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Abstract

Our study investigates the impact of linguis-
tic complexity and planning on word durations
in Hindi read aloud speech. Reading aloud
involves both comprehension and production
processes, and we use measures defined by two
influential theories of sentence comprehension,
Surprisal Theory and Dependency Locality
Theory, to model the time taken to enunciate in-
dividual words. We model planning processes
using an information-theoretic measure we call
FORWARD SURPRISAL, inspired by surprisal
theory which has been prominent in recent psy-
cholinguistic work. Forward surprisal aims to
capture articulatory planning when readers in-
corporate parafoveal viewing during reading
aloud. Using a Linear Mixed Model contain-
ing memory and surprisal costs as predictors of
word duration in read aloud speech (parts-of-
speech and speakers being intercept terms), we
investigate the following hypotheses: 1. High
values of linguistic complexity measures (lex-
ical+PCFG surprisal and DLT memory costs)
lead to high word durations. 2. High values of
forward lexical surprisal tend to induce high
word durations. 3. High-frequency words are
read aloud faster than low-frequency words.
We validate the above hypotheses using data
from the TDIL corpus of read aloud speech.
Further, using a Generalized Linear Model to
predict content and function word labels we
show that lexical surprisal measures do not
help distinguish between these 2 classes. Thus
reading aloud might not involve distinct access
strategies for content and function words, un-
like spontaneous speech.

1 Introduction

Prior work on language production (Ganushchak
and Chen, 2016; Navarrete et al., 2016) presents
a long-standing debate on the cognitive processes

involved in spontaneous speech and reading aloud.
Although both the modalities deal with language
production, their unifying accounts have been un-
derexplored in the literature (Sulpizio and Ki-
noshita, 2016). Spontaneous speech involves the
packaging of non-linear conceptual information
into linear (sequential) ordering of words in a sen-
tence. In this process, speakers optimize for words,
syntactic alternations, and memory load (Slevc,
2011). On the contrary, the cognitive mechanism in
reading aloud involves a two-step process, namely
word recognition and articulation. Therefore, var-
ious representational levels of words, such as or-
thographic, phonological, phonemic, and visual
information interact with on another to generate
the pronunciation of a word.

Motivated by a long of line of previous work in
both traditions, our current study investigates the
relationship of word duration with linguistic com-
plexity and planning effects in Hindi read aloud
speech. To this end, we quantified linguistic com-
plexity using contextual predictability measures
defined by Surprisal Theory (Hale, 2001; Levy,
2008) and memory costs stipulated by Dependency
Locality Theory (DLT, Gibson, 2000). Although
surprisal and DLT measures were originally pro-
posed for language comprehension, recent work
points towards their efficacy in modelling language
production. Mathematically, surprisal is the same
as information density. Jaeger (2010) showed that
the realization of the optional that-complementizer
in English spontaneous speech is influenced by
uniform information density considerations. More-
over, predictable words tend to be spoken fast (Bell
et al., 2003) with reduced emphasis on fine-grained
acoustic details (Pluymaekers et al., 2005). In order
to investigate planning effects, we used the model-
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ing framework proposed by Bell et al. (2009) for
spontaneous speech and adapted their following
bigram probability measure to capture production
planning when reading aloud. We investigated 3
hypotheses using Linear Mixed Models (LMMs,
Pinheiro and Bates, 2000) containing all the above
measures and low-level predictors generally used
in previous work (word frequency and length) to
predict word durations (parts-of-speech and speak-
ers being intercept terms). Our hypotheses and
their motivation are provided below :

1. High values of linguistic complexity measures
(lexical+PCFG surprisal and DLT integra-
tion+storage costs) lead to high word dura-
tions: Researchers have shown that such com-
plexity measures account for production diffi-
culties as well, such as disfluencies (Scontras
et al., 2014; Dammalapati et al., 2021) and
word duration (Demberg et al., 2012) in spon-
taneous speech.

2. High values of forward lexical surprisal
tend to induce high word durations: We de-
ployed a measure named forward surprisal,
inspired from Surprisal Theory) and origi-
nally proposed by Ranjan et al. (2020). Cog-
nitively, this measure (negative log probabil-
ity of a word given upcoming words) models
parafoveal preview in the reading part of read-
ing aloud, and thus such look-ahead helps in
articulatory planning during subsequent pro-
duction processes.

3. High-frequency words are read aloud faster
than low-frequency words: The Dual Route
Cascaded model (Coltheart et al., 2001, DRC)
of word recognition and reading aloud pre-
dicted and demonstrated this for isolated sin-
gle words by means of lexical decision and
reading aloud tasks.

All the above hypotheses were validated in our
experiments conducted on the publicly available
TDIL corpus of read-aloud Hindi speech. Forward
surprisal is a significant positive predictor of word
durations even in the presence of other factors,
pointing towards planning effects in reading aloud.
High values of trigram lexical surprisal and PCFG
syntactic surprisal along with DLT storage costs

induced high word durations. For English sponta-
neous speech, Bell et al. (2009) revealed asymmet-
ric behavior of lexical predictability measures on
function vs. content word duration. They attributed
this finding to differences in how content and func-
tion words are accessed in the mind (i.e.., lexical
access during spontaneous speech) apart from their
properties pertaining to grammatical function. For
reading aloud Hindi speech data, we found that
lexical predictability of both content and function
words have identical effects in predicting reading
aloud times. An increase in both backward and for-
ward surprisal measures of lexical surprisal led to
identical effects on word durations (i.e., increased
durations) of both content and function words in
read aloud speech. Going beyond Bell et al. (2009),
for the separate task of predicting content and func-
tion class labels for each word using a Generalized
Linear Model, we showed that trigram lexical sur-
prisal measures are not significant predictors of
word class. In contrast, PCFG surprisal induced
a significant boost in prediction accuracy for this
task. Thus we found differential effects of lexical
and surprisal measures in reading aloud.

Our main contribution is that we extend the prior
work motivating our hypotheses (as cited above) by
validating them in the presence of a comprehensive
host of factors in a language other than English.
To the best of our knowledge, this is the first work
that explores reading aloud production times in
Hindi. Both Ranjan et al. (2020) and Demberg et al.
(2012) did not incorporate DLT-based predictors,
while the former work did not include syntactic
surprisal in their regression models. Scontras et al.
(2014) did not factor in surprisal-based factors in
their spontaneous production experiments on rel-
ative clauses. Finally, the DRC model motivating
the third hypothesis above deals with the recog-
nition and production of isolated words. In this
work, we extend its prediction to entire sentences.
Based on the identical effects of both forward and
backward lexical surprisal measures, we offer pre-
liminary evidence that lexical access of items to the
extent of the full semantic representation of a word
may not be necessary during reading aloud pro-
cesses. This finding is compatible with the DRC
model assumption of word processing via the non-
semantic lexical route.

The paper is structured as follows. Section 2
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provides background on theories and models per-
taining to this work. Section 3 presents the details
about the dataset and methods used in this work.
Section 4 illustrates our main experiments and their
results. Section 5 summarizes our main findings
and discusses their implications along with point-
ers to future work.

2 Background

The following subsections provide essential back-
ground on the Hindi language and its orthography,
the Dual Route Cascaded (DRC) model, Depen-
dency Locality Theory, and Surprisal Theory.

2.1 Hindi Language and Script

Hindi is a head-final language with relatively free
word order (with Subject-Object-Verb being the
canonical order) compared to English, and has
a rich case-marking system realized as postposi-
tions (Agnihotri, 2007). Hindi adopts the Devana-
gari alphasyllabary-based writing system. The De-
vanagari script is composed of 47 characters con-
taining 33 consonants (k, K, g, etc.) and 14 vow-
els (a, aA, i, etc.). In terms of letter-sound cor-
respondence, the orthography of the script mostly
corresponds with grapheme pronunciation except
for cases when vowel diacritics, conjunct conso-
nants or ligatures are present (Vaid and Gupta,
2002). Further details of the script are provided in
Appendix C.

2.2 Dual Route Cascaded (DRC) Model

The DRC model is a computational model of the
visual word recognition and reading aloud. The
model posits two separate cognitive routes i.e., lex-
ical and sub-lexical that are involved in reading
aloud, and within each route, the information pro-
cessing occurs in a cascaded fashion (Coltheart
et al., 2001). It is a computational implementa-
tion of the dual-route theory of reading and fur-
ther stipulates three routes for word processing,
viz. Grapheme-Phoneme Correspondence (GPC)
route, Lexical Semantic route and Lexical Non-
semantic route. Figure 5 in Appendix B provides a
visual illustration of the DRC model. Empirical ev-
idence for the efficacy of the DRC model emerges
from its ability to simulate human latencies in the
tasks of reading aloud and lexical decision tasks.
DRC adapts the rationale for frequency effects from

earlier work on word processing. Morton (1969)
demonstrated that high frequency words required
lower evidence from visual input (i.e., letters in
reading) on account of their lower activation. Sub-
sequently, word naming occurs on account of a
lexical search procedure (Forster and Chambers,
1973) where activation levels affect search laten-
cies.

2.3 Dependency Locality Theory
Dependency Locality Theory is a theory of sen-
tence comprehension proposed by Gibson (2000)
which posits two processing costs at each word, viz,
INTEGRATION and STORAGE COSTS (defined and
exemplified in Section 3). DLT predictions about
the increased comprehension difficulty of object
relative clauses over subject relative clauses have
been validated using per-word reading time data
in a variety of languages. Scontras et al. (2014)
showed that object relative clauses are harder to
produce than subject relative clauses and relative
clause production times are connected to DLT-
based memory costs. For Hindi, the eye-tracking
based reading times in comprehension have been
known to be influenced by DLT-inspired costs (Hu-
sain et al., 2015; Agrawal et al., 2017).

2.4 Surprisal Theory
Surprisal Theory (Hale, 2001; Levy, 2008) posits
that comprehenders construct probabilistic knowl-
edge based on previously encountered structures.
Mathematically, surprisal of the (k + 1)th word,
wk+1, is defined as negative logarithm of condi-
tional probability of word, wk+1 given the preced-
ing context which can be either sequence of words
or a syntactic tree:

Sk+1 = − logP (wk+1|w1...k) = log
P (w1...wk)

P (w1...wk+1)
(1)

Both the versions of surprisal i.e., lexical and
syntactic configurations have been shown to ac-
count for eye-movements reading (Demberg and
Keller, 2008; Agrawal et al., 2017; Staub, 2015)
as well as self-paced reading time data (Smith and
Levy, 2013). Pioneering work by Demberg et al.
(2012) showed that both n-gram and PCFG-based
syntactic surprisal measures were significant pos-
itive predictors of word duration in spontaneous
speech. More recently, Dammalapati et al. (2021)
demonstrated that surprisal and DLT-based metrics
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predict speech disfluency using English sponta-
neous speech corpus.

3 Data and Methods

Our dataset consists of 1531 sentences (from sci-
entific and technical genre) from the TDIL corpus
of Hindi read aloud speech1. One male and one
female speaker were asked to record their speech
by reading aloud 341 sentences (4,444 words) and
1,190 sentences (11,163 words), respectively. Ta-
ble 4 in Appendix C illustrates pertinent word-level
properties (overall and grammatical category-wise).
Word durations were extracted from the recorded
speech using the PRAAT software package. We
estimated various word-level cognitive measures
as described below:

1. Word length: Total number of consonants
and vowels present in the word ( isEle –
isliye; therefore has word length of 4; 2 con-
sonants (s, l) and 2 vowels (i, e).

2. Word frequency: Count of each target word
as obtained from the EMILLE Hindi cor-
pus (Baker et al., 2002).

3. Unigram surprisal: Negative log probability
of individual target word.

4. Backward surprisal: Negative log of prob-
ability of target word given two preceding
words in the context (Equation 1).

5. Forward surprisal: Negative log of prob-
ability of target word given two follow-
ing words in the context. So the surprisal
of the kth word is estimated as: Sk =
− logP (wk | wk+1, wk+2)

6. PCFG surprisal: Negative log probability
of target word given contextual syntactic tree
(Equation 1).

7. Integration cost (IC): Backward looking
cost denoting the sum of distances be-
tween the word to be integrated into the
structure processed so far and its previous
heads/dependents. Distance is the number
of intervening words between each head and
dependent.

1https://tdil-dc.in

saumya ne ramesh ko ek kahani sunayi
SC: 1 1 1 0
IC: 0 0 0 8

5

3

0

Figure 1: Integration and storage cost calculations for the
sentence ‘Saumya narrated a story to Ramesh’, with head-
dependent distance indicated above each dependency link;
example sentence adapted from Husain et al. (2015)

8. Storage cost (SC): Forward-looking cost cor-
responding to the number of incomplete de-
pendencies in the upcoming structure.

Unigram and Trigram Surprisal measures for
each word in a sentence was computed using un-
igram and trigram language models respectively
trained on the EMILLE corpus of written text with
mixed genre (Baker et al., 2002) using the SRILM
toolkit (Stolcke, 2002) with Good-Turing discount-
ing smoothing algorithm. PCFG surprisal for
each word was estimated by training an incremen-
tal probabilistic left-corner parser (van Schijndel
et al., 2013) on 13,000 phrase structure trees (con-
verted from HUTB dependency trees) using Mod-
elBlocks toolkit2 (Refer Appendix D for more de-
tails on training data and settings). We calculated
DLT IC and SC costs automatically following the
definitions adopted by Husain et al. (2015). See
Figure 1 for an illustration. They computed DLT
costs by hand for a small corpus, while our DLT
SC and IC costs were computed from dependency
trees obtained by parsing TDIL sentences using
the ISC dependency parser3 (Bhat, 2017) trained
on HUTB gold standard dependency trees (parser
performance documented by Bhat: UAS of 93.52%
and a LAS of 87.77%).

4 Experiments and Results

In the following subsections we describe the spe-
cific experiments and results of this study.

4.1 Correlation Results
Prior to performing the regression experiments de-
scribed in the next few subsections, we computed

2https://github.com/modelblocks
3https://bitbucket.org/account/user/

iscnlp/projects/ISCNLP
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Figure 2: Pearson’s correlation coefficients amongst the
different predictors and word duration

the Pearson’s coefficient of correlation between
the different predictors. We also computed the
correlation between each predictor and the depen-
dent variable, word duration. Figure 2 displays the
correlation results. The high positive correlation
between word duration and all surprisal scores sug-
gests that the words which are easy to produce by
virtue of high predictability in context tend to have
lower reading time and vice versa. DLT-storage
costs display low correlation with other predictors,
while integration cost shows negligible correlation
with any other predictor, indicating their indepen-
dent impact. SC and IC costs show low negative
correlation with one another as they are forward
and backward-looking costs respectively and thus
might work differently. We also observe that word
length is highly correlated with word duration as is
observed in previous production (Bell et al., 2009)
and comprehension studies (Husain et al., 2015;
Agrawal et al., 2017).

4.2 Regression Experiments
We trained Linear Mixed Models (LMMs) to
predict per-word duration (transformed to a
logarithmic scale following previous work). The
logarithmic scaling of the independent variables,
viz. surprisal measures, took care of highly
varied frequencies during model training. All
the independent variables were normalised to
z-scores, i.e., the predictor’s value (centered
around its mean) was divided by its standard

Predictors Estimate Std. Error t-value
Intercept 5.525 0.098 56.364
Word length 0.217 0.003 62.430
Unigram surprisal 0.027 0.006 4.284
Word frequency -0.034 0.004 -7.643
SC 0.010 0.004 2.309
IC -0.016 0.003 -5.830
Backward 3g-surprisal 0.015 0.005 3.128
Forward 3g-surprisal 0.032 0.004 7.181
PCFG surprisal 0.051 0.005 10.412

Table 1: Fixed effects of an LMM predicting reading
aloud time (15607 data points; all predictors are signifi-
cant for the |t|=2 threshold)

deviation. We have used the Glm package in R
to perform our regression experiments using a
very basic model, given below in R GLM format
(independent variable ∼ dependent variables +
1| random intercept terms):

Duration ∼ word length + word frequency +

unigram surprisal + backward surprisal +

forward surprisal + PCFG surprisal + IC +

SC + 1|Speaker + 1|POS

The POS intercepts were based on tags obtained by
converting HUTB POS tags to 11 universal POS
tags corresponding to content words (verb, noun,
adjective, and adverb) as well function words (post-
position, pronoun, determiner, particle, conjunc-
tion, question, and quantifier).

Our regression results documented in Table 1
reveal that all the measures are significant in pre-
dicting the read-aloud word duration and their re-
gression coefficients are in the expected direction,
thus validating our original hypotheses stated in
Section 1. Frequency and unigram surprisal cap-
ture the frequency and predictability effects of in-
dividual words, i.e., frequent words require less
time and effort to activate phonemes for articula-
tion (as predicted by the DRC model). The posi-
tive coefficients of all surprisal and DLT SC mea-
sures show that with an increase in each predictor’s
value, the word duration in read-aloud speech in-
creases. However, DLT IC has an unexpected neg-
ative coefficient, an anomaly which has been also
reported in the comprehension literature (Demberg
and Keller, 2008; Husain et al., 2015). Demberg
and Keller (2008) analyzed this anomaly rigorously
and showed that in the presence of other predictors,
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integration cost works in the expected direction
(i.e., high integration costs induce high reading
times) only for higher range IC values. Future in-
quiries need to examine whether this result carries
over to the production setting and the implications
of such a finding for integrated models of both pro-
cesses (a theme we take up at the end of Section 5).
In the following subsections, we now discuss the
impact of selected measures on reading aloud word
duration.

4.2.1 Forward Surprisal

The positive regression coefficient of forward sur-
prisal (Table 1) suggests that the difficulty associ-
ated with the upcoming words has a role in deter-
mining the reading time of the current word. The
effect of forward surprisal on duration is illustrated
using the following examples (region of interest:
vidyalaye; school):

1. pahle pitaji bacchon=ko vidyalaye=se lene jaate
the
before father child=ACC school=ABL take go
be-PST.3SG
Earlier father used to take children from school

2. bacche vidyalaye=se aate hi khelne chale
gaye
children school=ABL come EMPH play go-
PST.PL
The children went to play as soon as they came from
school

In the first example above, the word vidyalaye
(550ms duration; 4.55 forward surprisal) has a
higher surprisal and longer duration compared to
the same word in the second sentence (510ms; 3.90
bits). This is because vidyalaye se aate is a much
more frequent sequence than vidyalaye se lene in
the trigram training corpus. Thus planning effects
are modelled by this measure, a theme we explore
in the next subsection.

The young man who chased the absconding thief was my uncle.

Figure 3: Parafoveal preview in reading; adapted from
Schotter et al. (2012)

Interactions Estimate Std. Error t-value
MODEL 1
Word length x Backward 3g-surp -0.024 0.004 -5.491
Word length x Forward 3g-surp -0.031 0.004 -8.061
Word length x PCFG surprisal 0.001 0.005 0.314
MODEL 2
Function word x Backward 3g-surp 0.028 0.009 2.936
Function word x Forward 3g-surp 0.041 0.008 4.855
Function word x PCFG surprisal -0.039 0.009 -3.953

Table 2: Two different LMMs displaying only the in-
teraction terms of surprisal with word length (top) and
function word (bottom) respectively predicting reading
aloud time; see full model results in Appendix E (15607
data points; all significant predictors denoted by |t|>2)

4.2.2 Parafoveal Preview and Word Length
Effects

It is well understood that the length of words influ-
ences the reader’s eye movements as long words
induce more fixations of greater duration than short
words (Just and Carpenter, 1980; Rayner et al.,
1996). In this context, Bicknell and Levy (2012)
argue that uncertainty about the length of words
affects the word reading duration. They posit that
the uncertainty increases proportionally with an in-
crease in word length, leading to more fixation and
longer word duration. We hypothesize that if the
forward surprisal effect is driven by parafoveal pre-
viewing (as illustrated in Figure 3), there should
be smaller predictability effects with longer tar-
get words. This is because longer target words
will lead to less linguistic material visible in the
parafoveal region, thus not allowing for informa-
tive computation of the target word’s forward sur-
prisal. We investigated the effect of word length on
word duration using another linear mixed model
containing word length and surprisal interaction
terms. Table 2 (top block) documents the interac-
tion results, which show that the effect of forward
trigram surprisal on reading-aloud times decreases
by 0.02 with every unit increase in the word length,
thus confirming our hypothesis. A similar result is
obtained in case of backward trigram surprisal as
well. See Table 5 in Appendix E for full regression
model results. The relative strengths of forward
and backward surprisal measures in both produc-
tion and comprehension needs to be systematically
investigated in future inquiries.

4.2.3 Word Class and Duration

This section and the next one are motivated by the
findings of Bell et al. (2009). For spontaneous
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speech, they showed that both function and con-
tent word duration were significantly predicted by
the following word (forward probability). How-
ever, unlike content words, function word duration
was determined significantly by the previous word
only (backward probability). Content words are
associated more with semantics, whereas function
words are linked to the syntactic aspects of the sen-
tence (see Table 4 of Appendix C for more details
about their properties). In order to investigate the
relationship between predictability measures and
word class in read-aloud speech, we deployed a
Linear Mixed Model with speaker and POS ran-
dom effect terms for duration prediction. Fixed
effects included all the predictors along with in-
teraction terms between word class and trigram
lexical+PCFG syntactic surprisal measures. Each
word in our dataset was annotated with a word
class label (viz., content or function word) derived
from its universal POS tag. Table 2 (see bottom
block of table) depicts the significant interaction
effects between both lexical surprisal measures and
word class. High values of both forward and back-
ward trigram surprisal induced high function word
duration in read aloud speech after controlling for
several other factors. This result is in contrast to
the asymmetric behavior observed by Bell et al.
(2009) for function words in conversational En-
glish speech. See Table 6 in Appendix E for full
regression model results.

Counter-intuitively, the interaction term between
word class and PCFG surprisal has a negative co-
efficent, signifying that high values of PCFG sur-
prisal result in low word durations for function
words. Examining this anomaly, we looked at
function word distributions in our dataset (TDIL
corpus) and the corpus used to train the PCFG
parser (HUTB corpus). Table 4 in Appendix C lists
grammatical category-wise distribution of HUTB
and TDIL words. Particles (3.73%) and question
words (1.38%) words have higher mean surprisal
and lower mean duration compared to the corre-
sponding mean values for the function word class
in TDIL corpus. The high surprisal of words be-
longing to these grammatical categories can be
attributed to the fact that the PCFG parser train-
ing data from the HUTB corpus (particles: 1.59%,
questions: 0.11%) has very few words belonging
to these categories, thus impacting PCFG surprisal

Predictor(s) 10-fold CV prediction
accuracy (%)

Word length 68.91
+Word frequency 76.10
+Unigram surp 77.65
+Backward 3g-surp 77.02
+Forward trigram surp 77.14
+PCFG surprisal 79.61
+SC 80.21
+IC 83.94

Table 3: Prediction accuracy for content and function
word classification (on the entire dataset of 15607 data
points) via Generalized LMs where features are added
incrementally (all differences between successive pairs
of models significant at p < 0.001 via McNemar’s test)

estimates. The following examples illustrate ques-
tion words like kis (183ms duration and 12.16bits
PCFG surprisal) and particles like toh (675ms and
9.5bits):

(1) a. yeh
this

aag
fire

kis
WHICH

hanuman
hanuman

dwara
by

lagayi
set

gayi hogi?
would?
Which Hanuman would have set this fire?

b. ab
by

tak
now

toh
PARTICLE

pitaji
father

so
sleep

gaye
must

honge

By now, father must have been asleep.

The information profiles and per-word read-
aloud word duration of the above examples from
our dataset are presented in Figure 4 of Ap-
pendix A. Cognitively, it is also conceivable that
WH-markers and particles might be easy to articu-
late being very common function words. How-
ever, they might potentially introduce complex
mental operations like movement (or linking to
other words in non-movement based accounts) in
the upcoming structure, which are reflected in the
duration of the next word (akin to spillover in read-
ing studies). This conjecture is supported by the
fact that words following question words and parti-
cles have higher duration on an average compared
to the mean duration of these target function words
themselves (question words: 225ms & next word
274ms; particles: 155ms & next word 292ms mean
duration).

4.2.4 Word Class Prediction and PCFG
Surprisal

Extending the work by Bell et al. (2009) (who do
not factor in syntactic predictability estimates) de-
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scribed in the previous section, we explored the im-
pact of all our measures for predicting word class
using Generalized Linear Models (GLMs). For
this binary classification task, function words were
coded as class 1, while content words were coded
as 0. Subsequently, we added each predictor incre-
mentally to a GLM and measured the prediction
accuracy of the model via 10-fold cross-validation
(CV). The corpus was divided into 10 sections and
10 models trained on 9 sections each were used
to generate predictions for the remaining section,
thus obtaining predictions over the entire dataset.
Table 3 provides CV prediction accuracies of all
our incremental models. Low-level predictors, fre-
quency and unigram surprisal, confer significant
gains over a basic word length baseline. However,
adding backward and forward surprisal actually
worsens model performance and hence these mea-
sures do not help distinguish between content and
function words. This result thus validates our find-
ings pertaining to word class and lexical surprisal
measures reported in Table 2 (bottom block). In
contrast, PCFG surprisal confers a 2% increase
in predicting the word class. PCFG surprisal is a
more powerful measure compared to word-based
surprisal models as it factors in POS tag informa-
tion and syntactic context and hence outperforms
word-based trigram models. DLT-costs also induce
significant gains over and above models contain-
ing low-level and all other surprisal predictors. In
particular, integration cost induces close to a 2.5%
increase over a model containing all the other pre-
dictors.

5 Discussion

Overall, our results validate our initial hypothe-
ses motivating the study. Linguistic complexity
measures (lexical+PCFG surprisal and DLT’s inte-
gration + storage costs) are significant positive pre-
dictors of word duration in reading aloud speech,
mirroring trends reported in the literature on spon-
taneous speech production (Demberg et al., 2012;
Dammalapati et al., 2021). Our measure of plan-
ning, FORWARD SURPRISAL, is also a positive
predictor of reading aloud times. It potentially
models parafoveal preview in the reading aspect
of reading aloud. Such look-ahead during reading
likely helps articulatory planning during the read-
ing aloud process. This finding advances further

support to the “involvement-in-planning” account,
as proposed by Pluymaekers et al. (2005). The
cited work shows that articulatory processes are
continuous and incremental in nature; upcoming
words affect the planning of the target word. Fi-
nally, our data and analyses validate the frequency
effects (high frequency words are read aloud faster
than low frequency words) predicted by the DRC
model of word recognition and reading aloud.

Going further, we show that an increase in both
our measures of lexical surprisal (viz., backward
and forward surprisal) led to identical effects on
word duration of content and function words in
read aloud speech, i.e., increased duration for both
classes of words. For the binary classification task
of predicting content and function words, PCFG
surprisal induces a notable boost in accuracy over a
baseline containing low-level predictors and lexical
surprisal measures. However, forward and back-
ward surprisal do not help discriminate between
content and function words. This is in direct con-
trast to the results reported by Bell et al. (2009) for
spontaneous speech (Switchboard corpus). They
show evidence for differential lexical access mech-
anisms for content and function words as attested
to by the long line of work in the production lit-
erature (Garrett, 1975, 1980; Lapointe and Dell,
1989). Thus via this work, we have compared the
cognitive processes in reading aloud with sponta-
neous speech production, an underexplored direc-
tion highlighted by Sulpizio and Kinoshita (2016)
whom we cited at the outset.

Our results indicate that both content and func-
tion words might rely on the non-semantic lexi-
cal route or grapheme-phoneme correspondence
(GPC) rules as hypothesized by the DRC model of
reading aloud. Speakers might not be doing seman-
tic processing during this task. The close symbol-
sound correspondence in Hindi orthography (Vaid
and Gupta, 2002) might be a factor contributing
to this effect, a conjecture that needs to be vali-
dated using further experiments. The measure of
word complexity proposed by Husain et al. (2015)
and character-based surprisal models of reading
difficulty proposed in recent work (Hahn et al.,
2019; Oh et al., 2021) might be viable approaches
towards this end. Situations where the connec-
tion between orthographic length and pronuncia-
tion length is complex (say “535” in written text
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articulated as panch sau paintis, i.e., “five hundred
and thirty five”) are best investigated using more
controlled experimental designs.4

In a recent survey, Staub (2015) summarized
that lexical predictability induces the graded acti-
vation of multiple upcoming words during read-
ing comprehension (as opposed to the prediction
of a single word). Moreover, lexical predictabil-
ity effects occur either at the very early stages of
lexical access or pre-lexical stages (processing vi-
sual features of letters in the script), rather than
at post-lexical stages involving meaning identifi-
cation. Based on insights from prior work, high
syntactic predictability (low PCFG surprisal values
in our setup) can be linked to high accessibility
and hence the ease of word retrieval from mem-
ory, which in turn facilitates production ease (Bock
and Warren, 1985; Arnold, 2010). Future inquiries
need to tease apart the contributions of lexical and
syntactic predictability in reading aloud, quantify-
ing the impact of language-specific properties of
the Hindi language on reading aloud durations. In
particular, the verb-final nature of Hindi and prior
findings about the interplay between expectation
and locality effects (Husain et al., 2014; Ranjan
et al., 2021) need to be explored. Other salient
aspects like predictability and case marking (Ran-
jan et al., 2019), and the impact of the argument-
adjunct distinction (Pandey et al., 2022), could also
be investigated to contribute to a comprehensive
theory of reading aloud, which accounts for data
from multiple language families.

We also plan to develop reading aloud speech
corpora with a larger number of participants. More-
over, the current task of reading the printed text
aloud can be modified to include comprehension
questions (à la reading studies) to ensure that par-
ticipants engage with the material. We also plan
to collect eye-tracking times to study comprehen-
sion during the reading phase prior to reading
aloud. Thus this paradigm can catalyze research
in integrated models of production and compre-
hension (MacDonald, 2013; Pickering and Garrod,
2013). Levy and Gibson (2013) point out that the
surprisal measure is an incremental and localized
measure of comprehension difficulty, which can be
used to formalize such integrated models. Since

4We are indebted to an anonymous reviewer for this sug-
gestion and the example.

this measure can be used to model production diffi-
culty as well, it facilitates cross-linguistic hypothe-
sis testing on both comprehension and production
as well as interactions between these processes.

Acknowledgements

We would like to thank Marten van Schijndel,
Samvit Dammalapati, Rupesh Pandey, and mem-
bers of the Cornell Computational Psycholinguis-
tics Discussions research group (C.Psyd) for their
invaluable comments and feedback on this work.
We also thank IISER Bhopal undergraduate stu-
dents, Chandan Upadhyay, Vipul Bhadani, Priya
Kumari, Naman Joshi, and Kshitiz Dixit for their
help in speech transcription. The authors acknowl-
edge extramural funding from the Cognitive Sci-
ence Research Initiative, Department of Science
and Technology, Government of India (grant no.
DST/CSRI/2018/263). Finally, we are also in-
debted to the anonymous reviewers for SCiL 2022
and AMLaP 2020 for their detailed and insightful
feedback.

References
Rama Kant Agnihotri. 2007. Hindi: An Essential Gram-

mar. Essential Grammars. Routledge.

Arpit Agrawal, Sumeet Agarwal, and Samar Husain.
2017. Role of expectation and working memory
constraints in Hindi comprehension: An eyetracking
corpus analysis. Journal of Eye Movement Research,
10(2).

Jennifer E. Arnold. 2010. How speakers refer: The role
of accessibility. Language and Linguistics Compass,
4(4):187–203.

Paul Baker, Andrew Hardie, Tony McEnery, Hamish
Cunningham, and Robert Gaizauskas. 2002. Emille:
a 67-million word corpus of indic languages: data
collection, mark-up and harmonization. In Proceed-
ings of LREC 2002, pages 819–827. Lancaster Uni-
versity.

Alan Bell, Jason M Brenier, Michelle Gregory, Cyn-
thia Girand, and Dan Jurafsky. 2009. Predictability
effects on durations of content and function words
in conversational English. Journal of Memory and
Language, 60(1):92–111.

Alan Bell, Daniel Jurafsky, Eric Fosler-Lussier, Cyn-
thia Girand, Michelle Gregory, and Daniel Gildea.
2003. Effects of disfluencies, predictability, and ut-
terance position on word form variation in english

127



conversation. The Journal of the Acoustical Society
of America, 113(2):1001–1024.

Riyaz Ahmad Bhat. 2017. Exploiting linguistic knowl-
edge to address representation and sparsity issues
in dependency parsing of indian languages. Ph.D.
thesis, IIIT Hyderabad India.

Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer,
Owen Rambow, Dipti Misra Sharma, and Fei Xia.
2009. A multi-representational and multi-layered
treebank for Hindi/urdu. In Proceedings of the Third
Linguistic Annotation Workshop, ACL-IJCNLP ’09,
pages 186–189, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Klinton Bicknell and Roger Levy. 2012. Why long
words take longer to read: the role of uncertainty
about word length. In Proceedings of the 3rd Work-
shop on Cognitive Modeling and Computational
Linguistics, pages 21–30. Association for Compu-
tational Linguistics.

J. Kathryn Bock and Richard K Warren. 1985. Concep-
tual accessibility and syntactic structure in sentence
formulation. Cognition, 21:47–67.

Max Coltheart, Kathleen Rastle, Conrad Perry, Robyn
Langdon, and Johannes Ziegler. 2001. Drc: a dual
route cascaded model of visual word recognition and
reading aloud. Psychological review, 108(1):204.

Samvit Dammalapati, Rajakrishnan Rajkumar, and
Sumeet Agarwal. 2021. Effects of duration, local-
ity, and surprisal in speech disfluency prediction in
english spontaneous speech. In Proceedings of the
Society for Computation in Linguistics, volume 4,
page 10.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193–210.

Vera Demberg, Asad B. Sayeed, Philip J. Gorinski, and
Nikolaos Engonopoulos. 2012. Syntactic surprisal
affects spoken word duration in conversational con-
texts. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
EMNLP-CoNLL ’12, pages 356–367, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Kenneth I. Forster and Susan M. Chambers. 1973. Lexi-
cal access and naming time. Journal of Verbal Learn-
ing and Verbal Behavior, 12(6):627–635.

Lesya Y Ganushchak and Yiya Chen. 2016. Incremen-
tality in planning of speech during speaking and read-
ing aloud: Evidence from eye-tracking. Frontiers in
psychology, 7:33.

Merrill Garrett. 1980. Levels of processing in sentence
production. In Language production Vol. 1: Speech
and talk, pages 177–220. Academic Press.

Merrill F Garrett. 1975. The analysis of sentence pro-
duction. In Psychology of learning and motivation,
volume 9, pages 133–177. Elsevier.

Edward Gibson. 2000. The dependency locality theory:
A distance-based theory of linguistic complexity. Im-
age, language, brain, pages 95–126.

Michael Hahn, Frank Keller, Yonatan Bisk, and Yonatan
Belinkov. 2019. Character-based surprisal as a model
of reading difficulty in the presence of errors. In Pro-
ceedings of the 41th Annual Meeting of the Cognitive
Science Society, CogSci 2019: Creativity + Cogni-
tion + Computation, Montreal, Canada, July 24-27,
2019, pages 401–407. cognitivesciencesociety.org.

John Hale. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Proceedings of the second
meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics on Language
technologies, NAACL ’01, pages 1–8, Pittsburgh,
Pennsylvania. Association for Computational Lin-
guistics.

Samar Husain, Shravan Vasishth, and Narayanan Srini-
vasan. 2014. Strong expectations cancel locality ef-
fects: Evidence from Hindi. PLOS ONE, 9(7):1–14.

Samar Husain, Shravan Vasishth, and Narayanan Srini-
vasan. 2015. Integration and prediction difficulty
in Hindi sentence comprehension: Evidence from
an eye-tracking corpus. Journal of Eye Movement
Research, 8(2).

T. Florian Jaeger. 2010. Redundancy and reduction:
Speakers manage information density. Cognitive
Psychology, 61(1):23–62.

Marcel A Just and Patricia A Carpenter. 1980. A theory
of reading: From eye fixations to comprehension.
Psychological review, 87(4):329.

Steven G Lapointe and Gary S Dell. 1989. A synthe-
sis of some recent work in sentence production. In
Linguistic structure in language processing, pages
107–156. Springer.

Roger Levy. 2008. Expectation-based syntactic com-
prehension. Cognition, 106(3):1126 – 1177.

Roger Levy and Edward Gibson. 2013. Surprisal, the
pdc, and the primary locus of processing difficulty in
relative clauses. Frontiers in Psychology, 4(229).

Maryellen C. MacDonald. 2013. How language pro-
duction shapes language form and comprehension.
Frontiers in Psychology, 4(226):1–16. Published
with commentaries in Frontiers.

128



John Morton. 1969. Interaction of information in word
recognition. Psychological review, 76(2):165.

Eduardo Navarrete, Bradford Z Mahon, Anna Loren-
zoni, and Francesca Peressotti. 2016. What can
written-words tell us about lexical retrieval in speech
production? Frontiers in psychology, 6:1982.

Byung-Doh Oh, Christian Clark, and William Schuler.
2021. Surprisal estimators for human reading times
need character models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3746–3757, Online. Associa-
tion for Computational Linguistics.

Rupesh Pandey, Sidharth Ranjan, and Rajakrishnan Ra-
jkumar. 2022. Locality effects in the processing
of argument structure and information status using
reading aloud paradigm. In Proceedings of the 8th
Annual conference of the Association for Cognitive
Science (ACCS), India. Amrita University.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and in-
terpretable tree annotation. In Proceedings of the
21st International Conference on Computational Lin-
guistics and the 44th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL-44, pages
433–440, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Martin J. Pickering and Simon Garrod. 2013. An inte-
grated theory of language production and comprehen-
sion. Behavioral and Brain Sciences, 36:329–347.
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A Information Profile

Figure 4 depicts the information profiles of Examples 1a and 1b respectively from the TDIL corpus
discussed in Section 4.2.3 of the paper.
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Figure 4: Word duration and information profiles of sentences containing a question marker (kis; top figure) and
particle (toh; bottom figure)
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B Dual Route Cascaded (DRC) Model

The DRC model is shown in Figure 5. Each route consists of several interacting layers containing a set of
units (representing words in the orthographic lexicon or letters in the letters layer). Units of different
layers interact via inhibition (an activated unit impedes activation levels of other units) or excitation (an
activated unit facilitates activation of other units). Figure 3 shows a snapshot of parafoveal preview in
reading.

Figure 5: DRC modela of visual word recognition and reading aloud by Coltheart et al. (2001)

aReproduced from: https://maxcoltheart.wordpress.com/drc/

C Details of Hindi Script and Grammatical Categories

Unlike the Latin alphabet, Hindi has no concept of letter case (upper/lower) except for sinistrodextral
(left-to-write) writing system. Each unit of word is written in horizontal direction separated by space and
follows standard punctuation markers alike English except for full stop (.) where a pipe (। ) is used as
an end of sentence marker. Vowel diacritics (glyph) combines with consonants to form another syllabic
letter (aA + ? = kA). For example, the vowel –aA (ā) combines with consonant – ? (k) to give a letter kA
(kā) with added vowel sign in diacritic form. Conjunct consonants is understood to offer most difficulty
during reading consist of two consonants grouped together but with a missing vowel sound between them.
For example, the two consonants (c,C) when combined together (c +C = QC), the letter QC (as in the
word–aQCA) has a missing vowel (a) diacritic i.e., A between them.

Table 4 illustrates the distribution of various grammatical categories in TDIL and HUTB corpora
of Hindi written text as well as properties of content and function words. The mean word length of a
content word in the TDIL corpus was 2.66 (minimum: 1, maximum: 8), and the function word was 1.74
(minimum: 1, maximum: 5).
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Category %Freq %Freq Length PCFG RT
273013 words 15607 words characters surprisal ms

Corpus HUTB TDIL Mean values in TDIL
CONTENT
Verb 18.12 32.15 1.98 11.26 274.99
Noun 38.47 26.96 2.86 13.92 375.45
Adjective 5.91 3.71 3.01 14.53 399.65
Adverb 0.47 0.78 2.88 14.21 367.91
FUNCTION
Postposition 21.42 11.14 1.22 5.58 178.22
Pronoun 4.34 11.07 2.20 10.62 258.12
Det 4.65 4.64 1.86 8.87 242.32
Particle 1.59 3.73 1.16 8.42 155.02
Conjunction 4.13 3.17 1.87 7.65 206.01
Question 0.11 1.38 0.11 12.59 225.97
Quantifier 0.81 1.27 0.81 11.23 294.96
Content words 62.97 63.70 2.66 13.96 354.29
Function words 37.03 36.40 1.74 8.60 226.54
All words 100.00 100.00 2.17 11.10 286.17

Table 4: Grammatical category-wise descriptive statistics in TDIL and HUTB corpora

D PCFG Parser Training Procedures

Following steps were involved in training the Modelblocks parser using the HUTB corpus:

1. The parser training requires phrase-structure trees as input. Due to the unavailability of such
resources in Hindi, we created our own corpus by converting the existing dependency parsed trees
(Dependency structure; DS) of HUTB corpus (Bhatt et al., 2009) into constituency parsed trees
(Phrase structure; PS) using an approach described in Yadav et al. (2017).

2. However, we had to do some extra post-processing of the obtained phrase structure trees (removal
null nodes, unary nodes, punctation and coordination fixes, inter-alia) to make it compatible with the
format expected by the Berkeley parser. The corrected final phrase structures thus produced were
used to train the Berkeley parser model.

3. Parser training involved estimating a sophisticated grammar using 4 iterations of the split-merge
algorithm (Petrov et al., 2006) and a beamwidth of 5000 (shown to be effective for reading time
studies).

E Interaction analysis of word class and word length with surprisal

Predictors Estimate Std. Error t-value
Intercept 5.550 0.098 56.825
Word length 0.237 0.004 60.946
Unigram surprisal 0.039 0.006 6.118
Word frequency -0.004 0.005 -0.777
IC -0.018 0.003 -6.550
SC 0.005 0.004 1.106
Backward surprisal 0.028 0.005 5.556
Forward surprisal 0.044 0.005 9.653
PCFG surprisal 0.034 0.005 6.904
INTERACTIONS
Word length x Backward 3g-surp -0.024 0.004 -5.491
Word length x Forward 3g-surp -0.031 0.004 -8.061
Word length x PCFG surprisal 0.001 0.005 0.314

Table 5: Fixed effects of LMM (with word length as
interaction term) predicting reading aloud time (15607
data points; all significant predictors denoted by |t|>2)

Predictors Estimate Std. Error t-value
Intercept 5.512 0.099 55.652
Word length 0.216 0.003 62.147
Unigram surprisal 0.036 0.007 5.451
Word frequency -0.028 0.005 -6.038
SC 0.012 0.005 2.517
IC -0.016 0.003 -5.171
Backward 3g-surp 0.007 0.006 1.095
Forward 3g-surp 0.018 0.005 3.364
PCFG surprisal 0.065 0.007 9.192
Word class 0.024 0.011 2.264
INTERACTIONS
Function word x Backward 3g-surp 0.028 0.009 2.936
Function word x Forward 3g-surp 0.041 0.008 4.855
Function word x PCFG surprisal -0.039 0.009 -3.953

Table 6: Fixed effects of LMM (with word class as inter-
action term) predicting reading aloud time (15607 data
points; all significant predictors denoted by |t|>2)
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