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i. I n t r o d u c t i o n  

i.i.- Background 

This work is  a con t inua t ion  o f  research  repor ted  in  the paper 
Mathematical Models o f  S ~ n o n ~ ,  which was presented  a t  the  1965 
I n t e r n a t i o n a l  Conference on Computational L i n g u i s t i c s .  That paper 
p resen ted  a h i s t o r i c a l  summary of  the concepts  of  synonymy and 
antonyms. I t  was noted t h a t  s ince  the f i r s t  book on Engl ish syno- 
D S ,  which appeared in the  second h a l f  of  the l a t h  cen tury ,  d i c -  
t i o n a r i e s  of  synonyms and antonyms have va r i ed  according t o  the 
p a r t i c u l a r  e x p l i c i t  d e f i n i t i o n s  o f  "synonym" and "antonym" t h a t  were 
used.  The r o l e s  of  p a r t - o f - s p e e c h ,  contex t  of  a word, and s u b s t i -  
t u t a b i l i t y  in  the  same context  were d iscussed .  

T r a d i t i o n a l l y ,  synonymy has been regarded as a b ina ry  r e l a t i o n  
between two words. Graphs o f  these  b i n a r y  r e l a t i o n s  were drawn fo r  
seve ra l  se t s  of  words based on Webs ter ' s  D ic t iona ry  of  S~non~ms and 
mat r ices  fo r  these  graphs were exh ib i t ed  as an equ iva len t  r ep resen-  
t a t i o n .  These empi r i ca l  r e s u l t s  showed t h a t  the concepts  of  synonymy 
and entonymy requ i red  the  use of  t e r n a r y  r e l a t i o n s  between two words 
in  a s p e c i f i e d  sense r a t h e r  than simply a b ina ry  r e l a t i o n  between two 
words. The synonymy r e l a t i o n  was then def ined  i m p l i c i t l y ,  r a the r  than 
e x p l i c i t l y ,  by t h r e e  axiams s t a t i n g  the  p r o p e r t i e s  of  being r e f l e x i v e ,  
symmetriC, and t /~ansi t ive .  The entonym¥ r e l a t i o n  was a l so  def ined by 
th ree  axioms s t a t i n g  the  p r o p e r t i e s  of  being i r r e f l e x i v e ,  symmetric, 
and anti t /~ansi t~ve ( the l a s t  term was coined fo r  t h a t  s tudy) .  I t  was 
noted t h a t  thes~ s ix  axioms could be expressed  in the  ca lcu lus  of  r e -  
l a t i o n s  and t h a t  t h i s  r e l a t i o n  a lgebra  could be used t o  produce sho r t -  
er  p roofs  o f  t~eorems. However, no p roofs  were g iven.  In add i t i on ,  
several gec~aet~ical and topological models of synonymy and antonymy '..J~ 
were posed and examined. ,~ 

I t  was nOted t h a t  c e r t a i n  of  these  models were of  more t h e o r e t i c a l  
than p r a c t i c a l  i n t e r e s t .  Each model was seen t o  be simple in  t h a t  it" 
could be expressed from mathemat ica l ly  e lementary concepts ,  end each 
s t r e s s e d  c e r t a i n  aspec ts  of  the  l i n g u i s t i c  ob jec t  being modeled a t  the  
expense o f  o the r s .  However, t he re  seemed to  be l i t t l e  t h e o r e t i ~ a l  
p re fe rence  among them. Their  adequacy as models could be measured by 
t h e i r  g e n e r a l i t y  and p r e d i c t i v e  power. In  terms of  these  c r i t e r i a  the  
a lgeb ra i c  model ,  whether expressed in  terms of  r e l a t i o n s ,  graphs ,  or 
ma t r i c e s ,  seamed t o  have the  most u se fu lne s s .  In  p a r t ,  t h i s  was due 
t o  the  f a c t  t h a t  one geamet r ica l  model, a l though h igh ly  sugges t ive ,  
did not  inc lude a p r ec i s e  s p e c i f i c a t i o n  o f  the o r i g i n ,  axes,  or co-  
o rd ina tes  f o r  words in  an n-dimensional  space.  S imi la r ly ,  one topo-  
l o g i c a l  model r e q u i r e d  a c losu re  opera t ion  fo r  each of  the  i n t ens ions  
or senses and had  n o  l i n g u i s t i c a l l y  i n t e r e s t i n g  i n t e r p r e t a t i o n .  
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1.2 Summary 

The present paper investigates more thoroughly the characterizations 
of synonymy and antonymy initiated in Edmundson (1965). In section 2, 
synonymy and antonymy are defined jointly and implicitly by a set of 
axioms rather than separately as before. First, it is noted that the 
original six axioms are insufficient• to permit the proofs of certain 
theorems whose truth is strongly suggested by intuitive notions about 
synonyms and antonyms. In addition, it is discovered that certain 
fundamental assumptions about synonymy and antonymy must be made ex- 
plicit as axioms. Some of these have to do with specifying the domain 
and range of the synonymy and antonymy relations. This is related to 
questions about whether function words, which linguistically belong to 
closed classes, should have synonyms and antonyms and whether content 
words, which linguistically belong to open classes, must have synonyms 
and antonyms. Several fundamental theorems of this axiom system are 
stated andproved. The informal interpretation of many of these 
theorems are intuitively satisfying. For example, it is proved that 
any even power of the antonymy relation is the synonymy relation, 
while any odd power is the antonymy relation. 
\ 

In section 3, topological characterizations are posed and examined. A 
neighborhood topology is introduced by defining the neighborhood of a 
word. It is proved that this definition satisfies four neighborhood 
axioms. Also, a closure topology is introduced by defining the 
closure of a set of words. It is proved that this definition satis- 
fies the four closure axioms. 

2. Algebraic Characterization 

2.1. Introduction - Relations 

Before investigating antonymy and synonymy, we will estsblish some 
notions and notations for the calculus of binary relations. 

Consider a set V of arbitrary elmnen~s, which will be called the uni- 
versal set. A binary relation on V is defined as a set R of ordered 
pairs <x,p, where x,y s V. The proposition that x stands in re- 
lation R toy will be denoted by xRy. The dcmain~Y(R), range ~(R), 
and field ~ (F) of relation R are, respectively, defined by the sets 

[x:(~y)(xRy)] ; (y:(~Lx)(xRy)} ; [x:(~y)(xRy)} U (y:(~x)(xRy)] 

The complement, union, intersection, and converse relstions are de- 
fined by 

x~y = -.x~ ; x(RUS)y - x~vxSy ; x(RnS)y " x~x~; 

xR'ly -- yRx 

The identity relation I and null relation ~ are defined by 

xIy ~ x=y ; ~y - (x~x),V~(y~y) 

The p r o d u c t  .and power r e l a t i o n s  a r e  d e f i n e d  by 

xRISy = (.~z)[xRz ^ z S y ]  ; R n =- RIR n ' l  n ~  1 

I n c l u s i o n  and e q u a l i t y  o f  r e l a t i o n s  a r e  d e f i n e d  b y  

RC S =- xRy ==> xSy ; R = S m R c SA S c R 



Later we will use the following elementary theorems which are stated 
here without proof: 

Theorem: R g S ==> R "I c_ S "I 
m -- 

Theorem: R c S ~> S c R 

Theorem: (R'I) "I = R 

Theorem: (RIS)IT : RI(SIT ) 

Theorem: (RIS) "I = S'IIR "I 

Theorem: IIR = RII = R 

Theorem: s -r = >  R I s = R I T  ^ SIR=TIR 

2.2 Axioms and Definitions 

Under the assumption that synonymy and antonymy are ternary relations 
on the set C of all content words, the following definitions will be 
used: 

xSiY = word x is a synonym of word y with respect to the 
intension i (or word x is synonymous in sense i to 
word y) 

xAiY -= word x is an antonym of word y with respect to the in- 
tension i (or word x is antonymous in sense i to word y) 

We will assume that the synonymy and antonymy relations are defined 
Jointly and implicitly bythe following set of axioms rather than 
separately as in Edmundson (1965). 

Axiom 1 (Reflexive) : (Vx)[xSix] 

Axium 2 (Symmetric): (Vx)(Vy)[xSiY => xS;Iy] 

Axium 3 (Transitive): (Vx)(Vy)(Vz)[xSiY A YSiZ :> 

Axi~n 4 (Irreflexive) : (Vx) [x~ix] 

Axiun 5 (Symmetric): (Vx)(Vy)[xAiY => xA;ly] 

Axi~n 6 (Antitransitive): (Vx)(Vy)(Vz)[xAiY A YAiZ 

Aximm 7 (Right-identity): (Vx)(Vy)(Vz)[xAiY A YSiZ 

Axiom 8 (Nonempty) : (Vy) (:~x) [xAiY] 

xSiz] 

~> xSiz] 

~> xAiz] 

The properties named in Axiams 6 and 7 were coined for this study. 

The above eight axioms may be 
as follows: 

Axicm I (Reflexive) : 

Axiom 2 (Symmetric): 

Axiom 3 (Transitive) : 

Axicm 4 (Irreflexive) : 

Axiom 5 (Symmetric) : 

Axiem 6 (Antitransitive) : 

Axiom 7 (Right-identity) : 

Axiom 8 (Nonempty) : 

expressed in the calculus of relations 

I~Si 

sl =- si 1 

~i = S i 

Ai c_ A; 1 ' 

Ai I Si c_ Ai 

(Vy)[A(y) ~ ~] where A(y) = {<x,y> : x E~(A)} 
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This relation algebra will be used to produce shorter proofs, al- 
though this is not necessary. The consistency of this set of aximms 
is shown by exhibiting a model for them; their independence will not 
be treated. 

In addition to the synonymy and antonymy relations it will be 
useful to introduce the following classes that are the images of 
these relations. The synonym class of a word y is defined by 

si(Y ) '= [x : xSiY] 

which may be extended to an arbitrary set E of words by 

si(E) =- {x : (.~y)[y ~ ~. ̂  xSiY]] 
Similarly, the antonym class of a word y is defined by 

ai(Y) --- {x : xAiy] 
which may be extended to a set E of words by 

ai(E ) m {x : (~y)[y e E A xAiY]] 

2 • 3 Theorems 

For ressons of notational simplicity, the subscript denoting the 
intenslon i will be omitted in the sequel whenever possible. How- 
ever, the theorems must be understood as if the subscript were 
present. 

As with any symmetric r e l a t i o n ,  i t  i s  p o s s i b l e  t o  ge t  s t ronge r  r e -  
s u l t s  than A x i ~  2 and Axiom 5. 

Theorem: S "1 = S 
Proof :  1 S c S-1 by Axiom 2.  Hence S "1 c_ ( S - 1 ) - I  = S. There- 
f o r e  S" = S_by de f in i t iQn  of  e q u a l i t y .  
Theorem~ A "I = A 

Proof: Same as above theorem using Axi~n 5. 

Also we get a stringer result than the transitivity property of 
AxiQm 3: 

Theor .em: ~ S 
Proof. ~ c_ S by Axiom 3. Hence S = SII c_ SIS = ~ by Axiom 1. 
Therefore  S 2 = S by d e f i n i t i o ~  of  e q u a l i t y .  

In  f a c t ,  by induc t ion  we have the  g e n e r a l i z a t i o n :  

Proof, 8n= .1 s (sl~ "2) .... = sl(sl(sl"'Is)'") =s. 

I t  can be shown t h a t  a n t o n ¥ ~  and s y n c ~ n ~  are  d i s t i n c t :  A ~ S. In  
f a c t  we have the  s t ronge r  r e s u l t :  

Theorem: A ~- 
P r o o f :  Assume A ~ 7. Hence A n S ~ ¢ o r  (~x)(~M)[x(A 0 S)y]. 
Then x~7 ^ xSy implies xAy ^ ySx by Axicm 2. So xAx, which 
c o n t r a d i c t s  x~x by A x i ~  4:  I ~ ~.  Therefore  A c_ ~. 

because of  Axiom 8, can we ge t  a s t ronge r  r e s u l t  than the  a n t i -  
t r a n s i t i v i t y  p~oplFty of Axiom 6. 

Theorem: A = S 

O~I :. ,A~-.AI S bYl~imm 7. Hence.A 2 = AIA ~-- AI(AIS ) = A'II(AI s) = 
" IA)IS s ~ c e  A" = A. Now (Vy)(~x)[xAy] by Axiom 8. So 

(_vy)(~)E~AI~ ^ ~Ay]~ by ~i~ 5. H~ce (Vy)E~Iy --> ~A-11~l. 
z nus I c_ A" IA. So A ~ ~__ I IS = S. Therefore A "~ = S since A2 ~ S 
byAxium 6 and S G A 2. 



The right-identity property of Aximm 7 can be strengthened to: 
Theorem: AIS -- A 
Proof: AIS u A byAxinm 7. NowA =AII U AIS since I u S. 
Therefore A I S A by definition of equality, 

As a corollary we get that S and A ccexnute : 
Corollary. AIS = SIA 
Proof: AIS --A = A "A = (AIS) "l = (A'lls'l) "l -- SIA 

From the above two theorems it follows that: 
Theorem: SIA = A 
Proof: S~A =A IS =A. 

As a special case we ~et: 
Theorem: A 3 =AIA =AIS =A. 

In fact, we have the generalization: 
S if n even 

Theorem: An = A if n odd 

Proof: For n even, A n = A 2k = (A2) k = ~ = S. For n odd, 

A n = A 2k+l = AI (A2) k = AtS = A. 

Next, several theorems about synonym classes and antonym classes will 
he stated and proved. First, the synonym class of a word is not 
empty: 

Theorem: s(y) ~ ¢ 
Proof :  NOW I c S by Axiom 1. So (Vy)[ySy].  Hence (.~x)[xSy]. 
Therefore, s(y) ~ ~. 

Because S is a symmetric relation, we have: 

Theorem: y e s(x) <~> x e s(y) 

Proof: y e s(x) <-----> ySx <-----> yS'ix <----> xSy <-----> x e s(y). 

Since S i s  r e f l e x i v e ,  symmetric, and t r a n s i t i v e ,  S i s  by d e f i n i t i o n  
an equivalence r e l a t i o n  on t h e s e t  C of  a l l  content  words. Hence, we 
have the  important  r e s u l t :  

Theorem: xSy <-----> s(x)  = s (y)  

P r o o f :  (------->) Assume xSy. F i r s t  l e t  u G s (x ) .  Then uSx ^ xSy 
------> uS2y -------> uSy -------> u • s ( y ) .  Hence s(x)c_ s ( y ) .  Also 
s (y)  c_ s(x) by a s imi la r  argument. Therefore  s(x)  = s ( y ) .  
(<==) Assume s(x) = s(y). Then u e S(X) -~-> U • s(y). SO 
uSx -------> uSy. Hence xSu ^ uSy ~-> xS~y ==> xSy. Therefore  
xSy. 

In  f a c t ,  we have the  s t ronger  r e s u l t :  

Theorem: s(x) N s(y) = .~" s(x) i f  xSy 

L ¢ i f   -sy 
Hence for a given intension i the equivalence relation S i parti- 
tions the set C of all content words into subsets that are 
disjoint (i.e., the subsets have no word in common) and exhaustive 
(i.e., every word is in some s u b s e t ) :  

Theorem: C =~ ) si(x) 
x~ 



Second, the  antonym c l a s s  of  a word i s  not  empty: 
Theorem: a (y)  ~ 
Proof: A~ 8: (vy)(~x)tx~1 ~p~es a(y) ~ ~. 

Note that a word does not belong to its antonym class: 
Theorem: y ~ a(y). 
Proof: Assume y e a(y) so that yAy. But this contradicts 
Axiom 4: yIy ~ yXy. Therefore y ~a(y). 

Next we w i l l  e s t a b l i s h  some r e l a t i o n s  between synoc~ym c l a s s e s  a n d  
anton~a classes. 

Theorem: xA~ ~ ~(x) = s(y) 
Proof: (==>) Assume x e a(y). First let u e a(x). 
~owue a(x)AxAy ~ uAx^xAy ~ uA2y ~ u~ 
~-~ u ¢ sCY). Hence aCx) g s ( y ) .  Also  sCy) c_ a(x)  by a 
s i m i l a r  argmnent.  The re fo re  a (x)  = s ( y ) .  ( ~ )  Assume a (x)  = s ( y ) .  
But y • s(y) = a(x). Hence yAx. Therefore xAy by Axicm 5. 

In fact, we get the following necessary and sufficient condition 
for equality: 

Theorem: a(x) = a(y) <==~ s(x) = s(y) 
Proof: (~--~) Assume aCx) = a(y). Now a(x) rl a(y) ~_~ 

z 

( ~ z ) [ z ~  ^ ~,v] ~-~ (~z)[xAz ^ zAy] ~ x A - y  ~ xSy. 
Therefore s ( x )  = s ( y )  b y  a previous theorem. (<~)  Ass~e  s ( x )  = 
s ( y ) .  Then xSy. F i r s t ,  l e t  u • a ( x ) .  Then uAx. Hence uAx A 
XSy ~ uAISy ~ u~y ==~ U • a ( y ) .  The re fo re  a ( x ) g  a ( y ) .  
Also  a (y )  g a (x )  by an i d e n t i c a l  argument .  The re fo re  a (x)  = a ( y ) .  

2.4 Comments on the Algebraic Characterization 

Even though s(y) # ~ since ySy by Axinm i, it may be necesssry to 
add the following axiom: 

Axiom 9: (Vy)C~x)Kx ~ y ^ x~] 

to guarantee that the domain of the relation S is not trivial, i.e., 

s(y)-Cy] ~¢ 

Axiom 9 is not necessary if s(y) is permitted to be a unit set for 
certain words. Thus, we might define s(y) = (y) for any function 
word y, e.g., s(and) = (and). But this will not work for antonymy 
since a(y) might be considered empty for certain words such as 
function words, e.g., a(and) = ~. The alternative of defining 
a(y) = ~ is not reasonable since it produces more problems than 
it solves. Axiom 8: (Vy)(~x)[xAy] is reasonable if the contraries 
_of words (e.g., nonuse, impossible, etc.) are permitted, i.e., 
y e ~(y). 
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The theorems 

= S , A 2 = S , AIS =A , SIA =A 

can he summarized in the following multiplication table for products 
of the relations S and A 

S A 

A 

which is isumorphic to the table for addition modulo 2 

0 1 

1 

Note, even without Axicms i-8, for 

(1) A 2 = S , (2) A S =A , (3) A[S = A 

that  41) and 42) £mp~ 43), (i) and 43) ~P~v 42), but (Z) and (S) do 
not i~ (1). 

Suppose that for every pair <x,y> Of words in the vocabulary V of a 
language exactly one of the following ternary relations holds : 

(1) x and y are synonymous, xSy 
2) x and y are antonymous, xAy 
3) n e i t h e r  (1) nor 42), xMy 

This can be expressed by 

(Vx)(Vy)[x,~ e v - - - - - > x s ~ V x ~ v v x ~ ]  

which i s  an exc lus ive  d i s j u n c t i o n .  Thus the vocabula ry  V i s  
partitioned as follows: 

V = s(y) U a(y) U m(y) 

This also can be pictured in the lattice of f o r  every  word y .  
r e l a t i o n s  

U=V~V 

It can be shown that the multiplication table for products of 
the relaticms S,A, and M is 

S A M 

S S A M 

A A S M 

M M M M 2 
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3. Topological Characterizations 

3.1. Introduction 

We will now examine two topological models of synonymy. Being 
topological, they concern "semantic spaces" of words without any 
notion of "semantic distance" between two words. Again, we will 
restrict our attention to content words. Topological models for the 
antonymy relation will not be considered. 

3-2. Neighborhood Topology 

The first model considers a neighborhood topology, i.e., a topology 
based on neighborhoods. A set is said to have a neighborhood 
topology if there exist elements x called ~ and sets N x called 
neighborhoods of x Which satisfy the following axlcms: 

Axiom l:  (Vx)(~Nx)[X e N x] 
~ i a n  2: (v~ x) (vN x).c.~N''~x. [~x ~ ~x n N x] 
Axiom 3: (vy)CVSx)CZs~,)[y ~ s x ~ >  ~y ~ ~ 1  

Axiom ~: (Vx)(Vy)(~x) (aNy) Ix ~ y ------> Nx n Ny -- ~]  

These axioms can be pictured informally by the following Euler 

N x N~ N x Nx Ny 

Define a neighborhood n~(x) of a word x as any subset of the synonym 
class si(x) o~ x that cSntalns x, i.e., 

X e n i ( x  ) ~ s i ( x  ) 

Wain, for- reasons of notational simplicity, the subscript denoting 
the intension i will be emitted whenever possible. 

First, neighborhood Axiom 1 is satisfied. 
Theorem: (Vx)(an(x))[x z n(x)] 
Proof: By definition s(x) is a neighborhood n(x) of x 
c oalt aining x. 

Second, neighborhood Axiom 2 is satisfied. 
Theorem: (Vn(x))(Vn'(x))(~n"(x))[n"(x) c n(x) n n'(x)] 
Proof: For arbitary n~x) and n'(x), let n"(x) = n(x) N n'(x). 
Then n"(x) ~ s(x) since n"(x) = n(x) n n' (x) c s(x) N s(x) - s(x). 
Also, x e n"(x) since x ¢ n(x) ^ x e n'(x) imply x e n(x) n n'(x) = 
n"(x). Therefore, (Vn(x))(Vn'(x))(~n"(x))~"(x) ~ n(X) n n'(x)]. 

Third, neighborhood Axiom 3 is satisfied. 
Theorem: (Vy) (Vn(x) ) (~n(y ) ) [y  e n(x)  ==> n(y)  c_ n(x) ]  
Proof :  For a r b i t r a r y  y e n ( x ) ,  l e t  n (y)  = n ( x ) .  But y e n(x)  
implies s(x) = s(y) since y e n(x) c_ s(x) = {z : zSx] implies ySx 
and ySx impl ies  s (y)  = s (x)°  Then n(y)  c_ s (y )  s ince  n(y)  = n(x)  
c_ s (x)  = s ( y ) .  Also y e n(y)  s ince  y e n(x)  = n ( y ) .  The re fo re ,  

(vy)Cvn(x))Czn(y))[y ~ n(x) ~ n(y) ~- nCx)]. 



In fact, the neighborhood topology satisfies Axiom 4, which is a 
separation axiom: 

TheorT: (Vx)(Yy)(~n(x))(~n(y))[x ~ y => n(x) n n(y) = ~] 
Proof. Assume x ~ y. Let nCx) = (x} and n(y) = {y}. 
Then x e n(x) ~ s(x) and y e n(y) ~ s(y). Thus n(x) n n(y) = 
{x} n (y} = ~ since x ~ y. 

Therefore, with respect to  synonymy, words have a neighborhood 
topology since 

(1) (Vx)CZn(x))[x • n(x)] 

(Vy)(~n(y))[y e n(x) ~ n(y) ~ n(x)] 
.(Vx)(Vy)(~n(x))(~n(y))[x ~ y ~ n(x) N n(y) = ~] 

3.3. Closure Topology 

The second model considers a closure topology, i.e., a topology based 
on a closure operation. A set is said to have a closure topology 
if there exists a unary operation on its subsets, denoted by~ and 
called the closure, which satisfies the following axiums: 

Axiom 2 :  E c_ E 

Axiom 3: E c E 

~ i ~  ~: .~'O-'f =~ 'u  ~" 

Define the closure of a set E of words as the synonym class of E, i.e., 

The closure axiums can be shown to be satisfied by using the original 
definition of synonym class 

sCE) z {x : (~y)[yeE^xsy]} 

However, shorter proofs are possible by noting that the synonym 
class of a set E of words can be expressed as 

s(E) = y e E s(y) = E (X : xSy} 

First, closure Axicm 1 i~ satisfied: 
Theorem: s(g) = 

Proof: s(~) = sCy) = ¢ 

Second, closure Axium 2 is satisfied: 
Theorem: E =- s(E) 

 oof. = . . U o  ryj 
I 

= E since y • s(y) -~> 



Third, closure Axi~n 3 is satisfied: 
Theorem: s [ s ( E ) ]  c s(E)  

~oof: N~s(s(y))=sCtu:u~1)=tv:v~y]~ {v:v~] = 

s(y) since ~ c_ S. Thus sis(E)] = U s(x) 

x ~ sCE) 

U x U(.(x) - U.(,) 
yeE y) y~E yeE 

Fourth, closure Axiom ~ is satisfied: 
The=am: sCE u F) = sCE) u sCF) 

~ o o f :  sCE u F) = ~J s(y) 
y~-E UF 

s(E) U S(F). 

i a 

= l ~ J  sCx) : 

x e U s ( y )  
~ E  

= sCE) 

-- U s(y) u s(y) = 
yeE yEF 

T h e r e f o r e ,  w i t h  r e s p e c t  t o  synonyay ,  words have a c l o s u r e  t o p o l o g y  
s i n c e  

(1)  s (¢ )  = 
C2) E ~- sCE) 
(B) s [ sCE} l  ~ s(E) 
(~) sCE U F) = sCE) U sCF) 

Note that fram Axioms 2 and 3 we get 
Theorem: s[sCE)] = sCE) 

3.~. Ca~nents on Topological Characterizations 

Note that for the neighborhood topology a separation sxicm has been 
added t o  t h e  t ~ r e e  axioms proposed  i n  Edmundson C 1 ~ 5 ) .  A l s o ,  t h e  
ne ighborhood  t o p o l o g y  seems more i n t u i t i v e l y  s a t i s f y i n g  t h a n  t h e  
c l o s u r e  t o p o l o g y .  However, f o r  t h e  c l o s u r e  t o p o l o g y  i f  we d e f i n e  t h e  
d e r i v e d  s e t  o f  a s e t  E o f  words  a s  t h e  s e t  o f  a l l  words  t h a t  
~are synonymous  t o  some word o f  E, but n o t  i d e n t i c a l  t o  t h a t  
Worde i.e.. 

t h e n  we have t h e  f o l l o w i ~  r e s u l t :  
Theorem: s(E) = E U g' 

which may be given a reasoQahle linguistic interpretation. An 
example is {y}' = s(y) - {y} which was discussed in the sectio~ on 
algebraic characterization. 

4. Conc~sions 

These results support the belief that the algebraic characterization 
is insightful and appropriate. For example, the assumption that 
synonymy is an equivalence relation also has been made, either 
directly or indirectly, by F. Kiefer and S. Abraham (1965), 
U. Weinreich (1966), and others. Since the axiom system defines the 
notions of synonymy and anton~ Jointly and implicitly, it avoids 
certain difficulties that are encountered when attempts are made to 
define these notions separately and explicitly. 

iO 



These topological characterizations provide a no,metric represen- 
tation of what has been called informally a "semantic space". 
Previous attempts to construct a semantic space that is metric 
(i.e., one for which a distance function is defined) have not met 
with much success. The consideration of general topological spaces 
avoids this difficulty. 
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