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Abstract

Making an informed choice of pre-trained lan-
guage model (LM) is critical for performance,
yet environmentally costly, and as such widely
underexplored. The field of Computer Vi-
sion has begun to tackle encoder ranking, with
promising forays into Natural Language Pro-
cessing, however they lack coverage of linguis-
tic tasks such as structured prediction. We
propose probing to rank LMs, specifically for
parsing dependencies in a given language, by
measuring the degree to which labeled trees
are recoverable from an LM’s contextualized
embeddings. Across 46 typologically and ar-
chitecturally diverse LM-language pairs, our
probing approach predicts the best LM choice
79% of the time using orders of magnitude less
compute than training a full parser. Within this
study, we identify and analyze one recently pro-
posed decoupled LM—RemBERT—and find it
strikingly contains less inherent dependency in-
formation, but often yields the best parser after
full fine-tuning. Without this outlier our ap-
proach identifies the best LM in 89% of cases.

1 Introduction

With the advent of massively pre-trained language
models (LMs) in Natural Language Processing
(NLP), it has become crucial for practitioners to
choose the best LM encoder for their given task
early on, regardless of the rest of their proposed
model architecture. The greatest variation of LMs
lies in the language or domain-specificity of the
unlabelled data used during pre-training (with ar-
chitectures often staying identical).

Typically, better expressivity is expected from
language/domain-specific LMs (Gururangan et al.,
2020; Dai et al., 2020) while open-domain settings
necessitate high-capacity models with access to as
much pre-training data as possible. This tradeoff is
difficult to navigate, and given that multiple special-
ized LMs (or none at all) are available, practitioners
often resort to an ad-hoc choice. In absence of im-

mediate performance indicators, the most accurate
choice could be made by training the full model
using each LM candidate, however this is often
infeasible and wasteful (Strubell et al., 2019).

Recently, the field of Computer Vision (CV) has
attempted to tackle this problem by quantifying
useful information in pre-trained image encoders
as measured directly on labeled target data without
fine-tuning (Nguyen et al., 2020; You et al., 2021).
While first forays for applying these methods to
NLP are promising, some linguistic tasks differ
substantially: Structured prediction, such as pars-
ing syntactic dependencies, is a fundamental NLP
task not covered by prior encoder ranking methods
due to its graphical output. Simultaneously, perfor-
mance prediction in NLP has so far been studied as
a function of dataset and model characteristics (Xia
et al., 2020; Ye et al., 2021) and has yet to examine
how to rank large pools of pre-trained LMs.

Given the closely related field of probing, in
which lightweight models quantify task-specific
information in pre-trained LMs, we recast its ob-
jective in the context of performance prediction
and ask: How predictive is lightweight probing at
choosing the best performing LM for dependency
parsing? To answer this question, we contribute:

• An efficient encoder ranking method for struc-
tured prediction using dependency probing
(Müller-Eberstein et al., 2022; DEPPROBE) to
quantify latent syntax (Section 2).

• Experiments across 46 typologically and ar-
chitecturally diverse LM + target language
combinations (Section 3).1

• An in-depth analysis of the surprisingly low
inherent dependency information in Rem-
BERT (Chung et al., 2021) compared to its
high fine-tuned performance (Section 4).

1Code at https://personads.me/x/naacl-2022-code.
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Figure 1: Visualization of DEPPROBE. Relational and
structural subspaces L and B are combined to extract
labeled, directed trees from embeddings.

2 Methodology

Probing pre-trained LMs is highly related to en-
coder ranking in CV where the ease of recover-
ability of class-differentiating information is key
(Nguyen et al., 2020; You et al., 2021). This ap-
proach is more immediate than existing NLP per-
formance prediction methods which rely on fea-
turized representations of source and target data
without actively ranking encoders (Xia et al., 2020;
Ye et al., 2021). As most experiments in NLP are
conducted using a limited set of LMs—often a sin-
gle model—without strong prior motivations, we
see LM ranking as a critical task on its own.

While probes for LMs come in many forms, they
are generally characterized as lightweight, min-
imal architectures intended to solve a particular
task (Hall Maudslay et al., 2020). While non-linear
models such as small multi-layer perceptrons are of-
ten used (Tenney et al., 2019), there have been crit-
icisms given that their performance highly depends
on the complexity of their architecture (Hewitt and
Liang, 2019; Voita and Titov, 2020). As such,
we rely on linear probes alone, which have the
benefit of being extremely lightweight, closely re-
sembling existing performance prediction methods
(You et al., 2021), and allow for statements about
linear subspaces contained in LM latent spaces.

DEPPROBE (Müller-Eberstein et al., 2022; vi-
sualized in Figure 1) is a linear formulation for
extracting fully labeled dependency trees based on
the structural probe by Hewitt and Manning (2019).
Given contextualized embeddings of dimensional-
ity d, a linear transformation B ∈ Rb×d with b ≪ d
(typically b = 128) maps them into a subspace in
which the Euclidean distance between embeddings
corresponds to the number of edges between the
respective words in the gold dependency graph.

In our formulation, we supplement a linear trans-
formation L ∈ Rl×d (with l = number of depen-
dency relations) which maps each embedding to a

subspace in which the magnitude of each dimen-
sion corresponds to the likelihood of a word and its
head being governed by a certain relation.

By computing the minimum spanning tree in B
and then finding the word with the highest root
likelihood in L, we can determine the direction-
ality of all edges as pointing away from the root.
All remaining edges are labeled according to the
most likely non-root class in L, resulting in a fully
directed and labeled dependency tree.

Note that this approach differs substantially from
prior approaches which yield undirected and/or
unlabeled trees (Hewitt and Manning, 2019; Kul-
mizev et al., 2020) or use pre-computed edges and
non-linear classifiers (Tenney et al., 2019). DEP-
PROBE efficiently computes the full target metric
(i.e. labeled attachment scores) instead of approxi-
mate alternatives (e.g. undirected, unlabeled attach-
ment scores or tree depth correlation).

3 Experiments

Setup We investigate the ability of DEPPROBE

to select the best performing LM for dependency
parsing across nine linguistically diverse treebanks
from Universal Dependencies (Zeman et al., 2021;
UD) which were previously chosen by Smith et al.
(2018) to reflect diverse writing systems and mor-
phological complexity (see Appendix A).

For each target language, we employ three multi-
lingual LMs—mBERT (Devlin et al., 2019), XLM-
R (Conneau et al., 2020), RemBERT (Chung et al.,
2021)—as well as 1–3 language-specific LMs re-
trieved by popularity from HuggingFace’s Model
Hub (Wolf et al., 2020), resulting in a total of 46
LM-target pair setups (see Appendix C).

For each combination, we train a DEPPROBE

to compute labeled attachment scores (LAS), hy-
pothesizing that LMs from which trees are most
accurately recoverable also perform better in a fully
tuned parser. To evaluate the true downstream per-
formance of a fully-tuned model, we further train
a deep biaffine attention parser (BAP; Dozat and
Manning, 2017) on each LM-target combination.
Compared to full fine-tuning, DEPPROBE only op-
timizes the matrices B and L, resulting in the ex-
traction of labeled trees with as few as 190k instead
of 583M trainable parameters for the largest Rem-
BERT model (details in Appendix B).

We measure the predictive power of probing for
fully fine-tuned model performance using the Pear-
son correlation coefficient ρ as well as the weighted
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Figure 2: LAS of DEPPROBE in relation to full
BAP across nine language targets (dev) using language-
specific and multilingual LM encoders of different ar-
chitecture types (exact scores in Appendix C).

Kendall’s τw (Vigna, 2015). The latter metric cor-
responds to a correlation coefficient in [−1, 1] and
simultaneously defines the probability of choosing
the better LM given a pair as τw+1

2 , allowing us to
quantify the overall quality of a ranking.

Results Comparing the LAS of DEPPROBE’s
lightweight predictions against full BAP fine-
tuning in Figure 2, we see a clear correlation as
the probe correctly predicts the difficulty of pars-
ing languages relative to each other and also ranks
models within languages closely according to their
final performance. With a τw of .58 between scores
(p < 0.001), this works out to DEPPROBE select-
ing the better performing final model given any
two models 79% of the time. Additionally, LAS is
slightly more predictive of final performance than
unlabeled, undirected attachment scores (UUAS)
with τw = .57 to which prior probing approaches
are restricted (see Appendix C).

Given a modest ρ of .32 (p < 0.05), we sur-
prisingly also observe a single strong outlier to
this pattern, namely the multilingual RemBERT
(Chung et al., 2021) decoupled LM architecture.
While DEPPROBE consistently ranks it low as it
cannot extract dependency parse trees as accurately
as from the BERT and RoBERTa-based architec-
tures, RemBERT actually performs best on four
out of the nine targets when fully fine-tuned in
BAP. Excluding monolingual LMs, it further out-
performs the other multilingual LMs in seven out
of nine cases. As it is a more recent and distinc-
tive architecture with many differences to the most
commonly-used contemporary LMs, we analyze
potential reasons for this discrepancy in Section 4.

Excluding RemBERT as an outlier, we find sub-
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Figure 3: Dependency Information per RemBERT
Layer via DEPPROBE’s structural, relational and pars-
ing accuracy (UUAS, RelAcc, LAS) on EN-EWT (dev).

stantially higher correlation among all other mod-
els: ρ = .78 and τw = .78 (p < 0.001). This means
that among these models, fully fine-tuning the LM
for which DEPPROBE extracts the highest scores,
yields the better final performance 89% of the time.

In practice, learning DEPPROBE’s linear trans-
formations while keeping the LM frozen is multiple
orders of magnitude more efficient than fully train-
ing a complex parser plus the LM’s parameters.
As such, linear probing offers a viable method for
selecting the best encoder in absence of qualita-
tive heuristics or intuitions. This predictive perfor-
mance is furthermore achievable in minutes com-
pared to hours and at a far lower energy budget (see
Appendices B and C).

4 Probing Decoupled LMs

Considering DEPPROBE’s high predictive perfor-
mance across LMs with varying architecture types,
languages/domains and pre-training procedures,
we next investigate its limitations: Specifically,
which differences in RemBERT (Chung et al.,
2021) lead to it being measured as an outlier with
seemingly low amounts of latent dependency infor-
mation despite reaching some of the highest scores
after full fine-tuning. The architecture has 32 lay-
ers and embeddings with d = 1152, compared to
most models’ 12 layers and d = 768. It accom-
modates these size and depth increases within a
manageable parameter envelope by using smaller
input embeddings with din = 256. While choosing
different d for the input and output embeddings
is not possible in most prior models due to both
embedding matrices being coupled, RemBERT de-
couples them, leading to a larger parameter budget
and less overfitting on the masked language model-
ing pre-training task (Chung et al., 2021).
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Figure 4: Per-language α of RemBERT Layers for
DEPPROBE across all layer weights (dark > light).

MODEL AR EN FI GRC HE KO RU SV ZH

mBERT
65 74 65 46 69 58 68 65 58

±.08 ±.09 ±.35 ±.14 ±.23 ±.18 ±.31 ±.12 ±.17

XLM-R
60 70 66 53 60 49 57 51 51

±.14 ±.08 ±.18 ±.19 ±.20 ±.08 ±.34 ±.24 ±.53

RemBERT
58 56 52 54 52 46 49 43 39

±.12 ±.22 ±.15 ±.18 ±.05 ±.14 ±.04 ±.08 ±.24

Table 1: LAS of BAP Trained on Frozen LMs. A
biaffine attention parsing head is trained on top of frozen
mBERT, XLM-R and RemBERT for each of the nine
target languages (± standard deviation).

Layer-wise Probing Prior probing studies have
found dependency information to be concentrated
around the middle layers of an LM (Hewitt and
Manning, 2019; Tenney et al., 2019; Fayyaz et al.,
2021). Using EN-EWT (Silveira et al., 2014),
we evaluate whether this holds for RemBERT’s
new architecture. Figure 3 confirms that both de-
pendency structural and relational information are
most prominent around layer 17 of 32 as indi-
cated by UUAS and relation classification accuracy
(RelAcc) respectively. Combining the structural
and relational information in DEPPROBE similarly
leads to a peak of the LAS at the same layer while
decreasing with further distance from the center.

Across all target languages, we next investigate
whether probing a sum over the embeddings of all
layers weighted by α ∈ R32 can boost extraction
performance in RemBERT. The heavier weighting
of middle layers by α, visible in Figure 4, reaf-
firms a concentration of dependency information
in the center. Contrasting probing work on prior
models (Tenney et al., 2019; Kulmizev et al., 2020),
using all layers does not increase the retrievable de-
pendencies, with LAS differences ±1 point. This
further confirms that there is not a lack of depen-
dency information in any specific layer, but that
there is less within the encoder as a whole.

Frozen Parsing Our probing results show that
linear subspaces in RemBERT contain less depen-
dency information than prior LMs. However, DEP-
PROBE’s parametrization is kept intentionally sim-

ple and may therefore not be capturing non-linearly
represented information that is useful during later
fine-tuning. To evaluate this hypothesis, we train
a full biaffine attention parsing head, but keep the
underlying LM encoder frozen. This allows us to
quantify the performance gains which come from
inherent dependency information versus later task-
specific fine-tuning.

Table 1 confirms our findings from DEPPROBE

and shows that despite RemBERT outperforming
mBERT and XLM-R when fully fine-tuned, it
has substantially lower LAS across almost all lan-
guages when no full model fine-tuning is applied.
This leads us to conclude that there indeed is less in-
herent dependency information in the newer model
and that most performance gains must be occurring
during task-specific full fine-tuning.

Given that DEPPROBE extracts dependency
structures reliably from LM architectures with dif-
ferent depths and embedding dimensionalities (e.g.
RoBERTalarge with 24 layers and d = 1024 versus
RuBERTtiny with 3 layers and d = 312) as well as
varying tokenization, optimization and pre-training
data, the key difference in RemBERT appears to
be embedding decoupling. The probe’s linear for-
mulation is not the limiting factor as the non-linear,
biaffine attention head also produces less accurate
parses when the LM’s weights are frozen. Our
analyses thus suggest that RemBERT’s decoupled
architecture contains less dependency information
out-of-the-box, but follows prior patterns such as
consolidating dependency information towards its
middle layers and serving as strong initialization
for parser training.

Lastly, RemBERT’s larger number of tunable
parameters compared to all other LM candidates
may provide it further capacity, especially after full
fine-tuning. As our probing methods are deliber-
ately applied to the frozen representations of the en-
coder, it becomes especially important to consider
the degree to which these embeddings may change
after updating large parts of the model. Taking
these limitations into account, the high correlations
with respect to encoder ranking nonetheless enable
a much more informed selection of LMs from a
larger pool than was previously possible.

5 Conclusion

To guide practitioners in their choice of LM en-
coder for the structured prediction task of depen-
dency parsing, we leveraged a lightweight, linear
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DEPPROBE to quantify the latent syntactic infor-
mation via the labeled attachment score. Evaluat-
ing 46 pairs of multilingual/language-specific LMs
and nine typologically diverse target treebanks, we
found DEPPROBE to not only be efficient in its
predictions, with orders of magnitude fewer train-
able parameters, but to also be accurate 79–89%
of the time in predicting which LM will outper-
form another when used in a fully tuned parser.
This allows for a substantially faster iteration over
potential LM candidates, saving hours worth of
compute in practice (Section 3).

Our experiments further revealed surprising in-
sights on the newly proposed RemBERT architec-
ture: While particularly effective for multilingual
dependency parsing when fully fine-tuned, it con-
tains substantially less latent dependency informa-
tion relative to prior widely-used models such as
mBERT and XLM-R. Among its architectural dif-
ferences, we identified embedding decoupling to
be the most likely contributor, while added model
capacity during fine-tuning may also improve final
performance. Our analyses showed that despite
containing less dependency information overall,
RemBERT follows prior findings such as structure
and syntactic relations being consolidated towards
the middle layers. Given these consistencies, per-
formance differences between decoupled LMs may
be predictable using probes, but in absence of simi-
lar multilingual LMs using decoupled embeddings
this effect remains to be studied (Section 4).

Overall, the high efficiency and predictive power
of ranking LM encoders via linear probing as well
as the ease with which they can be analyzed—even
when they encounter their limitations—offers im-
mediate benefits to practitioners who have so far
had to rely on their own intuitions when making
a selection. This opens up avenues for future re-
search by extending these methods to more tasks
and LM architectures in order to enable better in-
formed modeling decisions.
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cio Chalub, Shweta Chauhan, Ethan Chi, Taishi
Chika, Yongseok Cho, Jinho Choi, Jayeol Chun,
Juyeon Chung, Alessandra T. Cignarella, Silvie
Cinková, Aurélie Collomb, Çağrı Çöltekin, Miriam
Connor, Marine Courtin, Mihaela Cristescu, Phile-
mon Daniel, Elizabeth Davidson, Marie-Catherine
de Marneffe, Valeria de Paiva, Mehmet Oguz De-
rin, Elvis de Souza, Arantza Diaz de Ilarraza,
Carly Dickerson, Arawinda Dinakaramani, Elisa
Di Nuovo, Bamba Dione, Peter Dirix, Kaja Do-
brovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Hanne Eckhoff, Sandra Eiche, Marhaba
Eli, Ali Elkahky, Binyam Ephrem, Olga Erina,
Tomaž Erjavec, Aline Etienne, Wograine Evelyn,
Sidney Facundes, Richárd Farkas, Jannatul Fer-
daousi, Marília Fernanda, Hector Fernandez Alcalde,
Jennifer Foster, Cláudia Freitas, Kazunori Fujita,
Katarína Gajdošová, Daniel Galbraith, Marcos Gar-
cia, Moa Gärdenfors, Sebastian Garza, Fabrício Fer-
raz Gerardi, Kim Gerdes, Filip Ginter, Gustavo
Godoy, Iakes Goenaga, Koldo Gojenola, Memduh
Gökırmak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta González Saavedra, Bernadeta Griciūtė,
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duc, David Mareček, Katrin Marheinecke, Héctor
Martínez Alonso, Lorena Martín-Rodríguez, An-
dré Martins, Jan Mašek, Hiroshi Matsuda, Yuji
Matsumoto, Alessandro Mazzei, Ryan McDonald,
Sarah McGuinness, Gustavo Mendonça, Tatiana
Merzhevich, Niko Miekka, Karina Mischenkova,
Margarita Misirpashayeva, Anna Missilä, Cătălin
Mititelu, Maria Mitrofan, Yusuke Miyao, AmirHos-
sein Mojiri Foroushani, Judit Molnár, Amirsaeid
Moloodi, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Giovanni Moretti, Keiko Sophie
Mori, Shinsuke Mori, Tomohiko Morioka, Shigeki
Moro, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Robert Munro, Yugo Murawaki,
Kaili Müürisep, Pinkey Nainwani, Mariam Nakhlé,
Juan Ignacio Navarro Horñiacek, Anna Nedoluzhko,
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Appendices

A Treebanks

TARGET LANG FAMILY SIZE

AR-PADT Arabic Afro-Asiatic 7.6k
EN-EWT English Indo-European 16.6k
FI-TDT Finnish Uralic 15.1k
GRC-PROIEL Ancient Greek Indo-European 17.1k
HE-HTB Hebrew Afro-Asiatic 6.2k
KO-GSD Korean Korean 6.3k
RU-GSD Russian Indo-European 5k
SV-Talbanken Swedish Indo-European 6.0k
ZH-GSD Chinese Sino-Tibetan 5.0k

Table 2: Target Treebanks based on Smith et al. (2018)
with language family (FAMILY) and total number of
sentences (SIZE).

Table 2 lists the nine target treebanks based on
the set by Smith et al. (2018): AR-PADT (Hajič
et al., 2009), EN-EWT (Silveira et al., 2014), FI-
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TDT (Pyysalo et al., 2015), GRC-PROIEL (Eck-
hoff et al., 2018), HE-HTB (McDonald et al.,
2013a), KO-GSD (Chun et al., 2018), RU-GSD
(McDonald et al., 2013b), SV-Talbanken (McDon-
ald et al., 2013a), ZH-GSD (Shen et al., 2016). We
use these treebanks as provided in Universal Depen-
dencies v2.9 (Zeman et al., 2021). DEPPROBE and
BAP are trained on each target’s respective train-
ing split and are evaluated on the development split
as this work aims to analyze general performance
patterns instead of state-of-the-art performance.

B Experiment Setup

DEPPROBE is implemented in PyTorch v1.9.0
(Paszke et al., 2019) and uses language models
from the Transformers library v4.13.0 and the as-
sociated Model Hub (Wolf et al., 2020). Following
the structural probe by Hewitt and Manning (2019),
each token which is split by the LM encoder into
multiple subwords is mean-pooled. Similarly, we
follow the original hyperparameter settings and
set the structural subspace dimensionality to b =
128 and use embeddings from the middle layer of
each LM (Hewitt and Manning, 2019; Tenney et al.,
2019; Fayyaz et al., 2021). The structural loss is
computed based on the absolute difference of the
Euclidean distance between transformed word em-
beddings and the number of edges separating the
words in the gold tree (see Hewitt and Manning,
2019 for details). The relational loss is computed
using cross entropy between the logits and gold
head-child relation. Optimization uses AdamW
(Loshchilov and Hutter, 2018) with a learning rate
of 10−3 which is reduced by a factor of 10 each
time the loss plateaus. Early stopping is applied
after three epochs without improvement and a max-
imum of 30 total epochs. With the only trainable
parameters being the matrices B and L, the model’s
footprint ranges between 51k and 190k parameters.

BAP For the biaffine attention parser (Dozat and
Manning, 2017) we use the implementation in the
MaChAmp framework v0.3 (van der Goot et al.,
2021) with the default training schedule and hyper-
parameters. The number of trainable parameters
depends on the LM encoder’s size and ranges be-
tween 14M and 583M.

Analyses For our analyses in Sections 3 and 4 we
further make use of numpy v1.21.0 (Harris et al.,
2020), SciPy v1.7.0 (Virtanen et al., 2020) and
Matplotlib v3.4.3 (Hunter, 2007).

Training Details Models are trained on an
NVIDIA A100 GPU with 40GBs of VRAM and
an AMD Epyc 7662 CPU. BAP requires around 1
h (± 30 min). DEPPROBE can be trained in around
15 min (± 5 min) with the embedding forward op-
eration being most computationally expensive. The
models use batches of size 32 and are initialized
using the random seeds 692, 710 and 932.

Reproducibility In order to ensure reproducibil-
ity and comparability with future work, we re-
lease our code and token-level predictions at
https://personads.me/x/naacl-2022-code.

C Detailed Results

Tables 3–11 list exact LAS and standard deviations
for each experiment in Section 3’s Figure 2 in ad-
dition to the HuggingFace Model Hub IDs of the
LMs used in each of the 46 setups as well as their
number of layers, embedding dimensionality d and
total number of parameters. In addition, Figure
5 shows UUAS for all setups, equivalent to only
probing structurally (Hewitt and Manning, 2019)
for unlabeled, undirected dependency trees.
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Figure 5: UUAS of DEPPROBE in relation to BAP
across nine language targets (dev) using language-
specific and multilingual LM encoders of different ar-
chitecture types.
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MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 83.5±0.2 54.8±0.6

xlm-roberta-base Conneau et al. (2020) 12 768 278M 85.2±0.1 57.2±0.1

google/rembert Chung et al. (2021) 32 1152 576M 85.4±0.2 20.7±0.1

aubmindlab/bert-base-arabertv02 Antoun et al. (2020) 12 768 135M 85.8±0.1 59.0±0.1

asafaya/bert-base-arabic Safaya et al. (2020) 12 768 111M 84.9±0.1 57.0±0.2

Table 3: LAS on AR-PADT (Dev) using BAP and DEPPROBE with different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 90.0±0.1 64.5±0.3

xlm-roberta-base Conneau et al. (2020) 12 768 278M 91.7±0.2 64.8±0.1

google/rembert Chung et al. (2021) 32 1152 576M 92.2±0.0 41.6±0.3

bert-base-uncased Devlin et al. (2019) 12 768 109M 91.2±0.1 63.4±0.3

roberta-large Liu et al. (2019) 24 1024 355M 92.3±0.2 59.9±0.2

Table 4: LAS on EN-EWT (Dev) using BAP and DEPPROBE with different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 89.1±0.2 54.5±0.4

xlm-roberta-base Conneau et al. (2020) 12 768 278M 92.4±0.1 62.4±0.2

google/rembert Chung et al. (2021) 32 1152 576M 93.1±0.1 30.8±0.1

TurkuNLP/bert-base-finnish-uncased-v1 Virtanen et al. (2019) 12 768 125M 93.4±0.1 68.9±0.3

TurkuNLP/bert-base-finnish-cased-v1 Virtanen et al. (2019) 12 768 125M 93.4±0.1 67.5±0.4

Table 5: LAS on FI-TDT (Dev) using BAP and DEPPROBE with different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 73.1±0.1 41.6±0.5

xlm-roberta-base Conneau et al. (2020) 12 768 278M 85.0±0.2 51.1±0.2

google/rembert Chung et al. (2021) 32 1152 576M 87.7±0.1 15.3±0.1

pranaydeeps/Ancient-Greek-BERT Singh et al. (2021) 12 768 113M 87.3±0.1 60.0±0.0

nlpaueb/bert-base-greek-uncased-v1 Koutsikakis et al. (2020) 12 768 113M 84.6±0.3 53.9±0.1

Table 6: LAS on GRC-PROIEL (Dev) using BAP and DEPPROBE with different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 86.7±0.2 60.2±0.6

xlm-roberta-base Conneau et al. (2020) 12 768 278M 88.8±0.1 59.2±0.3

google/rembert Chung et al. (2021) 32 1152 576M 90.5±0.1 11.6±0.4

onlplab/alephbert-base Seker et al. (2021) 12 768 126M 89.6±0.1 61.4±0.2

Table 7: LAS on HE-HTB (Dev) using BAP and DEPPROBE with different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 83.8±0.2 46.6±0.2

xlm-roberta-base Conneau et al. (2020) 12 768 278M 86.1±0.1 49.4±0.3

google/rembert Chung et al. (2021) 32 1152 576M 86.1±0.2 15.9±0.3

klue/bert-base Park et al. (2021) 12 768 111M 86.8±0.0 51.0±0.1

klue/roberta-large Park et al. (2021) 24 1024 337M 88.1±0.3 48.8±0.5

kykim/bert-kor-base Kim (2020) 12 768 118M 86.8±0.1 46.9±0.4

Table 8: LAS on KO-GSD (Dev) using BAP and DEPPROBE with different LMs (± standard deviation).
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MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 89.1±0.1 60.7±0.1

xlm-roberta-base Conneau et al. (2020) 12 768 278M 90.0±0.2 59.9±1.1

google/rembert Chung et al. (2021) 32 1152 576M 90.8±0.0 26.0±0.2

cointegrated/rubert-tiny Dale (2021) 3 312 11M 76.7±0.1 41.5±0.6

sberbank-ai/ruRoberta-large Sber Devices (2021) 24 1024 355M 90.3±0.3 63.2±0.4

blinoff/roberta-base-russian-v0 Blinov (2021) 12 768 124M 75.8±0.0 15.6±0.2

Table 9: LAS on RU-GSD (Dev) using BAP and DEPPROBE with different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 87.5±0.1 55.5±0.2

xlm-roberta-base Conneau et al. (2020) 12 768 278M 90.2±0.1 59.1±0.2

google/rembert Chung et al. (2021) 32 1152 576M 91.3±0.3 31.7±0.3

KB/bert-base-swedish-cased Malmsten et al. (2020) 12 768 125M 90.8±0.1 61.7±0.2

Table 10: LAS on SV-Talbanken (Dev) using BAP and DEPPROBE with different LMs (± standard deviation).

MODELS SOURCE LAYERS EMB d PARAMS BAP DEPPROBE

bert-base-multilingual-cased Devlin et al. (2019) 12 768 178M 84.6±0.4 49.1±0.4

xlm-roberta-base Conneau et al. (2020) 12 768 278M 85.5±0.3 30.3±0.1

google/rembert Chung et al. (2021) 32 1152 576M 85.3±0.2 5.2±0.1

bert-base-chinese Devlin et al. (2019) 12 768 102M 85.8±0.1 46.4±0.1

hfl/chinese-bert-wwm-ext Cui et al. (2021) 12 768 102M 86.0±0.3 45.8±0.3

hfl/chinese-roberta-wwm-ext Cui et al. (2021) 12 768 102M 85.9±0.3 47.7±0.4

Table 11: LAS on ZH-GSD (Dev) using BAP and DEPPROBE with different LMs (± standard deviation).
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