
Automatic Acquisition of Two-Level Morphological Rules

Pie t e r Theron
Dept. of Computer Science

Stellenbosch University
Stellenbosch 7600, South Africa

ptheron@cs, sun. ac. za

Ian Cloete
Dept. of Computer Science

Stellenbosch University
Stellenbosch 7600~ South Africa

ia/~@cs, sun. ac. za

A b s t r a c t

We describe and experimentally evaluate
a complete method for the automatic ac-
quisition of two-level rules for morphologi-
cal analyzers/generators. The input to the
system is sets of source-target word pairs,
where the target is an inflected form of the
source. There are two phases in the acquisi-
tion process: (1) segmentation of the target
into morphemes and (2) determination of
the optimal two-level rule set with minimal
discerning contexts. In phase one, a mini-
mal acyclic finite state automaton (AFSA)
is constructed from string edit sequences of
the input pairs. Segmentaiion of the words
into morphemes is achieved through view-
ing the AFSA as a directed acyclic graph
(DAG) and applying heuristics using prop-
erties of the DAG as well as the elemen-
tary edit operations. For phase two, the
determination of the optimal rule set is
made possible with a novel representation
of rule contexts, with morpheme bound-
aries added, in a new DAG. We introduce
the notion of a delimiter edge. Delimiter
edges are used to select the correct two-
level rule type as well as to extract minimal
discerning rule contexts from the DAG. Re-
sults are presented for English adjectives,
Xhosa noun locatives and Afrikaans noun
plurals.

1 In t roduc t ion

Computational systems based on the two-level
model of morphology (Koskenniemi, 1983) have been
remarkably successful for many languages (Sproat,
1992). The language specific information of such a
system is stored as

1. a morphotactic description of the words to be
processed as well as

2. a set of two-level morphonological (or spelling)
rules.

Up to now, these two components had to be coded
largely by hand, since no automated method existed
to acquire a set of two-level rules for input source-
target word pairs. To hand-code a 100% correct
rule set from word pairs becomes almost impossi-
ble when a few hundred pairs are involved. Fur-
thermore, there is no guarantee that such a hand
coded lexicon does not contain redundant rules or
rules with too large contexts. The usual approach
is rather to construct general rules from small sub-
sets of the input pairs. However, these general rules
usually allow overrecognition and overgeneration - -
even on the subsets from which they were inferred.

Simons (Simons, 1988) describes methods for
studying morphophonemic alternations (using anno-
tated interlinear text) and Grimes (Grimes, 1983)
presents a program for discovering affix posi-
tions and cooccurrence restrictions. Koskenniemi
(Koskenniemi, 1990) provides a sketch of a discovery
procedure for phonological two-level rules. Golding
and Thompson (Golding and Thompson, 1985) and
Wothke (Wothke, 1986) present systems to automat-
icaily calculate a set of word-formation rules. These
rules are, however, ordered one-level rewrite rules
and not unordered two-level rules, as in our system.
Kuusik (Kuusik, 1996) also acquires ordered one-
level rewrite rules, for stem sound changes in Esto-
nian. Daelemans et al. (Daelemans el al., 1996) use
a general symbolic machine learning program to ac-
quire a decision tree for matching Dutch nouns to
their correct diminutive suffixes. The input to their
process is the syllable structure of the nouns and a
given set of five suffix allomorphs. They do not learn
rules for possible sound changes. Our process au-
tomatically acquires the necessary two-level sound
changing rules for prefix and suffix allomorphs, as
well as the rules for stem sound changes. Connec-
tionist work on the acquisition of morphology has
been more concerned with implementing psycholog-
ically motivated models, than with acquisition of
rules for a practical system ((Sproat, 1992, p.216)
and (Gasser, 1994)).

The contribution of this paper is to present a com-
plete method for the automatic acquisition of an op-

103

timal set of two-level rules (i.e. the second com-
ponent above) for source-target word pairs. It is
assumed that the target word is formed from the
source through the addition of a prefix and/or a
suffix 1. Furthermore, we show how a partial acqui-
sition of the morphotactic description (component
one) results as a by-product of the rule-acquisition
process. For example, the morphotactic description
of the target word in the input pair

[1]
Source Target
happy happier

is computed as

[2]
happier = happy + er

The right-hand side of this morphotactic description
is then mapped on the left-hand side,

[z]

h a p p y + e r
h a p p i 0 e r

For this example the two-level rule

[4]
y:i ¢~ p:p -

can be derived. These processes are described in de-
tail in the rest of the paper: Section 2 provides an
overview of the two-level rule formalism, Section 3
describes the acquisition of morphotactics through
segmentation and Section 4 presents the method for
computing the optimal two-level rules. Section 5
evaluates the experimental results and Section 6
summarizes.

2 T w o - l e v e l R u l e F o r m a l i s m

Two-level rules view a word as having a lezical and
a surface representation, with a correspondence be-
tween them (Antworth, 1990), e.g.:

[51
Lexical: h a p p y + e r
Surface: h a p p i 0 e r

Each pair of lexical and surface characters is called
a feasible pair. A feasible pair can be written as
lezicabcharac~er:surface-charac~er. Such a pair is
called a default pair when the lexicai character and
surface character are identical (e.g. h:h). When the
lexical and surface character differ, it is called a spe-
cial pair (e.g. y:i). The null character (0) may ap-
pear as either a lexical character (as in +:0) or a
surface character, but not as both.

1Non-linear operations (such as infixation) are not
considered here, since the basic two-level model deals
with it in a round-about way. We can note that exten-
sions to the basic two-level model have been proposed to
handle non-linear morphology (Kiraz, 1996).

Two-level rules have the following syntax (Sproat,
1992, p.145):

[6]
CP op L C _ R C

c e (correspondence part), LC (le# contezt) and a c
(right contez~) are regular expressions over the al-
phabet of feasible pairs. In most, if not all, imple-
mentations based on the two-level model, the corre-
spondence part consists of a single special pair. We
also consider only single pair CPs in this paper. The
operator op is one of four types:

1. Exclusion rule: a:b / ~ L C _ R C

2. Context restriction rule: a:b ::~ L C _ R C

3. Surface coercion rule: a:b ~ L C _ R C

4. Composite rule: a:b ¢V L C _ R C

The exclusion rule (/ ~) is used to prohibit the ap-
plication of another, too general rule, in a particular
subcontext. Since our method does not overgener-
alize, we will consider only the ~ , ~ and ~:~ rule
types.

3 A c q u i s i t i o n o f M o r p h o t a c t i c s

The morphotactics of the input words are acquired
by (1) computing the string edit difference between
each source-target pair and (2) merging the edit se-
quences as a minimal acyclic finite state automa-
ton. The automaton, viewed as a DAG, is used to
segment the target word into its constituent mor-
phemes.

3.1 D e t e r m i n i n g S t r i n g Ed i t S e q u e n c e s

A string edit sequence is a sequence of elementary
operations which change a source string into a tar-
get string (Sankoff and Kruskal, 1983, Chapter 1).
The elementary operations used in this paper are
single character deletion (DELETE), insert ion (IN-
SERT) and replacement (REPLACE). We indicate
the copying of a character by NOCHANGE. A cost
is associated with each elementary operation. Typ-
ically, INSERT and DELETE have the same (posi-
tive) cost and NOCHANGE has a cost of zero. RE-
PLACE could have the same or a higher cost than
INSERT or DELETE. Edit sequences can be ranked
by the sum of the costs of the elementary opera-
tions that appear in them. The interesting edit se-
quences are those with the lowest total cost. For
most word pairs, there are more than one edit se-
quence (or mapping) possible which have the same
minimal total cost. To select a single edit sequence
which will most likely result in a correct segmen-
tation, we added a morphology-specific heuristic to
a general string edit algorithm (Vidal et al., 1995).
This heuristic always selects an edit sequence con-
taining two subsequences which identify prefix-root
and root-suffix boundaries. The heuristic depends

104

on the elementary operations being limited only to
INSERT, DELETE and NOCHANGE, i.e. no RE-
PLACEs are allowed. We assume that the tar-
get word contains more morphemes than the source
word. It therefore follows that there are more IN-
SERTs than DELETEs in an edit sequence. Fur-
thermore, the letters forming the morphemes of the
target word appear only as the right-hand compo-
nents of INSERT operations. Consider the edit se-
quence to change the string happy into the string
unhappier:

0:u INSERT
0:n INSERT
h:h NOCHANGE
a:a NOCHANGE
p:p NOCHANGE
p:p NOCHANGE
y:0 DELETE
0:i INSERT
0:e INSERT
0:r INSERT

[7]

Note that the prefix un- as well as the suffix -
er consist only of INSERTs. Furthermore, the
prefix-root morpheme boundary is associated with
an INSERT followed by a NOCHANGE and the
root-suffix boundary by a N O C H A N G E - D E L E T E -
INSERT sequence. In general, the prefix-root
boundary is just the reverse of the root-suffix bound-
ary, i.e. I N S E R T - D E L E T E - N O C H A N G E , with the
DELETE operation being optional. The heuristic
resulting from this observation is a bias giving high-
est precedence to INSERT operations, followed by
DELETE and NOCHANGE, in the first half of the
edit sequence. In the second half, the precedence is
reversed.

3.2 M e r g i n g E d i t S e q u e n c e s

A single source-target edit sequence may contain
spurious INSERTs which are not considered to form
part of a morpheme. For example, the O:i insertion
in Example 7 should not contribute to the suffix -
er to form - ier, since - ier is an allomorph of -er.
To combat these spurious INSERTs, all the edit se-
quences for a set of source-target words are merged
as follows: A minimal acyclic f ini te state automaton
(AFSA) is constructed which accepts all and only
the edit sequences as input strings. This AFSA is
then viewed as a DAG, with the elementary edit op-
erations as edge labels. For each edge a count is kept
of the number of different edit sequences which pass
through it. A pa th segment in the DAG consisting
of one or more INSERT operations having a simi-
lar count, is then considered to be associated with a
morpheme in the target word. The O:e O:r INSERT
sequence associated with the -er suffix appears more
times than the O:i O:e O:r INSERT sequence asso-
ciated with the - ier suffix, even in a small set of

adjectively-related source-target pairs. This means
that there is a rise in the edge counts from O:i to O:e
(indicating a root-suffix boundary) , while O:e and
O:r have similar frequency counts. For prefixes a fall
in the edge frequency count of an INSERT sequence
indicates a prefix-root boundary.

To extract the morphemes of each target word,
every path through the DAG is followed and only
the target-side of the elementary operations serving
as edge labels, are written out. The null characters
(0) on the target-side of DELETEs are ignored while
the target-side of INSERTs are only written if their
frequency counts indicate that they are not sporadic
allomorph INSERT operations. For Example 7, the
following morphotact ic description results:

is]
Target Word -- Prefix + Source + Suffix
unhappier = un + happy + er

Phase one can segment only one layer of affix ad-
ditions at a time. However, once the morpheme
boundary markers (+) have been inserted, phase
two should be able to acquire the correct two-level
rules for an arbi trary number of affix additions:
pref iz l +pref iz2+. . . +roo~+suff iz l +su f f i z2+

4 Acquiring Optimal Rules
To acquire the optimal rules, we first determine
the full length lexical-sufface representation of each
word pair. This representation is required for writ-
ing two-level rules (Section 2). The morphotact ic de-
scriptions from the previous section provide source-
target input pairs from which new string edit se-
quences are computed: The right-hand side of the
morphotact ic description is used as the source and
the left-hand side as the target string. For instance,
Example 8 is written as:

[9]
Source: un+happy+er
Target: unhappier

The edit sequence

[10]
u:u n:n -t-:O h:h a:a p:p p:p y:i 4 : 0 e:e r : r

maps the source into the target and provides the
lexical and surface representation required by the
two-level rules:

[11]

Lexical: u n + h a p p y + e r
Surface: u n 0 h a p p i 0 e r

The REPLACE elementary string edit operations
(e.g. y:i) are now allowed since the morpheme
boundary markers (+) are already present in the
source string. REPLACEs allow shorter edit se-
quences to be computed, since one REPLACE does

105

the same work as an adjacent I N S E R T - D E L E T E
pair. REPLACE, INSERT and DELETE have the
same associated cost and NOCHANGE has a cost
of zero. The morpheme boundary marker (+) is
always mapped to the null character (0), which
makes for linguistically more understandable map-
pings. Under these conditions, the selection of any
minimal cost string edit mapping provides an ac-
ceptable lexical-surface representation 2.

To formulate a two-level rule for the source-target
pair happy-unhappier, we need a correspondence
pair (CP) and a rule type (op), as well as a left con-
text (LC) and a right context (RC) (see Section 2).
Rules need only be coded for special pairs, i.e. IN-
SERTs, DELETEs or REPLACEs. The only special
pair in the above example is y:i, which will be the
CP of the rule. Now the question arises as to how
large the context of this rule must be? It should
be large enough to uniquely specify the positions
in the lexical-surface input s t ream where the rule
is applied. On the other hand, the context should
not be too large, resulting in an overspecified con-
text which prohibits the application of the rule to
unseen, but similar, words. Thus to make a rule as
general as possible, its context (LC and RC) should
be as short as possible s . By inspecting the edit se-
quence in Example 10, we see that y changes into
i when y is preceded by a p:p, which serves as our
first a t t empt at a (left) context for y:i. Two ques-
tions must be asked to determine the correct rule
type to be used (Antworth, 1990, p.53):

Q u e s t i o n 1 Is E the only environment in which L:S
is allowed?

Q u e s t i o n 2 Must L always be realized as S in E?

The term environment denotes the combined left
and right contexts of a special l~air. E in our ex-
ample is "p:p_", L is y and S is i. Thus the answer
to question one is true, since y:i only occurs after
p:p in our example. The answer to question two is
also true, since y is always realized as i after a p:p
in the above edit sequence. Which rule type to use
is gleaned from Table 1. Thus, to continue our ex-
ample, we should use the composite rule type (¢:~):

[12]
y:i ¢~ p:p _

2Our assumption is that such a minimal cost mapping
will lead to an optimal rule set. In most (if not all) of the
examples seen, a minimal mapping was also intuitively
acceptable.

sit abstractions (e.g. sets such as V denoting vow-
els) over the regular pairs are introduced, it will not be
so simple to determine what is "a more general con-
text". However, current implementations require ab-
stractions to be explicitly instantiated during the compi-
lation process ((Karttunen and Beesley, 1992, pp.19-21)
and (Antworth, 1990, pp.49-50)) . Thus, with the cur-
rent state of the art, abstractions serve only to make the
rules more readable.

Q1 Q2 o p
false false none
true false
false true
true true ¢~z

Table 1: Truth table to select the correct rule type.

This example shows how to go about coding the
set of two-level rules for a single source-target pair.
However, this soon becomes a tedious and error
prone task when the number of source-target pairs
increases, due to the complex interplay of rules and
their contexts.

4.1 M i n i m a l D i s c e r n i n g R u l e C o n t e x t s

It is impor tant to acquire the minimal discerning
context for each rule. This ensures that the rules
are as general as possible (to work on unseen words
as well) and prevents rule conflicts. Recall tha t one
need only code rules for the special pairs. Thus it
is necessary to determine a rule type with associ-
ated minimal discerning context for each occurrence
of a special pair in the final edit sequences. This is
done by comparing all the possible contiguous 4 con-
texts of a special pair against all the possible con-
texts of all the other feasible pairs. To enable the
computat ional comparison of the growing left and
right contexts around a feasible pair, we developed
a "mixed-context" representation. We call the par-
ticular feasible pair for which a mixed-context is to
be constructed, a marker pair (MP), to distinguish
it from the feasible pairs in its context. The mixed-
context representation is created by writing the first
feasible pair to the left of the marker pair, then the
first right-context pair, then the second left-context
pair and so forth:

[13]

LC1, RC1, LC2, RC2, LC3, RC3, . . . , M P

The marker pair at the end serves as a label. Special
symbols indicate the start (SOS) and end (EOS) of
an edit sequence. If, say, the right-context o f a MP is
shorter than the left-context, an out-of-bounds sym-
bol (OOB) is used to maintain the mixed-context
format. For example the mixed-context of y:i in the
edit sequence in Example 10, is represented as:

[14]
p:p, +:0, p:p, e:e, a:a, r:r, h:h, EOS, +:0, OOB,

n:n, OOB, u:u, SOS, OOB, y:i

The common prefixes of the mixed-contexts are
merged by constructing a minimal AFSA which ac-
cepts all and only these mixed-context sequences.

4A two-level rule requires a contiguous context.

106

Question 2
have the

The transitions (or edges, when viewed as a DAG) of
the AFSA are labeled with the feasible pairs and spe-
cial symbols in the mixed-context sequence. There
is only one final state for this minimal AFSA. Note
that all and only the terminal edges leading to this
final state will be labeled with the marker pairs,
since they appear at the end of the mixed-context
sequences. More than one terminal edge may be la-
beled with the same marker pair. All the possible
(mixed) contexts of a specific marker pair can be
recovered by following every path from the root to
the terminal edges labeled with that marker pair.
I f a path is traversed only up to an intermediate
edge, a shortened context surrounding the marker
pair can be extracted. We will call such an interme-
diate edge a d e l i m i t e r edge , since it delimits a short-
ened context. For example, traversing the mixed
context pa th of y : i in Example 14 up to e:e would
result in the (unmixed) shortened context:

[25]
p : p p : p _ + : 0 e:e

From the shortened context we can write a two-level
rule

[26]
y : i op p : p p : p _ ÷ : 0 e:e

which is more general than a rule using the full con-
text:

[27]

y: i op S O S u : u n : n h :h a :a p : p p : p _ + : 0 e:e r : r
E O S

For each marker pair in the DAG which is also a
special pair, we want to find those delimiter edges
which produce the shortest contexts providing a t r u e

answer to at least one of the two rule type de-
cision questions given above. The mixed-context
prefix-merged AFSA, viewed as a DAG, allow us to
rephrase the two questions in order to find answers
in a procedural way:

Q u e s t i o n 1 Traverse all the paths from the root
to the terminal edges labeled with the marker
pair L : S . Is there an edge el in the DAG which
all these paths have in common? If so, then
question one is t r u e for the environment E con-
structed from the shortened mixed-contexts as-
sociated with the path prefixes delimited by el.

Consider the terminal edges which
same L-component as the marker pair

L : S and which are reachable from a common
edge e2 in the DAG. Do all of these terminal
edges also have the same S-component as the
marker pair? If so, then question two is t r u e for
the environment E constructed from the short-
ened mixed-contexts associated with the path
prefixes delimited by e2.

For each marker pair, we traverse the DAG and mark
the delimiter edges n e a r e s t to the root which allow
a true answer to either question one, question two
or both (i.e. el = e2). This means that each pa th
from the root to a terminal edge can have at most
three marked delimiter edges: One delimiting a con-
text for a ~ rule, one delimiting a context for a
rule and one delimiting a context for a ~ rule. The
marker pair used to answer the two questions, serves
as the correspondence part (Section 2) of the rule.
To continue with Example 14, let us assume that the
DAG edge labeled with e:e is the closest edge to the
root which answers true only to question one. Then
the ~ rule is indicated:

[IS]

y : i ~ p : p p : p _ + : 0 e:e

However, if the edge labeled with r : r answers true
to both questions, we prefer the composite rule (¢#)
associated with it although this results in a larger
context:

[19]
y : i ¢* a:a p : p p : p _ ÷ : 0 e:e r : r

The reasons for this preference are that the ¢~ rule

• provides a more precise s tatement about the ap-
plicable environment of the rule and it

• seems to be preferred in systems designed by
linguistic experts.

Furthermore, from inspecting examples, a delimiter
edge indicating a ~ rule generally delimits the short-
est contexts, followed by the delimiter for ¢~ and
the delimiter for ~ . The shorter the selected con-
text, the more generally applicable is the rule. We
therefore select only one rule per path, in the fol-
lowing preference order: (1) ¢~, (2) ~ and (3) ~ .
Note that any of the six possible precedence orders
would provide an accurate analysis and generation
of the pairs used for learning. However, our sug-
gested precedence seems to strike the best balance
between over- or underrecognition and over- or un-
dergeneration when the rules would be applied to
u n s e e n pairs.

The mixed-context representation has one obvious
drawback: If an optimal rule has only a left or only
a right context, it cannot be acquired. To solve this
problem, two additional minimal AFSAs are con-
structed: One containing only the left context in-
formation for all the marker pairs and one contain-
ing only the right context information. The same
process is then followed as with the mixed contexts.
The final set of rules is selected from the output of
all three the AFSAs: For each special pair

1. we select any of the ¢~ rules with the shortest
contexts of which the special pair is the left-
hand side, or

107

2. if no ¢~ rules were found, we select the shortest
and ~ rules for each occurrence of the special

pair. They are then merged into a single ¢~ rule
with disjuneted contexts.

The rule set learned is complete since all possible
combinations of marker pairs, rule types and con-
texts are considered by traversing all three DAGs.
Furthermore, the rules in the set have the shortest
possible contexts, since, for a given DAG, there is
only one delimiter edge closest to the root for each
path, marker pair and rule type combination.

5 Resul ts and Evaluation

Our process works correctly for examples given in
(Antworth, 1990). There were two incorrect seg-
mentations in the twenty one adjective pairs given
on page 106. It resulted from an incorrect string edit
mapping of (un)happy to (un)happily. For the suf-
fix, the sequence . .. O:i O:l y:y was generated instead
of the sequence . . , y:O O:i 0:I O:y. The reason for this
is that the root word and the inflected form end in
the same letter (y) and one NOCHANGE (y:y) has
a lower cost than a DELETE (y:O) plus an INSERT
(O:y). The acquired segmentation for the 21 pairs,
with the suffix segmentation of (un)happily manu-
ally corrected, is:

[20]

Target : Prefix + Source + Suffix
bigger = big + er
biggest = big + est
unclear = un + clear
unclearly -- un + clear ÷ ly
unhappy = un + happy
unhappier = un + happy ÷ er
unhappiest = un ÷ happy + est
unhappily : un + happy ÷ ly
unreal = un + real
cooler = cool -4- er
coolest = cool -4- est
coolly = cool -4- ly
clearer -= clear -4- er
clearest : clear -4- est
clearly = clear -4- ly
redder : red -4- er
reddest = red + est
really : real + ly
happier : happy -4- er
happiest : happy -4- est
happily = happy -4- ly

From these segmentations, the morphotactic com-
ponent (Section 1) required by the morphological
analyzer/generator is generated with uncomplicated
text-processing routines. Three correct ~ rules,
including two gemination rules, resulted for these
twenty one pairsS:

5The results in this paper were verified on the two-
level processor PC-KIMMO (Antworth, 1990). The two-

[21]

0:d ~ d : d _ + : 0
0:g ¢=~ g:g_ +:0
y:i ~=~ _ +:0

To better illustrate the complexity of the rules
that can be learned automatically by our process,
consider the following set of fourteen Xhosa noun-
locative pairs:

Source Word --~ Target Word
inkosi --~ enkosini
iinkosi ~ ezinkosini
ihashe -~ ehasheni
imbewu -~ embewini
amanzi --~ emanzini
ubuchopho -~ ebucotsheni
ilizwe --, elizweni
ilanga --* elangeni
ingubo -~ engubeni
ingubo - , engutyeni
indlu - , endlini
indlu --~ endlwini
ikhaya ~ ekhayeni
ikhaya --~ ekhaya

[22]

Note that this set contains ambiguity: The locative
of ingubo is either engubeni or engutyeni. Our pro-
cess must learn the necessary two-level rules to map
ingubo to engubeni and engutyeni, as well as to map
both engubeni and engutyeni in the other direction,
i.e. to ingubo. Similarly, indlu and ikhaya each
have two different locative forms. Furthermore, the
two source words inkosi and iinkosi (the plural of
inkosi) differ only by a prefixed i, but they have dif-
ferent locative forms. This small difference between
source words provides an indication of the sensitiv-
ity required of the acquisition process to provide the
necessary discerning information to a two-level mor-
phological processor. At the same time, our pro-
cess needs to cope with possibly radical modifica-
tions between source and target words. Consider
the mapping between ubuchopho and its locative
ebucotsheni. Here, the only segments which stay
the same from the source to the target word, are the
three letters -buc-, the letter - o - (the deletion of
the first - h - is correct) and the second - h - .

The target words are correctly segmented during
phase one as:

level rule compiler KGEN (developed by Nathan Miles)
was used to compile the acquired rules into the state
tables required by PC-KIMMO. Both PC-KIMMO and
KGEN are available from the Summer Institute of Lin-
guistics.

108

[23]

Targe t = Pref ix + Source
enkosini = e + inkosi
ezinkosini = e + i inkosi
ehasheni = e + ihashe
embewin i = e + imbewu
emanz in i = e + amanz i
ebucotshen i = e + ubuchopho
elizweni = e + ilizwe
e langeni = e + i l anga
engubeni = e + ingubo
engutyen i = e + ingubo
endl ini = e + ind lu
endlwini = e + ind lu
ekhayeni = e + i khaya
ekhaya = e + i khaya

Note t ha t the prefix e +
pu t t a rge t words, while
a l t e rna t ive of e k h a y e n i)

From this segmented
computes 24 m i n i m a l context rules:

+ Suffix
-4- nl
+ m
-4- nl
-4- nl
+ nl
A- nl
-4- m
A- nl
-4- m
-4- nl
-4- m
-4- m
-4- nl

is c o m p u t e d for all the in-
all bu t e k h a y a (a correct
have + h i as a suffix.
da ta , phase two correc t ly

O:e ¢:~ o : y + : O _ n:n
O:i ¢:> u : w + : O _ n:n
O:s ¢~ p: t _ h:h

q-:O ~ e:e _
+ :0 ~ o:y _
+ :0 ~ u:w _
+ :0 ~ _ n:n

[24]

a:0 ¢~ _ m : m
a:e ¢~ _ + : 0 n : n
b: t ¢=> _ o:y
h:O ¢~ _ o:o

i:O ~ + :0 _ n:n
i:O ~ _ h:h
i:O ~ _ k:k
i:O ~ _ l:l
i:O ~ _ m : m
i:O =~ + :0 _

i:z ¢~ _ i:i
o:e ~ _ + :0 n:n
o:y ~:~ b: t _
p: t ¢~ o:o _
u:0 ¢=> + :0 _ b :b
u:i ¢:~ _ + :0 n:n
u:w ~- 1:1 - + : 0 0 : i

The ~ and ~ rules o f a special pai r can be merged
in to a single ~=~ rule. For example the four rules
above for the special pai r q-:O can be merged into

[25]

4-:0 ¢=~ e:e _ [o : y _] u : w _ [_ n : n

because b o t h the two ques t ions becomes t r u e for
the d i s junc ted env i ronment e:e _ I o : y _ I u : w - I -
n : n . The ver t ica l ba r ("1") is the t r a d i t i o n a l two-
level n o t a t i o n which ind ica te the d i s junc t ion of two
(or more) contexts . The five ~ rules and the single

rule of the special pa i r i:O in E x a m p l e 24 can be
merged in a s imi lar way. In this ins tance , the con tex t
of the ~ rule (4 - :0 -) needs to be a d d e d to some of
the contexts of the ~ rules of i:O. T h e fol lowing ¢:~
rule results:

[26]

i:O ~ 4-:0 - n : n I 4-:0 _ h :h I 4-:0 _ k :k I 4-:0 - l: l I
4-:0 _ m : m

In this way the 24 rules are reduced to a set of 16
rules which conta in only a single ¢~ rule for each
special pair . This merged set of 16 two-level rules
ana lyze and genera te the i n p u t word pa i rs 100% cor-
rectly.

The next s tep was to show the feas ib i l i ty of au-
t o m a t i c a l l y acqui r ing a m i n i m a l rule set for a wide
coverage parser . To get hundreds or even t housands
of inpu t pairs , we i m p l e m e n t e d rou t ines to ex t r ac t
the l emmas ("head words") and the i r inf lected forms
f rom a mach ine - readab le d ic t ionary . In th is way
we ex t r ac t ed 3935 Afr ikaans noun-p lu ra l pa i rs which
served as the i npu t to our process. Af r ikaans plu-
rals are a lmos t a lways der ived wi th the a d d i t i o n of
a suffix (mos t ly - e or - s) to the s ingular form. Dif-
ferent sound changes m a y occur dur ing this process.
For example 6, gemina t ion , which ind ica tes the shor t -
ening of a preceding vowel, occurs f requent ly (e.g.
h a t ---* k a t t e) , as well as consonan t - inse r t ion (e.g.
h a s ---* h a s t e) and elision (a m p s e e d --~ a m p s e d e) .
Several sound changes m a y occur in the same word.
For example , elision, consonant r ep lacemen t and
gemina t ion occurs in l o o f ---* l o w w e . Afr ikaans (a
G e r m a n i c l anguage) has bor rowed a few words f rom
Lat in . Some of these words have two p lu ra l forms,
which in t roduces a m b i g u i t y in the word mapp ings :
One p lura l is fo rmed wi th a La t in suffix (- a) (e.g.
e m e t i k u m --~ e m e t i k a) and one wi th an ind igenous
suffix (-s) (emetih.m emetih ms). Allomorphs
occur as well, for example - e n s is an a l l omorph of
the suffix - s in bed + s ---, b e d d e n s .

During phase one, all bu t eleven (0.3%) of the
3935 inpu t word pai rs were segmented correct ly. To
fac i l i ta te the eva lua t ion of phase two, we define a
s i m p l e r u l e as a rule which has an env i ronment con-
sist ing of a single context . Th is is in con t ras t wi th
an envi ronment consis t ing of two or more contex ts
d i s junc ted together . Phase two acqui red 531 s i m p l e
r u l e s for 44 special pairs . Of these 531 s imple rules,
500 are ~ rules, n ineteen are ¢~ rules and twelve
are ~ rules. The average length of the s imple rule
contexts is 4.2 feasible pairs . C o m p a r e th is wi th the

nAil the examples comes from the 3935 input word
pairs.

1 0 9

average length of the 3935 final input edit sequences
which is 12.6 feasible pairs. The 531 simple rules
can be reduced to 44 ~ rules (i.e. one rule per spe-
cial pair) with environments consisting ofdisjuncted
contexts. These 44 ~ rules analyze and generate the
3935 word pairs 100% correctly. The total number
of feasible pairs in the 3935 final input edit strings
is 49657. In the worst case, all these feasible pairs
should be present in the rule contexts to accurately
model the sound changes which might occur in the
input pairs. However, the actual result is much bet-
ter: Our process acquires a two-level rule set which
accurately models the sound changes with only 4.5%
(2227) of the input feasible pairs.

To obtain a prediction of the analysis and gener-
ation accuracy over unseen words, we divided the
3935 input pairs into five equal sections. Each fifth
was held out in turn as test data while a set of
two-level rules was learned from the remaining four-
fifths. The average recognition accuracy as well as
the generation accuracy over the held out test data
is 93.9%.

6 S u m m a r y

We have described and experimentally evaluated, for
the first time, a process which automatically ac-
quires optimal two-level morphological rules from
input word pairs. These can be used by a pub-
licly available two-level morphological processor. We
have demonstrated that our acquisition process is
portable between at least three different languages
and that an acquired rule set generalizes well to
words not in the training corpus. Finally, we have
shown the feasibility of automatically acquiring two-
level rule sets for wide-coverage parsers, with word
pairs extracted from a machine-readable dictionary.

7 A c k n o w l e d g e m e n t s

Part of this work was completed during the first au-
thor's stay as visiting researcher at ISSCO (Univer-
sity of Geneva). We gratefully acknowledge the sup-
port of ISSCO, as well as the Swiss Federal Govern-
ment for providing a bursary which made this visit
possible. For helpful comments on an earlier draft of
the paper, we wish to thank Susan Armstrong and
Sabine Lehmann as well as the anonymous review-
ers.

References

Evan L. Antworth. 1990. PC-KIMMO: A Two-level
Processor for Morphological Analysis. Summer In-
stitute of Linguistics, Dallas, Texas.

Walter Daelemans, Peter Berck and Steven Gillis.
1996. Unsupervised Discovery of Phonological
Categories through Supervised Learning of Mor-
phological Rules. In COLING-96: 16th Interna-

tional Conference on Computational Linguistics,
pages 95-100, Copenhagen, Denmark.

Michael Gasser. 1994. Acquiring Receptive Mor-
phology: A Connectionist Model. In Proceedings
of ACL-94. Association for Computational Lin-
guistics, Morristown, New Jersey.

Andrew R. Golding and Henry S. Thompson. 1985.
A morphology component for language programs.
Linguistics, 23:263-284.

Joseph E. Grimes. 1983. Affiz positions and cooc-
currences: the PARADIGM program. Summer In-
stitute of Linguistics Publications in Linguistics
No. 69. Dallas: Summer Institute of Linguistics
and University of Texas at Arlington.

Laud Karttunen and Kenneth R. Beesley. 1992.
Two-level Rule Compiler. Technical Report ISTL-
92-2. Xerox Palo Alto Research Center.

George Anton Kiraz. 1996. SEMHE: A general-
ized two-level System. In Proceedings of ACL-96.
Association for Computational Linguistics, pages
159-166, Santa Cruz, California.

Kimmo Koskenniemi. 1983. Two-level Morphol-
ogy: A General Computational Model for Word-
Form Recognition and Production. PhD Disserta-
tion. Department of General Linguistics, Univer-
sity of Helsinki.

Kimmo Koskenniemi. 1990. A discovery procedure
for two-level phonology. Computational Lexicol-
ogy and Lexicography: Special Issue dedicated to
Bernard Quemada, Vol. I (Ed. L. Cignoni, C. Pe-
ters). Linguistica Computazionale, Pisa, Volume
VI, 1990, pages 451-465.

Evelin Kuusik. 1996. Learning Morphology: Al-
gorithms for the Identification of Stem Changes.
In COLING-96: i6th International Conference
on Computational Linguistics, pages 1102-1105,
Copenhagen, Denmark.

David Sankoff and Joseph B. Kruskal. 1983. Time
warps, string edits, and macromoleeules: the the-
ory and practice of sequence comparison. Addison-
Wesley, Massachusetts.

Gary F. Simons. 1988. Studying morphophonemic
alternation in annotated text, parts one and two.
Notes on Linguistics, 41:41-46; 42:27-38.

Richard Sproat. 1992. Morphology and Computa-
tion. The MIT Press, Cambridge, England.

Enrique Vidal, AndrOs Marzal and Pablo Aibar.
1995. Fast Computation of Normalized Edit Dis-
tances. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, 17:899-902.

Klaus Wothke. 1986. Machine learning of morpho-
logical rules by generalization and analogy. In
COLING-86: 11~h International Conference on
Computational Linguistics, pages 289-293, Bonn.

110

