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Abstract

Theoretical work in morphological typology
offers the possibility of measuring morpholog-
ical diversity on a continuous scale. How-
ever, literature in Natural Language Process-
ing (NLP) typically labels a whole language
with a strict type of morphology, e.g. fu-
sional or agglutinative. In this work, we pro-
pose to reduce the rigidity of such claims,
by quantifying morphological typology at the
word and segment level. We consider Payne
(2017)’s approach to classify morphology us-
ing two indices: synthesis (e.g. analytic to
polysynthetic) and fusion (agglutinative to fu-
sional). For computing synthesis, we test un-
supervised and supervised morphological seg-
mentation methods for English, German and
Turkish, whereas for fusion, we propose a
semi-automatic method using Spanish as a
case study. Then, we analyse the relationship
between machine translation quality and the
degree of synthesis and fusion at word (nouns
and verbs for English-Turkish, and verbs in
English-Spanish) and segment level (previous
language pairs plus English-German in both di-
rections). We complement the word-level anal-
ysis with human evaluation, and overall, we
observe a consistent impact of both indexes on
machine translation quality.

1 Introduction

One of the first barriers to develop language tech-
nologies is morphology, i.e., how systematically
diverse their word formation processes are. For in-
stance, agglutination and fusion are two morpholog-
ical kind of processes that concatenate morphemes
to a root with explicit or non-explicit boundaries,
respectively. Processing morphologically-diverse
languages and evaluating morphological compe-
tence in NLP models is relevant for language gen-
eration and understanding tasks, such as machine
translation (MT). It is unfeasible to develop models

∗Work started when the first author was doing a research
internship with JB at Aalborg University, Campus Copenhagen

with capacity large enough to encode the full vocab-
ulary of every language, and it is a must to rely on
subword segmentation approaches that help to con-
strain the capacity when generating rare, or even
new words (Sennrich et al., 2016). Hence, under-
standing morphology is essential to develop robust
subword-based models and evaluate the quality of
their outputs (Vania and Lopez, 2017). Neverthe-
less, there is a potential gap between the probing
of whether an NLP model can handle "morpho-
logical richness", and what is a proper measure of
"morphological richness" from linguistic typology.

In most of the recent NLP literature, different
types of languages (e.g. agglutinative, polysyn-
thetic) are chosen to test a more diverse handling of
morphological richness (Ponti et al., 2019). There
is, however, a debate as to whether languages can
indeed be classified into discrete morphological
categories. Payne (2017) provided a morphological
typology measurement in a continuous spectrum
using the indices of synthesis and fusion. Synthesis
measures if a segment is highly analytic or syn-
thetic (from 1 to more), whereas fusion measures
whether it is highly agglutinative or fusional (from
0 to 1). And surprisingly, with respect to NLP pub-
lications, it is possible to identify English segments
with a very low fusion index, meaning that they are
highly agglutinative1.

From a more applied perspective, if the refer-
ences of an evaluation set (in any language gener-
ation task) are labelled with the indices, we could
perform a stratified analysis (e.g. low fusion and
high fusion) to determine how well an NLP model
handles morphology for multiple languages. For
example, we could assess whether a machine trans-
lation model is failing in generating more fusional

1For instance, in the following fragment (Payne, 2017),
the index of fusion is 1/8 or 0.125 (fusional morpheme joints
are marked with a dot and the rest with a hyphen): "The
company-’s great break-through came.PAST when they decid-
ed to buy trike-s to sell their ice cream around the street-s in
the nine-teen twenty-s".
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than agglutinative segments for a specific target
language. Knowing and quantifying that problem
concerning morphology is the first step towards
proposing a solution. Our contributions then are
listed as follows:

• We present the first computational quantifi-
cation of synthesis and fusion using standard
NLP evaluation sets.

• We analyse the relationship between the two
indices and machine translation quality at
word-level, and observe that a higher degree
of synthesis or fusion usually corresponds
to less accurate translations in specific word
types (studying nouns and verbs in English-
Turkish, and verbs in English-Spanish).

• We complement this evaluation with manual
annotation of synthesis and fusion.

• We extend the analysis at segment-level, us-
ing the aforementioned language pairs plus
English-German in both directions, and iden-
tify that some synthesis and fusion-based pre-
dictors are significant for MT system outputs.

Furthermore, we release all the annotated data and
evaluation results2.

2 Background and related work

2.1 Morphological typology

The field of morphological typology characterises
languages in terms of their word and sentence build-
ing strategies (Payne, 2017), such as agglutina-
tion or fusion. In current NLP literature, Turkish
is labelled as a highly agglutinative language for
the explicit boundaries between their morphemes,
whereas Spanish is labelled as fusional for the op-
posite reason.

However, early typological studies started to
quantify these strategies with parameters, and
avoided to characterise languages with a single
type in a holistic way (e.g. Sapir (1921); Green-
berg (1960); Comrie (1989)). In this context, Payne
(2017) recently highlighted the indices of synthesis
and fusion, which are defined as follows.

2.1.1 Synthesis
The index of synthesis offers a scale to contrast
highly analytic or synthetic languages. This im-
plies whether a word is composed by one (analytic)
or several (synthetic) morphemes (Payne, 2017).
Synthesis can be computed as the ratio of number

2https://github.com/aoncevay/
quantifying-synthesis-and-fusion

of morphemes per words, it is closer to 1 when
the language is more analytic (e.g. Mandarin, or
English to a less degree), and gets higher the more
synthetic the language is (e.g. Turkish, Inuktitut).
Polysynthesis can be present when the synthesis
degree is higher than 3, although the boundary is
arguable. Besides, as we claim in this study, any
language can present different levels of synthesis
if we evaluate them at a more fine-grained level.

2.1.2 Fusion
Fusion is the ratio of the fusional morphemes
joints3 per the total number of joints. This in-
dex goes from 0 to 1, or from highly agglutinative
(e.g. Turkish) to highly fusional (e.g. Spanish)
cases. However, we noticed that the computation
of fusion is complex to automatise. For instance,
Payne (2017) indicates potential cases to identify
fusional joints, such as in prefixes, suffixes, infixes,
circumfixes, compounding, non-concatenative pro-
cesses (reduplication, apophony, substractive mor-
phology) or autosegmental morphemes. Current
automatic tools are not designed to identify these
cases for most languages.

2.2 Morphological typology on NLP

A survey by Ponti et al. (2019), on computational
typology for NLP, pointed out that morphologi-
cal knowledge is potentially helpful for analysing
the difficulty in generation tasks such as language
modelling and neural MT for both unsupervised
and supervised settings. More specifically, they
suggested that the degree of fusion (related to the
index of fusion proposed by Payne (2017)) impacts
in the rate of less frequent words, which is a rele-
vant parameter for generation tasks.

Besides, the studies that address morphologi-
cal typology are related to either the development
of morphological analysis systems or the evalua-
tion of typologically diverse languages in terms
of morphology (e.g. Vania and Lopez (2017); Xu
et al. (2020)). However, the typology used to distin-
guish languages varies across different studies. For
instance, Vania and Lopez (2017) considers four
phenomena to label languages: fusionality, agglu-
tination, reduplication and root-pattern; whereas
Xu et al. (2020) considers more fine-grained el-
ements such as affixation (prefixation, infixation
and suffixation) or partial reduplication. Similarly,

3Or how many grammatical, syntactic and semantic fea-
tures are joint. More than one feature can be fused in a single
morpheme.
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a fine-grained analysis on non-concatenative mor-
phology for MT was performed by Amrhein and
Sennrich (2021). It is important to note that none of
the previous studies have addressed the phenomena
as a continuous index but as discrete features.

Furthermore, other studies refer only to mor-
phological typological features as part of the task
of typological feature prediction from linguistic
databases (Bjerva and Augenstein, 2018; Bjerva
et al., 2019a,b, 2020; Bjerva and Augenstein, 2021),
and further applications of general typological con-
cepts on MT are scarce and do not focus on mor-
phology (Oncevay et al., 2020).

2.3 Morphological segmentation and analysis
Morphological segmentation (Harris, 1951) aims to
split a word into morphemes. There are both super-
vised (e.g. pointer generator networks (Mager et al.,
2020)) and unsupervised approaches (e.g. the Mor-
fessor family of methods (Creutz and Lagus, 2002;
Poon and Domingos, 2009) or Adaptor Grammars
(Eskander et al., 2019)), where the former ones
have outperformed the latter ones.

Besides, the most widespread unsupervised seg-
mentation methods (Byte-Pair-Encoding (BPE;
Sennrich et al., 2016) and a method based on un-
igram language modelling (Kudo, 2018)) are not
linked at all to morphological segmentation, but
they are used to constrain the vocabulary size for
neural generation tasks.

Finally, it is important to note that the index of
synthesis can be computed with a robust morpho-
logical analyser or segmentation model (to count
the number of morphemes), but neither of them are
built to compute the index of fusion directly.

3 How to compute Synthesis and Fusion?

3.1 Synthesis: automatic computation
To automatically compute the index of synthesis,
we require to perform a robust morphological seg-
mentation. A rule-based morphological analyser
and disambiguator might be the best option if avail-
able (which we use later for Turkish in §4.2), but
for the purpose of the study, we compare well-
known supervised and unsupervised methods:

• Byte-Pair-Encoding (BPE) and Unigram Lan-
guage Model (uniLM)4 from SentencePiece
(Kudo and Richardson, 2018).

• Morfessor (Poon and Domingos, 2009).
4We analysed several vocabulary sizes (4k, 8k, 16k, 32k,

64k) but report only the best one, which is 64k for all cases.

English German
#morphs. 1 2 3 4 1 2 3 4

16,914 28,900 1,798 73 13,061 32,007 5,808 360

Accuracy Count
uniLM64k 0.54 0.52 0.49 0.59 0.35 0.27 0.21 0.18
BPE64k 0.5 0.53 0.5 0.52 0.29 0.33 0.28 0.26
Morfessor 0.22 0.47 0.55 0.48 0.17 0.26 0.28 0.25
PtrNet 0.82 0.84 0.56 0.81 0.74 0.86 0.7 0.42

Exact Segmentation Precision
uniLM64k 0.54 0.52 0.6 0.8 0.29 0.38 0.32 0.22
BPE64k 0.5 0.44 0.56 0.76 0.24 0.33 0.23 0.08
Morfessor 0.21 0.58 0.7 0.78 0.17 0.45 0.44 0.36
PtrNet 0.76 0.67 0.81 0.8 0.67 0.73 0.72 0.62

Table 1: Accuracy count and segmentation precision
for English and German using unsupervised and super-
vised segmentation methods. Results are grouped by
the expected number of morphemes (e.g. "1" means
that the word should not be split).

• Pointer Generator Network (PtrNet) from the
implementation of Mager et al. (2020).

3.1.1 Datasets and evaluation
We used the CELEX dataset of segmented words
for English and German (Steiner, 2016, 2017),
where we randomly split training and evaluation
data (80-10-10). Besides, for the unsupervised
methods, we use the newscommentary-v15 (Bar-
rault et al., 2019) and EuroParl-v10 (Koehn, 2005)
corpora5. Furthermore, we define two metrics to
assess the performance on computing synthesis:

• Accuracy count: Evaluates if the number of
obtained morphemes in the hypothesis seg-
mentation is the same as in the reference.

• Exact segmentation precision: Analyses if
the split morphemes are the same. We first
perform an automatic alignment between the
hypothesis and reference segments with the
parallel Needleman-Wunsch algorithm for se-
quences (Naveed et al., 2005), and then com-
pute the exact match at morpheme level.

3.1.2 Results and discussion
Table 1 shows the scores on morphological segmen-
tation for both English and German. We observe
that both BPE and uniLM under-perform when it is
not expected to split the word (column "1"). This is
a pattern observed by Bostrom and Durrett (2020),
where they noted that unsupervised segmentation
methods tend to over-split the roots of words. They
both improve their accuracy and precision when

5Other languages like Danish are also available and was
tested, but we did not report the results here as there are not
complementary MT evaluation sets.
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Example (es): Hablaremos de la propuesta con la que se condenó a la ex primer ministra y fue apoyada por 147 diputados en la votación.
Verbs Features (spaCy) Features (UniMorph) Segmentation feats. per

morph
fusional morph.
joints

total
joints

Fusion
index

hablaremos
(we will talk)

Mood=Ind, Number=Plur,
Person=1, Tense=Fut,
VerbForm=Fin

V;IND;FUT;1;PL habl - are - mos 0 –
2(IND;FUT) –
2(1;PL)

0+(2-1)+(2-1) =
2

2+2 = 4 0.5

condenó
(condemned)

Mood=Ind, Number=Sing,
Person=3, Tense=Past,
VerbForm=Fin

V;IND;PST;3;SG;PFV conden - ó 0 -
5(IND;PST;3;

SG;PFV)

0+(5-1) = 4 4+1 = 5 0.8

apoyada
(supported)

Gender=Fem, Num-
ber=Sing, VerbForm=Part

V.PTCP;PST;FEM;SG apoy - ada 0 -
3(PST;FEM;SG)

0+(3-1) = 2 2+1 = 3 0.66

Table 2: Annotation example in Spanish. We first identify the verbs (in bold) and obtain their morphological
features (using spaCy and the UniMorph schema). Then, we split the verb into its morphemes (segmentation), and
identify which features are fused in each morpheme (feats. per morph). Finally, we compute the index of fusion by
dividing the fusional morpheme joints by the total joints (which includes the agglutinative or explicit boundaries).
On a side note, examples of verbs with zero fusion are in the infinitive (e.g. hablar (to talk)) and gerund (e.g.
hablando (talking)) forms.

the number of expected morphemes is larger. Un-
expectedly, Morfessor also under-performs in the
"1" case for both languages, and only surpasses
the other unsupervised methods when we measure
precision for many morphemes. Furthermore, The
PtrNet supervised method outperforms the rest in
almost all scenarios.

We conclude that, to compute synthesis, we
should prioritise, besides a rule-based morpholog-
ical analyser, a supervised segmentation method
like PtrNet if data is available. We take advantage
of this for the segment-level analysis in §5.

3.2 Fusion: Semi-automatic computation

Calculating fusion should be approached in a case
by case scenario, as there are different considera-
tions provided by Payne (2017). Therefore, there
is not an automatic tool that can obtain the fusion
score directly. We decided to focus on Spanish6

as a case study, where verbs and auxiliary verbs
contains the highest degree of fusion of all the
parts-of-speech (POS).

Procedure We observed that we could perform
an annotation per paradigm and the termination
of the verb (-ar, -er, -ir), as the fusion degree will
remain the same regardless of the lemma7. Then,
on a chosen Spanish corpus:

1. Perform an automatic annotation of POS and
morphological features8.

6We chose this language because of the ease of finding
annotators and MT training and evaluation data.

7Except for irregular ones, which presents a limitation and
potential noise. To reduce the risk of a biased assessment, we
also performed a human evaluation.

8We use the spaCy model es_dep_news_trf, avail-
able at https://spacy.io/models/es#es_dep_

2. Review the automatic annotation of special
cases. For instance, there are specific verb
forms that are missed as adjectives. We cor-
rected the POS and morphological annotation
of those cases in a manual step.

3. Obtain a set of all unique verb paradigms and
morphological features in the corpus, consid-
ering the three different types of verb termina-
tions in Spanish as different elements9.

Now there is a list of unique verb paradigms and
terminations that can be annotated both in synthesis
and fusion. The steps are as follows:

1. For each unique verb paradigm and termi-
nation, segment a verb sample into its mor-
phemes. E.g. the verb habló (‘talked’), is
split in habl-ó, and habláramos (‘we were to
speak’) in habl-ára-mos.

2. Analyse how many morphological features
are fused in each morpheme: if you change
a value of a feature, will the surface form or
morpheme will change? E.g. in habl-ó, -ó
participates in 5 features (mode (indicative),
subject person (third person), subject num-
ber (singular), tense (past) and aspect (perfec-
tive)). For habl-ára-mos, -ára includes the
past and subjunctive, whereas -mos denotes
the person and number. If any of aforemen-
tioned feature changes its value, the surface
will change too.

3. Count and aggregate the results per mor-

news_trf. It has an accuracy of 0.99 in POS and mor-
phological tagging in the UD Spanish AnCora dataset (Taulé
et al., 2008), which contains news texts mostly.

9Using the Unimorph database (McCarthy et al., 2020)
is another alternative for extracting all the possible unique
inflections. We aligned and considered both tag sets for the
annotation, as shown in Table 2.
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phemes and obtain the fusion for each verb
paradigm. E.g. the fusion for habl-ó is 4/5 =
0.8, and for habl-ára-mos is 2/4 = 0.5.

Finally, with the annotation in the unique list of
verb inflections and terminations, we can extend
the degree of fusion to all the verbs in the original
Spanish corpus. An example of the annotation
process is shown in Table 2.

4 Word-level analysis of Synthesis and
Fusion in Machine Translation

In this analysis, we ask the following question: how
difficult is translating a word concerning its index
of synthesis or fusion? For evaluating synthesis,
we work with Turkish10 nouns and verbs, and for
fusion, we keep working on Spanish verbs. For
both cases, English is the source language in the
translation task.

4.1 Experimental design
The experiment consists of comparing a gold stan-
dard reference with machine translation system
outputs at the word level:

1. For both the reference and system output, we
automatically tag all the words with a mor-
phological analyser (the Boun morpholog-
ical analyser and disambiguator (Sak et al.,
2008) for Turkish and an spaCy model trained
on the Ancora Universal Dependency parser
(Taulé et al., 2008) for Spanish). The POS
is needed to filter the target words. For syn-
thesis in Turkish, the number of morphemes
works as a proxy, as we are working at the
word level. For fusion in Spanish, we need
the inflection to obtain the degree of fusion
from the annotated unique list (see 3.2).

2. Align the words between the reference and
system output. We use the awesome-align
(Dou and Neubig, 2021) tool by fine-tuning
the multilingual BERT (Devlin et al., 2019)
model for word-alignment, using the refer-
ence and system output as parallel corpora.

3. Calculate the translation accuracy (exact
match of the word, 0 or 1) for the target POS.

We then fine-grain the results concerning the de-
gree of synthesis (number of morphemes) or fusion.

10Turkish presents high synthesis and agglutination (Zin-
gler, 2018), meaning that there are words composed with
several morphemes and the morpheme boundaries are explicit,
respectively. We focus on verbs and nouns, which usually con-
tain more morphemes than other parts-of-speech. We chose
this language due to the availability of an open-source rule-
based morphological analyser and an expert annotator.

Total #1 #2 #3 #4 #5+
Verbs 3,834 133 2,265 1,036 308 92
Nouns 10,680 5,899 2,974 1,556 244 7

Table 3: Number of nouns and verbs in the Turkish ref-
erence set, and their respective number of morphemes.

Additionally, we control different confounds: fre-
quency of the word in the training set, and whether
the full word is part of the vocabulary input of the
model or not. Finally, we complement the analysis
with a human evaluation (see §4.4).

4.2 Synthesis analysis: English→Turkish
Data We use the NEWSTEST2018.EN-TR evalua-
tion set from WMT (Bojar et al., 2018), with 3,000
samples. In the Turkish side there are 45,944 to-
kens, and Table 3 shows the distribution of the num-
ber of morphemes obtained with Sak et al. (2008).

Model We use an English-Turkish system trained
with the TIL corpus of 39.9M parallel sen-
tences (Mirzakhalov et al., 2021). On the
NEWSTEST2018.EN-TR set, the performance is
13.06 and 49.54 in BLEU and chrF, respectively.

Results and discussion Figure 1 shows the aver-
age accuracy (exact translation, 0 or 1) of nouns and
verbs in NEWSTEST2018.EN-TR, where the num-
ber of morphemes is a proxy for the index of synthe-
sis. In most cases, especially with a higher training
frequency, we observe that the average accuracy
drops as the number of morphemes increases from
1 to more. This is clearer in nouns than in verbs,
which have fewer cases to analyse overall. Between
2, 3 or more than 4 morphemes the differences are
not significant, and sometimes is not consistent (e.g.
verbs with the highest frequency). However, we can
argue that analytic nouns (synthesis=1) are easier
to translate than synthetic nouns (synthesis>1) for
the English→Turkish direction. The pattern holds
for whether the word is part of the vocabulary of
the model or not, although rare words (frequency in
[0, 103] have generally lower translation accuracy
than more frequent words (frequency > 100).

4.3 Fusion analysis: English→Spanish
Data We use the NEWSTEST2013.EN-ES evalua-
tion set from WMT (Bojar et al., 2013) with 3,000
samples. In the Spanish side there are 62,055 to-
kens, with 6,317 verbs, and where 1,411 of them
are more agglutinative (fusion=0) and 4,822 more
fusional (fusion>0).
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Figure 1: Accuracy (exact translation) for Nouns (top) and Verbs (bottom) in the English→Turkish translations.
Results are grouped by the training frequency of the words (less to more frequent from left to right), and each
subplot presents the scores for all the words, and whether they belong or not to the vocabulary input of the model.
The number of samples are stacked in each bar, and we do not show entries with less than 30 samples.

Model For training, we use the MarianNMT
toolkit (Junczys-Dowmunt et al., 2018), a
Transfomer-base model (Vaswani et al., 2017)
with default parameters, and four NVIDIA V100
GPUs. We obtained different English-Spanish mod-
els using the newscommentary-v8 (Bojar et al.,
2013) and EuroParl (Koehn, 2005) datasets with
joint vocabulary sizes of 8k, 16k and 32k (us-
ing unigram-LM from SentencePiece (Kudo and
Richardson, 2018)). For this analysis, we chose
the best performing system: combining both
datasets (2.2M sentences) with 16k pieces. On
NEWSTEST2013.EN-ES, the performance is 31.6
BLEU points.

Results and discussion Figure 2 shows the aver-
age accuracy of verbs in NEWSTEST2013.EN-ES

for verbs without and with some degree of fusion.
In the two higher frequency subplots (middle and
right), we can observe that the average accuracy of
the non-fusional verbs is higher than the fusional
ones, and the pattern holds whether the verb is
present in the vocabulary input of the model or not.
The exception is for the least frequent verbs, al-
though this is explained as the model do not have
enough information to learn from, regardless of
their degree of fusion.

4.4 Human evaluation

Exact translation accuracy has limitations, as there
are potential translations that could be acceptable
given a specific context (e.g. a synonym). For
that reason, we performed a human evaluation of a
sample of sentences on (10%) of each evaluation
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Figure 2: Accuracy (exact translation) for Verbs in the
English→Spanish translations. Results are grouped by
the training frequency and whether the word belongs to
the vocabulary of the model (In V) or not (Not in V).

set, focusing on two scores11:
1. Semantic score: evaluates the meaning of the

word used in the automatic translation (system
output) and how it compares with the gold
standard translation. Scale goes from 1 (no
relationship at all) to 4 (it is the same lemma).

2. Grammar score: evaluates the grammatical
form and how it compares with the gold stan-
dard translation. Scale goes from 1 (different
inflection) to 3 (same inflection).

Synthesis In Figure 3, we show the annotation
scores for the semantic and grammar metrics, for
both nouns (top) and verbs (bottom). We also di-
vide the analysis w.r.t. the frequency of the word
in the training data. For nouns, we observe similar
patterns as in the automatic analysis, where in the
one-morpheme column, the proportion of the high-
est score is slightly larger than in the other columns,
suggesting they are easier to generate for the model.

11Details of the annotation protocol are in the Appendix
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Figure 3: Semantic score (left) and Grammar score (right) annotation for Turkish, for different frequency ranges
of Nouns (top) and Verbs (bottom). Bubbles represent the proportion of the amount of scored annotations (1-4 or
1-3) divided by the subtotal elements of their respective columns (or number of morphemes). The orange inner
bubble represents the amount of samples with ‘zero’ accuracy (in the automatic analysis) in each category.

The pattern is even more explicit in the highest fre-
quency block (rightmost one). The verbs tend to
have more distributed grammar scores, suggesting
the difficulty of generating inflected forms may re-
main equally high even when the words are more
frequent. Single morpheme verbs are very rare in
Turkish and generally contain exceptional forms
which reflects in the low translation accuracy in
the highest frequency block. We also observe that
a good proportion of translated words with ‘zero’
accuracy (not the exact translation, see the orange
inner bubbles) has been annotated with highest se-
mantic (same lemma) or grammar (same inflection)
score, suggesting in some cases that the model is
successful in generalization.

Fusion Figure 4 shows the semantic and gram-
mar annotation scores for Spanish verbs. For the
semantic scores (top), in all levels, the gap between
the non-fusional and fusional verbs is reduced, for
all the frequency groups. This means that the model
is indeed able to generalise and offer alternative
translations (not the exact verb), which is more
complex to measure with automatic metrics. In the
grammar scale (bottom), however, we still note a
slight advantage in the maximum score (3) of the
non-fusional verbs against the fusional ones for the
two highest frequency subplots (middle and right).
This indicates that, with highly frequent verbs, it is
still more difficult to translate correct forms with
a fusion degree higher than zero. Similarly as for
synthesis, we observe that there is a significant
proportion of ‘zero’ accuracy cases (orange inner
bubbles) for the highest scores in most cases. This
indicates that the model could generalise and trans-
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Figure 4: Semantic (top) and Grammar (bottom) anno-
tation for Spanish.

late verbs with similar meanings and not the exact,
but close, forms.

5 Segment-level Analysis of Synthesis
and Fusion in Machine Translation

Following up the word level analysis, we study the
relationship between machine translation difficulty
and the degree of synthesis or fusion at the seg-
ment level. For this purpose, we process a set of
translation systems for the language pair we want
to evaluate. The general steps are as follow:

1. For each system output, we compute auto-
matic evaluation metrics (BLEU (Papineni
et al., 2002), chrF (Popović, 2015) and/or
COMET (Rei et al., 2020)) with respect to
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Figure 5: Overview of significant predictors for degree
of synthesis across our TR-EN and EN-TR models.

the reference set, per sentence.12

2. For each sentence of the evaluation set, we
compute potential predictor variables for the
automatic metric, such as the degree of syn-
thesis or fusion. We complement the predic-
tor variable list with other heuristics, such
as the length of the sentence in characters
(char.count) or words (word.count). The full
list of all the predictors per language pair is in
the Appendix.

3. With the previous inputs, we generate gener-
alized linear models per system output and
evaluation metric, in which each model’s out-
put is set to the predictor variables. The goal
is to identify which predictors affect each
method’s performance.

4. Following model creation, we extract the sig-
nificant predictors of each model. This pro-
vides an indication of which variables can be
used to predict the outcome of the model’s
dependent variable – in our case the degree of
synthesis or fusion, or any heuristic.13

Synthesis on En-Tr and Tr-En We first start
evaluating the English-Turkish and Turkish-
English language pairs. The evaluated models are
EnTr1, EnTr2, and TrEn2 (details in the Appendix).
Also, as we are studying synthesis in Turkish, all
predictors are computed on the Turkish side, re-
gardless of the translation direction.

Figure 5 presents an overview of the significant
predictors on En-Tr and Tr-En systems, where we
observe a large impact of the synthesis variable on

12Based on the analysis of Kocmi et al. (2021), we prefer
to report COMET and chrF over BLEU.

13For simplification purposes, in the following analysis and
plots, we only show the predictors that show a significant
effect on the system outputs.

char.count

R.fusion.swEsEn2

R.fusion.verb

R.fusion.word

swEnEs1.count

swEsEn2.count

word.count

0.0 2.5 5.0 7.5 10.0
estimate

EnEs1.chrF

EnEs1.COMET

EnEs2.chrF

EnEs2.COMET

EsEn1.chrF

EsEn1.COMET

EsEn2.chrF

EsEn2.COMET

char.count

R.fusion.swEsEn2

R.fusion.verb

R.fusion.word

swEnEs1.count

swEsEn2.count

word.count

0.0 2.5 5.0 7.5 10.0
estimate

EnEs1.chrF
EnEs1.COMET

EnEs2.chrF
EnEs2.COMET

EsEn1.chrF
EsEn1.COMET

EsEn2.chrF
EsEn2.COMET

Figure 6: Overview of significant predictors for degree
of fusion across our ES-EN and EN-ES models.

the chrF scores of two different systems (EnTr1 and
TrEn2). The only other heuristic that achieves a
notable impact on a system output is morph.count,
or the length of Turkish sentence in morphemes,
split by a morphological analyser. Other predictors
have a minor effect.

Fusion on En-Es and Es-En In a similar way,
we evaluate the impact of fusion in English-Spanish
(EnEs1, EnEs2) and Spanish-English (EsEn1,
EsEn2) models (see the Appendix for details).
Again, as we are studying fusion in Spanish, all
predictors are computed on the Spanish side, re-
gardless of the translation direction.

Figure 6 presents an overview of the significant
predictors, where we observe that R.fusion.verb,
or the ratio of the degree of fusion over the num-
ber of verbs in the sentence, is the predictor
that has the highest impact in most system out-
puts (EnEs1, EnEs2 and EsEn2). Additionally,
R.fusion.swEsEn2 (or the ratio of the degree of
fusion over the number of subwords input in the
EsEn2 model) also has a high impact in one system
output (EnEs2, which uses the same segmentation
model as EsEn2).

Analysis on En-De and De-En Finally, we ex-
tend the analysis to English-German and German-
English language pairs, using the respective evalu-
ation sets of the WMT2018 campaign (Bojar et al.,
2018), and the system outputs provided for all the
participants (measured in BLEU). For computing
synthesis, we use the different segmentation meth-
ods we compared in §3.1. However, for fusion,
we only use a shallow proxy with the number of
morphological features that are tagged using a mor-
phological analyser. In this case, the predictors are
computed for both the source and target side.
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Figure 7: Overview of significant predictors across DE-EN models.

We present an overview of these significant pre-
dictors for German-English in Figure 7 (and the Ap-
pendix contains the results for English-German in
Figure 8). We can observe that ref.SYN.uniLM and
ref.SYN.PtrNet are the predictors that impact most
of the different system outputs. These variables re-
fer to the synthesis computed on the reference side
(English) using uniLM or PtrNet as the morpheme
segmentation method, respectively. Furthermore,
we observe that src-ref.R.feat.token has also some
effect over one system output, which is a shallow
proxy for the fusion degree in the source w.r.t. to
reference segment (using the ratio of number of
features per number of tokens).

6 Discussion

It is important to note the limitations of this study.
Overall results do not suggest that translating into
more analytic languages (e.g. Chinese) or more
agglutinative ones (e.g. Turkish) is easier than
their counterparts. Highly analytic ones present
the significant issue of word coverage and vocabu-
lary size of the model. Besides, we cannot isolate
the fusional degree from synthesis entirely. For in-
stance, Turkish is a highly agglutinative language,
but also highly synthetic, and there are languages
that present both agglutinative and fusional traits,
like Navajo. Moreover, the language scope is an-
other limitation: is it possible to extend it to further
languages in a practical way? Synthesis can be cal-
culated directly only if the morphological analyser
splits the word into morphemes, and fusion poses
several issues as mentioned before. Furthermore,
Payne (2017) also indicated that the discourse can
impact the computed degrees due to the diversity
of the vocabulary. This study focuses on news data
only, and it will be relevant to extend it to different
domains.

To address the limitations, we consider that our
word level analysis, that targets specific POS, has
been fundamental to enable the study of the in-
dexes, and to partially isolate them from each other.
The selection of our study cases was also relevant.
Spanish verbs do not present more than three mor-
phemes, keeping a low synthesis value across all
the analysis, whereas Turkish is more agglutina-
tive than fusional. Moreover, to rapidly extend
the evaluation for new languages and domains, we
could follow a less fine-grained analysis in each
index. For instance, we can compare synthesis=1
vs. synthesis>1 instead of granulating per number
of morphemes, or fusion=0 vs. fusion>0, as we did
in this work.

7 Conclusion and future work

In conclusion, we proposed methods to quantify
the indices of synthesis and fusion in automatic and
semi-automatic ways, respectively. Besides, for the
chosen language pairs, we observed that the studied
degrees have an impact in machine translation per-
formance at both word and segment level, where
we included a human evaluation of the former case.

Our analysis opens the possibility for further
fine-grain evaluation approaches for MT and other
NLP generation tasks. For instance, as future work,
we can ask: are we improving the automatic transla-
tion of highly fusional words or segments? Follow-
ing our methodology, we could stratify evaluation
sets to measure how our models performs in dif-
ferent parts of the spectrum. Besides, the indices
could also be helpful for evaluation approaches in
morphological segmentation. Furthermore, another
potential research avenue is to aid model training
in MT: e.g. knowing which segments are more or
less synthetic and/or fusional could be beneficial
for sampling strategies.
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8 Ethical Considerations

The annotations in this paper were compensated ac-
cordingly (see Appendix). Also, for all the datasets
used in the research, we stick to the ethical stan-
dards giving credit to the original author. We en-
courage future work that take advantage of these
resources, to cite also the original sources of the
data.
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A Human Evaluation

A.1 Annotation Protocol
This study measures the translation quality of trans-
lations generated by a translation system. You
are given a list of sentences where one column
lists each word in the gold standard (correct) trans-
lation and the corresponding column the system-
generated translations. The evaluation of the trans-
lations will rely on the two scores described below.
The scores to use in the evaluation are:

Semantic score evaluates the meaning of the
word used in the automatic translation (system out-
put) and how it compares with the gold standard
translation.

Please assign each word in the output one of the
scores you find most appropriate:

1. There is no relationship between the two lem-
mas
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2. The lemmas are different but the translation
does not fit well in the context

3. The lemmas are different but it is still an ac-
ceptable translation (e.g. synonym)

4. It is the same lemma

Grammar score evaluates the grammatical form
and how it compares with the gold standard trans-
lation.

Please assign each word in the output one of the
scores you find most appropriate:

1. The word is inflected in a different way and it
is not necessarily correct

2. The word has different inflection but it is still
grammatically correct

3. The words have the same inflection, and it is
correct

Please annotate all words in the translations in
the file shared with you. In your evaluation try
assigning the two scores to each word indepen-
dently. The inflection of the word measures the
morphological feature and should also be evaluated
independently from the analyzer output which is
automated and may contain errors.

The file contains example annotations for your
reference, please ask any questions related to un-
resolved annotation examples by contacting the
project coordinators.

A.2 Annotators

For both Turkish and Spanish, the annotators were
contacted directly due to their expertise in morphol-
ogy (both of them are PhD students in Linguistics
and Computational Linguistics, respectively), be-
sides requiring that they are native speakers of the
target languages. Also, they were paid more than
the minimum wage per hour of annotation of their
country of residence, and were told that the anno-
tated data will be released upon acceptance of the
study.

B Segment-level Analysis of Synthesis
and Fusion

B.1 List of machine translation systems

• EnTr1: the same system used in §4.2
• EnTr2: Transformer-base model (Vaswani

et al., 2017) with joint vocabulary size of
8k pieces (unigram language modelling from
SentencePiece (Kudo and Richardson, 2018),
and trained with a sample (10%) of the corpus
of EnTr1.

Predictor Description
char.count number of characters
word.count number of words (no punct. or numbers)
morph.count number of morphemes.
synthesis ratio of morph.count / word.count
N+V.word.count number of Nouns and Verbs
N+V.morph.count number of morphemes of the Nouns and Verbs
N+V.synthesis ratio of N+V.morph.count / word.count
swEnTr1.count number of subwords processed by the EnTr1 model
swEnTr2.count number of subwords processed by the EnTr2 model
swTrEn2.count number of subwords processed by the TrEn2 model
syn.swEnTr1 ratio of swEnTr1.count / word.count (synthesis proxy)
syn.swEnTr2 ratio of swEnTr1.count / word.count (synthesis proxy)
syn.swTrEn2 ratio of swEnTr1.count / word.count (synthesis proxy)

Table 4: List of predictors for En-Tr and Tr-En. All
variables are computed on the Turkish segment of the
evaluation set.

Predictor Description
char.count number of characters
word.count number of words (no punct. or numbers)
verb.count number of verbs
fusion sum of the degree of fusion of all the verbs in the segment
R.fusion.verb ratio of fusion / verb.count
R.fusion.word ratio of fusion / word.count
swEsEn1.count number of subwords processed by the EsEn1 model
swEsEn2.count number of subwords processed by the EsEn2 model
R.fusion.swEsEn1 ratio of fusion / swEsEn1.count
R.fusion.swEsEn2 ratio of fusion / swEsEn2.count
swEnEs1.count number of subwords processed by the EnEs1 model
swEnEs2.count number of subwords processed by the EnEs2 model
R.fusion.swEnEs1 ratio of fusion / swEnEs1.count
R.fusion.swEnEs2 ratio of fusion / swEnEs2.count

Table 5: List of predictors for En-Es and Es-En. All
variables are computed on the Spanish segment of the
evaluation set.

• EnEs1: the same system used in §4.3
• EsEn1: similar configuration than EnEs1 but

in the opposite direction
• EnEs2: same configuration as EnEs1 (model

and vocabulary) but with smaller training data.
It uses only newscommentary-v8 data, with
around 300k sentences).

• EsEn2: similar configuration than EnEs2 but
in the opposite direction.

B.2 List of predictors
Tables 4, 5 and 6 describes all the predictors used
at the segment level analysis of English-Turkish,
English-Spanish and English-German (both direc-
tions), respectively.

B.3 Results on English-German
Figure 8 shows the analogous results for English
to German, where the synthesis-based variables
presents a high impact w.r.t. the other predictors.
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Figure 8: Overview of significant predictors for degree of synthesis across EN-DE models.

Predictor Description
src.char.count number of characters in the source side
ref.char.count number of characters in the target side
src.word.count number of words in the source side
ref.word.count number of words in the target side
src.uniLM.count number of subwords obtained by uniLM in the source
ref.uniLM.count number of subwords obtained by uniLM in the target
src.SYN.uniLM synthesis in source = src.uniLM.count / src.word.count
ref.SYN.uniLM synthesis in target = ref.uniLM.count / ref.word.count
src.mrfsr.count number of subwords obtained by Morfessor in the source
ref.mrfsr.count number of subwords obtained by Morfessor in the target
src.SYN.mrfsr synthesis in source = src.mrfsr.count / src.word.count
ref.SYN.mrfsr synthesis in target = ref.mrfsr.count / ref.word.count
src.PtrNet.count number of subwords obtained by PtrNet in the source
ref.PtrNet.count number of subwords obtained by PtrNet in the target
src.SYN.PtrNet synthesis in source = src.PtrNet.count / src.word.count
ref.SYN.PtrNet synthesis in target = ref.PtrNet.count / ref.word.count
src.feat.count number of morph. features in the source (using spAcy)
src.R.feat.token ratio of src.feat.count / src.word.count
ref.feat.count number of morph. features in the target (using spAcy)
ref.R.feat.token ratio of ref.feat.count / ref.word.count
src-ref.feat.count src.feat.count minus ref.feat.count
src-ref.R.feat.token src.R.feat.token minus ref.R.feat.token
ref-src.feat.count ref.feat.count minus src.feat.count
ref-src.R.feat.token ref.R.feat.token minus src.R.feat.token

Table 6: List of predictors for En-De and De-En. Vari-
ables are computed either on source (src) or target (ref)
side.
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