
Proceedings of the Computational Sanskrit and Digital Humanities, 18th World Sanskrit Conference 2023, pages 89–96

Creation of a Digital Rig Vedic Index (Anukramani)
for Computational Linguistic Tasks

A V S D S Mahesh and Arnab Bhattacharya
Dept. of Computer Science and Engineering

Indian Institute of Technology Kanpur
maheshak@cse.iitk.ac.in, arnabb@cse.iitk.ac.in

Abstract

Rig Veda, the oldest text in Vedic Sanskrit, is a collection of hymns addressed to various devatās. We
present an index of Rig Vedic verses along with the respective devatā, r. s. i and chandas which is, in short,
a digitized form of the well known Rig Vedic Anukraman. ī. We then build several deep learning based
language models from the corpus. The models are tested on a downstream classification task that predicts
the devatā associated with a given verse. The six classifiers we test are based on FastText, ELMo, AL-
BERT, Word2Vec, GloVe and RoBERTa language models pretrained on the GRETIL data. We find that
RoBERTa outperforms the other models on this task and achieves an accuracy of 77.3%.

Keywords— Vedic Sanskrit, Rig Vedic Anukramani, Text Classification

1 Introduction

The Anukraman. ī is an index of the Rig Vedic hymns; it contains the details about the author (r.s.i), the
divinity that a hymn is dedicated to (devatā), and the meter (chandas) for each hymn. The widely
found Anukraman. ī is that of Kātyāyana and is known as the Sarvānukraman. ī (Macdonell, 1885). The
details present are considered to be accurate to a good extent (Jamison and Brereton, 2014). In particular,
the devatā addressed can easily be cross-checked from the content of the hymns. To the nest of our
knowledge, we are the first to present this data in a machine-readable format. One may find in the text
form of Griffith’s Rig Veda (Griffith, 1889) an index of hymns each labeled with the devatā. However,
these labels are not verse-wise and the devatā addressed is often not the same for the entire hymn. Hence,
to our consensus, the data we provide is not available before. We also referred the Maharishi International
University’s Vedic Reserve’s1 materials in the process of annotation. We use this information about the
devatās as a text classification dataset with the verses as input texts and their respective devatās as labels.

1.1 Motivation
To be able to benchmark the performance of computational natural language models, it is necessary to
judge their realiability in downstream tasks. The same applies to Vedic Sanskrit of Rig Veda, which is an
ancient form of Sanskrit. We present one such benchmark dataset, the Rig Vedic Anukraman. ī. Although
it has been available from historical times, it was not in any machine-readable form.

Thus, upon this dataset, we run six classifiers that respectively use the embeddings from FastText
(Joulin et al., 2016; Bojanowski et al., 2016), ELMo (Peters et al., 2018), ALBERT (Lan et al., 2019),
Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014), and RoBERTa (Liu et al., 2019)
pretrained language models. We carried out the pretraining of FastText, ELMo, ALBERT and RoBERTa
based models on the GRETIL data2 and whereas pretraining of Word2Vec and GloVe are carried out on
lemmatized text from Digital Corpus of Sanskrit (DCS) (Hellwig, 2010–2021). The results thus obtained
show that the transformer (Vaswani et al., 2017) based RoBERTa model outperforms the other ones in
this classification task.

1.2 Contributions
Our contributions in this work are two-fold:

1https://vedicreserve.miu.edu/
2http://gretil.sub.uni-goettingen.de/gretil.html

89

1. We present a digital Rig Vedic index (Anukraman. ī) dataset consisting of devatā, r. s. i and chandas
information, labeled for each verse. This acts as a benchmark dataset in Vedic Sanskrit.

2. We apply six classifiers based on pretrained ALBERT, FastText, ELMo, Word2Vec, GloVe and
RoBERTa embeddings on the above dataset.

The dataset and the models are available from https://github.com/mahesh-ak/WSC2023.

1.3 Organization
The rest of the paper is organized as follows. The details about the classification data are given in
Section 2, while the information about the pre-training and training of the various classifiers applied are
described in Section 3. The results obtained on the classifiers are discussed in Section 4 and, finally, the
paper is concluded in Section 6.

2 Dataset

2.1 Rig Vedic Anukraman. ī
There are a total of 10,552 verses in the Rig Veda. Each verse is assigned with a devatā label. Although
most hymns are associated with a single devatā, for example, Agni, there are many hymns where a verse
has more than one devatā labels. Some have two devatās addressed in dual tense, for example, Indrāgnī,
i.e., Indra and Agni. Some have a special designated group of devatās, for example, Viśvedevās or the
ādityās. Some again may just be a case where multiple devatās are addressed together, for example,
Ilā-Sarasvatī-Bhāratī. In these cases, we make no attempt to present these labels as a mixture of the
compositional devatās. Rather, we present them as they are. For example, a dual like Mitrāvarun. au
is not decomposed into Mitra and Varun. a, but is treated as a single label only. In future, it will be
worthwhile to present them in a decomposed format. Similary, a verse generally has only a single r. s. i,
but can have multiple r. s. is rarely. There is always a unique chandas of a hymn by definition of a meter.
An example line from Anukraman. ī from first Man. d. ala and its annotation is demonstrated as follows:

(27) saptavim. śam. sūktam
(1-13) trayodaśarcasyāsya sūktasyājīgartih. śunah. śepa r. s. ih. |

(1-12) prathamādidvādaśarcām agnih. (13) trayodaśyāśca devā devatāh. |
(1-12) prathamādidvādaśarcām. gāyatrī (13) trayodaśyāśca tris. t.up chandasī

The annotation for the above is:

27.13.ājīgartih. śunah. śepah. .(1-12)agnih. ,(13)devāh. .(1-12)gāyatrī,(13)tris. t.up

The fields of hymn, verse, r. s. i, devatā and chandas are separated by a period, whereas muliple entries
within a field are seperated by a comma. This yields a format that can be easily processed in an automated
fashion.

It can be seen that the original anukraman. ī, even if made available in a machine-readable format,
requires manual annotation since the sentences are in a natural language, whose processing would, in
turn, require a gold standard.

2.2 Classification Task
For the classification task, the focus is on a single label classification, that is, a single devatā prediction
for a verse. We attempt to group devatās that are fundamentally the same under one single label. For
example, Raks. oghna Agni is labeled as only Agni. However, although the classes labeled Soma and
Pavamāna Soma may look like one one, we leave them unmerged since there is a subtle difference
between the two classes. The hymns of Pavamāna Soma almost always invoke the purifying nature of
Soma like Somah. pavate which is not the case with the class labeled just Soma. Additionally, the several
Dānastutis or the praises of patrons are labeled as just Dānastuti without the names of the patrons like
Paijavana Sudās. This produces an overall list of 216 labels.

From this data, we consider the labels with at least 30 instances or verses for the classification task.
This brings the label count down to 28. The number of instances corresponding to these 28 labels is

90

9,496, which is still a fairly large size. We keep aside 15% of the data consisting of 1,424 hymns as the
test set. The rest of the data is split using a 90:10 ratio into training (7,265 hymns) and validation (807
hymns) sets. The splits are done in a stratified manner.

3 Training the Classifiers

As mentioned earlier, we evaluate on this task six classification models based on FastText, ELMo, AL-
BERT, Word2Vec, GloVe and RoBERTa. Training these models involve pre-training as a first step and
then fine-tuning for the classification task at hand. These two steps are next discussed separately.

3.1 Pre-training
The models, except for Word2Vec and GloVe, are pre-trained on the GRETIL data3 that consists of over
2000 Sanskrit texts. These are cleaned to remove pieces of text that are not in Sanskrit as much as
possible to produce over 450 MB of textual data with about 45 million words. Note that a word here
can refer to a compound word (sandhi or samāsa or both) as well. In case of Word2Vec and GloVe, the
pretraining was done on lemmatized text available from the Digital Corpus of Sanskrit (DCS)(Hellwig,
2010–2021) corpus, consisting about 34 MB of text data and 5 million words. The pre-training is carried
on an RTX 2080 GPU machine with 11 GB memory for ELMo, ALBERT and RoBERTa and on a 12-core
CPU with 32 GB RAM for FastText, Word2Vec and GloVe. The details are discussed next.

1. FastText (Bojanowski et al., 2016) is a skip-gram based model that learns continuous word repre-
sentations from character n-grams. It can be trained fast on a CPU unlike the deep neural network
models that require GPU. In our case, it was trained in less than an hour on a 12-core CPU. The
FastText software provided on the official website4 is used.

2. ELMo (Peters et al., 2018) is a deep learning model consisting of CNN embedders of input charac-
ters and bidirectional LSTM encoders that train on the bidirectional language modeling task. ELMo
demonstrated significantly the power of transfer learning in the realm of NLP. We use the small
model with about 13 million parameters. It still took about 3 days to pre-train on the GPU. We used
the official TensorFlow implementation of ELMo5.

3. ALBERT (Lan et al., 2019) is a variant of the transformer (Vaswani et al., 2017) based BERT model
(Devlin et al., 2018) with smaller number of parameters. It trains on a masked language modeling
task. We use unigram language model tokenization (Kudo, 2018) with a vocabulary size of 5,000.
Our model has about 8 million parameters (albert-base with vocabulary size 5,000) and the training
converged in about 3 days on the GPU. We used the Huggingface (Wolf et al., 2019) library here.

4. Word2Vec (Mikolov et al., 2013) is a skip-gram based model that learns distributed word represen-
tations. In implementation, this is special case of FastText with window size parameter set to 0. So,
the same FastText software is used. The training details are same as that of FastText.

5. GloVe (Pennington et al., 2014) is an unsupervised algorithm for learing word vector representations
based on word-word co-occurrence statistics. Training details including hardware and time taken is
similar to that of FastText. The GloVe software provided on the official website6 is used.

6. RoBERTa (Lan et al., 2019) is a variant of the transformer (Vaswani et al., 2017) based BERT
model (Devlin et al., 2018) with robust training method. It trains on a masked language modeling
task like ALBERT. We use byte-pair encoding (BPE) tokenization (Sennrich et al., 2016) with
variable vocabulary sizes of 2,500, 5,000, 10,000 and 20,000. The best-performing model has about
90 million parameters (roberta-base with vocabulary size 20,000) and the training converged in
about 3 days on the GPU. We used the Huggingface (Wolf et al., 2019) library here.

3http://gretil.sub.uni-goettingen.de/gretil.html
4https://fasttext.cc
5https://github.com/allenai/bilm-tf
6https://nlp.stanford.edu/projects/glove/

91

3.2 Fine-tuning
We use the training classification data mentioned in Section 2 to fine-tune the pretrained models for the
classification task. As previously mentioned, we consider only 28 labels for this task. The details for
each the models including the architecture and algorithms are next discussed. The fine-tuning time for
this task is always less than 15 minutes on respective hardwares.

• FastText classifier involves averaging the input word representations to form the hidden layer which
is fed foward into a linear classifier (Joulin et al., 2016). Again the software provided in the official
website is used here.

• ELMo embeddings of the input words learned previously, similar to above, are summed up to form
the hidden layer which is fed forward into a linear classifier. This simple architecture is known
to often outperform the complex ones (Perone et al., 2018). Here, we use the AllenNLP library
(Gardner et al., 1803).

• ALBERT classifier takes as input the ALBERT final hidden representation layer of the CLS token
and feeds it to a linear classifier. We use the implementation provided in the Huggingface library
(Wolf et al., 2019).

• Word2Vec, GloVe: FastText classifier is used by loading pretrained vectors from Word2Vec and
GloVe respectively. GloVe vectors are converted into Word2Vec format using the Gensim (Řehůřek
and Sojka, 2010) library.

• RoBERTa: The details are similar to those of ALBERT.

4 Results

The F1 scores for each of the 28 classes is reported in Table 1. From overall macro-averaged F1 scores,
it can be seen that RoBERTa performs the best. The RoBERTa here refers to the one with vocabulary
size of 20K, which is the one that performs the best. The comparison of results of RoBERTa for different
vocabulary sizes is given in Table 2.

We also report in Table 1, the performance of only the under-represented classes or in other words, the
classes which see very few instances relative to the other classes. Here, we consider the under-represented
classes as those which have less than overall 70 instances. That gives about 20-50 instances for training.
The macro and weighted average F1 scores for only these under-represented classes are reported in the
last two rows of Table 1. RoBERTa performs the best in the classification of under-represented classes as
well except in case of the classes Dānastuti, Aśva and Āpas. Word2Vec outperforms RoBERTa in these
classes. These results are discussed further in the following section.

It should be noted from Table 1 and Table 2 that RoBERTa outperforms ALBERT while having same
vocabulary size of 5,000 as well. This is expected since ALBERT shares parameters across the layers
and hence has small number of parameters to train.

From the confusion matrix of RoBERTa predictions provided in Figure 1, which is normalized across
rows (i.e., true labels), one can see the patterns in wrong predictions. For instance, one can observe that
various other labels are being predicted instead of the Viśvedevās (index 3 on y-axis); this happens since
Viśvedevās is like an umbrella term for ‘many’ or rather ‘all devatās’. For instance, the following verse
(RV 6.055.03) labeled as Viśvedevās invokes Aditi and Us. āsānaktā. The predicted label is Us. as which is
indeed close.

prá pasty`̄a(3)m áditim. síndhum arkaíh. svastím īle sakhy´̄aya dev´̄im |
ubhé yáthā no áhanī nip´̄ata us. ´̄asānáktā karatām ádabdhe ||

Note that the accents are provided only for the purpose of reading. They are not considered while
training and testing.

Also, one can observe that the class Soma (index 13 on y-axis) is often wrongly being predicted as
Pavamāna Soma (index 2 on x-axis) which can be understandable in the sense that both are almost the

92

Class Label Count ALBERT FastText ELMo Word2Vec GloVe RoBERTa

1 Indra 2887 0.855 0.844 0.836 0.778 0.810 0.858
2 Agni 2000 0.789 0.804 0.785 0.667 0.756 0.825
3 Pavamāna Soma 1087 0.799 0.834 0.890 0.750 0.793 0.824
4 Viśvedevās 815 0.435 0.426 0.404 0.364 0.414 0.519
5 Aśvinau 631 0.840 0.807 0.819 0.783 0.791 0.864
6 Marutas 425 0.656 0.641 0.656 0.823 0.589 0.651
7 Mitrāvarun. au 183 0.638 0.429 0.378 0.403 0.439 0.653
8 Us.as 182 0.576 0.739 0.585 0.222 0.622 0.655
9 Indrāgnī 117 0.737 0.684 0.789 0.606 0.718 0.829

10 Ādityās 100 0.609 0.400 0.286 0.762 0.333 0.538
11 Varun. a 99 0.600 0.545 0.222 0.222 0.471 0.522
12 R. bhavas 96 0.690 0.833 0.545 0.759 0.500 0.733
13 Savitr. 83 0.714 0.545 0.250 0.727 0.222 0.667
14 Soma 80 0.308 0.417 0.444 0.300 0.316 0.588
15 Pūs.an 77 0.552 0.385 0.167 0.286 0.385 0.625
16 Br.haspati 74 0.923 0.600 0.800 0.667 0.857 0.833
17 Indrāvarun. au 70 0.923 0.667 0.870 0.593 0.667 0.923
18 Dānastuti 65 0.286 0.250 0 0.667 0.154 0.167
19 Sūrya 62 0.500 0.316 0.471 0.417 0.353 0.600
20 Vāyu 53 0.667 0.588 0.182 0.556 0.667 0.778
21 Dyāvāpr.thivyau 48 0.444 0.400 0.286 0.524 0.500 0.545
22 Brahman. aspati 48 0.545 0.444 0.500 0.560 0.667 0.667
23 Āpas 45 0.286 0.364 0.333 0.500 0.286 0.286
24 Rudra 38 0.667 0.333 0 0.261 0.250 0.667
25 Aśva 35 0 0 0 0.333 0 0.200
26 Indravāyū 33 1 0.667 0.500 0.727 0.750 1
27 Sarasvatī 32 0.714 0.364 0 0.333 0.400 0.750
28 Vis.n. u 31 0.444 0.545 0 0.800 0.286 1

Overall (Weighted) 0.745 0.730 0.710 0.668 0.693 0.773
Overall (Macro) 0.614 0.531 0.429 0.550 0.500 0.670

Few-instance classes (Weighted) 0.490 0.382 0.221 0.519 0.392 0.573
Few-instance classes (Macro) 0.505 0.388 0.207 0.516 0.392 0.605

Table 1: F1 scores for the classification task

Vocabulary Size 2.5K 5K 10K 20K

Overall (Weighted) 0.774 0.766 0.775 0.773
Overall (Macro) 0.639 0.638 0.634 0.670

Few-instances (Weighted) 0.458 0.485 0.483 0.573
Few-instances (Macro) 0.488 0.513 0.515 0.605

Table 2: Performance of RoBERTa for different vocabulary sizes

same. Note that, by our assumptions, in this case, Soma and Pavamāna Soma should have been clubbed
into a single class in the first place. However, this is not done in order to observe how the model would
get confused of either label. Their difference is better captured by ELMo (see in Table 1).

Another interesting case is the class that is labeled as Aśva. This occurs in a single hymn (RV 1.162)
which talks about a sacrifice of a horse. Except for Word2Vec and RoBERTa, none of the other models
appear to have learned anything of this class. From the confusion matrix (Figure 1), the label Aśva (index
24 on y-axis) is wrongly predicted as Agni often. The following is one such instance (RV 1.162.15):

m´̄a tvāgnír dhvanayīd dhūmágandhir mókhā bhr´̄ajanty abhí vikta jághrih. |
is. t.ám. vītám abhígūrtam. vás. at.kr. tam. tám. dev´̄asah. práti gr. bhn. anty áśvam ||

This is not surprising since the verse not only talks about Agni, which is the Sacred Fire, but also
invokes many concepts and terms related to the Fire such as the word vas. at.kr. ta, an exclamation made
while making an offering to the Fire.

The class Āpas or the Waters is also poorly predicted by RoBERTa. A possible factor attributing to this
93

Figure 1: Confusion matrix with label indices for the best model, i.e., RoBERTa (see Table 1)

result could be that compared to other few-instance classes like Rudra, Vis. n. u etc., the word āpah. which
means water appear quite regulary throughout the Rig Veda and this is not the case with aforementioned
classes. Apart from these classes, the class of Dānastuti hymns, which are dedicated to some patron
describing their generous donations, are also poorly predicted by RoBERTa. This is not surprising since
this class denotes an abstract meaning that is not limited to a single word. Word2Vec surprising learns
these classes to a good extent.

It should also be noted that Word2Vec outperforms RoBERTa with vocabulary sizes other than 20K in
the case of under-estimated classes. This is likely due to the fact that Word2Vec has an advantage of being
trained and tested on a lemmatized dataset. The behaviour of Word2Vec on Dānastuti, a semantically
difficult class is noteworthy and a potential topic of future exploration. ELMo, probably owing to that
fact that it starts from the character level, is outperformed by all others in case of few-instance classes.
On the other hand, this does not happen with FastText since it considers a higher window of size 2-5 in
our case.

5 Related Work

A transformer based architecture was tested for Sentence segmentation in (Hellwig and Nehrdich, 2018)
probably for the first time for Sanskrit. Classification task related to compounds were seen in (Krishna
et al., 2016; Sandhan et al., 2019) where use of neural network based models like Word2Vec, GloVe
and LSTM are found. Various neural embeddings are explored for Classical Sanskrit in (Sandhan et al.,
2021).

6 Conclusions

In this paper, we have produced a machine readable form of Rig Vedic Anukraman. ī that can be used as a
benchmark dataset in Vedic Sanskrit Compuational Linguistics. Also, we have benchmarked six neural
network based models namely, FastText, ELMo, ALBERT, Word2Vec, GloVe and RoBERTa on this
dataset and found that the transformer-based RoBERTa outperforms the other models, especially in case
of classification of under-represented classes. It is desirable to benchmark the BERT based models on
more such tasks. Improving the classification scores can be taken up as a future task. As it was pointed
out earlier, study of semantically difficult classes like Dānastuti can also be a potential future task.

94

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vectors with sub-

word information. arXiv preprint arXiv:1607.04606.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Peters, Michael
Schmitz, and Luke Zettlemoyer. 1803. Allennlp: a deep semantic natural language processing platform (2018).
arXiv preprint arXiv:1803.07640.

Ralph Thomas Hotchkin Griffith. 1889. The Hymns of the Rig Veda, volume 1-4. Benares : E.J. Lazarus.

Oliver Hellwig. 2010–2021. The Digital Corpus of Sanskrit (DCS).

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit word segmentation using character-level recurrent and con-
volutional neural networks. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 2754–2763, Brussels, Belgium. Association for Computational Linguistics.

Stephanie W Jamison and Joel P Brereton. 2014. The Rigveda: the earliest religious poetry of India, volume 1.
South Asia Research.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Amrith Krishna, Pavankumar Satuluri, Shubham Sharma, Apurv Kumar, and Pawan Goyal. 2016. Compound type
identification in Sanskrit: What roles do the corpus and grammar play? In Proceedings of the 6th Workshop
on South and Southeast Asian Natural Language Processing (WSSANLP2016), pages 1–10, Osaka, Japan. The
COLING 2016 Organizing Committee.

Taku Kudo. 2018. Subword regularization: Improving neural network translation models with multiple subword
candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 66–75, Melbourne, Australia. Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2019.
Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692.

Arthur Anthony Macdonell. 1885. Die Sarvanukramani des Katyayana zum Rigveda, zum ersten mal mit kritischen
anmerkungen hrsg. von Arthur Macdonell. Ph.D. thesis, Leipzig.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Neural and Information Processing System (NIPS).

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for word representa-
tion. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, Doha, Qatar. Association for Computational Linguistics.

Christian S. Perone, Roberto Silveira, and Thomas S. Paula. 2018. Evaluation of sentence embeddings in down-
stream and linguistic probing tasks.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 2227–2237, New Orleans, Louisiana. Association for Computational Linguistics.

Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling with Large Corpora. In Pro-
ceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta.
ELRA. http://is.muni.cz/publication/884893/en.

Jivnesh Sandhan, Om Adideva, Digumarthi Komal, Laxmidhar Behera, and Pawan Goyal. 2021. Evaluating neural
word embeddings for sanskrit. arXiv preprint arXiv:2104.00270.

95

Jivnesh Sandhan, Amrith Krishna, Pawan Goyal, and Laxmidhar Behera. 2019. Revisiting the role of feature
engineering for compound type identification in Sanskrit. In Proceedings of the 6th International Sanskrit
Computational Linguistics Symposium, pages 28–44, IIT Kharagpur, India. Association for Computational Lin-
guistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems, 30.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, et al. 2019. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771.

96

