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Abstract
The development of virtual agents has enabled human-avatar interactions to become increasingly rich and varied. Moreover,
an expressive virtual agent i.e. that mimics the natural expression of emotions, enhances social interaction between a user
(human) and an agent (intelligent machine). The set of non-verbal behaviors of a virtual character is, therefore, an important
component in the context of human-machine interaction. Laughter is not just an audio signal, but an intrinsic relationship
of multimodal non-verbal communication, in addition to audio, it includes facial expressions and body movements. Motion
analysis often relies on a relevant motion capture dataset, but the main issue is that the acquisition of such a dataset is expensive
and time-consuming. This work studies the relationship between laughter and body movements in dyadic conversations.
The body movements were extracted from videos using deep learning based pose estimator model. We found that, in the
explored NDC-ME dataset, a single statistical feature (i.e, the maximum value, or the maximum of Fourier transform) of a
joint movement weakly correlates with laughter intensity by 30%. However, we did not find a direct correlation between audio
features and body movements. We discuss about the challenges to use such dataset for the audio-driven co-laughter motion
synthesis task.
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1. Introduction
The interactive gesture generation task aims to control
the gesture of a virtual character with a user control
signal. Many works addressed the problem of syn-
thesizing the gesture of an avatar along with a speech
modality (Alexanderson et al., 2020; Ahuja et al.,
2020). These methods enabled capturing and synthe-
sis of natural co-speech gestures of a virtual character.
(Kucherenko et al., 2020) used speech and text jointly
as inputs to their proposed model to generate the ges-
tures and reported that the multimodal aspect of their
method helps to understand the sentence semantics and
outputs natural and diverse gestures. (Yoon et al., 2020)
encoded these modalities along with the speaker iden-
tity since each expressive behavior highly relies on the
speaker.

Nevertheless, motion synthesis from a non-verbal au-
dio input such as laughter is a complex task where no a
priori semantic information is available with the audio
signal to help with understanding the overall context.
However, laughter constitutes an important part of so-
cial interaction (McKeown and Curran, 2015) where
the smiling and laughing expression of an interlocutor
induces a mimicry effect on each partner (El Haddad et
al., 2019). The growing interest in virtual environments
has led to the development of virtual social agents. The
immersive factor of a virtual world is partly induced by
the naturalness of the motion of virtual characters. The
human-avatar social interaction is an active research
topic among the computer vision community and ren-
dering natural motion is a crucial task to enhance the

social aspect of the avatar (Garau, 2003). Co-laughter
gesture synthesis is thus a relevant task in human com-
puter interaction where it can be exploited in various
use cases such as video game development (Mancini et
al., 2013) or in a medical context e.g. to enhance the
social skills of children with autism spectrum disorder
(Didehbani et al., 2016).

The work presented in this paper falls in a wider project
aiming at generating co-laughter motion corresponding
to the audio given at its input using generative deep
neural networks. We present here first analyses results
on the relationship between body movements (exclud-
ing facial expressions) and several aspects of laughter.
These analyses would help us gain a better understand-
ing of our data and thus organize their use to build the
previously mentioned generative system. The motion
data is not extracted from motion capture sensors but
is estimated from the recorded RGB videos directly.
Neural networks are powerful tools for learning com-
plex relationships between given modalities within a
database. Thus, the proposed analysis allows us to
identify whether correlations between laughter, its in-
tensity and the associated movement are significant
within a given dataset. If this dataset does not exhibit a
high correlation between laughter and body motion, it
may be a challenging dataset to train neural networks
that synthesize body motion from audio laughter.

This paper is organized as follow: Section 2 reviews
the state-of-the-art analysis of the relationship between
multiple laughter modalities and co-laughter motion
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synthesis methods. Section 3 explains the experimen-
tal protocol and Section 4 analyzes the experimental
results. Section 5 discusses the limitations of this work
and proposes some improvements.

2. Related Work
To focus on the synthesis task, it is useful to under-
stand and measure the relationship between laughter as
an audio signal and the gesture performed during that
laughter. (Griffin et al., 2013) found a significant con-
trast in the captured motions between different types
of laughter (hilarious, social, and non-laughter) and
claimed that motion features analysis helped with the
classification of laughter type. (Niewiadomski et al.,
2016) showed that full-body motion features are suf-
ficient to detect laughter occurrences. (Mancini et al.,
2013) pointed out the periodic pattern of the shoulder
motion while laughing in the dataset Multimodal Multi-
person Corpus of Laughter in Interaction (Niewiadom-
ski et al., 2013). (Ishi et al., 2019) focused on laughter
intensity to reveal that the degree of smiling face and
the occurrences of the front, back, up, and down mo-
tions are proportional to the laughter intensity.

(DiLorenzo et al., 2008) proposes a physics-based
model to synthesize the torso deformation induces by
the air flow while laughing. (Niewiadomski et al.,
2014) performs a harmonic analysis of the laughter
body motions to get relevant rhythmic features for the
generation of body movements. (Ding et al., 2017)
synthesized upper body gestures from laughter audio
signal based on the captured or defined co-laughter
motion correlations. Their approach is based on a
statistical framework for head and torso motion and
a rule-based method for shoulder motion due to the
limitation of their dataset. (Ishi et al., 2019) gen-
erated co-speech and laughter motion (eyelids, face,
hand and upper body) on physical android robots. The
works presented above relied on recorded motion cap-
ture datasets of people laughing in multiple contexts.
(Jokinen et al., 2016) analyzed videos of social inter-
actions and pointed out the synchrony of body move-
ments with laughter. Similarly, this research aims to
identify body motion relationships with laughter from
RGB videos and audio signals. However, (Jokinen et
al., 2016) estimated bounding boxes around the limbs
of the participants.

This work proposes an analysis of the relationship be-
tween low-level motion features extracted from RGB
videos i.e. the Cartesian position of each joint, the
laughter intensity and audio features in the context of
a dyadic conversation. This relational study aims to
identify any significant correlation between the posi-
tions of the joints and the laughter audio signal and
intensity. Two approaches are tested and are further
explained in Section 3.2.1 regarding the laughter audio
signal: first, the audio signal is decomposed into a set

of low-level and physical features and then the audio
signals are embedded into a latent space from the base-
line speech oriented model Wav2vec 2.0 (Baevski et al.,
2020). Finally, the relationship between the 2D Carte-
sian positions of the skeleton and laughter intensity is
established and described in Section 3.2.2.

3. Experiments
3.1. Dataset
In our experiments, we used the dataset Naturalis-
tic Dyadic Conversation on Moral Emotions (NDC-
ME) (Heron et al., 2018). It consists of a collec-
tion of dyadic conversations focusing on moral emo-
tions through speaker-listener interactions. In con-
trast to IFADV Corpus (van Son et al., 2008) and the
Cardiff Conversation Database (Aubrey et al., 2013),
the whole upper body of the participants is available
in the videos and their motion is not constrained by
any object. 21 pairs of participants have been recorded
while they were interacting together without follow-
ing a fixed scenario. The audio and videos have been
captured separately. The emotions and the intensity
of the expressed emotion of each participant during
the recording have been labeled using the annotation
tool ELAN (Max Planck Institute for Psycholinguistics,
2022) and are available here 1. The annotation rules
follow the protocol 2 used by (El Haddad et al., 2019).
The laughter clips are also labeled into 3 categories re-
garding their intensity: low, medium, and high. At that
time, only 7 pairs have been annotated. Following these
annotations, the audio and videos in which laughter oc-
curs are extracted from the initial dataset. 186 videos
are kept including 10 male and 4 female speakers for
a total duration of 199.33 seconds. Then, 2D Carte-
sian positions of the skeleton joints are extracted from
the RGB videos using OpenPose (Cao et al., 2018).
The skeleton consists of 8 joints representing the upper
body of the subject. A frame sample with an estimated
skeleton as well as the upper body structure is shown
in Figure 1.

3.2. Experimental setup
This part describes the experimental protocol to iden-
tify the correlation between the laughter modalities in
NDC-ME dataset.

Joint movement signals are represented as time series s
where sij = pij − p̄j with pij , the Cartesian position of a
joint j at frame i and p̄j the mean position of the joint
j. Thus, sj is the temporal fluctuations of the position
of the joint j around its mean position. Then, the hor-
izontal and vertical component of the motion signal of
joint j are respectively noted xj and yj . In this work,
we consider separately horizontal and vertical move-
ments for the sake of simplicity but it would be inter-
esting to consider both directions. The correlations on

1https://zenodo.org/record/3820510
2This protocol is available here

https://zenodo.org/record/3820510
https://www.researchgate.net/publication/341371010_supplementary_materialpdf
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Figure 1: Top: sample of a video with the estimated
skeleton and face landmarks. Since this work only fo-
cuses on the body skeleton, the face landmarks are ig-
nored. Bottom: structure of the upper body skeleton.

shoulders, elbows and wrists are computed separately
for the right and left body parts and we further report
the average value.

3.2.1. Body movement and audio features
We wanted to analyse the correlation between the audio
signal and the body movement. For the audio signal,
we extracted two sets of features per 20 ms frame : one
that includes 19 well-known low-level features in the
speech analysis domain (3 from LPC, 13 MFCCs and
3 LPCCs), and the other that includes the 512 embed-
ded outputs of the Wav2vec 2.0 model. For each subset
of features, we computed the pearson correlation co-
efficient between (xj , yj) and the time series of audio
features.

3.2.2. Body movements and laughter intensity
Firstly, the following features were extracted for each
horizontal and vertical joint movement signal (xj , yj):
In the time domain (power P , maximum ampli-
tude value max, mean value µ and standard devi-
ation σ), and the frequency domain (the maximum
value of Fourier Transform max(FT ), the mean of
Fourier Transform µ(FT ), and peak frequency fpk =
argmax(FT )). Since laughter videos vary in length,
Fourier Transform curves were linearly interpolated in
248 uniform samples between 0 and Nyquist frequency
fNyquist . The upper 10% of the frequency range was
excluded when finding the peak frequency in order
to exclude high-frequency noise ( fpk < 0.9fNyquist

). The correlation between those extracted features of
joints movement and laughter intensity are then ana-
lyzed.

Figure 2: The maximum Fourier transform of a joint
movement signal max(FT (pj)) under multiple laugh-
ter intensities. Each Row represents a joint and each
column represents a direction of movement (horizon-
tal/vertical). Each figure has 3 boxplots (low laughter
intensity at 0, medium at 1, and high at 2). The orange
line in a boxplot represents the mean.

4. Results

Section 4 presents the results of the correlation analysis
between body movements, audio features and laughter
intensity.

4.1. Body movements and audio features

Table 1 shows the maximum average correlation be-
tween an audio feature and a joint movement. The
values depicted informs us about the weak correlation
between the evolution of the position of a joint com-
pared to the evolution of an audio feature. However,
using embedded features rather than interpretable ones
increases the correlation across all joints.

4.2. Body movements and laughter intensity

The correlation between the extracted features and
laughter intensity is shown in table 2. Since max(FT )
feature has the highest correlation, we visualized
the distribution of max(FT ) features under multiple
laughter intensities in Figure 2. The visualization of
max(FT ), similar to the other extracted features, re-
sulted in overlapping boxplots. Hence, we conclude
that any of the extracted features alone is not sufficient
to identify the laughter intensity. However, statistically
speaking, the mean value of the distribution (the orange
line in Figure 2) increases with laughter intensity.
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Feature Horizontal Movement Vertical Movement
Head Thorax Shoulders Elbows Wrists Head Thorax Shoulders Elbows Wrists

LPC 0.03 0.02 0.05 0.03 0.02 0.04 0.05 0.07 0.02 0.03
MFCCs -0.03 -0.01 0.01 -0.01 0.01 -0.08 -0.06 -0.06 -0.04 -0.01
LPCCs 0.05 0.03 0.04 -0.01 -0.01 0.05 0.07 0.07 -0.02 0.08
W2V 0.09 0.08 0.07 0.08 0.09 0.11 0.09 0.09 0.10 0.09

Table 1: Maximum average correlation between an audio feature and a joint with respect to its movement direction.

Feature Horizontal Movement Vertical Movement
Head Thorax Shoulders Elbows Wrists Head Thorax Shoulders Elbows Wrists

max 0.09 0.25 0.30 0.22 0.26 0.26 0.39 0.25 0.25 0.20
P 0.08 0.09 0.18 0.10 0.13 0.29 0.25 0.16 0.10 0.10
µ 0.10 0.05 0.06 0.02 0.08 -0.17 -0.19 -0.14 -0.16 -0.15
σ 0.16 0.23 0.28 0.23 0.26 0.35 0.31 0.21 0.27 0.20
µ(FT ) 0.13 0.26 0.30 0.24 0.26 0.28 0.37 0.23 0.25 0.18
max(FT) 0.23 0.32 0.36 0.32 0.34 0.36 0.33 0.24 0.32 0.21
fpk -0.29 -0.22 -0.20 -0.2 -0.22 -0.22 -0.21 -0.12 -0.20 -0.12

Table 2: Correlation between laughter intensity and a joint movement feature. The power P , maximum amplitude
value max, mean value µ and standard deviation σ are computed from the horizontal and vertical motion signals
in the time domain. In the frequency domain, the motion features are the maximum value of Fourier Transform
max(FT ), the mean of Fourier Transform µ(FT ) and and peak frequency fpk. The correlation is bound between
-1 and 1. The higher absolute value means a stronger correlation and 0 shows no correlation in the data.

5. Discussion and Challenges

The results presented in Section 4 indicate that, in
NDC-ME dataset, body movements and audio features
seem to be weakly correlated. Further investigation and
processing are needed to draw a more robust conclu-
sions. Thus, this dataset seems, at the moment and with
this current analysis, challenging for a co-laughter ges-
ture synthesis task. However, we found some aspects
in the dataset that might impact the results in our anal-
ysis: in some files, speaker speech overlaps with the
listener’s laughter and we suspect that this influenced
the experimental results in Section 4. These need to be
removed from the dataset in future work to get more
accurate results. One suggestion is the application of
channel source separation methods to the audio to dis-
tinguish the laughter or speech of each participant and
have a better audio representation (more suitable fea-
tures). Then, the laughter intensity has been subjec-
tively annotated by a single annotator and having a low
number of annotators makes the data distribution more
sensitive to human error. We suggest to increase the
number of annotators and e.g. extracting the mean an-
notations to reduce this impact. Moreover, since the
dataset has not been fully annotated yet, it contains a
relatively small amount of laughter examples. Then,
in a future work, we would like to extract correlations
from audio acoustic features such as pitch or loudness.
Moreover, it would be interesting to take into account
other modalities such as the type of laughter and the
context of the interactions. Finally, in this work, we

focus on body movement but face landmarks are avail-
able from the OpenPose estimation as shown in Figure
1. The relationship between those landmarks and the
laughter intensity and laughter audio features can be
established in further investigation.

6. Conclusion
This work proposes a method to analyze the relation-
ship between laughter, its intensity and the body move-
ment in recorded dyadic conversations. In contrast with
previous works, the gestures are extracted from the
RGB videos using a baseline pose estimation method.
First, this work highlights around 30% correlation be-
tween laughter intensity and motion features where the
maximum amplitude of the Fourier transform leads to
the highest correlation value. Moreover, the analysis of
correlation between interpretable and high-level audio
features does not output significant correlation values.
This work highlights some of the limitations of NDC-
ME dataset that we need to take into account in the con-
text of deep generative model training for body motion
generation from a laughter audio signal. This analysis
opens the way to create datasets suited to build multi-
modal models that generate the motion of virtual agents
from the audio cue.
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