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Introduction

Welcome to the Tutorials Session of NAACL 2022!

The tutorials give an opportunity to the NAACL conference attendees to be lectured by highly qualified
expert researchers on cutting-edge and new relevant upcoming topics in our research community.

As in previous years, the organization (including submission, reviewing and selection) were coordinated
jointly with other conferences in the 2022 calendar year: ACL, NAACL, COLING and EMNLP. We
formed a review committee of 34 members, which includes the NAACL tutorial chairs, the ACL tutorial
chairs, the COLING tutorial chairs, the EMNLP tutorial chairs and 23 external reviewers (see Program
Committee for the full list). We organized a reviewing process so that each proposal received at least 3
reviews. Tutorials were evaluated based on their clarity, novelty, timely character of the topic, diversity
and inclusion, instructor’s experience, likely audience interest and open access of the tutorial instructio-
nal material. We received a total of 47 tutorial submissions, of which 6 were selected for presentation
at NAACL, considering the preferences expressed by authors and the relevance for the NAACL research
community.

We solicited two types of tutorials, namely cutting-edge themes and introductory themes. The 6 tutorials
for NAACL include one introductory tutorial and five cutting-edge tutorials. The introductory tutorial is
dedicated to Human-Centered Evaluation of Explanations (T4). The cutting-edge tutorials are: (T1) Text
Generation with Text-Editing Models, (T2) Self-supervised Representation Learning for Speech Pro-
cessing, (T3) New Frontiers of Information Extraction, (T5) Multimodal Machine Learning, and (T6)
Contrastive Data and Learning for Natural Language Processing. NAACL 2022 tutorials are delivered
in a live hybrid format and also available as pre-recorded captioned videos, with additional live Q&A
sessions.

We would like to thank the tutorial authors for their quick responses and flexibility while organizing the
conference in a hybrid mode. We are also grateful to the 23 external reviewers for their invaluable help in
the decision process. Finally, we thank the conference organizers for effective collaboration, the general
chair Dan Roth, the program chairs (Marine Carpuat, Marie-Catherine de Marneffe and Ivan Vladimir
Meza Ruiz), the publication chair Ryan Cotterell, and the authors of aclpub2 with special mention to
Jordan Zhang and Danilo Croce.

NAACL 2022 Tutorial Co-chairs,

Miguel Ballesteros
Yulia Tsvetkov
Cecilia O. Alm
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Abstract

Text-editing models have recently become
a prominent alternative to seq2seq models
for monolingual text-generation tasks such as
grammatical error correction, simplification,
and style transfer. These tasks share a com-
mon trait – they exhibit a large amount of
textual overlap between the source and tar-
get texts. Text-editing models take advantage
of this observation and learn to generate the
output by predicting edit operations applied
to the source sequence. In contrast, seq2seq
models generate outputs word-by-word from
scratch thus making them slow at inference
time. Text-editing models provide several ben-
efits over seq2seq models including faster in-
ference speed, higher sample efficiency, and
better control and interpretability of the out-
puts. This tutorial1 provides a comprehensive
overview of text-editing models and current
state-of-the-art approaches, and analyzes their
pros and cons. We discuss challenges related
to productionization and how these models can
be used to mitigate hallucination and bias, both
pressing challenges in the field of text genera-
tion.

1 Introduction

After revolutionizing the field of machine trans-
lation (Sutskever et al., 2014; Cho et al., 2014;
Bahdanau et al., 2015), sequence-to-sequence
(seq2seq) methods have quickly become the stan-
dard approach for not only multilingual but also
for monolingual sequence transduction / text gen-
eration tasks, such as text summarization, style
transfer, and grammatical error correction. While
delivering significant quality gains, these models,
however, are prone to hallucinations (Maynez et al.,
2020; Pagnoni et al., 2021). The seq2seq task setup
(where targets are generated from scratch word by
word) overlooks the fact that in many monolin-
gual tasks the source and target sequences have a

1Website: https://text-editing.github.io/

wasTuring born in 1912 and

.was

KEEP

Turing born diedin 1912 . Turing in 1954

REPLACE
(and)

.died in 1954

DELETEKEEP KEEP KEEP KEEP KEEP KEEP KEEP KEEP

Figure 1: An example of using a text-editing approach
to solve a sentence-fusion task.

considerable overlap, hence targets could be recon-
structed from the source inputs by applying a set
of edit operations.

Text-editing models attempt to address some of
the limitations of seq2seq approaches and there has
been recently a surge of interest in applying them to
a variety of monolingual tasks including text simpli-
fication (Dong et al., 2019; Mallinson et al., 2020;
Agrawal et al., 2021), grammatical error correction
(Awasthi et al., 2019; Omelianchuk et al., 2020;
Malmi et al., 2019; Stahlberg and Kumar, 2020;
Rothe et al., 2021; Chen et al., 2020; Hinson et al.,
2020; Gao et al., 2021), sentence fusion (Malmi
et al., 2019; Mallinson et al., 2020) (see an example
in Figure 1), MT automatic post-editing (Gu et al.,
2019; Zietkiewicz, 2020; Mallinson et al., 2020),
text style transfer (Reid and Zhong, 2021; Malmi
et al., 2020), data-to-text generation (Kasner and
Dušek, 2020), and utterance rewriting (Liu et al.,
2020; Voskarides et al., 2020; Jin et al., 2022).

Text-editing approaches claim to be more accu-
rate or on-par with seq2seq baselines especially in
low resource settings, less prone to hallucinations
and faster at inference time. These advantages have
generated a substantial and continued level of inter-
est in text-editing research. The goal of this tutorial
is to provide the first comprehensive overview of
the family of text-editing approaches and to offer
practical guidelines for applying them to a variety
of text-generation tasks.
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Section Duration

Introduction 15 min
What are text-editing models?
Text-editing vs. seq2seq models

Model design 40 min
Example model + model landscape
Edit-operation types
Tagging architecture
Auto-regressiveness
Converting target texts to target edits

Applications 45 min
Overview
Grammatical Error Correction
Text Simplification
Unsupervised Style Transfer
Incomplete Utterance Rewriting

Controllable generation 25 min
Mitigating hallucinations
Controllable dataset generation

Multilingual text editing 25 min
Tokenization
Handling morphology
Practical aspects

Productionization 25 min
Latency
Sample efficiency

Recommendations and future directions 5 min

Total 180 min

Table 1: Tutorial structure and duration of each section.

1.1 Target Audience and Prerequisites

The tutorial is intended for researchers and practi-
tioners who are familiar with generic seq2seq text-
generation methods, such as Transformer (Vaswani
et al., 2017) and pre-trained language models like
BERT (Devlin et al., 2019). However, prior experi-
ence with text-editing models is not required to be
able to follow the tutorial.

We expect the topic to attract people in both
academia and industry. The high-sample efficiency
and low-computational requirements of text-editing
models (Malmi et al., 2019; Mallinson et al., 2020)
makes them an attractive baseline, e.g., for re-
searchers developing new text-generation tasks for
which large training sets do not yet exist. Moreover,
the high-inference speed of text-editing methods,
owing to their often non-autoregressive architec-
ture (Awasthi et al., 2019; Mallinson et al., 2020),
makes them suitable for building real-time applica-
tions.

2 Tutorial Outline

The structure of the tutorial with duration estimates
for different sections are shown in Table 1. Below
we provide brief descriptions for each section.

Introduction. We first define the family of text-
editing methods: Text-editing models are sequence-
transduction methods that produce the output text
by predicting edit operations which are applied
to the inputs. In contrast, the traditional seq2seq
methods produce the output from scratch, token by
token. We summarize the main pros and cons of
these two approaches and provide guidelines for
choosing which approach is more suitable for a
given task.

Model Design. The similarities and differences
of a set of popular text-editing methods will be an-
alyzed in terms of the types of edit operations they
employ, their tagging architecture, and whether
they are auto-regressive or feedforward. We also
discuss methods for converting target texts into tar-
get edit sequences, a task which often does not
have a unique solution. Table 2 provides a sum-
mary of the similarities and differences between
the methods covered in the tutorial.

Applications. A key criterion for determining
whether text-editing models are a good fit for a
given application is the average degree of overlap
between source and target texts. The higher the
overlap, the more input tokens can be reused to
generate the target, thus resulting in a simpler edit
sequence. We give an overview of applications
with a high degree of overlap to which text-editing
methods have been applied to. Then we do a deep
dive in to the following applications: grammatical
error correction, text simplification, unsupervised
style transfer, and incomplete utterance rewriting.

Controllable Generation. Text-editing models
with a restricted vocabulary of phrases to insert
(Malmi et al., 2019; Jin et al., 2022) or with linguis-
tically informed suffix-transformation operations
(Awasthi et al., 2019; Omelianchuk et al., 2020)
are less prone to different types of hallucination
since the models cannot produce arbitrary outputs.
Moreover, the restricted vocabulary makes it fea-
sible to manually refine the list of phrases that the
model can insert. Another route through which the
decomposition of the generation task into explicit
edit operations can improve controllability is via bi-
asing of certain types of edits to control how often
the model will insert new text (Dong et al., 2019;
Omelianchuk et al., 2020). Controllable generation
with editing models can be useful for generating
large synthetic datasets with a desired distribution
of errors, which yields improvements in tasks such

2



Method Non-autore-
gressive

Pre-trained
decoder

Reorde-
ring

Unsuper-
vised

Language-
agnostic Application(s)

EdiT5 (Mallinson et al., 2022) (X) X X X multiple
EditNTS (Dong et al., 2019) X Simplification
Felix (Mallinson et al., 2020) X X X X multiple
GECToR (Omelianchuk et al., 2020) X (X) GEC
HCT (Jin et al., 2022) X X X Utterance Rewriting
LaserTagger (Malmi et al., 2019) X X multiple
LevT (Gu et al., 2019) (X) X X multiple
LEWIS (Reid and Zhong, 2021) X X X Style Transfer
Masker (Malmi et al., 2020) X X X X multiple
PIE (Awasthi et al., 2019) X X GEC
Seq2Edits (Stahlberg and Kumar, 2020) (X) multiple
SL (Alva-Manchego et al., 2017) X X X Simplification

Table 2: Overview of selected text-editing methods.

as grammatical error correction (Stahlberg and Ku-
mar, 2021). We will provide concrete examples
of the aforementioned control measures and their
effects.

Multilingual Text Editing. Most text-editing
models, like text-generation models in gen-
eral, are evaluated on English, but there are
also methods evaluated or specifically developed
for other languages, including Chinese (Hinson
et al., 2020; Liu et al., 2020), Czech (Náplava
and Straka, 2019), German (Mallinson et al.,
2020), Russian (Stahlberg and Kumar, 2020), and
Ukrainian (Syvokon and Nahorna, 2021). Apart
from general tokenization-related challenges dis-
cussed in (Mielke et al., 2021), an additional chal-
lenge with applying text-editing methods to mor-
phologically rich languages is a potential mismatch
between the subword tokens, on which the under-
lying sequence labeling model operates, and the
morphemes or affixes, on which the edits should
happen. Possible solutions to this challenge include
developing custom inflection operations (Awasthi
et al., 2019; Omelianchuk et al., 2020) or learn-
ing them from the data (Straka et al., 2021), and
using more fine-grained edit operations, such as
character-level edits (Gao et al., 2021).

An additional challenge when building a truly
multilingual model—as opposed to one model per
language—is to ensure that it is not skewed towards
a particular language or a set of languages (Chung
et al., 2020) while being computationally efficient.

Productionization. We discuss how casting a
text-generation problem as a text-editing task often
allows the use of significantly faster and more data-
efficient model architectures, without sacrificing
output quality. We make use of the TensorFlow

Text-generation problem

Yes

No

Sources and  
targets overlap?

Try seq2seq 
models

Yes Try text-editing 
models

Less than ~10K  
training examples?

Inference is  
latency critical?

No

Yes
No

Figure 2: Proposed flowchart for deciding when to try
a text-editing approach.

Profiler2 to compare latencies of text-editing and
non-text-editing solutions for an example problem,
and illustrate where the time savings come from.

Recommendations and Future Directions. We
provide practical guidelines for when to use (and
when not to use) text-editing methods (see Figure 2
for a summary). We also outline possible future
directions which include: (i) learned edit opera-
tions, (ii) studying the effects of different subword
segmentation methods since these typically deter-
mine the granularity at which the edit operations
are applied, (iii) text-editing-specific pre-training
methods, (iv) sampling strategies for text-editing
methods, and (v) studying the effects of scaling up

2https://www.tensorflow.org/guide/
profiler#trace_viewer_interface
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text-editing methods, a strategy that has been found
to be very effective for many other text-generation
methods (Brown et al., 2020; Chowdhery et al.,
2022).

3 Diversity Considerations

A significant portion of the tutorial is devoted to dis-
cussing multilingual text-editing, including apply-
ing text-editing models to morphologically rich lan-
guages which presents specific challenges related
to larger vocabularies and the need to edit word
affixes. The presenters come from both academia
and industry, are native speakers of 8 languages
based in 4 different countries (Switzerland, Ger-
many, Canada, USA), and are of different seniority
levels from a PhD student to a Senior Staff Re-
search Scientist.

4 Reading List

Before the tutorial, we expect the audience to read
(Vaswani et al., 2017) and (Devlin et al., 2019).
For references to text-editing works that will be
discussed in the tutorial, see Table 2.

Breadth. 50% of the methods that will be dis-
cussed in the tutorial (cf. Table 2) are developed
by different subsets of the tutorial instructors.

5 Presenters

Eric Malmi is a Senior Research Scientist at
Google Switzerland. His research is focused on
developing text-generation models for grammatical
error correction and text style transfer. He received
his PhD from Aalto University, Finland, where he
also taught a course on Recent Advances in Natural
Language Generation in Spring 2022.

Yue Dong is a final-year PhD student in CS at
McGill University and Mila, Canada. Her research
is focused on conditional text generation. She is a
co-organizer for the NewSum workshop at EMNLP
2021 and ENLSP workshop at NeurIPS 2021.

Jonathan Mallinson is a Research Engineer at
Google Switzerland. His research is focused on
low-latency text-to-text generation. He received his
PhD from the University of Edinburgh, Scotland.

Aleksandr Chuklin is a Research Engineer at
Google Switzerland. His current research focuses
on multi-lingual NLG. He organized workshops
and conducted tutorials at conferences such as SI-
GIR, EMNLP, and IJCAI. Aleksandr received his

PhD from University of Amsterdam, The Nether-
lands.

Jakub Adamek is a Research Engineer at
Google Switzerland focusing on grammatical error
correction and low-latency models. He received
his MSc from Jagiellonian University.

Daniil Mirylenka is a Research Engineer at
Google Switzerland working on text editing with
application to grammatical error correction. He
received his PhD from the University of Trento,
Italy.

Felix Stahlberg is a Research Scientist at
Google focusing on grammatical error correction
and text style models. He received his PhD from
Cambridge University, UK.

Sebastian Krause is a Senior Research Engineer
at Google Switzerland. His work is focused on
multi-lingual rewriting of questions in low-latency
settings. Sebastian received his PhD in Engineering
from the Technical University of Berlin, Germany.

Shankar Kumar is a Senior Staff Research Sci-
entist at Google leading a research team working
on speech and language algorithms. He received
his PhD from the Johns Hopkins University, US.

Aliaksei Severyn is a Staff Research Scientist at
Google Switzerland leading an applied research
team working on next generation NLG solutions.
He received his PhD from University of Trento,
Italy.

6 Ethical Considerations

Text-generation methods have the potential to gen-
erate non-factual (Maynez et al., 2020; Pagnoni
et al., 2021; Kreps et al., 2020) and offensive con-
tent (Gehman et al., 2020). Furthermore, training
these models on uncurated data can lead to the
models replicating harmful views presented in the
training data (Bender et al., 2021). Text-editing
models are also susceptible to these issues, but
they have been shown to mitigate some of them.
Specifically, they reduce the likelihood of differ-
ent types of hallucination (Malmi et al., 2019) and
their higher sample efficiency (Malmi et al., 2019;
Mallinson et al., 2020) enables more careful cura-
tion of the training data. The tutorial will discuss
the ethical issues related to text generation and pro-
vide concrete examples on how text-editing models
can help mitigate them.
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1 Introduction

There is a trend in the machine learning commu-
nity to adopt self-supervised approaches to pre-
train deep networks. Self-supervised representation
learning (SSL) utilizes proxy supervised learning
tasks, for example, distinguishing parts of the input
signal from distractors, or generating masked input
segments conditioned on the unmasked ones, to
obtain training data from unlabeled corpora. BERT
and GPT in NLP and SimCLR and BYOL in CV
are famous examples in this direction. These ap-
proaches make it possible to use a tremendous
amount of unlabeled data available on the web to
train large networks and solve complicated tasks.
Thus, SSL has the potential to scale up current
machine learning technologies, especially for low-
resourced, under-represented use cases, and democ-
ratize the technologies.

Recently self-supervised approaches for speech
processing are also gaining popularity. There are
several workshops in relevant topics hosted at
ICML 20201, NeurIPS 20202, and AAAI 20223 4.
We also found SSL for speech starting to be one
of the focused topics in special/regular sessions of
mainstream speech conferences such as ICASSP
and Interspeech5 6. On the other hand, there is a
growing synergy between the speech and compu-
tational linguistic community because of the prox-
imity of the two areas. Many problems including
speech assistant, dialog management, speech trans-
lation, and automatic speech recognition attract

1https://icml-sas.gitlab.io/
2https://neurips-sas-2020.github.io/
3https://aaai-sas-2022.github.io/
4Hung-yi Lee, Abdelrahman Mohamed, Shinji Watanabe,

Tara Sainath, Karen Livescu, Shang-Wen Li are in the orga-
nization committee of the workshops at NeurIPS 2020 and
AAAI 2022

5https://self-supervised-sp.github.io/
Interspeech2020-Special-Session

6Organized by Hung-yi Lee, Abdelrahman Mohamed,
Shinji Watanabe, Tara Sainath

researchers from both areas.
Due to the growing popularity of SSL, and the

shared mission of the areas in bringing speech and
language technologies to more use cases with bet-
ter quality and scaling the technologies for under-
represented languages, we propose this tutorial in
the type of Cutting-edge to systematically survey
the latest SSL techniques, tools, datasets, and per-
formance achievement in speech processing. There
is no previous tutorial about similar topic based
on the authors’ best knowledge. The tutorial aims
to make the researchers in speech and language
community aware of existing SSL innovation, and
equipped to try out the new techniques. We also
hope to bring researchers interested in the topics
from both areas connected, catalyze new ideas and
collaboration, and drive the SSL research frontier.

2 Tutorial Structure and Content

This is a three-hour tutorial. In the reference be-
low, the red asterisks (∗) indicate the papers of the
speakers. This tutorial will cover at least 70% of
the content not from the authors’ papers.

2.1 Introduction and Motivation

We first introduce the general framework of pre-
training SSL, and motivate the importance of SSL
in speech processing. SSL makes it possible to
leverage unlabeled audio data and avoid the costly
data labeling step, which is especially helpful for
low-resource languages.

2.2 Backgrounds and development trajectory

Representation learning is not an entirely new idea.
This tutorial will briefly review what has been done
before the wave of SSL in the speech community
and the relations and differences between SSL and
previous representation learning approaches. These
approaches include clustering and mixture models
(e.g., HMM, GMM) (Jansen and Church, 2011; Lee
and Glass, 2012; Chung et al., 2013; Zhang and
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Glass, 2010), and stacked representation learners
(e.g., RBM, NAE, NCE, SparseCoding) (Mohamed
and Hinton, 2010)∗(Driesen and Van hamme, 2012;
Hazen et al., 2009; Sivaram et al., 2010).

2.3 Speech SSL Approaches

Then, we discuss the design and implementation
details of existing speech SSL approaches, which
can be categorized into three types, Generative,
Contrastive, and Predictive approaches. Gen-
erative approaches learn SSL representations by
reconstructing input features given historical or
unmasked ones. Representative models in this
type include APC (Chung et al., 2019; Chung and
Glass, 2020a,b), VQ-APC (Chung et al., 2020), De-
CoAR (Ling et al., 2020)∗, DeCoAR 2.0 (Ling
and Liu, 2020)∗, Mockingjay (Liu et al., 2020;
Chi et al., 2021)∗, TERA (Liu et al., 2021b)∗,
MPC (Jiang et al., 2019, 2021), pMPC (Yue
and Li, 2021), speech-XLNet (Song et al., 2020)
NPC (Liu et al., 2021a), and PASE+ (Pascual
et al., 2019; Ravanelli et al., 2020). Contrastive
approaches pre-train representations to distin-
guish negative examples from real ones. Pop-
ular contrastive models consist of CPC (Oord
et al., 2018), wav2vec (Schneider et al., 2019),
vq-wav2vec (Baevski et al., 2020a), wav2vec
2.0 (Baevski et al., 2020b), and Wav2vec-c (Sadhu
et al., 2021). Predictive approaches, such as
HuBERT (Hsu et al., 2021)∗, follow BERT pre-
training through predicting discrete labels given
input data.

In addition to the above three types, we will dis-
cuss the similarities and dissimilarities between
SSL for speech and other modalities such as CV
and NLP. We will also investigate studies in learn-
ing from multi-modal data as the naturally pair-
ing of modalities in videos can potentially benefit
representation learning without annotation. The
discussion helps audience better connect works in
adjacent communities and inspire more innovation.

2.4 Benchmarking, Toolkit, and Analysis

We will investigate existing benchmarks (e.g.,
SUPERB (wen Yang et al., 2021)∗, LeBench-
mark (Evain et al., 2021) and ZeroSpeech (Dunbar
et al., 2020)) and analyses (e.g., (Pasad et al., 2021;
wen Yang et al., 2020)∗) for SSL speech models
to understand their performance and what are en-
coded in representations. This tutorial will also
include a demo to introduce the usage of the self-

supervised speech representation toolkit: s3prl7,
and how to use s3prl in ESPNet8, such that audi-
ences interested in this research direction can try
out their ideas easily.

2.5 From representation learning to zero
resources

To illustrate the critical role of SSL in democra-
tizing speech and language technologies for low-
resourced use cases, we further discuss two top-
ics, unsupervised speech recognition and text-
less NLP, and their relation to SSL. Unsupervised
speech recognition (Liu et al., 2018; Chen et al.,
2019)∗ (Yeh et al., 2018; ; Baevski et al., 2020b;
Chung et al., 2018; Chung et al.) aims at solving
speech recognition problem for the extremely low-
resource languages, where only unpaired speech
and text are available. We will discuss two research
questions: 1) In such a situation, can machine still
learn how to transcribe speech into text? 2) How
can SSL models help unsupervised speech recogni-
tion?

Previously, connecting an NLP application to
speech inputs meant that researchers had to first
train an automatic speech recognition (ASR) sys-
tem, which is available for just a handful of lan-
guages. The goal of textless NLP is to bring NLP
and speech technology to languages that do not
have ASR systems available or that do not even
have written form, which contribute to around half
of the languages in the world. In this topic, we will
examine how to skip ASR and work in an end-to-
end fashion, from the speech input to speech/text
outputs, for scaling language and speech technolo-
gies to more languages (Polyak et al., 2021a,b)∗.

2.6 Conclusion and future directions

We will conclude this tutorial with some possible
future research directions. Prompt Tuning: As
SSL models become larger, fine-tuning their pa-
rameters becomes challenging, which makes the
idea of prompt tuning appealing. Prompt tuning
has been widely studied for text (Liu et al., 2021c),
but how to apply the technology to Speech SSL
models is still unclear. Small Footprint: SSL
speech models are usually gigantic. In order to
make the technology more widely applicable, it is
critical to develop small footprint SSL speech mod-
els. Prevent Attack: To build more robust SSL

7https://github.com/s3prl/s3prl
8https://github.com/espnet/espnet
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speech models, how to prevent the models from
all kinds of attacks, including adversarial attacks
and privacy attacks, will be an important research
question. Bias issue: Because the training data of
SSL speech models is unlabeled, it is not trivial to
control the distributions of the SSL training data.
The influence of biased data on SSL speech models
and impact of the biased models on downstream
tasks are not sufficiently studied and might pose
risk on the application of SSL.

3 Diversity

The proposed tutorial is highly relevant to the spe-
cial theme of ACL about language diversity. One
of the main focuses of the tutorial is leveraging
SSL to reduce the dependence of speech and lan-
guage technologies on labeled data, and to scale up
the technologies especially for under-represented
languages and use cases. We will also discuss the
new challenges and ethical consideration brought
by SSL to communities, such as heavy memory
footprint, expensive computation for pre-training
and inference, and carbon emission. These top-
ics aim at stimulating discussion and investment
in allowing more use cases, in terms of quantity
and diversity, to benefit from the advancement of
speech and language technologies with the appli-
cation of SSL. Hence, ACL would be preferred
because of the alignment of themes. NAACL-
HLT/EMNLP/COLING are also acceptable due
to the importance and relevance of SSL techniques
for speech and language community.

In addition to the themes of tutorial, the pre-
senters are also diverse in countries and genders.
There are both senior and junior instructors, and
come from academia and industry. With the diverse
background of presenters, we aim to offer attendees
a comprehensive review and encourage diversified
discussion.

4 Attendee prerequisites and reading list

We will introduce every speech and language task
discussed in the tutorial and require no domain
knowledge about these tasks from attendees. In-
stead, the attendees should understand derivatives
as found in introductory Calculus, possess basic
knowledge in machine learning concepts such as
classification, model optimization, gradient de-
scent, pre-training, and Transformer. We also en-
courage the audience to read the papers of some
well-known SSL techniques before the tutorial,

which are listed below: (Ericsson et al., 2021;
Rogers et al., 2020; Liu et al., 2021c; Qiu et al.,
2020). Those papers focus on CV or NLP, so the
content does not highly overlap with the tutorial,
but the audience can learn more from the tutorial if
they already have general ideas about SSL.

5 Tutorial Logistics

There is no previous tutorial on similar topics.
Given our experiences from related ICML and
NeurIPS workshops in 2020 (we observed 13 in-
vited talks, 28 accepted papers, and over 150 par-
ticipants combined) and the growing interests in
SSL from academy, we estimate the number of par-
ticipants to be between 100 and 200. We do not
have special requirements for technical equipment
and we will allow the publication of our slides and
recording of the tutorial in the ACL Anthology.

6 Biographies of Presenters

Hung-yi Lee is an associate professor of the De-
partment of Electrical Engineering of National Tai-
wan University, with a joint appointment at the
Department of Computer Science & Information
Engineering of the university. His research focuses
on deep learning, spoken language understand-
ing and speech recognition. He gave tutorials at
ICASSP 20189, APSIPA 2018, ISCSLP 2018, IN-
TERSPEECH 201910, SIPS 2019, INTERSPEECH
2020, ICASSP 2021, ACL 2021.

Abdelrahman Mohamed is a research scientist
at Facebook AI research (FAIR) in Seattle. Before
FAIR, he was a principal scientist/manager in Ama-
zon Alexa AI team. From 2014 to 2017, he was
in Microsoft Research Redmond. He received his
PhD from the University of Toronto with Geoffrey
Hinton and Gerald Penn where he was part of the
team that started the Deep Learning revolution in
Spoken Language Processing in 2009. He is the
recipient of the IEEE Signal Processing Society
Best Journal Paper Award for 2016. His research
interests span Deep Learning, Spoken Language
Processing, and Natural Language Understanding.
He gave tutorials at the 4th International School
on Deep Learning, and Facebook AI bootcamp in
Dubai, UAE, 2021.

Shinji Watanabe is an Associate Professor at

9The tutorial has the most participants among the 14 tuto-
rials in ICASSP 2018.

10The tutorial also has the most participants among the 8
tutorials in INTERSPEECH 2019.
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Carnegie Mellon University. He was a research
scientist at NTT Communication Science Labora-
tories, Kyoto, Japan, from 2001 to 2011, a visiting
scholar in Georgia institute of technology, Atlanta,
GA in 2009, and a senior principal research sci-
entist at Mitsubishi Electric Research Laborato-
ries (MERL), Cambridge, MA USA from 2012
to 2017. He was an associate research profes-
sor at Johns Hopkins University, Baltimore, MD
USA from 2017 to 2020. His research interests
include automatic speech recognition, speech en-
hancement, spoken language understanding, and
machine learning for speech and language process-
ing. He has published more than 200 papers in peer-
reviewed journals and conferences and received
several awards, including the best paper award from
the IEEE ASRU in 2019. He served as an Associate
Editor of the IEEE Transactions on Audio Speech
and Language Processing. He was/has been a mem-
ber of several technical committees, including the
APSIPA Speech, Language, and Audio Technical
Committee (SLA), IEEE Signal Processing Soci-
ety Speech and Language Technical Committee
(SLTC), and Machine Learning for Signal Process-
ing Technical Committee (MLSP). He gave tuto-
rials at ICASSP 2021, Interspeech 2019, APSIPA
ASC 2016, Interspeech 2016, ICASSP 2012.

Tara Sainath received her PhD in Electrical
Engineering and Computer Science from MIT in
2009. The main focus of her PhD work was in
acoustic modeling for noise robust speech recogni-
tion. After her PhD, she spent 5 years at the Speech
and Language Algorithms group at IBM T.J. Wat-
son Research Center, before joining Google Re-
search. She has co-organized a special session
on Sparse Representations at Interspeech 2010 in
Japan. In addition, she is a staff reporter for the
IEEE Speech and Language Processing Technical
Committee (SLTC) Newsletter. Her research in-
terests are mainly in acoustic modeling, including
deep neural networks, sparse representations and
adaptation methods.

Karen Livescu is an Associate Professor at TTI-
Chicago, a philanthropically endowed academic
computer science institute located on the Univer-
sity of Chicago campus. She completed her PhD
in 2005 at MIT in the Spoken Language Systems
group of the Computer Science and Artificial In-
telligence Laboratory. In 2005-2007 she was a
post-doctoral lecturer in the MIT EECS depart-
ment. Her main research interests are in speech

and language processing and related problems in
machine learning. Her recent work includes multi-
view representation learning, acoustic word em-
beddings, visually grounded speech modeling, and
automatic sign language recognition. Her recent
professional activities include serving as a program
chair of ICLR 2019 and a technical co-chair of
ASRU 2015/2017/2019 and Interspeech 2022. She
gave tutorials at SLT 2014, the Machine Learning
Summer School, London, 2019, the Introduction to
Machine Learning Summer School, Chicago, 2018,
the Lisbon Machine Learning Summer School, Lis-
bon, 2018, Jelinek Summer Workshop School on
Human Language Technology, 2015 and 2016.

Shang-Wen Li is a Research and Engineering
Manager at Facebook AI, and he worked at Ap-
ple Siri, Amazon Alexa and AWS before joining
Facebook. He completed his PhD in 2016 at MIT
in the Spoken Language Systems group of Com-
puter Science and Artificial Intelligence Laboratory
(CSAIL). His research is focused on spoken lan-
guage understanding, dialog management, machine
reading comprehension, and low-resource speech
processing. He gave 3-hour tutorials at INTER-
SPEECH 2020, ICASSP 2021, ACL 2021.

Shu-wen Yang is currently pursuing his Ph.D.
degree in NTU. His research focuses on Self-
Supervised Learning (SSL) in speech. He is ded-
icated to establishing the benchmark in this field,
Speech processing Universal PERformance Bench-
mark (SUPERB), which focuses on SSL’s general-
izability across unseen data domains and tasks. He
is also the co-creator of the S3PRL toolkit which in-
cludes numerous recipes for both pre-training and
benchmarking for SSL in speech.

Katrin Kirchhoff is a Director of Applied Sci-
ence at Amazon Web Services, where she heads
several teams in speech and audio processing. Prior
to joining Amazon she was a Research Professor at
the University of Washington, Seattle, for 17 years,
where she co-founded the Signal, Speech and Lan-
guage Interpretation Lab. Her research interests are
in speech processing, conversational AI, and ma-
chine learning, including representation learning,
continual learning, and low-resource ASR. She has
previously served on the editorial boards of Speech
Communication and Computer, Speech, and Lan-
guage, and was a member of the IEEE Speech
Technical Committee.
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Abstract
This tutorial targets researchers and practition-
ers who are interested in AI and ML technolo-
gies for structural information extraction (IE)
from unstructured textual sources. In particu-
lar, this tutorial will provide audience with a
systematic introduction to recent advances in
IE, by addressing several important research
questions. These questions include (i) how
to develop a robust IE system from a small
amount of noisy training data, while ensur-
ing the reliability of its prediction? (ii) how
to foster the generalizability of IE through
enhancing the system’s cross-lingual, cross-
domain, cross-task and cross-modal transfer-
ability? (iii) how to support extracting struc-
tural information with extremely fine-grained
and diverse labels? (iv) how to further im-
prove IE by leveraging indirect supervision
from other NLP tasks, such as Natural Lan-
guage Generation (NLG), Natural Language
Inference (NLI), Question Answering (QA) or
summarization, and pre-trained language mod-
els? (v) how to acquire knowledge to guide
inference in IE systems? We will discuss sev-
eral lines of frontier research that tackle those
challenges, and will conclude the tutorial by
outlining directions for further investigation.

1 Introduction

Information extraction (IE) is the process of au-
tomatically extracting structural information from
unstructured or semi-structured data. It provides
the essential support for natural language under-
standing by recognizing and resolving the concepts,
entities, events described in text, and inferring the
relations among them. In various application do-
mains, IE automates the costly acquisition process
of domain-specific knowledge representations that
have been the backbone of any knowledge-driven
AI systems. For example, automated knowledge
base construction has relied on technologies for
entity-centric IE (Carlson et al., 2010; Lehmann
et al., 2015). Extraction of events and event chains

assists machines with narrative prediction (Zhang
et al., 2021b; Chaturvedi et al., 2017) and summa-
rization tasks (Liu et al., 2018; Chen et al., 2019b).
Medical IE also benefits important but expensive
clinical tasks such as drug discovery and repurpos-
ing (Sosa et al., 2019; Munkhdalai et al., 2018).
Despite the importance, frontier research in IE still
faces several key challenges. The first challenge
is that existing dominant methods using language
modeling representation cannot sufficiently capture
the essential knowledge and structures required for
IE tasks. The second challenge is on the develop-
ment of extraction models for fine-grained infor-
mation with less supervision, considering that ob-
taining structural annotation on unlabeled data has
been very costly. The third challenge is to extend
the reliability and generalizability of IE systems in
real-world scenarios, where data sources often con-
tain incorrect, invalid or unrecognizable inputs, as
well as inputs containing unseen labels and mixture
of modalities. By tackling those critical challenges,
recent literature is leading to transformative ad-
vancement in principles and methodologies of IE
system development. We believe it is necessary to
present a timely tutorial to comprehensively sum-
marize the new frontiers in IE research and point
out the emerging challenges that deserve further
investigation.

In this tutorial, we will systematically review
several lines of frontier research on developing ro-
bust, reliable and adaptive learning systems for ex-
tracting rich structured information. Beyond intro-
ducing robust learning and inference methods for
unsupervised denoising, constraint capture and nov-
elty detection, we will discuss recent approaches
for leveraging indirect supervision from natural lan-
guage inference and generation tasks to improve IE.
We will also review recent minimally supervised
methods for training IE models with distant super-
vision from linguistic patterns, corpus statistics or
language modeling objectives. In addition, we will
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Figure 1: A roadmap for new frontiers of information extraction and a graphical abstract of this tutorial.

illustrate how a model trained on a close domain
can be reliably adapted to produce extraction from
data sources in different domains, languages and
modalities, or acquiring global knowledge (e.g.,
event schemas) to guide the extraction on a highly
diverse open label space. Participants will learn
about recent trends and emerging challenges in this
topic, representative tools and learning resources
to obtain ready-to-use models, and how related
technologies benefit end-user NLP applications. A
graphical abstract of this tutorial is provided as
Fig. 1, which serves as our roadmap for new fron-
tiers of information extraction.

2 Outline of Tutorial Content

This half-day tutorial presents a systematic
overview of recent advancement in IE technolo-
gies. We will begin motivating this topic with a
selection of real-world applications and emerging
challenges of IE. Then, we will introduce robust
learning methods and inference methods to tackle
noisy supervision, prediction inconsistency and out-
of-distribution (OOD) inputs. We will also discuss
about indirect supervision and minimal supervision
methods that further improves IE model develop-
ment under limited learning resources. Based on
the robust IE systems developed in close-domain
settings, we will explain how transfer learning tech-
nologies can adaptively extend the utility of the sys-

tems across domains, languages and tasks, and how
complementary information can be extracted from
data modalities other than human language. More-
over, we will exemplify the use of aforementioned
technologies in various end-user NLP applications
such as misinformation detection and scientific dis-
covery, and will outline emerging research chal-
lenges that may catalyze further investigation on
developing reliable and adaptive learning systems
for IE. The detailed contents are outlined below.

2.1 Background and Motivation [20min]

We will define the main research problem and mo-
tivate the topic by presenting several real-world
NLP and knowledge-driven AI applications of IE
technologies, as well as several key challenges that
are at the core of frontier research in this area.

2.2 Robust Learning and Inference for IE
[35min]

We will introduce methodologies that enhance the
robustness of learning systems for IE in both their
learning and inference phases. Those methodolo-
gies involve self-supervised denoising techniques
for training noise-robust IE models based on co-
regularized knowledge distillation (Zhou and Chen,
2021; Liang et al., 2021), label re-weighting (Wang
et al., 2019b) and label smoothing (Lukasik et al.,
2020). Besides, we will also discuss about unsuper-
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vised techniques for out-of-distribution (OOD) de-
tection (Zhou et al., 2021b; Hendrycks et al., 2020),
prediction with abstention (Dhamija et al., 2018;
Hendrycks et al., 2018) and novelty class detection
(Perera and Patel, 2019) that seek to help the IE
model identify invalid inputs or inputs with seman-
tic shifts during its inference phase. Specifically, to
demonstrate how models can ensure the global con-
sistency of the extraction, we will cover constraint
learning methods that automatically capture logical
constraints among relations (Wang et al., 2021a,
2022c; Pan et al., 2020), and techniques to enforce
the constraints in inference (Wang et al., 2020; Li
et al., 2019a; Han et al., 2019; Lin et al., 2020). To
assess if the systems give faithful extracts, we will
also talk about the spurious correlation problems
of current IE models and how to address them with
counterfactual analysis (Wang et al., 2022b; Qian
et al., 2021).

2.3 Minimally and Indirectly Supervised IE
[35min]

We will introduce effective approaches that use al-
ternative supervision sources for IE, that is, to use
supervision signals from related tasks to make up
for the lack of quantity and comprehensiveness in
IE-specific training data. This includes indirect
supervision sources such as question answering
and reading comprehension (Wu et al., 2020; Lyu
et al., 2021; Levy et al., 2017; Li et al., 2019b;
Du and Cardie, 2020), natural language inference
(Li et al., 2022a; Yin et al., 2020) and generation
(Lu et al., 2021; Li et al., 2021b). We will also
cover the use of weak supervision sources such as
structural texts (e.g., Wikipedia) (Ji et al., 2017;
Zhou et al., 2018) and global biases (Ning et al.,
2018b). With the breakthrough of large-scale pre-
trained language models (Devlin et al., 2019; Li
et al., 2022c), methodologies have been proposed
to explore the language model objective as indi-
rect supervision for IE. To this end, we will cover
methods includes direct probing (Feldman et al.,
2019; Zhang et al., 2020c), and more recently, pre-
training with distant signals acquired from linguis-
tic patterns (Zhou et al., 2020, 2021a).

2.4 Transferablity of IE Systems [35min]
One important challenge of developing IE sys-
tems lies in the limited coverage of predefined
schemas (e.g., predefined types of entities, rela-
tions or events) and the heavy reliance on human
annotations. When moving to new types, domains

or languages, we have to start from scratch by creat-
ing annotations and re-training the extraction mod-
els. In this part of tutorial, we will cover the re-
cent advances in improving the transferability of
IE, including (1) cross-lingual transfer by leverag-
ing adversarial training (Chen et al., 2019a; Huang
et al., 2019; Zhou et al., 2019), language-invariant
representations (Huang et al., 2018a; Subburathi-
nam et al., 2019) and resources (Tsai et al., 2016;
Pan et al., 2017), pre-trained multilingual language
models (Wu and Dredze, 2019; Conneau et al.,
2020) as well as data projection (Ni et al., 2017;
Yarmohammadi et al., 2021), (2) cross-type trans-
fer including zero-shot and few-shot IE by learning
prototypes (Huang et al., 2018b; Chan et al., 2019;
Huang and Ji, 2020), reading the definitions (Chen
et al., 2020b; Logeswaran et al., 2019; Obeidat
et al., 2019; Yu et al., 2022; Wang et al., 2022a),
answering questions (Levy et al., 2017; Liu et al.,
2020; Lyu et al., 2021), and (3) transfer across dif-
ferent benchmark datasets (Xia and Van Durme,
2021; Wang et al., 2021b). Finally, we will also dis-
cuss the progress on life-long learning for IE (Wang
et al., 2019a; Cao et al., 2020; Yu et al., 2021; Liu
et al., 2022) to enable knowledge transfer across
incrementally updated models.

2.5 Cross-modal IE [20min]
Cross-modal IE aims to extract structured knowl-
edge from multiple modalities, including unstruc-
tured and semi-structured text, images, videos, ta-
bles, etc. We will start from visual event and argu-
ment extraction from images (Yatskar et al., 2016;
Gkioxari et al., 2018; Pratt et al., 2020; Zareian
et al., 2020; Li et al., 2022b) and videos (Gu
et al., 2018; Sadhu et al., 2021; Chen et al., 2021a).
To extract multimedia events, the key challenge
is to identify the cross-modal coreference and
linking (Deng et al., 2018; Akbari et al., 2019;
Zeng et al., 2019) and represent both text and vi-
sual knowledge in a common semantic space (Li
et al., 2020a; Chen et al., 2021b; Zhang et al.,
2021a; Li et al., 2022b). We will also introduce
the information extraction from semi-structured
data (Katti et al., 2018; Qian et al., 2019) and tabu-
lar data (Herzig et al., 2020).

2.6 Knowledge-guided IE [15min]
Global knowledge representation induced from
large-scale corpora can guide the inference about
the complicated connections between knowledge
elements and help fix the extraction errors. We will
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introduce cross-task and cross-instance statistical
constraint knowledge (Lin et al., 2020; Van Nguyen
et al., 2021), commonsense knowledge (Ning et al.,
2018a), and global event schema knowledge (Li
et al., 2020b; Wen et al., 2021; Li et al., 2021a;
Jin et al., 2022) that help jointly extract entities,
relations, and events.

2.7 Future Research Directions [30min]

IE is a key component in supporting knowledge
acquisition and it impacts a wide spectrum of
knowledge-driven AI applications. We will con-
clude the tutorial by presenting further challenges
and potential research topics in identifying trust-
worthiness of extracted content (Zhang et al., 2019,
2020b), IE with quantitative reasoning (Elazar
et al., 2019; Zhang et al., 2020a), cross-document
IE (Caciularu et al., 2021), incorporating domain-
specific knowledge (Lai et al., 2021; Zhang et al.,
2021c), extension to knowledge reasoning and pre-
diction, modeling of label semantics (Huang et al.,
2022; Mueller et al., 2022; Ma et al., 2022; Chen
et al., 2020a), and challenges for acquiring implicit
but essential information from corpora that poten-
tially involve reporting bias (Sap et al., 2020).

3 Specification of the Tutorial

The proposed tutorial is considered a cutting-edge
tutorial that introduces new frontiers in IE re-
search. The presented topic has not been covered
by ACL/EMNLP/NAACL/EACL/COLING tutori-
als in the past 4 years. One exception is the ACL
2020 tutorial “Multi-modal Information Extraction
from Text, Semi-structured, and Tabular Data on
the Web” that is partly relevant to one of our tech-
nical sections (§2.5). That particular section of our
talk will focus on IE from visual and multi-media
data in addition to semi-structured data, being dif-
ferent from the aforementioned ACL 2020 tutorial
that has mainly covered topics on semi-structured
data.
Audience and Prerequisites Based on the level of
interest in this topic, we expect around 150 partic-
ipants. While no specific background knowledge
is assumed of the audience, it would be the best
for the attendees to know about basic deep learning
technologies, pre-trained word embeddings (e.g.
Word2Vec) and language models (e.g. BERT). A
reading list that could help provide background
knowledge to the audience before attending this
tutorial is given in Appx. §A.2.

Open Access All the materials are openly avail-
able at https://cogcomp.seas.upenn.
edu/page/tutorial.202207.

4 Tutorial Instructors

The following are biographies of the speaker. Past
tutorials given by us are listed in Appx. §A.1.
Muhao Chen is an Assistant Research Professor
of Computer Science at USC, where he directs
the Language Understanding and Knowledge Ac-
quisition (LUKA) Group. His research focuses
on data-driven machine learning approaches for
natural language understanding and knowledge ac-
quisition. His work has been recognized with an
NSF CRII Award, a Cisco Faculty Research Award,
an ACM SIGBio Best Student Paper Award, and
a Best Paper Nomination at CoNLL. Muhao ob-
tained his B.S. in Computer Science degree from
Fudan University in 2014, his PhD degree from
UCLA Department of Computer Science in 2019,
and was a postdoctoral researcher at UPenn prior
to joining USC. Additional information is available
at http://muhaochen.github.io.
Lifu Huang is an Assistant Professor at the Com-
puter Science department of Virginia Tech. He
obtained a PhD in Computer Science from UIUC.
He has a wide range of research interests in NLP,
including extracting structured knowledge with lim-
ited supervision, natural language understanding
and reasoning with external knowledge and com-
monsense, natural language generation, represen-
tation learning for cross-lingual and cross-domain
transfer, and multi-modality learning. He is a recip-
ient of the 2019 AI2 Fellowship and 2021 Amazon
Research Award. Additional information is avail-
able at https://wilburone.github.io/.
Manling Li is a fourth-year Ph.D. student at the
Computer Science Department of UIUC. Manling
has won the Best Demo Paper Award at ACL’20,
the Best Demo Paper Award at NAACL’21, C.L.
Dave and Jane W.S. Liu Award, and has been
selected as Mavis Future Faculty Fellow. She
is a recipient of Microsoft Research PhD Fel-
lowship. She has more than 30 publications on
knowledge extraction and reasoning from multi-
media data. Additional information is available at
https://limanling.github.io.
Ben Zhou is a third-year Ph.D. student at the De-
partment of Computer and Information Science,
University of Pennsylvania. He obtained his B.S.
from UIUC in 2019. Ben’s research interests
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are distant supervision extraction and experiential
knowledge reasoning, and he has more than 5 re-
cent papers on related topics. He is a recipient
of the ENIAC fellowship from the University of
Pennsylvania, and a finalist of the CRA outstanding
undergraduate researcher award. Additional infor-
mation is available at http://xuanyu.me/.

Heng Ji is a Professor at Computer Science Depart-
ment of University of Illinois Urbana-Champaign,
and an Amazon Scholar. She received her B.A.
and M. A. in Computational Linguistics from Ts-
inghua University, and her M.S. and Ph.D. in
Computer Science from New York University.
Her research interests focus on NLP, especially
on Multimedia Multilingual Information Extrac-
tion, Knowledge Base Population and Knowledge-
driven Generation. She was selected as “Young Sci-
entist” and a member of the Global Future Council
on the Future of Computing by the World Eco-
nomic Forum. The awards she received include
“AI’s 10 to Watch” Award, NSF CAREER award,
Google Research Award, IBM Watson Faculty
Award, Bosch Research Award, and Amazon AWS
Award, ACL2020 Best Demo Paper Award, and
NAACL2021 Best Demo Paper Award. Additional
information is available at https://blender.
cs.illinois.edu/hengji.html.

Dan Roth is the Eduardo D. Glandt Distinguished
Professor at the Department of Computer and In-
formation Science, UPenn, the NLP Lead at AWS
AI Labs, and a Fellow of the AAAS, ACM, AAAI,
and ACL. In 2017 Roth was awarded the John Mc-
Carthy Award, the highest award the AI commu-
nity gives to mid-career AI researchers. Roth was
recognized “for major conceptual and theoretical
advances in the modeling of natural language under-
standing, machine learning, and reasoning.” Roth
has published broadly in machine learning, NLP,
KRR, and learning theory, and has given keynote
talks and tutorials in all ACL and AAAI major con-
ferences. Roth was the Editor-in-Chief of JAIR
until 2017, and was the program chair of AAAI’11,
ACL’03 and CoNLL’02; he serves regularly as an
area chair and senior program committee mem-
ber in the major conferences in his research areas.
Prof. Roth received his B.A Summa cum laude
in Mathematics from the Technion, and his Ph.D.
in Computer Science from Harvard University in
1995. Additional information is available at http:
//www.cis.upenn.edu/~danroth/.
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Ethical Considerations

Innovations in technology often face the ethical
dilemma of dual use: the same advance may of-
fer potential benefits and harms. For the IE tech-
nologies introduced in this tutorial, the distinction
between beneficial use and harmful use depends
mainly on the data. Proper use of the technology
requires that input text corpora, as well as other
modalities of inputs, are legally and ethically ob-
tained. Regulation and standards provide a legal
framework for ensuring that such data is properly
used and that any individual whose data is used has
the right to request its removal. In the absence of
such regulation, society relies on those who apply
technology to ensure that data is used in an ethical
way. Besides, training and assessment data may be
biased in ways that limit system accuracy on less
well represented populations and in new domains,
for example causing disparity of performance for
different sub-populations based on ethnic, racial,
gender, and other attributes. Furthermore, trained
systems degrade when used on new data that is
distant from their training data. Thus questions
concerning generalizability and fairness need to be
carefully considered when applying the IE tech-
nologies to specific datasets.

A general approach to ensure proper, rather
than malicious, application of dual-use technol-
ogy should: incorporate ethics considerations as
the first-order principles in every step of the system
design, maintain a high degree of transparency and
interpretability of data, algorithms, models, and
functionality throughout the system, make software
available as open source for public verification and
auditing, and explore countermeasures to protect
vulnerable groups.
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A Appendix

A.1 Past Tutorials by the Instructors
The presenters of this tutorial have given the follow-
ing tutorials at leading international conferences
and venues in the past:

• Muhao Chen:
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A.2 Recommended Paper List

The following is a reading list that could help pro-
vide background knowledge to the audience before
attending this tutorial:

• Wenxuan Zhou, Muhao Chen. Learning from
Noisy Labels for Entity-Centric Information Ex-
traction. EMNLP, 2021.

• Wenxuan Zhou, Fanyu Liu, Muhao Chen. Con-
trastive Out-of-Distribution Detection for Pre-
trained Transformers. EMNLP, 2021.

• Xingyuan Pan, Maitrey Mehta, Vivek Srikumar.
Learning Constraints for Structured Prediction Us-
ing Rectifier Networks. ACL, 2020.
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Radev, Richard Socher, Caiming Xiong. Universal
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• Bangzheng Li, Wenpeng Yin, Muhao Chen. Ultra-
fine Entity Typing with Indirect Supervision from
Natural Language Inference. TACL, 2022.

• Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan,
Sebastian Riedel, Clare Voss. Zero-shot transfer
learning for event extraction. ACL, 2018.

• Ananya Subburathinam, Di Lu, Heng Ji, Jonathan
May, Shih-Fu Chang, Avirup Sil, Clare Voss.
Cross-lingual structure transfer for relation and
event extraction. EMNLP, 2019.

• Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao
Guo, Shiyu Chang, William Yang Wang. Sentence
Embedding Alignment for Lifelong Relation Ex-
traction. NAACL, 2019.

• Hassan Akbari, Svebor Karaman, Surabhi Bhar-
gava, Brian Chen, Carl Vondrick, and Shih-Fu
Chang. Multi-level multimodal common semantic
space for image-phrase grounding. CVPR, 2019.
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Abstract
The NLP community are increasingly inter-
ested in providing explanations for NLP mod-
els to help people make sense of model be-
havior and potentially improve human inter-
action with models. In addition to compu-
tational challenges in generating these expla-
nations, evaluations of the generated expla-
nations require human-centered perspectives
and approaches. This tutorial will provide
an overview of human-centered evaluations of
explanations. First, we will give a brief in-
troduction to the psychological foundation of
explanations as well as types of NLP model
explanations and their corresponding presen-
tation, to provide the necessary background.
We will then present a taxonomy of human-
centered evaluation of explanations and dive
into depth in the two categories: 1) evalua-
tion with human-subjects studies; 2) evalua-
tion based on human-annotated explanations.
We will conclude by discussing future direc-
tions. We will also adopt a flipped format to
maximize the interactive components for the
live audience.

Type of Tutorial: It will be designed to provide in-
troductory content for computer scientists, but aim
to cultivate cutting-edge interdisciplinary research
to work on this inherently human-centric topic by
introducing perspectives and methods from psy-
chology and human-computer interaction (HCI).

1 Tutorial Description

Thanks to recent advances in deep learning and
large-scale pretrained language models, NLP sys-
tems have demonstrated impressive performance in
a wide variety of tasks, ranging from classification
to generation. However, in order to effectively use
these NLP systems in support of human endeavour,
it is critical that we can explain model predictions
in ways that humans can easily comprehend. Such
explanations are particularly important for high-
stakes decisions such as hiring and loan approval.

Indeed, the NLP community have developed a bat-
tery of algorithms and models for explaining model
predictions and there have been past tutorials dedi-
cated to such algorithms (Wallace et al., 2020).

However, there is less consensus on how to eval-
uate explanations. And, since these explanations
eventually serve the needs of humans, it is impor-
tant to take a human-centered approach to their
evaluation, meaning evaluating with respect to hu-
man criteria, measuring human perceptions of ex-
planations and whether explanations serve human
needs. Therefore, interdiscplinary perspectives are
necessary for the success of such evaluations, es-
pecially ones from psychology and HCI, which is
unfamiliar to the NLP community. This tutorial
aims to fill in this gap and introduce the nascent
area of human-centered evaluation of explanations.

This tutorial will first present the psychological
and philosophical foundations of explanations. We
will highlight that explanations are heterogeneous
and selective. We will discuss diverse goals people
seek explanations for, highlighting that effective
explanations identify a difference maker, which is
often causal. These discussions will lay the foun-
dation for the rest of the tutorial.

We will then introduce the basic elements of
explanations and their presentation, including ex-
planation types and taxonomies, so that participants
are familiar with the subject of evaluation. We will
proceed with a taxonomy of human-centered evalu-
ations, to include two primary types: application-
grounded human-subjects evaluations and evalua-
tions based on human-provided explanations.

We start with how to conduct human-subjects
studies to evaluate explanations. We would like to
encourage NLP researchers to move beyond using
simplified evaluation tasks, to considering differ-
ent usage scenarios of explantions and articulating
evaluation goals—for whom and what purposes a
given explanation method is meant to serve, then
define the evaluation task, evaluation criteria, and
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recruiting requirement accordingly. We will also
describe common methods to measure different
evaluation criteria, such as survey scales and be-
havioral measurement, while raising limitations of
existing methods.

Then, we cover evaluations with evaluation
based on human-annotated explanations, as this
area is more familiar with the NLP audience. This
family of evaluations involves collecting explana-
tions alongside ground-truth labels, and using these
human-annotated explanations as a gold standard
for model-generated explanations. While intuitive,
this practice has validity issues associated with mis-
alignment between human reasoning and model
behavior, which we will discuss at length.

We will conclude the tutorial with a discussion
of future directions for human-centered evaluation
of explanations.

Flipped format. Our tutorial will be in a
flipped format: participants view the videos asyn-
chronously and participate in Q&A and work
through hands-on activities. The flipped classroom
has shown better retention than traditional instruc-
tion in a stand-alone instruction session (Bishop
and Verleger, 2013). We believe the flipped format
is also condusive for ACL tutorials: (1) it will have
more longevity, as the recorded (and edited) videos
will be of higher quality than videos recorded at a
typical conference session; (2) it will be easier for
hybrid participation; (3) it will be a more engaging
experience for in-person participants.

All of the videos will be in segments of twenty
minutes or less for easy asynchronous viewing. To
ensure accessibility, we will have manual (not ASR)
captions and distribute the slide source along with
the videos for easier incorporation of the tutorial
into classroom instruction.

Target Audience and Expected Pre-requisite.
We welcome anyone who is interested in in-
tepretable NLP and human-AI interaction and only
require basic knowledge to programming and con-
temporary classification models.

2 Outline of the Tutorial Content and
Reading List

The tutorial will consiste of two parts: (1) (offline)
two hours of content to be viewed asynchronously
and (2) (online or in-person) three hours of Q&A
and hands-on activities. We include the cited refer-
ences in the outline description.

2.1 Asynchronous Tutorial

Introduction. This section will introduce ex-
plainable AI (XAI) and the importance of evaluat-
ing explanations following a human-centered ap-
proach (i.e., evaluating with respect to stakeholder
needs and desiredata).

Psychological foundation of explanations.
This section will cover the research on human
explanations in psychology that highlights the
fact that human explanations are necessarily
incomplete: we do not start from a set of axioms
and present all the deductive steps. We will also
explore the assumption on whether humans can
provide explanations. Furthermore, to build the
foundation for defining evaluation goals and
criteria for model explanations, we will discuss the
diverse goals people seek explanation for. Cited
references: Aronowitz and Lombrozo (2020);
Aslanov et al. (2021); Blanchard et al. (2018);
Giffin et al. (2017); Wilson and Keil (1998);
Hemmatian and Sloman (2018); Keil (2003); Kuhn
(2001); Lipton (1990); Lombrozo (2012, 2016);
Lombrozo et al. (2019); Woodward and Ross
(2021).

Explanation methods. The design of evaluation
studies is a primary focus of this tutorial. And
the subject of these user studies is machine ex-
planations. This section provides the necessary
background knowledge on the generation and pre-
sentation of machine explanations. We will present
a high-level taxonomy of explanation methods and
the challenges each category presents to the eval-
uation. We cover both local explanations such as
feature attribution (Ribeiro et al., 2016; Lundberg
and Lee, 2017; Li et al., 2016) and counterfactu-
als (Goyal et al., 2019; Verma et al., 2020), and
global explanations such as prototypes (Snell et al.,
2017; Gurumoorthy et al., 2019) and adversarial
rules (Ribeiro et al., 2018; Wallace et al., 2019).
Our overview will omit technical details such as
how to computate the input gradient for a specific
neural network architecture. Instead, we will dis-
cuss the various design choices behind the presen-
tation of explanations, such as color mapping, in-
teractivity, and customizability. For example, lo-
cal feature importance might be presented as high-
lighted words in a text classifier, whereas model
uncertainty (or prediction probability) can be ex-
posed as either a numerical value or pie chart. Ex-
planations may be provided either alongside every
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prediction or only on demand. Explanations might
be static information displays or interactive, sup-
porting drilling in for more detail, questioning the
system, or even providing feedback to improve it.
We will also discuss the limitation of these expla-
nation methods (Guo et al., 2017; Feng et al., 2018;
Ye et al., 2021).

Evaluating explanations . We will then pro-
vide an overview of human-centered evaluation
approaches.

AppliHuman-subjects evaluation . We will
start by distinguishing between application-
grounded evaluation, based on the success of target
users’ end goal, and simplified evaluation, such as
asking people to simulate the model predictions
based on its explanations (Doshi-Velez and Kim,
2017). While it is currently more common for
NLP researchers to use simplified evaluation tasks,
a recent HCI study pointed out their limitations
and lack of evaluative power to predict the actual
success in deployment (Buçinca et al., 2020). To
encourage NLP researchers to move towards per-
forming application-grounded evaluation, and in a
principled and efficient fashion, we will introduce a
taxonomy of common applications of explanations,
user types and user goals (e.g., model diagnosis,
decision improvement, trust calibration, auditing
for biases) based on recent HCI work (Suresh et al.,
2021; Liao et al., 2020). Using this framework,
NLP researchers can articulate the user type(s) and
user goal(s) that a given explanation method is
meant to serve, and based on that define the eval-
uation tasks, criteria, subjects to recruit, and so
on. We will cover common evaluation criteria re-
garding both the reception of explanations (e.g.,
easiness to understand, cognitive workload) and
satisfaction of users’ end goals, and discuss exist-
ing methods to measure them, such as survey scales
and behavioral measures. We will also provide
introductory contents on how to conduct human-
subjects studies, such as how to recruit participants,
design tasks and instructions, prevent data noises
and biases, and common ethical concerns. We will
also give case studies such as Dodge et al. (2019)
and Lai and Tan (2019). This tutorial aims to pro-
mote important considerations in this nascent area
and introduce existing methods from HCI to in-
spire establishing best practices. Additional ref-
erences: (Liao and Varshney, 2021; Zhang et al.,
2020; Wang and Yin, 2021; McKnight et al., 2002;

Cheng et al., 2019; Lai et al., 2021; Kaur et al.,
2020; Jacobs et al., 2020).

Evaluation based on human-provided explana-
tions. We discuss the advantages and disadvan-
tages of human-annotated explanations as a means
for evaluating model explanations.

Numerous NLP datasets have been released
with both labels and human-provided explanations.
These come mostly in the form of rationales in-
dicating which tokens within a text are important
or causal for the true label, e.g., (Zaidan et al.,
2007; Khashabi et al., 2018; Thorne et al., 2018),
but sometimes consist of natural language e.g.,
(Camburu et al., 2018). DeYoung et al. (2019) ag-
gregates several such datasets into one collection,
while Wiegreffe and Marasović (2021) gives an
overview of these datasets in the wider literature.

We discuss the metrics by which human-
annotated explanations are used to evaluate model-
generated explanations. This is a relatively straight-
forward sequence classification-style evaluation for
rationale-type explanations (F1, MSE, etc.), but a
more nuanced NLG-style evaluation for natural
language explanations (Garbacea and Mei, 2020).

We conclude with a discussion of the validity of
human-explanations as a gold standard for model
explanations. Recent work has investigated the in-
formational properties of human-annotated expla-
nations, finding that there are gaps between what in-
formation humans believe is sufficient or necessary
for prediction (i.e. human-annotated explanations),
and what actually is so in practice for trained NLP
models Carton et al. (2020); Hase et al. (2020). We
discuss the implications of these analyses on the
validity question, as well as on the future of this
style of evaluation.

Summary and future directions . We will con-
clude by comparing these two main types of human-
centered evaluations, recommending best practices,
and discussing future directions.

2.2 Q&A and Tutorial Activities
For the in-person tutorial, we will provide a brief
recap of the tutorial, followed by an interactive
Q&A session and working group activities. We will
choose two tasks based on pre-conference surveys
as running examples, e.g., sentiment analysis and
question answering. Please see the outline below.

• Recap (40 minutes).
• Q&A (40 minutes).
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• Break (10 minutes).
• Activity 1: Get familiar with explanations (30

minutes). The main of this exercise is to get
them to see how different explanation methods
work in practice. We will provide a notebook
and models to be used.

• Activity 2: Hands-on participatory evaluation
(60 minutes). We will have two tracks that
are aligned with the two approaches, one for
explanation dataset collection, one for human
subject evaluation. It has two steps: 1) re-
search design and 2) participatory evaluation.
In this first step, we will ask people to either
come up with annotation guideline or articu-
late evaluation goals (e.g., what user goal(s)
and user type(s) is it meant to serve) and de-
fine evaluation criteria (e.g., evaluation tasks
and measurements). In the second step, par-
cipants will exchange and participate in the
study designed in the first step by either anno-
tating explanations based on the guidelines or
performing user studies based on the tasks.

3 Expected Outcome

We plan to make tutorial presentation materials
public. We will make sure the videos are accessible
to a wide population, e.g., via transcripts.

Estimated audience size. We estimate that
∼200 people will attend the tutorial. The algo-
rithmic counterpart, Wallace et al. (2020), was one
of the most popular tutorials at EMNLP that year.

4 Diversity Considerations

Our speakers are diverse in discipline (NLP, HCI,
and psychology), gender (4 male, 3 female), se-
niority (from professor to postdocs), academia and
industry (5 from acadmia, 2 from industry).

Our flipped format will accomodate a diverse
group of audience because of its asychronous na-
ture. For example, non-native speakers have more
time to digest the content. We also require a low
barrier of entry. To further attract a diverse group of
participants, we will advertise this through under-
represented groups such as Women in NLP, Black
in AI, and Queer in AI.

5 Presenter Biographies

Jordan Boyd-Graber is an associate professor at
the University of Maryland, with joint appoint-
ments between computer science, the iSchool, lan-

guage science, and the Institute for Advanced Com-
puter Studies. He has been teaching using a flipped
classroom approach since 2013. He and his collab-
orators helped end the use of perplexity for topic
models (Chang et al., 2009), first developed in-
teractive topic models (Hu et al., 2011), and im-
proved word-level analysis of topic model explana-
tions (Lund et al., 2019). Additional information
at: http://boydgraber.org.

Samuel Carton is a postdoctoral researcher at
the University of Colorado, Boulder. His inter-
ests lie in model interpretability and human-AI
interaction. Additional information at: https:
//shcarton.github.io.

Shi Feng is a postdoctoral researcher at the
Uhiversity of Chicago. His research interests in-
clude interpretable NLP, adversarial robustness,
and alignment. Additional information at: http:
//www.shifeng.umiacs.io/.

Q. Vera Liao is a Principal Researcher at Mi-
crosoft Research Montreal, where she is part of the
FATE (Fairness, Accountability, Transparency, and
Ethics) group. She is an HCI researcher by training,
with current interest in human-AI interaction and
explainable AI. More information can be found at:
http://www.qveraliao.com/

Tania Lombrozo is the Arthur W. Marks ’19
Professor of Psychology at Princeton University.
She is a leading expert in understanding expla-
nations. Additional information is available at:
http://cognition.princeton.edu/.

Alison Smith-Renner is a Senior Research Sci-
entist in human-AI interaction at Dataminr. Her re-
search interests include explainable and interactive
natural language processing from a human-centric
perspective. Additional information is available at:
https://alisonmsmith.github.io

Chenhao Tan is an assistant professor of com-
puter science at the University of Chicago, and is
also affiliated with the Harris School of Public Pol-
icy. His research interest includes natural language
processing, human-centered AI, and computational
social science. Additional information is available
at: https://chenhaot.com

6 Technical Requirements

For the in-person tutorial, we request roundtables
so that participants can discuss together during the
Q&A and the workshop activities; it would be good
to have power outlets around the tables.
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7 Ethics Statement

Our tutorial takes a human-centered perspective.
We hope that our tutorial will broaden the scope
of evaluations in NLP by introducing perspectives
from HCI and psychology. This may help allevi-
ate ethical concerns of NLP models in the long
run by incorporating human perspectives into the
development and evaluation process.

8 Special Themes

Our tutorial is alighed with the special theme of
NAACL 2022, human-centered natural language
processing.
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Abstract

Multimodal machine learning involves inte-
grating and modeling information from multi-
ple heterogeneous and interconnected sources
of data. It is a challenging yet crucial area
with numerous real-world applications in mul-
timedia, affective computing, robotics, finance,
HCI, and healthcare. This tutorial, building
upon a new edition of a survey paper on mul-
timodal ML as well as previously-given tutori-
als and academic courses, will describe an up-
dated taxonomy on multimodal machine learn-
ing synthesizing its core technical challenges
and major directions for future research.

1 Introduction

Multimodal machine learning is a vibrant multi-
disciplinary research field that addresses some orig-
inal goals of AI by integrating and modeling multi-
ple communicative modalities, including linguistic,
acoustic, and visual messages. With the initial
research on audio-visual speech recognition and
more recently with language & vision projects such
as image and video captioning, visual question an-
swering, and language-guided reinforcement learn-
ing, this research field brings some unique chal-
lenges for multimodal researchers given the hetero-
geneity of the data and the contingency often found
between modalities.

This tutorial builds upon the annual course on
Multimodal Machine Learning taught at Carnegie
Mellon University and is a revised version of the
previous tutorials on multimodal learning at CVPR
2021, ACL 2017, CVPR 2016, and ICMI 2016.
These previous tutorials were based on our earlier
survey on multimodal machine learning, which in-
troduced an initial taxonomy for core multimodal
challenges (Baltrusaitis et al., 2019). The present
tutorial is based on a revamped taxonomy of the
core technical challenges and updated concepts
about recent work in multimodal machine learn-
ing (Liang et al., 2022). The tutorial will be cen-

tered around six core challenges in multimodal
machine learning:
1. Representation: A first fundamental challenge
is to learn representations that exploit cross-modal
interactions between individual elements of differ-
ent modalities. The heterogeneity of multimodal
data makes it particularly challenging to learn mul-
timodal representations. We will cover fundamen-
tal approaches for (1) representation fusion (in-
tegrating information from 2 or more modalities,
effectively reducing the number of separate repre-
sentations), (2) representation coordination (inter-
changing cross-modal information with the goal
of keeping the same number of representations but
improving multimodal contextualization), and (3)
representation fission (creating a new disjoint set
of representations, usually larger number than the
input set, that reflects knowledge about internal
structure such as data clustering or factorization).
2. Alignment: A second challenge is to identify
the connections between all elements of different
modalities using their structure and cross-modal in-
teractions. For example, when analyzing the speech
and gestures of a human subject, how can we align
specific gestures with spoken words or utterances?
Alignment between modalities is challenging since
it may exist at different (1) granularities (words,
utterances, frames, videos), involve varying (2) cor-
respondences (one-to-one, many-to-many, or not
exist at all), and depend on long-range (3) depen-
dencies.
3. Reasoning is defined as composing knowledge
from multimodal evidences, usually through mul-
tiple inferential steps, to exploit multimodal align-
ment and problem structure for a specific task. This
relationship often follows some hierarchical struc-
ture, where more abstract concepts are defined
higher in the hierarchy as a function of less ab-
stract concepts. Multimodal reasoning involves
the subchallenges of capturing this (1) structure
(through domain knowledge or discovered from
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data), the parameterization of (2) concepts (dense
vs interpretable and symbolic), and the type of (3)
composition (simple vs complex relationships).

4. Generation: The fourth challenge involves
learning a generative process to produce raw modal-
ities that reflect cross-modal interactions, structure
and coherence. We categorize its subchallenges
into (1) summarization (summarizing multimodal
data to reduce information content while highlight-
ing the most salient parts of the input), (2) transla-
tion (translating from one modality to another and
keeping information content while being consistent
with cross-modal interactions), and (3) creation
(simultaneously generating multiple modalities to
increase information content while maintaining co-
herence within and across modalities). We will also
cover advances in evaluation and ethical concerns
around generated content.

5. Transference: A fifth challenge is to transfer
knowledge between modalities and their represen-
tations, usually to help the target modality, which
may be noisy or with limited resources. Exem-
plified by algorithms of (1) transfer (fine-tuning
pre-trained models for a downstream task involv-
ing the target modality), (2) representation enrich-
ment (transfer through a joint model sharing rep-
resentation spaces between both modalities), and
(3) model induction (keeping individual unimodal
models separate but transferring information across
these models), how can knowledge learned from
one modality (e.g., predicted labels or represen-
tation) help a computational model trained on a
different modality?

6. Quantification involves a deeper measurement
and theoretical study of multimodal models to
better understand their (1) output qualities (the
extent to which models are predictive, efficient, and
robust under natural and targeted modality imper-
fections), (2) internal mechanics (understanding
the internal modeling of multimodal information
and cross-modal interactions), and (3) modality
tradeoffs (quantifying the utility and risks of each
input modality, while balancing these tradeoffs for
reliable real-world usage). It is important to obtain
a deeper understanding of the data, modeling, and
optimization challenges involved when learning
from heterogeneous data in order to improve
their robustness, interpretability, and reliability in
real-world multimodal applications.

Type of tutorial: This tutorial will begin with

basic concepts related to multimodal research
before describing cutting-edge research in the
context of the six core challenges.

Target audience and expected background: We
expect the audience to have an introductory back-
ground in machine learning and deep learning, in-
cluding a basic familiarity of commonly-used uni-
modal building blocks such as convolutional, recur-
rent, and self-attention models.

2 Tutorial outline

This tutorial will be a revised edition of our
previously-organized tutorials at CVPR 2022,
CVPR 2021, ACL 2017, CVPR 2016, and ICMI
2016 which were roughly 3-4 hours long. This
revision defines a new iteration of the taxonomy
that has been updated to help researchers tackle
modern multimodal challenges. The tutorial
outline is shown below:

Introduction (30 mins)

• What is Multimodal? Definitions, dimensions
of heterogeneity and cross-modal interactions.

• Historical view and multimodal research
tasks.

• Core technical challenges: representation,
alignment, transference, reasoning, genera-
tion, and quantification.

• Unimodal language, visual, and acoustic rep-
resentations.

Representation (30 mins)

• Representation fusion: fusion strategies, mul-
timodal auto-encoder.

• Representation coordination: contrastive
learning, vector-space models, canonical cor-
relation analysis.

• Representation fission: factorization, compo-
nent analysis, disentanglement.

===== BREAK =====
Alignment (25 mins)

• Granularity: segmentation, clustering, unit
definition.
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• Correspondences: latent alignment ap-
proaches, attention models, multimodal trans-
formers, multi-instance learning.

• Dependency types: Attention models, graph
neural networks, multimodal transformers,
multi-instance learning.

Transference (25 mins)

• Modality transfer: losses, hallucination, cross-
modal transfer.

• Foundation models: pre-trained models and
adaptation.

• Model induction: co-training, cross-modal
learning.

===== BREAK =====
Reasoning (20 mins)

• Structure: hierarchical, graphical, temporal,
and interactive structure, structure discovery.

• Concepts: dense and neuro-symbolic.

• Composition: causal and logical relationships.

• Knowledge: external knowledge bases, com-
monsense reasoning.

Generation (15 mins)

• Summarization, translation, and creation.

• Model evaluation and ethical concerns.

Quantification (25 mins)

• Output qualities: generalization, robustness,
complexity.

• Internal mechanics: interpretability, under-
standing cross-model interactions.

• Modality tradeoffs: dataset biases, social bi-
ases, theoretical benefits, optimization chal-
lenges.

Future directions and conclusion (10 mins)

3 Tutorial details

Included work: The tutorial is based on an
updated version (Liang et al., 2022) of the broadly
cited survey on multimodal ML (Baltrusaitis
et al., 2019) which covers fundamental work in
multimodal, including affective computing (Po-
ria et al., 2017), audio-visual learning, image
and video-based question answering (Agrawal
et al., 2017), media description (Vinyals et al.,
2016), multimodal machine translation (Yao
and Wan, 2020), multimodal reinforcement
learning (Luketina et al., 2019), and social impacts
of real-world multimodal learning (Liang et al.,
2021). The updated survey will be released with
this tutorial, following the six core challenges men-
tioned earlier. While the taxonomy is developed by
the organizers, most of the presented work comes
from the broader research community.

Diversity: This tutorial will cover multilingual
tasks (e.g. multimodal machine translation) and
multiple research domains (image, text, audio).
This tutorial brings together faculty, graduate
students, and postdoctoral researchers. Slides
will also be dedicated to low-data language and
modality scenarios.

Reading list: We suggest the following reading
list. These papers can be skimmed through
before the tutorial, and are also well-served
as reading material for after the tutorial. A
more comprehensive reading list can be found
in the multimodal ML courses at CMU, see
https://cmu-multicomp-lab.github.
io/adv-mmml-course/spring2022/ and
https://cmu-multicomp-lab.github.
io/mmml-course/fall2020/ for more
details.

1. General: Fundamentals of Multimodal Ma-
chine Learning: A Taxonomy and Open Chal-
lenges (Liang et al., 2022)

2. General: Multimodal Machine Learning: A
Survey and Taxonomy (Baltrusaitis et al.,
2019)

3. General: Representation learning: A review
and new perspectives (Bengio et al., 2013)

4. Representation: Multiplicative Interactions
and Where to Find Them (Jayakumar et al.,
2020)
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5. Representation: Multimodal Learning with
Deep Boltzmann Machines (Srivastava and
Salakhutdinov, 2014)

6. Representation: Learning Factorized Multi-
modal Representations (Tsai et al., 2019)

7. Alignment: Decoupling the Role of Data, At-
tention, and Losses in Multimodal Transform-
ers (Hendricks et al., 2021)

8. Alignment: Deep canonical correlation analy-
sis (Andrew et al., 2013)

9. Transference: Vokenization: Improving Lan-
guage Understanding via Contextualized,
Visually-Grounded Supervision (Tan and
Bansal, 2020)

10. Transference: Foundations of Multimodal Co-
learning (Zadeh et al., 2020)

11. Reasoning: The Neuro-Symbolic Concept
Learner: Interpreting Scenes, Words, and Sen-
tences From Natural Supervision (Mao et al.,
2018)

12. Reasoning: A Survey of Reinforcement Learn-
ing Informed by Natural Language (Luketina
et al., 2019)

13. Reasoning: VQA-LOL: Visual Question An-
swering Under the Lens of Logic (Gokhale
et al., 2020)

14. Generation: Cross-modal Coherence Model-
ing for Caption Generation (Alikhani et al.,
2020)

15. Generation: Zero-shot Text-to-Image Genera-
tion (Ramesh et al., 2021)

16. Quantification: MultiBench: Multiscale
Benchmarks for Multimodal Representation
Learning (Liang et al., 2021)

17. Quantification: M2Lens: Visualizing and Ex-
plaining Multimodal Models for Sentiment
Analysis (Wang et al., 2021)

18. Quantification: Women also Snowboard:
Overcoming Bias in Captioning Models (Hen-
dricks et al., 2018)

4 Organizers

Louis-Philippe Morency (LTI, CMU) is an
Associate Professor at CMU Language Technology
Institute where he leads the Multimodal Com-
munication and Machine Learning Laboratory
(MultiComp Lab). He received his Ph.D. and
Master’s degrees from MIT Computer Science
and Artificial Intelligence Laboratory. In 2008,
Dr. Morency was selected as one of “AI’s 10
to Watch” by IEEE Intelligent Systems. He
has received 7 best paper awards in multiple
ACM- and IEEE-sponsored conferences for his
work on context-based gesture recognition, mul-
timodal probabilistic fusion, and computational
models of human communication dynamics.
He has taught 10 editions of the multimodal
machine learning course at CMU and before
that at the University of Southern California.
He has given multiple tutorials on this topic, in-
cluding at ACL 2017, CVPR 2016, and ICMI 2016.

Paul Pu Liang (MLD, CMU) is a Ph.D. student in
Machine Learning at Carnegie Mellon University,
advised by Louis-Philippe Morency and Ruslan
Salakhutdinov. His research is centered around
building socially intelligent embodied agents with
the ability to perceive and engage in multimodal
human communication. He was a recipient of the
distinguished student paper award at the NeurIPS
2019 workshop on federated learning and the
best paper honorable mention award at ICMI
2017. He organized the workshop on human
multimodal language at ACL 2020 and ACL 2018,
the workshop on tensor networks at NeurIPS 2020,
and was a workflow chair for ICML 2019.

Amir Zadeh (LTI, CMU) is a Postdoctoral
Associate at Carnegie Mellon University. Prior
to that, he received his Ph.D. from Language
Technologies Institute, School of Computer
Science, Carnegie Mellon University. His work
is focused on multimodal learning, especially
modeling multimodal language. He is the cre-
ator of several resources in this area including
CMU-MOSEAS, CMU-MOSEI, and CMU-MOSI
datasets. He organized the 1st and 2nd Workshop
and Grand-Challenge on Multimodal Language in
ACL 2018 and ACL 2020 respectively. His work
has been published in ACL, EMNLP, NAACL,
CVPR, and ICLR conferences.
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5 Logistics

Audience size and previous editions: Our tutorial
build upon 5 previous tutorials:

• CVPR 2022: 100-150 attendees. 6-hour tu-
torial https://cmu-multicomp-lab.
github.io/mmml-tutorial/
cvpr2022/

• CVPR 2021: 100-150 atten-
dees. 6-hour tutorial https://
audio-visual-scene-understanding.
github.io/

• ACL 2017: 100-150 attendees. 4-hour tuto-
rial (Morency and Baltrušaitis, 2017)

• CVPR 2016: 150-200 attendees. 4-hour tu-
torial: https://sites.google.com/
site/multiml2016cvpr/

• ICMI 2016: 50-60 attendees, 3-hour tuto-
rial: https://icmi.acm.org/2016/
index.php?id=tutorial

This tutorial builds upon the annual Multimodal
Machine Learning course taught at CMU (course
11-877 and 11-777). For recent iterations of the
course, the materials are publicly available at:

• https://cmu-multicomp-lab.
github.io/adv-mmml-course/
spring2022/

• https://cmu-multicomp-lab.
github.io/mmml-course/
fall2020/

• https://piazza.com/cmu/
fall2019/11777/resources

In Fall 2020, the course was virtual and all lec-
ture videos were recorded and publicly available
on YouTube. These videos have become hugely
popular, amassing close to 50, 000 views.
Ethics statement: Multimodal models used in
real-world applications can pose several consid-
erations such as having higher time and space com-
plexity as compared to unimodal tasks, privacy and
security resulting from human-centric multimodal
data, and capturing social biases through human
language, human faces, human audio, and other
multimodal data sources. Our tutorial will cover
these risks of multimodal learning and describe re-
cent work towards addressing these critical issues.
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1 Brief Description

Current NLP models heavily rely on effective repre-
sentation learning algorithms. Contrastive learning
is one such technique to learn an embedding space
such that similar data sample pairs have close rep-
resentations while dissimilar samples stay far apart
from each other. It can be used in supervised or un-
supervised settings using different loss functions to
produce task-specific or general-purpose represen-
tations. While it has originally enabled the success
for vision tasks, recent years have seen a grow-
ing number of publications in contrastive NLP as
shown in Figure 1. This first line of works not only
delivers promising performance improvements in
various NLP tasks, but also provides desired charac-
teristics such as task-agnostic sentence representa-
tion, faithful text generation, data-efficient learning
in zero-shot and few-shot settings, interpretability
and explainability.

In this tutorial, we aim to provide a gentle intro-
duction to the fundamentals of contrastive learn-
ing approaches and the theory behind them. We
then survey the benefits and the best practices of
contrastive learning for various downstream NLP
applications including Text Classification, Ques-
tion Answering, Summarization, Text Generation,
Interpretability and Explainability, Commonsense
Knowledge and Reasoning, Vision-and-Language.
This tutorial intends to help researchers in the NLP
and computational linguistics community to un-
derstand this emerging topic and promote future
research directions of using contrastive learning for
NLP applications.1

Type of Tutorial: Cutting-edge As an emerg-
ing approach, recent years have seen a growing
number of NLP papers using contrastive learning
(Figure 1). Contrastive learning still has a huge
potential in other applications and challenges, and

1Tutorial materials are available at https:
//contrastive-nlp-tutorial.github.io/

Figure 1: The number of papers in recent *ACL con-
ferences with "contrastive learning" in the title. We
anticipate there will be even more papers in 2022.

we anticipate there will be even more papers in the
next year before this tutorial. However, there is
no tutorial yet that systematically introduces con-
trastive learning and its application to NLP.

Target Audience and Expected Background
This tutorial is targeted at a broad and general au-
dience who is interested using contrastive learning
for NLP tasks. The tutorial will be self-contained.
The expected prerequisite only includes basic a un-
derstanding of machine learning concepts such as
classification, loss functions, and gradient-based
optimization. We also expect the audience to be
familiar with the definition of different NLP tasks.

2 Tutorial Structure and Content

This tutorial first gives an introduction to the foun-
dation of contrastive learning and then reviews the
NLP application of contrastive learning. Our tuto-
rial covers both contrastive data augmentation
for NLP and contrastive representation learn-
ing for NLP. The former focuses on the data side:
how we can create contrastive data examples. This
is useful not only for contrastive learning signals,
but also for many other reasons such as evaluating
model behaviors, augmenting data for low-resource
training, producing contrastive explanation, pro-
moting faithful text generation. The latter focuses
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on the learning algorithm side: how we can use
contrastive learning broadly in different NLP tasks.
Here is the outline with an estimated schedule.

Part 1: Foundations of Contrastive Learning
(60 min)

• Contrastive Learning Objectives (15 min)

• Contrastive Data Sampling and Augmentation
Strategies (15 min)

• Successful Applications (15 min)

• Analysis of Contrastive Learning (15 min)

Part 2: Contrastive Learning for NLP (90 min)

• Contrastive Learning in NLP Tasks (30 min)

• Task-agnostics Representation (15 min)

• Faithful Text Generation (15 min)

• Data-efficient Learning (15 min)

• Interpretability and Explainability (15 min)

Part 3: Lessons Learned, Practical Advice, and
Future Directions (30 min)

• Lessons Learned (10 min)

• Practical Advice (10 min)

• Future Directions (10 min)

The following subsections give more details with
reference papers for each part.

2.1 Foundations of Contrastive Learning
In the first part, we will provide a brief overview
of contrastive learning foundations and intro-
duce the most well-known contrastive learn-
ing approaches. We start with different con-
trastive learning objectives including Contrastive
Loss (Chopra et al., 2005), Triplet Loss (Schroff
et al., 2015), Lifted Structured Loss (Oh Song
et al., 2016), N-pair Loss (Sohn, 2016), Noise Con-
trastive Estimation (NCE) (Gutmann and Hyväri-
nen, 2010), InfoNCE (van den Oord et al., 2018),
and Soft-Nearest Neighbors Loss (Salakhutdinov
and Hinton, 2007; Frosst et al., 2019). We then
overview different sampling strategies to create
contrastive pairs including debiased constrastive
learning (Chuang et al., 2020), hard negative sam-
ples (Robinson et al., 2020), supervised contrastive
learning (Khosla et al., 2020), and adversarial con-
trastive learning (Kim et al., 2020). We will also
talk about contrastive learning with deep neural net-
works that have shown great successes in vision and

language applications such as word2vec (Mikolov
et al., 2013), SimCLR (Chen et al., 2020), Sim-
CSE (Gao et al., 2021b), and CLIP (Radford et al.,
2021). We will also discuss work on intriguing
analyses of contrastive learning (Tian et al., 2020;
Purushwalkam and Gupta, 2020; Xiao et al., 2021).

2.2 Contrastive Learning for NLP

In this part, we will first survey the usage of con-
trastive learning in different NLP tasks. Later, we
will also highlight four characteristics that con-
trastive learning has demonstrated in addition to
the promising performance improvement.

Contrastive learning has shown success in many
NLP tasks. We plan cover the following: Con-
trastive Data Augmentation for NLP (Shen
et al., 2020; Ye et al., 2021; Qu et al., 2021);
Text Classification (Fang et al., 2020; Kachuee
et al., 2020; Suresh and Ong, 2021; Du et al.,
2021; Carlsson et al., 2021; Xiong et al., 2021;
Qiu et al., 2021; Xu et al., 2021b; Klein and
Nabi, 2021); Sentence Embeddings (Kim et al.,
2021; Zhang et al., 2021a; Sedghamiz et al., 2021)
including Quick-Thought (Logeswaran and Lee,
2018),Sentence-BERT (Reimers and Gurevych,
2019), Info-Sentence BERT (Zhang et al., 2020a),
SimCSE (Gao et al., 2021b), DeCLUTR (Giorgi
et al., 2020), ConSERT (Yan et al., 2021b), Di-
alogueCSE (Liu et al., 2021a). We will also
cover discourse analysis (Iter et al., 2020; Kiy-
omaru and Kurohashi, 2021); Information Extrac-
tion (Qin et al., 2020; Chen et al., 2021b; Wang
et al., 2021d) Machine Translation (Pan et al.,
2021; Vamvas and Sennrich, 2021); Question An-
swering (Karpukhin et al., 2020; You et al., 2021;
Yang et al., 2021b; Yue et al., 2021); Summariza-
tion (Duan et al., 2019; Liu and Liu, 2021) includ-
ing faithfulness (Cao and Wang, 2021), summary
evaluation (Wu et al., 2020a), multilingual summa-
rization (Wang et al., 2021a), and dialogue summa-
rization (Liu et al., 2021d); Text Generation (Chai
et al., 2021; Lee et al., 2021b) including logic-
consistent text generation (Shu et al., 2021), para-
phrase generation (Yang et al., 2021a), grammatical
error correction (Cao et al., 2021), dialogue genera-
tion (Cai et al., 2020), x-ray report generation (Liu
et al., 2021b; Yan et al., 2021a), data-to-text gen-
eration (Uehara et al., 2020); Few-shot Learn-
ing (Liu et al., 2021c; Zhang et al., 2021c; Wang
et al., 2021c; Luo et al., 2021; Das et al., 2021);
Language Model Contrastive Pretraining (Wu
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et al., 2020b; Gunel et al., 2020; Clark et al., 2020;
Yu et al., 2020; Rethmeier and Augenstein, 2020,
2021; Meng et al., 2021; Li et al., 2021b); In-
terpretability and Explainability (Gardner et al.,
2020; Liang et al., 2020; Ross et al., 2020; Chen
et al., 2021a; Jacovi et al., 2021); Commonsense
Knowledge and Reasoning (Klein and Nabi, 2020;
Paranjape et al., 2021; Li et al., 2021a); Vision-and-
Language (Zhang et al., 2020b; Li et al., 2020;
Dharur et al., 2020; Cui et al., 2020; Radford et al.,
2021; Xu et al., 2021a; Jia et al., 2021; Lee et al.,
2021a). We will also briefly talk about other ap-
plications such as distillation and model compres-
sion (Sun et al., 2020), debiasing (Cheng et al.,
2021), fact verification (Schuster et al., 2021), short
text clustering (Zhang et al., 2021b), out-of-domain
detection (Zeng et al., 2021; Zhou and Chen, 2021),
robustness (Ma et al., 2021), code representation
learning (Jain et al., 2020), active learning (Mar-
gatina et al., 2021), knowledge representation learn-
ing (Ouyang et al., 2021), adversarial learning (Rim
et al., 2021).

In addition to the performance benefit, we high-
light that contrastive learning is particularly inter-
esting for NLP because it offers four advantages:

Task-agnostic Sentence Representation As a
representation learning approach, contrastive learn-
ing has demonstrated its effectiveness to learn task-
agnostic sentence embeddings that can be applied
across different tasks. Such progress enables effi-
cient encoding of sentences to support large-scale
semantic similarity comparison, clustering, and in-
formation retrieval via semantic search. The most
successful framework is Sentence-BERT (Reimers
and Gurevych, 2019) that uses siamese networks
with triplet loss to learn sentence embeddings
based on cosine similarity. Another example is
CERT (Fang et al., 2020) that employs contrastive
self-supervised learning at the sentence level with
back-translation data augmentation. It outperforms
BERT on 7 out of 11 natural language understand-
ing tasks on the GLUE benchmark. Later, Sim-
CSE (Gao et al., 2021b) uses both unsupervised de-
noising objective and supervised natural language
inference signals to learn sentence embeddings. It
achieves substantial improvements on several stan-
dard semantic textual similarity benchmarks.

Faithful and Factual Consistent Text Genera-
tion Contrastive learning is also used to improve
faithfulness and factuality of data-to-text genera-

tion and abstractive summarization, which has been
shown a very challenging issue with the pretrained
language models that often hallucinate (Kryscin-
ski et al., 2019; Parikh et al., 2020; Maynez et al.,
2020). Shu et al. (2021) propose to improve logic-
to-text generation models by designing rule-based
data augmentation to create contrastive examples
to cover variations of logic forms paired with di-
verse natural language expressions to improve the
generalizability. CLIFF (Cao and Wang, 2021) pro-
pose to improve faithful and factual consistency for
abstractive summarization by contrasting reference
summaries as positive training data and automati-
cally generated erroneous summaries as negative
training data. Wu et al. (2020a) also propose to
use contrastive learning for unsupervised reference-
free summary quality evaluation.

Data-efficient Learning Another advantage of
contrastive learning is to facilitate data-efficient
learning when training data is not abundantly avail-
able such as in zero-shot and few-shot settings.
CoDA (Qu et al., 2021) is a data augmentation
framework that synthesizes contrast-enhanced and
diverse examples by integrating multiple transfor-
mations over text. CLESS (Rethmeier and Au-
genstein, 2020) analyze data-efficient pretraining
via contrastive self-supervision through pretraining
data efficiency, zero to few-shot label efficiency,
and long-tail generalization. CONTaiNER (Das
et al., 2021) improves few-shot named entity recog-
nition by performing contrastive learning over
Gaussian distributions of token embeddings. Video-
CLIP (Xu et al., 2021a) uses contrastive pretraining
for zero-shot video-text understanding.

Interpretability and Explainability Contrastive
learning provides a new way for promoting
model interpretability and explainability. Contrast
Sets (Gardner et al., 2020) evaluate local decision
boundaries of models by manually perturbing the
test instances in small but meaningful ways. Ja-
covi et al. (2021) propose to produce contrastive
explanations for classification models by modify-
ing model representation and model behavior based
on contrastive reasoning. Paranjape et al. (2021)
leverage prompt engineering over pretrained lan-
guage models to create contrastive explanations for
commonsense reasoning tasks.
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2.3 Lessons Learned, Practical Advice, and
Future Directions

In this part, we will summarize our discussions of
existing work with lessons learned and practical ad-
vice. We will also envision the future directions of
contrastive learning for NLP such as data augmen-
tation quality and efficiency (Wang et al., 2021b),
hard negative examples (Zhang and Stratos, 2021),
under-explored NLP applications (Li et al., 2021b),
large batch size (Gao et al., 2021a).

3 Reading List

We compile the a light reading list for the audience
learning before coming to the tutorial:

• SimCLR (Chen et al., 2020)

• CLIP (Radford et al., 2021)

• SimCSE (Gao et al., 2021b)

• Contrast Sets (Gardner et al., 2020)

4 Diversity

Our presenters come from 3 institutions based in
the U.S. and China including 3 male and 1 fe-
male researchers on different levels of academic
seniority. As contrastive learning can be applied
broadly, our tutorial spans many different NLP
tasks and domains covering Text Classification
and Sentence Embeddings, Information Extraction,
Machine Translation, Question Answering, Sum-
marization, Text Generation, Few-shot Learning,
Interpretability and Explainability, Commonsense
Knowledge and Reasoning, Vision-and-Language,
Distillation and Model Compression. Therefore,
the audience will come from diverse backgrounds.

5 Presenters

Rui Zhang is an Assistant Professor in the Com-
puter Science and Engineering Department of
Penn State University and a co-director of the
PSU NLP Lab. He is one of the recipients of
2020 Amazon Research Awards. He serves as
an Area Chair at NAACL 2021, EMNLP 2021,
and NLPCC 2021. He co-organizes the Interac-
tive and Executable Semantic Parsing workshop
at EMNLP 2020 which attracted an international
audience with 100+ researchers from diverse aca-
demic and demographic backgrounds. He has
been working on contrastive learning for few-
shot named entity recognition (Das et al., 2021)

and text generation (Shu et al., 2021). https:
//ryanzhumich.github.io/

Yangfeng Ji is the William Wulf Assistant Pro-
fessor in the Department of Computer Science at
the University of Virginia, where he leads the Nat-
ural Language Processing group. His research
interests include building machine learning mod-
els for text understanding and generation. His
work on entity-driven story generation won an Out-
standing Paper Award at NAACL 2018. He is
a co-author of an EMNLP 2020 tutorial on The
Amazing World of Neural Language Generation.
https://yangfengji.net/

Yue Zhang is an Associate Professor at West-
lake University. His research interests include
NLP and its underlying machine learning algo-
rithms and downstream applications. He was
the area chairs of ACL (2017/18/19/20/21), COL-
ING (2014/18), NAACL (2015/19/21), EMNLP
(2015/17/19/20), EACL (2021) and IJCAI (2021).
He won the best paper awards of IALP (2017),
COLING (2018) and best paper honorable men-
tion of SemEval (2020). He is the author of
EMNLP 2018 tutorial on Joint models for NLP.
https://frcchang.github.io/

Rebecca J. Passonneau is a Professor in the
Computer Science and Engineering Department
of Penn State University and a co-director of the
PSU NLP Lab. Her area of research is natural
language processing, with a focus on semantics
and pragmatics. Her work is reported in over 130
journal and refereed conference publications. She
won a Best Paper Runner Up at NAACL 2010. She
is a tutorial co-chair for NAACL 2018. https:
//sites.psu.edu/becky/

6 Ethics Statement

As contrastive learning often involves data augmen-
tation and manipulation, our ethical consideration
mainly focuses on properly dealing with bias in the
dataset. As bias and fairness created by contrastive
learning algorithms are still under-explored, we
will also discuss such relevant topics in the section
on future directions.
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