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Abstract

In multilingual colloquial settings, it is a habit-
ual occurrence to compose expressions of text
or speech containing tokens or phrases of differ-
ent languages, a phenomenon popularly known
as code-switching or code-mixing (CMX). We
present our approach and results for the Code-
mixed Machine Translation (MixMT) shared
task at WMT 2022: the task consists of
two subtasks, monolingual to code-mixed ma-
chine translation (Subtask-1) and code-mixed
to monolingual machine translation (Subtask-
2). Most non-synthetic code-mixed data are
from social media but gathering a significant
amount of this kind of data would be laborious
and this form of data has more writing variation
than other domains, so for both subtasks, we
experimented with data schedules for out-of-
domain data. We jointly learn multiple domains
of text by pretraining and fine-tuning, com-
bined with a sentence alignment objective. We
found that switching between domains caused
improved performance in the domains seen ear-
liest during training, but depleted the perfor-
mance on the remaining domains. A contin-
uous training run with strategically dispensed
data of different domains showed a significantly
improved performance over fine-tuning.

1 Introduction

Code-mixing (CMX) denotes the alternation of two
languages within a single utterance (Poplack, 1980;
Sitaram et al., 2019). Code-mixing occurs mostly
in unofficial groups in multilingual environments.
More than 77% of Asians are multilingual (Ra-
makrishnan and Ahmad, 2014), and other statistics
estimate that 64.5% of Europeans speak more than
two languages, with more than 80% of adults in
the region being bilingual (Eurostat, 2019). Code-
mixing happens far more often in conversations
than in writing, and mostly in unofficial settings,
hence it rarely occurs in documented settings. This
makes substantial data gathering for computational
approaches to translations of code-mixed language

difficult. Parallel corpora for code-switched data is
very scarce (Menacer et al., 2019), this is because
code-mixing mostly occurs in unofficial conversa-
tions like social media interactions.

Contemporary Neural Machine Translation
(NMT) mostly makes use of parametric sequence-
to-sequence models (Bahdanau et al., 2014;
Vaswani et al., 2017), where an encoder receives a
source sentence and outputs a set of hidden states,
the decoder then scrutinizes these hidden states
at each step, and outputs a sequence of softmax
distribution over the target vocabulary space. Con-
sidering that we would need vast quantities of data
to train an adequate NMT for this task, we leverage
large-scale synthetic and available small data and
notably rank data on domain relevance, by fine-
tuning with it, initiating training with the relevant
domain and strategically placing it at the premier
batches of the training data.

Essentially, the characteristics of the data an
NMT model is trained on are paramount to its trans-
lation quality, in particular in terms of size and
domain. It is quintessential to train NMT models
based on the domain relevance of corpora. Since
most code-mixing occurs in unofficial communi-
cation, it is costly to find a lot of labeled data for
every domain we are interested in. Hence we at-
tempt to find less expensive exigencies to supple-
ment training data, pretrain on largely available
data of different domains, strategically construct
synthetic data, and apportion data to make up for
missing domains.

In these WMT Subtasks – monolingual to
code-mixed machine translation (Subtask-1) and
code-mixed to monolingual machine translation
(Subtask-2), we also fine-tune on different domains,
align representations of data and find the best com-
bination of approaches to solving the subtasks. The
main intuition behind our proposed solution is that
NMT models exhibit a significant translation cor-
relation when trained on data from the same or
similar domains. With different data domain re-
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quirements, it performs better when trained with
data of the most relevant domain as preliminary
batches compared to finetuning. As most natu-
ral code-mixed data source is social media and
it is difficult to gather a good amount to train a
model, it is incumbent to find a strategy that makes
the model prioritize this form of data above oth-
ers. Accordingly, we attempt to find less expensive
techniques to supplement training data, pretrain on
largely available data of different domains, strategi-
cally construct synthetic data, and apportion data to
make up for missing domains. Our result showed
improved performance on innate code-mixed data
(and non-synthetic WMT test set samples) when
this was prioritized and performed strongly in a test
with a mix of several other data sources. We ob-
served a better performance with domain-specific
evaluation upon finetuning but this intensely plum-
meted performance on other ‘pretraining domains’,
and more balanced performance on passing the in-
teresting domain in the preliminary batches in a
single ‘all domain’ training.

2 Related Work

It is laborious to obtain ‘one-fits-all’ training data
for NMT. Most publicly available parallel cor-
pora like Tanzil, OPUS, UNPC are sourced from
documented communication, and these are often
domain-specific. In NMT, data selection e.g. Ax-
elrod et al. (2011) has remained as an underlying
and important research concern. Choosing training
examples that are relevant to the target domain, or
by choosing high-quality examples for data clean-
ing (also known as denoising), has been essential
in domain adaptation. Building a large-scale multi-
domain NMT model that excels on several domains
simultaneously becomes both technically difficult
and practically back-breaking. Addressing research
problems such as catastrophic forgetting (Good-
fellow et al., 2013), data balancing (Wang et al.,
2020), Adapters (Houlsby et al., 2019) have shown
improvement. Unfortunately, several domains are
difficult to handle with the single-domain data se-
lection techniques currently in use. For instance,
improving translation quality of one domain will
often hurt that of another (Britz et al., 2017; van der
Wees et al., 2017).

Song et al. (2019) replaced phrases with pre-
specified translation to perform “soft” constraint
decoding. Xu and Yvon (2021) generated code-
mixed data from regular parallel texts and showed

this training strategy yields MT systems that sur-
pass multilingual systems for code-mixed texts.

Considering that code-mixed text belongs in less
documented domains than most, there may be a
need for domain adaptation used on sufficiently
available data domains. Our work is inspired by
the following approaches: Wang et al. (2019) ex-
ecuted simultaneous data selection across several
domains by gradually focusing on multi-domain
relevant and noise-reduced data batches while care-
fully introducing instance-level domain-relevance
features and automatically constructing a training
curriculum. Park et al. (2022) demonstrated that
instance-level features are better able to distinguish
between different domains compared to corpus-
level attributes. Dou et al. (2019) proposed mod-
eling the difference between domains instead of
smoothing over domains for machine translation.

Anwar et al. (2022) showed that an encoder
alignment objective is beneficial for code-mixed
translation, in addition to Arivazhagan et al. (2019)
that proposed auxiliary losses on the NMT encoder
that imposed representational invariance across lan-
guages for multilingual machine translation.

English Code-Mixed (CMX)

@dh*v*l2410*6 sure
brother :)

@dh*v*l2410*6 sure bhai :)

"I just need reviews like
these, this motivates me a
lot"

"Bas aise hi reviews ki za-
roorat hai, kaafi protsahan
milta hai in baaton se. "

When the sorrow got miss-
ing in this room, the blood
also became thin, #Guess-
TheSong

Jab gam ye rum mein kho
gaya, toh khoon bhi patla
hogaya #GuessTheSong

Table 1: Examples from the WMT Shared Task Dataset.

3 Data

In table 1 we show some samples from the WMT
shared task, sourced from the non-synthetic val-
idation data. The data provided for Subtask-1
(Srivastava and Singh, 2021) contains synthetic
and human-generated data and Subtask-2 Parallel
Hinglish Social Media Code-Mixed Corpus (Sri-
vastava and Singh, 2020) for both tasks are mostly
unofficial, mostly short conversational sentences,
with some letters asterisked for privacy/derogatory
reasons.

Since we need to augment provided data for a
reasonable quantity to train a NMT model, we gen-
erated synthetic code-mixed data from the IITB

1163



English Code-Mixed (CMX)

Overhead charge is a per-
centage of the direct costs of
providing the services under
the contract.

Overhead charge, anubandh
ke anusaar pradatt sevaon
kee pratyaksh laagat ka ek
pratishat hota hai.

A strategy of ignoring po-
tential problems on the ba-
sis that they may be exceed-
ingly rare.

us aadhaar par sambhaavit
problems ko anadekha
karane kee ek yukti, jahaan
ki ve ati dushpraapy ho
sakate hain.

A standard of measurement,
or a unit that can be studied
separately / independently.

koee maapadand athava
koee a unit that svatantr
roop se/alag se adhyayan
kiya ja sakata ho.

Table 2: Examples from IITB Corpus.

corpus (Kunchukuttan et al., 2017) which is from
17 sources of different domain mostly HindEnCorp
(Bojar et al., 2014), Gyaan-Nidhi Corpus (Garg
et al., 2018), Indian Government corpora - CFILT,
Mahashabdkosh, Tanzil, and GNOME (Kunchukut-
tan et al., 2017) (details in section 3.1). Synthetic
code-switched sentences generated from the IITB
corpus belong to a different domain than the WMT
evaluation data, as we illustrate with the English
translation samples in table 2.

For the pretraining-finetuning setup, we pretrain
with synthetic code-switched data generated from
IITB corpus and fine-tune on the WMT data pro-
vided for each task. For both pretraining and fine-
tuning, we coordinate the data similar to (Anwar
et al., 2022) – For Subtask-1, Monolingual to code-
mixed machine translation subtask, we use the
Hindi sentence (Devanagari script) as source se-
quence and the corresponding code-switched sen-
tence (Roman script) as target, then alternated the
English sequence (Roman script) as source sen-
tence and the same corresponding code-switched
sentence as the target sequence. The above two
source-target parallel data are set after each other.
For Subtask-2, Code-mixed to monolingual ma-
chine translation subtask, we have a similar ar-
rangement as in Subtask-1, but with the source
sequences of Hindi and code-mixing (Hinglish) in
Roman script and as the target the corresponding
English sequence. We removed sequences shorter
than 2 tokens, and those longer than 250 tokens,
and a target-to-source token ratio of more than 1.5.
After cleaning the pretraining data, for Subtask-1,
we have about 2.5M parallel sentences and 2.3M
parallel sentences for Subtask-2.

For the finetuning process, we made use of the

WMT training data provided for each subtask and
organized like the pretraining data as described
above. After cleaning, for Subtask-1 (Synthetic
+ Human-generated), we have a total of over 11K
parallel sentences. For subtask-2, over 12K parallel
sentences remain after cleaning.

Since the IITB corpus encompasses multiple
sources and domains where code-mixing infre-
quently occurs, we decided to configure our model
in a way it first learns from natural code-mixed
data provided by WMT. We experiment with a
hand-designed curriculum of the Synthetic Code-
switched data generated from the IITB corpus and
the WMT provided data. We supply the model
the non-synthetic WMT data only in the first few
batches in the hope that this would faintly famil-
iarize the model with domain-specific features be-
fore it learns from the synthetic code-switched data
we generated from other domains. We compare
the results of this approach to the above described
pretraining-finetuning setup. All data is tokenized
and normalized using sentencepiece1.

3.1 Code Switched Data Generation

Given that most publicly available corpora are
monolingual, it is requisite to generate sufficient
synthetic code-mixed data for training. Moreover,
there have been works on generating synthetic code-
mixed data linguistically, there are a few rules the-
ories that are essential.

The Equivalence Constraint Theory states
that intra-sentential code-mixing can only hap-
pen where the surface structures of two languages
map onto each other, implicitly following both lan-
guages’ grammatical norms (Poplack, 1980). Fun-
damentally, we can only attempt code-mixing at
points where both languages coincide on the parse
tree to equivalent phrase structure.

The Matrix Language Theory explains code-
mixing by introducing the concept of a "Matrix
Language," or base language, into which clusters
of the "Embedded Language," or second language,
are introduced in such a way that the former sets
the grammatical structure of the sentence and the
latter "switches-in” at grammatically correct points
of the sentence (Myers-Scotton, 2001). The Ma-
trix language has more tokens in the sequence and
its rules are designated above the embedded lan-
guage’s.

Considering the linguistic theories above, we

1https://github.com/google/sentencepiece
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generate code-mixed data by locating where both
languages coincide based on a word-level align-
ment extracted and only replace tokens based on
the “matrix language theory”. Roughly follow-
ing the recipes by (Song et al., 2019; Rizvi et al.,
2021; Xu and Yvon, 2021; Anwar et al., 2022),
we generate synthetic code-switched data from the
IITB parallel data: We create code-mixed data by
first transliterating Hindi (Devanagari script) to Ro-
man script using Ritwik’s tool2, then extract word
alignments using the giza++ toolkit (Och and Ney,
2003), and extract minimal alignment units follow-
ing the approach of (Crego, 2005). We choose
Hindi as the “matrix language” by determining this
from the provided WMT training data, we extract
word alignments and find how many tokens in each
sequence belongs to which language using the lan-
guage detector of Googletrans python library3 and
assign the language with more tokens as the ma-
trix language. Figure 1 shows the Hindi/English
matrix language ratio for both subtasks.

Similar to MLM pre-training used by BERT (De-
vlin et al., 2018), we randomly replace 15% of the
tokens in each Hindi sentence with their aligned
segments in the embedded language (English). For
short sequences with less than 7 tokens we make
only one replacement, chosen uniformly at random.

4 Training Objective

Considering the effectiveness of clean finetuning
(Wu et al., 2019), and pre-training (Mathis et al.,
2019), we attempt a combined pipeline of pretrain-
ing+finetuning experiment and also a single train-
ing but with tactical positioning of the most impor-
tant domain. In the finetuning process and training
with specially ordered data, as recommended by
(Anwar et al., 2022), we add an alignment loss to
the encoder to encourage source and target repre-
sentations to be close in representation space mini-
mizing the max-pooled cosine distance of the en-
coder representation as shown in equation 1:

Ω = ED(en,hi)
[1− sim(Enc(xsrc), Enc(xtgt))]

(1)
Where Ω is the encoder loss, D(en,hi) is the data

consisting of the parallel pairs of code-mixed to

2https://github.com/ritwikmishra/devanagari-to-roman-
script-transliteration

3https://github.com/ssut/py-
googletrans/blob/master/docs/index.rst

monolingual or monolingual to code mixed depend-
ing on which subtask the data belongs to, xsrc is
the source sequence and xtgt is the target sequence,
Enc(x) is the max-pooled encoder representation
of sentence x similar to (Gouws et al., 2014) and
(Coulmance et al., 2015), and sim is the cosine sim-
ilarity. Unlike (Arivazhagan et al., 2019) where the
whole model’s parameters are updated as shown in
figure 2.

5 Experiments and Results

In all of our experiments, we used Transformer-
Base (Vaswani et al., 2017) configuration with the
Fairseq (Ott et al., 2019) framework. All mod-
els were trained on four Tesla T400 GPUs using
IITB and WMT-’22 MixMT data for training as
described in Section 3, with a shared vocabulary
of 77K BPE (Sennrich et al., 2015) sub-words to
create a joint vocabulary for both tasks and all mod-
els. The model’s hyperparameters can be found in
Appendix A.

5.1 Results
Based on the human evaluation by the organizers
of the subtasks, the translation result of our initial
models - v0.2 submitted – which was trained with
mixing the IITB with the WMT without prioritizing
the target domain – had an overall rating of 1.75
from 10 random translations for each subtask, this
ranked inferior to many other submissions.

With the help of native Hindi speakers to inves-
tigate our data, we found some of the causes it
performed decumbent, which were as a result of
some of the different data preprocessing tools we
used: For Transliteration, We tried a few devana-
gari to roman tools but had some shortcomings
like:

• Lipika-ime4: inappropriate handling of dia-
critic characters.

• Indic-trans5: Removal of vowels (e.g. default
-> difolt, highlight -> hilite, method -> methd,
etc..), Splitting of words that lead to subopti-
mal outputs (e.g. "un he" instead of "unhe").

• Sheental6: repetition of vowels e.g. jane ->
jaane, yaar -> yaara, incorrect replacement of
characters e.g. om -> on and occurence of

4https://github.com/ratreya/lipika-ime
5https://github.com/libindic/indic-trans
6https://github.com/sheetalgiri/devanagari-to-roman-

script
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(a) Subtask-1 (b) Subtask-2

Figure 1: Percentage of Hindi vs. English as matrix language from WMT’22 Hinglish validation data for the
subtasks.

Model IITB Eval Set WMT Eval Set Mixed Eval Set
Subtask-1 Subtask-2 Subtask-1 Subtask-2 Subtask-1 Subtask-2

Pretrained (IITB corpus only) 0.81 0.85 0.41 0.47 0.76 0.80
Pretrained (IITB corpus) + Finetuned (WMT provided) 0.49 0.52 0.54 0.58 0.53 0.59
Mixed-data training (target domain first) 0.76 0.79 0.62 0.64 0.70 0.73

Table 3: Translation accuracy of subtask-1 and subtask-2 of Hindi-English in ROUGE-L (F1-Score) on different test
data of different domains, based on models trained on different domain training data, data arrangement or training
pipeline.

Figure 2: The loss function visualization, CE is the
Cross Entropy, Ω is the encoder loss.

needless suffixes e.g. palat -> palata, some
diacritic appeared independently.

• Ritwik’s: inappropriately breaking very long
sentences into multiple lines, replacing in-
dividually occurring tokens like um -> oon
and abruptly stopping when ran over large
amount of data so we divided the data into
chunks each containing not more than 200K
sequences, optimized by parallel computing
using dask, and replaced the individually oc-
curring tokens changed afterwards.

We also investigated our initial model and discov-
ered a few other issues like:

• Cases of translation of proper nouns in
Subtask-2 (e.g. Sapna -> dream) which we de-
duce as a pointer to insufficient training data.

• Imprecise tokenization and detokenization,

we also switched to use of Google sentence-
piece instead of Moses SMT

• Also, the organizers noticed the team’s output
had an incorrect order. A problem where the
post-processing had sorted the hypothesis and
fragmented longer sentences also influenced
the rating.

Upon inspecting our model outputs we found a
few inaccuracies with the tools we used for translit-
eration and tokenization for the submitted model
hypotheses. We fixed these, and present the results
in the following section.

5.2 Post-Submission Results

Table 3 shows the experimental results based on
different test data of samples each from IITB cor-
pus, WMT, and a Mixed test sample evenly selected
from Samanatar (includes IITB corpus, CCMatrix,
Hindi-News, Jagran, Livehindustan, Patrika and
WMT). We made use of other reputable tools to
fix the aforementioned errors, added the domain
curriculum technique, and ran the experiment again
and present it in table 3.

Table 3 shows that fine-tuning on the WMT do-
main improves translation accuracy on this domain
slightly, but the model suffers ‘catastrophic forget-
ting’ on domains it was initially trained on. Pre-
training did not lead to a good generalization for
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the WMT test samples provided, hence a need for
domain adaptation. Placing the relevant domain
in the preliminary batches for mixed-data training
also improves training on such a domain but hurts
other domains slightly.

6 Conclusion

We present a data domain sorting method that im-
proves translation performance based on a target
domain for the WMT 2022 code-switching shared
tasks. We compared our result to a pretraining
and fine-tuning pipeline, and demonstrated that the
finetuning method improves on specified domain
but upsets on previously learned data domain. An
aspect we intend to delve further into is efficient
domain adaptation strategies that may help low-
resource domains such as code-mixing, and have
little or no effect on high-resource domains, we are
currently looking into domain adaptation learning
curve (Park et al., 2022), extraction of domain-
specific parameters (Dou et al., 2019) for better
data augmentation strategies, better acquisition of
code-mixed data, and the use of Adapters (Houlsby
et al., 2019).
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A Appendix

Table 4 holds all the hyper-parameters we used for
training all models. All experiments were set to halt
at patience of 15 updates on the BLEU (Papineni
et al., 2002) stabilizing, we found it trained longer
with BLEU, but evaluated on WMT specified F1-
Score (Sokolova et al., 2006) for the subtasks.
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Hyper-parameter Value

Number of Layers 6
Hidden size 512

FFN inner hidden size 2048
Attention heads 8

Attention head size 64
Dropout 0.1

Attention Dropout 0.0
Warmup Steps 4000
Learning Rate 5e-4

Learning Rate Decay inverse_sqrt
Batch Size 4096 tokens

Label Smoothing 0.1
Weight Decay 0.0001

Adam ϵ 10−9

Adam β1 0.9
Adam β2 0.98

Encoder Criterion Weight 10

Table 4: The hyperparameter values setting for training.
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