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Abstract
Avatars are virtual or on-screen representations of a human used in various roles for sign language display, including translation and
educational tools. Though the ability of avatars to portray acceptable sign language with believable human-like motion has improved in
recent years, many still lack the naturalness and supporting motions of human signing. Such details are generally not included in the
linguistic annotation. Nevertheless, these motions are highly essential to displaying lifelike and communicative animations. This paper
presents a deep learning model for use in a signing avatar. The study focuses on coordinating torso movements and other human body
parts. The proposed model will automatically compute the torso rotation based on the avatar’s wrist positions. The resulting motion can
improve the user experience and engagement with the avatar.
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1. Introduction
Interactive avatars have grown popular as learning tools for
spoken languages. Virtual reality has become a new tool to
aid deaf or hard-of-hearing learners with specialized guid-
ance in learning core academic concepts, such as mathe-
matics and science (Zirzow, 2015). A signing avatar has
been proposed to assist deaf students in a comprehensive
educational environment(De Martino et al., 2017). Avatars
are evaluated as a potential communication medium to fa-
cilitate language learning in babies (Nasihati Gilani et al.,
2019).
Avatars are also increasingly popular in social media, per-
sonalizing users’ contributions to interacting and represent-
ing users and their behaviors. People prefer to have an
avatar in their profile to secure their visual anonymity or
pseudo-anonymity. Anonymity enables them to express
and observe opinions they would not necessarily be com-
fortable with elsewhere while holding personal character-
istics (Vasalou et al., 2008). Historically, people have
adopted a pen name or alias to express themselves anony-
mously for several reasons. Deaf experience in signing on-
line is inherently not anonymous. An avatar would help
signers who do not want to reveal their identity.
There is a rise of a new generation of AI avatars for speech
interaction, such as Amelia, that serves as virtual cognitive
assistant (Davenport et al., 2020). Deep learning capacities
support her ability to learn human interaction continuously
and create an engaging user experience to drive higher busi-
ness value.
The use of avatars in signing can be equally exciting and
has potential benefits over video recordings of a sign. One
can see a sign from a different angle or zoom in, or the
pace or rhythm of the signing can be customized based on
users’ needs. The scene’s background can also be adapted
based on the context or better clarity of the sign (Jaballah
and Jemni, 2014). The modeling and animation of signed
contents generated once can automatically become reusable
software components, which can be re-purposed for novel
utterances.
Though the need to make avatars natural is widely recog-
nized in the animation industry, the current quality of sign-
ing avatars is still not satisfactory for producing human-like

user experiences, making them less acceptable to the Deaf
community (Jancso et al., 2016). Since speech is missing
in sign language, supporting movements are essential to
engage the communication. This research recognizes that
torso movements are critical for direct linguistic commu-
nication (McDonald et al., July 8 11 2014). However, in-
corporating the coordination for each movement is a time-
consuming process for animators. The avatars driven by
linguistic input become robotic because linguistic descrip-
tions lack the subtleties of human motion. Motion cap-
ture can automatically incorporate natural torso support but
is inflexible for generating new signing that has not been
specifically recorded. Furthermore, multiple processes in
signing can affect the torso simultaneously, and the effects
can be difficult to separate or isolate in such recordings (Fil-
hol et al., 2017).
This paper introduces a novel application of deep learn-
ing to predict the torso movement of a signing avatar. The
method will build a deep sequential neural network, imple-
ment it in the avatar and test it against the source motion
capture data for validation.

2. Importance of Torso Motion in Signing
Analyzing and modeling the supportive motions, such as
torso movements, is crucial to make the avatar mimic hu-
man movements accurately. The motions supported by the
torso include reach, balance, emotion, or the turning of the
body to assume participants’ positions in reported speech or
to indicate a side-facing object. The principles of overlap-
ping movements are essential for the avatar to get a natural
and believable feel (Burleigh et al., 2018).
The following figures show three illustrations of torso
movements during the signing of a scene description. In
Figure 1, the signer is twisting her torso to produce a side-
facing sign, and in Figure 2, the signer is leaning her torso
to the side to balance. In Figure 3, the signer is bending
backward to illustrate a scene.
An arm raised outwards and another arm moved across the
body impacts how the torso is twisted and should be po-
sitioned to look natural. Shoulder, wrist, and hand move-
ments must be carefully considered, especially when transi-
tioning from one type of composition to another. One must
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Figure 1: Twisting the torso to depict objects to the side of
the signing space

Figure 2: Leaning the torso to the side for balance

consider how much the wrist is bent and how the elbow
is raised to orient the palm. All these specific actions can
make the avatar more realistic in its movements. Modeling
and automating such coordination would result in a practi-
cal, accurate, and interactive synthesis. It will elevate the
avatar to drive a deeper connection with users.

3. Related Work
Though the natural movements of the spine are captured
and can be directly replayed from motion capture data, the
segmentation and synthesis of novel discourse from motion
capture data is a complicated process that is the focus of
ongoing research (Gibet, 2018). Many efforts for sign syn-
thesis focus on describing sign language using a phonetic
description called the Hamburg Notation System (Hanke,
2004) (Efthimiou et al., 2010). It subdivides the movements
of the signer into a string of individual specifications for the
parts of the body. The linguistic descriptions do not encode
the motions of the torso unless they have a specific linguis-
tic meaning (Kennaway, 2015).
The Paula avatar uses a heuristic adjustment (McDonald et
al., 2016) for the torso position and does not consider other
features, such as the neck, shoulder, or wrist orientations.
The heuristic model was created based on the artist’s profi-

Figure 3: Bending the torso to depict objects to the front of
the signing space

ciency with animating signs and not on data-driven insights.
It modeled a precise interaction of the spine and the arms
to save the artist time setting up initial poses rather than
general movements of the arms and torso. Furthermore, the
kind of movements discussed in the last section applies to
only the reaching action of the torso. There is no research
yet to coordinate torso movement with hand movement in a
general way for a signing avatar using a data-driven model.
This paper addresses this need by studying a motion cap-
ture data set through deep learning.
Neural networks (Bishop, 1994) have been used in sign
language synthesis. They are employed to combine mo-
tion capture sequences for novel utterances for Japanese
Sign Language (Brock et al., 2018). It is also used to clas-
sify hand positions for signing avatars (Jaballah and Jemni,
2014). Neural Networks have also been explored for their
ability to generate continuous 2D skeletal signing motion
based on video (Stoll et al., 2018). However, these have not
considered direct 3D models of torso postures driven by the
positions of the signers’ hands.

4. Proposed Solution
This study focuses on the coordination of the torso with
other body parts during the signing. The resulting frame-
work predicts the torso movements of a signing avatar.
The framework is based on a deep neural network, which
learns from large motion capture (Mocap) data sets of hu-
man signers. A neural network in this context can learn and
detect nonlinear relationships between independent and de-
pendent variables. A sequential neural network model was
used since it is the simplest model and can learn without
prior application knowledge to find human motions (Bac-
couche et al., 2011). Implementing the proposed solution
on the avatar will produce lifelike natural postures.
Due to the opacity of the neural network for interpretation,
a regression model was also trained to compare with the
neural network result. This companion model aids the in-
terpretation of the primary relationships computed by the
more sophisticated black-box neural network model.
This study is focused on creating a framework that will
produce an improved natural movement of the torso in the
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avatar, which is based solely on the position and orienta-
tion of the signer’s wrists. The suggested solution must be
accurate compared to the actual human signer.

4.1. Data set
The LIMSI, CNRS laboratory collected human motion data
for Langue des Signes Française, (LSF) in BVH format.
The data were recorded with a mocap system, video, and
annotations of signed descriptions of scenes elicited by a
picture from human signers (Benchiheub et al., 2016).
The mocap data is recorded with sensors along the spine,
neck, head, shoulders, elbow, and wrist orientations. Since
the signing consists of descriptions of scenes, it has very
few lexical signs in the data that would differ highly from
one sign language to another (Baker et al., 2016). So, even
though the recorded signing is in LSF, the body postures
captured are applicable across sign languages. However,
this should not be generalized to all types of signers.
The 3DS Max software package was used to import the mo-
tion capture data, convert the data to match the avatar’s co-
ordinate system, resolve data issues, such as outliers, derive
new variables required for the ML model, and finally save
the data to CSV files. Python scripts tested the data, com-
bined all CSV files into a master file, and performed other
intermediate tasks.
The data covered four signers, 25 descriptions, 25 frames
per second and roughly 800 frames per description in the
study. The final data set has 66644 rows and 34 columns.
A specific signer was chosen to train the model to avoid
confusion with different signing styles because the specific
signer’s style is highly consistent, while other signers use
more excessive body movements.

4.2. Target definition
Three attributes for the spinal movement in the data were
the primary targets: the torso’s twist, side, and forward mo-
tions. The three Twist, Side, and Forward attributes across
the spine bones were summed up to a derived variable to
simplify the computation. It helped reduce the target or de-
pendent variable set from 12 to only three attributes and
gave a better idea of the overall movement of the spine.

Name Action Rotation Axis
Twist Transverse twisting Z-axis
Side Lateral bending X-axis

Forward Sagittal bending Y-axis

Table 1: Torso movements

4.3. Linear regression
The primary motivation to start with linear regression is that
it is highly interpretable and enables a better understanding
of the independent variables’ impact on the dependent vari-
able. The linear regression model enabled to match the co-
ordinate systems of the motion capture data, where the data
comes from with the signing avatar, where the model is im-
plemented. It helped to calibrate the model. It also served
as the baseline model, critical for capturing the evaluation
metrics before initiating the deep learning model. The steps
followed from start to end are shown in Figure 4.

Figure 4: Process diagram

Figure 5: Correlation analysis

The independent variables employed in the study are linear
X, Y, and Z positions of the left and right wrists. Based on
the exploratory correlation analysis shown in Figure 5 and
experiments with linear regression, it was determined that
chained regression between the dependent variables was
appropriate. The analysis identified a linear sequence to
arrange three models. The first model uses all independent
variables and predicts spine twist. The second model uses
all independent variables and the prediction output from the
previous model to predict the spine side rotation, and so on.
The chained regression approach increased the predictive
power of the model significantly.

High accuracy is the main priority to make the signing
avatar natural. However, the evaluation metrics from Lin-
ear Regression, such as mean squared error and R-Squared,
are not satisfactory. The regression formulas for each of the
three movements are displayed in equations (1) - (3).

The equations helped a more intuitive knowledge of the
relationship between the independent and dependent vari-
ables, such as if wrist X increases, the twist also increases,
and so on.
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Twist = 0.02 + 0.12 ∗ wristX
− 0.20 ∗ wristY
+ 0.04 ∗ wristZ
+ 0.16 ∗ lWristX

+ 0.16 ∗ lWristY

− 0.05 ∗ lWristZ

(1)

Side = 1.56− 0.02 ∗ SpineTwist(Predicted)
− 0.03 ∗ wristX
+ 0.08 ∗ wristY
− 0.14 ∗ wristZ
− 0.05 ∗ lWristX

− 0.04 ∗ lWristY

+ 0.15 ∗ lWristZ

(2)

Forward = 5.78 + 0.45 ∗ SpineTwist(Predicted)
+ 8.57 ∗ SpineSide(Predicted)
+ 0.18 ∗ wristX
− 0.58 ∗ wristY
+ 1.09 ∗ wristZ
+ 0.32 ∗ lWristX

+ 0.25 ∗ lWristY

− 1.22 ∗ lWristZ

(3)

4.4. Applying the neural network
Deep learning techniques can train the nonlinear represen-
tation of data through multiple hidden layers. The deep
learning structure can perform feature extraction and trans-
formation without prior knowledge. Keras, an open-source
neural network library (Chollet and others, 2015) was used.
Keras runs on top of the TensorFlow platform (Bisong,
2019), used to run computations requiring tensors. A tensor
can be considered a machine that accepts vectors as inputs
and produces another vector as output. The most straight-
forward way to build a deep learning model in Keras is a
sequential model. The sequential model is suitable for a
typical stack of layers where each layer has precisely one
input tensor and one output tensor. Figure 6 shows the se-
quential model summary used in the study.
The model used a simple multi-layer perceptron with three
layers with the shape of the independent variables (predic-
tors) as a parameter. The first and second layers contain
64 units with rectified linear activation function (ReLU),
and the output layer contains just one unit. The network
used the ”Adam” optimizer, a stochastic gradient descent
method for the training model. The ’Mean Squared Error’
served as the regression loss function that the model min-
imized during training. The model was trained on move-
ment information from the descriptions of the first 80%
of scenes and held out the rest as a test set. The training
sample was used to build a deep learning model and the
test sample to evaluate the model. The regression metrics
reported are loss, root mean squared error (RMSE), and

Figure 6: Model summary

R-Squared. The optimal model was chosen based on test
RMSE using the smallest value as it also indicates the over-
all expected error in the predictions.

4.5. Chained regression approach
As indicated by the regression models, the neural network
also followed a chained approach. The first model predicts
spine twist by using all independent variables. The second
model uses all independent variables and the prediction out-
put from the spine twist model to predict the spine side. The
third model uses all independent variables, predicted output
from the previous two models, and predicts spine forward.

5. Results
The models are evaluated based on the resulting predictive
performance on the holdout test data using loss, RMSE, and
R- Squared of the test set with 100 epochs. Table 2 shows
the performance metrics of three dependent variables.

Twist Side Forward
MSE 1.68 4.82 6.89

RMSE 1.30 2.20 2.63
R2 0.95 0.70 0.48

Table 2: Performance of the neural network models

The results show that the proposed application significantly
improves accuracy over linear regression, the baseline, and
the companion model. It also improves accuracy over the
heuristic model from (McDonald et al., July 8 11 2014),
which currently used on the avatar. The RMSE using the
neural network is 1.3, while the RMSE using the heuris-
tic model using identical predictors is 4.60 in spine twist
movement. Compared to the heuristic methods, the pro-
posed model resulted in a 72% reduction of RMSE for the
twist. Tables 3 to 5 compares the models based on RMSE
of the predicted spine angles in degrees. The comparison
includes the performance of the regression and heuristic
methods.

Model R-Squared RMSE
Neural Network 0.95 1.30

Linear Regression 0.86 3.62
Heuristic Model - 4.60
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Figure 7: Signing avatar twisting the torso to depict objects

Figure 8: Signing avatar leaning the torso to the side for
balance

Table 3: Spine Twist Performance Comparison

Model R-Squared RMSE
Neural Network 0.70 2.20

Linear Regression 0.24 11.29
Heuristic Model - 3.5

Table 4: Spine Side Performance Comparison

Model R-Squared RMSE
Neural Network 0.48 2.63

Linear Regression 0.17 21.73
Heuristic Model - 3.2

Table 5: Spine Forward Performance Comparison

6. Implementation
The model is successfully implemented in the avatar using
Python and tested against the original mocap positions. We
scaled the torso movements to adapt the morphology of the
avatar to that of the skeleton of the captured data. Examples
for each of the three key spine movements are displayed in
Figures 7 to 9. Naturalness is a piece of subjective informa-
tion, and there is an effort to figure out how to measure it. A

Figure 9: Signing avatar leaning forward the torso to depict
objects

user survey from the ASL community, which combines the
Deaf community and the experts in the ASL domain, will
be requested to compare the avatar with and without the
proposed solution. The outcomes of the survey will serve
as a measure of naturalness. Currently, the performance is
fast enough for the avatar to respond to user interaction in
real-time. This framework will be updated once future data
is collected, so the model will learn using new data.

7. Conclusions and Future Work
This paper describes the potential power of the proposed
model to compute the torso positions of the avatar, which
will improve the interaction and engagement of users with
the avatar. The proposed model is implemented on an
avatar using motion capture data. The initial testing and
validation produce satisfactory results. In sign language,
signing style varies from person to person. Different sign-
ers use the torso in very distinct ways. Some signers like
to move more than others. The future effort has started in-
corporating personal signing styles and refining the models
to include additional independent variables and data. Ad-
ditionally, work is in progress to create a multi-target neu-
ral network model to combine the current implementation’s
three models. The unified model will streamline the imple-
mentation process and may deliver better predictions than
individual models. Deep neural networks have many pa-
rameters, and it is usually prone to overfitting. Since the
model will soon include more independent variables, it may
have overfitting issues. The companion linear regression
model will be leveraged to prevent the overfit. There is a
plan to handle overfitting by applying regularization tech-
niques or tuning the neural network parameters. Though
the primary focus of the study is sign language avatars, the
model can be implemented in any other human animation.
There are plans to apply this framework to other sign lan-
guages, such as German or Mexican.
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