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Abstract
Conversational agents that use reinforcement learning for policy optimization in large domains of-
ten face the problem of limited scalability. This problem can be addressed either by using function
approximation techniques that estimate an approximate true value function, or by using a hierar-
chical decomposition of a learning task into subtasks. In this paper, we present a novel approach
for dialogue policy optimization that combines the benefits of hierarchical control with function
approximation. The approach incorporates two concepts to allow flexible switching between sub-
dialogues, extending current hierarchical reinforcement learning methods. First, hierarchical tree-
based state representations initially represent a compact portion of the possible state space and are
then dynamically extended in real time. Second, we allow state transitions across sub-dialogues to
allow non-strict hierarchical control. Our approach is integrated, and tested with real users, in a
robot dialogue system that learns to play Quiz games.

Keywords: spoken dialogue systems, reinforcement learning, hierarchical control, function ap-
proximation, user simulation, human-robot interaction, flexible interaction.

1 Introduction
The past decade has experienced important progress in spoken dialogue systems that learn their
conversational behaviour. The Reinforcement Learning (RL) framework in particular has been an
attractive alternative to hand-coded policies for the design of sophisticated and adaptive dialogue
agents. An RL agent learns its behaviour from interaction with an environment, where situations
are mapped to actions by maximizing a long-term reward signal (Sutton and Barto, 1998). While
RL-based dialogue systems are promising, they still need to overcome several limitations to reach
practical and wide-spread application. One of these limitations is the curse of dimensionality, the
problem that the state space grows exponentially according to the variables taken into account.
Another limitation is that attempts to address the first problem often involve rule-based reduc-
tions of the state space (Litman et al., 2000; Singh et al., 2002; Heeman, 2007; Williams, 2008;
Cuayáhuitl et al., 2010b; Dethlefs et al., 2011) which can lead to reduced flexibility of system be-
haviour in terms of letting the user say and/or do anything at any time during the dialogue. Finally,
even when function approximation techniques have been used to scale up in small-scale and single-
task systems (Henderson et al., 2008; Li et al., 2009; Pietquin, 2011; Jurcícek et al., 2011), their
application to more complex dialogue contexts has yet to be demonstrated.

Our motivation for increased dialogue flexibility in this paper is the assumption that users at times
deviate from the system’s expected user behaviour. In reduced state spaces this may lead to unseen
dialogue states in which the system cannot react properly to the new situation, as is exemplified
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by dialogue 3S in Figure 1. So whilst a full state space represents maximal flexibility (according
to the state variables considered), but is often not scalable, reducing the state space for increased
scalability simultaneously faces a risk of reducing dialogue flexibility.

This paper presents a novel approach for dialogue policy optimization that increases both dialogue
flexibility and scalability. It is couched within a Hierarchical Reinforcement Learning (HRL) frame-
work, a principled and scalable model for optimizing sub-behaviours (Barto and Mahadevan, 2003).
We extend an existing HRL-algorithm with the following features: (1) dynamic tree-based state rep-
resentations that can grow during a dialogue, during the course of the dialogue, according to the
state variables used in the interaction; and (2) rather than imposing strict hierarchical dialogue
control, we allow users to navigate more flexibly across the available sub-dialogues. A further
extension is the representation of the dialogue policy using function approximation in order to
generalize decision-making even for unseen situations.

2 Proposed Learning Approach
This section proposes two extensions of the hierarchical RL framework presented in
(Cuayáhuitl and Dethlefs, 2011b): (1) dynamic tree-based state representations that grow over the
course of a dialogue; and (2) state transitions across sub-dialogues for flexible dialogue control. In
addition, we make use of function approximation to support decision-making for unseen situations.

2.1 Dynamic Tree-based State Representations
We treat each multi-step action as a separate SMDP as described in (Cuayáhuitl et al., 2007;
Cuayáhuitl, 2009). To allow compact state representations to grow over the course of a dialogue, we
redefine such SMDP models as tuples M (i, j)

β
= <S(i, j)

β
,A(i, j)
β

, T (i, j)
β

,R(i, j)
β

, L(i, j)
β
>, where S(i, j)

β
is a fi-

nite set of dynamic tree-based states that grow from S(i, j)
β

to S(i, j)
β ′ after new states are encountered.1

This principle is illustrated in Figure 1. Since the state space changes continuously, the actions
per state A(i, j)β , the corresponding state transitions T (i, j)β , reward functions R(i, j)β , and context-free

grammar L(i, j)
β

, which defines the tree-based state representations, are affected by these changes.

When an unknown (or unseen) state is observed, the current subtask M (i, j)
β

is updated to support
that new state, where β refers to the number of times the subtask M (i, j) has been updated. An
update consists of the following steps:

1. extend the state space and corresponding grammar L(i, j)
β

with the new states;

2. assign a set of actions to the new states, which satisfy pre-specified constraints (if any); and

3. extend the state transition function to support transitions to the new states.

Although our approach could also continuously extend the reward function to cover the new ob-
served situations, we leave this point as future work. The solution to our redefined model consists
in approximating or relearning an optimal policy for each agent in the hierarchy continuously often,
i.e. whenever the state space has grown, according to

π
∗(i, j)
β (s ∈ S(i, j)β ) = arg max

a∈A(i, j)
β

Q∗i, jβ (s, a). (1)

1No threshold is imposed on the growth of state spaces. In the worst case, it would represent all possible combinations of
state variable values. Nevertheless, it is reasonable to assume that only a subset of it would be observed in real interactions.

96



Salutation

UserName
Asker

PlayGame

none greeting withName regreeting closing

unknown filled(ConfScore($score)) known

robot

unknown (no^ConfScore($score)) (yes^ConfScore($score)) ready

(1) ROBOT: Hello, my name is Nao. What's your name?

(2) USER: Let's play.

(3D) ROBOT: OK, I'll ask you some Quiz questions.

(3S) ROBOT: Sorry, I did not understand. What is your name?

...

user

Figure 1: Fragment of our dialogue state space, where rectangles represent state variables that
expand their domain values. A tree-branch (with expanded variables, here denoted as ‘$variable’)
is a unique dialogue state. The dashed lines illustrate a dynamically growing tree according to the
example dialogue. Here, 3D represents a dialogue with dynamically growing state representations
and 3S represents a dialogue with static state representations.

Note that the initial state space S(i, j)
β=0 is compact so that unseen states can be observed during the

agent-environment interaction from a knowledge-rich state k that maintains the dialogue history. k
can also be seen as a knowledge base and is used to initialize states of each subtask, so that we can
extend the state space for unseen states within a given set of state variables. We can approximate
the optimal policies using linear function approximation. The policies are represented by a set of
weighted linear functions expressed as

Q(i, j)
θ
(s, a) = θ (i, j)0 + θ (i, j)1 f1(s, a) + ...+ θ (i, j)n fn(s, a) (2)

with a set of state features fi ∈ F 2 and parameters θ (i, j) = {θ (i, j)1 , ...θ (i, j)n } for each agent in the
hierarchy. A reinforcement learning agent can learn values for the parameters θ , where the utility
functions Q(i, j)

θ
approximate to the true utility functions.

2.2 Flexible Navigation across Sub-Dialogues
To allow flexible navigation across sub-dialogues, we extend the previous models with tuples
M (i, j)
β
= <S(i, j)

β
,A(i, j)
β

, T (i, j)
β

,R(i, j)
β

, L(i, j)
β

, G(i, j)
β
>, where the new element G(i, j)

β
= P(m′|m, s, a) is

a stochastic model transition function that specifies the next model or subtask m′ ∈ µ given model
m ∈ µ, state s and action a. Here, µ refers to the set of all models. The new element G(i, j)β is
the mechanism to specify the currently active subtask for each state-action (see Figure 2). This
is a relevant feature in dialogue agents in order to allow users to act freely at anytime and across

2A dialogue state is represented as a vector of binary features derived from the tree-based representations, where every
possible variable-value pair in the tree is represented with 1 if present and 0 if absent.
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(a) hierarchy of agents with

strict hierarchical control

Dialogue

Sub-dialogue1 Sub-dialogue2

(b) hierarchy of agents with

non-strict hierarchical control

Dialogue

Sub-dialogue1 Sub-dialogue2

Figure 2: Hierarchies of agents with local and global state transitions.Whilst the straight arrows
connecting models mean invoking a model and returning control after terminating its execution,
the dashed arrows connecting models mean interrupting the execution of the current model and
transition to another one to continue the interaction.

sub-dialogues, while dialogue agents should be able to react with appropriate actions. The goal of
these extended SMDPs is to learn a similar mapping as in the previous section, expressed as

π
∗(i, j)
θ
(s ∈ S(i, j)

β
) = arg max

a∈A(i, j)β

Q∗(i, j)
θ
(s, a), (3)

where we extend the HSMQ-learning algorithm (Dietterich, 2000; Cuayáhuitl et al., 2010b;
Cuayáhuitl and Dethlefs, 2011a) to induce the action-value functions Qθ , one per SMDP model.

3 Experimental Setting
To test if our approach can generate more flexible interactions than a baseline, we use a robot
dialogue system in the Quiz domain, where the robot3 can ask the user questions, or vice-versa, the
user can ask the robot questions. In addition, to allow flexibility, the user or robot can switch roles
or stop playing at any point during the interaction (e.g. from any dialogue state).

3.1 Characterization of the Learning Agents
We use a compact hierarchy of dialogue agents with one parent and two children agents (‘robot
asks’ and ‘user asks’), which is shown in Figure 2. (Cuayáhuitl and Dethlefs, 2012)-Table 1 shows
the set of state variables for our system, each one modelled as a discrete probability distribution
with updated parameters at runtime. Dialogue and game features are included to inform the agent
of situations in the interaction. Our action set consists of 80 meaningful combinations of speech
act types4 and associated parameters5. We constrained the actions per state based on the grammars
L(i, j)β , i.e. only a subset of actions was allowed per dialogue state (constraints omitted due to space).
While our HRL agent with tree-based states grows up to 104 state-actions, a static, propositional
representation (enumerating all variables and values) has 1012 state-action pairs. This makes the
tree-based representation attractive for complex, large-scale systems.

3Our dialogue system has been fully implemented and tested using wizarded and speech-based user responses with the
actual Nao humanoid robot. An evaluation with real users will be reported in a forthcoming paper.

4Set of speech act types: Salutation, Request, Apology, Confirm, Accept, SwitchRole, Acknowledgement, Provide,
Stop, Feedback. Express, Classify, Retrieve, Provide.

5Greet, Closing, Name, PlayGame, Asker, KeepPlaying, GameFun, StopPlaying, Play, NoPlay, Fun, NoFun, GameIn-
structions, StartGame, Question, Answers, CorrectAnswer, IncorrectAnswer, GamePerformance, Answer, Success, Failure,
GlobalGameScore, ContinuePlaying.
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The reward function addressed efficient and effective interactions by encouraging to play and get
the right answers as much as possible. It is defined by the following rewards for choosing action a
in state s: +10 for reaching a terminal state or answering a question correctly, −10 for remaining
in the same state (i.e. st+1 = st or st+1 = st−1), and 0 otherwise. The user simulation used a set
of user dialogue acts as responses to the system dialogue acts (footnotes 4-5). The user dialogue
acts were estimated using conditional distributions P(ausr |as ys) with Witten-Bell discounting from
21 wizarded dialogues (900 user turns). The attribute-values were distorted based on an equally
distributed speech recognition error rate of 20%. The confidence scores of attribute values were
generated from beta probability distributions with parameters (α=2, β=6) for bad recognition and
(α=6, β=2) for good recognition.

3.2 The Robot Dialogue System

Figure 3: High-level architecture of the integrated system.

Our experiments were carried out using a dialogue system (Cuayáhuitl and Kruijff-Korbayová,
2012) running on the Nao robot 6. The system integrates components for speech and gesture
capture and interpretation, activity and interaction management, user modeling, speech and gesture
production and robot motor control (see Figure 3). We use components developed by ourselves as
well as off-the-shelf technologies such as Google speech recognition, OpenCV for gesture recogni-
tion, Acapela for speech synthesis, OpenCCG for language parsing and generation, and Weka and
JavaBayes for maintaining a probabilistic personalized user profile. To bring all components to-
gether within a concurrent execution approach, we use the Urbi middleware (Baillie, 2005). More
details on the system implementation are described in (Kruijff-Korbayová et al., 2012b,a).

During interactions, the user provided responses through a mobile device, which were processed
by a Bayesian dialogue act classifier estimated from our Wizard-of-Oz data. Based on this, the
next system action is selected by the Dialogue Manager component (as described in Sections 2 and
3). The dialogue act corresponding to the selected next system action is verbalized automatically
by the Natural Language Generation component which produces text for the speech synthesizer.
Nonverbal behavior planning and motor control are automatic communicative gestures assigned to
specific types of dialogue acts (e.g., greetings, requests), and static key poses displaying emotions
such as anger, sadness, fear, happiness, excitement and pride (Beck et al., 2010).

6www.aldebaran-robotics.com
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Figure 4: Participants talking to the NAO robot through a smartphone while playing the Quiz game.
The pieces of paper on the table are used by the users to ask the robot questions.

To summarize, the following features describe the system used in our experiments: (a) automatic
speech and dialogue act recognition; (b) automatic system action selection; (c) user barge-ins in the
form of interruptions of the robot’s speech by an early user response; (d) automatically produced
verbal output in English with many variations and expressive speech synthesis distinguishing sad,
happy and neutral state; (e) automatically produced head and body poses and gestures; and (f)
persistent user-specific interaction profile. This robot dialogue system has been evaluated with
simulated and real users, see Figure 4. A comprehensive evaluation description and results analysis
will be reported in a forthcoming paper.

4 Conclusion and Future Work
We have described a novel approach for optimizing dialogue systems by extending an existing HRL
framework to support dynamic state spaces, non-strict hierarchical control, and linear function
approximation. We evaluated our approach by incorporating it into a robot dialogue system that
learns to play Quiz games. Our experimental results, based on simulation and experiments with
human users (reported elsewhere), show that our approach is promising. It can yield more flexible
interactions than a policy that uses strict control and is preferred by human users. We expect that
our approach will represent an important step forward in the development of more sophisticated
dialogue systems that combine the benefits of trainable, scalable and flexible interaction.

As future work, we suggest the following directions in order to equip spoken or multimodal di-
alogue systems with more flexible and adaptive conversational interaction: (1) to learn model
state transition functions automatically so that the system can suggest how to navigate in the hi-
erarchy of sub-dialogues; (2) to optimize dialogue control combining verbal and non-verbal be-
haviours (Cuayáhuitl and Dethlefs, 2012; Dethlefs et al., 2012b); (3) to optimize dialogue con-
trol jointly with natural language generation (Dethlefs and Cuayáhuitl, 2011b,a; Lemon, 2011);
(4) to extend our approach with large hierarchies and partially observable SMDPs; (5) an appli-
cation to situated dialogue systems (Cuayáhuitl et al., 2010a; Cuayáhuitl and Dethlefs, 2011a,b;
Janarthanam et al., 2012); (6) an application to complex turn-taking phenomena in systems with
multiple modalities for more natural and effective interactions (Chao and Thomaz, 2012); (7) an
application to incremental dialogue processing (Schlangen and Skantze, 2009) using reinforcement
learning (Dethlefs et al., 2012a), and (8) to induce the reward function during the course of the in-
teraction for providing online adaptation.
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