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Abstract

Cognitive distortions are counterproductive pat-
terns of thinking that are one of the targets of
cognitive behavioral therapy (CBT). These can
be challenging for clinicians to detect, espe-
cially those without extensive CBT training or
supervision. Text classification methods can ap-
proximate expert clinician judgment in the de-
tection of frequently occurring cognitive distor-
tions in text-based therapy messages. However,
performance with infrequent distortions is rela-
tively poor. In this study, we address this spar-
sity problem with two approaches: Data Aug-
mentation and Domain-Specific Model. The
first approach includes Easy Data Augmenta-
tion, back translation, and mixup techniques.
The second approach utilizes a domain-specific
pretrained language model, MentalBERT. To
examine the viability of different data augmen-
tation methods, we utilized a real-world dataset
of texts between therapists and clients diag-
nosed with serious mental illness that was an-
notated for distorted thinking. We found that
with optimized parameter settings, mixup was
helpful for rare classes. Performance improve-
ments with an augmented model, MentalBERT,
exceed those obtained with data augmentation.

1 Introduction

Data augmentation first became a popular topic
in computer vision, where deep neural networks
have performed remarkably well. Complex archi-
tectures, such as AlexNet (Krizhevsky et al., 2012),
VGG-16 (Simonyan and Zisserman, 2014), ResNet
(He et al., 2016), DenseNet (Huang et al., 2017),
generally require sufficient training data for model
convergence, even with the help of dropout regu-
larization and batch normalization. This situation
also occurs in natural language processing (NLP)
with deep learning methods and can become more
problematic when limited to small datasets by data
collection or data annotation constraints. In imag-
ing, data augmentation, involving transformations

such as cropping and shearing, is a common strat-
egy to expand the amount of data available for
training. Analogously, several methods have been
proposed to perform data augmentation in NLP, in-
cluding Easy Data Augmentation (Wei and Zou,
2019), Back Translation (Sennrich et al., 2015),
GPT-2 Augmentation (Anaby-Tavor et al., 2020),
and mixup (Zhang et al., 2017). Kumar et al.
(2020) applied some of these methods to pretrained
transformer models and showed an average im-
provement in accuracy of 1-6%. However, the low-
resource scenario was simulated by simply con-
straining the training data from large corpuses. It
remains unclear how these methods might perform
when used in realistic applications, where certain
classes may be of very low frequency. One exem-
plary case concerns NLP analysis of online therapy
sessions, where large amounts of patient-generated
texts must be classified, but only well-trained spe-
cialists with relevant mental health domain knowl-
edge can perform annotation manually to ensure
clinical accuracy. In this study, we used a dataset
from text message conversations between clients
and therapists, previously used for detecting dis-
torted thoughts (Tauscher et al., 2022). Besides
the limitation in size, we found that some types of
distorted thinking are very rare, resulting in worse
classification performance. To address these issues,
we investigate the extent to which data augmen-
tation methods can improve performance of the
best-performing BERT model from these experi-
ments. We compare the utility of this augmentation
approach to the use of a domain-specific pretrained
language model, MentalBERT. In doing so, we
evaluate the utility of data augmentation techniques
and a domain-specific model to improve the identi-
fication of rare classes in the context of real-world
data.

Our main contributions are as follows:

• We compared different augmentation methods
in a low-resource dataset. We found improve-
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ments with majority classes and that mixup
can improve performance for rare classes.

• We adapted a domain-specific pretrained lan-
guage model, MentalBERT, and showed the
highest performance for majority classes, and
better results for rare classes.

• We explored the hyperparameter α, control-
ling mixing proportions, for mixup and
showed that a low α setting is helpful for dom-
inant classes, and a high α for rare classes.

2 Low-resource Corpus

From our previous work (Tauscher et al., 2022),
we utilized data from a randomized controlled trial
of a community-based text-message intervention
for individuals with serious mental illness (Ben-
Zeev et al., 2020). Data were collected from 39
participants enrolled in the active intervention arm
of this trial between December 2017 and October
2019. As part of the study, clients participating
in standard care engaged with trained clinicians in
text-message conversations up to three times a day
for 12-weeks. In total, 14,312 messages were sent
between clinicians and clients with 7,354 coming
from clients. To build a predictive model for dis-
torted thoughts, five common distortions were se-
lected (Burns, 1999): Mental Filter (MF), Jumping
to Conclusions (JC), Catastrophizing (C), Should
Statements (SM), Overgeneralization (O). In ad-
dition, we added the label Any Distortion (AD),
generated in accordance with the other assigned
distortions. Two mental health specialists anno-
tated all messages from clients by assigning these
six categories, which are not mutually exclusive
(Tauscher et al., 2022). This provided ground truth
for labels. It is worth noting that any message could
be identified as having multiple distortions, or no
distortions at all, making this a multi-label multi-
class problem. Table 1 shows the label frequency
and inter-rater reliability.

AD C MF JC O SM
Frequency 24.4% 14.8% 8.6% 8.1% 3.6% 2.6%
kappa 0.51 0.44 0.33 0.53 0.46 0.39

Table 1: Label frequency and inter-rater reliability

3 Methods

Based on results by Tauscher et al. (2022), we used
BERT as a starting point for our study, since it
outperformed support vector machines and logistic

regression (with L2 regularization), which had been
used in prior work (Shickel et al., 2020; Shreevas-
tava and Foltz, 2021). All models in this study were
trained with the previously identified best hyper-
parameter settings for the dataset (Tauscher et al.,
2022) (Section 3.1). Given the observed frequen-
cies (Table 1), we combined results for six cate-
gories into three bins by frequency, to distinguish
between effects on frequent and infrequent classes.
The three bins are “high freq:AD,C”, “medium
freq:MF,JC”, and “low freq:O,SM”. For evalua-
tion, we chose area under the precision-recall curve
(AUPRC) over F1 scores, because F1 scores are
special cases of AUPRC for a predefined cutoff
and AUPRC is threshold-agnostic. For rare classes,
the receiver operating characteristic curve (ROC)
may lead to overly optimistic performance esti-
mates, especially when class frequency drops to
1%, which is not the case with the precision-recall
curve (Ozenne et al., 2015). Thus, we used AUPRC
over others as our main metric. Macro-averaged
AUPRC was calculated for each of the bins. This
metric was also used to evaluate overall model per-
formance.

We used two approaches to data augmentation,
differing in the point at which augmentation occurs.
The first involves directly augmenting the original
text and outputting augmented examples as plain
text, to be added to the original data (Section 3.2).
The second approach involves augmentation in the
hidden spaces of a deep neural network, and its
outputs are vectors in the hidden space, rather than
plain text (Section 3.3). For domain-specific model,
we utilized a domain-specific pretrained language
model with additional linguistic knowledge perti-
nent to the task at hand (Section 3.4).

3.1 BERT-based Classification

The baseline model we used is BERT (bert-base-
uncased 1) (Devlin et al., 2018). A classification
layer was added on top of BERT’s output and used
for classifying all five cognitive distortions (“MF”,
“JC”, “C”, “SM”, “O”) and “AD”. The maximum
sequence length was set to 120 (word pieces).

The main framework for evaluation is 5-fold
cross validation, and out-of-sample predictions
were collected for the whole dataset. Following
the original paper (Tauscher et al., 2022), we used
the best hyperparameter settings for each of the
iterations, as shown in Table 2. Also, losses were

1
https://huggingface.co/bert-base-uncased
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weighted inversely proportional to label frequen-
cies.

Iteration #1 #2 #3 #4 #5
number of epochs 14 14 10 14 8
dropout 0.2 0.3 0.1 0.2 0.2

Table 2: BERT hyperparameter settings

We repeated 5-fold cross validation five times
with fixed folds but different random instantiations
of the classification layer to assess the robustness
of the results. This is the base setting for our exper-
iments and was used across all other methods. This
baseline model is labeled as “BERT (no aug)”.

3.2 Augmentation of text data

3.2.1 EDA: Easy Data Augmentation
Wei and Zou (2019) proposed Easy Data Augmen-
tation (EDA), which comprises of four main opera-
tions on the original text: Synonym Replacement
(SR), Random Insertion (RI), Random Swap (RS),
and Random Deletion (RD). EDA was evaluated
on five different tasks and showed an increased
performance of 0.8% on average.

We adopted authors’ recommended setting for
the parameter α, 0.1, that controls the percentage of
words in a sentence changed by each augmentation
method. This is labeled as “BERT (EDA)”.

3.2.2 Back Translation
Sennrich et al. (2015) proposed Back Translation
for data augmentation, where sentences are first
translated into another language and then back to
the original language. This technique has been
explored for the task of neural machine transla-
tion (Sugiyama and Yoshinaga, 2019). To generate
new texts, we applied Back Translation with two
intermediate languages: German and Spanish. Dur-
ing the augmentation, each original message was
translated into German or Spanish and then back to
English to get a corresponding message. Class la-
bels of the original text were inherited. We did not
repeat these experiments because we found little to
no variation in generated texts upon repetition. The
two backtranslation models are labeled as “BERT
(BT:German)” and “BERT (BT:Spanish)”.

3.2.3 GPT-2
Anaby-Tavor et al. (2020) propose using GPT-2
for data augmentation, by fine-tuning the model to
generate text corresponding to a class of interest.
Following their proposed approach, and using a

publicly available GPT-2 model2, we implemented
two variations of GPT-2 for data augmentation.
Context-agnostic GPT-2: we first reconstructed
our text messages as follows:

yi[SEP ]xi[EOS]

for each of the messages i, where yi indicates the
label of a message, and xi the message content.
GPT-2 was then fine-tuned on this new structure of
data for 20 epochs. New messages were generated
by feeding in the prompt of “y[SEP ]”. This is
labeled as “BERT (GPT-2: no context)”.

Contextual GPT-2: Texts in our dataset are de-
rived from conversations. To utilizing this contex-
tual information, we reorganized inputs as follows:

yi[SEP ]xi−1[SEP ]xi[EOS]

where xi−1 is the previous message. The GPT-2
model was then fine-tuned on this structure. Given
the prompt of “yi[SEP ]xi−1[SEP ]”, new mes-
sages were generated according to the class label
yi and and the preceding message for a representa-
tive example as context. This is labeled as “BERT
(GPT-2: contextual)”.

For text generation, we followed same steps de-
scribed in Kumar et al. (2020). Due to computa-
tional time requirements, we did this once only.

3.3 Augmentation of Hidden Spaces: mixup
Zhang et al. (2017) proposed mixup for data aug-
mentation. The authors claim that this method ex-
tends the training distribution by incorporating the
prior knowledge that linear interpolations of fea-
ture vectors should lead to linear interpolations of
the associated targets, providing data are modeled
on vicinity relation across examples of different
classes. mixup operates as follows:

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj

where λ ∼ Beta(α, α) for α ∈ (0,+∞). This
paper did not examine the hyperparameter α across
different NLP applications, with results reported
only for Google speech commands, a dataset of
65,000 one-second utterances3. However, the
authors did report improved results when using

2
https://huggingface.co/gpt2

3
https://ai.googleblog.com/2017/08/

launching-speech-commands-dataset.html
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α = 0.3 for this task, and in general proposed a
small α ∈ [0.1, 0.4], based on results on ImageNet-
2012. They also acknowledge that model error is
less sensitive to large α when increasing model
capacity. Sun et al. (2020) applied mixup to the
transformer architecture and showed improvements
on eight GLUE benchmarks. Across all of their
experiments, α was fixed at 0.5, which is a reason-
able extension from the originally proposed range
(Zhang et al., 2017).

From the previous two studies (Zhang et al.,
2017; Sun et al., 2020), it is not clear what hyper-
parameter setting of α should be used with other
data sets. Given the probability density function
controlled by α (demonstrated in Supplementary
Figure 1), other settings when α is large may make
more sense for scenarios in which we want to make
two examples contribute more evenly. This leads
to augmented examples lying in the margin be-
tween two categories, which may be appropriate
for categories that are difficult to distinguish. In
our case, the cognitive distortion dataset is rela-
tively small compared with those evaluated previ-
ously, and some classes (O, SM) are quite rare. We
wished to assess whether the mixup method could
help with data augmentation in this context. We
did an extended search in the hyperparameter space
of α: 0.02, 0.2, 0.5, 1, 2, 4, and 8. The models are
labeled as “BERT (mixup: alpha = X)”.

3.4 Domain-Specific Model: MentalBERT

To investigate the utility of domain-specific mod-
els for transfer learning, we identified a domain-
specific pretrained language model. Ji et al. (2021)
describe MentalBERT and MentalRoBERTa, two
language models developed specifically for men-
tal health NLP. Starting with pretrained base mod-
els, and following standard BERT and RoBERTa
pretraining protocols, MentalBERT and Mental-
RoBERTa were further pretrained on subreddits in
the mental health domain, including “r/depression”,
“r/SuicideWatch”, “r/Anxiety”, “r/offmychest”,
“r/bipolar”, “r/mentalillness”, and “r/mentalhealth”.
These subreddits made up a pretraining corpus of
over 13 million sentences. Upon evaluation, this
additional pretraining improved performance in
classifying mental conditions, including depres-
sion, stress, and anorexia. However, the evaluation
sets used texts from online or SMS-like platforms,
which were not fully annotated by specialists. In
our work, we used MentalBERT, available from

HuggingFace 4. The same hyperparameters as the
BERT model were used for comparison purposes.
The baseline MentalBERT model is referred as
“MentalBERT (no aug)”. We also applied the best-
performing data augmentation methods to Mental-
BERT, including back translation (Spanish) and
explored some α settings for mixup.

4 Results

Performance for all models is shown in Table 3.
BERT: For the baseline BERT model, BERT

(no aug), we obtain an AUPRC of 0.5179 for the
most frequent classes (AD,C). When frequency de-
creases (classes MF,JC), the AUPRC also drops
to 0.3718, and it drops further to 0.2139 for the
rarest class of O,SM. This trend applies to all mod-
els. When data augmentation is applied to the
base BERT model, we see improved results with
different models. For the most frequent class of
AD,C, back translation using Spanish achieves the
highest AUPRC of 0.5208, followed by mixup:
α = 0.02. However, none of these results are sig-
nificant improvements over baseline BERT. For the
less frequent classes (MF,JC), back translation out-
performs baseline BERT by 1.5%. mixup does not
offer a performance boost here. When it comes to
the rarest classes (O,SM), improvement is clearer:
EDA, back translation (Spanish), and most settings
of mixup can offer a boost in AUPRC. Among
them, mixup (α = 4) shows the biggest improve-
ment in AUPRC by around 1.6%, which is statis-
tically significant (t(8) = 3.24, p-value = .012
from t test). It is also notable that both GPT-2
based data augmentation methods decrease the per-
formance of the base BERT model substantially
(0.47 vs 0.52 for AD,C and 0.14 vs 0.21 for O,SM).

MentalBERT: When comparing MentalBERT
results with BERT results, we can see improved per-
formance for all classes, with the highest change
for AD,C and MF,JC of 1.3%-1.8%. Similar to
BERT models, performance is highly related to
class frequencies, with highest being 0.5359 for the
most frequent class of AD,C, dropping to 0.3846
for MF,JC then 0.2171 for O,SM. This trend holds
for different augmentation settings. For augmenta-
tion effects, the base model performs best for both
AD,C and MF,JC, as compared with augmented
models. For rare class of O,SM, there is a small
improvement from back translation (Spanish) of

4
https://huggingface.co/mental/

mental-bert-base-uncased
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model
AUPRC

(high freq:AD,C)
AUPRC

(medium freq:MF,JC)
AUPRC

(low freq:O,SM) macro-AUPRC
BERT (no aug) 0.518 ± 0.0055 0.372 ± 0.0054 0.214 ± 0.0039 0.368 ± 0.0030
BERT (EDA) 0.517 ± 0.0062 0.378 ± 0.0071 0.228 ± 0.0091* 0.374± 0.0067
BERT (BT: German) 0.517 0.375 0.216 0.369
BERT (BT: Spanish) 0.521 0.386 0.222 0.376
BERT (GPT-2: contextual) 0.472 0.290 0.143 0.302
BERT (GPT-2: no context) 0.460 0.306 0.155 0.307
BERT (mixup: α = 0.02) 0.519 ± 0.0013 0.372 ± 0.0026 0.218 ± 0.0078 0.370 ± 0.0041
BERT (mixup: α = 0.2) 0.515 ± 0.0060 0.369 ± 0.0027 0.218 ± 0.0061 0.367 ± 0.0041
BERT (mixup: α = 0.5) 0.510 ± 0.0058 0.367 ± 0.0058 0.213 ± 0.0034 0.363 ± 0.0033
BERT (mixup: α = 1) 0.504 ± 0.0072 0.367 ± 0.0076 0.221 ± 0.0047 0.364 ± 0.0055
BERT (mixup: α = 2) 0.505 ± 0.0043 0.366 ± 0.0046 0.222 ± 0.0054* 0.364 ± 0.0021
BERT (mixup: α = 4) 0.505 ± 0.0048 0.367 ± 0.0027 0.229 ± 0.0081* 0.367 ± 0.0038
BERT (mixup: α = 8) 0.504 ± 0.0045 0.366 ± 0.0057 0.218 ± 0.0059 0.363 ± 0.0030
MentalBERT (no aug) 0.536 ± 0.0029* 0.385 ± 0.0059* 0.217 ± 0.0018 0.379 ± 0.0032*
MentalBERT (BT: Spanish) 0.520 0.380 0.222 0.374
MentalBERT (mixup: α = 0.02) 0.529 ± 0.0050* 0.379 ± 0.0031* 0.211 ± 0.0052 0.373 ± 0.0022*
MentalBERT (mixup: α = 0.2) 0.523 ± 0.0033 0.382 ± 0.0049* 0.216 ± 0.0030 0.374 ± 0.0030*
MentalBERT (mixup: α = 1) 0.520 ± 0.0064 0.381 ± 0.0056* 0.214 ± 0.0068 0.372 ± 0.0020*
MentalBERT (mixup: α = 4) 0.515 ± 0.0028 0.379 ± 0.0021* 0.215 ± 0.0063 0.370 ± 0.0028
MentalBERT (mixup: α = 8) 0.515 ± 0.0049 0.377 ± 0.0037 0.213 ± 0.0060 0.368 ± 0.0044

Table 3: AUPRC (mean ± std) for combined labels by frequency. *: significantly > BERT (no aug), unpaired t-test.

0.5%. None of the mixup configurations provide
a benefit over the base MentalBERT model.
mixup: We explored an extensive range of the

hyperparameter α with the BERT model. In Ta-
ble 3, the best results usually come with a small
α (0.02) for the dominant classes of AD,C and
MF,JC. This best setting shows an increase of 1-
2%. With an increasing α, the performance drops.
For the rare classes of O,SM, a small α is no longer
favored. The performance of AUPRC is not mono-
tonic: with an increasing α, it first increases then
drops, with its peak of 0.2285 at α = 4. A similar
trend is also observed for the MentalBERT model,
although mixup did not perform best in this case.

Overall model performances is consistent with
some of the preceding observations: (1) data aug-
mentation improves overall performance, but only
by a small margin; (2) in-domain pretraining of
the language model (MentalBERT) provides the
most improvement in performance; (3) for mixup,
a small α is favored (0.02 for BERT and 0.2 for
MentalBERT).

5 Discussion

We examined several data augmentation meth-
ods and explored their applications in BERT and
MentalBERT for detecting distorted thinking in
a modestly-sized set of text-based therapy mes-
sages. Grouping distortion classes by frequency,
we found that most of data augmentation methods
do not improve performance for frequent classes
(frequency: 8-25%). For rare classes (3%), mixup

significantly improved AUPRC results by 1.6%.
In comparison, the domain-specific pretrained lan-
guage model, MentalBERT, offered the highest ben-
efit for dominant classes. However, MentalBERT
also performs relatively poorly with rare classes.
This may be due to the limited number of train-
ing examples. Another reason might be the fact
that our text messages sometimes represent gen-
eral conversations related to case management (e.g.
appointment reminders) rather than the specific
mental health related concerns that predominate in
mental-health-related subreddits.

We also explored different settings for the hy-
perparameter α for the mixup method. For domi-
nant classes, mixup favors a small α, which cor-
responds with previous work (Zhang et al., 2017).
This indicates the model performs better with lim-
ited mixing of two random samples, generating
cases where only one example predominates. In
comparison, a larger α is favored for rare classes.
According to Supplementary Figure 1, this means
the model tends toward mixes in which the influ-
ence of individual texts is diluted, a possible way to
create more variation in this low-resource scenario
for the model to learn from. However, progress-
ing to more extreme values (α = 8) harms perfor-
mance, and this cutoff point may change in other
settings. Taken together, our results suggest that
mixup is helpful for rare classes, but may compro-
mise performance on frequent classes. Future work
with mixup should include increasing the number
of training epochs, since Zhang et al. (2017) sug-
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label Generated Text
JC Yes you understand that it’s incredibly frustrat-

ing and a lot of hard work but it’s not at all
stressful

C Okay, i will do that, eventually

Table 4: GPT-2 generated text

gest that errors may be further reduced with more
iterations of training.

Contrary to expectations, GPT-2-based data aug-
mentation harmed performance in this context. It
appears that GPT-2 generated texts (Table 4) do not
express cognitive distortions as intended. This is
likely because the data are not large enough to fully
train a “distorted” GPT-2 model. Another reason
may be that our prompts are not associated with
distorted text by GPT-2. Designing better prompts
may be a fruitful direction for future work.

6 Conclusions

We compared a range of data augmentation strate-
gies and a domain-specific pretrained language
model for their utility in improving identification of
infrequently observed cognitive distortions. Using
a domain-specific pretrained language model (Men-
talBERT) provided the greatest improvements, es-
pecially for dominant classes, whereas data aug-
mentation did not improve performance with this
model. In contrast, some data augmentation meth-
ods significantly improved performance with the
base BERT model, but we did not find a method to
improve performances for all classes universally,
nor did we find a consistent hyperparameter set-
ting to improve performance across these class fre-
quencies. mixup appears helpful for rare classes,
but a relatively large hyperparameter setting for α
should be used. However, this may compromise
the performance on frequent classes to some de-
gree. Taken together our results suggest that the
domain-specific model may be a better strategy for
frequent classes, and that the best data augmen-
tation strategy for infrequently observed classes
varies across frequency ranges. As future work,
two areas of interest include: (1) modified loss
functions, such as the Label-Distribution-Aware
Margin (LDAM) Loss (Cao et al., 2019) and Class-
Balanced (CB) Loss (Cui et al., 2019), which have
been proposed in the field of computer vision to
address class imbalance; (2) unsupervised learning
frameworks to address the inherent uncertainty of
labels for augmented data, such as Confident Learn-

ing (Northcutt et al., 2021) and Unsupervised Data
Augmentation (UDA) (Xie et al., 2020).
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A Appendix

Supplementary Figure 1

Figure 1: Probability Density Function of Beta(α, α)
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In the paper of mixup, a special form of
Beta(α, β) distribution was used where α = β.
The figure shows PDF of different α settings
and this could affect the distributions of how the
weights of two samples are assigned.
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