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Abstract

In this paper, we present an end-to-end joint
entity and relation extraction approach based
on transformer-based language models. We
apply the model to the task of linking mathe-
matical symbols to their descriptions in LaTeX
documents. In contrast to existing approaches,
which perform entity and relation extraction in
sequence, our system incorporates information
from relation extraction into entity extraction.
This means that the system can be trained even
on data sets where only a subset of all valid
entity spans is annotated. We provide an ex-
tensive evaluation of the proposed system and
its strengths and weaknesses. Our approach,
which can be scaled dynamically in computa-
tional complexity at inference time, produces
predictions with high precision and reaches 3rd
place in the leaderboard of SemEval-2022 Task
12. For inputs in the domain of physics and
math, it achieves high relation extraction macro
F1 scores of 95.43% and 79.17%, respectively.
The code used for training and evaluating our
models is available on GitHub1.

1 Introduction

Information extraction systems are a key compo-
nent in making scientific literature more consum-
able. With the large amount of scientific works
which are constantly being published (e.g., more
than 60,000 machine learning papers per year (Fär-
ber, 2019)), indexing techniques that go beyond
keyword searches are becoming more important.
While many efforts have focused on the processing
of abstracts as a way of building representations of
publications (Gábor et al., 2018; Luan et al., 2018),
methods processing full text documents will be
needed to accurately capture their contents for use
cases such as academic search and recommender
systems and scientific impact quantification.

The task tackled in this paper (Lai et al., 2022),
consisting of linking mathematical symbols to their

1https://github.com/nicpopovic/RE1st

descriptions in LaTeX documents, is a joint entity
and relation extraction task. While earlier work
tackled both subtasks sequentially via separate
models, more recent approaches tend to use a single
joint model (Luan et al., 2018; Bekoulis et al., 2018;
Nguyen and Verspoor, 2019; Eberts and Ulges,
2021). In contrast to early approaches, which are
based on Bi-LSTMs (Luan et al., 2018; Bekoulis
et al., 2018; Nguyen and Verspoor, 2019), more
recent approaches (Wadden et al., 2019; Eberts and
Ulges, 2021) make use of transformer-based lan-
guage models, such as BERT (Devlin et al., 2019).
A key challenge in joint models is the computa-
tional complexity stemming from pairwise com-
parisons between entity spans required for relation
extraction. Previous works tackle this using a span
scoring mechanism based on a feed forward neu-
ral network, which produces a score indicating the
likelihood that a span is in a relation (Luan et al.,
2018; Wadden et al., 2019). Relation extraction
is then performed on only those spans with the
highest scores. For data sets which include span
annotations even for entities which are not in any
relation, such as DocRED (Yao et al., 2019), as
examined by Eberts and Ulges (2021), such a scor-
ing mechanism is not necessary, because the entity
extraction component of the model can be trained
on these annotations. For the task tackled in this
paper, complete annotations for entity spans are
not provided, making the use of a span scoring
mechanism necessary.

In this paper, we propose an end-to-end approach
for joint entity and relation extraction. The ap-
proach is based on a transformer-based language
model, following previous work (Eberts and Ulges,
2020, 2021), but is peculiar in the sense that it in-
corporates a span scoring mechanism based on dot
product similarity which is learned via triplet loss
rather than cross entropy loss, making it applicable
to datasets which contain annotations only for a
subset of all valid entity mention spans.
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Figure 1: Architecture overview with detail illustrations for the soft mention detection (left) and relation extraction
(right) modules. The layout of this figure was inspired by a similar figure found in (Eberts and Ulges, 2021).

2 Task Description

The task tackled in this paper is one of joint en-
tity and relation extraction. This means, given an
unannotated text as input, a system needs to (1) re-
turn annotations of relevant entity mention spans,
(2) perform coreference resolution, (3) entity type
classification, and finally (4) relation extraction on
the identified spans. The specific task at hand has a
number of key features that separate it from similar
settings.

First, regarding entity extraction, the annotations
and, thus, the final scoring are restricted to those
entities which participate in relations. This means
that a system which correctly identifies all symbols
and descriptions in the input will score poorly even
on the entity extraction portion of the final bench-
mark if the relation extraction is incorrect. More
importantly from an engineering perspective, the
resulting span annotations are incomplete in that
they only include a partial set of valid spans for
each document. In the entity extraction step we
can, therefore, only reliably identify true positives
and false negatives, not, however, false positives
and true negatives.

Second, while coreference resolution (i.e., the
linking of multiple mentions to a single entity) is
part of the task, relation extraction is to be per-
formed on a mention-level rather than the entity-
level. This means that although a system may cor-
rectly identify a text span as being the description
of a certain symbol, this classification will only
be deemed correct in the evaluation if linked to
the correct mention of said symbol. As a result,
coreference links are interpreted as relations be-
tween mentions and thereby as part of the relation
extraction subtask, rather than as part of the entity

extraction subtask.
Third, entity types can be reliably inferred from

the relations between them, meaning that instances
of relations are only found between certain entity
types. This feature can be used to inform the design
of a system in two ways: Either, the task of relation
extraction can be simplified by reducing the choices
given to a classifier based on the entity types of two
spans (i.e., a symbol cannot be the description to
another symbol, therefore any such prediction can
be disregarded), or the entity type classification can
be informed by the relation extraction (i.e., if we
identify a span A as the description of another span
B, span A must be a description, while span B
must be a symbol).

3 Approach

We propose an end-to-end entity and relation ex-
traction system using a transformer-based language
model, as illustrated in figure 1. The system con-
sists of 4 modules: (1) The input encoding module
tokenizes the input text and produces contextual-
ized embeddings for each token, (2) the soft men-
tion detection module ranks possible token spans
by the likelihood with which they contain an en-
tity mention, (3) the relation extraction module
extracts relations on a subset of the highest ranked
spans from the previous step, and finally (4) the en-
tity type classification module assigns entity types
to spans based on the relations detected between
them.

3.1 Input Encoding

We examine two separate options of encoding the
input: For the first option, we pass the input text
to the language model without prior modification,
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whereas for the second option, we perform prepro-
cessing on the input to remove LaTeX code from
the text portions of the input. Any input in LaTeX
math mode is passed to the model unchanged.

Since our approach uses a transformer-based lan-
guage model, the input needs to be tokenized. As
a result of the tokenization, there are instances of
relations which cannot be matched correctly by our
model, due to the annotated span boundaries being
contained within a token. For the training and de-
velopment sets, this occurs in 1.99% and 2.84% of
relation instances, respectively, and in these cases
we adjust the labels accordingly.

3.2 Soft Mention Detection
Given that we cannot reliably identify false posi-
tives and true negatives from our labeled data, a
mention detection strategy based on cross-entropy
loss cannot be used for this task. Instead of fol-
lowing previous approaches in using feed-forward
neural networks (Luan et al., 2018; Wadden et al.,
2019), we propose a linear similarity based ap-
proach which ranks possible spans based on their
similarity to multiple prototype embeddings (one
prototype per entity type).

We begin by computing the set of all possible
continuous spans up to a maximum length n and
produce a fixed-size embedding es for each span
by pooling the contextualized embeddings of all
tokens within it. As pooling strategies we use either
mean or max pooling. For each span embedding es
we compute a span score Xs:

Xs = max
ai∈A

(sim(es, ai)) (1)

where A is the set of prototype embeddings which
contains an embedding for each entity type and
sim(a, b) is the dot product similarity of two vec-
tors. We select the k spans with the highest values
for Xs as our candidate mentions M for relation
extraction. We compute the mention loss as the
mean triplet loss (Schroff et al., 2015) across all
prototype embeddings in A and all mentions in M .

3.3 Relation Extraction
For relation extraction, we use the document-level
relation extraction model DL-MNAV (Popovic and
Färber, 2022). We use the concatenation of two
span representations as a representation for the
relation between them (Wang et al., 2019). The
resulting relation representations are compared
to a single relation prototype embedding per

relation type, as well as m additional prototypes
representing the none-of-the-above class (this
follows the MNAV model (Sabo et al., 2021)).
The relation type corresponding to the prototype
resulting in the highest dot product similarity for a
relation representation is used as the predicted type.
As loss function for the relation classification we
use adaptive thresholding loss (Zhou et al., 2021)
as it is capable of handling the large imbalance
between positive and negative training examples
present in document-level relation extraction tasks.

Due to quadratic scaling of the pairwise
comparisons it is not feasible to perform relation
extraction on all possible continuous spans. We,
therefore, perform relation classification on the top
k spans2 with the highest span scores, meaning
that we have to classify a maximum of k(k − 1)
relation representations for a given input text.
The computational complexity of the system can,
therefore, be adjusted dynamically at inference
time by changing k, for example to be run on
GPUs with smaller memory capacity or on GPUs
with higher memory capacity to improve the
quality of predictions.

As a result of the soft mention detection, it is
possible that some of the k spans are overlapping
and correspond to the same target (see appendix
A.2 for examples). This means that the relation
classifier may output multiple predictions for the
same relation instance with slightly different men-
tion spans. For predictions in which both the head
and tail entity overlap, we therefore output only the
prediction with the highest classification score.

3.4 Entity Type Classification

Finally, we use a simple mapping to determine the
entity type of the spans which participate in the
relations predicted by the relation classifier. The
mapping used can be found in appendix A.1. For
spans classified as "PRIMARY" we additionally
change the predicted type to "ORDERED", if they
are the head entity of more than one "Direct" rela-
tion.

4 Experimental Setup

For our language model we use SciBERT (Belt-
agy et al., 2019), which is trained on scientific

2During training we add annotated spans which are not
among the top k spans.
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Entity Extraction Relation Extraction
pooling preprocessing F1 strict [%] F1 exact [%] F1 partial [%] F1 type [%] precision [%] recall [%] F1 [%]

Development set
max None 59.79 ± 0.99 60.19 ± 0.99 69.20 ± 0.68 67.45 ± 1.05 65.86 ± 1.34 44.14 ± 0.97 52.86 ± 1.10
mean None 58.02 ± 3.67 58.49 ± 3.70 69.14 ± 2.02 66.98 ± 2.31 61.27 ± 5.09 44.58 ± 1.56 51.61 ± 2.87
max LaTeX2Text 58.90 ± 0.79 59.30 ± 0.87 68.69 ± 1.00 66.88 ± 1.09 64.54 ± 2.61 43.77 ± 1.76 51.66 ± 0.77
mean LaTeX2Text 54.59 ± 15.07 54.99 ± 14.44 65.62 ± 11.28 64.22 ± 14.22 63.89 ± 33.24 40.59 ± 15.90 49.64 ± 23.63

Test set
max None - - 37.83 ± 0.85 37.88 ± 0.85 45.80 ± 5.80 20.96 ± 0.08 28.66 ± 1.19
mean None - - 41.21 ± 1.18 41.23 ± 1.19 42.25 ± 3.19 26.55 ± 1.19 32.28 ± 0.20
max LaTeX2Text - - 38.33 ± 1.57 38.38 ± 1.57 46.09 ± 0.77 21.64 ± 1.60 29.45 ± 1.41
mean LaTeX2Text - - 34.53 ± 11.02 34.64 ± 11.13 47.02 ± 20.70 18.20 ± 8.10 26.24 ± 11.64

Table 1: Entity and relation extraction scores for 4 different models on both the development and the test set. NER
metrics strict and exact were not produced by the test set evaluation script on the competition site and the test set is
not publicly available at the time of writing.

text, via Huggingface’s Transformers library (Wolf
et al., 2020). For LaTeX preprocessing (see section
3.1) we use Pylatexenc3. As our optimizer, we use
AdamW (Loshchilov and Hutter, 2019) with learn-
ing rates ∈ [3e−5, 5e−5, 7e−5], a linear warmup
of 1 epoch followed by a linear decay to zero, for
a total of 60 epochs4, a batch size of 4, and apply
gradient clipping with a max norm of 1. During
training, we randomly downsample the amount of
candidate spans for soft mention detection to 1000,
while ensuring that all labeled spans are included.
During training and development set evaluation,
we set k, the number of spans to perform relation
classification on, to 50, as preliminary experiments
showed this value to yield a good compromise be-
tween model performance and training time. For
test set evaluation we increase k to 400. Training
takes approximately 10 hours on a single NVIDIA
V100 GPU using mixed precision. We perform
early stopping based on the micro F1 score for re-
lation extraction on the development set. We train
each hyperparameter configuration 3 times using
different random seeds and report the median and
standard deviation for each metric. As a result of
the different combinations of preprocessing and
mean-/max-pooling, we examine the performance
of 4 configurations on the test set. For our eval-
uation, we report the micro F1 scores for NER
metrics as used in SemEval-2013 Task 9.1 (Segura-
Bedmar et al., 2013)5. For relation extraction we
report micro precision, recall and F1 scores, unless
otherwise indicated.

3https://github.com/phfaist/pylatexenc
4The length of one epoch is dictated by the number of

training examples, which is 3119.
5We use the following implementation: https://

github.com/davidsbatista/NER-Evaluation

5 Results

5.1 Overview

The results of the 4 model configurations on the
test set are reported in table 1. In comparison to
the other approaches taking part in SemEval-2022
Task 12, our system ranks in place 3/9 in terms of
relation extraction F1 score.6

In general, we find that our model produces pre-
dictions with significantly higher precision than
recall.

5.2 Impact of Preprocessing

With respect to the preprocessing procedure, we
observe no clear performance impact. We conclude
that SciBERT appears to cope well with LaTeX
code and preprocessing, as described in this paper,
is not required.

5.3 Impact of Pooling Procedure

Regarding the pooling procedures we find that
mean pooling tends to cause higher variability in
the classification performance of the models. For
the models trained using mean pooling and pre-
processing, 1 of 3 models performed significantly
worse than the others, causing the large standard
deviation in the results.

5.4 Impact of Domain

In table 2, we show the relation extraction F1 scores
for a model across the 4 different domains covered
by the development set paired with the distribution
of training data across domains. We observe large
performance differences depending on the domain
with math and physics showing very high macro

6Scores for other metrics are not publicly visible on the
leaderboard at the time of writing.
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domain
cs econ math physics

% of training corpus 16.63 27.08 12.82 32.08
relation type
Direct 33.12 21.05 63.82 85.71
Count - - 84.62 100.00
Corefer-Symbol 21.05 20.47 91.30 100.00
Corefer-Description 3.51 0.00 76.92 96.00
macro 19.23 13.84 79.17 95.43
micro 25.93 19.49 78.77 88.77

Table 2: F1 scores for relation extraction across differ-
ent domains and relation types on the development set.
cs and econ do not contain any instances of "Count".
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Figure 2: Plot of the impact of increasing values of k on
precision, recall, and F1 scores on the development set.

F1 scores (79.17% / 95.43%) and computer sci-
ence and economics performing poorly (19.23% /
13.84%). While physics content does represent the
majority of training examples, the distribution of
domains across training examples does not fully
explain the disparity.

5.5 Impact of k

In figure 2, we show the change in relation ex-
traction performance across different values for k.
We also include in the plot the percentage of en-
tity spans in the top k ranked spans (entity recall).
While the relation extraction performance improves
proportional to the entity recall for k ≤ 100 the
improvement slows down for higher k. We hypoth-
esize that this is due to the limiting of k = 50 and
the candidate span downsampling during training,
which prevents the model from seeing some of the
more difficult cases. In appendix A.2, we show
examples of detected spans.

matching precision recall F1,micro

strict 55.85 44.01 49.23
partial 62.87 46.13 53.22

Table 3: Comparison of strict and partial matching
requirements with respect to classification scores on the
development set.

5.6 Impact of Tokenization

In order to measure the impact of tokenization er-
rors produced by adjusting labels during training,
we perform a partial matching of relation labels as
follows: For predicted relation triples which are
false positives, we accept them as true positives
for an annotated instance if the intersection-over-
union (IOU) scores of both head and tail entities
are greater than 67% and the predicted relation type
matches the label. In table 3 we show the results of
both strict and partial matching for our best model
on the development set. We find that the relaxed re-
quirements for span accuracy result in an increase
in the F1 score of 3.99%. We conclude that tok-
enization errors, while measurable, do not account
for the majority of errors of our model.

6 Conclusion

In this paper, we present an end-to-end joint entity
and relation extraction approach for linking math-
ematical symbols to their descriptions in LaTeX
documents. Our model appears to be sensitive to
the domain of the input documents, achieving high
macro F1 scores of 95.43% and 79.17% for physics
and math content, respectively, while achieving
macro F1 scores of only 19.23% and 13.84% for
computer science and economics related content.
We find that the model’s predictions are higher in
precision than in recall. We perform a detailed
error analysis and identify cross-domain general-
ization as the most critical problem to tackle in
future work.
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A Appendix

A.1 Entity Type Classification Map
Table 4 shows the classification map used for deter-
mining entity types based on relations for SemEval-
2022 Task 12.

Relation head entity tail entity
Direct PRIMARY* SYMBOL
Count PRIMARY SYMBOL
Corefer-Symbol SYMBOL SYMBOL
Corefer-Description PRIMARY PRIMARY

Table 4: Classification map for entity types based on
relations in which the spans participate. *In a postpro-
cessing step, entity types of spans which are the head
entity of multiple "Direct" relations are adjusted to "OR-
DERED".

A.2 Examples of Spans Detected for Different
Values of k

Examples of spans detected via soft mention detec-
tion are shown in figures 3, 4, 5, and 6.
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Figure 3: An example of spans detected in the domain of computer science. The top row shows ground truth labels
in green, while the rows below are spans detected at k = 50, 100, 150.

Figure 4: An example of spans detected in the domain of economics. The top row shows ground truth labels in
green, while the rows below are spans detected at k = 50, 100, 150.

Figure 5: An example of spans detected in the domain of mathematics. The top row shows ground truth labels in
green, while the rows below are spans detected at k = 50, 100, 150.

Figure 6: An example of spans detected in the domain of physics. The top row shows ground truth labels in green,
while the rows below are spans detected at k = 50, 100, 150.
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