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ABSTRACT
In this work we address the challenge of augmenting n-gram language models according
to prior linguistic intuitions. We argue that the family of hierarchical Pitman-Yor language
models is an attractive vehicle through which to address the problem, and demonstrate the
approach by proposing a model for German compounds. In our empirical evaluation the model
outperforms a modified Kneser-Ney n-gram model in test set perplexity. When used as part
of a translation system, the proposed language model matches the baseline BLEU score for
English→German while improving the precision with which compounds are output. We find
that an approximate inference technique inspired by the Bayesian interpretation of Kneser-Ney
smoothing (Teh, 2006) offers a way to drastically reduce model training time with negligible
impact on translation quality.

TITLE AND ABSTRACT IN AFRIKAANS

Bayes-modellering van saamgestelde woorde in Duits

Hierdie werk neem uitdagings rondom die uitbreiding van n-gramtaalmodelle volgens
voorafgaande linguistieke intuïsie onder die loep. Ons voer aan dat die familie van hiërargiese
Pitman-Yor taalmodelle ’n wenslike stuk gereedskap is om hierdie probleem mee aan te pak en
formuleer ’n model van Duitse saamgestelde woorde om die benadering te demonstreer. Met
behulp van ’n empiriese evaluering bevind ons dat die model in terme van toetsdataperpleksiteit
beter vaar as die aangepaste Kneser-Ney n-grammodel. As onderdeel van ’n Engels→Duits-
vertalingstelsel behaal die model in terme van die BLEU-metriek dieselfde vertaalafvoerkwaliteit
as die kontrole stelsel en genereer saamgestelde woorde teen ’n hoër presisie. Verder stel
ons vas dat ’n benaderde inferensietegniek, geïnspireer deur die Bayes-interpretasie van
Kneser-Ney-gladstryking (Teh, 2006), gebruik kan word om die modelberamingtyd drasties te
verminder sonder wesenlike impak op die vertaalafvoerkwaliteit.

KEYWORDS: language model; Bayesian methods; machine translation; compounding; ngram
model; approximate inference.

KEYWORDS IN L2: taalmodel; Bayes-metodes; masjienvertaling; samestellings; ngrammodel;
benaderde inferensie.
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1 Introduction

Statistical language modelling addresses the problem of assigning probabilities to sentences
in natural languages. In an effective model, these probabilities function as statistical proxies
for sentences’ syntactic well-formedness and semantic plausibility. As such, language models
(LMs) play a crucial role in machine translation (MT) and automatic speech recognition (ASR)
systems, which need to distinguish well-formed output sentences from ill-formed ones.

To tackle the problem of assigning reasonable probabilities to an infinite space of possible
sentences, two assumptions are commonly made: first, the closed vocabulary assumption,
which states that sentences are sequences of words from a finite vocabulary W , and second,
a Markov assumption is made, which states that the probability of each word in a sentence
is conditionally independent of all others, given the previous n− 1 words of context. Relying
on these assumptions, language modelling becomes the problem of estimating the conditional
probabilities of |W | words in |W |n−1 contexts.

There are two problems with this approach that we address in this paper.1 First, the closed
vocabulary assumption is often unreasonable, in particular for languages that use productive
compounding to create novel word types. We therefore focus on modelling German since
it makes extensive use of productive compounding and gives us an opportunity to explore
this problem in depth. Second, in a naïve n-gram parametrisation, words are modelled inde-
pendently of each other. This is problematic since the number of parameters is far too large
to estimate reliably from even the largest corpora, and it ignores our intuition that related
word forms have related behaviour. We solve these problems with an n-gram language model
based on the hierarchical Pitman-Yor process (HPYP): Our model relaxes the closed vocabulary
assumption by incorporating productive compound formation in its generative story, while
the hierarchical structure enables us to relax the naïve independence assumptions about the
statistical behavior of related word forms.

In the next section, we address the German compound problem in further detail and use this
to motivate the structure of our model (§3). We then discuss the inference problem (§4), and
evaluate the model’s performance in terms of held-out perplexity and on translation quality
when used inside an English→German translation system (§5). We conclude by placing this
work in the context of related approaches (§6) and addressing avenues for future work.

2 Compound Words

Our aim in this work is to develop a language model that accounts for the structure of compound
words. Compounding is a process whereby words are formed by combining other words. In
some languages (including German, Swedish, Dutch and Afrikaans), compounds are written as
single orthographic units. NLP systems that rely on whitespace to demarcate their elementary
modelling units, e.g. the “grams” in n-gram models, are thus prone to suffer from sparse data
effects that can be attributed to compounds specifically. An account of compounds in terms of
their components therefore holds the potential of improving the performance of such systems.

Examples of compounds

• A basic noun-noun compound:
Auto + Unfall = Autounfall (car crash)

1Preliminary work on the approach we follow in this paper was previously reported on by Botha (2012). Here, we
expand on the scale and depth of the empirical evaluation and investigate an additional inference technique.
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• Linking elements can appear between components
Küche + Tisch = Küchentisch (kitchen table)

• Components can undergo stemming
Schule + Hof = Schulhof (schoolyard)

• Compounding is recursive
(Geburt + Tag) + Kind = Geburtstag + Kind = Geburtstagskind (birthday boy/girl)

• Compounding extends beyond noun components
Zwei-Euro-Münze (two Euro coin) Fahrzeug (vehicle)

A compound is said to consist of a head component and one or more modifier components, with
optional linking elements between consecutive components (Goldsmith and Reutter, 1998).
The linguistic intuition that we propose to exploit in our language model is that German
compounds are overwhelmingly right-headed (Toman, 1992), i.e. the right-most component
fully determines the word’s morphosyntactic properties. For example, the “Bahn” in “Eisenbahn”
(railway) identifies the word as singular feminine, which determines the requirements for its
agreement with verbs, articles and adjectives.

A language model could therefore give a reasonable assessment of the syntactic fluency of a
sequence of German words by ignoring the non-head components of compounds. For example,
the sentence, “I’m going by train” can be rendered in German as either of the following:

• Ich fahre mit der Eisenbahn.
• Ich fahre mit der Bahn.

Collapsing all compounds to their heads and ignoring modifiers would decrease sparsity and
allow more robust n-gram probabilities to be estimated from data. But such a strategy would
not be probabilistically sound as a generative model of a corpus. Moreover, a model that ignores
modifiers would assign the same probability value to “Eisenbahn” and the empirically much
rarer “Bobbahn” (bobsled), which would be unsatisfactory in a task where the language model
plays a disciminative role. The model needs to account for the non-head components in some
way. We expect the identity and number of modifier components to be strongly correlated with
the identity of the head. In particular, the conditional distributions of modifier given head will
be sharply peaked. A simple approximation is thus to assume that, conditioned on the head,
modifiers are generated by a reverse n-gram model:2

p(eisenbahn |mit der)≡ p(bahn |mit der)× p(eisen | bahn)× p($ | eisen)

The sentinel $ indicates the word boundary and doubles as a control on the number of
modifiers. In general, we will use this process as a back-off strategy, i.e., when the trigram “mit
der Eisenbahn” is unobserved. Note that this is markedly different from linguistically naïve
back-off models that would score the unobserved trigram “mit der Eisenbahn” by falling back
on bigram or unigram estimates. In our model, we instead permit the model to back off to this
decomposition before dropping valuable context information.

3 An n-gram Model with Compounding

In this section we aim to marry an n-gram model with the intuition of compound formation that
we proposed before. We present an extension of the hierarchical Pitman-Yor language model

2The majority of compounds have two components and thus match this assumption well enough. Multipart
compounds where the modifiers themselves are compounds may violate it.

343



mit der Draht·seil·bahn

Figure 1: Intuition for the proposed generative process of a compound word: The context
generates the head component, which generates a modifier component, which in turn generates
another modifier. (Literally, “with the cable car”; idiomatically, “by cable car”)

(HPYLM) (Teh, 2006) that fulfils this aim. The particular properties of the Pitman-Yor process
(PYP) (Pitman and Yor, 1997) that we exploit are its flexibility to specify arbitrary back-off
distributions (making it easy to incorporate an additional model) and the fact that it generates
distributions that adapt well to power-law behaviour, as is often observed in language.

We employ this HPYLM framework with its accompanying inference machinery rather than
a seemingly obvious alternative of using two distinct word-level and compound-level n-gram
models. The reasons are that our unified model can learn a subtle interpolation between those
levels, obviating the need to introduce and tune an extraneous interpolation scheme between
sub-models, while opening the door for future extensions, e.g. analysing compounds occuring
in the n-gram history.

3.1 Hierarchical Pitman-Yor Language Model (HPYLM)

An n-gram model is an (n− 1)-th order Markov model that approximates the joint probability
of a sequence of words w as

p(w)≈
|w|∏
i=1

p(wi | wi−n+1, . . . , wi−1), (1)

where we occasionally abbreviate a context [wi , . . . , w j] as u. In the HPYLM, the conditional
distributions p(w|u) are smoothed by placing PYP priors over them. The PYP is defined through
its base distribution, and a strength (θ) and discount (d) hyperparameter that control its
deviation away from its mean (which equals the base distribution).

The generative process for a word w in context u is:

G0 = Uniform(|W |)
G; ∼ PY (d0,θ0, G0)

...

Gπ(u) ∼ PY (d|u|−1,θ|u|−1, Gπ◦π(u))
Gu ∼ PY (d|u|,θ|u|, Gπ(u))
w ∼ Gu,

where π(u) truncates the context u by dropping the left-most word in it. The hyperparameters
are tied across all priors with the same context length |u|. To explain this process in terms of
the familiar trigram case, consider how the probability p(w | u, v) comes to be. Let u= [u, v].
G[u,v] is then the PYP-distributed distribution over w. The hierarchy arises by using as the base
distribution for the prior of G[u,v] another PYP-distributed G[v], i.e. the distribution p(w | v).
The recursion bottoms out at the unigram distribution G;, which is drawn from a PYP with base
distribution equal to the uniform distribution over the vocabulary W .
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3.2 Hierarchical Pitman-Yor Language Model + Compounds (HPYLM+c)

We define a compound word w̃ as a sequence of components [c1, . . . , cz], plus a sentinel symbol
$ marking either the left or the right boundary of the word, depending on the direction of
the model. To maintain generality over this choice of direction, let Λ be an index set over the
positions, such that cΛ1

always designates the head component.

Following the motivation in §2, we set up the model to generate the head component cΛ1

conditioned on the word context u, while the remaining components w̃ \ cΛ1
are generated by

some model F , independently of u.

To encode this, we modify the HPYLM thus:

1. Replace the support with the reduced vocabulary M , the set of unique elementary
components c obtained when segmenting the items in W . (M also includes items
consisting of a single component to begin with.)

2. Add an additional level of conditional distributions Hu (with |u| = n− 1) where items
fromM combine to form the observed surface words.

The generative process changes as follows (see also Figure 2):

G0 = Uniform (|M|)
G; . . . Gu (as before)

Hu ∼ PY (d|u|,θ|u|, Gu × F)
w̃ ∼ Hu

So the base distribution for the prior of the word n-gram distribution Hu is the product of
a distribution Gu over compound heads, given the same context u, and another (n′-gram)
language model F over compound modifiers, conditioned on the head component.

Choosing F to be a bigram model (n′ = 2) yields the following procedure for generating a word:

cΛ1
∼ Gu

for i = 2 to z

cΛi
∼ F(·|cΛi−1

)

The linguistically motivated choice for conditioning in F is Λling = [z, z− 1, . . . , 1] such that cΛ1

is the true head component; $ is drawn from F(·|c1) and marks the left word boundary.

In order to see if the correct linguistic intuition has any bearing on the model’s extrinsic
performance, we will also consider the reverse, supposing that the left-most component were
actually more important in this task, and letting the remaining components be generated
left-to-right. This is expressed by Λinv = [1, . . . , z], where $ this time marks the right word
boundary and is drawn from F(·|cz).

Linking Elements In the preceding definition of compound segmentation, the linking ele-
ments do not constitute items in the vocabularyM . Regarding linking elements as components
in their own right would sacrifice important contextual information and disrupt the conditionals
F(·|cΛi−1

). That is, faced with the compound Küche·n·tisch, we want P(küche|tisch) in the
model, but not P(küche|n).

345



Figure 2: Plate diagram showing how a trigram version of HPYLM+c, using a bigram model
F with condition scheme Λling for modifiers, generates a word (the ellipse), consisting of
head cz and modifiers c1 . . . cz−1. Here, w−2 and w−1 form the trigram context. We omit
hyperparameters and their priors for clarity.

But linking elements must be accounted for to have a well-defined generative model. We follow
the pragmatic option3 of merging any linking elements onto the adjacent component – for Λling

merging happens onto the preceding component (e.g. P(küchen|tisch)), while for Λinv it is onto
the succeeding one (e.g.P(ntisch|küche)). This keeps the ‘head’ component cΛ1

intact.

4 Training

For ease of exposition we describe inference with reference to the trigram HPYLM+c model
with a bigram HPYLM for F , but the general case should be clear.

The model is specified by the latent variables L = (G[;], G[v], G[u,v], H[u,v], F;, Fc), where
u, v ∈W , c ∈M , and hyperparameters Ω = (di ,θi , d ′j ,θ

′
j , d ′′2 ,θ ′′2 ), where i = 0,1,2, j = 0,1,

single primes designate the hyperparameters in FHPY LM and double primes those of H[u,v]. We
can construct a collapsed Gibbs sampler by marginalising out the latent variables in L , giving
rise to a variant of the hierarchical Chinese Restaurant Process in which it is straightforward to
do inference.

Chinese Restaurant Process A direct representation of a random variable G drawn from
a PYP can be obtained from the stick-breaking construction (Pitman, 2002b). But the more
indirect representation using the Chinese Restaurant Process (CRP) (Aldous, 1985; Pitman,
2002a) is more suitable here since it relates to distributions over items drawn from such a G.
This fits the current setting, where words w are being drawn from a PYP-distributed G.

Imagine that a corpus is created in two phases: Firstly, a sequence of blank tokens x i is
instantiated, and in a second phase lexical identities wi are assigned to these tokens, giving
rise to the observed corpus. In the CRP metaphor , the sequence of tokens x i are equated
with a sequence of customers that enter a restaurant one-by-one to be seated at one of an
infinite number of tables. When a customer sits at an unoccupied table k, they order a dish
φk for the table, but customers joining an occupied table have to dine on the dish already
served there. The dish φi that each customer eats is equated to the lexical identity (type) wi of

3It is worth noting that for German the presence and identity of linking elements between ci and ci+1 are in fact
governed by the preceding component ci (Goldsmith and Reutter, 1998).
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the corresponding token, and the way in which tables and dishes are chosen gives rise to the
characteristic properties of the CRP:

More formally, let x1, x2, . . . be draws from G, while T is the number of occupied tables, C the
number of customers in the restaurant, and Ck the number of customers at the k-th table.

Conditioned on preceding customers x1, . . . , x i−1 and their arrangement, the i-th customer sits
at table k = k′ according to the following probabilities for the T + 1 choices:

Pr(k = k′| . . . )∝
¨

Ck′ − d occupied table k′ ∈ [1, T]
θ + dT unoccupied table k′ = T + 1

(2)

Ordering a dish for a new table corresponds to drawing a value φk from the base distribution
G0, and it is admissible to serve the same kind of dish at multiple tables.

Some characteristic behaviour of the CRP can be observed easily from this description: 1) As
more customers join a table, that table becomes a more likely choice for future customers too.
2) Regardless of how many customers there are, there is always a non-zero probability of joining
an unoccupied table, and this probability also depends on the number of total tables.

The dish draws can be seen as backing off to the underlying base distribution G0, an important
consideration in the context of the hierarchical variant of the process explained shortly. Note
that the strength and discount parameters control the extent to which new dishes are drawn,
and thus the extent of reliance on the base distribution.

The predictive probability of a word w given a seating arrangement is given by

Pr(w| . . . )∝ Cw − dTw + (θ + dT )G0(w), (3)

where Cw is the number of customers of type w and Tw the number of tables serving dish w
in the restaurant. In smoothing terminology, the first term can be interpreted as applying a
discount of dTw to the observed count Cw of w; the amount of discount therefore depends on
the prevalence of the word (via Tw).

Hierarchical CRP When the prior of Gu has a base distribution Gπ(u) that is itself PYP-
distributed, as in the HPYLM, the restaurant metaphor changes slightly. In general, each
node in the hierarchy has an associated restaurant. Whenever a new table is opened in some
restaurant R, another customer is spawned and sent to join the parent restaurant pa(R). This
induces a consistency constraint over the hierarchy: the number of tables Tw in restaurant R
must equal the number of customers Cw in its parent pa(R).

We take care to satisfy this constraint in our model where some restaurants have as base
distribution a product of models. Here, when a new table serves a dish φ = w̃ in trigram
restaurant H[u,v], a customer cΛ1

joins the corresponding bigram restaurant G[u,v], and customers
cΛ2

, . . . , cΛz
, $ are sent to the restaurants for F(·|cΛ1

), . . . , F(·|cΛz
), respectively.

Sampling Although the CRP allows us to replace the priors with seating arrangements S,
those seating arrangements are simply latent variables that need to be marginalised to compute
the true posterior predictive probability of a word:

p(w|D) =
∫

S,Ω

p(w|S,Ω)p(S,Ω|D) dS dΩ, (4)
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where D is the training data and, as before, Ω are the parameters. This integral can be
approximated by averaging over m posterior samples (S,Ω) generated using Markov chain
Monte Carlo methods. The simple form of the conditionals in the CRP allows us to do a Gibbs
update whereby the table index k of a customer is resampled conditioned on all the other
variables. Sampling a new seating arrangement S for the trigram HPYLM+c thus corresponds to
visiting each customer in the restaurants for H[u,v], removing them while cascading as necessary
to observe the consistency across the hierarchy, and seating them anew at some table k′.

In the absence of any strong intuitions about appropriate values for the hyperparameters, we
place vague priors over them and use slice sampling4 (Neal, 2003) to update their values during
generation of the posterior samples: d ∼ Beta(1,1); θ ∼ Gamma(10, 0.1)

Lastly, we make the pragmatic approximation that m = 1, i.e. predictive probabilities are
informed by a single sample5 (S,Ω), taken after B > 1 iterations of burn-in.

Approximate Inference A common criticism of models like ours is that MCMC sampling in-
creases training time unreasonably for an MT pipeline, despite the simplicity of Gibbs sampling.

To address this concern, we will evaluate the viability of using approximate inference in
our model, inspired by the interpretation of original interpolated Kneser-Ney smoothing as
approximate inference in the HPYLM (Teh, 2006; Goldwater et al., 2006). In each CRP, we
constrain all the customers of a type to be seated at the same table, Tw = 1 ∀w. This changes
the predictive probability of a word to

Pr(w| . . . )∝ Cw − d + (θ + dT ′)G0(w), (5)

where T ′ is now the number of unique types in the restaurant. In the hierarchical model, this
implies absolute discounting of the n-gram counts by an amount d.

Under this scheme, the calculation of all Cw and T ′ across the hierarchy is deterministic. We
can therefore obtain the full seating arrangement S from a single pass through the training data.
We update the hyperparameters as described in the previous section, although an alternative
would be to tune them against perplexity on development data.

5 Experiments

In this section we report on experiments performed to gain insight into the behaviour of the
proposed model. The first task we evaluate on is the model’s ability to predict a previously
unseen text. Our aim is to establish whether the model’s account of compounds benefits it
without hampering its global performance. We also investigate how the performance depends
on the amount of context used when predicting tokens, and on the amount of training data
used to estimate the model.

Secondly, we are interested in how the model interacts with a large-scale statistical machine
translation system when translating from English to German. Compound words are known to
be a challenging aspect of this task, and the aim is to see if specifically accounting for them in
the language model can bias a decoder towards better translations. We did not modify other
aspects of the translation system, thus it cannot hypothesise “new” compounds and will not
benefit from our model’s ability to score unseen compounds consisting of observed components.

4We employ Mark Johnson’s implementation, http://www.cog.brown.edu/~mj/Software.htm
5Our preliminary experiments indicated that the posterior over the latent model structure is quite sharply peaked,

so that a single sample constitutes a low-variance estimator of the posterior predictive distribution.

348



5.1 Methods

Data and Tools All data we used are from the WMT11 shared-task.6 Standard data prepro-
cessing steps comprised normalising punctuation, tokenising and lowercasing all words.

For language model training, we used the union of the news commentary data, Europarl and
the news article corpus for 2011. Preprocessing and deduplication yielded a corpus of 59m
running tokens, roughly a fifth of all the German monolingual data supplied in WMT11 when
using the same preprocessing. No pruning was done on the n-gram counts, but we mapped
training tokens to the “unknown” token if they do not appear in the target-side of the bitext
(see below). The motivation is that the hypotheses to be scored against the language model
during decoding are by definition constrained to this vocabulary.

Our test corpus for the monolingual task is the union of all the WMT11 development data for
German (news-test2008,9,10, 7065 sentences).

For translation experiments, the preprocessed English-German bitext was filtered to exclude
sentences longer than 50 tokens, resulting in 1.7 million parallel sentences; word alignments
were inferred from this using the Berkeley Aligner (Liang et al., 2006) and used as a basis from
which to extract a Hiero-style synchronous CFG (Chiang, 2007).

The weights of the linear translation models were tuned towards BLEU using cdec’s (Dyer et al.,
2010) implementation of MERT (Och, 2003). For this, the development set news-test2008
(2051 sentences) was used, while final BLEU scores are measured on the official test set
newstest2011 (3003 sentences, 171460 tokens), without detokenising or recasing hypotheses.

Compound segmentation For this evaluation, we used an a priori segmentation of com-
pounds into parts to build our models. This means we assume a single, fixed analysis of a
compound regardless of the context it occurs in, which is necessitated by the fact that our
probabilistic model does not specify a step for choosing an analysis. To construct a segmentation
dictionary, we ran a supervised7 compound splitter (Dyer, 2009) on all the words8 in the train-
ing vocabulary, retaining the one-best segmentation. In addition, word-internal hyphens were
also taken as segmentation points. Finally, linking elements were merged onto components as
discussed in §3.2. Any token that is split into more than one part by this procedure is regarded
as a compound, and we find that the majority of compounds thus identified consist of one or
two parts (Table 1b).

5.2 Compounds as n-grams

Our model is premised on the idea that better probability estimates can be obtained by analysing
compounds into their components. To investigate this claim empirically, we trained a variety
of 4-gram language models and compare them by how well they predict an unseen text
consisting of N tokens. For each model q, we report measurements in terms of perplexity,
PPL=exp
�
−1/N
∑
τ ln q (τ)
�

, calculated over all tokens τ in the text.

It should be noted that the domain of our model is a countably infinite set. According to the
generative process of HPYLM+c (§3.2), there is no theoretical limit on the number of parts in a

6http://www.statmt.org/wmt11/
7We chose a supervised splitter as the focus of our evaluation is on the language model’s subsequent use of the

segmentation, not on the quality of the segmentation itself. Unsupervised methods could also be used with our model.
8We also included tokens having numerals and at least two letters, e.g. “CO2-handel” (carbon trade)
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En De De LM

Sentences 1.7m 1.7m 2.4m
Tokens 49m 38m 59m
Token Types 112k 351k 596k

(a) Statistics of training corpora.

Parts per Compound Compound Types

2 197233
3 25128
4 1194
≥5 59

(b) Compound types by length.

Table 1: Summary of training data and compound segmentation.

compound; there is always a non-zero probability of adding another modifier c fromM to a
partially formed compound. In this evaluation, we used the probabilities supplied by HPYLM+c
without normalising over the finite vocabulary W . Consequently, a comparison to baseline
models that have a finite domain is somewhat biased in their favour.

Our main model of interest is HPYLM+c using the Λling segmentation and a bigram model
FHPY LM over modifiers. To measure the importance of adhering to linguistic intuition, we
also evaluate the variant using Λinv, other things equal. As baselines we used an interpolated,
modified Kneser-Ney model (mKN) and an HPYLM. For the sampling-based models, we took
one sample from the posterior after B = 300 iterations of burn-in.

We find that the main model achieves a slightly lower perplexity than HPYLM, which in turn
beats the mKN baseline by 1.9% (Table 2a). The use of the linguistically implausible scheme
Λinv has a noticeably detrimental effect on performance.

Perplexity

mKN 299.9
HPYLM 294.1

FHPY LM Λling 293.6
FHPY LM Λinv 305.5

(a) Performance of 4-gram models
against baselines. Lower is better.

n=2 n=3 n=4

mKN 394.5 307.2 299.9
HPYLM 396.6 303.3 294.1
FHPY LM Λling 390.0 299.3 293.6

(b) Test-set perplexity for different n-gram orders.

Table 2: Comparison of language models and effect of n-gram order.

For a more qualitative insight into the model performance, we did a further direct comparison
of our main model and the mKN baseline by ranking test set compounds by the difference
in probability value that each model assigns to the n-gram. The test compounds where the
compound model does best (Table 3 top) are all words for which an analysis into a context-
dependent head and modifiers should clearly be beneficial. For example, in scoring the phrases
“wochen vor den präsidentschaftswahlen” (weeks before the presidential elections) and “tage
vor den parlamentswahlen“ (days before the parliamentary elections), the head “wahlen” is
having a mutually reinforcing effect. In contrast, we find that the cases where the mKN
baseline model does best (Table 3 bottom) feature various words that are not strictly speaking
compounds, but largely artefacts of our segmentation method: e.g. mistakes such as “ging+rich”
or “wissen+schaften”, or greediness from splitting on hyphens, e.g. “ki-+moon”. These are
words where our compound model’s smoothing is hurting performance, since it allocates some
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HPYLM+c better ∆

gegen die umstrittene wieder+wahl 0.058
aufbau der afghanischen sicherheits+kräfte 0.036

dessen zentralen gesichts+punkten 0.035
in annapolis , mary+land 0.035

wochen vor den präsidentschafts+wahlen 0.032
dieses vertrauen nicht miss+brauchen 0.030

für psychiatrie und psycho+therapie 0.028
tage vor den parlaments+wahlen 0.028

reduktion der treibhausgas+emissionen 0.025
in einem unblutigen militär+putsch 0.021

Baseline (mKN) better ∆

, newt ging+rich 0.511
nächtlichem flug+lärm 0.449

generalsekretär ban ki-+moon 0.423
in st. peters+burg 0.420

im 17. jahr+hundert 0.419
saalpublikums in st. peters+burg 0.359

militanten klerikers moqtada al-+sadr 0.352
un-hochkommissarin für menschen+rechte 0.286

schwebt in lebens+gefahr 0.231
der akademie der wissen+schaften 0.212

Table 3: Compounds from the monolingual test set for which HPYLM+c outperforms mKN by
the largest margin (top) and vice-versa (bottom). We define the margin ∆ as the difference in
probability that the models assign to the given test n-gram.

probability mass toward observing other modifiers with the head, which in the case of these
proper nouns will not happen. This is evidence of success on the part of our model’s underlying
mechanism, but demonstrates that more care should be taken with the particular segmentation
method used.

5.3 Scaling

Here we consider the behaviour of our model under scaling along two dimensions: n-gram
order and training data size.

Our model reduces data sparsity by generalising over different compounds that have the same
head. But this happens at the maximal n-gram order, meaning the full surface form is not
available in the lower-order conditional distributions. There may be cases where this amounts
to “premature back-off” when the lower-order distributions are very informative for a particular
surface form.

To see if this has an observable effect, we performed an additional experiment using orders
n= 2 and n= 3. The results in Table 2b indicate that we maintain a lower perplexity than the
baselines.

For n = 2 and n = 3, the sampler had not fully converged after 300 iterations. We suspect
this is due to the higher entropy in the distributions governing the seating assignments: If
n = 2, there should be more customers (and therefore more seating configurations) in the
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average restaurant for context-length 2 than in the same restaurant if n is larger. This did not
affect perplexity, which was stable when evaluating with different individual samples from the
posterior around 300 iterations.

The other dimension of scaling is training data size. We drew random subsamples of different
sizes from our training corpus for training further language models.

For small data sizes, the baseline models achieve a noticeably lower perplexity than our
compound model. This is contrary to the effect we expected in light of the sparsity reduction
our model brings. We suspect that this is primarily due to the lack of normalising the model
over a finite vocabulary. For larger sizes, it is competitive against the baselines once more.
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Figure 3: Test perplexity for different sizes of training data, keeping n = 4 fixed. uKN and mKN
are original and modified Kneser-Ney, respectively, both using interpolation.

5.4 Effect on Translation

The performance of an n-gram language model in an intrinsic evaluation does not necessarily
correlate with the effect it has when used as part of a translation system. We thus conducted a
separate translation experiment, comparing the quality of the output produced by the translation
system described in §5.1 when using different language models.

In terms of BLEU score, we do not find a meaningful difference between the various systems
(Table 4a). The system using our main model matches the two baselines, a result that indicates
our more expressive modelling is not sacrificing any performance in this task. This is an
important outcome, as it means we avoid a common pitfall whereby a new model is proposed to
target some specific phenomenon, does so successfully but then sacrifices performance globally.
The linguistically implausible segmentation scheme again performs slightly worse.

When using the approximate inference scheme, denoted by 1tbl in these results, we firstly
find that language model training reduces to a trivial amount of time compared to the proper
samplers; for 1tbl, the posterior likelihood converged fully within 5 iterations, where an
iteration comprises merely resampling the hyperparameters. By contrast, the posterior likelihood
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PPL BLEU

mKN 299.9 13.9
HPYLM 294.1 13.9
FHPY LM , Λling 293.6 13.9
FHPY LM , Λinv 305.5 13.7

FHPY LM , Λling 1tbl 355.4 13.6

(a) BLEU over 3003 test sentences with single ref-
erences. The standard deviation in BLEU score
across the three independent runs varied between
0.1 and 0.3. For reference, we also show the per-
plexity of each model on the monolingual test set.

P R F

mKN 25.4 17.1 20.5
HPYLM 24.3 17.5 20.4

FHPY LM , Λling 27.5 17.3 21.3
FHPY LM , Λinv 23.7 17.2 19.9

(b) Precision, Recall and F-score for compounds
in the translation output, relative to the reference
set containing 2652 compounds. Each value is cal-
culated across the union of hypotheses produced
by decoding the test set with the weights obtained
from the three independent runs.

Table 4: Translation results over three MERT runs, using 4-gram language models.

under proper sampling was still improving marginally after 300 iterations for the other models,
where one iteration comprises hyperparameter resampling and a pass through all training
tokens to resample their seating assignments in the CRP.

The 1tbl model achieved a worse perplexity in the monolingual evaluation task, but with only
a small negative effect on BLEU score compared to the baseline (Table 4a). This result suggests
there is some leeway in the development of models in the HPYLM framework to explore in
future work: model complexity can be pushed up by trading off predictive accuracy against
training time.

Next, we turn to a more fine-grained look at the translation output. The BLEU metric is likely
to miss small improvements in translation quality. Moreover, in our test corpus only 2652 of
the 72661 reference tokens are compounds; a moderate improvement in generating them is
unlikely to have a big impact on the BLEU.

To establish whether the model aids in the translation of compounds in particular, we measured
the accuracy of hypotheses produced by the different translation systems against the reference
translations. We use the standard metrics of precision (correct compounds as a fraction of
all compounds output) and recall (correct compounds as a fraction of the compounds in the
references).

The results in Table 4b show that using our model increases compound precision by 12% against
the HPYLM baseline and 8% against the Kneser-Ney baseline (relative increases). The fact that
recall remains stable proves that the gain in precision is not achieved simply by the system
being more conservative about outputting compounds in the first place.

6 Related Work

Bilmes and Kirchhoff (2003) proposed a more general framework for n-gram language mod-
elling, which can also be used for implementing sparsity reduction measures. Their Factored
Language Model (FLM) views a word as a vector of features, such that a particular feature
value is generated conditioned on some history of preceding feature values. This allows one to
construct n-gram models with dependencies among sequences of PoS tags or semantic classes
in addition to standard word-based dependencies. It should be possible to encode a model with
structure comparable to ours in the FLM framework, but it does not lend itself naturally to
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having a variable number of features depending on the predicted token in the way our model
allows a variable number of parts in a compound.

Another common approach for addressing the sparsity effects of compounding (Koehn and
Knight, 2003; Koehn et al., 2008; Stymne, 2009; Berton et al., 1996), and rich morphology
(Habash and Sadat, 2006; Geutner, 1995), has been to use pre/post-processing with an
otherwise unmodified translation system or speech recognition system. This approach views the
existing machinery as adequate and shifts the focus to finding a more appropriate segmentation
of words into tokens, i.e. compounds into parts or words into morphemes, thus achieving
a vocabulary reduction. The downside of such a method is that training a standard n-gram
language model on pre-segmented data introduces unwanted effects: in the case of German
compounds, the split-off modifiers would take precedence in a split-off head’s n-gram context,
and during back-off the actual word-context information is discarded first. The problem is similar
when modelling sequences of morphemes as n-grams, and earlier work in speech recognition
has shown that taking steps against this effect can improve recognition accuracy (Ircing et al.,
2001). Pre-processing also often requires heuristics to guard against over/under-segmentation,
which do not generalise well to different settings or languages.

Our work is also subject to the whims of our compound segmentation method, but the model
is more robust since it does retain the original surface form of the word – recall that the
decomposition step amounts to interpolated back-off.

Baroni and Matiasek (2002) proposed basic models of German compounds for use in predictive
text input, exploiting the same link between right-headedness and context as we have, although
their focus was restricted to compounds with two components.

In terms of Bayesian modelling, the PYP has been found to be very useful in a variety of tasks,
including word segmentation, speech recognition, domain adaption and unsupervised PoS
tagging (Goldwater et al., 2006; Mochihashi et al., 2009; Huang and Renals, 2007; Neubig
et al., 2010; Wood and Teh, 2009; Blunsom and Cohn, 2011). In all cases its power-law scaling
and ease of extensibility via the base distribution allowed the formulation of interesting models
that achieved competitive results.

7 Conclusion

We have demonstrated how an existing hierarchical Bayesian model can be used to build an
n-gram language model that is informed by intuitions about the specific linguistic phenomenon
of closed-form compounds. While our focus was on compounds, we argue that this approach
can be useful for other phenomena, such as rich morphology more generally, where data sparsity
creates smoothing problems for n-gram language models.

Our empirical results support the conclusions that the increased model expressiveness has a
positive impact on the monolingual task of predicting unseen German text, outperforming a
competitive Kneser-Ney baseline. When used as part of an English→German translation system,
there was little effect on the BLEU metric, but the model was associated with an increase in the
F-score for generating correct compounds during translation.

Future work will entail extending the translation system to hypothesise novel compounds, a
situation where a productive language model should be vital for generating fluent translations.
Further modelling work is therefore needed to handle novel compounds that occur in the
n-gram history.
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