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Figure 6: Word and claim recall as a function of words
reviewed in the absence of an anchoring rule. The meth-
ods count and sequential do use such a rule and are in-
cluded in the plot for the sake of comparison.

set enumeration only under limited conditions. In
particular, early in the process, I7T-set apparently
nominates more pertinent unit words, but the
effect disappears as the word set is built out and
(crucially) does not apply to claim recall, arguably
the more important metric. If the objective is not
to find a good set of words alone, but instead to
find a set that maximizes extraction recall, it is dif-
ficult to improve on a review prioritized by corpus
frequency. PMI adds incremental benefit in some
cases and does not appear to hurt on balance. The
key appears to be the selection of a good anchoring
rule.

Figure 6 displays the results of our experiments
lacking an anchor rule (except for the dashed
lines, which are included to make comparison with
anchor-based methods easier). Here, IT-set con-
tinues to display its relative strength on the word
recall metric, but the results for claim recall are
much more ambiguous. More work is required to
resolve this ambiguity, which is relevant to very
agile deployment. In cases where reasonable recall
is desired as early as possible, we care about, say,
the 0.5 or 0.75 recall levels in the plots. Our experi-
ments lead to no clear recommendation for this use
case. Presumably, what is required is a variant of
these methods that incorporates corpus frequency
more prominently into the score used in ranking.

6 Discussion

This work is an initial step in a line of inquiry that
could lead to better tooling in support of more agile

—— FT-centroid
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extraction. The key insight is that once we have a
performant rule set, one that we are willing to treat
as authoritative, we can simulate the process that
led to its creation and experiment with new modes
of facilitation in pursuit of greater labor savings
and model robustness. Critical to such research,
and a focus of future work, is a credible cost model
that quantifies levels of authoring effort. Not only
would such a model provide a more precise charac-
terization of the “early deployment advantage” of
rules over ML, but it could help widen this advan-
tage as an objective function for simulations of the
authoring process.

Of course, this approach has certain shortcom-
ings. For one, any model, including our historical
rule set, that is not developed and vetted against a
thoroughly annotated data sample is typically an
approximation, usually one that is recall-limited.
In our previous work, we sought to overcome this
limitation by using the rule set to generate a large
annotated sample to train a high-recall sequence la-
beler (Freitag et al., 2022). Here, we treat the rules
as definitional, but it seems clear that some of the
“false positive” elements nominated by our corpus-
analytic rankers belong in the definition. For ex-
ample, only one of the top ten terms nominated
for metrichead by IT-set after two iterations of
review was in the historical word set, but many of
the excluded nominations appear plausible (e.g.,
reflectance, oxidation, or transmittance). Many
of these words presumably occur rarely (if at all)
as part of claim expressions, and our performance
metric’s emphasis on maximizing recall punishes
rankers that promote terms in the tail of the distri-
bution, but a complete account of claim language
in this domain might want to include them.

A salient feature of all of these results is our abil-
ity to reach full recall quickly using a high-quality
anchoring rule and a relatively simple ranking pol-
icy. But this outcome may in partly reflect a cir-
cularity in the experimental methodology. Our an-
choring rules are elements of the historical model,
and they therefore necessarily enable us to review
all sentences that the rule set considers relevant. A
key unanswered question is: what do these anchors
miss? Our previous work, which used this rule set
to train an ML extractor, yielded apparently valid
claim expressions that the rule set does not sanc-
tion (Freitag et al., 2022). Perhaps methods such
as IT-set and FT-centroid, which seem wasteful of
human effort, can be used to identify alternative or



develop more general anchors.

More generally, the structure of a historical rule
set is a reflection of the rule language and tooling
available to the author, and conclusions drawn from
a study of such a rule set may overlook promis-
ing points of integration between rule-based meth-
ods and machine learning or corpus analytics. For
example, the current VALET framework supports
on-demand application of /7-sef via an interactive
dialog presenting a large list of words deemed to
be close to a chosen word in the text. The user can
select any of the words in the list and ask the devel-
opment Ul to generate a new word set expression.
Similarly, VALET offers a “radius” statement that
matches words within some distance of a seed set
in lexical embedding space. And we have begun
investigating a trainable word set feature that en-
gages the user in an active learning loop to derive a
customized word matcher, one that can in principle
exploit contextual embeddings.

While such features are potentially powerful,
they sacrifice transparency and fine-grained control—
two attractive aspects of rule-based methods. In
this respect, they are in the tradition of alterna-
tive approaches to rapid IE deployment, such as
Snorkel (Ratner et al., 2017), which seeks to learn
performant extractors from collections of noisy “la-
beling functions.” Such approaches, for problems
on which they work, can lead to impressive labor
savings, but they are difficult to control and opti-
mize. But note that while Snorkel-like approaches
and traditional rule-based methods approach the IE
objective from different angles—Snorkel through
redundant, high-recall labelers, rule-based methods
through high-precision set covering—they are fun-
damentally compatible and offer interesting oppor-
tunities for hybridization. Trivially, a framework
like VALET can be used to conveniently implement
labeling functions. By the same token, Snorkel
points the way to a mode of rule set application
distinct from the typical disjunctive mode.

7 Conclusion

Rule-based methods remain an important compo-
nent of any toolset addressing the broader problem
of information extraction, especially in cases where
existing extraction models or sources of annotated
data are misaligned to new use cases. A trained
technician, outfitted with a suitable rule authoring
framework, can create a performant extractor for
a new problem in a fraction of the time required
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to produce a ML model of comparable accuracy.
Moreover, we have shown that some simple facili-
tations, based on an analysis of the rule authoring
process, can serve to increase this “early deploy-
ment advantage.” And by treating rule development
as the focus of empirical investigation, we have
pointed the way toward future systems in which
rules and ML are combined creatively to lower the
barrier to entry in the creation of custom extraction
solutions.
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