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Abstract

Natural Language Inference (NLI) and Se-
mantic Textual Similarity (STS) are widely
used benchmark tasks for compositional eval-
uation of pre-trained language models. Despite
growing interest in linguistic universals, most
NLI/STS studies have focused almost exclu-
sively on English. In particular, there are
no available multilingual NLI/STS datasets
in Japanese, which is typologically differ-
ent from English and can shed light on
the currently controversial behavior of lan-
guage models in matters such as sensitivity
to word order and case particles. Against this
background, we introduce JSICK, a Japanese
NLI/STS dataset that was manually trans-
lated from the English dataset SICK. We
also present a stress-test dataset for compo-
sitional inference, created by transforming
syntactic structures of sentences in JSICK
to investigate whether language models are
sensitive to word order and case particles.
We conduct baseline experiments on differ-
ent pre-trained language models and compare
the performance of multilingual models when
applied to Japanese and other languages. The
results of the stress-test experiments suggest
that the current pre-trained language models
are insensitive to word order and case marking.

1 Introduction

Natural Language Inference (NLI) (Dagan et al.,
2006; Bowman et al., 2015) and Semantic Tex-
tual Similarity (STS) (Agirre et al., 2016) tasks
are well positioned to serve as a basic bench-
mark for natural language understanding. With the
recent progress of deep neural networks, includ-
ing pre-trained language models such as BERT
(Devlin et al., 2019), the development of bench-
mark datasets has centered on large crowdsourced
English datasets, such as SNLI (Bowman et al.,
2015) and MultiNLI (Williams et al., 2018). Since
there has been an increasing need for benchmark
datasets in linguistic universals (Linzen, 2020),
general language understanding frameworks in-
cluding NLI and STS for languages other than

English have been provided (Conneau et al., 2018;
Liang et al., 2020; Le et al., 2020; Shavrina et al.,
2020; Xu et al., 2020; Seelawi et al., 2021; Park
et al., 2021).

Another recent line of work has investi-
gated whether models are sensitive to shuffled
word order, but the conclusions are controversial
(Ravfogel et al., 2019; Sinha et al., 2021a; Sinha
et al., 2021b; Gupta et al., 2021; Pham et al.,
2021; White and Cotterell, 2021). One charac-
teristic of human-like language understanding is
that humans can understand sentences according
to their word meanings and syntactic structures,
then recognize their semantic relationships (Frege,
1963; Katz and Fodor, 1963; Montague, 1973;
Janssen and Partee, 1997). Since previous work
has demonstrated the usefulness of analyzing the
generalization ability of models in challenging
NLI in English (Naik et al., 2018; Glockner
et al., 2018; McCoy et al., 2019; Rozen et al.,
2019; Goodwin et al., 2020; Yanaka et al., 2021),
we should continue this line of research in other
languages.

Against this background, we provide a Japanese
NLI/STS dataset to analyze language models in
compositional inference across languages. Our
motivations for focusing on Japanese are two-fold.
First, Japanese is a high-resource language that
has typologically different characteristics from
English (Joshi et al., 2020), yet it has not been in-
cluded in previous cross-lingual (Real et al., 2018;
Hu et al., 2020; Ham et al., 2020; Wijnholds
and Moortgat, 2021) or multilingual (Conneau
et al., 2018) NLI datasets. This raises the question
of whether models perform inference differently in
Japanese and other languages. Second, Japanese
has case markers and free word-order (Hinds,
1986; Shibatani, 1990), phenomena that pose in-
teresting challenges for multilingual NLI. While
shuffling data usually changes its meaning, the
meaning of a Japanese sentence can be preserved
even when the order of noun phrase (NP) argu-
ments is swapped. By analyzing model behavior
with scrambling phenomena that preserve case
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relations in a sentence and particle-swapping phe-
nomena that change case relations, we can analyze
whether the model can distinguish transforma-
tions that change sentence meanings and perform
compositional inferences.

This paper has three contributions. First, we pro-
vide JSICK as a compositional Japanese NLI/STS
dataset by manually translating the English SICK
dataset (Marelli et al., 2014). Compared with re-
cent crowdsourced NLI datasets, SICK facilitates
identification of which compositional linguis-
tic phenomena are key to a given inference.
Such a controlled structure is suited to trans-
forming sentences for further analyses of model
behavior. In addition, SICK has been trans-
lated into non-English languages (Real et al.,
2018; Wijnholds and Moortgat, 2021), allowing
cross-language comparisons on a sizeable parallel
NLI corpus.

Second, we create a stress-test dataset for JSICK
to investigate whether language models capture
word order and case particles in Japanese. We
created the stress-test dataset by transforming syn-
tactic structures of JSICK sentence pairs, where
we analyze whether models consider word or-
der and case particles when predicting entailment
labels and similarity scores.

Third, for the baseline evaluation of pre-trained
language models, we compare performance be-
tween different pre-trained language models on
JSICK. We also compare the performance of mul-
tilingual pre-trained language models on SICK
datasets of different languages, including JSICK.
We also provide an in-depth analysis of sen-
sitivity to word order and case particles based
on the JSICK stress-test dataset. The analysis
results suggest that both Japanese and multi-
lingual models are surprisingly inattentive to
word order and case marking. Our dataset is
publicly available at https://github.com
/verypluming/JSICK.

2 Related Work

Standard NLI benchmarks have been mainly de-
veloped for English. Recently, large crowdsourced
NLI datasets derived from image captions, such as
SNLI (Bowman et al., 2015), and those targeting
multi-genre sentences, like MultiNLI (Williams
et al., 2018), have been widely used to evaluate
neural models. For linguistics-oriented datasets,

FraCaS (Cooper et al., 1994) is a manually col-
lected NLI test set involving linguistic phenomena
studied in formal semantics, and SICK (Marelli
et al., 2014) is a larger and more naturalistic
NLI/STS dataset made from captions focusing
on compositional inference. Unlike SNLI and
MultiNLI, SICK was designed by linguistic ex-
perts so as to not require dealing with aspects
beyond the scope of compositional inference
(e.g., world knowledge, named entities, and mul-
tiword expressions) but to cover a variety of
combinations of lexical, syntactic, and seman-
tic phenomena. The SICK dataset thus allows
systematic assessments of the reasoning ability of
models on compositional inference. For STS, the
SemEval 2012–2017 (Agirre et al., 2016; Cer
et al., 2017) competitions provided English,
Arabic, and Spanish STS datasets including SICK.

With the development of multilingual pre-
trained language models, general language un-
derstanding frameworks for languages other than
English have been created (Liang et al., 2020; Le
et al., 2020; Shavrina et al., 2020; Xu et al.,
2020; Seelawi et al., 2021; Park et al., 2021), and
NLI datasets have been multilingualized. Conneau
et al. (2018) provided a cross-lingual NLI (XNLI)
corpus by translating MultiNLI into 15 languages,
including languages with few language resources
such as Swahili and Urdu and languages with flex-
ible word order such as Russian and German. Ham
et al. (2020) translated MultiNLI into Korean to
create KorNLI. However, Japanese is not included
in these datasets. In addition, since sentences in
MultiNLI are usually longer than those in SICK
and contain multiword expressions beyond the
scope of compositional inference, it is unrealistic
to carefully transform syntactic structures of sen-
tence pairs in XNLI to create a stress-test dataset
like ours.

As examples of other non-English datasets,
OCNLI (Hu et al., 2020) is a Chinese NLI
dataset built from original multi-genre resources.
FarsTail (Amirkhani et al., 2020) is a Persian
NLI dataset containing sentences from univer-
sity exams. There have also been attempts to
translate the SICK dataset into Portuguese (Real
et al., 2018) and Dutch (Wijnholds and Moortgat,
2021), so our Japanese SICK dataset will con-
tribute to a multilingual SICK dataset that will
allow controlled, cross-lingual analyses of the
compositional abilities of language models.
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Regarding Japanese NLI datasets, a Japanese
SNLI dataset (Yoshikoshi et al., 2020) was con-
structed by using machine translation to translate
the English SNLI dataset into Japanese and
automatically filtering out unnatural sentences,
but methods that employ machine translation
are still problematic in that they can produce
unnatural sentences. The Japanese Realistic
Textual Entailment Corpus (Hayashibe, 2020) is
a crowdsourced dataset containing Japanese hotel
reviews. However, linguistic phenomena in these
Japanese datasets demonstrate limited diversity
because the sentences they contain are restricted to
simple structures. Kawazoe et al. (2017) provided
JSeM, a manually curated test set including a
Japanese version of FraCaS to diagnose inference
systems from a formal semantics perspective.
We produced an NLI dataset by asking experts
to translate the SICK dataset into Japanese,
thus maintaining both sentence naturalness and
compositions of linguistic phenomena.

While recent works (Sinha et al., 2021a,b;
Gupta et al., 2021; Pham et al., 2021; Hessel
and Schofield, 2021) have shown that pre-trained
language models are insensitive to word order on
permuted English datasets in the standard natural
language understanding benchmark GLUE
(Wang et al., 2019) including NLI, other works
have analyzed sentence perplexity with varying
word orders and shown controversial results
regarding inductive biases for word order in
different languages (Ravfogel et al., 2019; White
and Cotterell, 2021). For six languages, including
Japanese, Yang et al. (2019) evaluated whether
multilingual BERT captures word order in the
translated PAWS dataset (Zhang et al., 2019),
involving adversarial paraphrase identification
pairs whose sentences share words but differ
in word order. Experiments showed that BERT
performance for Japanese is consistently worse
than that for Indo-European languages. Our study
deepens insight into the causes of performance
differences by stress-test evaluation of NLI and
STS tasks through careful manipulation of case
markers, which are more challenging tasks than
are two-class paraphrase identification tasks.
Kuribayashi et al. (2021) reexamined the general
hypothesis that language models with lower
perplexity are more human-like in Japanese
than in English, and the results have shown the
necessity of evaluating models across languages.

Analyzing the model behavior, rather than
perplexity, in transformed Japanese inference
should provide new insights into the model’s
sensitivity to word order.

3 JSICK Dataset Creation

3.1 Translation
The original SICK dataset uses 6,077 sentences
to provide 9,927 sentence pairs (A,B). To cre-
ate the JSICK dataset, we first asked an expert
translator to translate the 6,077 English sentences
in SICK into Japanese. The translator did not
see entailment labels, instead just translating a
list of English sentences sorted alphabetically.
The translations were independently validated by
English–Japanese bilinguals, and no examples
were discarded. To avoid changing sentence
meaning during translation, we prepared trans-
lation guidelines and asked the translator to
translate English sentences into natural Japanese
while maintaining diversity in lexical, syntac-
tic, and semantic phenomena such as hypernym–
hyponym relations, active–passive alternations,
and quantification in the original English sen-
tences. Note that sentences in the JSICK
dataset contain some translations that are un-
natural due to cultural factors, but reflecting
culture in translation is beyond the scope of ana-
lyzing thecompositional inference ability of models.

The guidelines explain how to translate linguis-
tic phenomena, including indefinite and definite
articles, singular and plural nouns, passive verbs,
negation, and quantification. We also asked the
translator to try to keep word orders as con-
sistent as possible with the original sentences.
Some instructions from our guidelines are given in
detail below.

Indefinite/Definite Articles The following de-
scribes our instructions regarding the distinction
between indefinite and definite articles. The dis-
tinction between indefinite and definite articles
is an important phenomenon that affects interpre-
tations of quantification (Hawkins, 1978; Heim,
1982). However, since Japanese does not have
articles (Hinds, 1986; Shibatani, 1990), it is not
obvious how to translate indefinite articles as in
(1) and definite articles as in (2) into Japanese.
We therefore translated subject NPs as bare noun
phrases, using the particle (ga) when translating
the nominative case involving an indefinite arti-
cle, and using the particle (topic marker) (wa)
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when translating the nominative case involving a
definite article. Since the majority of sentences in
the SICK dataset are episodic, we can correctly
translate English sentences into Japanese by the
above rule.

(1)

man Nom guitar Acc playing is not

‘A man is not playing a guitar’

(2)

man Topic guitar Acc playing is not

‘The man is not playing a guitar’

Singular and Plural Nouns In examples like
(3), we can translate plural nouns by adding a
plurality suffix such as (-tachi). However,
Japanese does not have a general way to form
plural words like the -s suffix in English. Thus,
as in (4), we prioritized sentence naturalness by
not adding the plural suffix to the accusative
case of words like (shrimps).

(3)

men Nom wood Acc cutting are

‘Men are cutting wood’

(4)

woman nom Shrimps Acc boiling is

‘A woman is boiling shrimps’

3.2 Validation
There are issues with the gold labels in the orig-
inal SICK dataset (Bowman et al., 2015; Kalouli
et al., 2017). In addition, translation from English
to Japanese can change the appropriateness of the
entailment label used in English (see Section 3.4).
Thus, instead of using the original gold labels,
we used the crowdsourcing platform Lancers1

to re-annotate entailment labels and similarity
scores for JSICK. Definitions of entailment labels
(entailment, contradiction, and neutral) and simi-
larity scores in a range of 1 (completely unrelated)
to 5 (very related) for a pair (A,B) of sentences
are the same as those for the original SICK. In
our instructions, we noted that sentences A and
B describe the same situation or event to avoid
any indeterminacy of event and entity coreference
that might cause inconsistencies in contradiction
labels (Bowman et al., 2015).

1https://www.lancers.jp/.

The annotators were six native Japanese speak-
ers, randomly selected from the crowdsourcing
platform. The authors annotated the gold labels
with ten examples in the JSICK trial set (500 ex-
amples) to provide ten test questions. We asked
the annotators to fully understand the guidelines
to the point where they could assign the same
labels as gold labels for all ten test questions.
We adopted annotations that were agreed upon by
a majority vote as gold entailment labels and
adopted the average of the annotation results
as gold similarity scores. For entailment labels,
the authors also manually checked whether the
majority judgement vote was semantically valid
for each example. Since recent work (Pavlick
and Kwiatkowski, 2019; Gantt et al., 2020) has
demonstrated the importance of information for
modeling disagreements in NLI datasets, we
publicly release the raw annotations with the
JSICK dataset.

The average annotation time was 1 min per
pair, and Krippendorff’s alpha for the entailment
labels was 0.65. There were 6,957 cases (70.1%)
in which three annotators assigned the same en-
tailment labels, 2,922 cases (29.5%) in which
two annotators assigned the same entailment la-
bels, and 48 cases (0.4%) in which the labels of
all three annotators assigned different labels. For
cases where the labels of all three annotators as-
signed different labels, the labels were determined
by the consensus of the authors.

3.3 Linguistic Tags

To analyze the ability of models to capture
various linguistic phenomena, we annotated the
JSICK dataset with linguistic phenomenon tags.
We provided a set of nine linguistic tags
for linguistic phenomena: numerals, negation,
quantification, passive voices, anaphora, conjunc-
tion, disjunction, modal, and additive particle.
We automatically annotated multiple tags with
premise–hypothesis pairs, using Janome2 to pro-
cess each premise and hypothesis sentence for
morphological analysis and part-of-speech tag-
ging. If results of either of the morphological
analyses included phrase patterns related to a
linguistic tag, the premise–hypothesis pair is
annotated with that tag.

2https://github.com/mocobeta/janome.
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Table 1: Examples from the JSICK dataset. Each ID corresponds to the ID in the original SICK dataset.

Phenomenon Train Dev Test Total
Numeral (NUM) 1,374 151 1,513 3,038
Negation (NEG) 1,096 107 1,140 2,343
Quantification (QUANT) 698 81 744 1,523
Passive (PAS) 649 83 695 1,427
Anaphora (ANA) 612 74 700 1,386
Conjunction (CONJ) 558 69 640 1,267
Disjunction (DISJ) 364 53 428 845
Modal (MODAL) 62 4 69 135
Additive particle (ADDP) 7 1 13 21

Table 2: Distribution of linguistic tags in JSICK.

Gold label Train Dev Test Total
JSICK-NLI

Entailment 969 (21.5) 122 (24.4) 1,088 (22.1) 2,179 (22.0)
Contradiction 743 (16.5) 80 (16.0) 797 (16.2) 1,620 (16.3)

Neutral 2,788 (62.0) 298 (59.6) 3,042 (61.7) 6,128 (61.7)
SICK-NLI

Entailment 1,299 (28.9) 144 (28.8) 1,414 (28.7) 2,857 (28.8)
Contradiction 665 (14.8) 74 (14.8) 720 (14.6) 1,459 (14.7)

Neutral 2,536 (56.4) 282 (56.4) 2,793 (56.7) 5,611 (56.5)
JSICK-STS

1–2 614 (13.6) 71 (14.2) 651 (13.2) 1,336 (13.4)
2–3 1,164 (25.9) 111 (22.2) 1,248 (25.3) 2,523 (25.4)
3–4 1,373 (30.5) 155 (31.0) 1,587 (32.2) 3,115 (31.4)
4–5 1,349 (30.0) 163 (32.6) 1,441 (29.2) 2,955 (29.7)

SICK-STS
1–2 436 (9.7) 37 (7.4) 451 (9.2) 924 (9.3)
2–3 635 (14.1) 69 (13.8) 674 (13.7) 1,378 (13.9)
3–4 1,742 (38.7) 192 (38.4) 1,965 (39.9) 3,899 (39.3)
4–5 1,687 (37.5) 202 (40.4) 1,837 (37.3) 3,726 (37.5)

Total 4,500 500 4,927 9,927

Table 3: Distribution of JSICK and SICK sentence
pairs for each gold entailment label and similarity
score. Numbers in parentheses are percentages of
the entire dataset.

Table 1 shows examples of linguistic tagging
in the JSICK dataset, and Table 2 shows the dis-
tribution of linguistic tags. Table 5 shows the
results of comparing the percentage of linguistic
tags in the JSICK test data and the two existing

Similarity Entailment Contradiction Neutral Total
1–2 0 (0.0) 5 (0.3) 1,331 (21.7) 1,336
2–3 6 (0.3) 160 (9.9) 2,357 (38.4) 2,523
3–4 293 (13.4) 633 (39.1) 2,189 (35.7) 3,115
4–5 1,880 (86.3) 822 (50.7) 253 (4.1) 2,955
Total 2,179 1,620 6,128

Table 4: Distribution of JSICK sentence pairs
across NLI and STS tasks.

Phenomenon JSICK JSNLI JRTEC
Numeral 1,513 (30.7) 1,030 (26.3) 47 (1.2)
Negation 1,140 (23.1) 66 (1.7) 291 (7.5)
Quantification 744 (15.1) 298 (7.6) 185 (4.8)
Passive 695 (14.1) 226 (5.8) 89 (2.3)
Anaphora 700 (14.2) 487 (12.4) 72 (1.9)
Conjunction 640 (13.0) 922 (23.5) 136 (3.5)
Disjunction 428 (8.7) 168 (4.3) 65 (1.7)
Modal 69 (1.4) 103 (2.6) 11 (0.3)
Additive particle 13 (0.3) 6 (0.2) 39 (1.0)
Test total 4,927 3,916 3,885

Table 5: Comparison of linguistic tags between
JSICK and previous Japanese NLI datasets. Num-
bers in parentheses are percentages of the entire
test set.

large Japanese NLI datasets mentioned in Sec-
tion 2, Japanese SNLI (JSNLI) and the Japanese
Realistic Textual Entailment Corpus (JRTEC).
Compared with previous datasets, JSICK contains
more linguistic phenomena, including numerals,
negation, quantification, passive voice, anaphora,
and disjunction. This indicates that the distribu-
tion of linguistic phenomena in the JSICK dataset
is well balanced.

3.4 Dataset

Table 3 shows that the distribution of JSICK
dataset gold labels is almost the same as that
for the English SICK dataset. The distribution
of JSICK sentence pairs across NLI and STS
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Table 6: Examples of linguistic factors that cause differences in entailment labels between English and
Japanese.

tasks (Table 4) also follows the same trend as
in SICK; similarity scores for the entailment and
contradiction cases tend to be in the range of 3 to
5, while neutral similarity scores are distributed.

The most common cases where translation
changed the entailment label from that in the
original SICK dataset were those where the labels
are changed to neutral. There were 242 such ex-
amples, due to grammatical differences between
English and Japanese. Table 6 shows some typi-
cal examples. One major grammatical difference
that can change entailment labels is the distinction
between singular and plural NPs. In English, the
plural form mushrooms explicitly indicates that
there is more than one mushroom. By contrast,
there is no grammatical singular-plural marking
in Japanese (Nakanishi and Tomioka, 2004), so
the bare noun (‘‘mushroom’’) can be in-
terpreted as either singular or plural. This caused
split entailment judgments among the annotators.
Other types of discrepancy are due to various lex-
ical gaps. For instance, in Lexical Gap Example B
in Table 6, the English word man can be applied
to both men and women, while its natural coun-
terpart ( ) in Japanese does not have such a
generic meaning. As a result, the entailment label
for this example is neutral, rather than entailment.

4 Baseline Experiments

4.1 Experimental Setup

In this study, we experimented with two Japanese
pre-trained language models: Japanese BERT
(jaBERT; Devlin et al., 2019) pre-trained on
Japanese Wikipedia, and Japanese RoBERTa
(jaRoBERTa; Liu et al., 2019) pre-trained on
Japanese Wikipedia and the Japanese portion of
CC-100: Monolingual Datasets from Web Crawl
Data (Conneau et al., 2020).

For jaBERT, we investigated performance dif-
ferences between the BERT-base model3 pre-
trained with 17 million sentences from Wikipedia
articles and the BERT-large model4 pre-trained
with 30 million sentences. The configuration was
the same as that for the original BERT model.
To check whether methods for tokenization and
masked language modeling (MLM) affect model
performance, we compared three settings for the
BERT-base model. In the (SUBWORD) setting, the
model processes input texts with word-level tok-
enization by the MeCab morphological parser with
a standard Japanese dictionary IPAdic (Asahara
and Matsumoto, 2003), followed by WordPiece
subword tokenization (Schuster and Nakajima,
2012). The vocabulary size was 32,000. In the
(WHOLE) setting, the subword model was trained
with whole-word masking enabled for the MLM
objective. In the (CHAR) setting, the model processed
texts with word-level tokenization based on the
IPAdic, followed by character-level tokenization.

For jaRoBERTa, we compared the performance
of the base model5 and the large model.6 The input
text was segmented into words by the Japanese
morphological analyzer Juman++ (Morita et al.,
2015; Tolmachev et al., 2018), and each word was
tokenized using SentencePiece.7

We also analyzed differences in behaviors of
the Japanese and multilingual pre-trained lan-
guage models. As multilingual models, we used
the multilingual BERT model (mBERT) trained

3https://huggingface.co/cl-tohoku/bert
-base-japanese.

4https://huggingface.co/cl-tohoku/bert
-large-japanese.

5https://huggingface.co/nlp-waseda/roberta
-base-japanese.

6https://huggingface.co/nlp-waseda/roberta
-large-japanese.

7https://github.com/google/sentencepiece.
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Model Train (setting) Test Prec Rec macro-F1 Acc
Japanese models

jaRoBERTa-large

JSICK JSICK 90.1 87.3 88.6 90.3±0.04
JSICK (hypo-only) JSICK 21.0 33.3 25.7 62.9±0.09
JSNLI JSICK 61.8 69.3 54.9 53.8±0.09

JSNLI 94.2 94.4 94.2 94.3±0.06
JSNLI+JSICK JSICK 86.7 88.2 87.4 89.0±0.09

JSNLI 93.6 93.7 93.6 93.7±0.09

jaRoBERTa-base

JSICK JSICK 84.9 87.8 86.2 87.9±0.07
JSICK (hypo-only) JSICK 21.0 33.3 25.7 62.9±0.08
JSNLI JSICK 60.2 67.4 53.5 52.6±0.07

JSNLI 93.0 93.0 92.9 93.0±0.06
JSNLI+JSICK JSICK 83.0 90.1 85.5 87.9±0.05

JSNLI 92.4 92.5 92.4 92.5±0.03

jaBERT-large

JSICK JSICK 86.5 84.8 85.6 87.9±0.03
JSICK (hypo-only) JSICK 20.6 33.3 25.5 61.8±0.09
JSNLI JSICK 57.8 64.9 52.5 52.2±0.05

JSNLI 92.6 92.7 92.6 92.7±0.04
JSNLI+JSICK JSICK 88.1 88.7 88.4 90.0±0.03

JSNLI 93.4 93.5 93.4 93.5±0.02

jaBERT-base (WHOLE)

JSICK JSICK 78.6 81.8 79.9 82.4±0.05
JSICK (hypo-only) JSICK 48.8 42.8 44.0 58.9±0.07
JSNLI JSICK 57.5 63.7 52.5 52.4±0.05

JSNLI 94.1 94.2 94.1 94.2±0.03
JSNLI+JSICK JSICK 84.4 87.0 85.6 87.5±0.03

JSNLI 94.3 94.3 94.3 94.3±0.03

jaBERT-base (CHAR)

JSICK JSICK 76.2 80.6 78.1 80.7±0.05
JSICK (hypo-only) JSICK 47.8 46.6 47.0 54.9±0.08
JSNLI JSICK 55.5 60.2 47.9 47.9±0.03

JSNLI 90.7 90.8 90.7 90.8±0.03
JSNLI+JSICK JSICK 83.8 85.3 84.4 86.3±0.04

JSNLI 90.8 90.8 90.8 90.8±0.03

jaBERT-base (SUBWORD)

JSICK JSICK 76.9 80.9 78.5 80.8±0.06
JSICK (hypo-only) JSICK 49.2 38.7 37.8 60.8±0.07
JSNLI JSICK 57.3 63.1 48.8 48.3±0.04

JSNLI 91.5 91.5 91.3 91.5±0.04
JSNLI+JSICK JSICK 84.9 82.8 83.7 86.1±0.03

JSNLI 91.5 91.5 91.4 91.5±0.03

Multilingual models

XLM-RoBERTa-large

JSICK JSICK 88.2 86.5 87.2 89.1±0.10
JSICK (hypo-only) JSICK 52.0 51.2 50.2 56.1±0.09
JSNLI JSICK 61.2 68.4 54.9 53.9±0.09

JSNLI 94.5 94.6 94.5 94.6±0.04
JSNLI+JSICK JSICK 89.2 89.4 89.3 90.8±0.07

JSNLI 94.0 94.1 94.0 94.1±0.05

XLM-RoBERTa-base

JSICK JSICK 79.3 68.1 70.2 78.5±0.08
JSICK (hypo-only) JSICK 40.3 43.7 45.5 56.8±0.06
JSNLI JSICK 56.6 63.2 51.5 51.0±0.09

JSNLI 92.1 92.2 92.1 92.1±0.05
JSNLI+JSICK JSICK 85.9 86.4 86.0 88.1±0.07

JSNLI 92.0 92.1 92.0 92.1±0.04

mBERT

JSICK JSICK 88.2 86.4 87.3 89.2±0.08
JSICK (hypo-only) JSICK 44.7 36.2 32.9 58.8±0.09
JSNLI JSICK 58.2 65.2 52.6 51.9±0.05

JSNLI 91.8 92.0 91.9 92.0±0.04
JSNLI+JSICK JSICK 87.8 87.2 87.5 89.3±0.03

JSNLI 92.0 92.2 92.1 92.1±0.03

Table 7: Baseline results with Japanese and multilingual pre-trained language models for
the NLI task with JSICK and JSNLI (%).
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with multilingual Wikipedia and the XLM-
RoBERTa-base8 and XLM-RoBERTa-large9

models (Conneau et al., 2020) pre-trained on
CC-100 containing 100 languages. For mBERT,
we used a multilingual cased model,10 as is
recommended for languages with non-Latin
alphabets, like Japanese. For each setting, we
used learning rates 2e−5, 3e−5, and 5e−5 and
3, 4, and 5 training epochs to tune for the
best parameters.

For the NLI task, to investigate whether the size
and quality of fine-tuned data affect performance,
we fine-tuned pre-trained models on three types
of training data: (i) JSICK training data (5K),
(ii) JSNLI training data (533K), and (iii) both
JSICK and JSNLI training data (538K). As men-
tioned in Section 2, JSNLI is a machine-translated
Japanese SNLI dataset. Since both SICK and SNLI
are derived from image captions, we hypothesized
that JSNLI might improve model performance on
the JSICK test set. We used four standard evalua-
tion metrics for NLI tasks: precision (Prec), recall
(Rec), macro F1-score (F1), and accuracy (Acc).
To analyze whether entailment labels are learned
and predicted by referring only to hypothesis sen-
tences, we investigated the performance of models
trained on JSICK without the premise sentences.
We performed five runs and present the averages
below. We also report standard deviations for the
accuracy of baseline results in the NLI task. As
the baseline for the STS task, we used the Pearson
correlation coefficient, Spearman correlation co-
efficient, and mean square error (MSE) between
the prediction results for BERTScore (Zhang
et al., 2020), a recent BERT-based model for
unsupervised STS, and the gold similarity score.

4.2 Baseline Results

Table 7 shows the evaluation results for NLI mod-
els. For all models, the accuracy on JSICK is lower
than that on JSNLI, indicating that JSICK poses
more challenges than does JSNLI. Since perfor-
mance under the hypothesis-only setting was low,
JSICK does not allow model predictions from
hypotheses alone.

In the standard train/test split setting for
JSICK, accuracy with the jaRoBERTa-large

8https://huggingface.co/xlm-roberta-base.
9https://huggingface.co/xlm-roberta-large.

10https://huggingface.co/bert-base-multilingual
-cased.

model had the best performance (acc. 90.3%).
Surprisingly, multilingual models such as
XLM-RoBERTa-large and mBERT achieved
comparable accuracy (89.1% and 89.2%, re-
spectively). Among the multilingual models, the
mBERT model had the best performance. For
the jaRoBERTa, jaBERT, and XLM-RoBERTa
models, those trained on larger texts achieved
higher accuracies on NLI tasks. Among the
tokenization settings for jaBERT, whole-word
masking (WHOLE) provided the highest accuracy
(82.4%). Regarding fine-tuning data, mixing the
training data with the JSICK and JSNLI training
sets improved model performance for the JSICK
test set for all models except jaRoBERTa-large.
Since the jaRoBERTa-large model trained with
a single training set (JSICK or JSNLI) already
demonstrated high performance, additional train-
ing data did not improve performance.

Table 8 shows the results from the unsuper-
vised STS model. Interestingly, mBERT achieved
nearly the same high performance as did jaBERT
on the STS task. Among different tokenization
settings for jaBERT, the character-based tokeni-
zation (CHAR) produced the highest performance.
This is due to the difference between NLI and
STS tasks. Similarity scores are affected by the
token overlap between two sentences, as suggested
by the fact that the contradiction cases tended
to have higher similarity scores. Character-based
tokenization allows more precise calculations of
the token overlap, and thus might be suitable for
STS tasks.

Relevance Between Entailment and Similarity
We next analyze relations between entailment la-
bels and similarity scores in cases where model
predictions are difficult. Table 9 shows a distribu-
tion of accuracies from the jaRoBERTa-large and
mBERT NLI models fine-tuned with JSICK for
each similarity score. These results show that both
Japanese and multilingual models struggled to pre-
dict entailment labels with low similarity scores,
but their gold labels are contradiction. Both mod-
els also failed to predict cases where premise
sentences are very similar to their hypothesis sen-
tences but their gold labels are neutral. Table 10
shows a distribution of Pearson correlations on
the JSICK STS test set for each entailment label.
These results show that the STS models have the
same trend for contradiction examples as do the
NLI models; the STS models failed to predict
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Score

Japanese models
jaRoBERTa-large jaRoBERTa-base jaBERT-large jaBERT-base

(WHOLE) (CHAR) (SUBWORD)
γ ρ MSE γ ρ MSE γ ρ MSE γ ρ MSE γ ρ MSE γ ρ MSE

1–2 32.9 32.8 1.63 12.8 9.3 1.93 30.0 30.3 1.40 33.3 34.8 1.62 38.1 39.0 1.48 31.9 32.8 1.61
2–3 29.6 29.4 1.34 20.5 21.9 1.93 27.8 27.7 1.12 28.9 29.3 1.33 30.9 30.9 1.22 27.5 27.7 1.32
3–4 34.4 34.2 1.07 20.5 21.9 1.62 32.8 32.0 91.8 32.9 32.4 1.07 34.7 34.9 0.99 32.0 31.7 1.06
4–5 16.7 21.8 72.4 12.5 15.5 0.88 25.0 30.6 70.0 20.0 24.9 0.72 24.5 26.2 0.70 22.0 26.2 0.72
All 74.6 75.3 1.22 65.3 69.1 1.47 71.6 72.1 1.05 73.8 74.1 1.22 77.1 77.1 1.12 72.3 72.6 1.21

Score
Multilingual models

XLM-RoBERTa-large XLM-RoBERTa-base mBERT
γ ρ MSE γ ρ MSE γ ρ MSE

1–2 12.8 9.3 1.93 33.0 32.4 1.93 38.1 39.9 1.46
2–3 20.5 21.9 1.62 28.5 28.7 1.62 30.0 29.7 1.20
3–4 28.8 31.8 1.30 33.8 34.8 1.30 35.6 35.8 0.98
4–5 12.5 15.5 0.88 15.6 19.2 0.88 22.2 25.3 0.69
All 65.3 69.1 1.47 75.5 75.7 1.47 77.3 77.4 1.10

Table 8: Baseline results from Japanese and multilingual BERTscore models on the STS task with JSICK (%).
γ: Pearson correlation ×100, ρ: Spearman correlation ×100.

Model Score Entailment Contradiction Neutral All

jaRoBERTa-large

1–2 – 25.0(1/4) 100.0(647/647) 99.5(648/651)
2–3 33.3(1/3) 44.6(37/83) 97.8(1136/1162) 94.1(1174/1248)
3–4 62.4(98/157) 72.5(237/327) 89.8(991/1103) 83.6(1326/1587)
4–5 87.1(560/643) 97.9(375/383) 67.7(88/130) 88.5(1023/1156)
All 86.0(936/1088) 81.6(650/797) 94.1(2862/3042) –

mBERT

1–2 – 25.0 (1/4) 100.0 (647/647) 99.5 (648/651)
2–3 100.0 (3/3) 45.8 (38/83) 96.8 (1125/1162) 93.4 (1166/1248)
3–4 61.8 (97/157) 73.4 (240/327) 55.8 (615/1103) 81.9 (1299/1587)
4–5 84.6 (544/643) 96.6 (370/383) 39.2 (51/130) 86.9 (1005/1156)
All 84.7 (922/1088) 81.4 (649/797) 92.8 (2825/3042) –

Table 9: Distribution of accuracies for the JSICK NLI test set for each similarity score.

Model Label 1–2 2–3 3–4 4–5 All
Entailment – −62.5 25.0 21.7 36.6

jaRoBERTa Contradiction −83.0 13.3 15.4 13.5 39.5
-large Neutral 32.8 27.1 39.6 28.0 68.0

All 32.9 29.6 34.4 24.5 –

mBERT

Entailment – –46.1 28.6 24.8 45.5
Contradiction −82.5 18.7 20.9 13.6 45.3
Neutral 38.0 27.5 38.9 30.9 70.6
All 38.1 30.0 35.6 23.2 –

Table 10: Distribution of Pearson correlations for
the JSICK STS test set for each entailment label.

low similarity scores in cases where a premise
sentence contradicts a hypothesis sentence.

Linguistic Phenomena Table 11 shows eval-
uation results for the jaRoBERTa-large model
and the mBERT model for each linguistic tag.
Regarding the jaRoBERTa-large model perfor-
mance, there is little difference for each linguistic
phenomenon, and accuracy for examples involv-
ing anaphora, disjunction, and additive particle
was comparatively low in the NLI task. For

the STS task, Pearson correlations for exam-
ples involving quantification and passive were
slightly low.

Regarding differences between training data,
models fine-tuned with JSICK performed better
for almost all linguistic phenomena than did those
fine-tuned with JSNLI. Furthermore, adding the
JSNLI training set to the JSICK training set did
not improve the model performance on most lin-
guistic phenomena. This suggests that training
data quality is more critical for learning linguistic
phenomena than is quantity.

4.3 Comparison with Other Languages

We next compare the performance of mBERT on
the JSICK dataset with that on the original English
SICK dataset (SICK-EN), the Portguese SICK-BR
dataset (Real et al., 2018), and the Dutch SICK-NL
dataset (Wijnholds and Moortgat, 2021). Since
gold labels for the JSICK datasets differ from
those for the SICK-EN and SICK-NL datasets
(SICK-NL uses the same labels as SICK-EN), we
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Table 11: Results on JSICK for each linguistic tag (%). We evaluated NLI models for accuracy and STS models
with the Pearson correlation×100. N: JSNLI-train, I: JSICK-train, N+I: JSNLI+JSICK-train. Accuracies lower
than the overall model accuracy are indicated in red.

Language NLI task STS task
Prec Rec macro-F1 Acc γ ρ MSE

En 87.2 84.9 86.0 86.6 59.9 56.1 0.98
Nl 86.5 83.4 85.3 86.2 57.8 54.6 0.95
Br 85.4 83.1 84.2 85.0 61.3 57.2 0.97
Ja (L-En) 84.1 82.9 83.0 85.2 62.3 60.7 1.08
Ja (L-Ja) 88.2 86.4 87.3 89.2 77.3 77.4 1.11

Table 12: Baseline results from mBERT on differ-
ent languages in the SICK test set (%). γ: Pearson
correlation ×100, ρ: Spearman correlation ×100.
Ja (L-En) indicates evaluation results with gold
labels from the original SICK test set.

also evaluated mBERT while assuming JSICK
gold labels to be the same as those for SICK-EN.
Table 12 shows the baseline results for mBERT
with different languages in the SICK test set. For
both STS and NLI tasks, mBERT performance
was relatively higher for Japanese SICK than that
for the other datasets.

Table 13 shows confusion matrices for multilin-
gual BERT models on different languages of the
SICK NLI test set. Comparing across languages,
mBERT performance for contradiction cases was
lower in Japanese. Table 14 compares mBERT
performance on different languages of the SICK
test set for each Japanese linguistic tag. Note that
since linguistic phenomena manifest differently by
language, Table 14 shows only an approximated
comparison of linguistic phenomena. For the STS
task, there was little difference among languages,
but performance tended to be lower for prob-
lems involving additive particles and anaphora.
Performance for problems involving additive par-
ticles was also low in the NLI task. Performance
for problems involving disjunction was low for
all languages.

The results of our experiments suggest that
multilingual BERT models achieved high per-
formance on SICK across languages. However,
the results related to multilingual SICK for each
linguistic tag indicate room for improvement
regarding the use of multilingual models to cap-
ture anaphora, disjunction, and additive particles.
Moreover, it remains to be investigated whether
pre-trained language models are sensitive to com-
positional aspects of inference, such as word order
and case marking in Japanese. In the next section,
we describe the extent to which language models
capture word order and case particles, phenomena
that are characteristic of Japanese.

5 JSICK Stress Test

5.1 Evaluation Setting

Japanese grammar allows both subject–objec-
t–verb and object–subject–verb orders, with the
former usually taken as the basic word order
and the latter derived by a scrambling op-
eration (Hoji, 1985; Saito, 1985). Instead of
word order, postpositional case particles func-
tion as case markers. For example, the case
particles ga, ni, o represent the nominative,
dative, and accusative cases, respectively. The
JSICK test set contains 1666, 797, and 1006
premise–hypothesis sentence pairs (A,B) whose
premise sentences A include basic word orders
involving ga-o (nominative–accusative), ga-ni
(nominative–dative), and ga-de (nominative–in-
strumental/locative) relations, respectively. By
transforming the syntactic structures of these pairs,
we created a JSICK stress-test dataset involving
word scrambling and particle-swapping to analyze
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Prediction En
E C N Rec

G
ol

d E 1151 2 261 81.4%
C 16 601 103 83.5%
N 229 51 2513 90.0%
Prec 82.4% 91.9% 87.3%

Prediction Nl
E C N Rec

1083 5 316 77.1%
17 592 103 83.1%

217 67 2506 89.8%
82.2% 89.2% 85.7%

Prediction Br
E C N Rec

1094 5 305 77.9%
23 586 103 82.3%

238 63 2489 89.2%
80.7% 89.6% 85.9%

Prediction Ja (L-En)
E C N Rec

G
ol

d E 972 1 115 89.3%
C 16 574 207 72.0%
N 315 73 2654 87.2%
Prec 74.6% 88.6% 89.2%

Prediction Ja (L-Ja)
E C N Rec

922 12 154 84.7%
11 649 137 81.4%

144 73 2825 92.9%
85.6% 88.4% 90.7%

Table 13: Confusion matrices for mBERT on different languages in the SICK NLI test set. Rec and Prec indicate
Recall and Precision, respectively.

Table 14: Comparison of mBERT performance for different languages in the SICK test set for each linguistic tag
(%). Accuracies lower than the overall model accuracy are indicated in red. Ja (L-En) indicates evaluation results
with gold labels from the original SICK test set.

Table 15: Evaluation settings for the JSICK stress-test dataset.

whether models correctly capture the free-order
property of Japanese.

Consider the examples of (A,B) pairs in
Table 15, whose gold labels are entailment. We
first provide a scrambled pair (Aord, B), where the
word order of the premise sentence A is scram-
bled into o-ga, ni-ga, or de-ga order. Since the
meaning of the sentence Aord is the same as that
of the original sentence A, the semantic related-
ness of the scrambled pair (Aord, B) should be

the same as those of (A,B). To analyze whether
models consider Japanese case particles when pre-
dicting entailment labels and similarity scores, we
use a rephrased pair (Acase, B), where the only
case particles in the premise A are swapped, and a
rephrased pair (Adel, B), where the case particles
in A are deleted. Since these transformations af-
fect case relations in premise sentences, the mean-
ings of sentences Acase and Adel should differ from
those of the original sentence A. The semantic
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Type Japanese models Human NaturaljaRoBERTa-large jaRoBERTa-base jaBERT-large jaBERT-base (WHOLE)
Case-scrambling 98.9 97.5 92.4 97.3 93.3 97.3
Part-swapping 99.0 97.0 92.5 98.3 66.7 23.0
Part-deleting 98.3 95.4 92.3 91.7 85.3 6.0

Type Multilingual models
XLM-RoBERTa-large XLM-RoBERTa-base mBERT

Case-scrambling 98.4 94.5 98.4
Part-swapping 98.7 94.7 99.4
Part-deleting 98.0 92.0 97.2

Table 16: Comparison between model and human predictions for entailment labels in the JSICK stress set that are
the same as those for the original test set (%). Natural indicates human-rated results for naturalness (acceptability).

relatedness of the rephrased pairs (Acase, B) and
(Adel, B) should thus also be changed. If a model
has generalized word order and case particles, it
should consistently predict the same labels for
both (A,B) and (Aord, B). Moreover, the model
should change the labels for (Acase, B) and
(Adel, B) to neutral. We therefore checked the
extent to which models changed predictions for
(Aord, B), (Acase, B), and (Adel, B) pairs as
compared with those for (A,B).

To rephrase premise sentences, we first parse
the sentences using the Japanese constituency
parser depccg (Yoshikawa et al., 2017), trans-
form the parse trees using Tsurgeon (Levy
and Andrew 2006), and produce their surface
strings as rephrased premise sentences. For the
JSICK stress set, we evaluated four Japanese
pre-trained language models (jaRoBERTa-large,
jaRoBERTa-base, jaBERT-large, and jaBERT-
base (WHOLE)) and three multilingual models
(XLM-RoBERTa-large, XLM-RoBERTa-base,
and mBERT) fine-tuned with the JSICK training
set. For the NLI task, we also used crowdsourcing
to collect human judgments on a subset of the
JSICK stress set. We asked the same annotators
as those assigning entailment labels for the JSICK
dataset to also annotate entailment labels for the
JSICK stress set. We also asked the annotators
whether each sentence pair was natural, meaning
both premise and hypothesis sentences were
grammatically correct. Note that we asked them
to judge entailment labels even for unnatural
sentences. We selected 100 examples for each of
three rephrase types and three case particle types,
for 900 inference problems in total.

5.2 Results

Table 16 compares percentages of model and
human predictions for entailment labels for the

JSICK stress-test dataset that are the same as
those for the original JSICK test set. We also
show the results for the human naturalness (ac-
ceptability) rating task. While humans predicted
the same labels for the scrambled examples, they
changed their labels for examples where only the
case particles were swapped or deleted. Interest-
ingly, humans tend to change more predictions
for those examples where only the case particles
are swapped than for those where the case parti-
cles are deleted, but the acceptability rate for the
former was much higher than that for the latter.
One reason for this is that Japanese case particles
can be dropped under adjacency to become a verb
(Saito, 1985), in which case humans can com-
plement the dropped case particles. On the other
hand, the models predicted nearly the same labels
for Aord, B pairs as for (A,B) pairs. In addition,
the predicted labels for Acase, B pairs and Adel, B
remained almost the same as those for the original
(A,B) pairs.

To investigate details of the model performance,
we confirmed the percentage of predictions for
each case particle in the JSICK stress-test dataset
that are the same as those predicted for the original
test set, as shown in Table 17. In the NLI task,
all pre-trained language models predicted nearly
the same labels even when the case particle is
swapped or deleted, regardless of model type and
the kind of case particle. These results indicate
that the models predict entailment labels without
considering word order and case particles. Sim-
ilarly, for the STS task, Pearson correlations for
Aord, B and Acase, B pairs were nearly the same
as those for the original (A,B) pairs. Pearson
correlations for Adel, B pairs were a little lower
than those for the original (A,B) pairs, because the
deletion of case particles in Adel decreases word
overlap between Adel and B.
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Order Model Type NLI task STS taskYes No Unk All

ga-de

jaRoBERTa-large
Case-scrambling 98.8 100.0 99.5 99.4 98.8
Part-swapping 97.2 99.1 99.8 99.1 97.0
Part-deleting 95.2 99.1 99.1 98.1 92.6

jaRoBERTa-base
Case-scrambling 98.4 96.6 98.0 97.9 95.0
Part-swapping 97.6 97.4 96.9 97.1 99.1
Part-deleting 95.6 95.7 95.0 95.2 91.3

jaBERT-large
Case-scrambling 84.3 87.2 94.2 90.9 98.6
Part-swapping 85.1 88.0 94.1 91.1 95.8
Part-deleting 83.5 86.3 94.7 90.9 94.1

jaBERT-base (WHOLE)
Case-scrambling 95.5 100.0 97.2 97.1 99.2
Part-swapping 98.8 100.0 99.4 99.3 96.8
Part-deleting 91.5 96.6 95.2 94.4 92.4

XLM-RoBERTa-large
Case-scrambling 98.8 98.3 99.2 99.0 89.4
Part-swapping 100.0 98.3 99.2 99.3 94.2
Part-deleting 97.2 97.4 98.4 98.0 86.8

XLM-RoBERTa-base
Case-scrambling 89.1 93.2 96.9 94.5 97.7
Part-swapping 85.5 90.6 97.3 93.6 96.9
Part-deleting 79.4 88.9 95.5 90.7 88.1

mBERT
Case-scrambling 97.2 97.4 98.6 98.1 98.0
Part-swapping 100.0 99.1 100.0 99.9 98.3
Part-deleting 94.8 99.1 98.4 97.6 96.4

ga-ni

jaRoBERTa-large
Case-scrambling 97.2 96.0 99.2 98.4 98.6
Part-swapping 97.7 96.0 99.2 98.5 97.0
Part-deleting 96.0 96.0 98.7 97.7 93.6

jaRoBERTa-base
Case-scrambling 98.3 97.0 97.5 97.6 96.7
Part-swapping 98.9 97.0 97.1 97.5 94.6
Part-deleting 97.2 95.0 94.9 95.4 91.3

jaBERT-large
Case-scrambling 90.3 87.0 93.7 92.1 97.7
Part-swapping 91.5 89.0 93.8 92.7 95.2
Part-deleting 91.5 86.0 93.5 92.1 94.1

jaBERT-base (WHOLE)
Case-scrambling 97.2 97.0 96.4 96.6 98.2
Part-swapping 99.4 99.0 98.5 98.7 96.0
Part-deleting 93.2 94.0 92.3 92.7 92.0

XLM-RoBERTa-large
Case-scrambling 99.4 96.0 99.2 98.9 84.8
Part-swapping 98.3 95.0 99.0 98.4 93.5
Part-deleting 98.3 95.0 99.0 98.4 86.9

XLM-RoBERTa-base
Case-scrambling 94.9 82.0 96.0 94.0 93.0
Part-swapping 92.0 84.0 97.9 94.8 91.9
Part-deleting 91.5 81.0 94.6 92.2 88.3

mBERT
Case-scrambling 98.9 94.0 99.6 98.7 95.7
Part-swapping 98.9 97.0 97.0 99.6 98.4
Part-deleting 97.7 94.0 98.8 98.0 96.0

ga-o

jaRoBERTa-large
Case-scrambling 98.3 97.7 99.5 99.0 98.5
Part-swapping 98.6 98.9 99.6 99.3 95.6
Part-deleting 98.3 98.1 99.1 98.8 92.6

jaRoBERTa-base
Case-scrambling 96.3 96.6 97.8 97.3 91.4
Part-swapping 95.8 95.5 97.3 96.7 97.2
Part-deleting 95.5 95.1 95.5 95.4 95.9

jaBERT-large
Case-scrambling 89.3 92.4 95.2 93.5 96.9
Part-swapping 88.4 92.8 94.9 93.2 93.5
Part-deleting 89.8 92.0 94.8 93.3 90.6

jaBERT-base (WHOLE)
Case-scrambling 96.1 98.1 96.1 96.4 97.8
Part-swapping 98.3 98.9 99.1 98.9 94.8
Part-deleting 92.4 93.6 92.5 92.6 90.0

XLM-RoBERTa-large
Case-scrambling 97.2 96.6 98.2 97.7 87.5
Part-swapping 98.3 97.7 98.6 98.4 94.5
Part-deleting 96.6 96.2 98.7 97.8 86.8

XLM-RoBERTa-base
Case-scrambling 90.4 90.5 97.3 94.8 96.5
Part-swapping 92.4 92.8 96.8 95.3 94.9
Part-deleting 86.4 89.0 95.5 92.6 85.1

mBERT
Case-scrambling 99.2 97.7 98.3 98.4 95.5
Part-swapping 99.2 98.5 99.4 99.2 97.9
Part-deleting 95.5 94.7 97.5 96.6 94.1

Table 17: Percentage of predictions for the JSICK stress-test dataset that are
the same as those for the original test set for each case particle (%). Yes, No,
and Unk indicate accuracies on entailment, contradiction, and neutral examples,
respectively. For the STS task, we calculated the Pearson correlation between
predictions for the original pairs and those for the rephrased pairs.
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Type jaRoBERTa-l jaRoBERTa-l+aug
Case-scrambling 98.9 97.7
Part-swapping 99.0 69.2
Part-deleting 98.3 69.1

Table 18: Percentages of model predictions that
are the same as those for the original JSICK when
a subset of rephrased examples is added to the
training set to learn word order and case particles.
jaRoBERTa-l+aug shows the result with data
augmentation.

Augmenting Training Data for Sensitivity to
Case Particles To analyze whether data aug-
mentation improves the model behavior for word
order and case particles, we rephrased a small
subset of the training set in three ways, creating
(i) data where the NP argument is scrambled but
its gold label is the same as the original, (ii) data
where the case particle is deleted, and its gold
label is set randomly, and (iii) data where only
the case particle is scrambled and its gold label is
set randomly.

We added 300 examples of each data type.
These additional training data play a role in ex-
posing models to three cues: (i) the order of NP
arguments does not change entailment labels for
sentence pairs, (ii) the existence of a case particle,
and (iii) that its position can change entailment la-
bels. Table 18 shows the percentage of predictions
by the jaRoBERTa-large NLI model that are the
same as those for the original JSICK when a subset
of rephrased examples is added to the training set.
As that table shows, data augmentation changed
model predictions on examples where the case
particle is swapped or deleted. This indicates that
although the NLI model does not implicitly learn
case particles during pre-training and fine-tuning,
a small amount of data augmentation to learn word
order and case particles can improve the model
sensitivity to case particles.

6 Conclusion

We introduced JSICK, a Japanese standard
NLI/STS dataset, by manually translating English
SICK into Japanese and re-annotating its gold la-
bels. In baseline experiments, we compared the
performance of various pre-trained Japanese lan-
guage models on JSICK. While the Japanese
RoBERTa-large model achieved state-of-the-art
performance, the performance of multilingual
pre-trained language models achieved comparable

results. Experiments with multilingual models on
SICK datasets in different languages, including
JSICK, showed that the performance of multi-
lingual models was relatively low on inference
problems involving anaphora, disjunction, and
additive particles.

Furthermore, to investigate the extent to which
Japanese and multilingual pre-trained language
models are sensitive to word order and case par-
ticles, we provided a JSICK stress-test dataset
involving word scrambling and particle-swapping
from JSICK. The results from that dataset suggest
that both Japanese and multilingual models do
not consider word order and case particles when
making predictions for Japanese NLI/STS tasks.
These are novel findings that are not obtainable
from other datasets, including SICK in English
and other languages. Overall, the results suggest
large room for improvement of both Japanese
and multilingual pre-trained language models re-
garding their sensitivity to flexible word order
and the representations of case particles. Fur-
ther improvements might be obtained by more
adequate representations of Japanese vocabular-
ies in multilingual pre-trained language models
(Chung et al., 2020; Rust et al., 2021). We believe
our dataset will be useful in future research for
realizing more advanced models capable of appro-
priately performing multilingual compositional
inference.
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