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Abstract
We describe Symlink, a SemEval shared task
of extracting mathematical symbols and their
descriptions from LaTeX source of scientific
documents. This is a new task in SemEval
2022, which attracted 180 individual registra-
tions and 59 final submissions from 7 partic-
ipant teams. We expect the data developed
for this task and the findings reported to be
valuable for the scientific knowledge extrac-
tion and automated knowledge base construc-
tion communities. The data used in this task
is publicly accessible at https://github.

com/nlp-uoregon/symlink.

1 Introduction

The exponential growth of published articles may
exceeds many readers’ ability to keep track of the
development of their field of interest. Hence, au-
tomatic reading comprehension of scientific doc-
uments has attracted the attention of researchers
across various domains such as Drug Discovery,
Knowledge Base Construction, and Natural Lan-
guage Processing. A crucial aspect of understand-
ing scientific literature is understanding terminolo-
gies and formulae because they offer an explicit
and precise interface to present the relation between
scientific concepts (Schubotz et al., 2018). As such,
a reading comprehension machine needs to (i) iden-
tify their descriptions and formulae, (ii) segment
them into primitive terms and symbols, and (iii)
link the associated terms and corresponding sym-
bols.

Working with mathematical formulae is arduous
due to two fundamental reasons. First, common
text encodings such as ASCII and Unicode do not
fully support typing mathematical symbols. As a
result, complex mathematical formulae are rarely
written using either ASCII or Unicode. Rather, a
higher level encoding (or typesetting) is often used
to encode the content of scientific documents, in

particular LaTeX. Second, most scientific docu-
ments are stored in one of two forms: photos or
Portable Document Format (PDF). Scientific doc-
uments that were published prior to the graphical
computer era are printed and now scanned and dis-
tributed as photos. Nowadays, scientific documents
are often composed in some text editors or word
processing software, then exported and shared a
PDF file. Unfortunately, analyzing textual infor-
mation in photo images or PDF files is extremely
difficult, and most of the natural language process-
ing tools are not developed to handle this format.
As such, to facilitate the understanding of scientific
literature, documents should be stored using a uni-
versal easy-to-process text-like encoding. In this
paper, we use LaTeX as the typesetting to facili-
tate document analysis. Thanks to recent advances
in text processing and image recognition, a LaTeX
document can often be restored to some extent from
either a photo or a PDF file (Deng et al., 2017).

This paper introduces the Symlink shared task
for the extraction of mathematical symbols and
their descriptions from English scientific docu-
ments using their LaTeX source. Figure 1 visu-
alizes an example of the task. This paper also
presents an analysis of the results of participant
systems on the task. The rest of the paper is orga-
nized as follows. Section 2 presents related work in
extracting formulae and their related information
from scientific documents. Section 3 describes the
subtasks of this Symlink shared task. Section 4
presents the data creation process including data
sources, preprocessing, annotation guidelines, an-
notation, and data format. An analysis of the cre-
ated data set is provided in Section 5. The evalu-
ation method is presented in Section 6, while the
descriptions of the submitted systems are presented
in Section 7.
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Figure 1: Example of the Symlink tasks.

2 Related Work

Early studies for scientific literature link formulae
to Wikipedia page (Nghiem Quoc et al., 2010; Kris-
tianto et al., 2016). Even though this can provide
additional information regarding the mathematical
expression, a reader might find it harder to under-
stand the Wikipedia page as it is presented in many
unrelated forms. Linking to the description in the
same document is more practical (Kristianto et al.,
2014; Alexeeva et al., 2020) as the descriptions are
dedicated to the symbols and the context presented
in the document.

Previous studies on symbol-description extrac-
tion rely on pattern matching (Yokoi et al., 2011;
Nghiem Quoc et al., 2010) and rule-based algo-
rithms (Alexeeva et al., 2020). These methods
might work for observed patterns with an assump-
tion of close proximity between symbol and de-
scription. They may fail to capture distant symbol-
description pairs and symbols in very complex
structures such as algorithms in computer science
literature.

Most of the previous studies have attempted to
extract and link at formula level (Nghiem Quoc
et al., 2010; Kristianto et al., 2014, 2016). In reality,
understanding mathematical formulae requires de-
tails of atomic symbols e.g. superscript, subscript,
function arguments. We believe that addressing the
problem at this fine-grain level is crucial to drive
future research toward a better understanding of
the complex symbol-description extraction task.

Prior to this shared task, some studies have cre-
ated datasets for similar tasks (Yokoi et al., 2011;
Schubotz et al., 2016; Alexeeva et al., 2020). How-
ever, one of them is created for publications written
in Japanese (Yokoi et al., 2011), making it nearly
impossible to transfer to English literature. While
two other datasets (Schubotz et al., 2016; Alex-
eeva et al., 2020) only annotate small-scale golden
datasets for evaluation purposes. As the result, no
training data is available for training deep neural

network models. In this shared task, we provide
a large-scale dataset for English literature that we
believe will provide enough supervision for the
promising deep neural network-based models.

Definition extraction from scientific document
is close to the task presented in SemEval Task 12.
The Scientific Document Understanding workshop
has hosted the Acronym Extraction and Acronym
Disambiguation Shared Tasks, namely Acronym
Extraction and Acronym Disambiguation Shared
Tasks(Veyseh et al., 2021a, 2022). The prior stud-
ies in this research direction considers extracting
definitions from the text (Spala et al., 2019, 2020;
Veyseh et al., 2020), or together with acronyms, and
acronyms sense disambiguation (Pouran Ben Vey-
seh et al., 2020, 2021).

3 Task Description

The ultimate goal of Symlink shared task is to ex-
tract pairs of mathematical symbols and descrip-
tions from scientific documents. As such, Symlink
shared task is a combination of an entity recogni-
tion and an entity linking task.

Given a LaTeX source of a paragraph from a
scientific document:

• Named Entity Recognition: For each para-
graph, identify all spans containing mathemat-
ical symbols and terminology descriptions.

• Relation Extraction: For each pair of enti-
ties, identify the relationships between them
if it is available among symbols and descrip-
tions using Coref-Description, Coref-Symbol,
Direct, Count relation types.

4 Data Annotation

4.1 Data source
We obtain the documents from arXiv.org, a repos-
itory for preprint scientific articles due to the broad
coverage of subjects in scientific articles published
in ArXiv. In particular, ArXiv offers articles in
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physics, mathematics, quantitative biology, com-
puter science, quantitative finance, statistics, elec-
trical engineering, and economics. As such, our ob-
tained papers contain a large number of mathemati-
cal symbols and equations, allowing a higher yield
of extracted symbol-description relations. Among
these subjects, we choose five subjects of mathe-
matics, physics, biology, economics, and computer
science for annotation.

4.2 Data preparation
ArXiv open-sources the LaTeX version of their
articles, when available. In order to make our Sym-
link dataset open-access to the whole community,
we crawled the metadata of these articles and only
selected articles under the CC BY license. Once
obtained the LaTeX project, we extracted all the
paragraphs from the .tex files. We filtered out all
short paragraphs with less than 50 words and para-
graphs without symbols. Since a formula can be
composed in multiple ways such as inline formu-
lae (between $ $), displayed formulae (between
$$ $$), or using commands e.g. array, to keep
the original TeX format of the formulae, all of
these math objects are masked before tokenization.
Then, we used the SciBERT tokenizer (Beltagy
et al., 2019) to tokenize the text. The original math
object is then restored. As we observed that many
papers have nested math objects, we deleted all the
nested objects, hence, having non-nested LaTeX
data. This is helpful as it makes the LaTeX doc-
uments more similar to the ones generated by the
PDF-to-LaTeX tools, which do not contain nested
objects.

4.3 Taxonomy
To prepare for the annotation, we designed a taxon-
omy with 3 general entity types and four relation
types. In particular, mathematical symbols are an-
notated under the tag SYMBOL, whereas descrip-
tions are tagged under two labels PRIMARY, for
single standalone definitions, and ORDERED, for
the description of multiple terms, whose mentions
are not separated without creating non-contiguous
mentions. Due to the quadratic numbers of com-
binations of descriptions and complex math ex-
pressions, we only tagged an entity if and only if
there is a second entity that pairs with the first en-
tity to form a relationship. For relation, we are
particularly interested in two main types of rela-
tions: DIRECT, linking a symbol with its defini-
tion, and COUNT, linking a description of a con-

cept with a symbol that is the number of instances
of the concept. Due to the sheer number of repe-
titions and coreferences of both descriptions and
symbols, we also annotated COREF-SYMBOL
relation, linking co-referred symbols, and COREF-
DESCRIPTION relation, linking co-referred de-
scriptions. Detailed annotation guidelines with ex-
amples are presented in Appendix A.

4.4 Annotation

We recruited 10 annotators from the crowdsourc-
ing platform upwork.com to annotate scientific pa-
pers in the five mentioned domains (each subject
was annotated by two annotators). The annota-
tors are explicitly selected based on their demon-
strated experiences in reading and writing scientific
documents in their expertise field(e.g., holding an
M.S. or Ph.D. degree). Detailed annotation guide-
lines with many examples and explanations are
provided to train the annotators. Overall, we anno-
tated 102 papers, accounting for 3,690 paragraphs,
and 595K tokens. Our annotators for each domain
co-annotate the documents in their domain and
achieve Cohen’s Kappa scores of (averaged) 0.79.
This inter-agreement score thus indicates substan-
tial agreements between our annotators. Eventually,
the annotators engage in discussions to resolve any
conflict to produce a final consolidated version of
our Symlink dataset.

4.5 Data Format

The participants are provided with preprocessed in
JSON format. Each paragraph is stored in a JSON
object with its id, topic, original LaTeX source, set
of entities, and set of relations. An example of the
data object is presented in Figure 2.

5 Data Analysis

Table 1 presents the statistics for the dataset in-
cluding the number of articles, distribution of enti-
ties, and distribution of the relations. Overall, our
dataset offers more than 31K entities, 20K pairs of
relations, which is one order of magnitude larger
than existing datasets for a similar task.

Figure 3 presents the distribution of the span
lengths of both symbols and descriptions of up to
15 tokens. As can be seen from the figure, the
majority of entities have a length of 1-3 tokens.
However, overall, the span lengths of both symbols
and descriptions vary significantly from 1 up to 47
tokens (note that Figure 3 only illustrates the spans
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{
” i d ” : ”1503 .01158 v2 . . . ” ,
” phase ” : ” t e s t ” ,
” t o p i c ” : ” c s . a i ” ,
” document ” : ”1503 .01158 v2 . . . ” ,
” p a r a g r a p h ” : ” p a r a g r a p h 4 8 ” ,
” t e x t ” : ” . . . w i t h a c o v a r i a n c e
m a t r i x o f $I$ ; t h a t i s , . . . ” ,
” e n t i t y ” : {

”T1 ” : {
” e i d ” : ”T1 ” ,
” l a b e l ” : ”SYMBOL” ,
” s t a r t ” : 325 ,
” end ” : 326 ,
” t e x t ” : ” I ”

} ,
”T2 ” : {

” e i d ” : ”T2 ” ,
” l a b e l ” : ”PRIMARY” ,
” s t a r t ” : 303 ,
” end ” : 320 ,
” t e x t ” : ” c o v a r i a n c e m a t r i x ”

}
} ,
” r e l a t i o n ” : {

”R1 ” : {
” r i d ” : ”R1 ” ,
” l a b e l ” : ” D i r e c t ” ,
” a rg0 ” : ”T2 ” ,
” a rg1 ” : ”T1”

}
}

}

Figure 2: An example of a paragraph in Symlink dataset.

with up to 15 tokens). This demonstrates a key
challenge of the Symbol-Description Linking task
in this paper where symbols and descriptions with
long spans might introduce confusion for extraction
models.

To further understand the dataset, we present
the distances between the entities and relations an-
notated in Symlink by different relation types in
Figure 4. The distributions can be grouped into two
categories. The first category involves the symbol-
description relations while the second group in-
volves the coreference relations. The distributions
of symbol-description relations have long tails, in-
dicating that symbols and descriptions tend to ap-

Table 1: Statistics and label distribution of the Symlink
dataset. ∗The texts are tokenized by SciBERT.

Train Dev Test Total
Statistics
#Documents 91 6 5 102
#Paragraphs 3,120 270 300 3,690
#Sentences 25,070 1,765 2,286 29,121
#Tokens∗ 522K 35K 38K 595K
Entity types
#SYMBOL 18,547 1,504 1,864 21,915
#PRIMARY 7,953 678 907 9,538
#ORDERED 14 3 1 18
Relation types
#Direct 8,200 731 867 9,798
#Count 1,484 17 221 1,722
#Coref-Symbol 6,821 759 690 8,270
#Coref-Description 612 97 154 863
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Figure 3: Length of symbols and descriptions in Sym-
link

pear in close proximity. On the other hand, the
distributions of coreference relations are quite flat,
suggesting that the coreference relations appear in
both short and long distances.

6 Evaluation

The results are evaluated separately for the Named
Entity Recognition (NER) task and the Relation
Extraction (RE) task. For NER, we use the entity-
based partial/type from SemEval 2013 Task 9.1.
For RE, we use standard precision, recall, F-score
metrics. Relations output by the participating sys-
tem is correct if the prediction label strictly matches
the gold standard.

During the 21-day evaluation period (January 10
through 31, 2022), 7 CodaLab users submitted a to-
tal of 59 submissions with 37 submissions passing
the validation and being scored. Given the com-
plexity of the task, we allow unlimited submissions
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Figure 4: Distribution of distances between entities in
Symlink by relation type.

during the evaluation. As such the top submitter
tried up to 18 times.

Table 2 shows the performances of the successful
submissions. Asterisk denotes teams with system
descriptions submitted for review. Among the par-
ticipated teams, 6 teams performs both Named En-
tity Recognition and Relation Extraction subtasks
while one team tried the Named Entity Recogni-
tion subtask only. Figure 5 presents the timelines
of submissions and high scores over the evaluation
period.

7 Summary of Participating Systems

The Symlink track at SemEval-2022 received 4
system description paper submissions presented in
Table 2. Overall, all submitted systems are based
on BERT architecture (Devlin et al., 2019). Among
those, two out of four systems use SciBERT (Belt-
agy et al., 2019), while two remaining systems use
other variants of BERT such as original BERT (De-
vlin et al., 2019) and mBERT (Devlin et al., 2019).

7.1 System Specifics

Lee and Na (2022) (JBNU-CCLab) achieved their
state-of-the-art performance using SciBERT (Belt-
agy et al., 2019). Their entity model consists of
an MRC-based model (Li et al., 2020), simplifying
the tasks as binary classification problems whether
span is valid using entity type information as in-
put features. They proposed a simple rule-based
Symbol Tokenizer to predict accurately the com-
plex symbols appearing in scientific documents.
The relation model exploits entity span information
and entity type information as input features using
typed entity marker. Additionally, the paper ex-

ploited many regularization techniques to improve
the model performance such as regularized dropout
(Wu et al., 2021) and representational collapse pre-
vention (Aghajanyan et al., 2020) and traditional
ensemble techniques.

Popovic and Laurito (2022) (AIFB-WebScience)
proposed an end-to-end joint entity and relation
extraction approach based on transformer-based
language models. Unlike traditional entity and re-
lation extraction methods, which perform the task
in sequence, this system incorporates information
from relation extraction into entity extraction. As
such, the system can be trained even on partially
annotated datasets where only a subset of all valid
entity spans is annotated.

Ping and Chi (2022) (AN(L)P) participated in
the Entity Extraction only. They finetuned a BERT-
large model (Devlin et al., 2019) for each domain.
For cs.ai domain, they used data from cs.ai only,
whereas, for the other domain, they augmented the
in-domain data with the data from cs.ai.

der Goot (2022) (MaChAmp) proposed to pre-
train a language model and re-finetune after multi-
task learning for a pre-defined set of semantically
focused NLP tasks. They trained a multi-task
model for all text-based SemEval tasks that in-
clude annotation on the word, sentence, or para-
graph level. They compared the performance with
models using mBERT (Devlin et al., 2019). The
pretrained multi-task embedding showed a consis-
tent improvement across many tasks against the
mBERT embedding.

7.2 Symbol tokenizer and detection

In this shared task, the uniqueness of the task is
detecting mathematical symbol span. Symbol span
in LaTeX source is comprised of both human lan-
guage and machine language, i.e. LaTeX language.
Further, mathematical formulae in LaTeX sources
are written in both linear and hierarchical manners.
Therefore, a system must consider not only human
language modeling but also a highly systematic syn-
tax system of LaTeX source. As such, fundamental
tasks such as tokenization is a huge contributor to
the robustness of the model.

Among four submitted systems, MaChAmp (der
Goot, 2022) and AN(L)P (Ping and Chi, 2022)
teams used the default tokenizer from either BERT
or mBERT, which are not designed for scientific
documents. Consequently, they are unable to cor-
rectly segment the mathematic source, hence, they
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Table 2: Results for each team/user, ordered by F1-score on Relation Extraction. Team with ∗ submitted their
system description paper to SemEval 2022.

Team Variant Entity Relation
F1 (partial) F1(type) Precision Recall F-score

JBNU-CCLab*

Base 47.61 47.70 32.09 38.56 35.03
+RDrop 47.61 47.70 33.40 38.66 35.84
+R3F 47.61 47.70 33.77 38.56 36.00

+R3F,Ensemble 47.61 47.70 38.20 36.23 37.19
ZQ - 39.39 39.51 57.25 23.29 33.11

AIFB-WebScience*

Max/Original 37.83 37.88 45.80 20.96 28.66
Mean/Original 41.21 41.23 42.25 26.55 32.28

Max/LaTex2Text 38.33 38.38 46.09 21.64 29.45
Mean/LaTex2Text 34.53 34.64 47.02 18.20 26.24

LingZing - 33.87 33.93 13.45 10.92 12.05

MaChAmp*
Single mBERT - - - - 2.67

Multi RemBERT 25.17 25.25 13.11 5.17 7.42
iyerke - 6.67 6.46 0.10 0.62 0.17

AN(L)P* - - 16.30 - - -

achieved the lowest Named Entity Recognition per-
formance. Whereas AIFB-WebScience (Popovic
and Laurito, 2022) and JBNU-CCLab (Lee and Na,
2022) achieved much higher performances thanks
to SciBERT tokenizer because it is trained on sci-
entific literature. However, the SciBERT tokenizer
is far from perfect such that JBNU-CCLab further
proposed to tokenize the mathematical formulae
using a customized rule-based tokenizer based on
capital letters, numbers, and special characters(e.g.
%, $, {, }). Hence, they achieved state-of-the-art
performance on both NER and RE subtasks.

8 Conclusion

In this paper, we present the task description, the
data annotation, the evaluation, the results, and the
descriptions of four submitted systems for Symlink
at SemEval 2022. The Symlink shared task is chal-
lenging given the complexity of the LaTeX source
and partly due to the difference of the domains in-
volved in the data. In this shared task, it is hard
to separate the NER and RE subtasks due to their
constraints.

The submitted systems employed variants of con-
textualized embedding BERT for encoding the text.
In general, the task can be formatted into similar se-
quence labeling and relation extraction task. How-
ever, special treatments are needed to process La-
TeX sources. For instance, a LaTeX-source-trained
tokenizer or a customized tokenizer is essential
to tokenize the text. Some unique characteristics

of the dataset have not been investigated such as
the syntax of the LaTeX source, and the hierarchi-
cal structure of formulae. These suggest future
research directions to improve the robustness of the
model.

References

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2020. Better fine-tuning by reducing representational
collapse. arXiv preprint arXiv:2008.03156.

Maria Alexeeva, Rebecca Sharp, Marco A. Valenzuela-
Escárcega, Jennifer Kadowaki, Adarsh Pyarelal, and
Clayton Morrison. 2020. MathAlign: Linking for-
mula identifiers to their contextual natural language
descriptions. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 2204–
2212, Marseille, France. European Language Re-
sources Association.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and
Alexander M Rush. 2017. Image-to-markup gen-
eration with coarse-to-fine attention. In International
Conference on Machine Learning, pages 980–989.
PMLR.

1676

https://www.aclweb.org/anthology/2020.lrec-1.269
https://www.aclweb.org/anthology/2020.lrec-1.269
https://www.aclweb.org/anthology/2020.lrec-1.269
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Rob Van der Goot. 2022. Machamp at semeval-2022
tasks 2, 3, 4, 6, 10, 11, and 12: Multi-task multi-
lingual learning for a pre-selected set of semantic
datasets. In OpenReview.

Giovanni Yoko Kristianto, Akiko Aizawa, et al. 2014.
Extracting textual descriptions of mathematical ex-
pressions in scientific papers. D-Lib Magazine,
20(11):9.

Giovanni Yoko Kristianto, Goran Topić, and Akiko
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A Annotation guidelines

This section summarizes some rules that we use to
make our annotations more consistent.

Description tagging: A description is usually
a noun or a noun phrase that expresses a concept.
These are the overall rules for entity annotations:

• We only tag a description if the corresponding
symbol presents in the text.

• A description usually is a noun or a noun
phrase. Sometimes, a verb, an adverb, or an
adjective describes an operation, it is also con-
sidered a description.

• Descriptions should be short but it must cover
the elements in the corresponding symbol, esp.
in case of complex symbols, such as super-
script, subscript, arguments, and limits.

Symbol tagging: A mathematical symbol can
present an operand, an operator, an expression, or
combination of these.

• An atomic symbol in PDF format has to be a
character, that means, if we have Y hat, neither
Y nor hat is considered an atomic symbol,
instead “Y hat” is a symbol. In latex format,
\hat{Y} should be annotated.

• A complex symbol is a combination of mul-
tiple symbols and brackets, for example:
“P(x)”, “Wx”

• An annotated symbol has to be a complete
symbol e.g. “P(x)” is good, “P(x” is not be-
cause of lacking the closing parenthesis.

• A complex formula can be segmented into
atomic symbols, we will annotate at all levels
of the complex symbol as long as there are
appropriate descriptions available.

Figure 5: Submission counts and top performances dur-
ing the evaluation period. The submission score is the
F1-score of the RE task.

Relation annotation:

• Every annotated symbol/description has to
have at least one relation linking to its de-
scription/symbol.

• If there are multiple mentions of a single sym-
bol/description, use coreference relation to
link them. A direct relation or a count relation
is used to link the closet pair of symbol and
description.

B Timeline of submissions

Figure 5 presents the number of submissions over
the evaluation of the task.
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