS.
c material consists of measurement values at 33
C CONSTANT MEASUREMENT POINTS ON THE FREQUENCY
c AXIS OF EVERY SOUND.
C UNIVERSITY OF OULU,FINLAND
c INSTITUTE OF PHONETICS
c
    DIMENSION IANIPLI(33),NUNIBER(33),ISUM(33)
    DIMENSION AMEAN(33)
    WRITE (3,222)
    222 FORMAT('1',' ')
    IGROUP=0
    401 DO 300 I=1,33
    ISUM(I)=0
    300 NUMBER(I)=0
        READ(1,10)(Iampli(I),I=1,33)
    10 FORMAT(33I2)
            DO 200 I=1,33
            IF (IAMPLI (I) -36.00000)3,4,5
        3 NUMBER(I)=NUMBER(I)+1
            ISUM(I)=ISUM(I)+IAMPLI (I)
    200 CONTINUE
            GO TO 1
        DO-100 I=1,33
        AMEAN(I)=ISUM(I)/NUMBER(I)
    100 CONTINUE
            IGROUP=IGROUP+1
            WRITE (3,333)IGROUP
    333 FORMAT('O','GROUP',T8,I4)
    WRITE (3,11)(AMEAN(I),I=1,17)
    11 FORI氵T(' ','MEANS',T10,17F5.1)
        WRITE (3,12)(AMEAN (I), I= 18,33)
    12 FORMAT(' ',T10,16F5.1)
            GO TO 401
            END
The last card in a group of sounds: 999999999999...99
The last card in the program: 3636363636...36
The greatest possible value of variables (IAMPLI): }3
```

```
PROGRAM II
C SEEK THE NINE BEST DISCRIMINATING POINTS ON THE
C FREQUENCY AXIS OF THE N AND M SOUNDS. USE THE
c NUMERICAL DESCRIBERS OF Iv AND M FORMED BY MEANS OF
THE FROGRAM I.
DIMENSION AMEANN (33), AMEANM (33),ASQUAR(33),DIFF (33)
DIMENSION BSQUAR(33),NUM(33)
C
C
CALCULATE THE DIFFERENCES OF THE DESCRIBERS OF N
AND M.
: It is assumed that the describers of /n/
and /m/ are stored before; they are called
AMEANN and AMEANN.
DO 60 I=1,33
DIFF (I)=AMEANN (I)-AMEANM (I)
    6 0 ~ C O N T I N U E ~
        DO 61 I=1,33
        ASQUAR(I)=DIFF (I)**2
        6 1 ~ C O N T I N U E ~
C
        SET THE AMFLITUDE DIFFERENCES IN ORDER OF MAGNITULE
        D0 421 M=1,33
        BSQUAR(M)=ASQUAR(M)
    421 CONTINUE
    423 DO 424 I=1,32
        I1=I+1
        DO 424 N=I1,33
        IF (ASQUAR(I)-ASQUAR(N)425,424,424
    425 AUX=ASQUAR(N)
        ASQUAR(N)=ASQUAR(I)
        ASQUAR(I)=AUX
    424 CONTINUE
C
    INDICATE THE ORDINAL NUMBERS OF THE POINTS MEASURED
    IN ORDER OF DISCRIMINATING POWER
    DO 450 I=1,33
    IORDER=0
    DO 2 M=1,33
    IORDER=IORDER+1
    IF (ASQUAR(I)-BSQUAR(M))7,7,2,
    7 NUM(I)=IORDER
        BSQUAR(M)=-9999999.0
        GO TO 450
    2 CONTINUE
450 CONTINUE
    WRITE (3,14)(NUM(L) ,L=1,33)
    14 FORMAT('O','ORDINAL NUNIBERS',T20,33I3)
        CONTINUE
    END
```



```
        2 CONTINUE
    4 5 0 ~ C O N T I N U E ~
        WhITE (3,14)(NUM(L),L=1,9)
        14 FORMAT('O','ORDINAL NUMBERS',T20,9I6)
C
    FORM THE NUMERICAL MODEL
        MODEL=0
        MULTPL=100000000
        DO 30 M=1,9
        IPROD=NUM (M)MMULTPL
        MODEL=MODEL+IPROD
        MULTPL=MULTPL/10
    30 CONTINUE
        IF(K-1.00000)49,51,52
    51 WRITE (3,31)MODEL
    31 FORMAT('O','MODEL OF N',T15,I10)
    IN=MODEL
C
    THE SAME PROCEDURE CONCERNING M
            go To 400
        52 WRITE (3,66)MODEL
        66 FORMAT('O','MODEL OF M',T15,I10)
            TM=MODEL
            MEAN = (IN+IM )/2
            WRITE (3,111)MEAN
    111 FORMAT('0','THE MEAN OF N AND M',T25,I10)
c
c
    FORM THE FORM A NEW NASAL SOUND
    550 DO 330 M=1,9
    330 AMIEAN (M)=0.0
    DO }334\textrm{M}=1,
    344 BMEAN(M)=0.0
        READ(1,9)(AMEAN(M),M=1,9)
        9 FORMAT(9F4.0)
        IF (AMEAN (I) - 36.00000)660,888,888
    660 GO TO 770
    49 NAS=MDDEL
        WRITE (3,77)MODEL
    77 FORMAT('O','MODEL OF NASAL',T18,I10)
C
C CLASSIFICATION OF THE NEW NASAL SOUND
    INDIV=INDIV+1
    WRITE (3,98) INDIV
    98 FORMAT('O','INDIVIDUAL',T15,I3)
        IF (NAS-MEAN)801,802,803
    801 WRITE (3,900)
    900 FORMAT(' ','= M)
        GO TO 123
    802 WRITE (3,901)
    901 FORMAT('','=M OR N')
```

GO TO 123
803 WRITE $(3,902)$
902 FORMAT（＇$\left.{ }^{\prime},=N^{\prime}\right)$
123 CONTINUE
GO TO 550
888 CONTINUE
END

If the recognition of the natural languages isn＇t possible，we should consider the possibility of an arti－ fical language，which would be easy to be recognized by a machine．

If the social need of the recognition automations becomes very great，it is possible that the conservative orthography of many language will disappear，and the phonematic orthography will become common。

The discriminant analysis used in this contribution has been programmed by Mr．So Sarna in the Computation Centre of the University of Helsinki（cf． 2 ）．

Literature comments

1．Mustonen，Seppo：Multiple Discriminant Analysis in Linguistic Problems．Nordsam 64，Det Femte Nordiska Symposiet över Användning av Matematik Maskiner。 Stockholm 18．－22．8．1964．
2．Sarna，Seppo：Erotteluanalyysin periaatteet ja käyttö－ mahdollisuudet．Mimeographed copy．Computation Centre of the University of Helsinki（1968）．
3．Cooley．W．W．and Lohnes：Multivariate Procedures for Behavioral Sciences．New York，John Wiley and Sons （1962）．
4．Tillman，H．G．：Akustische Phonetik und linguistische Akustik．Phonetica 16：143－155（1967）．
 Dawid I－ein Beitrag zur automatischen＂Spracherkenuung＂。 $5^{\text {e }}$ congres international d＇acoustique。Liège 7－14 septembre 1965.

