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Abstract

The state-of-the-art methods for relation classification are primarily based on deep neural net-
works. This supervised learning method suffers from not only limited training data, but also the
large number of low-frequency relations in specific domains. In this paper, we propose an ex-
ploratory relation classification method for domain knowledge harvesting. The goal is to learn a
classifier on pre-defined relations while discovering new relations expressed in texts. A dynami-
cally structured neural network is introduced to classify entity pairs to a continuously expanded
relation set. We further propose the similarity sensitive Chinese restaurant process to discover
new relations. Experiments conducted on a large corpus show that new relations are discovered
with high precision and recall, illustrating the effectiveness of our method.

Title and Abstract in Chinese

基于领域知识获取的探索式神经网络关系分类

近几年来，关系分类任务主要利用神经网络模型来自动学习复杂的特征。然而这类监督
式学习方法的局限性在于，首先它需要大量训练数据，其次特定领域存在长尾的低频关
系无法被有效地预定义。在本论文中，我们提出了基于领域知识获取的探索式关系分类
任务。它的目标在于学习预定义关系的分类器，同时从文本中发现新的语义关系。我们
提出了一个动态结构的神经网络，它可以对持续扩充的关系集进行分类。我们进一步提
出了相似度敏感的中餐馆过程算法，用于发现新关系。基于大语料库上的实验证明了该
神经网络的分类效果，同时新发现的关系也有较高的准确率和召回率。

1 Introduction

Relation classification assigns semantic relation labels to entity pairs in texts. Besides traditional feature-
based (Kambhatla, 2004) and kernel-based (Bunescu and Mooney, 2005) approaches, neural networks
(NNs) are introduced to harvest relational facts in recent years. Classical architectures include convolu-
tional neural networks (CNNs) (Zeng et al., 2014), recurrent neural networks (RNNs) (Xu et al., 2015),
etc. However, above methods are still insufficient for domain knowledge acquisition due to two chal-
lenges: (i) most domain entities rarely occur in the corpus, hence pattern-based methods easily suffer
from the feature sparsity problem; (ii) a domain knowledge graph tends to be incomplete w.r.t. relation
labels and facts (Fan et al., 2017). As a result, unlabeled entity pairs are likely to be wrongly forced into
existing relation labels by distant supervision approaches, instead of their true, unknown labels.

In this paper we propose a method, Exploratory Relation Classification (ERC), to populate domain
knowledge graphs automatically. The goal of ERC is to not only classify entity pairs into a finite set
of pre-defined relations, but also simultaneously discover previously unseen relation types and their
respective instances from plain texts with high confidence. The resulting numbers of relation types and
facts in the domain knowledge graph grow continuously.
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To solve ERC problem, we propose a Dynamic Structured Neural Network (DSNN). In the network,
the convolutional and recurrent network units are employed to model local information such as syntactic
and lexical features from the sentence level. For the context sparsity problem (Challenge (i)) an embed-
ding layer is introduced to encode corpus-level semantic features of domain entities. The output classes
of DSNN can be automatically expanded during the iterative training process, in order to classify entity
pairs to both known and newly discovered relations. To explore new relations and corresponding in-
stances, we introduce the similarity sensitive Chinese restaurant process (ssCRP) to generate clusters of
entity pairs from unlabeled data that can not be classified into any known relations (Challenge (ii)). We
can see that the DSNN only takes the training data of known relations directly derived from a domain
knowledge graph without requiring any training data for new relations. Therefore, our approach is a very
weakly supervised one with minimal human intervention.

The rest of the paper is organized as follows. Section 2 summarizes the related work and discusses
relations between existing methods and ours. The detailed approach is introduced in Section 3, Section
4 and Section 5, with experiments presented in Section 6. Finally, we conclude this paper in Section 7.

2 Related Work and Discussion

In NLP research, feature-based (Kambhatla, 2004) and kernel-based (Bunescu and Mooney, 2005) meth-
ods have been proposed to utilize lexical, syntactic and semantic features for relation classification. In
recent years, neural network based approaches are introduced to improve the performance. Word embed-
dings of entities are frequently used as inputs, instead of one-hot representations (Mikolov et al., 2013;
Pennington et al., 2014). As shown in (Wang and He, 2016; Wang et al., 2017), word embeddings can be
used for relation prediction. For neural network architectures, CNNs are capable of learning consecutive
contexts of entities as local lexical features (Zeng et al., 2014; Vu et al., 2016), while RNNs exploit syn-
tactic features by modeling long-term dependencies of sentences via memory units. The model of Long
Short Term Memories (LSTMs) (Hochreiter and Schmidhuber, 1997) is an effective variant of RNNs to
encode the shortest dependency path (SDP) between entity pairs (Xu et al., 2015; Shwartz et al., 2016).
More recent work focuses on the design of integrated architecture, combining both CNNs and RNNs.
Cai et al. (2016) propose a bidirectional recurrent CNN to model the directional information along the
SDP forwards and backwards. The integrated neural network proposed by Raj et al. (2017) also exper-
iments with attention-based pooling strategy for biomedical texts. Our model provides a more intuitive
representation by feature concatenation instead of network layering, enabling the adaption of dynamic
changes as new relations are discovered in iterations.

For relation discovery, one way is to formulate the task as open relation extraction (OpenRE) (Banko
et al., 2007). Typical OpenRE systems include TextRunner (Banko et al., 2007), WOE (Wu and Weld,
2007), ReVerb (Etzioni et al., 2011), etc. Unlike approaches confined to a fixed set of pre-defined re-
lations, these systems explore relations in a more general way. Contrary to the fact that the contexts
for domain knowledge are sparse, the underlying idea of OpenRE is to identify phrases from sentences
that are able to indicate unknown relations based on data redundancy. Therefore, OpenRE methods are
not suitable for domain-specific knowledge harvesting within a limited text corpus. Similarly, Riedel
et al. (2013) learn universal schemas by matrix factorization without pre-defined relations. An alterna-
tive way is to use clustering algorithms. Compared to standard clustering algorithms (e.g., KMeans),
non-parametric Bayesian models (Rasmussen, 1999) are more suitable in our scenario, because they
can automatically learn the number of clusters. Studies afterwards exploit data features for spatial and
temporal data, such as distance dependent CRP (ddCRP) (Blei and Frazier, 2010), etc.

Our task is also related to a typical case of multi-class semi-supervised learning when unlabeled data
contains unknown classes. We suggest that existing paradigms for this problem are not much useful
for domain knowledge acquisition. Generally, distant supervision (Mintz et al., 2009) is employed to
generate training data by aligning knowledge bases with free texts. But its strong alignment assumption
may lead to noisy annotation results (Zhang and Wang, 2017). Traditional approaches assign new class
labels to part of the unlabeled data on condition that none of the existing classes can fit the data well
(Nigam et al., 2000; Dalvi et al., 2013). Therefore, considering the sparsity of domain knowledge, these
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methods applied on such corpus will introduce plenty of small classes, which are in fact noises and thus
meaningless. In contrast, our ssCRP-based approach works more effectively since we only discover one
large class with confident instances in each iteration. Hence such noises in the data will not be forced to
generate small classes and are automatically discarded when the last iteration stops.

3 Dynamic Structured Neural Network for ERC

In this section, we present the definition of the task ERC and a high level introduction of the DSNN
approach.

3.1 Task Definition

Before introducing the training process of DSNN, we first provide some preliminaries. Denote entity
pairs as X l = {(e1, e2)} with corresponding labels Y l, and unlabeled entity pairs as Xu = {(e1, e2)}.
Exploratory Relation Classification (ERC) task is defined as follows:

Definition 1. Given labeled data (X l, Y l) and unlabeled data Xu, the goal of ERC is to train a model
to predict the relations for entity pairs in Xu with K + n output labels, where K denotes the number of
pre-defined relations in Y l, and n is the number of newly discovered relations which is unknown.

3.2 An Overview of DSNN

Algorithm 1 shows the iterative training process of DSNN. In each iteration, the algorithm tries to detect
a new relation from unlabeled data based on ssCRP, and expands the neural network structure to perform
relation classification over existing and new relations. Briefly, it consists of three modules: base neural
network training1, relation discovery and relation prediction.

Algorithm 1 DSNN Training Process
Input: Entity pairs Xl and their labels Y l, unlabeled entity pairs Xu, pre-defined relation set Rold = {r1, . . . , rK}
Output: New relation set Rnew = {rK+1, . . . , rK+n}, populated labeled entity pairs Xl and their labels Y l

1: Initialize Rnew = Rold, t = 1
2: while no new relations can be discovered do
3: // Base neural network training
4: Train base neural network NNt with Xl and Y l

5: // Relation discovery
6: Generate candidate clusters {C1, . . . , Cm} = ssCRP(Xu, Xl)
7: C∗ = PickTheBestCluster(C1, . . . , Cm)
8: r∗ = MapToRelation(C∗)
9: if r∗ /∈ Rold then

10: Rnew = Rnew ∪ {r∗}
11: end if
12: Label all entity pairs in C∗ with relation r∗ to be Y ∗

13: Xl = Xl ∪ C∗, Y l = Y l ∪ Y ∗, Xu = Xu\C∗

14: // Relation prediction
15: for each (e1, e2) in Xu do
16: Pr(r|e1, e2, NNt) =PredictRelDistribution(e1, e2, Rold, NNt)
17: if NotNearUniform(Pr(r|e1, e2, NNt)) then
18: Label (e1, e2) with relation argmaxr∗ Pr(r|e1, e2, NNt) to be Y ∗

19: Xl = Xl ∪ {(e1, e2)}, Y l = Y l ∪ Y ∗, Xu = Xu\{(e1, e2)}
20: end if
21: end for
22: Rold = Rnew, t = t+ 1
23: end while
24: return Rnew, Xl, Y l

In each iteration t, the first step is to train base neural network NNt with training data X l and Y l.
Note that in the first iteration, model NNt is trained fully supervised. When t > 1, NNt is trained
semi-supervisedly, utilizing both labeled training data and new relations discovered in previous t − 1
iterations.

1In this paper, we refer to the structure of DSNN without the output layer expansion step as “base neural network”. In each
iteration, the training process of base neural network is the same despite the number of output units.
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Figure 1: The architecture of the base neural network with k=2.

After NNt is trained, ssCRP is employed to generate m clusters from Xu (i.e., C1, . . . , Cm), where
each cluster represents the collection of entity pairs that are most likely to share the same underlying
relation. We select the “best” cluster C∗ from C1, . . . , Cm based on the size and intra-cluster similarity,
and map it to the relation r∗. r∗ could either be one of the pre-defined relations, or a newly discovered
relation. Either way, we update X l and Y l with C∗ labeled as r∗, and remove them from Xu.

For unlabeled entity pairs (e1, e2) ∈ Xu, we use model NNt to predict the probability distribution
Pr(r|e1, e2, NNt) over all possible relations. If the distribution is not “near uniform”, the model is
confident to predict the relation r∗ = argmaxPr(r|e1, e2, NNt). Hence, (e1, e2) will be labeled as r∗

and added to labeled data (i.e., X l and Y l). Here, we only add unlabeled data with confident predictions
to the training set, in order to avoid error propagation in a semi-supervised learning environment.

After the execution of the above three modules in one iteration, if a new relation is found with its seed
relation instances (i.e., entity pairs), the structure of the neural network retrained in the next iteration will
be adjusted dynamically with parameters updated.

4 The Architecture of the Base Neural Network

Base neural network takes texts with annotated entity pairs as input and classify them to a fixed relation
set. It learns representation of texts by exploiting the following three contexts: (i) syntactic contexts; (ii)
lexical contexts; and (iii) global semantic contexts. The overall architecture is illustrated in Fig. 1.

Syntactic contexts. Previous work exploits the shortest dependency path (SDP) (Bunescu and
Mooney, 2005) to capture predicate-argument sequences (Cai et al., 2016; Xu et al., 2015; Shwartz
et al., 2016). However, SDP can not handle the dependency relation properly between e1 and e2 due to
the lack of the associated predicate. Consider the example in Fig. 2. Entities “张智霖 (Zhilin Zhang)”
and “袁咏仪 (Yongyi Yuan)” are in the coordinate dependency relation via a direct arc. Thus, the SDP
between two entities is “张智霖 (Zhilin Zhang) → 袁咏仪 (Yongyi Yuan)”, which contains not much
useful information. In this paper, we design a structure to capture the root verb along the dependency
path, namely root augmented dependency path (RADP):

Definition 2. An RADP is the combination of two subpaths derived from the dependency graph, one from
e1 to the root verb, and the other one from the root to e2.

Here, the RADP is “注册 (registered)→张智霖 (Zhilin Zhang)→袁咏仪 (Yongyi Yuan) ”. Com-
pared to SDP, it includes the extra root verb “注册 (registered)”, a crucial complement indicating the
relation “配偶 (spouse)” holds between two entities.

In the base neural network, each node along the RADP is considered as a syntactic unit (Shwartz et
al., 2016) with four parts: 1) word embedding; 2) POS tag; 3) dependency relation, which is the label
on the arc from the governing node; and 4) relational direction, one of the three labels “→”, “←” and
“—”. Thus we present a syntactic unit as the concatenation of four parts: ~vsyn = [~vword, ~vpos, ~vrel, ~vdir]
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Figure 2: An example of the dependency graph.

where ~vword, ~vpos, ~vrel, ~vdir are the embeddings of the word, POS tag, dependency relation and relational
direction, respectively. [·] is the concatenation of embeddings. These embeddings are initialized as one-
hot vectors except for ~vword, pre-trained on a large corpus.

We employ an LSTM network to handle the long-term dependencies. For an RADP with sequence
w1, . . . , wj , the corresponding embeddings ~vsyn1 , . . . , ~vsynj are fed into an LSTM network. The output
vector ~vlstm is the context vector modeling the syntactic features of the whole sequence.

Lexical contexts. Specific patterns around target entities can imply semantic relations between entity
pairs (Hearst, 1992). Similar to previous research (Zeng et al., 2014; Vu et al., 2016), given a window size
k, we define the lexical context of an annotated entity as k words ahead and k words following. Formally,
the lexical context vector ~vcon is represented as follows: ~vcon = [~vwi−k

, . . . , ~vwi−1 , ~vei , ~vwi+1 , . . . , ~vwi+k
]

where ~vei and ~vwj are embeddings of entity and context word at index i and j.
For entities e1 and e2 in the pair, ~vcone1

and ~vcone2
are fed into CNN units, respectively. After a

convolutional layer and a max pooling layer, the resulting vectors are concatenated as ~vcnn.
Semantic contexts. The context-sparsity problem of domain knowledge motivates us to explore se-

mantic contexts in the global corpus, instead of being limited to local features. Based on the distributional
hypothesis, we train a Skip-gram model (Mikolov et al., 2013) to learn the distributional representations
of words in a large corpus. For entity pair e1 and e2, the embeddings ~ve1 and ~ve2 are further concatenated
to build the final representation of semantic contexts: ~vemb = [~ve1 , ~ve2 ].

Prediction. The final context representation for prediction is the concatenation of three resulting
vectors ~vf = [~vlstm, ~vcnn, ~vemb]. Then we apply a softmax layer on ~vf to predict the class distribution y:
~y = softmax(W · ~vf + b) where W is the transformation matrix and b is the bias vector. The prediction
of base neural network is the relation whose probability is maximal in ~y.

5 Relation Discovery

To expand the output layer of base neural network, a clustering algorithm ssCRP is proposed to explore
new relations from unlabeled data. In this part, we first introduce how the network expands, and briefly
cover the basics of CRP, followed by the algorithm ssCRP in detail.

5.1 Network Expansion

After training base neural network, we take its final hidden layer as the representation for each entity
pair, since it contains all high-level context features. The representations used as the input of ssCRP
should be close to each other in the embedding space, if the same relation holds for these pairs.

In iteration t, ssCRP and the table selection process (to be discussed later) generate a cluster C∗ from
unlabeled data. Let r∗ be the mapping relation that entity pairs in C∗ hold, {r1, . . . , rK+l} be the K
pre-defined relations and l new relations discovered in t − 1 iterations. If r∗ /∈ {r1, . . . , rK+l}, a new
relation is found and base neural network trained in the next iteration t+ 1 expands its output layer with
an extra class; otherwise, it remains the same with K + l output classes. Fig 3 shows the base neural
network and its expansion network.

5.2 Similarity Sensitive Chinese Restaurant Process

Preliminaries. The Chinese restaurant process (CRP) is a stochastic process, which groups customers
into random tables where they sit (Aldous, 1985). Assume Np denotes the number of customers sitting
at table p, zi denotes the index of the table where the i-th customer sits, and vector ~z−i represents the
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Figure 3: Base neural network and the expanded network.

table assignment for other customers. The distribution over table assignments is as follows:

Pr(zi = p | ~z−i, α) ∝

{
Np if p ≤ K
α if p = K + 1

(1)

where α is a scaling parameter and K is the number of occupied tables.
ssCRP. Although CRP can be applied for clustering in a non-parametric Bayesian fashion, it does not

consider the similarity of relation instances. We observe that some extensions of CRP (e.g., ddCRP (Blei
and Frazier, 2010)) leverage the distances between data points but they do not consider the iterative clus-
ter generation process with pre-defined clusters. In this paper, we propose a similarity-based clustering
algorithm especially designed for ERC, called similarity sensitive Chinese restaurant process (ssCRP).

In ssCRP, we turn the problem of table assignment into customer assignment. Unlike the CRP and
ddCRP, we accommodate labeled data by initializing tables with K pre-defined classes. Customer i has
the choice of sitting next to any customer j based on similarity, which leads to three cases: (i) i joins the
table where j sits; (ii) i and an upcoming j generates a new table2; and (iii) i sits at an empty table alone.
Case (i) is specifically introduced for task ERC due to the initialization of existing tables. Each table in
case (i) can be represented as a virtual customer averaged from all its seated customers.

Denote η = {S,N, α, β} as the set of hyperparameters, where S is a similarity matrix between all
customers, N = (N1, · · · , NK) is the size vector of existing K tables, α is the scaling parameter and β
is a parameter balancing the weight of table size. The distribution of customer assignment ci is:

Pr(ci = j | η) ∝


α if j is customer i itself
g(sij) if j is an upcoming customer
g(sij)(1 + β lgNp) if j is averaged from table p

(2)

where g is a function modeling the cosine similarity sij between customer i and j. We design a magni-
fying function g(sij) = −1/ln sij where sij > 0, to increase the dissimilarity of inputs. The first two
cases in Eq. (2) are derived from CRP. The third case gives existing tables additional weights to avoid
generating too many small clusters. An alternative measuring system is to use the distance function
dij = 1 − sij and to apply different non-increasing functions to mediate the distances between cus-
tomers. Given a parameter a, typical decay functions like window decay f(d) = 1[d < a], exponential
decay f(d) = exp(d/a) and logistic decay f(d) = exp(−d + a)/(1 + exp(−d + a)) are provided as
alternatives (Blei and Frazier, 2010).

ssCRP-based relation discovery. The overall sampling and table selection process is illustrated in
Fig. 4. In Step 1, we initialize fixed tables with classification results of labeled data. In Step 2, ssCRP
draws customer assignments based on Gibbs sampling. Denote Cp as the collection of entity pairs w.r.t
table p. Given the hyperparameter set η, the likelihood function of table p denoted by Cp is calculated
as follows: Pr(Cp | η) =

∏|Cp|
i=1 Pr(cpi | η) where cpi represents the customer assignment that customer i

sits at table p.
2If the assignment of j is generated following i, then j is an upcoming customer w.r.t. i.
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Figure 4: Relation discovery based on ssCRP. Circles with shadow are existing relations, while plain
circles are new tables surrounded with customers representing entity pairs.
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(a) i links to itself

1 2 3 4 6 7

(b) i links to a new 
table where j sits

1 2 3 4 6 75
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(e) i joins an existing table 
p and a new table q
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Figure 5: Five cases of customer assignment with i = 4 based on Gibbs sampling. Grey boxes are
existing tables while white ones are generated new tables.

Given the rest of customer assignments c−i, customer assignment ci can be divided into five cases
(Blei and Frazier, 2010), generated by Gibbs sampling as Fig. 5 shows:

Pr(ci = j | c−i, η) ∝



α (a)
g(sij) (b)
g(sij)(1 + β lgNp) (c)
g(sij)

Pr(Cp∪Cq |η)
Pr(Cp|η) Pr(Cq |η) (d)

g(sij)(1 + β lgNp)
Pr(Cp∪Cq |η)

Pr(Cp|η) Pr(Cq |η) (e)

(3)

After this process, all customers are connected together with direct links from one to another or self-
loops. New tables can be automatically generated by connected customers while existing tables are
extended with new customers in Step 3. In our implementation, we run Gibbs sampling for multiple
times to select the best configuration (i.e., largest likelihood), to enhance the fault tolerance.

Step 4 calculates a score for each table p considering pairwise similarities and table size, defined as:

score(p) =
lgNp

2
(
Np

2

) Np∑
i=1

Np∑
j=1

sij(i 6= j) (4)

where 1

2(Np
2 )

∑Np

i=1

∑Np

j=1 sij(i 6= j) is the average pairwise similarity of instances in table p. lgNp gives

additional weight to large tables. It means the best table has similar relation instances and large size.
The table with the highest score(p) will be the selected cluster C∗. The last step (i.e., Step 5) maps the
“best” cluster C∗ to a semantic relation r∗ with a proper relation predicate. The relation can be either a
new one with confident seeds (i.e., entity pairs) or an existing relation extended with new entity pairs.
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Predefined relations 执导 (directing) 演唱 (singing) 主演 (starring) 配偶 (spouse)
# Instances 633 648 1609 590

Table 1: The statistics of pre-defined relations extracted from (Fan et al., 2017).
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Figure 6: The effects of hyperparameters of the base neural network.

5.3 Relation Prediction

New relations generated via ssCRP only contain a small number of seed instances. To populate relations,
part of unlabeled entity pairs will be assigned with labels based on model prediction, and added to the
training set. To avoid error propagation, the algorithm requires that only if the prediction of DSNN is
highly confident for an entity pair, can we add it to the training set.

Consider the distribution [Pr(r1|e1, e2), . . . ,Pr(rK+l|e1, e2)] for entity pair (e1, e2). If it is “near
uniform”, none of the existing relation labels are confident enough to be the perfect fit. Goodness-of-fit
tests are able to determine if the prediction follows uniform distribution (e.g. Kolmogorov-Smirnov test),
but experiments show they do not work in this scenario (refer to Section 6.3). In this paper, we define a
heuristic “Max-SecondMax” value to estimate the confidence score of a prediction:

conf(e1, e2) =
max([Pr(r1|e1, e2), . . . ,Pr(rK+l|e1, e2)])

secondMax([Pr(r1|e1, e2), . . . ,Pr(rK+l|e1, e2)])
(5)

where secondMax(·) is the second largest value of probabilities. If conf(e1, e2) is no less than a given
threshold τ , the label with the highest probability is indeed a convincing prediction. Such entity pairs
will be added to labeled data together with their labels.

6 Experiments

In this section, we conduct extensive experiments for ERC task to evaluate our method and compare it
with state-of-the-art approaches.

6.1 Datasets

We use distant supervision (Mintz et al., 2009) to create datasets. We choose four relations from an
entertainment knowledge graph (Fan et al., 2017), and extract texts from Chinese Wikipedia where two
entities from the same pair have joint occurrence. We manually check the correctness of relation labeling
and remove annotation errors. In total, we have 3480 sentences with annotated entity pairs and relations,
and spilt them into training data, testing data and validation data, with the proportion of 70%, 20% and
10%. The statistics of labeled data are summarized in Table 1. Similarly, two entities which do not appear
in pairs of pre-defined relations are used for harvesting unlabeled data, which contains 3161 sentences.

6.2 Evaluation of Relation Classification

We implement base neural network with Keras3 and use dependency parsing results generated by pyltp4.
The word embeddings are initialized as 50 dimensions, trained on Chinese Wikipedia dump5 via the
Skip-gram model (Mikolov et al., 2013).

3https://github.com/fchollet/keras/tree/master/keras
4http://www.ltp-cloud.com/
5https://dumps.wikimedia.org/zhwiki/20170222
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Classifier Feature set F1 (%)

logistic regression/
SVM

entity pairs (add) 77.3/ 77.4
entity pairs (sub) 75.9/ 80.8
entity pairs (concat) 89.0/ 87.5
syntactic units, entity pairs (concat) 84.9/ 82.5
context words, entity pairs (concat) 87.6/ 86.6
syntactic units, context words 89.2/ 87.8
syntactic units, context words, entity pairs (concat) 89.9/ 88.0

Shwartz et al. (Shwartz et al., 2016) shortest dependency path, entity pairs 65.3
Zeng et al. (Zeng et al., 2014) context words, entity pairs 81.5
RNN+E syntactic units, entity pairs (concat) 66.8
CNN+E context words, entity pairs (concat) 91.4
Full implementation syntactic units, context words, entity pairs (concat) 92.2

Table 2: Classifiers with their feature sets and F1 score in relation classification.

Relation name # Instances Relation name # Instances
团队成员 (group members) 1328 所属国家 (belong to the country) 956
家庭成员 (family members) 355 系列作品 (series works) 247
签约公司 (employed by) 144 制作公司 (produced by) 18

Table 3: Semantic relations discovered via ssCRP.

We first study the effects of hyperparameters, i.e., the input dimension of syntactic unit dsyn, the
output dimension of LSTM units dlstm and the number of convolutional hidden units h. We tune these
hyperparameters on the validation set and illustrate the F1 scores with different settings in Fig. 6. As
we can see, the best performance is achieved when dsyn = 5 and dlstm = 30. The base neural network
shows signs of overfitting with h larger than 150. We heuristically set the window size k = 5 and train
the network with 0.5 weighted L2 regularization.

The second part is to evaluate the effectiveness of the proposed features. We implement several state-
of-the-art methods of representing the embeddings of entity pairs: concatenation ~ve1 ⊕ ~ve2 , difference
~ve1−~ve2 and sum ~ve1 +~ve2 model (Baroni et al., 2012; Roller et al., 2014; Mirza and Tonelli, 2016). We
train logistic regression and SVM with the combination of the above features. As Table 2 shows, both
classifiers achieve the highest F1 scores when trained with all three features. Similar to observations
(Mirza and Tonelli, 2016), the concatenated embeddings of entity pairs are the most effective.

The third part is the comparison of our model and other approaches. We implement the CNN-based
model (Zeng et al., 2014) and keep the way they use features. Another competitor is the RNN-based
model for hypernymy detection (Shwartz et al., 2016), which is modified slightly to classify more gen-
eralized semantic relations. We also evaluate the variations of base neural network during iterations, e.g.
removing LSTM units (CNN+E) or the convolution layer (RNN+E). The results shown in Table 2 prove
that our model has the best performance. The CNN-based models such as CNN+E and model (Zeng et
al., 2014) are both significantly effective than RNN-based models, e.g. RNN+E and model (Shwartz et
al., 2016). It suggests that lexical features are more effective than syntactic features. The embedding
layer improves the performance in either situation due to the use of semantic features.

6.3 Evaluation of Relation Discovery

We first introduce the semantic relations found during the relation discovery process. Table 3 summarizes
six relations discovered via ssCRP, containing 3048 instances. The sizes of relations are unbalanced due
to the random selection of entity pairs in order to construct unlabeled data automatically.

As studied in previous research (Qiu and Zhang, 2014), OpenRE systems have low performance for
Chinese due to flexible language expressions and low data redundancy. Hence, OpenRE methods are not
treated as strong baselines for ERC task. To measure the effectiveness of ssCRP, we propose two baseline
models following Balvi et al. (Dalvi et al., 2013) for multi-class semi-supervised learning task. Seeded
KMeans proposed by Basu et al. (2002) is a clustering method using labeled data to guide the clustering
process. We implement an exploratory version where a new centroid is initialized as the most centered
data in each iteration. Another intuitive approach is semi-supervised EM-based Naive Bayes with empty
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Figure 7: The top-k precisions (%) of three relations (series works, produced by, employed by) generated
by various methods with different k.

Algorithm # Instances Precision (%) Recall (%) F1 (%)
Fit ssCRP 3161 31.0 35.7 33.2
Exploratory EM-based Naive Bayes 3161 70.7 40.2 52.8
Exploratory seeded KMeans 3161 80.5 53.0 63.9
ssCRP w/o tables 593 66.6 60.4 63.3
ssCRP w/o prediction 903 83.7 61.0 70.6
Exp ssCRP 3161 77.9 66.7 71.9
Logistic ssCRP 3161 81.4 66.9 73.0
Full implementation of ssCRP 3048 83.1 68.4 75.0

Table 4: Performance of different algorithms for relation discovery.

classes. The E-step starts with a random initialization of class assignment, and M-step retrains the model
until convergence. We also try several variations of our model. For example, we replace the magnifying
function with logistic decay (Logistic ssCRP) or exponential decay (Exp ssCRP) proposed in (Blei and
Frazier, 2010). In relation prediction process, we make a comparison between the “Max-SecondMax”
criterion and goodness-of-fit models such as Kolmogorov-Smirnov test with significance level of 0.05
(Fit ssCRP). Populating new clusters is essential for our model, so we conduct experiments of two related
strategies, e.g. not allowing to join existing tables (ssCRP w/o tables) or removing the relation prediction
process (ssCRP w/o prediction). We set τ = 2 for all variations, fine tuned over the validation set.

The first experiment presents the top-k precision of newly found relations. Relation instances are
sorted according to the cosine similarity between its embedding and averaged relation embedding. We
ask human annotator to label whether the extracted top-k relations are correct or not, and evaluate the
top-k precision with k ranging from 0.1 to 0.9, and show the results in Fig. 7. The illustrated relations
achieve the best performance when they are generated by ssCRP, compared with other baseline models6.
We heuristically choose k = 0.4 because the precision drops relatively faster when k is larger.

Next, we design a pairwise experiment to evaluate this non-standard clustering task. We manually
construct a standard testing dataset by sampling pairs of instances from unlabeled data. For two entity
pairs xi and xj with their respective sentences, we use the domain knowledge graph (Fan et al., 2017)
as the ground truth to determine whether xi and xj have the same relation. We use Precision, Recall
and F1 score as the evaluation metrics. We present the performance of ssCRP and other baseline models
in Table 4. For two baseline models, exploratory seeded KMeans performs better than exploratory EM-
based Naive Bayes. Experiments of ssCRP variations prove the effectiveness of our specially designed
magnifying function and “Max-SecondMax” criterion. The reason that goodness-of-fit models fail is that
they are sensitive to check whether the data follows uniform distribution or not, while our purpose is to
select those with prominent peaks. Thus non-confident relation labels are assigned to unlabeled entity
pairs roughly, increasing the number of false positive instances. For the strategies of table assignment
and relation prediction process, the experimental results show that they not only populate new relations,
but also improve the overall performance.

6.3.1 Error Analysis
To further obtain additional insights into our method, we study the errors in newly found relations and
present three types of errors. A frequent type of confusion happens when entity pairs are closely related

6Some baselines do not generate certain relations, therefore these competitors are not included in corresponding figures.
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under the same topic but not by the same relation, which accounts for 63.4% errors. For example,
two entities involved with cooperation relation are be misclassified to the relation “团队成员 (group
members)”. Another 23.7% bad cases are due to the false positive results of NER where common nouns
are mistaken as named entities, especially for specific names such as “黎明 (Ming Li, which also has the
meaning of dawn)”. The rest of errors result from the mixture of different grains of relation types. We
observe that the relation “所属国家 (belong to the country)” contains a few instances where e2 is not a
country but a finer-grained city or a district.

7 Conclusion

In this paper, we propose the task of ERC to address the problem of domain-specific knowledge ac-
quisition. We propose a DSNN model to address the task, consisting of three modules, an integrated
base neural network for relation classification, a similarity-based clustering algorithm ssCRP to generate
new relations and constrained relation prediction process with the purpose of populating new relations.
Extensive experiments are conducted to evaluate the effectiveness of our approach.
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