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Abstract

Large language models are shown to memo-
rize privacy information such as social secu-
rity numbers in training data. Given the sheer
scale of the training corpus, it is challenging
to screen and filter all privacy data, either man-
ually or automatically. In this paper, we pro-
pose Confidentially Redacted Training (CRT),
a method to train language generation models
while protecting the confidential segments. We
borrow ideas from differential privacy (which
solves a related but distinct problem) and show
that our method is able to provably prevent un-
intended memorization by randomizing parts
of the training process. Moreover, we show
that redaction with an approximately correct
screening policy amplifies the confidentiality
guarantee. We implement the method for both
LSTM and GPT language models. Our experi-
mental results show that the models trained by
CRT obtain almost the same perplexity while
preserving strong confidentiality1.

1 Introduction

Language models (LM) have rich real-world ap-
plications in, among others, machine translation
(Bahdanau et al., 2015), AI chatbots (Hosseini-Asl
et al., 2020), question answering (Kwiatkowski
et al., 2019), and information retrieval (Ganguly
et al., 2015). The advent of transformers (Vaswani
et al., 2017) has fostered a dramatic advancement
in the capabilities of generative neural language
models, yet they come at a cost to privacy, as the
amount of excess parameters in the LM enables
it to memorize certain training samples. Recent
works show that sensitive user information from
the training dataset, such as address and name, can
be extracted verbatim from text generation mod-
els by querying the LM as an API (Carlini et al.,
2019, 2021; Lee et al., 2022). How to train a high-
performing language model without memorizing

1Our code is available at https://github.com/
XuandongZhao/CRT

sensitive text has become a major research chal-
lenge.

Existing solutions to this problem primarily
leverage differential privacy (DP) (Dwork et al.,
2006).

Differentially private learning algorithms ensure
that an attacker could not infer whether a data point
is used for training, let alone extracting the sensi-
tive information within that data point.

However, there are several mismatches between
the problem of privacy that DP addresses, and our
problem of preventing the memorization of sensi-
tive text (henceforth referred to as confidentiality).
First, confidential information in a natural language
dataset is sparse (e.g., the bulk of an email might
not carry confidential information). DP’s undis-
criminating protection for all sentences could be
unnecessarily conservative which limits the util-
ity of the trained model. Second, what needs to
be protected is the content of the sensitive text,
rather than the data context. For example, in the
sentence “My SSN is 123-45-6789.”, it is
the actual SSN that we hope to conceal rather than
the general information that someone entered her
SSN in a chatbot dialogue. Thirdly, the same sen-
sitive content could appear in many data points,
which makes the protection of the content more
challenging than protecting one data sample. These
differences motivate us to treat the problem of con-
fidentiality protection in LM separately with new
definitions.

Besides DP, we also consider classical tech-
niques of redaction and deduplication. Redaction
refers to the process of removing sensitive or classi-
fied information from a document prior to its publi-
cation in governmental and legal contexts. Dedupli-
cation is the procedure of detecting and removing
identical and nearly identical texts from a corpus.
The main challenge of applying these techniques is
that it is hard to manually redact a gigantic dataset
and automated tools are far from being perfect.
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SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

false negative

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

Redaction with a
policy with recall 0.9
and high precision
compromises
confidentiality.

Redaction with a
policy with recall 1.0
but poor precision
results in useless data.

false positives

Our results:
1. Provable confidentiality ensures that these two are indistinguishable!
2. Approximate redaction policy amplifies the confidentiality guarantee.

Raw sensitive textPerfectly redacted text

Figure 1: An example from simulated dialog dataset CustomerSim. The yellow highlights are confidential
content (middle). Left shows the text after Redaction by a sequence labeling policy π. However, if the policy is not
perfect, there exists false negative or false positive samples as shown on the right.

The contribution of this paper is fivefold.

1. We show that in the absence of a perfect
screening policy, the risk of a language model
memorizing sensitive content is real and can
be efficiently exploited with only blackbox
access to the model even if the learning algo-
rithm satisfies the recently proposed notion of
selective differential privacy (Shi et al., 2021).

2. Inspired by differential privacy, we introduce
a new definition of confidentiality which pre-
cisely quantifies the risk of leaking sensitive
text.

3. We propose CRT to train language generation
models while protecting confidential text. The
method with deduplication and redaction oper-
ations work even under imperfect confidential
text labeling policies.

4. We theoretically prove that CRT, combined
with differentially private stochastic gradient
descent (DP-SGD), provides strong confiden-
tiality guarantees.

5. Our experiments on both MultiWOZ 2.2 and
CustomerSim datasets show that different
models trained by CRT can achieve the same
or better perplexity than existing solutions
(against the attacks of Carlini et al. (2019,
2021)).

To the best of our knowledge, we are the first that
rigorously establish the role of deduplication and

redaction in achieving provably stronger confiden-
tiality (or the related differential privacy) guaran-
tees; and the first that achieve provably confidential-
ity in transformer models with only a mild utility
loss.

2 Background & Related Work

Next, we briefly introduce the relevant background
and discuss the related work to put our work in
context.

Language modeling is a fundamental problem
in natural language processing (Devlin et al., 2019;
Howard and Ruder, 2018; Raffel et al., 2020).
Consider a text sequence that consists of mul-
tiple tokens from a vocabulary V , i.e., w =
(w1, w2, . . . , wn), where wi is the i-th token. The
goal of language modeling is to construct a gen-
erative model of the distribution Pr(w), by apply-
ing the chain rule Pr(w) =

∏n
i=1 Pr (wi | w<i) .

We let fθ(wi|w<i) denote the likelihood of token
wi when evaluating the neural network f with
parameters θ. A language model is trained to
maximize the probability of the data in a training
setW , by minimizing the negative log-likelihood
over each training example with the loss function
L(θ) = − log

∏n
i=1 fθ (wi | w<i) . Recurrent neu-

ral networks (RNNs) used to be a common choice
for the neural network architecture to estimate the
probability distribution Pr(w). (Hochreiter and
Schmidhuber, 1997; Mikolov et al., 2010). More
recently, large-scale Transformer-based language
models have replaced RNNs in state-of-the-art

944



models for all sorts of NLP tasks (Vaswani et al.,
2017; Radford et al., 2019). Nevertheless, common
language models are vulnerable to privacy attacks
and possibly expose information about their sensi-
tive training data (Carlini et al., 2019, 2021).

Differentially private (DP) learning methods
(see, e.g., Abadi et al., 2016) has been applied to
language models as a blanket solution for a num-
ber of privacy and security risks. McMahan et al.
(2018) trained an RNN language model with DP
guarantees in a federated learning setup. Anil et al.
(2021) pre-trained BERT under DP on datasets with
hundreds of millions of examples. These paper
also demonstrated that DP can effectively prevent
data-extraction attacks in practice even for algo-
rithms with DP guarantees that are considered too
weak from a theoretical-perspective (e.g., ϵ = 8
or 16). However, the strong protection of DP of-
ten results in a substantial drop in the utility of the
trained model, which makes them less desirable in
practice. In fact, it was recently shown that it is
necessary for deep learning models to memorize
certain training data to achieve high accuracy (Feld-
man, 2020), which suggests that DP or any other
techniques that require the model to not memorize
any training data will perform poorly in the high-
dimensional, power-law distributed real datasets.
This motivates us to consider weakened models
that only prevent memorizing the sensitive part of
the text.

Recent works (Lee et al., 2022; Kandpal et al.,
2022) show that deduplication enables language
models to emit memorized text less frequently with
same or better accuracy. However, deduplicating
training datasets can not prevent all unintended
memorization. We combine deduplication and
redaction and then apply both techniques to the
training process of LM to achieve confidentiality
with provable guarantee.

The closest to us is perhaps the work of Shi
et al. (2021), who proposed selective differential
privacy (S-DP), which requires indistinguishability
between two datasets that differ only on a sensi-
tive message. Correspondingly, they propose an
algorithm (Selective DP-SGD) for training RNN
that adds noise only to the part of computation that
involves sensitive tokens. To define S-DP and to
run Selective DP-SGD, one needs to have access to
a policy function F which determines which token
is sensitive. This requirement limits the applicabil-
ity of their approach to those applications where

such perfect F is known. We note that even for
name-entity recognition the state-of-the-art model
is far from being perfect, and which part of the text
is considered sensitive is often ambiguous even
for human annotators. We will see that naively
running Selective DP-SGD with an approximate
policy function does not provide a meaningful con-
fidentiality guarantee and is vulnerable to practical
data extraction attacks. Finally, we note that in the
case when a perfect policy function is available, we
can simply use it for redaction, which provides a
perfect S-DP with ϵ = 0. A big part of our con-
tribution is to refine S-DP to a (slightly different)
definition called “confidentiality” and to demon-
strate that we use an approximate screening policy
to amplify the confidentiality parameter.

3 The CRT Method and Theory

In this section, we develop our method with prov-
able confidentiality.

3.1 Formally defining confidentiality
Let the dataset be a collection of n data points —
each being a sequence of tokens. A “secret” x
is a contiguous subsequence of tokens within a
data point that is considered sensitive or confiden-
tial. The goal of our research is to allow us to
train language models on such datasets that could
contain secrets while provably prevent the model
from remembering that these secrets were. We start
by defining a formal definition of confidentiality,
which uses the following idea of indistinguishabil-
ity from the DP literature.

Definition 1 (Indistinguishability). We say that a
pair of distributions P,Q defined on the same prob-
ability space are (ϵ, δ)-indistinguishable if for any
measurable set S,

Pr
P
[S] ≤ eϵ Pr

Q
[S] + δ.

Definition 2 (Confidentiality). We say that A en-
sures that a secret x is (ϵ(x), δ)-confidential, if
for any dataset D that contains x in one of its
data points, and an alternative dataset D′ that re-
places x in D with a generic <MASK>, it holds that
(A(D),A(D′)) are (ϵ(x), δ)-indistinguishable. In
addition, we simply say that A ensures (ϵ, δ)-
confidentiality if ϵ(x) ≤ ϵ for all secret x.

This definition ensures that an attacker cannot
distinguish from the output of A (the trained lan-
guage model) whether it was x or <MASK> that
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was used for training, thus formalizing the idea of
confidentiality. The protection should be viewed
as relative, rather than absolute. The definition
bounds the risk of any bad event by an multiplica-
tive factor of eϵ and an additive factor of δ, which
implies that anything that could happen when we
runA on the sensitive data could’ve happened with
with similar probability even if A runs on an alter-
native world where these sensitive information are
perfectly masked.

Connections to differential privacy. Our defi-
nition of confidentiality is related to (and inspired
by) (ϵ, δ)-differential privacy (DP) but is differ-
ent in several ways. DP is stronger (and im-
plies confidentiality!) requires A to ensure (ϵ, δ)-
indistinguishability for all D,D′ that can be mod-
ified from each other by adding or removing one
individual person / data point (or tokens, depend-
ing on the desired granularity); but for A to en-
sure (ϵ, δ)-confidentiality, it only requires (ϵ, δ)-
indistinguishability for specific D,D′ where D′

replaces x in D with <MASK>. Moreover, it is
more informative to define ϵ as a function of each
specific x, which is different from DP (it resembles
personalized DP (Ghosh and Roth, 2015)).

The confidentiality definition makes sense for
our problem because it protects the content of the
sensitive text x rather than its existence. Specif-
ically, a pre-processing algorithm that masks all
sensitive text ensures (0, 0)-confidentiality but does
not satisfy any non-trivial DP guarantees.

Sometimes, it is useful to consider the confiden-
tiality of multiple secret texts. For example, a se-
cret key x could appear multiple times in multiple
data points. Also, there might be multiple secret
texts that are correlated to each other such that the
knowledge of one would reveal other secrets.
Definition 3 (Group Confidentiality). We say that
A ensures that a list of sensitive texts S :=
[x1, ..., xk] is (ϵ(S), δ)-(group) confidential, if for
any dataset D that contains [x1, ..., xk] in up to k
data points, and D′ being the version that replaces
each element in S with <MASK>, it holds that
(A(D),A(D′)) are (ϵ(S), δ)-indistinguishable.

A special case of such group confidentiality is
when S collects the all secret text in D, which
protects all secret texts uniformly. We call this
uniform-confidentiality. Note that the standard def-
inition of confidentiality also protect every secret
x, except that it protects each secret x individually,
rather than together.

Inspired by the recent development of Bayesian
DP (Triastcyn and Faltings, 2020), we also define
Bayesian confidentiality as follows.

Definition 4 (Bayesian Confidentiality). Let D be
a dataset that is fixed except a random secret x ∼ µ
drawn from some distribution µ. Let D′ be ob-
tained by replacing x with <MASK>2. Then A en-
sures (ϵ, δ)-Bayesian Confidentiality if for any D′,
(A(D),A(D′)) is (ϵ, δ)-indistinguishable, where
A(D) is jointly distributed over x ∼ µ and A.

The Bayesian confidentiality measures how
much information an attacker could gain if he/she’s
prior knowledge about this secret x is described by
the distribution µ. This is a strict generalization
because when µ is a single point mass at x, it recov-
ers Definition 2. The additional generality allows
us to quantify the stronger confidentiality guaran-
tee against weaker adversaries without complete
information.

3.2 Confidentially redacted training

In this section we describe the CRT method to train
language models with provable confidentiality guar-
antee. It includes two pre-processing operations
(deduplication and redaction) and a switching opti-
mization procedure. The overall idea is to screen
the corpus into two separate sets, one public set in-
cluding sentences with no confidential information,
and one private set including sentences containing
confidential content. We then use normal optimiza-
tion algorithms (e.g. SGD) on the public set and
differential privacy optimizer (e.g. DP-SGD) on
the private set.

Deduplication. The deduplication procedure
Dedup detects all sentences that appear multiple
times in the training data and replace them into
a single <MASK> from the second occurrence on-
wards (<MASK> is for proving purpose).

Redaction. The redaction procedure Redactπ
takes applies a sequence labelling policy π to
screen confidential content in the training corpus
D. π(s, x) = 1 if a token x in a sentence s should
be confidential. The labeled span in each detected
sentence is replaced with a special token <MASK>.
Note that we do not assume the policy is perfect. It
may label some non-sensitive tokens as sensitive
(false positives) and label some sensitive text as
non-sensitive (false negative, or 1−recall).

2Notice that D′ is fixed even though x is random.
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Algorithm 1: CRT
Input :Dataset D (after tokenization /

splitting), labelling policies π, πc,
number of epochs T

1 D′ ← Dedup(D)
2 D′′ ← Redactπ(D′)
3 Dpri ← {s ∈ D′′|∃x ∈ s s.t. π(s, x) =

1 or ∃x ⊂ s s.t. πc(s, x) = 1}
4 Dpub = {s ∈ D′′|s /∈ Dpri}.
5 for e = 1, ..., T do
6 Run one epoch of SGD with Dpub.
7 Run one epoch3 of DP-SGD with Dpri.
8 end

Redact and Dedup could be implemented man-
ually, but with the large text corpus nowadays it
is more common that these procedures are im-
plemented using automated tools. For example,
Dedup could be implemented efficiently with just
one pass of data using a bloom filter (Bloom, 1970)
(or other hashing tricks that also catches near-
duplicates). Bloom filter in particular, enjoys the
nice property that it could have false positives but
never any false negatives. Redactπ could be real-
ized by a named entity recognition (NER) model or
a personal-identifiable information (PII) detector.

Finally, CRT combines the two pre-processing
steps with normal optimizer and DP-SGD, the stan-
dard algorithm for deep learning with differential
privacy. A pseudo-code of the algorithm is given
in Algorithm 1.

Besides using a sequence labeling policy π with
balanced precision/recall as part of the redaction
process. The algorithm uses another, more conser-
vative, policy πc with nearly perfect recall to decide
on the data points that do not contain sensitive text.
In the situation when such πc isn’t available, we
simply choose πc(s, x) = 1 for all tokens x in a
sentence s and the second part becomes the vanila
DP-SGD. It is also important that every data point
that contains a <MASK> requires protection.

3.3 Theoretical analysis

We analyze the theoretical properties of the above
method and show that they result in provable im-
provements in the (regular, group and Bayesian)

3DP-SGD uses Poisson-sampled Gaussian mechanisms
(with a random batchsize), thus cannot ensure all data points
are seen and some data points might be seen many times.
One epoch means the number of iterations that in expectation
covers |Dpri| data points.

confidentiality parameters for any algorithms that
are provably (ϵ(x), δ)-confidential as defined in
Section 3.1.

The following theorem captures the benefit of
redaction in improving confidentiality.

Proposition 5 (Confidentiality under redaction). If
A ensures (ϵ(x), δ)-Confidentiality for each token
x of sentence s ∈ S (S is a corpus), then A ◦
Redactπ ensures (ϵ̃(x), δ)-confidentiality with

ϵ̃(x) =

{
ϵ(x) if π(s, x) = 0

0 otherwise.

In addition, A ◦ Redactπ also satisfies
(ϵ̃(S), δ̃(S))-group confidentiality with

ϵ̃(S) =
∑

x∈s&s∈S
ϵ(x)1(π(s, x) = 0),

δ̃(S) = k̃eϵ̃(S)δ

where k̃ :=
∑

x∈S 1(π(s, x) = 0).

As an application of the above, if A ensures
(ϵ, δ)-confidentiality, and that the empirical recall
rates of the redaction policy on D is 1 − γ, then
the above proposition suggests that A ◦ Redactπ
improves the uniform-confidentiality over applying
A without redaction by a factor of γ. The proof is
in the appendix.

Redaction also improves Bayesian confidential-
ity in a way that mirrors the privacy amplification
by sampling from the DP literature.

Proposition 6 (Bayesian Confidentiality under
Redaction). If A ensures (ϵ, δ)-Bayesian Confi-
dentiality with respect to µ[x|π(s, x) = 0] for a
token x in a sentence s, then A ◦ Redactπ en-
sures (log(1 + γ(eϵ − 1)), γδ)-Bayesian Confiden-
tiality under µ if π has a false negative rate (i.e.,
1−“Recall”) of γ under µ.

The proposition says that if the redaction pol-
icy is accurate for secrets x ∼ µ, then we can
have a stronger confidentiality parameter that scales
roughly at ϵ̃ = O(γϵ). The idea behind the proof
is that over the distribution of x ∼ µ, with prob-
ability 1− γ, Redactπ(D) = Redactπ(D

′), thus
A◦Redactπ(D) ≡ A◦Redactπ(D′). With prob-
ability γ, Redactπ(D),Redactπ(D

′) are different
and conditioning on the fact that Redactπ fails to
detect x. Note that π is also applied to other text
that are not sensitive, and could result in false pos-
itives, but they do not matter as the modification
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of Redactπ to D and D′ will be identical. A full
proof is given in the appendix.

Next we turn to deduplication.

Proposition 7 (Group confidentiality under
deduplication.). If A ensures (ϵ(S), δ(S))-
Group Confidentiality, then A ◦ Dedup ensures
(ϵ(Unique(S)), δ(Unique(S)))-Group Confiden-
tiality.

Deduplication provides a stronger protection for
those cases where some secret x could appear mul-
tiple times in the dataset.

Theorem 8. Let DP-SGD from Algorithm 1 satis-
fies (ϵ, δ)-differential privacy.

1. Assume πc(s, x) = 1 for all secret tokens x
in a sentence s such that π(s, x) = 0, then
Algorithm 1 satisfies (ϵ1(π(s, x) = 0), δ)-
confidentiality.

2. Let S be a group containing m unique secrets
such that πc(s, x) = 1∀x ∈ s and s ∈ S
and that π detects γ̃-proportion of the unique
secrets in S. Then Algorithm 1 satisfies
(γ̃mϵ, γ̃meγ̃mϵδ)-group confidentiality for S.

3. Let π, πc has a a recall of 1 − γ and 1 − δ2
respectively on µ, then Algorithm 1 satisfies
(log(1 + γ(eϵ − 1)), γδ + δ2)-Bayesian Con-
fidentiality for µ.

The theorem demonstrates that our CRT algo-
rithm enjoys a full suite of confidentiality guaran-
tees and they all benefit from the deduplication and
redaction, particularly if π has high recall.

Note that the CRT algorithm achieves the worst-
case confidentiality guarantee if we have a non-
trivial conservative screening policy that outputs
πc(x) = 1 for all secret x that π misses, or we sim-
ply run vanilla DP-SGD after deduplication and
redaction. On the other hand, CRT still satisfies
Bayesian confidentiality for each µ depending on
the recall rate of πc under µ.

4 Experiments

We evaluate CRT by training two types of language
model, LSTM and GPT-2, on two datasets: 1) Mul-
tiWOZ 2.2, a well-known human-written dialogue
dataset and 2) CustomerSim, a simulated dialogue
dataset for conversation generation.

MultiWOZ 2.2 is an already-public dialogue
dataset written by crowd-workers, which collects

over 10,000 annotated dialogues spanning 8 do-
mains (Zang et al., 2020). We use this dataset to
show how CRT works in real-world applications.
Following US Department of Labor’s guidance4 on
personal-identifiable information (PII), we treat all
confidential information (e.g. email address, ref-
erence number, telephone number, etc.) as secrets.
For the sequence labeling policy π and conserva-
tive policy πc, we build upon an NER model to do
redaction. See Appendix A.4 for more details.

CustomerSim. Following S-DP Shi et al. (2021),
we simulate a dialog dataset called CustomerSim
with synthetic user information. The dialog flow is
simulated based on a fixed agenda and the language
generation is template-based (Zhao and Eskénazi,
2018). CustomerSim consists of 10 thousand ex-
amples and over one million tokens. We treat user
name, address, phone number, order, and tracking
number as secrets, and use a regular expression
tester (regex) to detect them for the redaction pro-
cess.

Experiment details. For LSTM model, we fol-
low the setting in S-DP to choose a one-layer
LSTM. Because S-DP requires hidden states of
the sensitive input to be protected, it doesn’t sup-
port more layers nor Bidirectional LSTM. Since
the advent of Transformers (Vaswani et al., 2017)
significantly improves the capabilities of generative
language models, we also test transformer-based
language model GPT-2 (Radford et al., 2019) from
HuggingFace (Wolf et al., 2019). As for deduplica-
tion, we use SHA-1 (Jarvinen, 2004) hash function
to encode sequences to SHA-1 hash code and then
remove identical sequences based on the same hash
code. For Bayesian Confidentiality, we treat the
uniform distribution over the secret sequences as
the distribution µ. More experiment details can be
found in Appendix A.3.

Baselines. For LSTM model, we compare four
different training approaches: (1) vanilla SGD
(denoted by "Non-private-LSTM"), (2) Selective
DPSGD (denoted by "S-DP-LSTM") (3) DPSGD
(denoted by "DPSGD-LSTM") and (4) confiden-
tially redacted training (denoted by "CRT-LSTM").
While for GPT-2 model, we compare three dif-
ferent training approaches: (1) vanilla SGD (de-
noted by "Non-private-GPT"), (2) DPSGD (de-
noted by "DPSGD-GPT") and (3) CRT (denoted by
"CRT-GPT"). Our implementation of S-DP-LSTM

4https://www.dol.gov/general/ppii
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Figure 2: Model utility and confidentiality guarantee on MultiWOZ 2.2 and CustomerSim datasets with µ being a
uniform distribution over the secret sequences in each dataset. PPL: Perplexity on the test set. ϵ: Privacy guarantee
in Bayesian Confidentiality. We fix δ = 8e− 5 for all models. Since Selective DP-SGD with approximate policy
gives ϵ = +∞, we show its result with a perfect screen policy. But when a perfect policy is available, Redaction
only gives ϵ = 0 and achieves the PPL of vanilla training with no noise added (Non-private-GPT/LSTM). For other
models we set γ = 0.1 to show the result under approximate policy.

model is built upon Shi et al. (2021)5. We run
the experiment for the GPT-2 model following Li
et al. (2021)6, in which they propose ghost clipping
method to alleviate the computational challenge of
running DP-SGD with large Transformers.

All the models are trained five times to reduce
randomness, and the parameters are tuned based
on the validation set performances.

5 Experimental Results

5.1 Evaluation procedure
We need to evaluate both model utilities and privacy
guarantees of the language models. We measure
predictive perplexity (PPL) for the quality of LM.
We also analyze the theoretical privacy budget (ϵ,
δ) and test whether language models are private
under attacks detailed below.

Canary insertion attack. Canary insertion is
proposed as a testing methodology for quantita-
tively assessing the risk of unintended memoriza-
tion (Carlini et al., 2019). It inserts random se-
quences called canaries into the training dataset,
then trains the model, and finally calculates the
following exposure for the inserted canaries to
measure a model’s potential for privacy risks. In
our experiment, we randomly generate 10 ca-
naries in the form of "My ID is: <random
6-digit number here>". Each canary is in-
serted into the training dataset 20 times to generate
more salient differences between models.

Definition 9 (Canary Exposure). Given a canary
s[r], a model with parameters θ, and the random-
ness spaceR, the exposure of s[r] is

exposureθ = log2 |R| − log2 rankθ(s[r])
5https://github.com/wyshi/lm_privacy
6https://github.com/lxuechen/private-transformers

After training, we calculate empirical model per-
plexity for all possibly-instantiated canaries and list
them in sorted order. Then we can get the canary
exposure based on the rank of a specific canary se-
quence rankθ(s[r]) and the number of all possible
candidates |R|. In our setting, we show the highest
canary exposure in 10 canaries. For example, if a
canary ranks 1st among 1M candidates, the canary
exposure is 19.93.

Membership inference attack. Membership In-
ference is a widely used privacy attack method.
Given a non-privately trained model, an adversary
can predict whether or not a particular example
was used to train the model. We adopt the member-
ship inference attack in Carlini et al. (2021). The
general idea is to calculate the given samples’ per-
plexities under the model, rank them and choose
the ones with the lowest perplexities, i.e., highest
likelihood by the model. We can think of this pro-
cess as training a binary classifier based on the
perplexity feature. We also implement the group
membership inference attack to show the group
confidentiality. More details about the implementa-
tion can be found in the Appendix A.5.

5.2 Overall performance

Figure 2 presents the results of model utilities and
confidentiality guarantees across our models of in-
terest on MultiWOZ 2.2 and CustomerSim datasets.
Each point denotes a model for different epochs in
a training process. Since the X-axis is ϵ in Bayesian
Confidentiality (the lower the better) and the Y-axis
is perplexity (the lower the better), a perfect model
will lie in the bottom-left corner. CRT-GPT and
DPSGD-GPT in general, perform better than S-DP-
LSTM, CRT-LSTM and, DPSGD-LSTM on the
test sets. Our model CRT-GPT’s performance is
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close to Non-private-GPT in terms of PPL while
preserving strong confidentiality. Besides, CRT-
GPT is better than DPSGD-GPT manifested by a
much lower ϵ, which demonstrates that approxi-
mately correct screening policy amplifies the confi-
dentiality guarantee.

Differences can be witnessed in the results from
two different datasets: the models trained on Cus-
tomerSim achieve overall better performances than
those trained on MultiWOZ. We think it’s due to
the fact that CustomerSim contains simple dialogs
from template-based simulations.

5.3 Attack results
Figure 3, 4, and 5 present the results from canary
insertion attack and individual/group membership
inference attack on MultiWOZ 2.2 and Customer-
Sim datasets. The X-axis is the false negative rate
γ of screening policy π, ranging from 0.0 to 0.5;
the Y-axis is the canary exposure (in Figure 3) and
membership inference accuracy (in Figure 4 and 5),
which measures the effectiveness of the attacks.
The lower the canary exposure or inference ac-
curacy, the better protection the model provides
against the attacks.
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Figure 3: Canary insertion attack result. CRT achieves
almost 0 canary exposure, which means it can prevent
unintended memorization.

For canary insertion attack, it can be seen from
Figure 3 that the canary exposures for CRT-LSTM
and CRT-GPT are both close to 0 which thus guar-
antee excellent confidentiality. Non-private-LSTM
and Non-private-GPT with mask can also attain
great protection at perfect screening policy accu-
racy (γ = 0), nonetheless a rise in γ results in a
sharp increase in the exposure. It should be noticed
that S-DP-LSTM also has high exposure, similar
to Non-private models, given any γ above 0. This
is because that many sensitive data has been falsely
identified as non-sensitive by the approximate pol-
icy, S-DPSGD does not protect these false negative
samples and hence a privacy leakage.

For membership inference attack, we compare
the inference accuracy with the benchmark value of
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Figure 4: Membership inference attack result. CRT at-
tains nearly 50% accuracy, indicating that the adversary
could not infer whether a data point is used for training.
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Figure 5: Group membership inference attack result.

0.5, which equals the random guess performance.
In Figure 4 and 5, we see that CRT-LSTM and CRT-
GPT align well with the 0.5 horizontal line, suggest-
ing that they are rather safe to the attack. The infer-
ence accuracy for Non-private-LSTM/Non-private-
GPT/S-DP-LSTM, in contrast, surges above 0.5
as the false negative rate γ deviates from 0.0, indi-
cating that these models become vulnerable to the
attack under non-perfect screen policy. In addition,
Non-private and S-DP models show even worse
protection under the group attack than the individ-
ual one in view of a higher inference accuracy at
certain γ.
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Figure 6: Bayesian Confidentiality amplification result.
CRT helps to amplify the confidentiality guarantee.

5.4 CRT amplifies Bayesian Confidentiality
guarantees

Figure 6 shows that confidentially redacted train-
ing can help to amplify the confidentiality guaran-
tees. We set the ϵ′ in DP-SGD fixed and show the
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corresponding ϵ in Bayesian Confidentiality with
different screen policy π. Both ϵ′ and ϵ are for
δ = 8e− 5. If the approximately screening policy
π has a high recall (γ is small), we will achieve
much improvement in the Bayesian Confidentiality
parameter ϵ by deduplication and redaction. For
example, with (ϵ′ = 1.0, γ = 0.1), we reduce the
ϵ to 0.12.

6 Conclusion

In this paper, we propose confidentially redacted
training (CRT), a method to train language models
while protecting the secret texts. We introduce a
new definition of confidentiality which quantifies
the risk of leaking sensitive content. We prove the
effectiveness of CRT both theoretically and empiri-
cally on multiple datasets and language models.

7 Broader Impact

This work will alleviate ethical concerns of large-
scale pre-trained language models. This paper pro-
vides one promising solution to an important as-
pect of NLP: training high quality language models
for text generation without compromising confi-
dential information. The current use cases of lan-
guage models involve pretraining on public web
corpus and fine-tuning on individual application
data. However, the private application specific data
often contains user-generated sensitive information.
The proposed method in this paper aims to use
as much individual fine-tuning data as possible,
while does not leak or memorize any confidential
information with provable guarantees. Without the
method, one has to either use the general pretrain-
ing LM without fine-tuning or manually filter sen-
sitive information and fine-tuning on the remaining.
It can be applied in broader applications that need
language models or text generation models.

In our experiments, we use a simulation scheme
to mimic confidential content in a real corpus. We
did not compromise any real user’s confidential
information.
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A Appendix

A.1 Illustration of our proposed algorithm

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hi robot. It’s me again.

SYS: What is your full name?

USR: James Bing.

SYS: Is your shipping address still
81171 Nguyen Ford North 
Crystalbury, MO 52398?

USR: Yes!

SYS: The tracking number is KHSIDHUE25. 
What else can I do?

USR: Nothing else. Thank you!

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

Raw dataset
SYS: Hello, I am the customer support 

bot. What do you need?

USR: Hello robot. Where is my package?

SYS: May I have your full name?

USR: Yes, James Bing.

SYS: We will need the shipping address 
as well.

USR: Ok, it is 81171 Nguyen Ford North 
Crystalbury, MO 52398.

SYS: The tracking number is VD98ID6CXJ. 
What else can I do?

USR: I have all I need.

Redaction with an
approximate policy
with balanced
precision/recall.

Deduplication with
a Bloom filter.

SYS: Hello, I am the customer support 
bot. What do you need?

USR: Hi robot. It’s me again.

SYS: What is your full name?

USR: James Bing.

SYS: Is your shipping address still
81171 Nguyen Ford North 
Crystalbury, MO 52398?

USR: Yes!

SYS: The tracking number is KHSIDHUE25. 
What else can I do?

USR: Nothing else. Thank you!

Pre-processed dataset

Noise added to the
gradients of all data
points with a <MASK>
And all data points
selected by a policy
with nearly perfect
recall.

Selective noise-
adding DP-SGD<MASK>

<MASK>

<MASK>

<MASK>

<MASK>

<MASK>

with provable
confidentiality

<MASK>

GPT-2

Figure 7: An illustration of our proposed algorithm on a dataset with two data points. The first data point is the
example from Figure 1, and the second data point is modified to illustrate the various aspects of the pre-processing
steps. The red-colored mask indicates the masks produced by deduplication just for illustration purposes. In the
algorithm, both of them replace a sequence of tokens with the same special token <MASK>.

A.2 Proofs of technical results
Proof of Proposition 5. The first statement straigtforwardly follows from that Redactπ(D) =
Redactπ(D

′) if π(s, x) = 1 and that Redactπ(D) and Redactπ(D
′) remain a pair of neighbors differing

by only x. The group confidentiality claims follows from the standard calculation of small group privacy
from differential privacy, which applies the (single x) confidentiality iteratively. Let D̃ = Redactπ(D),
D̃′ = Redactπ(D

′) and S̃ = [x1, ..., xk̃] be the list of S that are not masked by π. For any measurable
event E

P[A ◦ Redactπ(D) ∈ E] = P[A(D̃)] ≤ eϵx1P[A(D̃−x1,+<MASK>) ∈ E] + δ

≤eϵx1+ϵ(x2)P[A(D̃−x1,2,+<MASK>2) ∈ E] + eϵx1δ + δ

...

≤e
∑k̃

i=1 ϵxiP[A(D̃′) ∈ E] + δ(1 + eϵx1 + eϵx1+ϵx2 + ...+ eϵx1+...+ϵxk̃−1)

≤eϵ̃(S)P[A ◦ Redactπ(D′) ∈ E] + keϵ̃(S)δ

Proof of Proposition 6. Consider a dataset D (in which one of the data point has x ∼ µ) and a fixed D′.
Denote the probability distributions p, q, r as shorthands for

p ∼ A ◦ Redactπ(D)|π(s, x) = 1

q ∼ A ◦ Redactπ(D)|π(s, x) = 0

r ∼ A ◦ Redactπ(D′)|π(s, x) = 0

Moreover, we use αp+ (1− α)q to denote the mixture distribution that samples from p with probability
α and q with probability 1− α.

Recall that the Hockey-Stick-divergence characterization of (ϵ, δ)-indistinguishsability (Barthe and
Olmedo, 2013), which says that (P,Q) are (ϵ, δ)-indistinguishsable if and only if

Heϵ(P∥Q) := Ey∼Q[(
dP

dQ
(y)− eϵ)+] ≤ δ.
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It suffices for us to bound the following quantity:

H1+γ(eϵ−1)(A ◦ Redactπ(D)∥A ◦ Redactπ(D′)) = Heϵ((1− γ)p+ γq∥(1− γ)p+ γr)

=γHeϵ(q∥(1− β)p+ βr) ≤ γ ((1− β)Heϵ(q∥p) + βHeϵ(q∥r))

where β = 1+γ(eϵ−1)
eϵ . In the above, the second line follows from Theorem 2 of (Balle et al., 2018) (an

identity called “Advanced Joint Convexity” by the authors) and the inequality is due to the (standard) joint
convexity of the Hockey-Stick divergence. It remains to bound Heϵ(q∥p) and Heϵ(q∥r).

Check that p, r,A ◦ Redactπ(D′) are identically distributed and that Heϵ(q∥r) ≤ δ by our assumption
on A’s Bayesian confidentiality guarantee w.r.t. µ(x|π(s, x) = 0). This completes the proof.

Proof of Proposition 7. The proof is straightforward as Dedup(D) differs from Dedup(D′) only by
Unique(S).

Proof of Theorem 8. The proof for the first statement follows from the fact that DP implies (ϵ, δ)-
confidentiality and Proposition 5. Notably, if πc catches all x that is missed by π, then we get that
for all secret x, ϵ(x) ≤ ϵ.

The proof of the second statement applies Proposition 7 and the second part of Proposition 5.
The proof of the third statement applies Proposition 6 but requires a separate treatment of the case when

x is missed by both π and πc. Let the event that a secret x is not selected by the conservative policy be E
and let A be a generic algorithm satisfying (ϵ, δ1) Bayesian confidentiality under µ,

P[A(D) ∈ S] ≤ P[A ◦ Redactπ(D) ∈ S ⊂ Ec] + δ

≤ eϵP[A(D′) ∈ S ⊂ Ec] + δ1 + δ2

≤ eϵP[A(D′) ∈ S] + δ1 + δ2.

This completes the proof.

A.3 More details on experiments
We choose the one-layer LSTM with an embedding size of 200 and a hidden size of 200. We choose
distill-gpt27 as the GPT-2 model, which has 6 layers, 768 dimension and 12 heads. Vocabulary size
for GPT-2 is 50257. Our experiments are conducted on NVIDIA TITAN-Xp GPU. For LSTM models,
we tune the hyperparameters of the learning rate (lr) among {20, 10, 5, 1, 0.1, 0.05, 0.01}, batch size
(bs) and the epochs among {5, 10, 30, 50, 100}. We finally choose {lr=20, bs=256, epochs=50} for
Non-private-LSTM, {lr=0.1, bs=5, epochs=50} for S-DPSGD-LSTM and {lr=0.05, bs=10, epochs=100}
for CRT-LSTM. The same set of hyperparameters are tuned for GPT model as well. Our final choice
for DPSGD-GPT/CRT-GPT model is {lr=5e-4, bs=256, epochs=10}. The actual run-time of algorithms
depends on implementation details. Here, we outline estimates of the run-time for training. Running one
epoch on CRT-LSTM takes 2 hours wheras the same task on CRT-GPT only takes 30 minutes since the
implementation of Li et al. (2021) is highly efficient. We use autodp8, an automating differential privacy
computation for the privacy analysis. Noise scale σ is calculated numerically so that a DP budget of (ϵ, δ)
is spent after T epochs.

A.4 Redaction policy details
We build the sequence labeling policy based on trimming one NER model9 trained on OntoNotes-5.0
(Weischedel et al., 2013) dataset. We modify the last layer of the NER model and set the threshold for the
output scores to enable abnormal/sensitive data detection. For the screen policy π, we set the threshold to
be 0.3 for all predictions with OntoNotes tags. For the conservative policy πc, we select all predictions
with tags and all plain texts with scores smaller than 0.9 to be sensitive data. We manually label 200 data
points and find that the conservative policy πc can achieve 100% recall with lots of false positives and that
π can achieve 90% recall with few false positives.

7https://huggingface.co/distilgpt2
8https://github.com/yuxiangw/autodp
9https://huggingface.co/flair/ner-english-ontonotes-fast
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A.5 Membership inference attack details
In our experiments, we manually construct a dataset with 2000 sequences. We select 1000 sequences from
the protected secrets used in the training data. And we randomly generate 1000 samples of similar format
which are not used in the training data. In this way, a random guess generates an accuracy of 50%. For
MultiWoz 2.2, we use sentences with reference numbers as the secrets. For CustomerSim, we choose
customer addresses as the secrets.

In order to show group confidentiality guarantees, we also conduct group membership inference attack.
In this setting, we construct a dataset with 2000 groups, each of which includes 20 sentences. One half of
the groups are “sensitive groups" with all 20 sentences drawn from protected secrets and the other half are
"insensitive groups" with all 20 sentences being random. We build the classifier based on the sum of the
perplexities in one group.

A.6 “The devil is in the details” – how things could go wrong with seemingly inocuous changes to
the algorithm.

In this section, we highlight various aspects of our algorithms and why certain choices in the pre-processing
steps need to be done in the specific way we recommend for our results to hold for them.

1. It is important that the definition of confidentiality is defined with respect to a perfectly redacted
version of the dataset. If we define it as in selective differential privacy, then there will not be an
amplification effect from redaction. This is because if we replace a secret x that can be detected
by π with another x′ that cannot be detected by π, then even if x is replaced with <MASK>, x′ will
not be and the two datasets are still different after redaction. In addition, the S-DP definition will
not be useful for us we do not know how to define a confidentiality parameter specific for each x or
Bayesian confidentiality parameter for each µ

2. Tokenization and splitting into individual “sentences” (data points) should go before redaction / de-
duplication. Otherwise redaction with an approximate screening policy and with an ideal screening
policy, or deduplication may cause misalignments, resulting in almost all data points being different
in the preprocessed version of D and D′.

3. Each data point should contain only “whole” natural sentences, otherwise the sensitive part of a
natural sentence could split into two data points.

4. Deduplication steps should replace duplicate text with the same <MASK>, otherwise
<MASK_Dedup> and <MASK_Redact> are not the same so even if all secrets are masked, there
will be a difference between the pre-processed versions of D and its neighbor, while in our approach
there are no differences and we achieve perfect confidentility (with ϵ = 0).

5. Any data point containing <MASK> needs to be put in Dpri. This is because otherwise our algorithm
that works on D′ will be a deterministic algorithm that is perfectly distinguishable from the alternative
world where the algorithm is random because the approximate policy π fails to redact certain secrets
x.

6. In the DP-SGD algorithm, the sampled minibatches should contain the whole minibatch from Dpri

or the whole minibatch from Dpub. Otherwise the noise always need to be added and the algorithm is
identical to the vanilla DP-SGD, and there is no benefit of having a portion of the data being public
comparing to all of the data are private.
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