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Abstract

This paper presents submissions of the
NJUNLP team in WMT 2022 Quality Estima-
tion shared task 1, where the goal is to pre-
dict the sentence-level and word-level quality
for target machine translations. Our system
explores pseudo data and multi-task learning.
We propose several novel methods to gener-
ate pseudo data for different annotations using
the conditional masked language model and
the neural machine translation model. The pro-
posed methods control the decoding process
to generate more real pseudo translations. We
pre-train the XLMR-large model with pseudo
data and then fine-tune this model with real
data both in the way of multi-task learning. We
jointly learn sentence-level scores (with regres-
sion and rank tasks) and word-level tags (with
a sequence tagging task). Our system obtains
competitive results on different language pairs
and ranks first place on both sentence- and
word-level sub-tasks of the English-German
language pair.

1 Introduction

Quality Estimation (QE) of Machine Translation
(MT) is a task to predict the quality of trans-
lations at run-time without relying on reference
translations (Specia et al., 2018). This paper de-
scribes the contribution of the NJUNLP team to the
WMT2022 QE Shared Task (Zerva et al., 2022) on
sentence- and word-level sub-tasks (task 1)1. For
the sentence-level task, participating systems are
required to predict the quality score for each trans-
lation output, and all scores are standardized using
the z-score by the rater. The result is evaluated
using Spearman’s rank correlation coefficient as
the primary metric. For the word-level task, par-
ticipating systems are required to tag each token
of the translation output with OK and BAD. The

∗* Corresponding Author.
1https://wmt-qe-task.github.io/subtasks/

task1/

BAD tag denotes this token is wrong, or there is
one or more missing token(s) on the left side. The
result is evaluated in terms of Matthews correlation
coefficient (MCC) as the primary metric.

Inspired by DirectQE(Cui et al., 2021), we fur-
ther explore pseudo data and multi-task learning
for the QE shared task. Our main contributions are
as follows:

• We propose several novel methods to gener-
ate pseudo data for different annotations using
the conditional masked language model (Cui
et al., 2021) and the neural machine transla-
tion model (Vaswani et al., 2017).

• We use the XLMR-large model (Conneau
et al., 2020) as the QE model rather than a
transformer base model with random initial-
ization in (Cui et al., 2021).

• We pre-train the QE model with pseudo data
and then fine-tune it with real data both in
the way of multi-task learning. We explore
the rank task in addition to commonly used
regression and sequence tagging tasks.

• We also explore post-editing annotation
data of the previous years for the multi-
dimensional quality metrics (MQM) annota-
tion sub-task.

• We propose a new ensemble technique for
combining the scores of models trained with
different sentence-level scores.

Our system obtains competitive results on differ-
ent language pairs. Moreover, we rank first place
on both sentence- and word-level of the English-
German language pair with the Spearman score
of 63.47 (+1.33 than the second best system) and
MCC score of 35.19 (+3.33).
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Source The light from the Earth, some of it falls in, but some of it gets lensed around and
brought back to us.

Translation Das Licht von der Erde, einiges davon fällt hinein, aber einiges davon wird
herumlinsiert und zu uns zurückgebracht.

Annotation ID Error Span Category Severity
Span 1 einiges davon fällt hinein, aber einiges davon Style/Awkward Major
Span 2 herumlinsiert und zu uns zurückgebracht Accuracy/Mistranslation Major
MQM 0.4444

Table 1: An example from the WMT2022 English-German MQM dataset. We mark the error span with an italic
font.

2 Sentence- and Word-Level Task

Formally, given a source language sentence X and
a target language translation Ŷ = {y1, y2, . . . , yn}
with n tokens. The sentence-level score m de-
notes the whole quality of the target Ŷ. The
word-level labels is a sequence of n tags G =
{g1, g2, . . . , gn}. gj is the quality label for the
word translation yj , which is a binary label (OK or
BAD).

In WMT2022, sentence scores are derived not
only using direct assessments (DA) (Graham et al.,
2013; Guzmán et al., 2019; Fomicheva et al., 2020)
but also multi-dimensional quality metrics (MQM)
(Burchardt and Lommel, 2014; Freitag et al., 2021).
Similarly, organizers derive word tags in two dif-
ferent ways: Post-Editing (PE) (Snover et al.,
2006; Fomicheva et al., 2020) and MQM. More-
over, MQM is introduced for the first time in the
sentence- and word-Level QE shared task. MQM
provides fine-grained error annotations produced
by human translators. Annotators are instructed to
span all errors in translation Ŷ given source sen-
tence X. Besides, they annotate categories and
severity levels (minor, major, and critical) for these
errors. According to the number of errors at differ-
ent severity levels, the MQM score can be calcu-
lated as follows:

MQM = 1− nminor + 5nmajor + 10ncritical

n
. (1)

We show an example in Table 1.

3 Methods

To handle the few-shot and zero-shot settings, we
follow DirectQE (Cui et al., 2021) framework.
Specifically, we first generate pseudo data using
parallel data, then pre-train the QE model with gen-
erated data, and fine-tune the pre-trained model
with real QE data if provided. We will describe
these steps as follows.

3.1 Pseudo Data
3.1.1 MQM Annotations
DirectQE randomly replaces some target tokens in
parallel pairs with tokens sampled from the con-
ditional masked language model. The replaced
tokens are annotated as BAD, and they denote the
ratio of BAD tokens as the pseudo sentence scores.
There are several gaps between DirectQE pseudo
data and MQM data:

• Error distribution: DirectQE generates er-
rors at the token-level while MQM annotates
translations with spans.

• Error severity levels: DirectQE uses the
same sampling strategy and assigns the same
weight for every pseudo error. As mentioned
above, MQM assigns different weights for er-
rors with varying levels of severity.

• Error categories: DirectQE does not involve
error types of over- and under-translations,
which are essential in real applications.

• Generator: DirectQE only uses a conditional
masked language model as the generator for
pseudo translations. This generator could per-
form quite differently from the target machine
translation system.

To handle these problems, we proposed two
novel methods to generate pseudo MQM data with
different generators: the conditional masked lan-
guage model and the neural machine translation
model. The conditional masked language model is
trained using masked language model task (Devlin
et al., 2019) conditioned on the source sentence.
Please refer DirectQE (Cui et al., 2021) for more
details. The neural machine translation model is a
common transformer base model as described in
(Vaswani et al., 2017).
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Sample the number of spans:

Sample the length of each span:

Sample the position of each span:

Sample the severity of each span:

Over- and under-translations:

Minor

Major

Critical

Omission

OK

Figure 1: Illustration of the proposed method for generating pseudo MQM data. Given a reference sentence with
eleven OK tokens, we randomly sample three error spans with a length of two, three, and one and the severity of
major, critical, and minor. Besides, we randomly insert one token in the second span and remove all tokens from the
first span to simulate over- and under-translations.

To simulate the target error distribution, we first
count the number of spans in each translation, the
length of each span, and the frequency of differ-
ent severity levels. Then, we can sample pseudo
errors according to the target error distribution as
shown in Figure 1. Finally, we use the generator
to generate these error tokens except for omissions.
The conditional masked language model generates
pseudo errors parallel, while the neural machine
translation model generates these errors from left
to the right in an autoregressive fashion. Similar
to DirectQE, we random sample one of the tokens
with the top k generation probability as the error
token. We use bigger k for graver pseudo errors to
simulate errors at different severity levels. Empiri-
cally, we set k as 2, 10, and 100 for minor, major,
and critical errors, respectively. The pseudo MQM
scores can be calculated according Eq. 1.

3.1.2 DA and PE Annotations

For DA and PE annotations, we also explore the
above two generators with different generation pro-
cesses. We use the conditional masked language
model as described in DirectQE. The only differ-
ence is that we normalize the pseudo sentence
scores using the z-score because these scores are
on a different scale from real scores.

We utilize the neural machine translation model
in quite a different way. Instead of replacing tar-
get tokens at random, we let the neural machine
translation model decide which tokens need to be
replaced. Specifically, we compare the genera-
tion probability Pi = logP (yi|X, y<i; θMT) of i-
th reference token with ϵ. If Pi < ϵ, we replace
yi with ymax = argmaxy logP (y|X, y<i; θMT)
whose generation probability is highest at this po-
sition and tag this token as BAD. Empirically, we

set ϵ according to the different corpus. In addition,
whatever the generation probability is, we have a
chance of forcing the generated token to be con-
sistent with the reference one. In this way, we can
avoid the phenomenon that the generation proba-
bilities of the reference token are always on a low
level because of continuous replacement.

3.2 Pre-training and Fine-tuning
3.2.1 QE Model
Recently, many QE works have focused on trans-
ferring knowledge from large pre-trained language
models for the QE task. In this study, we adopt
XLMR large model (Conneau et al., 2020) as our
QE model instead of a transformer base model with
random initialization as described in (Cui et al.,
2021). The XLMR large model, successfully used
in the QE task(Ranasinghe et al., 2020), is a cross
lingual pre-trained sentence encoder. Thus, we
concatenate both source and target sentences as
the input. We directly use the corresponding out-
puts from the last layer as token representations.
We average sub-tokens’ representations as the rep-
resentation of the whole word. We average the
representations of all target tokens as the score rep-
resentation. We use linear layers for predicting
sentence scores and word tags with these represen-
tations.

3.2.2 Multi-task Learning
Multi-task learning has been widely studied for QE
task (Fan et al., 2019; Cui et al., 2021). Usually,
the word-level task is formulated as a sequence
labeling problem using cross-entropy (CE) loss as
follows:

LCE =

n∑

i=1

CE(gi, ĝi), (2)
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Annotation Pair Spearman (Rank) MCC (Rank) F1-BAD F1-OK

MQM

EN-DE 63.47 (1) 35.19 (1) 35.09 98.03
EN-RU 47.42 (4) 38.98 (3) 43.96 94.90
EN-ZH 29.56 (7) 30.84 (3) 30.25 98.77

Multilingual 46.82 (2) - - -

PE and DA
EN-MR 58.47 (4) 41.16 (2) 47.22 93.86
KM-EN - 42.12 (3) 74.42 67.68

Table 2: Results on different test sets of WMT2022.

where ĝi denotes the tag predicted for i-th word.
Traditional methods formulate the sentence-level
task as a constraint regression problem with mean
square error (MSE) loss:

LMSE = MSE(m, m̂), (3)

where m̂ denotes the output score. However, the
ordinal relations between different translations are
more important in many real applications, such as
re-ranking for candidate translations and selecting
the best translation models. Therefore, we intro-
duce the additional rank loss to model the ordinal
information between translations:

LRank = max(0,−r(m̂i − m̂j) + ϵ), (4)

where m̂i and m̂j denote the output scores of i-th
and j-th translations from current batch; r denotes
the rank label, r = 1 if mi > mj , r = −1 if
mi < mj ; ϵ denotes the margin, we set ϵ = 0.03
for all experiments. Since sentence- and word-level
sub-tasks use the same source-target sentences, it
is convenient to learn these tasks jointly as follows:

LQE = LCE + αLMSE + βLRank. (5)

We use the same loss Eq. 5 for both pre-training
and fine-tuning. When pre-training, we use the
pseudo data as mentioned above. For fine-tuning,
we also explore PE annotation data of the previ-
ous years for the MQM sub-task (EN-DE language
pair). Target side word-level errors of PE annota-
tion consist of two types of labels: word tags and
gap tags (labeled BAD if one or more words should
be inserted in between two words). Word tags can
be directly converted to MQM tags. To convert gap
tags, we label the right word as BAD if the gap tag
is BAD. For sentence-level, we normalize the PE
sentence scores using the z-score. We mix the PE
data and MQM data and use them to fine-tune the
QE model.

3.3 Ensemble
We ensemble sentence-level results by averaging
all output scores and ensemble word-level results
by voting. We also train some models to predict
MQM scores without normalization for the EN-DE
language pair. To ensemble these models trained
with different sentence-level scores, we propose
calculating their z-scores and then averaging all
z-scores as the ensemble result.

4 Experiments

4.1 Data and Pre-processing
For training the generators and generating pseudo
data, we use several parallel data sets. We use
the parallel data provided by the WMT transla-
tion task 2 for EN-DE(9M), EN-RU(3M), and ZH-
EN(3M) language pairs. We use 660K parallel
data from OPUS3 for the KM-EN language pair.
Besides, 3.6M parallel data from the target trans-
lation model4 are used for the EN-MR language
pair. The PE data used for the EN-DE language
pair are provided by WMT2017, WMT2019, and
WMT2020.

For pseudo data generation, we learn the BPE
vocabulary (Sennrich et al., 2016) with 30K steps
using parallel data from each language pair. We can
directly use the vocabulary of the XLMR model 5

for pre-training and fine-tuning.

4.2 Implementation and Hyper-parameters
We implement our system with the open source
toolkit Fairseq(-py) (Ott et al., 2019). All experi-
ments were conducted on NVIDIA V100 GPUs.
Using grid search, we search hyper-parameters
(learning rate, weights for different losses). We

2https://www.statmt.org/wmt21/
translation-task.html

3https://opus.nlpl.eu/
4https://indicnlp.ai4bharat.org/indic-trans/
5https://dl.fbaipublicfiles.com/fairseq/

models/xlmr.large.tar.gz
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train epoch

train inner

valid

Figure 2: MSE score loss with z-score labels (above);
MSE score loss with MQM labels (bottom).

Data Loss Spearman
Real w/o rank 37.88

MLM + Real w/o rank 43.64
MLM + Real w/ rank 44.05

Table 3: Results on the validation set of WMT2022 QE
EN-DE task. MLM denotes the pseudo data generated
by the conditional masked language model.

perform early stopping if the performance does not
improve for the last 20 runs.

4.3 Results

We summarize our main results on the test set in Ta-
ble 2. Our system obtains competitive results over
different annotation and language pairs. Especially
when we use all techniques proposed in this paper,
we finished 1st at both sentence- and word-level on
the EN-DE pair.

4.4 Analysis

We conduct preliminary experiments on sentence-
level EN-DE sub-task to better reveal the factors
that contribute to the performance. Note that we
search hyper-parameters with a different scale be-
tween different analyses. Thus only results in the
same table are comparable.

As shown in Table 3, our pseudo data signif-
icantly improve the performance over the base-
line. Besides, the rank loss can further improve
performance. Table 4 shows that the neural ma-
chine translation model is better than the condi-

Data Spearman
MLM + Real 49.21
NMT + Real 51.01

MLM + WMT19 + Real 50.45
NMT + WMT19 + Real 51.37

NMT + WMT19,20 + Real 51.15
NMT + WMT19,20,17 + Real 51.24

Table 4: Results on the validation set of WMT2022 QE
EN-DE task. NMT denotes the pseudo data generated
by the neural machine translation model. WMT## de-
notes the PE data from WMT20##.

Data Label Spearman
NMT + Real z-score 51.01
NMT + Real MQM 52.80

Table 5: Results on the validation set of WMT2022 QE
EN-DE task with different labels.

tional masked language model for generating the
pseudo data. Moreover, PE data from WMT2019
is helpful for the MQM task. Surprisingly, PE data
from WMT2020 and WMT2017 do not further im-
prove the results. That may be because there are
more errors in translations from WMT2020, and
the translations from WMT2017 are generated by
a statistical machine translation system. We also
find that models trained with the MQM scores are
better than these using z-scores, shown in Table 5.
The MSE score loss seems more stable when using
the MQM label, as shown in Figure 2.

5 Conclusion

We present NJUNLP’s work to the WMT 2022
Shared Task on Quality Estimation. We propose
several novel pseudo data generation methods to
bridge the gaps between existing pseudo data and
real QE data. To learn the ordinal information, we
extend multi-task learning for the QE task with
the rank task. We also explore the PE data for
the MQM annotation sub-task and propose to en-
semble output scores with different scales using
the z-score. Experiments show that our pseudo
data significantly improve the performance over
the baseline. Meanwhile, rank loss and PE data
do help. In future research, we will conduct more
ablation studies to reveal the contributions of each
part.
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