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Abstract 
Current rule induction techniques based on hard 
matching (i.e., strict slot-by-slot matching) tend to 
fare poorly in extracting information from natural 
language texts, which often exhibit great 
variations. The reason is that hard matching 
techniques result in relatively high precision but 
low recall. To tackle this problem, we take 
advantage of the newly proposed soft pattern rules 
which offer high recall through the use of 
probabilistic matching. We propose a 
bootstrapping framework in which soft and hard 
matching pattern rules are combined in a cascading 
manner to realize a weakly supervised rule 
induction scheme. The system starts with a small 
set of hand-tagged instances. At each iteration, we 
first generate soft pattern rules and utilize them to 
tag new training instances automatically. We then 
apply hard pattern rule induction on the overall 
tagged data to generate more precise rules, which 
are used to tag the data again. The process can be 
repeated until satisfactory results are obtained. Our 
experimental results show that our bootstrapping 
scheme with two cascaded learners approaches the 
performance of a fully supervised information 
extraction system while using much fewer hand-
tagged instances. 

1 Introduction 

Information Extraction (IE) aims to extract specific 
information items of interest from free or semi-
structured texts, and pattern rule induction is one 
of the most common techniques for IE tasks 
(Muslea, 1999). There has been much work in 
learning extraction pattern rules from tagged data, 
e.g., AutoSlog-TS (Riloff, 1996), WHISK 
(Soderland, 1999) and LP2 (Ciravegna, 2001). In a 
typical IE system, generalized pattern rules are 
usually represented as regular expressions and 
matched against test instances through exact 
matching for each slot, which we call hard 
matching. Utilizing hard matching pattern rules 
could obtain precise results from test instances. 
However, the approach is problematic in dealing 
with natural language text, such as news articles, 
which often exhibits great variations in both lexical 
and syntactic constructions. For instance, in the 

terrorism domain, given a common rule “<victim> 
be kidnapped by …”, hard matching pattern rules 
cannot pick up the instance “<victim> , kidnapped 
by …” due to the mismatch in only one token. 
Such hard matching techniques often result in low 
recall. To achieve flexibility in pattern matching 
for natural language texts, soft matching pattern 
rules have been proposed for question answering 
(Cui, et al., 2004). Soft pattern rules match test 
instances using a probabilistic model to better 
accommodate variations in expressions. However, 
differing from the question answering problem, the 
IE task needs to precisely locate the boundaries of 
the extracted slots. As such, soft pattern rules may 
not meet the precision requirement of the task. 
   In this paper, we aim to minimize the number of 
hand-tagged training instances needed to start the 
learning process by adopting a bootstrapping 
strategy such as that proposed in Riloff and Jones 
(1999). In contrast to the existing work, we 
propose a weakly supervised IE framework which 
takes advantages of both soft and hard matching 
pattern rules in both the training and test phases. 
Starting with only a small set of hand-tagged 
training instances, we first generate a set of soft 
pattern rules and utilize them to tag more training 
instances. Next, we apply a hard matching pattern 
rule induction algorithm, GRID (Xiao, et al., 
2003), over both manually and automatically 
tagged instances to generalize precise hard-
matching rules. These hard pattern rules are 
utilized to tag training instances for soft pattern 
rule generation in the next iteration. The process 
runs iteratively till the termination criteria are met. 
At the end of the training process, we obtain two 
sets of pattern rules, namely the hard and soft 
pattern rules. During the test phase, both sets of 
pattern rules are used in a cascaded way, with hard 
pattern rules followed by soft pattern rules, to 
extract target slots from new documents. We have 
conducted two experiments on both semi-
structured and free texts to demonstrate the 
effectiveness of our method. The experimental 
results show that the bootstrapping scheme with 
two cascaded pattern rule learners could achieve a  
performance close to that obtained by fully 



supervised learning while using only 5~10% of the 
hand-tagged data.  
   The main contribution of our work is in 
incorporating soft matching pattern rules in the 
bootstrapping framework. Rooted in instance-
based learning, soft pattern rules are more 
appropriate in dealing with sparse data (Cui, et al., 
2004), and thus can be learned from a relatively 
small number of training instances to start the 
bootstrapping process. Moreover, in test phase, 
soft pattern rules are expected to cover more 
unseen instances, which are likely to be missed by 
hard-matching rules, with its flexible matching 
mechanism. 
   The rest of the paper is organized as follows. 
Section 2 presents the design of our system. 
Section 3 describes the details of data preparation, 
soft pattern matching, hard pattern rule induction 
and the application of the two pattern rules on new 
test instances. Section 4 presents the experimental 
evaluation. We review other work in Section 5 and 
conclude the paper in Section 6. 

2 System Design 

Figure 1 shows the overall system architecture of 
our IE system. The training phase of the system is 
carried out as follows: 
(a) We take a small set of hand-tagged instances 
(seed instances) provided by the user. 
(b) We generate soft pattern rules using the seed 
instances, and denote the soft pattern rules as SPi. 
(c) We apply the learned soft pattern rules (SPi) to 
automatically tag unannotated data. We employ a 
simple cut-off strategy that keeps only the highly-
ranked instances by the soft pattern rules. 
(d) We generate hard pattern rules using GRID 
over the automatically tagged instances and seed 
instances. The resulting hard pattern rules are 
denoted as HPi.  
(e) If the termination condition is satisfied, the 
process ends with a set of learned soft and hard 
pattern rules. Otherwise, the hard pattern rules HPi 
are used to tag the training data again.  We start a 
new round of training from Step (b) using the 
newly tagged training instances and seed instances. 
   In the test phase, we apply both the hard and soft 
pattern rules to match against test instances. 
Specifically, soft matching pattern rules would 
assign a probabilistic score to an instance that is 
not matched by any of the hard matching pattern 
rules. Only those fields that are matched by the 
hard pattern rules or have high scores in soft 
pattern matching will be extracted. 

 

 
 

  Figure 1: Architecture of our IE system 
 

3 Soft and Hard Pattern Rule Learning 

3.1 Data Preparation 

Before pattern rule learning commences, we pre-
process the training and test instances by using a 
natural language chunker 1  to perform part-of-
speech (PoS) tagging and chunking. We also use a 
rule-based named entity tagger (Chua and Liu, 
2002) to capture semantic entities. Given a tagged 
instance, we consider the left and right k chunks 
around the tagged slot as the context:  
<c-k>…<c-2><c-1>tagged_slot<c+1><c+2>…<c+k>       
Here <ci> {i=-k to +k} represents the contextual 
chunks (or slots) of the tagged slot, where k is the 
number of contextual slots considered. <ci> can be 
of various feature types, namely words, 
punctuations, chunking tags like verb and noun 
phrases, or semantic classes. We perform selective 
substitution to generalize the specific terms in each 
slot so as to make the learned pattern rules general 
enough to be applied to other instances. Table 1 
shows the substitution heuristics employed in our 
system with examples.  

(1) 

   Figure 2 gives five examples of original training 
instances for “starting time” in the seminar 
announcement domain. We substitute the more 

                                                      
1  We use NLProcessor, a commercial parser from 

Infogistics Ltd. http://www.infogistics.com/. 



general syntactic or semantic classes for the lexical 
tokens according to the heuristics in Table 1. 
  

Tokens Substitution Examples 

9 types of 
named 
entities 

NP_Person, 
NP_Location, 

NP_Organization, 
NP_Date,  
NP_Day, 
NP_Time, 

NP_Percentage, 
NP_Money, 
NP_Number. 

“Friday” NP_Day 
“Feb.27” NP_Date 

Noun 
Phrase NP_HeadNoun 

“the seminar” 
NP_seminar 

Verb Phrase 
(passive or 

active) 

VPpas_RootVerb, 
VPact_RootVerb 

“will speak” 
VPact_speak, 

“will be held” 
VPpas_hold 

Preposition 
Phrase 

PP 
“in civilian clothes” 

 PP 
Adjectival 

and 
adverbial 
modifiers 

To be deleted  

All other 
words and 

punctuations 
No substitution “Time”, “at”, “by”, etc. 

are unchanged. 

Table 1: Substitution heuristics 

 

 

 

 

 

 

 

3.2 Soft Matching Pattern Rules 

Soft pattern rules have been successfully applied to 
text mining (Nahm and Mooney, 2001) and 
question answering (Cui, et al., 2004). We employ 
a variation of the soft pattern rules generation and 
matching method presented in Cui, et al. (2004). 
We expect soft pattern rules to offer higher 
coverage in matching against a variety of instances 
in both the training and test phases. 
   For each type of tagged slot (Slot0) such as stime 
in Figure 2, we accumulate all the tagged instances 
and align them according to the positions of Slot0. 

As a result, we obtain a virtual vector Pa 
representing the contextual soft pattern rule as: 
<Slot-k, … , Slot-2, Slot-1, Slot0, Slot1, Slot2, …, Slotk: 
Pa>                                                                      (2) 
where Sloti is a vector of tokens occurring in that 
slot with their probabilities of occurrence: 
<(tokeni1, weighti1), (tokeni2, weighti2) ….(tokenim, 
weightim): Sloti>                                                   (3) 
   Here, tokenij denotes any word, punctuation, 
syntactic or semantic tag contained in Sloti, and 
weightij gives the proportion of occurrences of the 
jth token to the ith slot. Figure 3 shows the 
generated soft pattern rules for the examples given 
in Figure 2. 
 
 
 
 
 
 

 
 
 
 
 
 
 

(1) Training instances: 
Time : <stime> NP_Time </stime> 
VPact_be at <stime> NP_Time </stime>  
NP_Day , NP_Date <stime> NP_Time </stime> - NP_Time 
VPact_be at <stime> NP_Time </stime> , NP_Day , NP_Date 
Time : <stime> NP_Time </stime> - NP_Time 
 
(2) Soft pattern rules based on the instances: 
…… <Slot-2>          <Slot-1>            <Slot0>           <Slot1> …...
 Time 0.4 
VPact_be 0.4 
, 0.2 

 : 0.4 
at 0.4 
NP_Date  0.2 

 

NP_Time  1 - 0.67 
, 0.33 
 

Figure 3: An excerpt of soft pattern rules 
What results from the generalization process is a 

virtual vector Pa representing the soft pattern rule. 
The soft pattern vector Pa is then used to compute 
the degree of match for the unseen instances. The 
unseen instances are first pre-processed with the 
identical procedures as outlined in Section 3.1. 
Using the same window size k, the token fragment 
S surrounding the potential slot is derived: 

(1) Original instances for slot <stime>: 
Time : <stime> 2:30 PM </stime> 
… will be at <stime> 3 pm </stime> … 
…Friday, February 17 <stime> 12:00pm </stime> - 1:00pm

    … will be at <stime> 4pm </stime> , Monday, Feb. 27 … 
Time: <stime> 12:00 PM </stime> - 1:30 PM 

(2) Substituted instances: 
    Time : <stime> NP_Time </stime> 
    VPact_be at <stime> NP_Time </stime>  
    NP_Day , NP_Date <stime> NP_Time </stime> - NP_Time 
    VPact_be at <stime> NP_Time </stime> , NP_Day , NP_Date 
    Time : <stime> NP_Time </stime> - NP_Time 

<token-k,…, token-2, token-1, Potential_Slot, token1, 
token2, …, tokenk: S>                                           (4) 
   The degree of match for the unseen instance 
against the soft pattern rules is measured by the 
similarity between the vector S and the virtual soft 
pattern vector Pa. In particular, the match degree is 
the combination of the individual slot content 
similarities and the fidelity degree of slot 
sequences measured by a bi-gram model (Cui, et 
al., 2004).  

Figure 2: Illustration of generalizing instances 

   When applying the soft pattern rules to 
automatically tag training instances, for each 
potential slot, we assign a target tag whose soft 
pattern rule gives the highest score beyond a pre-
defined threshold. 

3.3 Hard Pattern Rule Induction 

We employ a pattern rule induction algorithm 
called GRID (Xiao, et al., 2003) to generalize the 
hard pattern rules over all instances hand-tagged 
by users and automatically annotated by soft 



pattern rules. GRID is a supervised covering 
algorithm. It uses chunks as contextual slots and 
considers a context size of k slots around the 
tagged item as definition in Equation (1).   
   Given the cluster of training instances for a 
specific slot type, GRID aligns all the instances 
according to the central slot (Slot0) as is done in 
soft pattern rules. For each context slot, we store 
all possible representations of slot units as listed in 
Table 1 at the levels of lexical, syntactic and 
semantic simultaneously. Thus, we obtain a global 
context feature representation for the whole 
training corpus as shown in Figure 4. GRID 
records the occurrences of the common slot 
features at a specific position as eij (i = -k, … ,  -1, 
0, 1, …, k; jth feature for Sloti).  
 
inst.1: Slot-k, …, Slot-2, Slot-1, Slot0, Slot1, Slot2, …, Slotk 
inst.2: Slot-k, …, Slot-2, Slot-1, Slot0, Slot1, Slot2, …, Slotk 

.         .      …      .         .          .         .        .      …    . 

.         .      …      .         .          .         .        .      …    . 

.         .      …      .         .          .         .        .      …    . 
inst.h: Slot-k, …, Slot-2, Slot-1, Slot0, Slot1, Slot2, …, Slotk 
 
 

 
 

   GRID generates a pattern rule rk(f) by adding slot 
features into the feature set f. The quality of rk(f) is 
determined not only by its coverage in the positive 
training set but also by the number of instances in 
the negative set that it covers which would be 
regarded as errors. We define the remaining 
instances which are not annotated by human and 
soft pattern rules as negative instances.  
   We use a modified Laplacian expected error 
(Soderland, 1999) to define the quality of the rule 
as follows: 
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where pk1 denotes the number of instances covered 
by rule rk(f) in the manually annotated set, and pk2 
denotes the number of instances covered by the 
rule rk(f) in the automatically annotated set. nk is 
the number of negative examples or errors covered 
by the rule. We consider all the manually 
annotated instances as correctly tagged and thus 
we put more weight on them than on the 
automatically annotated data set. 
   Instead of generalizing a rule from a specific 
instance as is done in most existing pattern rule 
induction algorithms, GRID examines the global 
feature distribution on the whole set of training 
examples in order to make better decision on rule 
induction. Each time, GRID selects top w features 
(in terms of the eij values) and selects slot feature fij 
with the minimum Laplacian value of the rule 

(rk(f∪fij)) according to Equation (5) to induce 
pattern rules (Xiao, et  al., 2003). 

We use GRID to generate rules that cover all 
seed instances and discard some rules generated 
from the automatically tagged instances whose 
Laplacian value is greater than a preset threshold.  

3.4 Cascading Matching of Hard and Soft 
Pattern Rules 

After we have obtained the set of hard pattern rules 
and the set of soft pattern rules through the 
bootstrapping rule induction process, we apply 
both sets of rules in a cascaded way to assign 
appropriate tag to potential slots in new instances. 
The tag assigned to the given test instance t is 
selected by: 
1) tagg   matched by GRID ruleg; 
2) If not matched by any GRID rule, 

tagi  θ>
∈

)|Pr(maxarg i
PaPa

Pat
i

   We apply the high-precision hard pattern rules 
generated by GRID first. In this case, we assign 
tagg to the instance if it matches ruleg. In order to 
increase the coverage of the hard pattern rules, we 
allow up to one shift in the context vectors of new 
test instances when matching the instances against 
the hard pattern rules.  
   For the remaining test instances that are not 
matched by any of the hard pattern rules, we score 
them using the soft pattern rules. A test instance is 
assigned tagi if it has the highest conditional 
probability of having t given the soft pattern rule i 
(represented by vector Pai) which is greater than a 
pre-defined threshold θ among all the soft pattern 
rules.  

4 Evaluation 

To verify the generality and effectiveness of our 
bootstrapping framework, we have conducted two 
experiments on free and semi-structured texts. In 
our supervised IE system using GRID (Xiao, et al., 
2003), we had done some trial experiments to 
examine the effect of varying the different context 
length k, and found the IE performance became 
stable when the context length reached 4. As such, 
we set the context length k to 4 for all subsequent 
experiments.  

4.1 Results on free text corpus 

The first evaluation was conducted on the 
terrorism domain using the MUC-4 free text 
corpus (MUC-4, 1992). We employed the same 
evaluation measures as that in (Riloff, 1996; Xiao, 
et al., 2003). The target extracted slots were 
“perpetrator” (Perp.), “victim” (Vic.) and “target” 
(Tar.). We varied the number of the human-
annotated instances from the 772 relevant 

Pos. 

e-kj … e-2j e-1j e0j e1j e2j … ekj… … … … 

Figure 4: Global distribution of positive instances

(5) 



documents set (the standard training documents for 
MUC-4 plus TST1 and TST2) used in supervised 
IE learning. The manual annotation was guided by 
the associated answer keys given in the MUC-4 
corpus. During testing, we used the 100 texts 
comprising 25 relevant and 25 irrelevant texts from 
the TST3 test set, and 25 relevant and 25 irrelevant 
texts from the TST4 test set.  
   Following the procedure discussed in Section 2, 
we repeated the automated annotation process 
several times (i ≥1 in Figure 1). To examine the 
variation of performance along with the changing 
of the number of iterations, we plotted the average 
F1 measures of the three target slots against the 
iteration number (see Figure 5). We also varied the 
number of manually tagged instances that were 
utilized as seed instances for starting the 
bootstrapping process. As can be seen in Figure 5, 
the results improved as the number of iterations 
increased. The system achieved a steady 
performance when the number of iterations 
reached four. Accordingly in the next experiments, 
we considered the system’s performance based on 
four bootstrapping iterations. 
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        Figure 5: Effect of the number of iterations 
   Table 2 shows the performance of the system on 
the test data in terms of F1-measure (with 
recall/precision value in the brackets) using various 
amounts of manually tagged data after four 
iterations. To demonstrate the effectiveness of the 
combination of hard and soft pattern rules, we also 
ran four iterations using only soft pattern rules (SP) 
and another four with only GRID rules.    
   From Table 2, we can draw the following 
conclusions: 
(a) The cascaded learner by combining SP and 
GRID outperforms the learner SP or GRID alone. 
The soft pattern learner (SP) alone cannot achieve 
good precision while the hard pattern learner 
(GRID) alone cannot achieve high recall with a 
small set of hand-annotated instances. 
   

 Perp. Vic. Tar. 

5%(SP) 36 
(42/32) 

45 
(49/42) 

42 
(47/38) 

5%(GRID) 34 
(35/33) 

44 
(40/49) 

39 
(36/43) 

5%(SP+GRID) 47 
(49/45) 

58 
(59/57) 

50 
(50/50) 

10%(SP) 38 
(45/33) 

46 
(51/42) 

45 
(49/42) 

10%(GRID) 37 
(39/35) 

46 
(41/52) 

44 
(41/47) 

10%(SP+GRID) 50 
(53/47) 

61 
(63/59) 

53 
(52/54) 

20%(SP) 40 
(46/35) 

48 
(54/43) 

47 
(50/44) 

20%(GRID) 40 
(41/39) 

47 
(44/50) 

47 
(45/49) 

20%(SP+GRID) 51 
(52/50) 

62 
(63/61) 

54 
(55/53) 

AutoSlog-TS 38 
(53/30) 

48 
(62/39) 

47 
(58/39) 

supervised(GRID) 52 
(48/57) 

62 
(58/67) 

56 
(51/62) 

           
 
Results presented in terms of F1(recall/precision). 
               Table 2: Results on free text domain 
(b) Compared with another weakly supervised IE 
system in the same domain, AutoSlog-TS (Riloff, 
1996), our cascaded learner outperforms it with the 
use of only 5% of the manually tagged instances. 
(c) As the percentage of the hand-annotated 
instances increases from 5% to 20%, the 
performance of the cascaded learner (SP+GRID) 
increases steadily, indicating that the bootstrapping 
process is stable and consistent. 
(d) With 20% of hand-tagged training instances, 
the performance of the cascaded learner 
approaches that of the fully supervised IE tagger. 
When more manually tagged instances (>20%) are 
used, the performance of the cascaded learner 
becomes steady. 
(e) Looking at the instances automatically tagged 
by the soft pattern rules, we found that about 75% 
instances are correctly annotated in the first and 
second iteration. The percentage of correctly 
tagged instances by soft pattern rules increases to 
90% when the bootstrapping process runs for four 
times. The percentage increase verifies that our 
automated annotation can provide relatively 
accurate training instances for later rule induction. 
   Nevertheless, our system missed some cases 
which needed deeper NLP analysis. For example, 
given a test sentence “THEY ARE THE TOP 
MILITARY AND POLITICAL FIGURES IN 
ALFREDO CRISTIANI'S ADMINISTRATION.”, the 
system could not identify “ALFREDO CRISTIAN’S 
ADMINISTRATION” as the “perpetrator”. If we 
could associate the previously found “perpetrator” 
(maybe located far away) to “they”, then we might 
be able to infer that the “ALFREDO CRISTIAN’S 
ADMINISTRATION” is the “perpetrator” too. 

4.2 Results on semi-structured corpus 

The second experiment was conducted on semi-



structured text documents. We used the CMU 
seminar announcements2 for the evaluation. The IE 
task for this domain is to extract the entities of 
“speaker” (SP), “location” (LOC), “starting time” 
(ST), and “ending time” (ET) from a seminar 
announcement. There were 485 seminar 
announcements. In the supervised IE experiments, 
we made five runs and in each run we used one 
half for training and the other half for testing. 
Similarly, to evaluate our weakly supervised 
learning framework, we did five trials as well. In 
each run, we varied the percentage of manually 
annotated instances for training in the supervised 
experiments. Table 3 shows the performance (the 
average F1 measure and recall/precision for five 
runs) of the system with different percentage of 
manually tagged instances used to start the 
training. We also compare the performances 
between the single learners and the cascaded 
learner. All results are based on four bootstrapping 
iterations. 

 SP LOC ST ET 

5%(SP) 70 
(74/66) 

65 
(70/61) 

94 
(95/93) 

90 
(93/88) 

5%(GRID) 68 
(65/72) 

61 
(59/64) 

93 
(91/94) 

89 
(86/92) 

5%(SP+GRID) 82 
(83/81) 

73 
(74/72) 

98 
(98/98) 

94 
(96/92) 

10%(SP) 72 
(75/70) 

68 
(72/64) 

96 
(96/95) 

93 
(94/92) 

10%(GRID) 72 
(67/77) 

67 
(63/72) 

95 
(94/96) 

93 
(91/96) 

10%(SP+GRID) 84 
(84/83) 

75 
(75/74) 

99 
(99/99) 

95 
(97/94) 

20%(SP) 75  
(77/74) 

71 
(75/67) 

97 
(97/97) 

95 
(96/95) 

20%(GRID) 75 
(69/82) 

71 
(66/77) 

97 
(95/99) 

95 
(94/96) 

20%(SP+GRID) 85 
(85/85) 

76 
(76/75) 

99 
(99/99) 

96 
(97/95) 

supervised 
(GRID) 

86 
(84/88) 

76 
(73/80) 

99 
(99/100) 

96 
(95/97)

Results presented in terms of F1(recall/precision).         
         Table 3: Results on semi-structured data 
     
    From Table 3, we make the following 
observations: 
(a) The cascaded learner with two pattern learners 
significantly outperforms the learner SP or GRID 
alone as in the case of free text corpus. With 10% 
of hand-tagged instances, the cascaded learner 
(SP+GRID) approaches the performance of the 
fully supervised IE tagger. Also the performance of 
the cascaded learner increases steadily when the 
number of hand-tagged instances increases from 
5% to 20%. 
(b) With more hand-annotated instances (>20%), 
the performance of the bootstrapping system with 
the cascading use of SP and GRID becomes stable 
and consistent. 

                                                      
2 http://www.isi.edu/info-agents/RISE/repository.html 

(c) Soft pattern rules tag 90% of the instances 
correctly, as we found out in our random checks. 
   The lower performance of our system on the 
“location” slot is mainly due to the use of a general 
named entity recognizer which is good at 
identifying common locations such as cities, 
mountains etc. In seminar announcements, many 
locations are room numbers such as “WeH 8220”; 
thus, we missed out some seminar venues. 

5 Related Work 

Many hard pattern rule inductive learning systems 
have been developed for information extraction 
from free texts or semi-structured texts. 
Specifically, AutoSlog-TS (Riloff, 1996) generates 
extraction patterns using annotated text and a set of 
heuristic rules and it eliminates the dependency on 
tagged text and only requires the pre-classified 
texts as input. WHISK (Soderland, 1999) induces 
multi-slot rules from a training corpus top-down. It 
is designed to handle text styles ranging from 
highly structured text to free text. WHISK 
performs rule induction starting from a randomly 
selected seed instance. (LP)2 (Ciravegna, 2001) is a 
covering algorithm for adaptive IE systems that 
induces symbolic rules. In (LP)2, training is 
performed in two steps: first, a set of tagging rules 
is learned to identify the boundaries of slots; next, 
additional rules are induced to correct mistakes in 
the first step of tagging. In contrast to their work, 
GRID utilizes global feature distribution to induce 
pattern rules and uses chunk as the context unit. 

Nahm and Mooney (2001) proposed the learning 
of soft matching rules from texts by combining 
rule-based and instance-based learning. Words in 
each slot are generalized by traditional rule 
induction techniques and test instances are 
matched to the rules by their cosine similarities. 
The learning of soft pattern rules in this paper 
augments the soft matching method advocated by 
Nahm and Mooney (2001) by combining lexical 
tokens alongside syntactic and semantic features 
and adopting a probabilistic framework that 
combines slot content and sequential fidelity in 
computing the degree of pattern match. 
   The bootstrapping scheme using the co-training 
(Blum and Mitchell, 1998) technique has been 
widely explored for IE tasks in recent years. 
Collins and Singer (1999) presented several 
techniques using co-training schemes for Named 
Entity (NE) extraction seeded by a small set of 
manually crafted NE rules. Riloff and Jones (1999) 
presented a multi-level bootstrapping algorithm 
that generates both the semantic lexicon and 
extraction patterns simultaneously. Yangarber 
(2003) proposed a counter-training approach to 
provide natural stopping criteria for unsupervised 



learning. 
   Our framework of combining two pattern 
learners is close to Niu, et al. (2003) in which two 
successive learners are used to learn named entities 
classifiers starting from a small set of concept-
based seed words. The bootstrapping procedure is 
implemented as training a decision list and an 
HMM classifier sequentially. The HMM classifier 
uses the training corpus automatically, tagged by 
the first learner, i.e., the decision list learner. Our 
work differs from Niu, et al. (2003) in two ways. 
First, we repeat the automatic annotation process 
until it satisfies the stopping criteria. Second, we 
apply different patterns (hard and soft pattern 
rules) in both the training and test phases. 

6 Conclusion 

We have presented a novel bootstrapping 
approach for information extraction by the 
cascading use of soft and hard pattern rules. Our 
framework takes advantages of the high-recall of 
soft pattern rules and the high-precision of hard 
pattern rules. We use soft pattern rules to 
automatically annotate more training instances so 
as to provide a more comprehensive basis for hard 
pattern rule induction. The integration of soft 
pattern matching in the extraction phase also 
provides more target entities from test instances 
that would otherwise be missed by hard pattern 
matching. With much less manual input, the 
proposed bootstrapping system approaches the 
performance obtained by fully supervised learning 
on both semi-structured and free texts corpora. 
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