
Cascading Use of Soft and Hard Matching Pattern Rules for Weakly
Supervised Information Extraction

Jing Xiao
School of Computing,
National University of
Singapore, 117543

xiaojing@comp.nus.edu.sg

Tat-Seng Chua
School of Computing,
National University of
Singapore, 117543

chuats@comp.nus.edu.sg

Hang Cui
School of Computing,
National University of
Singapore, 117543

cuihang@comp.nus.edu.sg

Abstract
Current rule induction techniques based on hard
matching (i.e., strict slot-by-slot matching) tend to
fare poorly in extracting information from natural
language texts, which often exhibit great
variations. The reason is that hard matching
techniques result in relatively high precision but
low recall. To tackle this problem, we take
advantage of the newly proposed soft pattern rules
which offer high recall through the use of
probabilistic matching. We propose a
bootstrapping framework in which soft and hard
matching pattern rules are combined in a cascading
manner to realize a weakly supervised rule
induction scheme. The system starts with a small
set of hand-tagged instances. At each iteration, we
first generate soft pattern rules and utilize them to
tag new training instances automatically. We then
apply hard pattern rule induction on the overall
tagged data to generate more precise rules, which
are used to tag the data again. The process can be
repeated until satisfactory results are obtained. Our
experimental results show that our bootstrapping
scheme with two cascaded learners approaches the
performance of a fully supervised information
extraction system while using much fewer hand-
tagged instances.

1 Introduction

Information Extraction (IE) aims to extract specific
information items of interest from free or semi-
structured texts, and pattern rule induction is one
of the most common techniques for IE tasks
(Muslea, 1999). There has been much work in
learning extraction pattern rules from tagged data,
e.g., AutoSlog-TS (Riloff, 1996), WHISK
(Soderland, 1999) and LP2 (Ciravegna, 2001). In a
typical IE system, generalized pattern rules are
usually represented as regular expressions and
matched against test instances through exact
matching for each slot, which we call hard
matching. Utilizing hard matching pattern rules
could obtain precise results from test instances.
However, the approach is problematic in dealing
with natural language text, such as news articles,
which often exhibits great variations in both lexical
and syntactic constructions. For instance, in the

terrorism domain, given a common rule “<victim>
be kidnapped by …”, hard matching pattern rules
cannot pick up the instance “<victim> , kidnapped
by …” due to the mismatch in only one token.
Such hard matching techniques often result in low
recall. To achieve flexibility in pattern matching
for natural language texts, soft matching pattern
rules have been proposed for question answering
(Cui, et al., 2004). Soft pattern rules match test
instances using a probabilistic model to better
accommodate variations in expressions. However,
differing from the question answering problem, the
IE task needs to precisely locate the boundaries of
the extracted slots. As such, soft pattern rules may
not meet the precision requirement of the task.
 In this paper, we aim to minimize the number of
hand-tagged training instances needed to start the
learning process by adopting a bootstrapping
strategy such as that proposed in Riloff and Jones
(1999). In contrast to the existing work, we
propose a weakly supervised IE framework which
takes advantages of both soft and hard matching
pattern rules in both the training and test phases.
Starting with only a small set of hand-tagged
training instances, we first generate a set of soft
pattern rules and utilize them to tag more training
instances. Next, we apply a hard matching pattern
rule induction algorithm, GRID (Xiao, et al.,
2003), over both manually and automatically
tagged instances to generalize precise hard-
matching rules. These hard pattern rules are
utilized to tag training instances for soft pattern
rule generation in the next iteration. The process
runs iteratively till the termination criteria are met.
At the end of the training process, we obtain two
sets of pattern rules, namely the hard and soft
pattern rules. During the test phase, both sets of
pattern rules are used in a cascaded way, with hard
pattern rules followed by soft pattern rules, to
extract target slots from new documents. We have
conducted two experiments on both semi-
structured and free texts to demonstrate the
effectiveness of our method. The experimental
results show that the bootstrapping scheme with
two cascaded pattern rule learners could achieve a
performance close to that obtained by fully

supervised learning while using only 5~10% of the
hand-tagged data.
 The main contribution of our work is in
incorporating soft matching pattern rules in the
bootstrapping framework. Rooted in instance-
based learning, soft pattern rules are more
appropriate in dealing with sparse data (Cui, et al.,
2004), and thus can be learned from a relatively
small number of training instances to start the
bootstrapping process. Moreover, in test phase,
soft pattern rules are expected to cover more
unseen instances, which are likely to be missed by
hard-matching rules, with its flexible matching
mechanism.
 The rest of the paper is organized as follows.
Section 2 presents the design of our system.
Section 3 describes the details of data preparation,
soft pattern matching, hard pattern rule induction
and the application of the two pattern rules on new
test instances. Section 4 presents the experimental
evaluation. We review other work in Section 5 and
conclude the paper in Section 6.

2 System Design

Figure 1 shows the overall system architecture of
our IE system. The training phase of the system is
carried out as follows:
(a) We take a small set of hand-tagged instances
(seed instances) provided by the user.
(b) We generate soft pattern rules using the seed
instances, and denote the soft pattern rules as SPi.
(c) We apply the learned soft pattern rules (SPi) to
automatically tag unannotated data. We employ a
simple cut-off strategy that keeps only the highly-
ranked instances by the soft pattern rules.
(d) We generate hard pattern rules using GRID
over the automatically tagged instances and seed
instances. The resulting hard pattern rules are
denoted as HPi.
(e) If the termination condition is satisfied, the
process ends with a set of learned soft and hard
pattern rules. Otherwise, the hard pattern rules HPi
are used to tag the training data again. We start a
new round of training from Step (b) using the
newly tagged training instances and seed instances.
 In the test phase, we apply both the hard and soft
pattern rules to match against test instances.
Specifically, soft matching pattern rules would
assign a probabilistic score to an instance that is
not matched by any of the hard matching pattern
rules. Only those fields that are matched by the
hard pattern rules or have high scores in soft
pattern matching will be extracted.

 Figure 1: Architecture of our IE system

3 Soft and Hard Pattern Rule Learning

3.1 Data Preparation

Before pattern rule learning commences, we pre-
process the training and test instances by using a
natural language chunker 1 to perform part-of-
speech (PoS) tagging and chunking. We also use a
rule-based named entity tagger (Chua and Liu,
2002) to capture semantic entities. Given a tagged
instance, we consider the left and right k chunks
around the tagged slot as the context:
<c-k>…<c-2><c-1>tagged_slot<c+1><c+2>…<c+k>
Here <ci> {i=-k to +k} represents the contextual
chunks (or slots) of the tagged slot, where k is the
number of contextual slots considered. <ci> can be
of various feature types, namely words,
punctuations, chunking tags like verb and noun
phrases, or semantic classes. We perform selective
substitution to generalize the specific terms in each
slot so as to make the learned pattern rules general
enough to be applied to other instances. Table 1
shows the substitution heuristics employed in our
system with examples.

(1)

 Figure 2 gives five examples of original training
instances for “starting time” in the seminar
announcement domain. We substitute the more

1 We use NLProcessor, a commercial parser from

Infogistics Ltd. http://www.infogistics.com/.

general syntactic or semantic classes for the lexical
tokens according to the heuristics in Table 1.

Tokens Substitution Examples

9 types of
named
entities

NP_Person,
NP_Location,

NP_Organization,
NP_Date,
NP_Day,
NP_Time,

NP_Percentage,
NP_Money,
NP_Number.

“Friday” NP_Day
“Feb.27” NP_Date

Noun
Phrase NP_HeadNoun

“the seminar”
NP_seminar

Verb Phrase
(passive or

active)

VPpas_RootVerb,
VPact_RootVerb

“will speak”
VPact_speak,

“will be held”
VPpas_hold

Preposition
Phrase

PP
“in civilian clothes”

 PP
Adjectival

and
adverbial
modifiers

To be deleted

All other
words and

punctuations
No substitution “Time”, “at”, “by”, etc.

are unchanged.

Table 1: Substitution heuristics

3.2 Soft Matching Pattern Rules

Soft pattern rules have been successfully applied to
text mining (Nahm and Mooney, 2001) and
question answering (Cui, et al., 2004). We employ
a variation of the soft pattern rules generation and
matching method presented in Cui, et al. (2004).
We expect soft pattern rules to offer higher
coverage in matching against a variety of instances
in both the training and test phases.
 For each type of tagged slot (Slot0) such as stime
in Figure 2, we accumulate all the tagged instances
and align them according to the positions of Slot0.

As a result, we obtain a virtual vector Pa
representing the contextual soft pattern rule as:
<Slot-k, … , Slot-2, Slot-1, Slot0, Slot1, Slot2, …, Slotk:
Pa> (2)
where Sloti is a vector of tokens occurring in that
slot with their probabilities of occurrence:
<(tokeni1, weighti1), (tokeni2, weighti2) ….(tokenim,
weightim): Sloti> (3)
 Here, tokenij denotes any word, punctuation,
syntactic or semantic tag contained in Sloti, and
weightij gives the proportion of occurrences of the
jth token to the ith slot. Figure 3 shows the
generated soft pattern rules for the examples given
in Figure 2.

(1) Training instances:
Time : <stime> NP_Time </stime>
VPact_be at <stime> NP_Time </stime>
NP_Day , NP_Date <stime> NP_Time </stime> - NP_Time
VPact_be at <stime> NP_Time </stime> , NP_Day , NP_Date
Time : <stime> NP_Time </stime> - NP_Time

(2) Soft pattern rules based on the instances:
…… <Slot-2> <Slot-1> <Slot0> <Slot1> …...
 Time 0.4
VPact_be 0.4
, 0.2

 : 0.4
at 0.4
NP_Date 0.2

NP_Time 1 - 0.67
, 0.33

Figure 3: An excerpt of soft pattern rules
What results from the generalization process is a

virtual vector Pa representing the soft pattern rule.
The soft pattern vector Pa is then used to compute
the degree of match for the unseen instances. The
unseen instances are first pre-processed with the
identical procedures as outlined in Section 3.1.
Using the same window size k, the token fragment
S surrounding the potential slot is derived:

(1) Original instances for slot <stime>:
Time : <stime> 2:30 PM </stime>
… will be at <stime> 3 pm </stime> …
…Friday, February 17 <stime> 12:00pm </stime> - 1:00pm

 … will be at <stime> 4pm </stime> , Monday, Feb. 27 …
Time: <stime> 12:00 PM </stime> - 1:30 PM

(2) Substituted instances:
 Time : <stime> NP_Time </stime>
 VPact_be at <stime> NP_Time </stime>
 NP_Day , NP_Date <stime> NP_Time </stime> - NP_Time
 VPact_be at <stime> NP_Time </stime> , NP_Day , NP_Date
 Time : <stime> NP_Time </stime> - NP_Time

<token-k,…, token-2, token-1, Potential_Slot, token1,
token2, …, tokenk: S> (4)
 The degree of match for the unseen instance
against the soft pattern rules is measured by the
similarity between the vector S and the virtual soft
pattern vector Pa. In particular, the match degree is
the combination of the individual slot content
similarities and the fidelity degree of slot
sequences measured by a bi-gram model (Cui, et
al., 2004).

Figure 2: Illustration of generalizing instances

 When applying the soft pattern rules to
automatically tag training instances, for each
potential slot, we assign a target tag whose soft
pattern rule gives the highest score beyond a pre-
defined threshold.

3.3 Hard Pattern Rule Induction

We employ a pattern rule induction algorithm
called GRID (Xiao, et al., 2003) to generalize the
hard pattern rules over all instances hand-tagged
by users and automatically annotated by soft

pattern rules. GRID is a supervised covering
algorithm. It uses chunks as contextual slots and
considers a context size of k slots around the
tagged item as definition in Equation (1).
 Given the cluster of training instances for a
specific slot type, GRID aligns all the instances
according to the central slot (Slot0) as is done in
soft pattern rules. For each context slot, we store
all possible representations of slot units as listed in
Table 1 at the levels of lexical, syntactic and
semantic simultaneously. Thus, we obtain a global
context feature representation for the whole
training corpus as shown in Figure 4. GRID
records the occurrences of the common slot
features at a specific position as eij (i = -k, … , -1,
0, 1, …, k; jth feature for Sloti).

inst.1: Slot-k, …, Slot-2, Slot-1, Slot0, Slot1, Slot2, …, Slotk
inst.2: Slot-k, …, Slot-2, Slot-1, Slot0, Slot1, Slot2, …, Slotk

. . … … .

. . … … .

. . … … .
inst.h: Slot-k, …, Slot-2, Slot-1, Slot0, Slot1, Slot2, …, Slotk

 GRID generates a pattern rule rk(f) by adding slot
features into the feature set f. The quality of rk(f) is
determined not only by its coverage in the positive
training set but also by the number of instances in
the negative set that it covers which would be
regarded as errors. We define the remaining
instances which are not annotated by human and
soft pattern rules as negative instances.
 We use a modified Laplacian expected error
(Soderland, 1999) to define the quality of the rule
as follows:

17.0
1

))((
21 +×++

+
=

kkk

k
k ppn

n
frLaplacian

where pk1 denotes the number of instances covered
by rule rk(f) in the manually annotated set, and pk2
denotes the number of instances covered by the
rule rk(f) in the automatically annotated set. nk is
the number of negative examples or errors covered
by the rule. We consider all the manually
annotated instances as correctly tagged and thus
we put more weight on them than on the
automatically annotated data set.
 Instead of generalizing a rule from a specific
instance as is done in most existing pattern rule
induction algorithms, GRID examines the global
feature distribution on the whole set of training
examples in order to make better decision on rule
induction. Each time, GRID selects top w features
(in terms of the eij values) and selects slot feature fij
with the minimum Laplacian value of the rule

(rk(f∪fij)) according to Equation (5) to induce
pattern rules (Xiao, et al., 2003).

We use GRID to generate rules that cover all
seed instances and discard some rules generated
from the automatically tagged instances whose
Laplacian value is greater than a preset threshold.

3.4 Cascading Matching of Hard and Soft
Pattern Rules

After we have obtained the set of hard pattern rules
and the set of soft pattern rules through the
bootstrapping rule induction process, we apply
both sets of rules in a cascaded way to assign
appropriate tag to potential slots in new instances.
The tag assigned to the given test instance t is
selected by:
1) tagg matched by GRID ruleg;
2) If not matched by any GRID rule,

tagi θ>
∈

)|Pr(maxarg i
PaPa

Pat
i

 We apply the high-precision hard pattern rules
generated by GRID first. In this case, we assign
tagg to the instance if it matches ruleg. In order to
increase the coverage of the hard pattern rules, we
allow up to one shift in the context vectors of new
test instances when matching the instances against
the hard pattern rules.
 For the remaining test instances that are not
matched by any of the hard pattern rules, we score
them using the soft pattern rules. A test instance is
assigned tagi if it has the highest conditional
probability of having t given the soft pattern rule i
(represented by vector Pai) which is greater than a
pre-defined threshold θ among all the soft pattern
rules.

4 Evaluation

To verify the generality and effectiveness of our
bootstrapping framework, we have conducted two
experiments on free and semi-structured texts. In
our supervised IE system using GRID (Xiao, et al.,
2003), we had done some trial experiments to
examine the effect of varying the different context
length k, and found the IE performance became
stable when the context length reached 4. As such,
we set the context length k to 4 for all subsequent
experiments.

4.1 Results on free text corpus

The first evaluation was conducted on the
terrorism domain using the MUC-4 free text
corpus (MUC-4, 1992). We employed the same
evaluation measures as that in (Riloff, 1996; Xiao,
et al., 2003). The target extracted slots were
“perpetrator” (Perp.), “victim” (Vic.) and “target”
(Tar.). We varied the number of the human-
annotated instances from the 772 relevant

Pos.

e-kj … e-2j e-1j e0j e1j e2j … ekj… … … …

Figure 4: Global distribution of positive instances

(5)

documents set (the standard training documents for
MUC-4 plus TST1 and TST2) used in supervised
IE learning. The manual annotation was guided by
the associated answer keys given in the MUC-4
corpus. During testing, we used the 100 texts
comprising 25 relevant and 25 irrelevant texts from
the TST3 test set, and 25 relevant and 25 irrelevant
texts from the TST4 test set.
 Following the procedure discussed in Section 2,
we repeated the automated annotation process
several times (i ≥1 in Figure 1). To examine the
variation of performance along with the changing
of the number of iterations, we plotted the average
F1 measures of the three target slots against the
iteration number (see Figure 5). We also varied the
number of manually tagged instances that were
utilized as seed instances for starting the
bootstrapping process. As can be seen in Figure 5,
the results improved as the number of iterations
increased. The system achieved a steady
performance when the number of iterations
reached four. Accordingly in the next experiments,
we considered the system’s performance based on
four bootstrapping iterations.

40

45

50

55

60

1 2 3 4 5 6 7 8 9 10

Iteration

A
ve

ra
ge

 F
1

m
ea

su
re

5% manually annotated instances

10% manually annotated instances

20% manually annotated instances

 Figure 5: Effect of the number of iterations
 Table 2 shows the performance of the system on
the test data in terms of F1-measure (with
recall/precision value in the brackets) using various
amounts of manually tagged data after four
iterations. To demonstrate the effectiveness of the
combination of hard and soft pattern rules, we also
ran four iterations using only soft pattern rules (SP)
and another four with only GRID rules.
 From Table 2, we can draw the following
conclusions:
(a) The cascaded learner by combining SP and
GRID outperforms the learner SP or GRID alone.
The soft pattern learner (SP) alone cannot achieve
good precision while the hard pattern learner
(GRID) alone cannot achieve high recall with a
small set of hand-annotated instances.

 Perp. Vic. Tar.

5%(SP) 36
(42/32)

45
(49/42)

42
(47/38)

5%(GRID) 34
(35/33)

44
(40/49)

39
(36/43)

5%(SP+GRID) 47
(49/45)

58
(59/57)

50
(50/50)

10%(SP) 38
(45/33)

46
(51/42)

45
(49/42)

10%(GRID) 37
(39/35)

46
(41/52)

44
(41/47)

10%(SP+GRID) 50
(53/47)

61
(63/59)

53
(52/54)

20%(SP) 40
(46/35)

48
(54/43)

47
(50/44)

20%(GRID) 40
(41/39)

47
(44/50)

47
(45/49)

20%(SP+GRID) 51
(52/50)

62
(63/61)

54
(55/53)

AutoSlog-TS 38
(53/30)

48
(62/39)

47
(58/39)

supervised(GRID) 52
(48/57)

62
(58/67)

56
(51/62)

Results presented in terms of F1(recall/precision).
 Table 2: Results on free text domain
(b) Compared with another weakly supervised IE
system in the same domain, AutoSlog-TS (Riloff,
1996), our cascaded learner outperforms it with the
use of only 5% of the manually tagged instances.
(c) As the percentage of the hand-annotated
instances increases from 5% to 20%, the
performance of the cascaded learner (SP+GRID)
increases steadily, indicating that the bootstrapping
process is stable and consistent.
(d) With 20% of hand-tagged training instances,
the performance of the cascaded learner
approaches that of the fully supervised IE tagger.
When more manually tagged instances (>20%) are
used, the performance of the cascaded learner
becomes steady.
(e) Looking at the instances automatically tagged
by the soft pattern rules, we found that about 75%
instances are correctly annotated in the first and
second iteration. The percentage of correctly
tagged instances by soft pattern rules increases to
90% when the bootstrapping process runs for four
times. The percentage increase verifies that our
automated annotation can provide relatively
accurate training instances for later rule induction.
 Nevertheless, our system missed some cases
which needed deeper NLP analysis. For example,
given a test sentence “THEY ARE THE TOP
MILITARY AND POLITICAL FIGURES IN
ALFREDO CRISTIANI'S ADMINISTRATION.”, the
system could not identify “ALFREDO CRISTIAN’S
ADMINISTRATION” as the “perpetrator”. If we
could associate the previously found “perpetrator”
(maybe located far away) to “they”, then we might
be able to infer that the “ALFREDO CRISTIAN’S
ADMINISTRATION” is the “perpetrator” too.

4.2 Results on semi-structured corpus

The second experiment was conducted on semi-

structured text documents. We used the CMU
seminar announcements2 for the evaluation. The IE
task for this domain is to extract the entities of
“speaker” (SP), “location” (LOC), “starting time”
(ST), and “ending time” (ET) from a seminar
announcement. There were 485 seminar
announcements. In the supervised IE experiments,
we made five runs and in each run we used one
half for training and the other half for testing.
Similarly, to evaluate our weakly supervised
learning framework, we did five trials as well. In
each run, we varied the percentage of manually
annotated instances for training in the supervised
experiments. Table 3 shows the performance (the
average F1 measure and recall/precision for five
runs) of the system with different percentage of
manually tagged instances used to start the
training. We also compare the performances
between the single learners and the cascaded
learner. All results are based on four bootstrapping
iterations.

 SP LOC ST ET

5%(SP) 70
(74/66)

65
(70/61)

94
(95/93)

90
(93/88)

5%(GRID) 68
(65/72)

61
(59/64)

93
(91/94)

89
(86/92)

5%(SP+GRID) 82
(83/81)

73
(74/72)

98
(98/98)

94
(96/92)

10%(SP) 72
(75/70)

68
(72/64)

96
(96/95)

93
(94/92)

10%(GRID) 72
(67/77)

67
(63/72)

95
(94/96)

93
(91/96)

10%(SP+GRID) 84
(84/83)

75
(75/74)

99
(99/99)

95
(97/94)

20%(SP) 75
(77/74)

71
(75/67)

97
(97/97)

95
(96/95)

20%(GRID) 75
(69/82)

71
(66/77)

97
(95/99)

95
(94/96)

20%(SP+GRID) 85
(85/85)

76
(76/75)

99
(99/99)

96
(97/95)

supervised
(GRID)

86
(84/88)

76
(73/80)

99
(99/100)

96
(95/97)

Results presented in terms of F1(recall/precision).
 Table 3: Results on semi-structured data

 From Table 3, we make the following
observations:
(a) The cascaded learner with two pattern learners
significantly outperforms the learner SP or GRID
alone as in the case of free text corpus. With 10%
of hand-tagged instances, the cascaded learner
(SP+GRID) approaches the performance of the
fully supervised IE tagger. Also the performance of
the cascaded learner increases steadily when the
number of hand-tagged instances increases from
5% to 20%.
(b) With more hand-annotated instances (>20%),
the performance of the bootstrapping system with
the cascading use of SP and GRID becomes stable
and consistent.

2 http://www.isi.edu/info-agents/RISE/repository.html

(c) Soft pattern rules tag 90% of the instances
correctly, as we found out in our random checks.
 The lower performance of our system on the
“location” slot is mainly due to the use of a general
named entity recognizer which is good at
identifying common locations such as cities,
mountains etc. In seminar announcements, many
locations are room numbers such as “WeH 8220”;
thus, we missed out some seminar venues.

5 Related Work

Many hard pattern rule inductive learning systems
have been developed for information extraction
from free texts or semi-structured texts.
Specifically, AutoSlog-TS (Riloff, 1996) generates
extraction patterns using annotated text and a set of
heuristic rules and it eliminates the dependency on
tagged text and only requires the pre-classified
texts as input. WHISK (Soderland, 1999) induces
multi-slot rules from a training corpus top-down. It
is designed to handle text styles ranging from
highly structured text to free text. WHISK
performs rule induction starting from a randomly
selected seed instance. (LP)2 (Ciravegna, 2001) is a
covering algorithm for adaptive IE systems that
induces symbolic rules. In (LP)2, training is
performed in two steps: first, a set of tagging rules
is learned to identify the boundaries of slots; next,
additional rules are induced to correct mistakes in
the first step of tagging. In contrast to their work,
GRID utilizes global feature distribution to induce
pattern rules and uses chunk as the context unit.

Nahm and Mooney (2001) proposed the learning
of soft matching rules from texts by combining
rule-based and instance-based learning. Words in
each slot are generalized by traditional rule
induction techniques and test instances are
matched to the rules by their cosine similarities.
The learning of soft pattern rules in this paper
augments the soft matching method advocated by
Nahm and Mooney (2001) by combining lexical
tokens alongside syntactic and semantic features
and adopting a probabilistic framework that
combines slot content and sequential fidelity in
computing the degree of pattern match.
 The bootstrapping scheme using the co-training
(Blum and Mitchell, 1998) technique has been
widely explored for IE tasks in recent years.
Collins and Singer (1999) presented several
techniques using co-training schemes for Named
Entity (NE) extraction seeded by a small set of
manually crafted NE rules. Riloff and Jones (1999)
presented a multi-level bootstrapping algorithm
that generates both the semantic lexicon and
extraction patterns simultaneously. Yangarber
(2003) proposed a counter-training approach to
provide natural stopping criteria for unsupervised

learning.
 Our framework of combining two pattern
learners is close to Niu, et al. (2003) in which two
successive learners are used to learn named entities
classifiers starting from a small set of concept-
based seed words. The bootstrapping procedure is
implemented as training a decision list and an
HMM classifier sequentially. The HMM classifier
uses the training corpus automatically, tagged by
the first learner, i.e., the decision list learner. Our
work differs from Niu, et al. (2003) in two ways.
First, we repeat the automatic annotation process
until it satisfies the stopping criteria. Second, we
apply different patterns (hard and soft pattern
rules) in both the training and test phases.

6 Conclusion

We have presented a novel bootstrapping
approach for information extraction by the
cascading use of soft and hard pattern rules. Our
framework takes advantages of the high-recall of
soft pattern rules and the high-precision of hard
pattern rules. We use soft pattern rules to
automatically annotate more training instances so
as to provide a more comprehensive basis for hard
pattern rule induction. The integration of soft
pattern matching in the extraction phase also
provides more target entities from test instances
that would otherwise be missed by hard pattern
matching. With much less manual input, the
proposed bootstrapping system approaches the
performance obtained by fully supervised learning
on both semi-structured and free texts corpora.

7 Acknowledgement

The authors would like to thank Alexia Leong
for proofreading this paper. The third author is
supported by Singapore Millennium Foundation
Scholarship (ref no. 2003-SMS-0230).

References

A. Blum and T. Mitchell. 1998. Combining
Labeled and Unlabeled Data with Co-training.
Proceedings of the 11th Annual Conference on
Computational Learning Theory (COLT-98),
pages 92-100.

T.-S. Chua and J. Liu. 2002. Learning Pattern
Rules for Chinese Named Entity Extraction.
Proceedings of the 18th National Conference on
Artificial Intelligence. (AAAI-02), pages 411-
418.

F. Ciravegna. 2001. Adaptive Information
Extraction from Text by Rule Induction and
Generalisation. Proceedings of the 17th

International Joint Conference on Artificial
Intelligence (IJCAI-2001), pages 1251-1256.

M. Collins and Y. Singer. 1999. Unsupervised
Models for Named Entity Classification.
Proceedings of the 1999 Joint SIGDAT
Conference on EMNLP and VLC.

H. Cui, M.-Y. Kan and T.-S. Chua. 2004.
Unsupervised Learning of Soft Patterns for
Definitional Question Answering. Proceedings
of 13th World Wide Web Conference. (WWW-04),
pages 90-99.

MUC-4, 1992. Proceedings of the Fourth Message
Understanding Conference. San Mateo, CA:
Morgan Kaufmann. 1992.

I. Muslea. 1999. Extraction Patterns for
Information Extraction Tasks: A Survey. The
AAAI-99 Workshop on Machine Learning for
Information Extraction.

U. Y. Nahm and R. J. Mooney. 2001. Mining Soft
Matching Rules from Textual Data. Proceedings
of the 17th International Joint Conference on
Artificial Intelligence. (IJCAI-01), pages 979-
986.

C. Niu, W. Li, J. Ding and R. K. Srihari. 2003. A
Bootstrapping Approach to Named Entity
Classification Using Successive Learners.
Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics.
(ACL-03), pages 335-342.

E. Riloff. 1996. Automatically Generating
Extraction Patterns from Untagged Text.
Proceedings of the 13th National Conference on
Artificial Intelligence (AAAI-96), pages 1044-
1049.

E. Riloff and R. Jones, 1999, Learning
Dictionaries for Information Extraction by
Multi-Level Bootstrapping, Proceedings of the
Sixteenth National Conference on Artificial
Intelligence (AAAI-99), pages 474-479.

S. Soderland. 1999. Learning Information
Extraction Rules for Semi-structured and Free
Text. Machine Learning, vol.34, pages 233-272.

J. Xiao, T.-S. Chua and J. Liu. 2003. A Global
Rule Induction Approach to Information
Extraction. Proceedings of the 15th IEEE
International Conference on Tools with Artificial
Intelligence. (ICTAI-03), pages 530-536.

R. Yangarber. 2003. Counter-Training in
Discovery of Semantic Patterns. Proceedings of
the 41st Annual Meeting of the Association for
Computational Linguistics (ACL-03), pages 343-
350.

	Introduction
	System Design
	Soft and Hard Pattern Rule Learning
	Data Preparation
	Soft Matching Pattern Rules
	Hard Pattern Rule Induction
	Cascading Matching of Hard and Soft Pattern Rules

	Evaluation
	Results on free text corpus
	Results on semi-structured corpus

	Related Work
	Conclusion
	Acknowledgement

