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Abstract

Task-oriented dialogue systems aim to fulfill
user goals through natural language interac-
tions. They are ideally evaluated with human
users, which however is unattainable to do at
every iteration of the development phase. Sim-
ulated users could be an alternative, however
their development is nontrivial. Therefore, re-
searchers resort to offline metrics on existing
human-human corpora, which are more practi-
cal and easily reproducible. They are unfortu-
nately limited in reflecting real performance
of dialogue systems. BLEU for instance is
poorly correlated with human judgment, and ex-
isting corpus-based metrics such as success rate
overlook dialogue context mismatches. There
is still a need for a reliable metric for task-
oriented systems with good generalization and
strong correlation with human judgements. In
this paper, we propose the use of offline re-
inforcement learning for dialogue evaluation
based on a static corpus. Such an evaluator
is typically called a critic and utilized for pol-
icy optimization. We go one step further and
show that offline RL critics can be trained the
static corpus for any dialogue system as exter-
nal evaluators, allowing dialogue performance
comparisons across various types of systems.
This approach has the benefit of being corpus-
and model-independent, while attaining strong
correlation with human judgements, which we
confirm via an interactive user trial.

1 Introduction

With the rise of personal assistants, task-oriented
dialogue systems have received a surge in popular-
ity and acceptance. Task-oriented dialogue systems
are characterized by a user goal which motivates
the interaction, e.g., booking a hotel, searching for
a restaurant or calling a taxi. The dialogue agent is
considered successful if it is able to fulfill the user
goal by the end of the interaction.

Ideally, success rates are obtained via interaction
with a real user in-the-wild. Unfortunately, with

a handful of exceptions, e.g., LetsGO (Lee et al.,
2018) and Alexa Challenge (Gabriel et al., 2020),
that is often out of reach. The closest approxima-
tion is human trials with paid users such as Ama-
zon Mechanical Turk workers, which has also been
adopted as final evaluation in recent incarnations
of the Dialogue State Tracking Challenge (DSTC)
(Gunasekara et al., 2020). However, such evalua-
tions are highly time- and cost-intensive, making
them impractical for optimization during an itera-
tive development. The third alternative is to use a
user simulator to conduct online dialogue simula-
tion, however the result is subject to the quality of
the user simulator itself. Furthermore, developing
such simulators is far from straightforward and re-
quires significant amounts of handcrafting (Schatz-
mann, 2008). Only recently we have seen data-
driven user simulators that can compete with hand-
coded ones (Lin et al., 2021).

While there has been considerable progress to-
wards more meaningful automatic evaluation met-
rics for dialogues, there remains a number of lim-
itations as highlighted by the recent NSF report
(Mehri et al., 2022): the metrics 1) measure only
a limited set of dialogue qualities, which mostly
focus on subjective aspects such as fluency and
coherence, 2) lack generalization across datasets
and models, and 3) are not yet strongly correlated
with human judgements. These limitations hinder
a more widespread use of newly proposed metrics
for benchmarking and comparison, especially with
prior works. Further, in particular for task-oriented
dialogue systems, the need for reliable automatic
evaluation of dialogue success is still unanswered.

Being able to automatically evaluate the success
rate of any policy using static data offers a number
of benefits in terms of required resources, general-
izability, and reproducibility. Furthermore, it is not
only suitable for the final evaluation of a dialogue
policy, but can also be utilized as an objective for
iterative optimization. The corpus-based success
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rate is one such method, which has become the stan-
dard metric for state-of-the-art comparisons of pol-
icy optimization approaches today (Budzianowski
et al., 2018). Unfortunately, this metric is com-
puted based on pseudo-dialogues that may contain
context mismatch. Therefore, we believe it should
be treated more as an approximation: it is insuffi-
cient at best, and misleading at worst, in reflecting
real performance of dialogue systems. In addition,
the rules used to check the goal completion need to
be handcrafted based on the ontology, making this
method data- or ontology-dependent.

In this paper, we propose to use offline reinforce-
ment learning (RL) to train a policy evaluator, also
known as a critic, based on a static collection of
dialogue data1. We show that an offline critic ad-
dresses the limitations of current automatic metrics:
1) it can be trained to evaluate any dialogue system
architecture after-the-fact, allowing comparisons
across various types of systems from prior works,
2) it can be utilized in the iterative development
phase to optimize a dialogue policy, 3) it is theo-
retically grounded, solving the problems that stan-
dard corpus-based success rate has due to context
mismatch, and 4) it strongly correlates with the
performance of the system when interacting with
human users, which we confirm via a user trial.

2 Related Work

For a long time, the research in dialogue policy
has focused on user-centered criteria such as user
satisfaction (Walker et al., 1997; Lee and Eskénazi,
2012; Ultes et al., 2017). The most reliable way to
obtain these scores is to have users interact directly
with the system and let them subjectively rate the
system afterwards. Due to the time and resource
requirements to carry out such evaluations, human
trials are usually done only as the final evaluation
after the system development is finished.

As the line between policy and natural language
generation (NLG) tasks becomes blurred, we see
the introduction of metrics such as BLEU (Pap-
ineni et al., 2002) and perplexity. However, these
have been labeled early on to be potentially mis-
leading, as they correlate poorly with human judge-
ment (Stent et al., 2005; Liu et al., 2016). This
circumstance motivates automatic metrics that are
highly correlated with human ratings (Dziri et al.,
2019; Mehri and Eskenazi, 2020a,b). However,

1https://gitlab.cs.uni-duesseldorf.de/general/dsml/lava-
plas-public

these metrics are designed to measure subjective
quality of a dialogue response, making them more
suitable for evaluating chat-based systems.

Despite the availability of toolkits that facili-
tate user simulation (US) evaluation (Zhu et al.,
2020), corpus-based match and success rates are
the default benchmark for works in task-oriented
dialogue systems today (Budzianowski et al., 2018;
Nekvinda and Dušek, 2021). These metrics are
practical to compute, reproducible, and scalable.
Current standard corpus-based metrics are com-
puted on a pseudo-dialogue constructed using user
utterances from data and responses generated by
the system. A set of rules then checks whether the
system provides all information requested by the
user. Unfortunately, they do not take into account
context mismatches that may originate from the
pseudo-dialogue construction and therefore does
not reflect other aspects of dialogue quality as the
resulting dialogue flow is completely overlooked.

There has been few applications of offline RL
to dialogue systems. Jaques et al. (2019) explores
various language-based criteria, e.g., sentiment and
semantic similarity, as reward signals for open-
domain dialogue, paired with a Kullback-Leibler
(KL) control for exploration within the support of
the data. Verma et al. (2022) proposed using fine-
tuned language models to utilize unlabeled data for
learning the critic function. The method is however
only demonstrated on a very small state and action
space, and it is therefore unclear whether it general-
izes to more complex set ups. Ramachandran et al.
(2021) applied offline RL with a pair-wise reward
learning model based on preference learning, how-
ever it still utilizes the corpus-based success rate
for choosing the preferred rollout. To the best of
our knowledge, offline RL has not previously been
deployed for dialogue evaluation.

3 Preliminaries

3.1 Offline RL

Dialogue can be formulated as a reinforcement
learning problem with a Markov decision process
(MDP) M = {S,A, r, p, p0, γ}. In this MDP, S,
A, and r denote the state and action spaces, and
the reward function, respectively. p(st+1|st, at) de-
notes the probability of transitioning to state st+1

from st after executing at, and p0(s) is the proba-
bility of starting in state s. γ ∈ [0, 1] is the discount
factor that weighs the importance of immediate and
future rewards. At each time step t, the agent ob-
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serves a state st, executes its policy π by selecting
an action at according to π(at|st), transitions to a
new state st+1 and receives a reward rt. The goal of
the policy is to maximize the cumulative discounted
rewards, i.e., the return Rt =

∑
i≥0 γ

irt+i.
Instead of interacting with the MDP to learn a

policy, offline RL aims to learn a policy exclusively
from previously collected data containing state tran-
sitions D = {(si, ai, si+1, ri)}i under an unknown
behavior policy πβ . This set-up is especially use-
ful in cases where deploying the agent in the real
environment is too costly, as is the case with real
user interaction for dialogue systems. As the agent
can not interact with the environment, the perfor-
mance of the trained policy π needs to be evaluated
also based on the data D. The Q-value Qπ(st, at)
denotes the expected return when executing at in
st and following policy π thereafter. Q-learning al-
gorithms estimate the Q-function Qπ by iteratively
applying the Bellman operator

T Q(st, at) = Est+1 [rt + γQ(st+1, at+1)]. (1)

Value-based RL methods optimize the policy by
maximizing the Q-values for every state-action
pair (st, at) ∈ S × A. With discrete actions, and
for given state s, the actor can then simply select
argmaxaQ(s, a) in a greedy fashion.

Alternatively, with an actor-critic method, an
actor is trained which optimizes its parameters to
maximize the expected return of the starting states,
for example via the deterministic policy gradient
method (Silver et al., 2014; Lillicrap et al., 2016):

∇θJ(θ) = Es∼S [∇θπθ(s)∇aQπ(s, a)|a=π(s)].
(2)

The challenge in performing offline RL comes
from the fact that D is static and has limited cov-
erage of S and A. While an out-of-distribution
state is not a problem during training as the state is
always sampled from D, the policy may select an
out-of-distribution action that is not contained in
D. This tends to lead to arbitrarily high estimates
which further encourages the policy to take out-of-
distribution actions. There are two main methods
to counteract this: 1) constraining the policy to stay
within the support of the dataset (Wu et al., 2019;
Jaques et al., 2019; Fujimoto et al., 2019; Zhou
et al., 2020), and 2) modifying the critic to better
handle out-of-distribution actions (Kumar et al.,
2019, 2020). In this work, we focus on the former.

3.2 Dialogue Policy in the Latent Action Space
RL can be applied to a dialogue system policy
at different levels of abstraction. Semantic ac-
tions, i.e., tuples containing intent, slot and values,
such as inform(area=centre), are widely
used for a compact and well-defined action space
(Geishauser et al., 2021; Tseng et al., 2021). Pre-
defining the actions and labeling the dialogue data
however requires considerable labor. In addition,
the final policy needs to be evaluated dependent on
an NLG module. On the opposite end, natural lan-
guage actions view each word of the entire system
vocabulary as an action in a sequential decision
making process (Mehri et al., 2019; Jaques et al.,
2019). This blows up the action space size and the
trajectory length, hindering effective learning and
optimal convergence.

Zhao et al. (2019) proposed instead an automati-
cally inferred latent space to serve as action space
of the dialogue policy, where a latent action is a
real-valued vector containing latent meaning. This
decouples action selection and language generation,
as well as shorten the dialogue trajectory. Lubis
et al. (2020) followed up this work by proposing
the use of variational auto-encoding (VAE) for a
latent-space that is action characterized. In both of
these works, the latent space is trained via super-
vised learning (SL) on the response generation task,
and then followed with policy gradient RL using
the corpus-based success as the reward signal, i.e.,

∇θJ(θ) = Eθ[
T∑
t=0

Rt∇θ log pθ(zt|ct)]. (3)

3.3 Offline RL for Policy in the Latent Action
Space (PLAS)

A latent action space also lends itself well to of-
fline RL with a policy-constraint technique. Zhou
et al. (2020) proposed to use a conditional VAE
(CVAE) to model the behavior policy πβ(a|s) to re-
construct actions conditioned on states. The benefit
of learning in the latent space is that the latent pol-
icy has the flexibility of choosing the shape of the
distribution via the prior. By constraining the latent
policy to output latent actions with high probability
under the prior, the decoder will output an action
that is likely under the behavior policy in expecta-
tion. By choosing a simple prior such as a normal
Gaussian distribution, constraint to the latent policy
becomes simple to enforce, for example by defining
z = π(s) such that zi ∈ [−σ, σ] for each dimen-
sion i of the latent space for some hyperparameter
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σ. PLAS defines a deterministic policy with con-
tinuous latent action that is optimized using the
deterministic policy gradient method (Silver et al.,
2014). Dual critics are used that are optimized with
soft clipped double Q-learning. The PLAS algo-
rithm has been applied to real robot experiment as
well as locomotive simulations tasks. In this en-
vironment, the latent actions and action space are
continuous. This differs quite considerably from di-
alogue systems, where the latent action needs to be
translated to word-level actions which are discrete.

4 Offline Critic for Dialogue Policy
Evaluation and Optimization

The architecture of our proposed critic is depicted
in Figure 1(b). We utilize recurrency to let the critic
take dialogue context into account. We encode the
word-level user utterance with an RNN and con-
catenate it with the binary belief state to obtain st.
On the other hand, the critic has the flexibility of
taking any form of action. With latent actions, the
action can be used as input directly by concatenat-
ing it with the state. When word-level or semantic
actions are considered, a separate encoder can be
used before concatenating it with the state.

In addition, to leverage the available data as
much as possible, we incorporate the user goal for
estimating the return. The MDP then becomes the
dynamic parameter MDP (DP-MDP) as described
by Xie et al. (2020), where a set of task parameters
g ∈ G governs the state dynamics p(st+1|st, at; g)
and reward function r(st, at; g). It is safe to incor-
porate the user goal for learning, because the critic
is only used for policy evaluation and not needed
to run the policy. If the user goal is not given in
the data, it can be automatically derived from the
dialogue state. To maintain the correctness of the
dialogue context, when predicting Q(st, at), all
actions a<t are taken from the corpus. Only at
is taken from the output of the policy. This is in
contrast to the existing corpus-based success rate
computation, where all a≤t are taken from the pol-
icy and thus create context mismatches.

To keep the critic pessimistic in the face of un-
certainty, we implement a dropout layer and do K
forward passes for each state-action pair and the
lowest value is then taken as the final prediction,
i.e., Q(st, at) = minKk=1Qk. In this way, predic-
tion with high variance, i.e., high uncertainty, is
punished by taking the lower bound. This mecha-
nism replaces the use of double critic in PLAS.

4.1 Offline Critic for Optimization:
LAVA+PLAS

We combine LAVA (Lubis et al., 2020) and PLAS
(Zhou et al., 2020) approaches in order to train a di-
alogue policy with latent action via offline RL. We
use the multi-task LAVA approach, i.e., LAVA_mt,
depicted in Figure 1(a), using continuous latent
variables modeled via Gaussian distributions, as
the normal distribution prior works best with the
PLAS approach. In the original LAVA_mt, the
model utilizes response generation (RG) and re-
sponse VAE objectives for optimization with a 10:1
ratio, i.e., the VAE objective is optimized once ev-
ery 10th RG epoch. In other words, the VAE is only
used as an auxiliary task to ground the latent space
from time to time. In this work, we modify the
model training to preserve both RG and VAE abil-
ities equally, as we will need the VAE to retrieve
the latent action from the dataset D.

With θ as state encoder parameters, ϕ action
encoder, and ω decoder, for each training pass,
both tasks are performed and the model uses their
joint loss to update its parameters, i.e.,

LLAVA_mt(ω, θ, ϕ) =

Epθ(z|s)[log pω(x|z)]− αDKL[pθ(z|s)||p(z)]
+ Eqϕ(z|r)[log pω(x|z)]− βDKL[qϕ(z|r)||p(z)].

(4)

While the original LAVA uses policy gradient RL
with the corpus-based success rate, in this work
we follow the SL with PLAS algorithm. Parts of
the LAVA_mt model are used to initialize the ac-
tor and critic networks: parameters θ are used for
the actor, ϕ to retrieve the latent action z given a
word-level response a, and the decoder ω to map
latent actions produced by the actor into word-level
responses. Prior to PLAS training, we warm-up
the LAVA_mt model with only the VAE objective
to further improve the latent action reconstruction
capability:

LVAE
LAVA_mt(ω, ϕ) = Eqϕ(z|r)[log pω(x|z)]−

βDKL[qϕ(z|r)||p(z)].
(5)

PLAS training is depicted in Figure 1(c). It con-
sists of two interleaved training loops. For each
pass, an episode is sampled from the static dataset
D. In the actor training loop, the actor parameter
is optimized using deterministic policy gradient
(Silver et al., 2014) to maximize the critic esti-
mate. Due to the deterministic nature of the policy,
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Figure 1: Overview of LAVA_mt, critic network and offline RL with PLAS. First, (a) we pre-train LAVA_mt with
modified shared objective. The state encoder and latent space of the resulting model is used to initialize the actor for
PLAS. The critic (b) is an RNN-based model that takes state, action and user goal to estimate the return. PLAS
samples the transition from the static dataset and uses it to train actor and critic in an alternating fashion. To compute
the target Q-value Q(st+1, π(st+1)), target actor and critic networks are used with soft update to improve stability.

the actor no longer samples from the distribution,
but instead takes the distribution mean as the ac-
tion. To encourage the policy to stay close to the
behavior policy, as an additional loss, we add a
mean-squared error (MSE) term between the cho-
sen action ẑt = π(s) and the reconstructed action
from the corpus zt. The actor loss is defined as

Lactor = Q(s, π(s)) + MSE(ẑt, zt). (6)

On the other hand, the critic is trained to minimize
the error of the Bellman equation. In addition,
we penalize the critic with a weighted KL loss
term as a means of regularization when the target
actor chooses an action that is far from the behavior
policy. The critic loss is defined as

Lcritic = (Q(st, at)−(rt+γQ′(st+1, π
′(st+1)))

2

− λDKL(qϕ(zt+1|at+1)||π′(st+1)). (7)

As is common practice, we use the target critic
and actor networks for computing the target Q-
value. The actor, critic, and their corresponding
target networks are initialized the same way, but
the target networks are updated with a soft update
to promote stability in training.

4.2 Offline Critic for Evaluation
In this paper, we utilize offline RL critic in a new
way, as a data- and model-independent evaluator
for task-oriented dialogue systems. Following the
critic training loop in Figure 1(c), we replace the
target actor with the fixed policy πe, i.e. the one to
be evaluated, and perform the critic loop training

with Equation 7 as the loss function, setting λ = 0
for systems with word-level action.

Note that with this approach, the
dataset consisting of N dialogues D =
{{(si, ai, si+1, ri)}T

n

i=1}Nn=1 for evaluation
can take any form as long as the states si and
actions ai are compatible with the dialogue
system input and output, allowing comparisons
across various types of dialogues systems. For
instance, the states si can be represented as
sequences of utterances or binary vectors and
actions ai as word-level, latent, semantic, or
binary actions. In terms of rewards, those can
be sparse (i.e. intermediate rewards are set to 0,
ri = 0, i < Tn, n = 1, . . . , N ) and in case that
the corpus represents the desireable behaviour, a
maximum reward can be assumed as a final reward
for every dialogue in the corpus (i.e. set to 1,
rTn = 1, n = 1, . . . , N ). Of course more accurate
reward labels would result in an even more precise
evaluator. As a consequence, dialogue systems can
be evaluated on static corpora that differ from the
training corpus and also not necessarily generated
by interacting with the system.

A possible use case scenario would be a human-
human corpus annotated with states and sparse re-
wards and a number of different dialogue systems
being evaluated on this corpus. This is the case
we consider in our evaluation below, whereby we
use word-level and latent actions, and thus do not
require explicit action labels.
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5 Experimental Set-up

5.1 Data

We use MultiWOZ 2.1 (Budzianowski et al., 2018;
Eric et al., 2019) to conduct our experiments, one
of the most challenging and largest corpora of its
kind. MultiWOZ is a collection of conversations
between humans in a Wizard-of-Oz fashion, where
one person plays the role of a dialogue system and
the other one a user. The user is tasked to find
entities, e.g., a restaurant or a hotel, that fit certain
criteria by interacting with the dialogue system.
The corpus simulates a multi-domain task-oriented
dialogue system interaction.We use the training,
validation and test set partitions provided in the
corpus, amounting to 8438 dialogues for training
and 1000 each for validation and testing.

5.2 Policy and Critic Training

For the LAVA_mt pre-training, we use simple re-
current models as encoder and decoder and follow
the hyperparameters as set in the original work (Lu-
bis et al., 2020) with a few exceptions, i.e. we use
200-dimensional continuous latent variables with
a normal Gaussian as the prior and we lower the
learning rate to 5e−4. As depicted in Figure 1,
parts of the LAVA_mt model are then used by the
actor, critic, and different parts of PLAS training.
For the critic, we set the hidden size to be 500 and
the linear layer to use the sigmoid activation func-
tion. During PLAS, we use a learning rate of 0.01
for the critic and 0.005 for the actor. The critic
dropout rate and λ are set to 0.3 and 0.1, respec-
tively. The policy is trained with a maximum of
10K sampled episodes from the corpus, and the
best checkpoint is chosen according to the corpus-
based success rate. We set the hyper-parameters of
the critic as an offline evaluator the same way, ex-
cept that it uses 100K sampled episodes for training
without early stopping.

5.3 Dialogue Systems

To show the generalization ability of our proposed
offline evaluation, we evaluate various dialogue
systems that differ in terms of modular abstractions
and architectures:

HDSA (Chen et al., 2019) is a transformer-based
dialogue generation architecture with graph-based
dialogue action using hierarchically-disentangled
self-attention (HDSA). The model consists of a pre-
dictor, which outputs the dialogue action, and a gen-

erator, which subsequently maps it into dialogue
response. Two versions of HDSA are included,
one which uses ground-truth action for generation
(gold), and one which uses predicted labels (pred).
Note that the ‘pred’ version is the only one that can
be deployed in an interactive set-up.

AuGPT (Kulhánek et al., 2021) is a fully end-
to-end dialogue system with fine-tuned GPT2 (Rad-
ford et al., 2019) on multi-task objectives, including
belief state prediction, response prediction, belief-
response consistency, user intent prediction, and
system action prediction. The model is trained on
MultiWOZ data augmented with the Taskmaster-1
(Byrne et al., 2019) and Schema-Guided Dialogue
(Rastogi et al., 2020) datasets.

LAVA (Lubis et al., 2020) is an RNN-based
model using latent actions, optimized via SL and
policy gradient RL with corpus-based success rate
as reward. We use LAVA_kl as the best performing
model reported.

LAVA+PLAS (Ours) is our proposed variant of
LAVA that is trained in an offline RL set-up using
offline critic and PLAS algorithm (Section 4.1).

5.4 Evaluation Metrics

Offline Critic for Evaluation (Ours) For each
system, we train an offline critic using offline Q-
learning as described in Section 4.2. While theoreti-
cally the critic can take any form of dialogue action
as input, in our experiments we utilize word-level
or latent action. We consider intermediate rewards
to be 0 and the final reward is 1 for a successful
dialogue or 0 for a failed dialogue, as provided in
the MultiWOZ corpus. As final estimated value of
the policy, we report the average estimated return
of all initial states on the test set.

Standard corpus-based metrics Corpus based
evaluation is conducted on MultiWoZ test set us-
ing delexicalized responses with the benchmarking
evaluation script provided by Budzianowski et al.
(2018). A pseudo dialogue is generated, where
user turns are taken from the corpus and system
turns are generated by the evaluated model. Match
rate computes whether all informable slots in the
user goal are generated, and success rate computes
whether all information requested by the user is
provided. For completeness, we also report the
BLEU score on target responses.
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SL SL + PLAS

Corpus
Match 66.06 83.94
Success 51.95 67.54
BLEU 0.17 0.14

ConvLab
US

Compl. 37.42 47.02
Success 31.87 39.40
Book 19.12 36.74
F1 49.11 57.14
Turns 21.57 21.99

Table 1: Offline RL in latent space improves task-related
metrics on both corpus and US evaluations. Results are
averaged across 5 seeds.

US evaluation We use the default Con-
vLab2 (Zhu et al., 2020) user simulator with the
BERT-based NLU module, rule-based agenda
policy and template NLG. We conducted 1000
dialogues and report the average number of turns
across all dialogues. We focus on three measures:
book rate, i.e., how often the system finalized
a booking, success rate, i.e., the percentage of
dialogues where all information requested by the
user is provided by the system and bookings are
successfully made, and lastly complete rate, i.e.,
the number of dialogues that are finished regardless
of whether the booked entity matches the user
criteria. We also report entity F1 and average
number of turns across the simulated dialogues.

With the exception of AuGPT, the systems’ di-
alogue policies require a dialogue state tracker
(DST) for online interactions. For this purpose,
we utilize a tracker with a joint goal accuracy of
52.26% on the test set of MultiWOZ 2.1 (van Niek-
erk et al., 2020). This tracker is a recurrent neural
model, which utilises attention and transformer
based embeddings to extract important information
from the dialogue. We perform lexicalization via
handcrafted rules using the information from the
dialogue state and database query. For handling
incomplete lexicalizations due to empty database
queries or a wrongly predicted domain by the pol-
icy, we replace the response with a generic “I’m
sorry, could you say that again?". This is equal to
masking such actions while neither punishing nor
rewarding the policy.

Human evaluation Human evaluation is per-
formed via DialCrowd (Lee et al., 2018) connected
to Amazon Mechanical Turk. The systems are
set up identically as in the US evaluation, except
that the systems are interacting with paid users in-
stead of a US. Users are provided with a randomly
generated user goal and are required to interact

with our systems in natural language and to sub-
sequently evaluate them. We ask the user whether
their goal is fulfilled through the dialogue, indicat-
ing the success rate. We also ask them to rate the
overall system performance on a Likert scale from
1 (worst) to 5 (best). For each system we collected
400 dialogues with human workers.

6 Results and Analysis

6.1 Offline Critic for Optimization

Table 1 shows the policy performance after shared
multi-task SL training and the performance after
subsequent offline RL training with PLAS, aver-
aged over 5 seeds. We observe that offline RL in
latent space with the critic estimate as reward sig-
nal improves task-related metrics on both corpus
and US evaluation. The consistent improvement on
offline and interactive evaluations is the result of
critic’s value estimate as reward signal, which we
believe is noteworthy as the policy is never explic-
itly trained on either metric.

Like policy gradient RL used by LAVA (Equa-
tion 3), PLAS leads to a decrease in BLEU score.
This is quite common for end-to-end policies
trained with RL following SL (Lubis et al., 2020),
however the decrease with PLAS is not as drastic.
This signals that the policy retains more linguistic
variety in the responses, since the reward signal
does not overlook context mismatch and thus re-
sponses that are out of context are not rewarded.
We include a dialogue example in Appendix A to
demonstrate the context mismatch issue and how
the offline critic addresses it.

6.2 Offline Critic for Evaluation

System performances across metrics Tables 2
and 3 present the corpus- and interaction-based
evaluation results of LAVA+PLAS and our base-
lines. For completeness, we included the human
policy, i.e., the behavior policy of the dataset, on
the corpus-based evaluation. For LAVA+PLAS, we
pick the best model out of the 5 seeds. For the
baseline models, we utilize the released pre-trained
parameters and re-run all evaluations.

The ranking of the systems differs depending
on the evaluation metrics. With corpus-based suc-
cess and match rates, LAVA far outperforms the
other models and even human wizards. This is
expected, as LAVA_kl is directly optimized with
the corpus-based success rate as reward. In terms
of BLEU, HDSA – which is designed for genera-
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Policy Corpus Evaluation Critic Evaluation
Match Success BLEU

MultiWOZ (Human) 90.40 ± 1.82 82.30 ± 2.36 N/A 52.68 ± 0.02
AuGPT 83.30 ± 2.31 67.20 ± 2.91 0.17 52.45 ± 0.02
LAVA+PLAS 88.30 ± 1.99 73.40 ± 2.74 0.14 51.76 ± 0.03
LAVA_kl 97.50 ± 1.14 94.80 ± 1.47 0.12 48.95 ± 0.08
HDSA (gold) 91.80 ± 1.70 82.50 ± 2.35 0.21 49.89 ± 0.08
HDSA (pred) 88.90 ± 1.95 74.50 ± 2.70 0.20 49.00 ± 0.09

Table 2: Corpus-based evaluation metrics. 95% confidence intervals are reported.

Policy ConvLab US Evaluation Human Evaluation

Compl. Success Book F1 Avg. turn Success Rating

AuGPT 89.20 ± 1.92 83.30 ± 2.31 85.16 ± 3.34 81.03 ± 1.40 14.50 ± 0.41 90.75 ± 2.85 4.34 ± 0.08
LAVA+PLAS 54.20 ± 3.09 45.30 ± 3.09 61.18 ± 4.51 58.85 ± 2.25 23.54 ± 0.89 63.00 ± 4.75 3.34 ± 0.12
LAVA_kl 49.20 ± 3.10 40.00 ± 3.04 63.20 ± 4.37 54.47 ± 2.24 26.64 ± 1.00 63.25 ± 4.74 3.44 ± 0.12
HDSA (pred) 36.70 ± 2.99 25.90 ± 2.71 6.67 ± 2.37 49.97 ± 2.23 31.32 ± 0.86 55.25 ± 4.89 3.09 ± 0.12

Table 3: Interactive evaluation metrics. 95% confidence intervals are reported.

Fleiss’ Kappa Human Evaluation

Success Rating

Corpus-based Corpus
Match -0.623 -0.571
Success -0.460 -0.397
BLEU 0.343 0.299

Critic 0.755 0.713

Interactive US

Complete 0.992 0.984
Success 0.991 0.984
Book 0.789 0.802
F1 0.990 0.978
Turn -0.967 -0.956

Table 4: Correlation between evaluation metrics and hu-
man judgements. Absolute values shows the strength of
the correlation. Negative sign shows inverse correlation.

tion with semantic action – achieves the first rank.
With critic evaluation, human policy achieves the
highest score. The rankings for evaluation with
user simulator and paid workers in Table 3 are con-
sistent, showing another trend entirely. AuGPT
outperforms the other systems with a huge margin,
LAVA+PLAS and LAVA_kl show a narrower gap
in performance compared to corpus-based metrics,
while HDSA performs very poorly. The collected
dialogues show that the language understanding
and generation of AuGPT is superior to the other
models, as it leverages a large pre-trained model as
a base model and utilizes multiple dialogue corpora
for fine-tuning. In other words, it is trained on or-
ders of magnitude more data compared to the other
systems. This results in a more natural interaction
with both simulated and human users.

It is interesting to note that the critic has a much
narrower confidence interval compared to the other
metrics. Although the values for some policies are

seemingly close, the intervals show that the differ-
ence between most of the systems are statistically
significant, except for LAVA_kl and HDSA (gold).

Correlation with human judgements Table 4
lists pairwise correlation between human judge-
ments and the automatic metrics. We differentiate
between corpus-based metrics such as the standard
match and success rates, BLEU and critic evalua-
tion, with interactive metrics that require a form
of user, either simulated or paid. Success rates of
current standard evaluations have moderate inverse
correlation with human judgements due to the con-
text mismatch that occurs during its computation.
On the other hand, the theoretically grounded value
estimation by the offline critic has a strong corre-
lation with human judgements, showing that our
proposed method is a more suitable corpus-based
metric to reflect the dialogue system performance.
Our study confirms the weak correlation between
BLEU and human ratings. All metrics computed
based on interaction with US are strongly corre-
lated with metrics from human evaluation. The
number of turns is strongly but inversely correlated,
which aligns with the intuition that the fewer turns
the system needs to complete the dialogue, the bet-
ter it is perceived by human users. This suggests
that while existing US is far from fully imitating
human behavior, it provides a good approximation
to how the systems will perform when interacting
with human users. We advocate that future works
report on multiple evaluation metrics to provide
a more complete picture of the dialogue system
performance.

Note that while US evaluation provides stronger
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correlations with human judgements, our proposed
use of offline RL critic for evaluation has the benefit
of being corpus- and model-independent, whereas
for a new corpus and ontology, a new US would
need to be designed and developed. Furthermore,
an offline evaluation takes significantly less time
to perform, making it an efficient choice for the
iterative development process.

6.3 Impact of Reward Signal on RL

LAVA+PLAS and LAVA_kl are the only two sys-
tems optimized via RL. We observe that they sig-
nificantly outperform the other on the respective
metric they received as reward signal during RL.
However, when subjected to interactive evaluation,
the gap between their performance is shrinking (see
Table 3). This shows on the one hand the power
of reinforcement learning methods to optimize the
given reward and on the other hand how important
it is to define this reward correctly, warranting fur-
ther research in both extrinsic and intrinsic reward
modelling for dialogue (Wesselmann et al., 2019;
Geishauser et al., 2021).

7 Conclusion

We propose the use of offline RL for dialogue eval-
uation based on static corpus. While offline RL
critics are typically utilized for policy optimization,
we show that they can be trained for any dialogue
system as external evaluators that are corpus- and
model-independent, while attaining strong corre-
lation with human judgements, which we confirm
via an interactive user trial. Not only does the of-
fline RL critic provide a corpus-based metric that is
reliable and efficient to compute, it also addresses
a number of issues highlighted in the recently pub-
lished NSF report (Mehri et al., 2022). It is impor-
tant to note that the proposed framework does not
depend on the definition of states, action and re-
wards. So in principle, one could apply this method
beyond task-oriented dialogue systems. For ex-
ample, one could evaluate a number of chat-bots
considering a corpus annotated only with level of
engagement achieved in each dialogue and thus
measure the level of engagement of the evaluated
chat-bots.
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A Example Dialogue

Table 5 shows an example dialogue accompanied
by the corresponding offline critic Q estimation and
corpus-based success rate.
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Utterances Q Corpus succ.
User can you help me find a [value_pricerange] place to stay in the [value_area] part of town?
True sure. there are [value_count] guesthouses there. i would be happy to book [value_count]

for you if you like.
Pred the [hotel_name] is located at [hotel_address] , postcode [hotel_postcode]. the phone

number is [hotel_phone].
0.4730

User does it have a star rating of [value_count]?
True no. they all have [value_count] stars.
Pred the [hotel_name] is a guesthouse in the [value_area] area. the phone number is [ho-

tel_phone] and the postcode is [hotel_postcode].
0.4569

User then find me [value_count] in the [value_pricerange] price range.
True all of the accommodations in the [value_area] are in the [value_pricerange] price range.

would you like to try a different part of town?
Pred the [hotel_name] is located at [hotel_address] , postcode [hotel_postcode]. the phone

number is [hotel_phone].
0.4478

User find me a nice [value_count] and book for [value_count] people and [value_count] nights
from [value_day]

True actually , the [hotel_name] is a [value_count] start hotel in the [value_area] area. it s in
the [value_pricerange] price range. how does that sound?

Pred i have booked your room at the [hotel_name] for [value_count] nights starting [value_day].
your reference number is [hotel_reference]. is there anything else i can help you with?

0.4461

User that sounds perfect. can you reserve that and provide me with the reference number?
True okay , you are all set. the hotel is booked and the reference number is [hotel_reference].

can i help you with anything else today?
Pred the reference number is [hotel_reference]. 0.4205
User thank you. i am also looking for a restaurant that serves [value_food] and that is in the

same area as the hotel
True [restaurant_name] is an [value_pricerange] restaurant in the same area as the hotel , would

you like me to make reservations for you?
Pred [restaurant_name] is located at [restaurant_address] , [restaurant_postcode]. the phone

number is [restaurant_phone].
0.4167

User yes. same group of people , at [value_time] on the same day please.
True booking was successful. the table will be reserved for [value_count] minutes. reference

number is [restaurant_reference]. what else can i help you with today?
Pred i have booked you a table at [restaurant_name]. the reference number is [restau-

rant_reference]. can i help you with anything else?
0.4095

User that was all i needed. thanks. bye.
True ok! have a great day!
Pred you are welcome. have a great day! 0.4161 1.0

Table 5: Example dialogue comparing offline critic estimate and corpus-based success. "True" denotes responses
taken from the corpus, and "Pred" responses from the policy, in this case we use LAVA_kl with which context
mismatch often occurs. Note that Q prediction takes "User" and "True" utterances from the beginning up to the
previous turn, and "User" and "Pred" of current turn. On the other hand, Corpus-based success takes on "User" and
"Pred" utterances for all turns. Predicted responses in italic highlight the context mismatch that can occur when
pseudo-dialogue is constructed for dialogue success computation. This is however ignored and the dialogue is
considered successful, since all necessary requestable slots are generated by the system. On the other hand, the
Q-estimate shows a decrease in value, and the policy is given a lower reward signal for the same dialogue.


