
Coling 2010: Poster Volume, pages 1006–1013,
Beijing, August 2010

Expressing OWL axioms by English sentences: dubious in theory,
feasible in practice

Richard Power
Department of Computing

Open University
r.power@open.ac.uk

Allan Third
Department of Computing

Open University
a.third@open.ac.uk

Abstract

With OWL (Web Ontology Language) es-
tablished as a standard for encoding on-
tologies on the Semantic Web, interest
has begun to focus on the task of ver-
balising OWL code in controlled English
(or other natural language). Current ap-
proaches to this task assume that axioms
in OWL can be mapped to sentences in
English. We examine three potential prob-
lems with this approach (concerning log-
ical sophistication, information structure,
and size), and show that although these
could in theory lead to insuperable diffi-
culties, in practice they seldom arise, be-
cause ontology developers use OWL in
ways that favour a transparent mapping.
This result is evidenced by an analysis of
patterns from a corpus of over 600,000 ax-
ioms in about 200 ontologies.

1 Introduction

Since the adoption of OWL (Web Ontology Lan-
guage) as a standard in 2004, several research
groups have explored ways of mapping between
OWL and controlled English, with the aim of
presenting ontologies (both for viewing and edit-
ing) in natural language (Schwitter and Tilbrook,
2004; Kaljurand and Fuchs, 2007; Funk et al.,
2007; Hart et al., 2008); this task has been called
ontology ‘verbalisation’ (Smart, 2008). To de-
velop generic methods for ontology verbalisation,
some kind of structural mapping is needed be-
tween the formal and natural languages, and the
assumption generally adopted has been a three-
tier model in which identifiers for atomic terms

(e.g., individuals, classes, properties) map to lexi-
cal entries, single axioms map to sentences, and
groups of related axioms map to higher textual
units such as paragraphs and sections. The pur-
pose of this paper is to look in detail at one level of
this model, the realisation of axioms by sentences,
and to check its feasibility through an analysis of
a large corpus of ontologies.

The input to a verbaliser is a file in one
of the standard formats such as OWL/RDF or
OWL/XML, containing axioms along with sup-
porting statements such as annotations. As ex-
amples of the nature of the input, table 1 shows
three axioms in OWL/XML format; without any
attempt at aggregation or pronominalisation, they
could be realised by the following sentences1:

Horatio Nelson is an admiral.

Horatio Nelson is the victor of the Battle of
Trafalgar.

Every admiral is commander of a fleet.

Without attempting anything like a full descrip-
tion of OWL, it will be useful to look more closely
at the structure of these expressions. Note first that
they are essentially in functor-argument form2. In
the first axiom, for example, there is a functor
called ClassAssertion with two arguments, one
a class and the other an individual; the mean-
ing of the axiom is that the individual belongs
to the class. The second functor (ObjectProp-
ertyAssertion) requires instead three arguments,

1Note that one limitation of OWL is that at present it con-
tains no treatment of time; we therefore have to fall back on
the historical present.

2In fact, there is an alternative format called OWL
Functional Syntax in which, for example, the first ax-
iom would be represented by a predication of the form
ClassAssertion(X,Y).

1006



<ClassAssertion>
<Class IRI="http://www.example.org#admiral"/>
<NamedIndividual IRI="www.example.org#HoratioNelson"/>

</ClassAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI="http://www.example.org#victorOf"/>
<NamedIndividual IRI="http://www.example.org#HoratioNelson"/>
<NamedIndividual IRI="http://www.example.org#BattleOfTrafalgar"/>

</ObjectPropertyAssertion>

<SubClassOf>
<Class IRI="http://www.example.org#admiral"/>
<ObjectSomeValuesFrom>
<ObjectProperty IRI="http://www.example.org#commanderOf"/>
<Class IRI="http://www.example.org#fleet"/>

</ObjectSomeValuesFrom>
</SubClassOf>

Table 1: Examples of axioms in OWL/XML

and describes a relation (in OWL these are called
‘properties’) holding between two individuals; the
third (SubClassOf) requires two arguments, both
classes, and asserts that the first class is a subclass
of the second.

Turning to the structure of the arguments, there
are two possibilities: either the argument is
atomic, in which case it will be represented by
an identifier (or a literal if it is a data value), or
it is complex, in which case it will be represented
by an OWL functor with arguments of its own.
Most of the arguments in table 1 are atomic, the
sole exception being the second argument of Sub-
ClassOf, which denotes a complex class meaning
‘someone that is commander of a fleet’3. In gen-
eral, then, the OWL functors denote logical con-
cepts such as class membership and class inclu-
sion, while atomic terms denote domain-specific
concepts such as Nelson and admiral. A funda-
mental design decision of the Semantic Web is
that logical concepts are standardised, while do-
main concepts are left open: ontology developers
are free to name the class admiral in any way they
please, provided that the identifier takes the form
of an IRI (Internationalized Resource Identifier).

Given this distinction, the obvious strategy to
follow in developing a verbaliser is to divide lin-
guistic resources into two parts: (a) a generic set

3To be more precise we should say ‘someone that is com-
mander of one or more fleets’; this kind of trade-off between
elegance and precision often arises in systems that verbalise
formal languages.

of rules for realising logical expressions (based
on standardised OWL functors); (b) a domain-
specific lexicon for realising atomic individuals,
classes and properties. This obviously raises the
problem of how to acquire the specialised lexicons
needed for each ontology. All else failing, these
would have to be crafted by hand, but provided
that we are not too concerned about text quality, a
provisional lexicon can often be derived automat-
ically from internal evidence within the ontology
(i.e., either from identifier names or annotation la-
bels)4.

Assuming that a lexicon for atomic terms can
be obtained (by fair means or foul), there remains
a question of whether we can find sentence pat-
terns which provide understandable realisations
of the logical patterns determined by (possibly
nested) OWL functors. In section 2 we show that
this is not guaranteed, for three reasons. First,
there may be OWL functors that represent logi-
cally sophisticated concepts which cannot be ex-
pressed in non-technical English. Secondly, an
OWL axiom may be hard to verbalise because
it lacks the right kind of information structure
(i.e., because it fails to make a statement about a
recognisable topic such as an individual or atomic
class). Finally, since arguments can be nested in-
definitely, an axiom might contain so much se-

4We have discussed elsewhere whether phrases derived in
this way provide suitable lexicalisations (Power, 2010), but
this topic lies outside the scope of the present paper.

1007



mantic complexity that it cannot be compressed
clearly into a single sentence. We then describe
(section 3) an empirical analysis of axiom pat-
terns from about 200 ontologies, which investi-
gates whether these potential problems are com-
mon in practice. Section 4 discusses the results,
and section 5 concludes.

2 Potential problems in verbalising
axioms

2.1 Logical sophistication

We show in table 2 the 16 most commonly used
OWL functors for expressing axioms, each ac-
companied by a simple English sentence illustrat-
ing what the functor means. As will be seen, the
functors divide into two groups. For those in the
upper segment, it is relatively easy to find En-
glish constructions that realise the logical content
of the axiom — assuming we have suitable lexi-
calisations of the atomic terms. For those in the
lower segment, finding a good English realisation
is harder, since statements describing properties
are normally found only in the rarified worlds of
mathematics and logic, not in everyday discourse.
Our attempts to verbalise these axioms are accord-
ingly clumsy (e.g., through resorting to variables
like X and Y), and not even entirely precise (e.g.,
the sentence for FunctionalObjectProperty should
really specify ‘For any X. . . ’); perhaps the reader
can do better.

Does this mean that our aim of realising OWL
axioms in non-technical English is doomed? We
would argue that this depends on how the axioms
describing properties are used in practice. First,
for any difficult axiom functor, it is important to
consider its frequency. If it turns out that a func-
tor accounts for (say) only one axiom in every
thousand, then it will give rise only to the occa-
sional clumsy sentence, not a text that is clumsy
through and through. Second, it is important to
take account of argument complexity. If a func-
tor is used invariably with atomic terms as argu-
ments, then the sentence expressing it will contain
only one source of complexity — logical sophisti-
cation; if instead the functor has non-atomic argu-
ments, this additional strain might push it over a
threshold from difficult to incomprehensible. For-

tunately, OWL syntax requires that all property ar-
guments for the difficult functors are atomic — for
FunctionalObjectProperty, for instance, the argu-
ment cannot be a complex property expression.
For statements about domains and ranges, how-
ever, class arguments can be non-atomic, so here
a complexity issue might arise.

2.2 Information structure

We learn at school that sentences have a sub-
ject (preferably simple) and predicate (relatively
complex), the purpose of the predicate being to
say something about the subject. This rather
simplified idea is developed technically in work
on information structure (Kruijff-Korbayová and
Steedman, 2003) and centering theory (Walker et
al., 1998). Is there any equivalent to this topic-
comment distinction in OWL? Formally speak-
ing, one would have to answer in the negative.
The two-argument functor SubClassOf, for exam-
ple, can have class expressions of any complex-
ity in either argument position, and there is no
logical reason to claim that it is ‘about’ one of
these classes rather than the other. This is still
clearer in the case of EquivalentClasses, where
the functor is commutative (so that switching the
arguments leaves the meaning unchanged). Again
there seems to be a difficulty here — and again
we argue that this difficulty might disappear, or at
least diminish, if we consider how OWL is used
in practice.

Suppose, for instance, that although OWL syn-
tax allows indefinitely complex arguments in ei-
ther position for the SubClassOf functor, in prac-
tice users invariably construct axioms in which the
first argument is an atomic term, with complex
expressions occurring (if at all) only in second-
argument position. This would strongly suggest,
in our view, that developers are assigning a topic-
comment structure to the two arguments, with the
first expressing the topic and the second express-
ing the comment. As we will show later in the
paper, this pattern is found overwhelmingly — so
much so that in a sample of nearly half a million
SubClassOf axioms, fewer than 1000 instances
(0.2%) were found of non-atomic first arguments.
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Functor Example
SubClassOf Every admiral is a sailor
EquivalentClasses An admiral is defined as a person that commands a fleet
DisjointClasses No sailor is a landlubber
ClassAssertion Nelson is an admiral
ObjectPropertyAssertion Nelson is victor of the Battle of Trafalgar
DataPropertyAssertion The Battle of Trafalgar is dated 1805
ObjectPropertyDomain If X commands Y, X must be a person
ObjectPropertyRange If X commands Y, Y must be a fleet
SubObjectPropertyOf If X is a child of Y, X must be related to Y
InverseObjectProperties If X is a child of Y, Y must be a parent of X
TransitiveObjectProperty If X contains Y and Y contains Z, X must contain Z
FunctionalObjectProperty There can be only one Y such that X has as father Y
DataPropertyDomain If X is dated Y, X must be an event
DataPropertyRange If X is dated Y, Y must be an integer
SubDataPropertyOf If X occurs during Y, X must be dated Y
FunctionalDataProperty There can be only one Y such that X is dated Y

Table 2: Meanings of OWL functors

2.3 Semantic complexity
When encoding knowledge in description logic,
developers have considerable freedom in dis-
tributing content among axioms, so that axiom
size is partly a matter of style — rather like sen-
tence length in composing a text. Development
tools like Protégé (Rector et al., 2004) support
refactoring of axioms, so that for example any ax-
iom of the form CA v CS u CL (e.g., ‘Every ad-
miral is a sailor and a leader’) can be split into
two axioms CA v CS and CA v CL (‘Every
admiral is a sailor. Every admiral is a leader.’),
or vice-versa5. Indeed, it can be shown that any
set of SubClassOf axioms can be amalgamated
into a single axiom (Horrocks, 1997) of the form
> v M , where > is the class containing all indi-
viduals in the domain, and M is a class to which
any individual respecting the axiom set must be-
long6. Applying this transformation to just two
axioms already yields an amalgam that will per-
plex most readers:

Every admiral is a sailor
Every admiral commands a fleet.

Everything is (a) either a non-admiral or a sailor,
and (b) either a non-admiral or something that
commands a fleet.

There is thus no guarantee that an axiom in OWL
can be verbalised transparently by a single sen-

5The symbols v and u in logical notation correspond to
the OWL functors SubClassOf and ObjectIntersectionOf.

6This all-embracing axiom or ‘meta-constraint’ is com-
puted by the standard description logic reasoning algorithms
when determining the consistency of a knowledge base.

tence; in theory it could contain as much knowl-
edge as a textbook. As before, we have to appeal
to practice. Do ontology developers distribute
content among knowledge units (axioms) equiv-
alent in size to sentences? If they (almost always)
do, then our approach is worth pursuing; if not,
we have to reconsider.

3 Method

To investigate the issues of usage just described,
we have analysed axiom patterns in a large cor-
pus of ontologies of varying subject-matter and
provenance. The corpus was based on the TONES
Ontology Repository (TONES, 2010), which is
a searchable database of RDF/XML ontologies
from a range of sources. The repository is in-
tended to be useful to developers of tools to work
with ontologies, and as such represents a wide
range of ontology kinds and features. It also clas-
sifies ontologies by ‘expressivity’ — the weak-
est description logic necessary to express every
axiom. While the TONES site itself acknowl-
edges that the expressivity categorisation is only
a guideline, it can serve as a rough guide for com-
parison with the pattern frequency analysis carried
out here.

The whole repository was downloaded, com-
prising 214 files each containing between 0 and
100726 logical axioms7. (Note that an OWL

7A few of the ontologies in the TONES repository were
excluded, either because of syntax errors in the original files
(2-3 files), or because they exceeded our processing limits —
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file may contain no logical axioms and still
be non-empty.) To develop quickly a program
that could cope with the larger ontologies with-
out memory problems, we used the Java-based
OWL API (Horridge and Bechhofer, 2010) as
much as possible, in conjunction with standard
Unix text-processing tools (‘grep’, ‘sed’ and
‘awk’ (Dougherty and Robbins, 1997)) for pattern
recognition8.

Each ontology was converted into OWL Func-
tional Syntax (Motik et al., 2010) and lists were
automatically generated of the identifiers it con-
tains — classes, named individuals, properties,
and so on. The Unix tools were scripted to re-
place every occurrence of such an identifier with
a string representing its type. This process gen-
erated a new file in which every axiom of the
original ontology had been replaced with a string
representing its logical structure: thus SubClas-
sOf(Admiral, Sailor) and SubClassOf(Sailor, Per-
son) would each have been replaced with Sub-
ClassOf(Class, Class). The number of occur-
rences of each unique pattern was then counted
and the results converted into a set of Prolog
facts for further analysis. Some manual tidying-
up of the data was necessary in order to correct
some complex cases such as quoted string liter-
als which themselves contained (escaped) quoted
strings; however, these cases were so rare that any
remaining errors should not adversely affect out-
put quality.

4 Results

To address the issue of logical sophistication, we
first calculated frequencies for each axiom func-
tor, using two measures: (a) the number of ontolo-
gies in which the functor was used at least once,
and (b) the number of axioms using the functor
overall. The former measure (which we will call
‘ontology frequency’) is a useful corrective since
a simple axiom count can be misleading when a

e.g., the Foundational Model of Anatomy (Rosse and Mejino,
2003).

8A pure Java solution was not practical in the time avail-
able since the OWL API was designed to support reasoning
and evaluation of OWL ontologies rather than syntactic anal-
ysis of their axioms. We hope to produce an extension of the
OWL API to support straightforward and portable analysis
of ontologies in the future.

functor is used profusely in a few very large on-
tologies, but rarely elsewhere. The results are pre-
sented in table 3, ordered by ontology frequency
rather than overall axiom frequency9. As can be
seen, the ten functors classified as logically so-
phisticated in table 2 are relatively rare, by both
measures, accounting overall for just 2.2% of the
axioms in the corpus, with none of them having a
frequency reaching even 5 in 1000.

Next, to address information structure, we
looked at the argument patterns for each ax-
iom functor, distinguishing three cases: (a) all
arguments simple (i.e., atomic); (b) all argu-
ments complex (non-atomic); (c) mixed argu-
ments (some atomic, some non-atomic). This
comparison is relevant only for the functors Sub-
ClassOf, EquivalentClasses and DisjointClasses,
for which OWL syntax allows multiple non-
atomic arguments. The results (table 4) show a
clear preference for patterns in which at least one
argument is simple. Thus for SubClassOf, given
the overall frequencies of simple and complex ar-
guments for this functor, the expected frequency
for the combination Complex-Complex would be
12606 (2.7%), whereas the observed frequency
was only 978 (0.2%) (χ2 = 16296 with df=2,
p < 0.0001)10. The corresponding result for
EquivalentClasses is even clearer, with not a sin-
gle instance of an axiom in which all arguments
are complex, against an expected frequency of 973
(16.0%) (χ2 = 2692 with df=2, p < 0.0001)11.
For DisjointClasses no complex arguments were
obtained, so the only possible combination was
‘All Simple’. Overall, 99.8% of axioms for these
three functors contained at least one atomic term,
suggesting that the arguments were interpreted ac-
cording to intuitions of information structure, with
one atomic argument serving as the topic. This
point is reinforced by our next analysis, which
considers detailed argument patterns.

9Note that the total in the first column of table 3 is sim-
ple the number of ontologies in our sample; the sum of the
frequencies in the column is of no interest at all.

10The data for this test, with expected values in brack-
ets, are SS = 297293 (312138), CC = 978 (12606), and SC
= 170541 (144068), where S means ‘Simple’ and C means
‘Complex’.

11The data for this test, with expected values in brackets,
are SS = 1222 (2190), CC = 0 (973), and SC = 4860 (2919),
where again S means ‘Simple’ and C means ‘Complex’.
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Functor Ontology Frequency Percent Axiom Frequency Percent
SubClassOf 190 94% 468812 74.0%
EquivalentClasses 94 46% 6082 1.0%
ObjectPropertyRange 92 45% 2275 0.4%
ObjectPropertyDomain 91 45% 2176 0.3%
DisjointClasses 88 43% 94390 14.9%
SubObjectPropertyOf 75 37% 2511 0.4%
InverseObjectProperties 63 31% 1330 0.2%
TransitiveObjectProperty 59 29% 221 0.0%
FunctionalObjectProperty 56 28% 1129 0.2%
DataPropertyRange 52 26% 2067 0.3%
ClassAssertion 49 24% 12798 2.0%
DataPropertyDomain 47 23% 2019 0.3%
FunctionalDataProperty 37 18% 931 0.1%
ObjectPropertyAssertion 22 11% 19524 3.1%
DataPropertyAssertion 14 7% 17488 2.8%
SubDataPropertyOf 6 3% 12 0.0%
TOTAL 203 100% 633791 100%

Table 3: Frequencies for OWL functors

Functor All Simple Percent All Complex Mixed Percent
SubClassOf 297293 63% 978 (0.2%) 170541 37%
EquivalentClasses 1222 20% 0 4860 80%
DisjointClasses 94390 100% 0 0 0%
TOTAL 392905 69% 978 (0.2%) 175401 31%

Table 4: Simple and complex arguments of OWL functors

OWL Pattern Frequency Percent
SubClassOf(Class,Class) 297293 46.9%
SubClassOf(Class,ObjectSomeValuesFrom(ObjectProperty,Class)) 158519 25.0%
DisjointClasses(Class,Class) 94358 14.9%
ObjectPropertyAssertion(ObjectProperty,NamedIndividual,NamedIndividual) 18552 3.0%
DataPropertyAssertion(DataProperty,NamedIndividual,Literal) 17433 2.7%
ClassAssertion(Class,NamedIndividual) 12767 2.0%
SubClassOf(Class,ObjectAllValuesFrom(ObjectProperty,Class)) 4990 0.8%
SubObjectPropertyOf(ObjectProperty,ObjectProperty) 2453 0.4%
EquivalentClasses(Class,ObjectIntersectionOf(Class,ObjectSomeValuesFrom(ObjectProperty,Class))) 2217 0.3%
ObjectPropertyRange(ObjectProperty,Class) 2025 0.3%
ObjectPropertyDomain(ObjectProperty,Class) 1835 0.3%
DataPropertyDomain(DataProperty,Class) 1703 0.3%
SubClassOf(Class,ObjectHasValue(ObjectProperty,NamedIndividual)) 1525 0.2%
SubClassOf(Class,DataHasValue(DataProperty,Literal)) 1473 0.2%
InverseObjectProperties(ObjectProperty,ObjectProperty) 1318 0.2%
DataPropertyRange(DataProperty,Datatype) 1308 0.2%
EquivalentClasses(Class,Class) 1222 0.2%
FunctionalObjectProperty(ObjectProperty) 1121 0.2%
Other pattern. . . 11469 1.8%
TOTAL 633791 100%

Table 5: Frequencies for OWL Functor-Argument patterns
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Finally, to address semantic complexity (i.e.,
axiom size), we counted the frequencies of de-
tailed argument patterns, abstracting from atomic
terms as explained in section 3. The results (or-
dered by pattern frequency) are presented in table
5, which reveals several clear trends:

• A small number of patterns covers most of
the axioms in the corpus. Thus the top five
patterns cover 91.9% of the axioms, the top
10 cover 95.8%, and the top 20 cover 97.2%.

• All of the frequent patterns (i.e., the top 20)
can be expressed by a single sentence with-
out problems of semantic complexity arising
from size. The most complex is the Equiv-
alentClasses pattern (number 10 in the list),
but this can be realised comfortably by a sen-
tence following the classical Aristotelian pat-
tern for a definition — e.g., ‘An admiral is
defined as a person that commands a fleet’.

• None of the first ten patterns employs the
axiom functors previously classified as log-
ically sophisticated (bottom half of table 2).

• In the patterns where one argument is sim-
ple and the other is complex (i.e., SubClas-
sOf and EquivalentClasses), the simple ar-
gument invariably comes first, supporting the
intuition that developers conceptualise these
statements in subject-predicate form, with
(simple) topic preceding (possibly complex)
comment.

• Among the frequent patterns, different func-
tors have distinctive argument preferences.
For instance, for SubClassOf most axioms
have atomic arguments, presumably because
it is through this functor that the class hierar-
chy is specified. For EquivalentClasses, in-
stead, the Aristotelean definition pattern is by
far the most frequent, although all-atomic ar-
guments are occasionally employed (0.2% of
axioms) to show that two class terms are syn-
onymous.

5 Conclusion

Our analysis of over 600,000 axioms from 203
ontologies provides empirical support for the as-

sumption that in practice OWL axioms can be
transparently expressed by English sentences. In
principle, as we have seen, OWL syntax grants
users the freedom to construct axioms that would
defeat this assumption entirely, either by concen-
trating too much semantic content into a single ax-
iom, or by filling all argument positions by com-
plex expressions that are unsuited to fulfilling the
role of topic; it also allows logically sophisticated
statements about properties, which would lead to
impossibly clumsy texts if they occurred too of-
ten, or were exacerbated by complex arguments.
In practice, if our sample is typical, none of these
problems seems to arise, and we think it would
be a fair summary of our results to say that on-
tology developers treat OWL axioms by analogy
with sentences, by assigning a clear information
structure (so that one atomic argument is identi-
fied with the topic) and including only an appro-
priate amount of content.

Having identified a relatively small set of com-
mon axiom patterns, it is obviously interesting to
consider how each pattern can best be expressed
in a given natural language. Considering the pat-
tern SubClassOf(Class,Class) for instance (47%
of all axioms), one could weigh the relative mer-
its of ‘Every admiral is a sailor’, ‘All admirals are
sailors’, ‘Admirals are sailors’, ‘If X is an admiral,
then X must be a sailor’, and so forth. To address
this issue we are planning a quite different kind of
empirical study on how various sentence patterns
are interpreted by human readers; by highlighting
the logical patterns that occur most often in prac-
tice, the results reported here will help set the pa-
rameters for such an investigation.
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