








Figure 1: The distribution of paper topics. There were situations where a Shared Task encompassed more than one
topic. In this situation, we chose the more specific topic. For example, note that the topic classification appears
to only contain five papers. There are more classification tasks found in the corpus, but they were assigned other
desciptors such as sentiment analysis and social factors.

Figure 2: The distribution of publication dates. Note
that the years 2000, 2002, 2003, 2005, 2008, and 2009
appear to be outliers. This is because most of the corpus
(69.3%) was taken from the SemEval workshops, which
were not held in those years.

Figure 3: Distribution of sections containing task de-
scriptions
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Figure 4: Distribution of task descriptions across paper
quadrants

Figure 5: Distribution of task descriptions across section
quadrants

for each sentence as features, we also removed any
section for each publication that did not provide a
task description. A paper with the task description
in the introduction, for example, would only have
its introduction included in our dataset. This im-
proved the balance between positive and negative
samples by increased the proportion of task descrip-
tions to non-task descriptions. It also addressed the
following problem: because the goal was to extract
a single sequence from each paper, some papers
have negative samples that would actually qualify
as task descriptions if a better candidate had not
been found. Reducing each paper to a single sec-
tion eliminated some of those perplexing sentences.
The resulting training set contains 259 positive sam-
ples and 2,304 negative samples, and the resulting
test set contains 34 positive samples and 293 nega-
tive samples. After reducing the dataset, 11.28% of
the total data is positive, which is more manageable
than the previous 0.64%.

One problem with manually removing samples
from the dataset based on which sections contain
task descriptions is that the reduced test set is less
“real world”. In a non-experimental setting, the
machine reader should be able to extract a task
description from a whole paper, since it does not
know ahead of time which section contains the task
description. To address this issue, we tested our
model on three versions of the test set. The first was
manually reduced the same way as the training set.
The second had sections automatically removed by
fine-tuning a BERT model on section headers seen
in the training set. This model was then applied
to the test set to classify section headers as either
likely or unlikely to contain a task description. This
is a more fair test set because one could apply this
classifier to any unseen papers to filter out paper
sections. The third set is the full test set without
any data removed.

8 Sentence Classification Experiments

Despite the fact that task descriptions are defined as
sequences that can be longer or shorter than a single
sentence, we designed a sentence classification task
because we achieved much higher inter-annotator
agreement scores when we compared the chosen
sentences spanned by the sequences rather than the
exact sequences (see Section 5). We fine-tuned the
cased and uncased base versions of BERT (Devlin
et al., 2019) and SciBERT (Beltagy et al., 2019) on
every hyperparameter combination in Table 4.
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hyperparameter settings
epochs 2, 3, 4

batch size 16, 32
learning rate 2e-5, 3e-5, 5e-5

Table 4: The hyperparameter options are based on
the fine-tuning recommendations made by Devlin et al.
(2019).

8.1 Training Loop

Each hyperparameter and BERT model combina-
tion was fine-tuned on two versions of the training
dataset, ten times each. The first version of the
dataset contained the contextual features described
in Section 7.1, and the second version contained
only the text data. In between runs, the data was
shuffled and a new validation set containing 10%
of the training data was selected. The precision,
recall, and F1 score was recorded for each training
run. Then the mean scores and standard deviation
were calculated for each classifier-encoding pair.

8.2 Baseline

We calculated a baseline based on common vocabu-
lary and positional patterns. We analyzed common
word patterns in the training set by tokenizing each
sample, removing English stop words, and looking
at the 10, 15, 20, 25, and 30 most frequent words in
the positive and negative samples from the training
set. The most common words for the positive and
negative samples are identical, but the density of
common words per sentence differs. The density
of common words is greater in task description sen-
tences: see Table 5 for the mean common word
density per sentence for task descriptions and non-
task descriptions. In calculating the baseline, we
used a threshold density value of > 0.03 as one
of the criteria for classifying a sentence as a task
description, with the common word list containing
20 words.

We also experimented with the use of positional
information seen in Figures 4 and 5 in calculating
our baseline. We found that restricting positive
classifications to the first halves of each paper sec-
tion yielded the highest baseline scores. However,
setting a threshold for the total paper quadrants
lowered the scores.

The highest baseline scores were calculated by
classifying sentences as task descriptions when the
density of common words was greater than 0.03
and the sentence was found in the first half of its

Common word density
N Task Non-task
10 0.0518 0.0281
15 0.0647 0.0314
20 0.0762 0.0349
25 0.0848 0.0435

Table 5: The mean density of N most common words
among task description sentences and non-task descrip-
tion sentences. Density is calculated by dividing the
number of common words in the sentence by the total
number of words in the sentence.

section. The F1, precision, and recall baseline
scores are .4000, .2687, and .7826, respectively.

8.3 BERT Training Results
The precision, recall, and F1 scores for the best
model and hyperparameter combination are shown
in Table 6. Scores are reported for both the dataset
with additional contextual features and the dataset
containing sentences alone.

The highest performing model scored better on
the dataset comprising sentence data only without
additional features. The cased scibert model earned
an average F1 score of 0.72 on the simple dataset
and an average F1 score of 0.69 on the dataset
containing contextual features. However, the other
three models all returned higher mean scores when
trained on the dataset containing contextual fea-
tures. The mean F1 score across all four models
trained on the contextual dataset is 0.7, while the
mean score across all four models trained on the
simple dataset is 0.68. Notice also that the standard
deviations are somewhat high, indicating a not in-
significant spread around the mean. From this data
it is unclear whether one variant of the dataset is
better than the other.

8.4 Test Results
Tests were run using the cased SciBERT model
fine-tuned on the simple dataset over four epochs
with a batch size of 32 and a learning rate of 5e-
05 (the model with the highest training results).
Three versions of the test dataset were used in order
to determine how well our system would perform
given data of varying levels of preprocessing. The
three versions of the test data are:

1. The dataset manually reduced in the same way
that the training data is reduced. Only sections
that contain a task description are included;
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model epochs batch size learning
rate

metric score

Training results using data annotated with positional features

bert-cased 4 16 2e-05
Precision 0.69± 0.1

Recall 0.73± 0.1
F1 0.71± 0.09

scibert_uncased 3 16 3e-05
Precision 0.69± 0.03

Recall 0.73± 0.12
F1 0.71± 0.06

Training results using text data only

bert-uncased 3 32 5e-05
Precision 0.63± 0.08

Recall 0.7± 0.1
F1 0.66± 0.08

scibert_cased 4 32 5e-05
Precision 0.73± 0.11

Recall 0.71± 0.07
F1 0.72± 0.08

Baseline

baseline - - -
Precision 0.27

Recall 0.78
F1 0.40

Table 6: Mean training results and standard deviations for BERT and SciBERT classifiers across ten runs. Only the
results for the best hyperparameter and model combinations are reported here.

Predicted Labels

Manually reduced
test set

+ - Sum

Tr
ue

L
ab

el
s

+ 24 (7.34%) 10 (3.06%) 34 (10.40%)
- 6 (1.83%) 287 (87.77%) 293 (89.60%)

Sum 30 (9.17%) 297 (90.83%) Total=327

Automatically
reduced test set

+ - Sum
+ 21 (1.76%) 8 (0.67%) 29 (2.43%)
- 63 (5.27%) 1104 (92.31%) 1167 (97.58%)

Sum 84 (7.03%) 1112 (92.98%) Total=1196

Full test set

+ - Sum
+ 25 (0.53%) 9 (0.19%) 34 (0.72%)
- 128 (2.69%) 4597 (96.60%) 4725 (99.29%)

Sum 153 (3.22%) 4606 (96.79%) Total=4759

Table 7: The confusion matrices for the test results on the manually reduced, automatically reduced, and full
(non-reduced) test sets. The sums of the positive and negative labels are displayed for the predicted labels and the
true labels, as well as the total number of samples in the respective test set. Occasionally the percentages don’t sum
to 100%; this occurs due to rounding.
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test dataset precision | recall | F1
manually reduced 0.80 | 0.71 | 0.75

automatically reduced 0.25 | 0.72 | 0.37
full test set 0.16 | 0.74 | 0.27

Table 8: Test results for each version of the test dataset

2. The dataset automatically reduced by learn-
ing which section headers are likely to appear
over a section containing a task description.
Only sections that have a high probability of
containing a task description are included;

3. The full dataset without any sections removed
from any papers.

Figure 7 shows the resulting confusion matrices for
each version of the test dataset. The scores reflect
the variation in proportion of positive to negative
samples; the most balanced dataset is associated
with the highest F1 score (0.75) and the least bal-
anced is associated with the lowest (0.27).

Surprisingly, the F1 score for the manually re-
duced dataset (0.75) is higher than the mean train-
ing result (0.72). This is surprising because the
hyperparameter settings were chosen based only
on the training data; the test data was unseen during
the process of hyperparameter selection. However,
0.75 is within one standard deviation of the mean
training result (standard deviation = ±0.08). The
dataset used to train the model used to classify
the test set was bigger than the dataset used dur-
ing training experiments because 10% of it did not
need to be set aside for validation. It is possible
that, due to the relatively small amount of posi-
tive samples, that increasing the training data by a
small amount could be enough to improve results
on during testing.

8.5 Error Analysis

Many of the errors made by our system reflect
the situations that were difficult or ambiguous for
the human annotators. Papers with subtasks, joint
tasks, and multiple tracks were particularly hard.
There were two papers with subtasks in the test
set for which the system failed to classify any sen-
tences as task descriptions; one paper that describes
multiple tracks for which the system wrongly chose
multiple sentences (one for each track); and a pa-
per describing four joint tasks for which the system

found all but one of the four task descriptions4.
There were six instances where, when faced with

more than one good task description candidate, the
system either chose both or chose the wrong one.
One interesting pattern is that the false positives
are often adjacent to true positives extracted by the
system. While these false positives may be lacking
in detail on their own, some of them work quite
well as auxiliary sentences to the true positives.

Our system struggled in two cases to recognize
short task description phrases embedded in broader,
more generic statements. This indicates that taking
a span-based approach to Task Description extrac-
tion could be more effective than sentence classifi-
cation. See Appendix B for more examples.

9 Conclusion

Our primary contribution is the creation of a new
Scholarly Document Processing corpus that pro-
vides full paper texts rather than short, curated
contexts, and a method for reducing and rebal-
ancing the dataset for an information extraction
task. Corpora such as NLPSharedTasks can be
used in scholarly information extraction systems
to automatically identify and display fine grained
scientific information to users of digital libraries.
Our most significant finding is the importance of
the data preparation and preprocessing decisions.
These choices about how to build and filter the
datasets had a much greater impact on the results
than the hyperparameter settings.

A future annotation project could be conducted
that is generally based on our rules but is more
lenient in terms of the sentences to be extracted.
Instead of focusing on conciseness, this project
would prioritize obtaining as much information as
is required to produce a more thorough account of
the shared task. This resource might subsequently
be utilized as the basis for an extractive task sum-
mary effort. A span-based information extraction
task could be designed over our corpus to extract
the original annotated sequences rather than full
sentences. Sentence classification could be used
as a preprocessing step to narrow down the search
space.

4The guidelines instructed the annotators to only extract
subtask descriptions if they appeared in consecutive sentences,
did not allow annotators to extract track descriptions, and
permitted annotators to choose multiple task descriptions for
joint task papers even if the spans were discontiguous.
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A Data Statement

Provided in this is the Data Statement for our cor-
pus NLPSharedTasks, version 1, following Bender
and Friedman (2018).

A.1 Curation Rationale
Our corpus contains the full texts of 254 Shared
Task Overview papers published in the ACL An-
thology between the year 2000 and 2021. The
criteria for inclusion are:

• The paper was written by the organizers of a
Shared Task

• The paper provides a description of the Shared
Task, including details on the dataset the task
is performed over, the task to be implemented
by participating systems, and an overview of
participating systems

• The Shared Task described in the paper was
hosted by some research workshop in the do-
main of computational linguistics or natural
language processing (NLP)

These criteria ensure that the papers included in
the corpus are likely to contain a Shared Task De-
scription. The ACL Anthology was chosen as the
source because it provides a catalog that is easy
to browse for qualifying candidates for inclusion.
Furthermore, choosing a single anthology to draw
from provided some consistency of paper style and
organization. The starting year (2000) was chosen
because the formatting of papers describing earlier
initiatives was too dissimilar.

A.2 Language Variety
The papers included in NLPSharedTasks are in
English as used in scientific communication in lin-
guistics, computer science, and natural language
processing domains.

A.3 Speaker Demographic
The demographics of the paper authors are un-
known. The speakers are likely researchers and
students of computational linguistics and natural
language processing.

A.4 Annotator Demographic
The annotation was performed by two English-
speaking annotators well versed in a broad range
of NLP topics. Annotator 1 is a graduate student in
computer science with a B.S. in computer science,

and annotator 2 is a post doctoral researcher in data
science with a PhD in computer science. Both an-
notators had shared task experience, annotator 1
as a participant and annotator 2 as an organizer of
SemEval 2021: NLPContributionsGraph (D’Souza
et al., 2021). Neither annotator was compensated.

A.5 Speech Situation
The papers included in NLPSharedTasks were writ-
ten between 2000 and 2021 in research settings.
The speech included in these papers is written and
is assumed to be scripted and edited, as well as peer-
reviewed. In the case of multiple authors, it is un-
known whether interaction was either synchronous
or asynchronous. The intended audience of the
papers included in NLPSharedTasks is researchers
and practitioners of computational linguistics and
natural language processing.

A.6 Text Characteristics
The genre of the texts included in NLPSharedTasks
can be described as written scientific communi-
cation in computational linguistics domains and
other fields. As such, scientific vocabulary is used
throughout that is specific to these domains and the
documents are structured in a formal way. Texts are
structured with sections under headers including
Title, Abstract, Introduction, Related Work, Task
Description, Results, and Conclusion, among oth-
ers.

We define a task description as a span of text
containing information on the task that must be per-
formed by participating systems. The annotation
goal was to extract sequences of text that efficiently
describe the Shared Task such that a human reader
can understand the task outside of the context of
the full paper. Encountering a variety of ways of de-
scribing tasks, we developed three sub-definitions:
full task description, partial task description, and
multiple subtasks description, where a full task de-
scription contains information on the input data
and a brief description of what the participating
system must accomplish with the input data, a par-
tial task description only describes the task to be
performed by participating systems without men-
tion of the data to be used, and a multiple subtasks
description is a sequence of text that covers multi-
ple subtasks in a single continuous sequence (such
a task description is permitted even if the content
spans multiple sentences). See Table 9.
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Type Example Frequency
Full “<TASK>Given a short context, a target word in English, and several sub-

stitutes for the target word that are deemed adequate for that context, the
goal of the English Simplification task at SemEval-2012 is to rank these
substitutes according to how “simple” they are, allowing ties</TASK>.”
From SemEval-2012 Task 1: English Lexical Simplification, (Specia et al.,
2012).

127

Partial “We describe the CoNLL-2000 shared task: <TASK> dividing text into
syntactically related non-overlapping groups of words, so-called text chunk-
ing</TASK>.” From Introduction to the CoNLL-2000 Shared Task Chunking,
(Tjong Kim Sang and Buchholz, 2000).

104

Subtask “The task is <TASK>divided into three subtasks: (a) classification of text
snippets reporting sociopolitical events (25 classes) for which vast amount
of training data exists, although exhibiting slightly different structure and
style vis-a-vis test data, (b) enhancement to a generalized zero-shot learning
problem (Chao et al., 2016), where 3 additional event types were introduced
in advance, but without any training data (’unseen’ classes), and (c) further
extension, which introduced 2 additional event types</TASK>, announced
shortly prior to the evaluation phase.” From Fine-grained Event Classifi-
cation in News-like Text Snippets - Shared Task 2, CASE 2021, (Haneczok
et al., 2021).

13

NULL N/A 12

Table 9: Number of full, partial, subtask, and null task descriptions in 254 shared task overview papers with examples.
The full task description contains a description of the input (“Given a short context, target word in English, and
several substitutes for the target word”), and a description of what participating systems must do (“rank these
substitutes according to how “simple” they are, allowing ties”). In contrast, the partial task description only contains
a description of what participating systems must do (“dividing text into syntactically related non-overlapping groups
of words, so-called text chunking”).
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Figure 6: Distribution of features that help choose between two or more candidate task descriptions

Option 1 Option 2 Discussion
automatically assessing hu-
mor in edited news head-
lines

build systems for rating
a humorous effect that is
caused by small changes in
text

We chose option 2 because it contains
more detail.

quantify the degree of pro-
totypicality of a target pair
by measuring the relational
similarity between it and
pairs that are given as defin-
ing examples of a particular
relation

rate word pairs by the de-
gree to which they are proto-
typical members of a given
relation class

This is a difficult example because ini-
tially option 1 seems better because it
appears to have more detail. However,
the second option has better clarity, and
is more specific because of the phrase
“word pairs” instead of “target pairs”.

annotate instances of nouns,
verbs, and adjectives using
WordNet 3.1

label each instance with one
or more senses, weighting
each by their applicability

Both of these phrases provide different
pieces of information about the task.
Because these sentences are adjacent,
the guidelines permit extracting the full
sequence of text including both phrases
and the text in between them.

given a set of documents
and a set of target entities,
the task consisted of build-
ing a timeline for each en-
tity, by detecting, anchor-
ing in time and ordering the
events involving that entity

given a set of documents
and a set of target entities,
the task consists of building
a timeline related to each en-
tity, i.e. detecting, anchor-
ing in time, and ordering the
events in which the target
entity is involved

Both phrases are equally good candi-
dates and are equivalent in meaning.
Either may be chosen.

Table 10: Examples of ambiguous annotation scenarios where it may be difficult to choose between two candidates
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There are a number of situations that caused
ambiguity during the annotation process. Certain
kinds of sentences may appear at first glance to
contain Task Descriptions, but actually served a
different role. For example, task descriptions will
often mention the research area, but a sequence that
only describes the general research area is insuf-
ficient if it does not contain specific information
on the task to be performed, as in the following
example:

“Sensiting inflectionality: Estonian task for
SENSEVAL-2”
Discussion: “Sensiting inflectionality” de-
scribes the research area, but is insufficient
to describe the shared task to be performed.

One other pitfall we observed is the fact that
sometimes paper authors use language when de-
scribing the aim, goal, or “task” of the task orga-
nizers or dataset annotators that makes it seem like
they are describing the task to be performed by
participating systems. A description of the orga-
nizers’ aim or the dataset creation task would not
be extracted as a task description according to our
guidelines. For example:

Aiming to catalyze the development of mod-
els for predicting LE, we organized the
shared task described in this paper.
Discussion: “catalyze the development of
models for predicting LE” sounds like it
could be a task description. The surrounding
context shows us that it actually is describ-
ing the aim of the task organizers (“Aiming
to... we organized the shared task”).

Another source of ambiguity for the annotators
is the presence of sub tasks, joint tasks, and multi-
track or multi-language tasks. Developing a ma-
chine reader to determine how many subtasks are
described in the paper and to extract a task descrip-
tion for each one from potentially disparate parts
of the paper would not be trivial. For this reason,
we do not annotate subtask descriptions unless they
appear in consecutive sequences of text.

Another ambiguous situation is the scenario
where there are two or more candidate task descrip-
tions that are all decent choices. These ambiguities
could be resolved by choosing the option that had
either more detail or better clarity; choosing the
sequence that works best out of context when the
options contain complementary but different in-
formation; or choosing any candidate when the
sequences are truly equivalent. The frequencies of

each of these choices in the dataset can be seen in
Figure 6, and examples of ambiguous cases can be
seen in Table 10.

Lastly, sometimes a paper does not contain a
sequence of text that sufficiently describes the task
out of context. In any situation where a task de-
scription cannot be found, we use a portion of the
title of the paper if the title contained a phrase de-
scribing the task. If no task description could be
found in the body of the paper and the title did not
sufficiently describe the task, then that paper would
not receive an annotation. There were twelve such
cases in the entire corpus.

A.7 Corpus Access
NLPSharedTasks corpus is available on GitHub
and is licensed under a Creative Commons Attribu-
tion 4.0 International License.

B Error Analysis

Table 11 on the following page presents examples
and analysis of errors made by our system on the
test set.

https://github.com/anmartin94/martin-masters-thesis-2022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Error Type Sample In Context Discussion
False Nega-
tive

Unsupervised Word Sense Induction and Discrim-
ination (WSID, also known as corpus-based unsu-
pervised systems) has followed this line of think-
ing, and tries to induce word senses directly from
the corpus.

This sentence may have been diffi-
cult for the system to classify be-
cause the actual task description
span is relatively short compared to
the overall sentence context.

False Nega-
tive

Nine sub-tasks were included, covering problems
in time expression identification, event expres-
sion identification and temporal relation identi-
fication.

Papers with subtasks were difficult
for the system. The system did not
extract a single sentence from the
paper containing this example.

Partial
False Nega-
tive

This task required participating systems to an-
notate instances of nouns, verb, and adjectives
using Word-Net 3.1 (Fellbaum, 1998), which was
selected due to its fine-grained senses. Partici-
pants could label each instance with one or more
senses, weighting each by their applicability.

Annotators were permitted to select
sequences of text that spanned mul-
tiple sentences, if the additional text
provided important details. Our sys-
tem successfully classified the first
sentence in this example as a task
description, but missed the second
sentence.

False Posi-
tive & False
Negative

We present a counterfactual recognition (CR) task,
the task of determining whether a given statement
conveys counterfactual thinking or not, and fur-
ther analyzing the causal relations indicated by
counterfactual statements. In our counterfactual
recognition task, we aim to model counterfactual
semantics and reasoning in natural language.

Some of the errors were also diffi-
cult cases for human annotators. In
this example, the system selected
the first sentence rather than the sec-
ond. However, the annotator chose
to prioritize readability over detail
in this case.

Partial
False Posi-
tive

This task seeks to evaluate the capability of sys-
tems for predicting dimensional sentiments of
Chinese words and phrases. For a given word
or phrase, participants were asked to provide a
real-valued score from 1 to 9 for both the valence
and arousal dimensions, respectively indicating
the degree from most negative to most positive
for valence, and from most calm to most excited
for arousal.

The system classified both of these
sentences as task descriptions, al-
though the annotator only chose a
span from the second sentence.

Table 11: Examples of errors made by our system. The bolded and italicized spans of text are the original sequences
identified by human annotators as task descriptions.


